WorldWideScience

Sample records for augmented space approach

  1. Augmented Spinor Space

    Institute of Scientific and Technical Information of China (English)

    Xiuhong FENG; Lin ZHU; Yanlin YU

    2007-01-01

    In this paper, based on the Pauli matrices, a notion of augmented spinor space is introduced, and a uniqueness of such augmented spinor space of rank n is proved. It may be expected that this new notion of spaces can be used in mathematical physics and geometry.

  2. Augmented spaces, a look beyond advertising

    Directory of Open Access Journals (Sweden)

    Oana Andreea Căplescu

    2014-03-01

    Full Text Available From billboards to urban screens and now to media facades, the augmentation of our cities has expanded, changing social behaviours and public space consumption. Smart buildings are being developed and, much like the smartphones, these hybrids are not only in sci-fi movies anymore. One of the main promoters of media facades and media architecture has been the advertising industry. But artists and designers showed the potential of different approaches, experimenting with digitally augmented spaces both indoors and outdoors. Going beyond the commercial aspect of being an advertising and branding tool, these hybrids offer a variety of uses. Questions of how and where we use them and how they can improve our life quality are discussed here emphasizing that we developed a media behaviour, adjusting our relation to the physical and information environments. I examine some of the most notable experiments outside of the advertising sphere, offering a base for future development of augmented spaces and opening the discussion over the language of new media architecture.

  3. Electronic and magnetic properties at rough and sharp transition metal–metal interfaces: An augmented space approach

    Energy Technology Data Exchange (ETDEWEB)

    Parida, Priyadarshini [Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008 (India); Ganguli, Biplab, E-mail: biplabg@nitrkl.ac.in [Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008 (India); Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com [Department of Physics and Materials Science, S.N. Bose National Centre for Basic Sciences, JD-III Salt Lake, Kolkata 700098 (India); Presidency University, College Street, Kolkata (India); Lady Brabourne College, Suhrawardy Avenue, Kolkata (India)

    2015-05-01

    The augmented space formalism (ASF) coupled with recursion method and a tight binding linear muffin-tin orbital basis has been applied to study the layerwise electronic and magnetic properties of (0 0 1) interfaces of body-centered cubic Fe/Ag and face centered cubic Co/Ag, Fe/Cu and Co/Cu. Three different thickness of interfaces are considered: mono, two and three layers of transition metals with metal substrates. Layers of an interface are considered disordered alloys with different degree of disorderedness due to interdiffusion of transition metal layer atoms and substrate atoms during growth process. We show that ASF is applicable to sharp interface also. Result of three layers of transition metal rough interface agrees well with available experimental result. - Highlights: • Study of rough interface of transition metals by augmented space formalism. • Same formalism is extended for nearly sharp interface. • Comparison is made for smooth, 1 layer and 4 layers roughed surfaces. • Layerwise magnetic moments and electronic properties are studied. • Rough interface with 3 layers of transition metals agrees with experiment.

  4. An augmented space approach to the study of random ternary alloys: I. Electronic structure with uncorrelated disorder and short ranged order

    International Nuclear Information System (INIS)

    We present here a generalized augmented space recursive technique which includes the effects of diagonal and environmental disorder explicitly: an analytic, lattice translational invariant, multiple scattering theory for the study of short range ordering in random ternary alloys. Our generalized augmented space formalism includes atomic correlations over a finite cluster including short range order (SRO). We propose the augmented space recursion (ASR), a computationally fast and accurate technique which incorporates configuration fluctuations over a large local environment. We apply the formalism to a tight-binding linear muffin-tin orbital (LMTO) study of stainless steel Fe80-xNixCr20 (x = 14 and 17). We have demonstrated the effects of short range ordering by calculating the configuration averaged density of states with and without SRO and with different kinds of cluster environment embedded in an averaged medium.

  5. Surgical Approaches to Breast Augmentation: The Transaxillary Approach.

    Science.gov (United States)

    Strock, Louis L

    2015-10-01

    The transaxillary approach to breast augmentation has the advantage of allowing breast implants to be placed with no incisions on the breasts. There has been a general perception of a lack of technical control compared with the inframammary approach. This article presents the transaxillary approach from the perspective of the technical control gained with the aid of an endoscope, which allows precise creation of the tissue pocket with optimal visualization. The aspects of technique that allow optimal technical control are discussed, in addition to postoperative processes that aid in stabilizing the device position and allow consistent and predictable outcomes.

  6. Prototype Application of Portable Augmented Reality Technology for Enhancement of Space and Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this project, several different augmentation techniques for locating ground articles from distance through an augmented live view were investigated....

  7. Mobile Cloud Computing: A Review on Smartphone Augmentation Approaches

    OpenAIRE

    Abolfazli, Saeid; Sanaei, Zohreh; Gani, Abdullah

    2012-01-01

    Smartphones have recently gained significant popularity in heavy mobile processing while users are increasing their expectations toward rich computing experience. However, resource limitations and current mobile computing advancements hinder this vision. Therefore, resource-intensive application execution remains a challenging task in mobile computing that necessitates device augmentation. In this article, smartphone augmentation approaches are reviewed and classified in two main groups, name...

  8. MODIFIED DISSECTION OF SUBPECTORAL SPACE FOR BETTER AESTHETICAL AUGMENTED BREAST

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To reconstruct an augmented breast that resembles a virginal one that is difficult to be achieved by the traditional technique. Methods We modified the dissection of the subpectoral space by extending it over the sternum edge 1cm medially and beyond the breast crease 2cm inferiorly, yet keeping strictly the upper border of the space on the third rib and the lateral border on the anterior axillary line. Results All 50 patients were satisfied with their augmented breasts which nearly resembled the virginal ones. Conclusion Our modified dissection enabled the mammary implant to stay in the position where it originally was and not be pushed upward and laterally by the pectoral muscle contraction as usually seen by the traditional technique.

  9. Mobile Cloud Computing: A Review on Smartphone Augmentation Approaches

    CERN Document Server

    Abolfazli, Saeid; Gani, Abdullah

    2012-01-01

    Smartphones have recently gained significant popularity in heavy mobile processing while users are increasing their expectations toward rich computing experience. However, resource limitations and current mobile computing advancements hinder this vision. Therefore, resource-intensive application execution remains a challenging task in mobile computing that necessitates device augmentation. In this article, smartphone augmentation approaches are reviewed and classified in two main groups, namely hardware and software. Generating high-end hardware is a subset of hardware augmentation approaches, whereas conserving local resource and reducing resource requirements approaches are grouped under software augmentation methods. Our study advocates that consreving smartphones' native resources, which is mainly done via task offloading, is more appropriate for already-developed applications than new ones, due to costly re-development process. Cloud computing has recently obtained momentous ground as one of the major co...

  10. Topic Space: Rapid Prototyping a Mobile Augmented Reality Recommendation App

    Directory of Open Access Journals (Sweden)

    Jim Hahn

    2015-10-01

    Full Text Available With funding from an Institute of Museum and Library Services (IMLS Sparks! Ignition Grant, researchers from the University of Illinois Library designed and tested a mobile recommender app with augmented reality features. By embedding open source optical character recognition software into a “Topic Space” module, the augmented reality app can recognize call numbers on a book in the library and suggest relevant items that are not shelved nearby. Topic Space can also show users items that are normally shelved in the starting location but that are currently checked out. Using formative UX methods, grant staff shaped app interface and functionality through early user testing. This paper reports results of UX testing; a redesigned mobile interface, and provides considerations on the future development of personalized recommendation functionality.

  11. A New Approach to Video Augmentation%视频增强的新方法

    Institute of Scientific and Technical Information of China (English)

    申杰

    2008-01-01

    A calibrationfree augmented reality based on the affine space is firstly formulated by a tensor method. This approach does not use the calibration parameters of the camera and the 3D locations of the environment’s object, and can realize the video augmentation.Meanwhile, an approach to resolving the occlusion problem in augmented reality is presented. The main ideas of video augmentation based on calibrationfree augmented reality and application examples are given in this paper. Its application is successful.%本文使用张量的方法推导了基于仿射空间的免标定增强现实方法,该方法不需要像机的标定参数和环境对象的3D位置信息就可实现视频增强.同时,本文也提出了在仿射空间解决增强现实中遮挡问题的新方法,给出了基于免标定增强现实的视频增强主要想法和应用实例.结果表明,这个方法是可行的.

  12. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  13. Self-dual chiral boson: augmented superfield approach

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, D.; Bhanja, T. [Banaras Hindu University, Department of Physics, Faculty of Science, Centre of Advanced Studies, Varanasi, U.P. (India); Malik, R.P. [Banaras Hindu University, Department of Physics, Faculty of Science, Centre of Advanced Studies, Varanasi, U.P. (India); Banaras Hindu University, Faculty of Science, DST Centre for Interdisciplinary Mathematical Sciences, Varanasi, U.P. (India)

    2014-09-15

    We exploit the standard tools and techniques of the augmented version of the Bonora-Tonin superfield formalism to derive the off-shell nilpotent and absolutely anticommuting (anti-)Becchi-Rouet-Stora-Tyutin (BRST) and (anti-)co-BRST symmetry transformations for the BRST-invariant Lagrangian density of a self-dual bosonic system. In the derivation of the full set of the above symmetry transformations, we invoke the (dual-)horizontality conditions, and (anti-)BRST- and (anti-)co-BRST-invariant restrictions on the superfields that are defined on the (2, 2)-dimensional supermanifold. The latter is parameterized by the bosonic variable x{sup μ} (μ = 0, 1) and a pair of Grassmannian variables θ and anti θ (with θ{sup 2} = anti θ{sup 2} = 0 and θ anti θ + anti θθ = 0). The dynamics of this system is such that, instead of the full (2, 2)-dimensional superspace coordinates (x{sup μ}, θ, anti θ), we require only the specific (1, 2)-dimensional super-subspace variables (t, θ, anti θ) for its description. This is a novel observation in the context of the superfield approach to the BRST formalism. The application of the dual-horizontality condition, in the derivation of a set of proper (anti-)co-BRST symmetries, is also one of the newingredients of our present endeavor where we have exploited the augmented version of the superfield approach to the BRST formalism. (orig.)

  14. Mobile Platform Augmented Reality for Enhanced Operations on the International Space Station Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To develop an Augmented Reality system that runs on a small portable device to aid crew in routine maintenance activities by providing enhanced information and...

  15. Real-space grid implementation of the projector augmented wave method

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel

    2005-01-01

    A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...

  16. Augmenting the Funding Sources for Space Science and the ASTRO-1 Space Telescope

    Science.gov (United States)

    Morse, Jon

    2015-08-01

    The BoldlyGo Institute was formed in 2013 to augment the planned space science portfolio through philanthropically funded robotic space missions, similar to how some U.S. medical institutes and ground-based telescopes are funded. I introduce BoldlyGo's two current projects: the SCIM mission to Mars and the ASTRO-1 space telescope. In particular, ASTRO-1 is a 1.8-meter off-axis (unobscured) ultraviolet-visible space observatory to be located in a Lagrange point or heliocentric orbit with a wide-field panchromatic camera, medium- and high-resolution spectrograph, and high-contrast imaging coronagraph and/or an accompanying starshade/occulter. It is intended for the post-Hubble Space Telescope era in the 2020s, enabling unique measurements of a broad range of celestial targets, while providing vital complementary capabilities to other ground- and space-based facilities such as the JWST, ALMA, WFIRST-AFTA, LSST, TESS, Euclid, and PLATO. The ASTRO-1 architecture simultaneously wields great scientific power while being technically viable and affordable. A wide variety of scientific programs can be accomplished, addressing topics across space astronomy, astrophysics, fundamental physics, and solar system science, as well as being technologically informative to future large-aperture programs. ASTRO-1 is intended to be a new-generation research facility serving a broad national and international community, as well as a vessel for impactful public engagement. Traditional institutional partnerships and consortia, such as are common with private ground-based observatories, may play a role in the support and governance of ASTRO-1; we are currently engaging interested international organizations. In addition to our planned open guest observer program and accessible data archive, we intend to provide a mechanism whereby individual scientists can buy in to a fraction of the gauranteed observing time. Our next step in ASTRO-1 development is to form the ASTRO-1 Requirements Team

  17. Delambre-Gauss Formulas for Augmented, Right-Angled Hexagons in Hyperbolic 4-Space

    CERN Document Server

    Tan, Ser Peow; Zhang, Ying

    2011-01-01

    We study the geometry of oriented right-angled hexagons in H^4, the hyperbolic 4-space, via Clifford numbers or quaternions. We show how to augment alternate sides of such a hexagon so that for the non-augmented sides, we can define quaternion half side-lengths whose angular parts are obtained from half the Euler angles associated to a certain orientation-preserving isometry of the Euclidean 3-space. This generalizes the complex half side-lengths of oriented right-angled hexagons in H^3. We also define appropriate complex half side-lengths for the augmented sides of the hexagon. We further explain how to geometrically read off the quaternion half side-lengths for a given oriented,augmented, right-angled hexagon in H^4. Our main result is a set of generalized Delambre-Gauss formulas for oriented, augmented, right-angled hexagons in H^4, involving the quaternion half side-lengths and the complex half side-lengths. We also show in the appendix how the same method gives Delambre-Gauss formulas for oriented right-...

  18. Augmentation and Maximization of Per-Capita Call Active Space Through Chorusing in Anuran Amphibians

    Science.gov (United States)

    Fox, James Henderson

    It is poorly understood why anuran males form choruses. Although various reasons have been proposed, empirical support is lacking. This study proposed, developed, and evaluated the chorus active space (CAS) augmentation theory, which states that anuran choruses are formed and organized so as to augment and maximize per-capita CAS beyond that which could be achieved by an isolated male. This study involved three phases. First, computer models of hypothetical choruses indicated that CAS, as defined, is necessarily augmented for chorusing males. These models provided the necessary information from which optimal interindividual distances (IIDs), corresponding to maximal CASs, could be estimated differentially for linear and planar chorus configurations. The second phase examined Acris crepitans and Hyla cinerea choruses for optimal intermale spacing. A. crepitans, which utilizes mixed chorus geometries (either linear or planar, depending on available resources), cannot optimize IID within any observed pond-type breeding site; however, observed spacing would be optimal along a stream bank, where chorusing often occurs, for a chorus population of 61, approximately the minimum value at which CAS characteristics are stabile. H. cinerea males, which form only planar choruses, space orders of magnitude closer than optimal. Suboptimal spacing in this species is understandable, considering the would-be size of an optimally spaced chorus. In the final phase of this study, a database of CAS-related data was compiled mostly from published sources and was examined for variable relationships predicted on the basis of CAS augmentation theory. The findings suggest that very few planar geometry species may maximize CAS; whereas, a much larger number of mixed geometry species, perhaps as well as linear geometry species, may maximize CAS. These findings loosely agree with the field study findings and suggest that CAS augmentation theory applies to at least a subset of anuran species and

  19. On augmented superfield approach to vector Schwinger model

    CERN Document Server

    Gupta, Saurabh

    2016-01-01

    We exploit the techniques of Bonora-Tonin superfield formalism to derive the off-shell nilpotent and absolutely anticommuting (anti-)BRST as well as (anti-)co-BRST symmetry transformations for the (1+1)-dimensional (2D) bosonized vector Schwinger model. In the derivation of above symmetries, we invoke the (dual)-horizontality conditions as well as gauge and (anti-)co-BRST invariant restrictions on the superfields that are defined onto the $(2,2)$-dimensional supermanifold. We provide geometrical interpretation of the above nilpotent symmetries (and their corresponding charges). We also express the nilpotency and absolute anticommutativity of the (anti-)BRST and (anti-)co-BRST charges within the framework of augmented superfield formalism.

  20. A unified approach to an augmented Burgers equation for the propagation of sonic booms.

    Science.gov (United States)

    Yamamoto, Masafumi; Hashimoto, Atsushi; Aoyama, Takashi; Sakai, Takeharu

    2015-04-01

    Nonlinear propagation through a relaxing atmosphere of pressure disturbances extracted from a computational fluid dynamics (CFD) solution of the flow around a supersonic aircraft is simulated using an augmented Burgers equation. The effects of nonlinearity, geometrical spreading, atmospheric inhomogeneity, thermoviscous attenuation, and molecular vibration relaxation are taken into account. The augmented Burgers equation used for sonic boom propagation calculations is often solved by the operator splitting method, but numerical difficulties arise with this approach when dissipation is not effective. By re-examining the solution algorithms for the augmented Burgers equation, a stable method for handling the relaxation effect has been developed. This approach can handle the Burgers equation in a unified manner without operator splitting and, therefore, the resulting scheme is twice as fast as the original one. The approach is validated by comparing it with an analytical solution and a detailed CFD of dispersed plane wave propagation. In addition, a rise time prediction of low-boom supersonic aircraft is demonstrated.

  1. Default Bayesian analysis for multi-way tables: a data-augmentation approach

    CERN Document Server

    Polson, Nicholas G

    2011-01-01

    This paper proposes a strategy for regularized estimation in multi-way contingency tables, which are common in meta-analyses and multi-center clinical trials. Our approach is based on data augmentation, and appeals heavily to a novel class of Polya-Gamma distributions. Our main contributions are to build up the relevant distributional theory and to demonstrate three useful features of this data-augmentation scheme. First, it leads to simple EM and Gibbs-sampling algorithms for posterior inference, circumventing the need for analytic approximations, numerical integration, Metropolis--Hastings, or variational methods. Second, it allows modelers much more flexibility when choosing priors, which have traditionally come from the Dirichlet or logistic-normal family. For example, our approach allows users to incorporate Bayesian analogues of classical penalized-likelihood techniques (e.g. the lasso or bridge) in computing regularized estimates for log-odds ratios. Finally, our data-augmentation scheme naturally sugg...

  2. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....

  3. Space Shuttle Main Engine fuel preburner augmented spark igniter shutdown detonations

    Science.gov (United States)

    Dexter, C. E.; Mccay, T. D.

    1986-01-01

    Detonations were experienced in the Space Shuttle Main Engine fuel preburner (FPB) augmented spark igniter (ASI) during engine cutoff. Several of these resulted in over pressures sufficient to damage the FPB ASI oxidizer system. The detonations initiated in the FPB ASI oxidizer line when residual oxidizer (oxygen) in the line mixed with backflowing fuel (hydrogen) and detonated. This paper reviews the damage history to the FPB ASI oxidizer system, an engineering assessment of the problem cause, a verification of the mechanisms, the hazards associated with the detonations, and the solution implemented.

  4. Ridge augmentation procedures in implant patients: a staged approach

    NARCIS (Netherlands)

    S. Chen; D. Buser; D. Wismeijer

    2014-01-01

    The ITI Treatment Guide series, a unique compendium of evidence-based treatment methods in implant dentistry in daily practice, written by renowned clinicians, provides a comprehensive overview of various therapeutic options. Using an illustrated step-by-step approach, the ITI Treatment Guide shows

  5. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry

    Science.gov (United States)

    Anderud, Jonas; Abrahamsson, Peter; Jimbo, Ryo; Isaksson, Sten; Adolfsson, Erik; Malmström, Johan; Naito, Yoshihito; Wennerberg, Ann

    2015-01-01

    The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. PMID:25792855

  6. An Empirical Study on Tangible Augmented Reality Learning Space for Design Skill Transfer

    Institute of Scientific and Technical Information of China (English)

    Rui Chen; Xiangyu Wang

    2008-01-01

    Tangible augmented reality(TAR)technology opens a novel realm which integrates the computer-generated elements into the real word.Its applications into design education have been explored with a limi- tation to this entire area.TAR offers an innovative learning space by merging digital learning materials into the format of media with tools or objects which are direct parts of the physical space.It is therefore con- ceived that such combination opens new perspectives in teaching and learning.This paper presented and evaluated one TAR system to improve the pedagogical effectiveness of expedential and collaborative learn- ing process in urban design education.The results from the experiments were analyzed under a previously developed theoretical framework,which show that TAR can enhance the design activities in some collabora- tive work.

  7. A new approach for vibration control in large space structures

    Science.gov (United States)

    Kumar, K.; Cochran, J. E., Jr.

    1987-01-01

    An approach for augmenting vibration damping characteristics in space structures with large panels is presented. It is based on generation of bending moments rather than forces. The moments are generated using bimetallic strips, suitably mounted at selected stations on both sides of the large panels, under the influence of differential solar heating, giving rise to thermal gradients and stresses. The collocated angular velocity sensors are utilized in conjunction with mini-servos to regulate the control moments by flipping the bimetallic strips. A simple computation of the rate of dissipation of vibrational energy is undertaken to assess the effectiveness of the proposed approach.

  8. An Empirical Study on Augmented Virtuality Space for Tele-Inspection of Built Environments

    Institute of Scientific and Technical Information of China (English)

    Xiangyu Wang; Rui Chen

    2008-01-01

    This paper describes an empirical study on an augmented virtuality (AV)-based system dedicated for tele-inspection of built environments. This system is regarded as a solution that allows users to experi-ence the real remote built environment without the need of physically stepping into that actual place. Such experience is realized by using AV technology to enrich the virtual counterparts of the place with captured real images from the real space. Those integrated into the AV environment are real photos that represent key landmarks/features of the real place, live video streams of on-site crew, and 3D virtual design geome-tries. The focus of this paper is the implementation and evaluation of the AV system in its current state as compared with traditional photo-based methods. Results from this preliminary empirical study show that the AV system achieves good overall satisfaction, although it involves certain general usability issues.

  9. A unified approach to an augmented Burgers equation for the propagation of sonic booms.

    Science.gov (United States)

    Yamamoto, Masafumi; Hashimoto, Atsushi; Aoyama, Takashi; Sakai, Takeharu

    2015-04-01

    Nonlinear propagation through a relaxing atmosphere of pressure disturbances extracted from a computational fluid dynamics (CFD) solution of the flow around a supersonic aircraft is simulated using an augmented Burgers equation. The effects of nonlinearity, geometrical spreading, atmospheric inhomogeneity, thermoviscous attenuation, and molecular vibration relaxation are taken into account. The augmented Burgers equation used for sonic boom propagation calculations is often solved by the operator splitting method, but numerical difficulties arise with this approach when dissipation is not effective. By re-examining the solution algorithms for the augmented Burgers equation, a stable method for handling the relaxation effect has been developed. This approach can handle the Burgers equation in a unified manner without operator splitting and, therefore, the resulting scheme is twice as fast as the original one. The approach is validated by comparing it with an analytical solution and a detailed CFD of dispersed plane wave propagation. In addition, a rise time prediction of low-boom supersonic aircraft is demonstrated. PMID:25920838

  10. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  11. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry

    Directory of Open Access Journals (Sweden)

    Anderud J

    2015-03-01

    Full Text Available Jonas Anderud,1,2 Peter Abrahamsson,2 Ryo Jimbo,1 Sten Isaksson,2 Erik Adolfsson,3 Johan Malmström,2 Yoshihito Naito,4 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Maxillofacial Unit Halmstad, Region Halland, Halmstad, Sweden; 3Swedish Ceramic Institute, IVF, Mölndal, Sweden; 4Department of Oral and Maxillofacial Prosthodontics and Oral Implantology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Abstract: The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. Keywords: hydroxyapatite, zirconia, guided bone regeneration, GBR, histology, membrane

  12. An implementation of core level spectroscopies in a real space Projector Augmented Wave density functional theory code

    DEFF Research Database (Denmark)

    Ljungberg, M.P.; Mortensen, Jens Jørgen; Pettersson, L.G.M.

    2011-01-01

    We describe the implementation of K-shell core level spectroscopies (X-ray absorption (XAS), X-ray emission (XES), and X-ray photoemission (XPS)) in the real-space-grid-based Projector Augmented Wave (PAW) GPAW code. The implementation for XAS is based on the Haydock recursion method avoiding com...

  13. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method

    Energy Technology Data Exchange (ETDEWEB)

    Enkovaara, J [CSC-IT Center for Science Ltd, PO Box 405 FI-02101 Espoo (Finland); Rostgaard, C; Mortensen, J J; Chen, J; Dulak, M; Glinsvad, C; Hansen, H A; Larsen, A H; Moses, P G; Petzold, V [Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Ferrighi, L; Kristoffersen, H H [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Gavnholt, J; Olsen, T [Danish National Research Foundation' s Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Haikola, V; Lehtovaara, L [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FIN-00076 Aalto, Espoo (Finland); Kuisma, M; Ojanen, J [Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere (Finland); Ljungberg, M [FYSIKUM, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Lopez-Acevedo, O [Departments of Physics and Chemistry, Nanoscience Center, University of Jyvaeskylae, PO Box 35 (YFL), FI-40014 (Finland)

    2010-06-30

    Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, {Delta}SCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals. (topical review)

  14. Augmented Superfield Approach to Nilpotent Symmetries of the Modified Version of 2D Proca Theory

    Directory of Open Access Journals (Sweden)

    A. Shukla

    2015-01-01

    and absolute anticommutativity of the (anti-BRST and (anti-co-BRST charges within the framework of augmented superfield formalism. This exercise leads to some novel observations which have, hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry, and discrete symmetries of the theory and show that the algebra of conserved charges provides a physical realization of the Hodge algebra (satisfied by the de Rham cohomological operators of differential geometry.

  15. The Subfascial Approach to Primary and Secondary Breast Augmentation with Autologous Fat Grafting and Form-Stable Implants.

    Science.gov (United States)

    Sampaio Goes, João Carlos; Munhoz, Alexandre Mendonça; Gemperli, Rolf

    2015-10-01

    This article presents an overview of the subfascial approach to primary and secondary breast augmentation with form-stable implants associated with autologous fat grafting. Although breast augmentation is a well-studied procedure, there are few previous reports concerning the subfascial technique and, especially, this technique associated with lipofilling. Consequently, the authors present their experience with a form-stable, anatomically shaped silicone gel breast implant, which has recently been approved in the United States following FDA clinical trials. Primary and secondary breast augmentations using form-stable implants resulted in satisfactory outcomes.

  16. Engaging Our School Teachers: an Augmented Reality (AR Approach to Continuous Professional Development

    Directory of Open Access Journals (Sweden)

    Debbie Holley

    2016-04-01

    Full Text Available Currently, teachers in the UK learn about behaviour management strategies from theoretical perspectives when training, through discussions with mentors, and by trial and error at their schools. Existing literature mainly focuses on such issues from the ‘adult’ viewpoint, not the voice of the child. This paper reports on work-in-progress developing a range of Augmented Reality (AR resources for these issues, drawing upon co-design research workshops with children from a Year 6 class (aged 10 in a UK Primary School. Our research informs approaches to classroom management by encouraging reflection and analysis of ‘critical incidents’ identified by the pupils, and explored by teachers in workshops through the medium of AR, giving a reality previously uncaptured in more traditional approaches. Our final resources will be a set of Open Education Resources (OER, offered to the wider community for reuse/repurposing for educational settings through a Creative Commons (cc licence.

  17. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space

    Science.gov (United States)

    Hong, S.-M.; Jung, B.-H.; Ruan, D.

    2011-03-01

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively

  18. Augmented Superfield Approach to Nilpotent Symmetries of the Modified Version of 2D Proca Theory

    CERN Document Server

    Shukla, A; Malik, R P

    2013-01-01

    We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations for all the fields of the modified version of two (1+1)-dimensional (2D) Proca theory by exploiting the "augmented" superfield formalism where the (dual-)horizontality conditions and (dual-)gauge-invariant restrictions are exploited together. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian density in the language of superfield formalism. We also express the nilpotency and absolute anticommutativity of the (anti-)BRST and (anti-)co-BRST charges within the framework of augmented superfield formalism. This exercise leads to some novel observations which have, hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry and discrete symmetries of the theory and ...

  19. An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization

    KAUST Repository

    Petra, Cosmin G.

    2014-01-01

    We present a scalable approach and implementation for solving stochastic optimization problems on high-performance computers. In this work we revisit the sparse linear algebra computations of the parallel solver PIPS with the goal of improving the shared-memory performance and decreasing the time to solution. These computations consist of solving sparse linear systems with multiple sparse right-hand sides and are needed in our Schur-complement decomposition approach to compute the contribution of each scenario to the Schur matrix. Our novel approach uses an incomplete augmented factorization implemented within the PARDISO linear solver and an outer BiCGStab iteration to efficiently absorb pivot perturbations occurring during factorization. This approach is capable of both efficiently using the cores inside a computational node and exploiting sparsity of the right-hand sides. We report on the performance of the approach on highperformance computers when solving stochastic unit commitment problems of unprecedented size (billions of variables and constraints) that arise in the optimization and control of electrical power grids. Our numerical experiments suggest that supercomputers can be efficiently used to solve power grid stochastic optimization problems with thousands of scenarios under the strict "real-time" requirements of power grid operators. To our knowledge, this has not been possible prior to the present work. © 2014 Society for Industrial and Applied Mathematics.

  20. A computationally efficient approach for hidden-Markov model-augmented fingerprint-based positioning

    Science.gov (United States)

    Roth, John; Tummala, Murali; McEachen, John

    2016-09-01

    This paper presents a computationally efficient approach for mobile subscriber position estimation in wireless networks. A method of data scaling assisted by timing adjust is introduced in fingerprint-based location estimation under a framework which allows for minimising computational cost. The proposed method maintains a comparable level of accuracy to the traditional case where no data scaling is used and is evaluated in a simulated environment under varying channel conditions. The proposed scheme is studied when it is augmented by a hidden-Markov model to match the internal parameters to the channel conditions that present, thus minimising computational cost while maximising accuracy. Furthermore, the timing adjust quantity, available in modern wireless signalling messages, is shown to be able to further reduce computational cost and increase accuracy when available. The results may be seen as a significant step towards integrating advanced position-based modelling with power-sensitive mobile devices.

  1. An Augmented Discrete-Time Approach for Human-Robot Collaboration

    Directory of Open Access Journals (Sweden)

    Peidong Liang

    2016-01-01

    Full Text Available Human-robot collaboration (HRC is a key feature to distinguish the new generation of robots from conventional robots. Relevant HRC topics have been extensively investigated recently in academic institutes and companies to improve human and robot interactive performance. Generally, human motor control regulates human motion adaptively to the external environment with safety, compliance, stability, and efficiency. Inspired by this, we propose an augmented approach to make a robot understand human motion behaviors based on human kinematics and human postural impedance adaptation. Human kinematics is identified by geometry kinematics approach to map human arm configuration as well as stiffness index controlled by hand gesture to anthropomorphic arm. While human arm postural stiffness is estimated and calibrated within robot empirical stability region, human motion is captured by employing a geometry vector approach based on Kinect. A biomimetic controller in discrete-time is employed to make Baxter robot arm imitate human arm behaviors based on Baxter robot dynamics. An object moving task is implemented to validate the performance of proposed methods based on Baxter robot simulator. Results show that the proposed approach to HRC is intuitive, stable, efficient, and compliant, which may have various applications in human-robot collaboration scenarios.

  2. Flight evaluation of highly augmented controls and electronic displays for precision approach and landing of powered-lift aircraft

    Science.gov (United States)

    Franklin, J. A.; Hynes, C. S.

    1985-01-01

    Experiments were conducted on simulators and on the Quiet Short-Haul Research Aircraft to evaluate the effect of highly augmented control modes and electronic displays on the ability of pilots to execute precision approaches and landings on a short runway. It is found that the primary benefits of highly augmented flightpath and airspeed controls and electronic displays are realized when the pilot is required to execute precisely a complex transition and approach under instrument conditions and in the presence of a wide range of wind and turbulence conditions. A flightpath and airspeed command and stabilization system incorporating nonlinear, inverse system concepts produced fully satisfactory flightpath control throughout the aircraft's terminal operating envelope.

  3. Measuring segregation: an activity space approach

    Science.gov (United States)

    Wong, David W. S.; Shaw, Shih-Lung

    2011-06-01

    While the literature clearly acknowledges that individuals may experience different levels of segregation across their various socio-geographical spaces, most measures of segregation are intended to be used in the residential space. Using spatially aggregated data to evaluate segregation in the residential space has been the norm and thus individual's segregation experiences in other socio-geographical spaces are often de-emphasized or ignored. This paper attempts to provide a more comprehensive approach in evaluating segregation beyond the residential space. The entire activity spaces of individuals are taken into account with individuals serving as the building blocks of the analysis. The measurement principle is based upon the exposure dimension of segregation. The proposed measure reflects the exposure of individuals of a referenced group in a neighborhood to the populations of other groups that are found within the activity spaces of individuals in the referenced group. Using the travel diary data collected from the tri-county area in southeast Florida and the imputed racial-ethnic data, this paper demonstrates how the proposed segregation measurement approach goes beyond just measuring population distribution patterns in the residential space and can provide a more comprehensive evaluation of segregation by considering various socio-geographical spaces.

  4. Measuring segregation: an activity space approach.

    Science.gov (United States)

    Wong, David W S; Shaw, Shih-Lung

    2011-06-01

    While the literature clearly acknowledges that individuals may experience different levels of segregation across their various socio-geographical spaces, most measures of segregation are intended to be used in the residential space. Using spatially aggregated data to evaluate segregation in the residential space has been the norm and thus individual's segregation experiences in other socio-geographical spaces are often de-emphasized or ignored. This paper attempts to provide a more comprehensive approach in evaluating segregation beyond the residential space. The entire activity spaces of individuals are taken into account with individuals serving as the building blocks of the analysis. The measurement principle is based upon the exposure dimension of segregation. The proposed measure reflects the exposure of individuals of a referenced group in a neighborhood to the populations of other groups that are found within the activity spaces of individuals in the referenced group. Using the travel diary data collected from the tri-county area in southeast Florida and the imputed racial-ethnic data, this paper demonstrates how the proposed segregation measurement approach goes beyond just measuring population distribution patterns in the residential space and can provide a more comprehensive evaluation of segregation by considering various socio-geographical spaces.

  5. Augmentation of Virtual Space Physics Observatory Services to Expand Data Access Capabilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aquilent, Inc. proposes to support the effort of Virtual Space Physics Observatory (VSPO) by developing services to expand the VSPO search capabilities, developing...

  6. Abordaje areolar en mamoplastia de aumento Areolar approach in augmentation mammaplasty

    Directory of Open Access Journals (Sweden)

    P Castillo Delgado

    2007-06-01

    Full Text Available La mamoplastia de aumento se ha consolidado como una cirugía segura, de rápida recuperación y con resultados predecibles e inmediatos. Las expectativas de las pacientes son cada vez mayores, exigiendo resultados naturales y sin estigmas quirúrgicos. Todas las vías de abordaje clásicas, para la colocación de implantes mamarios, dejan cicatrices visibles. En mujeres con areolas de diámetro grande, es posible emplear un abordaje dentro de la areola, que deja una cicatriz oculta en su unión con el pezón. Se describe la técnica y posteriormente se discuten sus indicaciones, ventajas y desventajas.Augmentation mammoplasty has gained acceptance as a safe surgical procedure with fast recovery and a readily predictable outcome. Increasing patient expectations impose demands on natural appearance without signs of surgery. All standard incision areas for insertion of implant leave visible scars. For women with large areolar diameter, it is possible to leave a hidden scar at the aerola-nipple junction by conducting an intra- areolar approach. The technique is described and its intended application and advantages and disadvantages are discussed.

  7. A learning performance study between the conventional approach and augmented reality textbook among secondary school students

    Science.gov (United States)

    Gopalan, Valarmathie; Zulkifli, Abdul Nasir; Bakar, Juliana Aida Abu

    2016-08-01

    Malaysia is moving towards becoming a developed nation by 2020. As such, the need for adequate human resources in science-related fields is one of the requirements to achieve a developed nation status. Unfortunately, there is a downward trend in the number of students pursuing the science stream at the secondary school level. This paper introduces an enhanced science textbook using Augmented Reality (eSTAR) that is intended to motivate students to be interested in science. The eSTAR was implemented to provide a supplement to the conventional science teaching and learning methods in the secondary schools. A learning performance study with a control group was conducted to investigate the effectiveness of the eSTAR for science learning among a sample of 140 Form Two secondary school students. The results indicate that the learning performance of the students in both groups had a significant difference in mean scores between the pre-test and post-test. Students using the eSTAR have a better score in the post-test and eventually resulted in a better learning performance compared to those who were exposed to the conventional science learning. Overall, the results show that the students benefited from the use of the conventional and eSTAR learning approaches.

  8. An Augmented Reality Approach to Integrate Practical Activities in E-Learning Systems

    Directory of Open Access Journals (Sweden)

    EL KABTANE Hamada

    2016-02-01

    Full Text Available In the past, the term E-learning was mentioned to any learning method that used electronic machine for the distribution. With the evolution and the apparition of the internet, the term e learning has been evolved and referred to the online courses. There are a lot of platform which serves to distribute and manage the learning content. In some domain learners need to use some equipment and useful product for purpose completing the image built in the theoretical part by the practical activity part. However, most of those platforms suffer from a lack in tools that offer practical activities for learners. Using videos, virtual laboratories or distance control of real equipment as solutions to solve this lack were proposed but still limited. The mixed reality as new technology promised to create a virtual environment where the learner is an actor and can interact with the virtual objects. This article present an approach for developing integrated E-learning systems, helping to carry out the practical work by establishing a virtual laboratory that all tools and products can be manipulated by learners and teachers like in real practical activity, based on an augmented reality system.

  9. Augmented Human Engineering: A Theoretical and Experimental Approach to Human Systems Integration

    OpenAIRE

    Fass, Didier

    2012-01-01

    This chapter focuses on one of the main issues for augmented human engineering: integrating the biological user's needs in its methodology for designing human-artefact systems integration requirements and specifications. To take into account biological, anatomical and physiological requirements we need a validated theoretical framework. We explain how to ground augmented human engineering on the Chauvet mathematical theory of integrative physiology as a fundamental framework for human system ...

  10. A New Hybrid Approach for Augmented Reality Maintenance in Scientific Facilities

    OpenAIRE

    Héctor Martínez; Seppo Laukkanen; Jouni Mattila

    2013-01-01

    Maintenance in scientific facilities is a difficult issue, especially in large and hazardous facilities, due to the complexity of tasks and equipment. Augmented reality is a technology that has already shown great promise in the maintenance field. With the help of augmented reality applications, maintenance tasks can be carried out faster and more safely. The problem with current applications is that they are small-scale prototypes that do not easily scale to large facility maintenance applic...

  11. Augmentation of Block Truncation Coding based Image Retrieval by using Even and Odd Images with Sundry Colour Spaces

    Directory of Open Access Journals (Sweden)

    Dr. H.B.Kekre

    2010-11-01

    Full Text Available The augmentation to block truncation coding (BTC based image retrieval techniques using Even and Odd images with ten different colour spaces is the theme of work given in the paper. Here the original image is reflected across vertical axis to obtain the flip image, then even and odd images are obtained respectively by addition of original with flip and subtraction of flip from original. TheBTC is applied on original image, even image and odd image to get seven different combinational feature sets for content based image retrieval (CBIR techniques like original, even, odd, original & even, original & odd, even & odd and original & even & odd. Use of ten sundry colour spaces results into total seventy CBIR methods,For experimentation the generic image database having 1000 images spread across 11 categories is used. For each proposed CBIR technique 55 queries (5 per category are fired on the generic image database. To compare the performance of image retrieval techniques averageprecision and recall are computed of all queries. The results have shown the performance improvement (higher precision and recall values with these proposed colour- BTC methods. Instead of using just 6 feature vector in BTC, if we perform the image retrieval using the flipping technique wherein the feature vector is increased to 12 and 18,the performance also increases except in the case of normalized rgb colour space. Image flipping helps to improve the performance in all of luminance-chromaticity colour spaces (YUV, YIQ, LUV, Kekre’s YCgCb, YCbCr as well as non-luminance based colour spaces (XYZ,HSI,RGB,HSV in comparison of BTC applied on original image. Also overall YUV colour space proves to be the best in all colour spaces for proposed image flipping techniques. The second best performance is given by Kekre’s YCGCb colour space.

  12. Approaches to space in game design research

    OpenAIRE

    Walz, Steffen P.

    2009-01-01

    In this contribution, we gather major academic and design approaches for explaining how space in games is constructed and how it constructs games, thereby defining the conceptual dimensions of gamespace. Each concept’s major inquiry is briefly discussed, iterated if applicable, as well as named. Thus, we conclude with an overview of the locative, the representational, the programmatic, the dramaturgical, the typological, the perspectivistic, the form-functional, and the form-emotive dimension...

  13. Augmented Reality Implementation Methods in Mainstream Applications

    CERN Document Server

    Prochazka, David

    2011-01-01

    Augmented reality has became an useful tool in many areas from space exploration to military applications. Although used theoretical principles are well known for almost a decade, the augmented reality is almost exclusively used in high budget solutions with a special hardware. However, in last few years we could see rising popularity of many projects focused on deployment of the augmented reality on different mobile devices. Our article is aimed on developers who consider development of an augmented reality application for the mainstream market. Such developers will be forced to keep the application price, therefore also the development price, at reasonable level. Usage of existing image processing software library could bring a significant cut-down of the development costs. In the theoretical part of the article is presented an overview of the augmented reality application structure. Further, an approach for selection appropriate library as well as the review of the existing software libraries focused in th...

  14. Fiia: A Model-Based Approach to Engineering Collaborative Augmented Reality

    Science.gov (United States)

    Wolfe, Christopher; Smith, J. David; Phillips, W. Greg; Graham, T. C. Nicholas

    Augmented reality systems often involve collaboration among groups of people. While there are numerous toolkits that aid the development of such augmented reality groupware systems (e.g., ARToolkit and Groupkit), there remains an enormous gap between the specification of an AR groupware application and its implementation. In this chapter, we present Fiia, a toolkit which simplifies the development of collaborative AR applications. Developers specify the structure of their applications using the Fiia modeling language, which abstracts details of networking and provides high-level support for specifying adapters between the physical and virtual world. The Fiia.Net runtime system then maps this conceptual model to a runtime implementation. We illustrate Fiia via Raptor, an augmented reality application used to help small groups collaboratively prototype video games.

  15. A Simplified Approach for Arthroscopic Repair of Rotator Cuff Tear with Dermal Patch Augmentation

    Directory of Open Access Journals (Sweden)

    Anthony C. Levenda

    2015-01-01

    Full Text Available Here, we describe an arthroscopic method specifically developed to augment rotator cuff repair using a flexible acellular dermal patch (ADP. In this method, an apparently complex technique is simplified by utilizing specific steps to augment a rotator cuff repair. In this method, using a revised arthroscopic technique, rotator cuff repair was performed. This technique allowed easy passage of the graft, excellent visualization, minimal soft tissue trauma, and full four-corner fixation of an ADP. Twelve patients underwent rotator cuff repair with augmentation using the combination of this method and ADP. Due to the technique and biomechanical characteristics of the material, the repairs have been stable and with high patient satisfaction.

  16. Computing the dilation of edge-augmented graphs in metric spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2009-01-01

    Let G=(V,E) be an undirected graph with n vertices embedded in a metric space. We consider the problem of adding a shortcut edge in G that minimizes the dilation of the resulting graph. The fastest algorithm to date for this problem has O(n4) running time and uses O(n2) space. We show how to impr...... to improve the running time to O(n3logn) while maintaining quadratic space requirement. In fact, our algorithm not only determines the best shortcut but computes the dilation of G {(u,v)} for every pair of distinct vertices u and v.......Let G=(V,E) be an undirected graph with n vertices embedded in a metric space. We consider the problem of adding a shortcut edge in G that minimizes the dilation of the resulting graph. The fastest algorithm to date for this problem has O(n4) running time and uses O(n2) space. We show how...

  17. Computing the Dilation of Edge-Augmented Graphs Embedded in Metric Spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2008-01-01

    Let G = (V,E) be an undirected graph with n vertices embedded in a metric space. We consider the problem of adding a shortcut edge in G that minimizes the dilation of the resulting graph. The fastest algorithm to date for this problem has O(n^4) running time and uses O(n^2) space. We show how to ...... to improve running time to O(n^3*log n) while maintaining quadratic space requirement. In fact, our algorithm not only determines the best shortcut but computes the dilation of G U {(u,v)} for every pair of distinct vertices u and v.......Let G = (V,E) be an undirected graph with n vertices embedded in a metric space. We consider the problem of adding a shortcut edge in G that minimizes the dilation of the resulting graph. The fastest algorithm to date for this problem has O(n^4) running time and uses O(n^2) space. We show how...

  18. Communicative Competence Inventory for Students Who Use Augmentative and Alternative Communication: A Team Approach

    Science.gov (United States)

    Chung, Yun-Ching; Douglas, Karen H.

    2014-01-01

    Students who use augmentative and alternative communication (AAC) represent a heterogonous group with complex communication needs. AAC--including aided communication means (e.g., pictures, devices) and unaided (e.g., signs, gestures)--is often used to support students who have difficulties with speech production, language comprehension, and…

  19. Revision Breast Augmentation at the Time of Cardiac Sarcoma Resection: The Importance of Pocket Control When Inframammary Approach Is Combined with Simultaneous Sternotomy.

    Science.gov (United States)

    Rose, Jessica F; Kim, Min P; Reardon, Michael J; Ellsworth, Warren A

    2016-03-01

    Sternotomy in patients with previous breast augmentation becomes an aesthetic challenge when an inframammary approach is utilized over the traditional midline skin incision. Although the inframammary fold approach offers a well-concealed scar when compared with the midline chest incision, patients with a history of previous breast augmentation are at risk for alteration of the anatomy leading to symmastia, implant malposition, and asymmetry. We present a case report of sternotomy and resection of a mediastinal perivascular epithelioid cell tumor with concomitant revision augmentation with silicone implants and SERI Scaffold. Our patient had an uncomplicated postoperative course and a good cosmetic result 1 year after concomitant revision augmentation in conjunction with cardiac tumor resection. In conclusion, the authors feel that despite the difficulties in performing breast augmentation in patients undergoing thoracic surgery, it is possible to obtain good results. It is necessary to reinforce the repair with a mesh to recreate support and proper anatomy. PMID:27257577

  20. Affordability Approaches for Human Space Exploration

    Science.gov (United States)

    Holladay, Jon; Smith, David Alan

    2012-01-01

    The design and development of historical NASA Programs (Apollo, Shuttle and International Space Station), have been based on pre-agreed missions which included specific pre-defined destinations (e.g., the Moon and low Earth orbit). Due to more constrained budget profiles, and the desire to have a more flexible architecture for Mission capture as it is affordable, NASA is working toward a set of Programs that are capability based, rather than mission and/or destination specific. This means designing for a performance capability that can be applied to a specific human exploration mission/destination later (sometime years later). This approach does support developing systems to flatter budgets over time, however, it also poses the challenge of how to accomplish this effectively while maintaining a trained workforce, extensive manufacturing, test and launch facilities, and ensuring mission success ranging from Low Earth Orbit to asteroid destinations. NASA Marshall Space Flight Center (MSFC) in support of Exploration Systems Directorate (ESD) in Washington, DC has been developing approaches to track affordability across multiple Programs. The first step is to ensure a common definition of affordability: the discipline to bear cost in meeting a budget with margin over the life of the program. The second step is to infuse responsibility and accountability for affordability into all levels of the implementing organization since affordability is no single person s job; it is everyone s job. The third step is to use existing data to identify common affordability elements organized by configuration (vehicle/facility), cost, schedule, and risk. The fourth step is to analyze and trend this affordability data using an affordability dashboard to provide status, measures, and trends for ESD and Program level of affordability tracking. This paper will provide examples of how regular application of this approach supports affordable and therefore sustainable human space exploration

  1. Dissipative fragmentation in a phase space approach

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.; Di Toro, M.; Bonasera, A.; Gregoire, C.; Gulminelli, F.

    Semi-classical approaches have evidenced the role of one and two-body dissipation in nucleus-nucleus collisions. On the other hand, a substantial energy dissipation and some angular momentum transfer have been observed at moderate energy where a fragmentation process is the dominant reaction mechanism. In order to analyse main features of these reactions, we developed a phenomenological model taking into account phase space constraints. The transition between deep inelastic collisions and abrasion-like fragmentation is described and a general agreement with available data is found.

  2. Anterior Mitral Leaflet Augmentation for Ischemic Mitral Regurgitation Performed Via a Right Thoracotomy Approach.

    Science.gov (United States)

    Mihos, Christos G; Pineda, Andres M; Horvath, Sofia A; Santana, Orlando

    2016-01-01

    Ischemic mitral regurgitation (MR) after myocardial infarction is associated with poor long-term survival, and the optimal treatment strategy remains debated. The most common repair technique used is a restrictive annuloplasty. However, up to 15% to 30% of patients experience recurrent MR owing to progressive left ventricular remodeling and geometric distortion of the mitral valve apparatus. Anterior mitral leaflet augmentation using a pericardial patch, in combination with a true-sized mitral annuloplasty, has been proposed as an adjunctive technique to increase the durability of valve repair for ischemic MR. Herein, we describe 2 cases of anterior mitral leaflet augmentation with annuloplasty repair for severe ischemic MR via a minimally invasive right thoracotomy, and review the literature regarding patient selection and clinical outcomes of this technique.

  3. A generic approach for augmenting tactile diagrams with spatial non-speech sounds

    OpenAIRE

    Ramloll, R.; Brewster, S.A.

    2002-01-01

    Blind or visually impaired users typically access diagrams in the tactile medium. This paper describes TouchMelody, a system designed for augmenting such existing diagrams with 3D spatial auditory information to increase their usefulness, information content and reduce tactile clutter. The motivation for this system, an overview of its development and early experiences are presented. The two major technologies used are the Polhemus FASTRAK and the LakeDSP CP4 to facilitate the creation of a d...

  4. Determinants of International Tourism Demand for the Philippines: An Augmented Gravity Model Approach

    OpenAIRE

    Deluna, Roperto Jr; Jeon, Narae

    2014-01-01

    This study was conducted to investigate the determinants of international tourism demand for the Philippines.This study employed a double-log augmented form of gravity model estimated using the robust random effects model.Results revealed that tourist arrival in the Philippines are generally increasing from 2001 to 2012. Empirical estimation was conducted to determine factors affecting Philippine tourism demand. These factors include income, market size, and distance. Relative prices was also...

  5. System Science approach to Space Weather forecast

    Science.gov (United States)

    Balikhin, Michael A.

    There are many dynamical systems in nature that are so complex that mathematical models of their behaviour can not be deduced from first principles with the present level of our knowledge. Obvious examples are organic cell, human brain, etc often attract system scientists. A example that is closer to space physics is the terrestrial magnetosphere. The system approach has been developed to understand such complex objects from the observation of their dynamics. The systems approach employs advanced data analysis methodologies to identify patterns in the overall system behaviour and provides information regarding the linear and nonlinear processes involved in the dynamics of the system. This, in combination with the knowledge deduced from the first principles, creates the opportunity to find mathematical relationships that govern the evolution of a particular physical system. Advances and problems of systems science applications to provide a reliable forecasts of space weather phenomena such as geomagnetic storms, substorms and radiation belts particle fluxes are reviewed and compared with the physics based models.

  6. Phygital public space approach: a case study in Volpiano

    Directory of Open Access Journals (Sweden)

    Liliana Bazzanella

    2014-05-01

    Full Text Available Today an important challenge is opening: designing public spaces by taking into account the augmented meaning carried by “new digital citizen and users”. New ways of digital communication, a broader network of digital information and the open data naturally transform also the physical space into something new we can call “phygital” (Momentum 2012. The usual way to read urban spaces could be improved with new digital technology. How is the boundary between virtual and real?; what if people overcome easily these boundaries? The phygital spaces are not the common urban spaces as we usually think but a place-based network of interaction among people. Throughout a research experiment carried out by Polytechnic of Turin in collaboration with the Municipality of Volpiano (TO, this paper proposes a community planning strategy where people keep their central role and virtual interaction empower the design of a new sustainable city space.

  7. A pythagorean approach in Banach spaces

    OpenAIRE

    Gao Ji

    2006-01-01

    Let be a Banach space and let be the unit sphere of . Parameters , , , and , where and are introduced and studied. The values of these parameters in the spaces and function spaces are estimated. Among the other results, we proved that a Banach space with , or is uniform nonsquare; and a Banach space with , or has uniform normal structure.

  8. GyroWand: An Approach to IMU-Based Raycasting for Augmented Reality.

    Science.gov (United States)

    Hincapié-Ramos, Juan David; Özacar, Kasim; Irani, Pourang P; Kitamura, Yoshifumi

    2016-01-01

    Optical see-through head-mounted displays enable augmented reality (AR) applications that display virtual objects overlaid on the real world. At the core of this new generation of devices are low-cost tracking technologies that allow us to interpret users' motion in the real world in relation to the virtual content for the purposes of navigation and interaction. The advantages of pervasive tracking come at the cost of limiting interaction possibilities, however. To address these challenges the authors introduce GyroWand, a raycasting technique for AR HMDs using inertial measurement unit (IMU) rotational data from a handheld controller. PMID:26960031

  9. Perinipple Broken Line Incision:a Novel Approach for Breast Augmentation

    Institute of Scientific and Technical Information of China (English)

    Zhi-fei Liu

    2015-01-01

    Objective To investigate reliability of the infra-nipple broken line incision for breast augmentation. Methods From January 2012 to January 2013, 15 patients underwent primary bilateral retromuscular breast augmentation with round textured silicone-gel implants and a novel infra-nipple broken line incision. Preoperatively, a semicircular incision was marked along the inferior base of the nipple. It was then extended bilaterally using two transverse right-angled geometric broken lines within the pigmented areolar skin. Follow-up was performed to evaluate the sensation of nipple-areolar complex, the scar, and the shape and texture of the breasts. Results The average follow-up was 6.7 months. Most of the patients complained of paresthesia of the nipple or breast skin, but transient decreased sensation improved within 3 months. No patients showed permanent sensory changes of the nipple areolar complex at a minimum follow-up of 4 months. The scars were imperceptible in all patients. Conclusion We believe that for selected patients, the infra-nipple broken line incision is a practical and reliable method to achieve aesthetic result.

  10. Weighted augmented Jacobian matrix with a variable coefficient method for kinematics mapping of space teleoperation based on human-robot motion similarity

    Science.gov (United States)

    Shi, Zhong; Huang, Xuexiang; Hu, Tianjian; Tan, Qian; Hou, Yuzhuo

    2016-10-01

    Space teleoperation is an important space technology, and human-robot motion similarity can improve the flexibility and intuition of space teleoperation. This paper aims to obtain an appropriate kinematics mapping method of coupled Cartesian-joint space for space teleoperation. First, the coupled Cartesian-joint similarity principles concerning kinematics differences are defined. Then, a novel weighted augmented Jacobian matrix with a variable coefficient (WAJM-VC) method for kinematics mapping is proposed. The Jacobian matrix is augmented to achieve a global similarity of human-robot motion. A clamping weighted least norm scheme is introduced to achieve local optimizations, and the operating ratio coefficient is variable to pursue similarity in the elbow joint. Similarity in Cartesian space and the property of joint constraint satisfaction is analysed to determine the damping factor and clamping velocity. Finally, a teleoperation system based on human motion capture is established, and the experimental results indicate that the proposed WAJM-VC method can improve the flexibility and intuition of space teleoperation to complete complex space tasks.

  11. Adapting Information Through Tangible Augmented Reality Interfaces

    OpenAIRE

    Sinclair, Patrick; Martinez, Kirk

    2004-01-01

    Tangible augmented reality interfaces offer a hands on approach for examining objects and exploring the associated information. We describe two tangible augmented reality interfaces that can expose the adaptation of information presented to users about objects in augmented reality environments.

  12. Augmented postcard

    OpenAIRE

    Bernik , Aleš

    2012-01-01

    The aim of this thesis is the examination of augmented reality technology, which allows us mixing real and virtual elements. Augmented reality is a relatively new technology which is becoming more widespread, thanks to a fairly reasonable price of smart phones. Here we presents the types of augmented reality, the necessary technology and their advantages and disadvantages, its current use in applications, and software for building augmented reality applications. The thesis is mainly focuse...

  13. Measuring segregation: an activity space approach

    OpenAIRE

    Wong, David W. S.; Shaw, Shih-Lung

    2011-01-01

    While the literature clearly acknowledges that individuals may experience different levels of segregation across their various socio-geographical spaces, most measures of segregation are intended to be used in the residential space. Using spatially aggregated data to evaluate segregation in the residential space has been the norm and thus individual’s segregation experiences in other socio-geographical spaces are often de-emphasized or ignored. This paper attempts to provide a more comprehens...

  14. Everything Augmented: On the Real in Augmented Reality

    Directory of Open Access Journals (Sweden)

    Hanna Schraffenberger

    2014-12-01

    Full Text Available What is augmented in Augmented Reality (AR? In this paper, we review existing opinions and show how little consensus exists on this matter. Subsequently, we approach the question from a theoretical and technology-independent perspective. We identify spatial and content-based relationships between the virtual and the real as being decisive for AR and come to the conclusion that virtual content augments that to which it relates. Subsequently, we categorize different forms of AR based on what is augmented. We distinguish between augmented environments, augmented objects, augmented humans and augmented content and consider the possibility of augmented perception. The categories are illustrated with AR (art works and conceptual differences between them are pointed out. Moreover, we discuss what the real contributes to AR and how it can shape (future AR experiences. A summary of our findings and suggestions for future research and practice, such as research into multimodal and crossmodal AR, conclude the paper.

  15. Approach and Evaluation of a Mobile Video-Based and Location-Based Augmented Reality Platform for Information Brokerage

    Science.gov (United States)

    Dastageeri, H.; Storz, M.; Koukofikis, A.; Knauth, S.; Coors, V.

    2016-09-01

    Providing mobile location-based information for pedestrians faces many challenges. On one hand the accuracy of localisation indoors and outdoors is restricted due to technical limitations of GPS and Beacons. Then again only a small display is available to display information as well as to develop a user interface. Plus, the software solution has to consider the hardware characteristics of mobile devices during the implementation process for aiming a performance with minimum latency. This paper describes our approach by including a combination of image tracking and GPS or Beacons to ensure orientation and precision of localisation. To communicate the information on Points of Interest (POIs), we decided to choose Augmented Reality (AR). For this concept of operations, we used besides the display also the acceleration and positions sensors as a user interface. This paper especially goes into detail on the optimization of the image tracking algorithms, the development of the video-based AR player for the Android platform and the evaluation of videos as an AR element in consideration of providing a good user experience. For setting up content for the POIs or even generate a tour we used and extended the Open Geospatial Consortium (OGC) standard Augmented Reality Markup Language (ARML).

  16. APPROACH AND EVALUATION OF A MOBILE VIDEO-BASED AND LOCATION-BASED AUGMENTED REALITY PLATFORM FOR INFORMATION BROKERAGE

    Directory of Open Access Journals (Sweden)

    H. Dastageeri

    2016-09-01

    Full Text Available Providing mobile location-based information for pedestrians faces many challenges. On one hand the accuracy of localisation indoors and outdoors is restricted due to technical limitations of GPS and Beacons. Then again only a small display is available to display information as well as to develop a user interface. Plus, the software solution has to consider the hardware characteristics of mobile devices during the implementation process for aiming a performance with minimum latency. This paper describes our approach by including a combination of image tracking and GPS or Beacons to ensure orientation and precision of localisation. To communicate the information on Points of Interest (POIs, we decided to choose Augmented Reality (AR. For this concept of operations, we used besides the display also the acceleration and positions sensors as a user interface. This paper especially goes into detail on the optimization of the image tracking algorithms, the development of the video-based AR player for the Android platform and the evaluation of videos as an AR element in consideration of providing a good user experience. For setting up content for the POIs or even generate a tour we used and extended the Open Geospatial Consortium (OGC standard Augmented Reality Markup Language (ARML.

  17. Automatic localization of endoscope in intraoperative CT image: A simple approach to augmented reality guidance in laparoscopic surgery.

    Science.gov (United States)

    Bernhardt, Sylvain; Nicolau, Stéphane A; Agnus, Vincent; Soler, Luc; Doignon, Christophe; Marescaux, Jacques

    2016-05-01

    The use of augmented reality in minimally invasive surgery has been the subject of much research for more than a decade. The endoscopic view of the surgical scene is typically augmented with a 3D model extracted from a preoperative acquisition. However, the organs of interest often present major changes in shape and location because of the pneumoperitoneum and patient displacement. There have been numerous attempts to compensate for this distortion between the pre- and intraoperative states. Some have attempted to recover the visible surface of the organ through image analysis and register it to the preoperative data, but this has proven insufficiently robust and may be problematic with large organs. A second approach is to introduce an intraoperative 3D imaging system as a transition. Hybrid operating rooms are becoming more and more popular, so this seems to be a viable solution, but current techniques require yet another external and constraining piece of apparatus such as an optical tracking system to determine the relationship between the intraoperative images and the endoscopic view. In this article, we propose a new approach to automatically register the reconstruction from an intraoperative CT acquisition with the static endoscopic view, by locating the endoscope tip in the volume data. We first describe our method to localize the endoscope orientation in the intraoperative image using standard image processing algorithms. Secondly, we highlight that the axis of the endoscope needs a specific calibration process to ensure proper registration accuracy. In the last section, we present quantitative and qualitative results proving the feasibility and the clinical potential of our approach.

  18. Automatic localization of endoscope in intraoperative CT image: A simple approach to augmented reality guidance in laparoscopic surgery.

    Science.gov (United States)

    Bernhardt, Sylvain; Nicolau, Stéphane A; Agnus, Vincent; Soler, Luc; Doignon, Christophe; Marescaux, Jacques

    2016-05-01

    The use of augmented reality in minimally invasive surgery has been the subject of much research for more than a decade. The endoscopic view of the surgical scene is typically augmented with a 3D model extracted from a preoperative acquisition. However, the organs of interest often present major changes in shape and location because of the pneumoperitoneum and patient displacement. There have been numerous attempts to compensate for this distortion between the pre- and intraoperative states. Some have attempted to recover the visible surface of the organ through image analysis and register it to the preoperative data, but this has proven insufficiently robust and may be problematic with large organs. A second approach is to introduce an intraoperative 3D imaging system as a transition. Hybrid operating rooms are becoming more and more popular, so this seems to be a viable solution, but current techniques require yet another external and constraining piece of apparatus such as an optical tracking system to determine the relationship between the intraoperative images and the endoscopic view. In this article, we propose a new approach to automatically register the reconstruction from an intraoperative CT acquisition with the static endoscopic view, by locating the endoscope tip in the volume data. We first describe our method to localize the endoscope orientation in the intraoperative image using standard image processing algorithms. Secondly, we highlight that the axis of the endoscope needs a specific calibration process to ensure proper registration accuracy. In the last section, we present quantitative and qualitative results proving the feasibility and the clinical potential of our approach. PMID:26925804

  19. Augmented Superfield Approach to Nilpotent Symmetries in Self-Dual Chiral Bosonic Field Theory

    CERN Document Server

    Srinivas, N; Malik, R P

    2015-01-01

    We exploit the beauty and strength of the symmetry invariant restrictions on the superfields to derive the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-) co-BRST symmetry transformations in the case of a two (1+1)-dimensional (2D) self-dual chiral bosonic field theory within the framework of augmented superfield formalism. Our 2D ordinary theory is generalized onto a (2, 2)-dimensional supermanifold which is parameterized by the superspace variable $Z^M = (x^\\mu, \\theta, \\bar\\theta)$ where $x^\\mu$ (with $\\mu = 0, 1$) are the ordinary 2D bosonic coordinates and ($\\theta,\\, \\bar\\theta$) are a pair of Grassmannian variables with their standard relationships: $\\theta^2 = {\\bar\\theta}^2 =0, \\theta\\,\\bar\\theta + \\bar\\theta\\theta = 0$. We impose the (anti-)BRST and (anti-)co-BRST invariant restrictions on the superfields, defined on the (anti-)chiral (2, 1)-dimensional super-submanifolds of the above {\\it general} (2, 2)-dimensional supermanifold, to derive the above nilpotent symmetries. We do not exploit ...

  20. SPACE Approach to Concrete's Space Structure and its Mechanical Properties

    NARCIS (Netherlands)

    Stroeven, P.; Stroeven, M.

    2001-01-01

    Structural properties of particulate materials can be described in densities of the particle packing, more generally denoted as particle composition. Obviously, this global measure does not offer information on the way particles are mutually arranged in space. This is associated with particle config

  1. A hybrid approach to space power control

    Science.gov (United States)

    Gholdston, E. W.; Janik, D. F.; Newton, K. A.

    1990-01-01

    Conventional control systems have traditionally been utilized for space-based power designs. However, the use of expert systems is becoming important for NASA applications. Rocketdyne has been pursuing the development of expert systems to aid and enhance control designs of space-based power systems. The need for integrated expert systems is vital for the development of autonomous power systems.

  2. Adaptive Augmented Reality: Plasticity of Augmentations

    OpenAIRE

    Ghouaiel, Nehla; Cieutat, Jean-Marc; Jessel, Jean-Pierre

    2014-01-01

    International audience An augmented reality system is used to complete the real world with virtual objects (computer generated) so they seem to coexist in the same space as the real world. The concept of plasticity [4][5] was first introduced for Human Computer Interaction (HCI). It denotes the ability of an HCI interface to fit the context of use defined by the user, the environment and the platform. We believe that plasticity is a very important notion in the domain of augmented reality....

  3. Space Station overall management approach for operations

    Science.gov (United States)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  4. A new approach to electromagnetism in anisotropic spaces

    OpenAIRE

    Voicu-Brinzei, Nicoleta; Siparov, Sergey

    2009-01-01

    Anisotropy of a space naturally leads to direction dependent electromagnetic tensors and electromagnetic potentials. Starting from this idea and using variational approaches and exterior derivative formalism, we extend some of the classical equations of electromagnetism to anisotropic (Finslerian) spaces. The results differ from the ones obtained by means of the known approach in [3], [4].

  5. An innovative approach to space education

    Science.gov (United States)

    Marton, Christine; Berinstain, Alain B.; Criswick, John

    1994-01-01

    At present, Canada does not have enough scientists to be competitive in the global economy, which is rapidly changing from a reliance on natural resources and industry to information and technology. Space is the final frontier and it is a multidisciplinary endeavor. It requires a knowledge of science and math, as well as non-science areas such as architecture and law. Thus, it can attract a large number of students with a diverse range of interests and career goals. An overview is presented of the space education program designed by Canadian Alumni of the International Space University (CAISU) to encourage students to pursue studies and careers in science and technology and to improve science literacy in Canada.

  6. Augmented Reality

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Kjeldsen, Lars Peter Bech; Rahn, Annette

    2015-01-01

    This chapter describes the use of iPad-facilitated application of augmented reality in the teaching of highly complex anatomical and physiological subjects in the training of nurses at undergraduate level. The general aim of the project is to investigate the potentials of this application in terms...... of augmented reality are discussed....

  7. Augmentation of major isoflavones in Glycine max L. through elicitor- mediated approach

    OpenAIRE

    Saini, Ramesh K.; Akitha Devi, Muthu K.; Parvatam, Giridhar; Ravishankar, Gokare A.

    2013-01-01

    Isoflavone content in soybean seeds was enhanced by the elicitor-mediated approach under field conditions through the floral application of abiotic elicitors-salicylic acid, methyl jasmonate and biotic elicitors-Aspergillus niger and Rhizopus oligosporus. Among isoflavones, daidzein and glycitein were found to be highly responsive to elicitors, with an increase of 53.7% and 78.7%, respectively as compared to control. Highest total isoflavone content (1276.4 mg g–1 of seeds) was observed upon ...

  8. Augmenting the Floating Car Data Approach by Dynamic Indirect Traffic Detection

    OpenAIRE

    Ruppe, Sten; Junghans, Marek; Haberjahn, Mathias; Christian, Troppenz

    2012-01-01

    An established approach for the mobile determination of traffic parameters is Floating Car Data (FCD) also known as Probe Vehicle Data. Floating cars are equipped with modules for positioning and transmitting the data to a processing unit. There, the data are processed to derive travel times, spatio-temporal traffic information, etc. The advantage of FCD is that there is no costly stationary infrastructure needed. The drawback is that only a fraction of the real traffic can be used as data ba...

  9. Operator space approach to steering inequality

    International Nuclear Information System (INIS)

    In Junge and Palazuelos (2011 Commun. Math. Phys. 306 695–746) and Junge et al (2010 Commun. Math. Phys. 300 715–39) the operator space theory was applied to study bipartite Bell inequalities. The aim of the paper is to follow this line of research and use the operator space technique to analyze the steering scenario. We obtain a bipartite steering functional with unbounded largest violation of steering inequality, as well as constructing all ingredients explicitly. It turns out that the unbounded largest violation is obtained by a non maximally entangled state. Moreover, we focus on the bipartite dichotomic case where we construct a steering functional with unbounded largest violation of steering inequality. This phenomenon is different to the Bell scenario where only the bounded largest violation can be obtained by any bipartite dichotomic Bell functional. (paper)

  10. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  11. A Hilbert Space Approach to Variance Reduction

    OpenAIRE

    Szechtman, Roberto

    2006-01-01

    Elsevier Handbooks in Operations Research and Management Science: Simulation, pp 259-289. In this chapter we explain variance reduction techniques from the Hilbert space standpoint, in the terminating simulation context. We use projection ideas to explain how variance is reduced, and to link different variance reduction techniques. Our focus is on the methods of control variates, conditional Monte Carlo, weighted Monte Carlo, stratification, and Latin hypercube sampling.

  12. A vector space approach to geometry

    CERN Document Server

    Hausner, Melvin

    2010-01-01

    The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.

  13. A Discourse Approach to Theorising HRD: Opening a Discursive Space

    Science.gov (United States)

    Lawless, Aileen; Sambrook, Sally; Garavan, Tom; Valentin, Claire

    2011-01-01

    Purpose: The purpose of this paper is to discuss how a discourse approach to theorising human resource development (HRD) can open a "discursive space" to challenge dominant discourses within the field; enabling a more critical discourse to emerge. Design/methodology/approach: Discusses two approaches to discourse analysis, a "practice" and a…

  14. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. Furthermore, no estimates of risk or recommendations were made for women in 1970 and must now be considered. The current career limit is 400 rem. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation and this will be taken into account. Work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 21 references, 1 figure, 7 tables

  15. Partial Differential Equations A unified Hilbert Space Approach

    CERN Document Server

    Picard, Rainer

    2011-01-01

    This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations.This global point of view is takenby focussing on the issues involved in determining the appropriate func

  16. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne;

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  17. Point patterns occurring on complex structures in space and space-time: An alternative network approach

    CERN Document Server

    Eckardt, Matthias

    2016-01-01

    This paper presents an alternative approach of analyzing possibly multitype point patterns in space and space-time that occur on network structures, and introduces several different graph-related intensity measures. The proposed formalism allows to control for processes on undirected, directional as well as partially directed network structures and is not restricted to linearity or circularity.

  18. a Web Service Approach for Linking Sensors and Cellular Spaces

    Science.gov (United States)

    Isikdag, U.

    2013-09-01

    More and more devices are starting to be connected to the Internet. In the future the Internet will not only be a communication medium for people, it will in fact be a communication environment for devices. The connected devices which are also referred as Things will have an ability to interact with other devices over the Internet, i.) provide information in interoperable form and ii.) consume /utilize such information with the help of sensors embedded in them. This overall concept is known as Internet-of- Things (IoT). This requires new approaches to be investigated for system architectures to establish relations between spaces and sensors. The research presented in this paper elaborates on an architecture developed with this aim, i.e. linking spaces and sensors using a RESTful approach. The objective is making spaces aware of (sensor-embedded) devices, and making devices aware of spaces in a loosely coupled way (i.e. a state/usage/function change in the spaces would not have effect on sensors, similarly a location/state/usage/function change in sensors would not have any effect on spaces). The proposed architecture also enables the automatic assignment of sensors to spaces depending on space geometry and sensor location.

  19. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  20. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  1. A Null Space Approach for Solving Nonlinear Complementarity Problems

    Institute of Scientific and Technical Information of China (English)

    Pu-yan Nie

    2006-01-01

    In this work, null space techniques are employed to tackle nonlinear complementarity problems(NCPs). NCP conditions are transform into a nonlinear programming problem, which is handled by null space algorithms. The NCP conditions are divided into two groups. Some equalities and inequalities in an NCP are treated as constraints. While other equalities and inequalities in an NCP are to be regarded as objective function.Two groups are all updated in every step. Null space approaches are extended to nonlinear complementarity problems. Two different solvers are employed for an NCP in an algorithm.

  2. A Banach Space Regularization Approach for Multifrequency Microwave Imaging

    Directory of Open Access Journals (Sweden)

    Claudio Estatico

    2016-01-01

    Full Text Available A method for microwave imaging of dielectric targets is proposed. It is based on a tomographic approach in which the field scattered by an unknown target (and collected in a proper observation domain is inverted by using an inexact-Newton method developed in Lp Banach spaces. In particular, the extension of the approach to multifrequency data processing is reported. The mathematical formulation of the new method is described and the results of numerical simulations are reported and discussed, analyzing the behavior of the multifrequency processing technique combined with the Banach spaces reconstruction method.

  3. NASA Research For Instrument Approaches To Closely Spaced Parallel Runways

    Science.gov (United States)

    Elliott, Dawn M.; Perry, R. Brad

    2000-01-01

    Within the NASA Aviation Systems Capacity Program, the Terminal Area Productivity (TAP) Project is addressing airport capacity enhancements during instrument meteorological condition (IMC). The Airborne Information for Lateral Spacing (AILS) research within TAP has focused on an airborne centered approach for independent instrument approaches to closely spaced parallel runways using Differential Global Positioning System (DGPS) and Automatic Dependent Surveillance-Broadcast (ADS-B) technologies. NASA Langley Research Center (LaRC), working in partnership with Honeywell, Inc., completed in AILS simulation study, flight test, and demonstration in 1999 examining normal approaches and potential collision scenarios to runways with separation distances of 3,400 and 2,500 feet. The results of the flight test and demonstration validate the simulation study.

  4. Prediction of free air space in initial composting mixtures by a statistical design approach.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida J; Quinta-Ferreira, Rosa

    2013-10-15

    Free air space (FAS) is a physical parameter that can play an important role in composting processes to maintain favourable aerobic conditions. Aiming to predict the FAS of initial composting mixtures, specific materials proportions ranged from 0 to 1 were tested for a case study comprising industrial potato peel, which is characterized by low air void volume, thus requiring additional components for its composting. The characterization and prediction of FAS for initial mixtures involving potato peel, grass clippings and rice husks (set A) or sawdust (set B) was accomplished by means of an augmented simplex-centroid mixture design approach. The experimental data were fitted to second order Scheffé polynomials. Synergistic or antagonistic effects of mixture proportions in the FAS response were identified from the surface and response trace plots in the FAS response. Moreover, a good agreement was achieved between the model predictions and supplementary experimental data. Moreover, theoretical and empirical approaches for estimating FAS available in literature were compared with the predictions generated by the mixture design approach. This study demonstrated that the mixture design methodology can be a valuable tool to predict the initial FAS of composting mixtures, specifically in making adjustments to improve composting processes containing primarily potato peel.

  5. The comparative experience of axillary and areola incision retromammary space augmentation mammoplasty%腋窝与乳晕切口乳腺后间隙隆乳术对比体会

    Institute of Scientific and Technical Information of China (English)

    李寅

    2012-01-01

    Objective: To investigate the advantages and disadvantages of axillary and areola incision retromammary space augmentation mammoplasty.Methods patients with axillary incision retromammary space augmentation mammoplasty (30 cases) and areola incision retromammary space augmentation mammoplasty (30 cases) were selected, investigate the advantages and disadvantages of them.Results The comparison of two kinds of methods, postoperative effect had no significant difference between.Conclusion Axillary incision retromammary space augmentation mammoplasty, no injury risk of Mammary duct, without a periareolar scar, is a good operation mode.%目的:探讨腋窝入路与乳晕入路行乳腺后间隙假体隆乳术的优缺点.方法:选取腋窝入路与乳晕入路行乳腺后间隙假体隆乳术患者各30例,对比其优缺点.结果:两种手术方式,术后乳房形态、手感、乳房活动度无明显差别.结论:腋窝入路的乳腺后间隙假体隆乳术,无乳腺导管损伤的风险,无乳晕瘢痕,对于难以接受乳晕切口的患者来说,是一个良好的手术方式

  6. Approach to an Affordable and Sustainable Space Transportation System

    Science.gov (United States)

    McCleskey, Caey M.; Rhodes, R. E.; Robinson, J. W.; Henderson, E. M.

    2012-01-01

    This paper describes an approach and a general procedure for creating space transportation architectural concepts that are at once affordable and sustainable. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on a functional system breakdown structure for an architecture and definition of high-payoff design techniques with a technology integration strategy. This paper follows up by using a structured process that derives architectural solutions focused on achieving life cycle affordability and sustainability. Further, the paper includes an example concept that integrates key design techniques discussed in previous papers. !

  7. Interactive and Immersive Practices; Critical Spatial Practices. The Augmented Reality of the Exhibition Space Pratiques interactives et immersives ; pratiques spatiales critiques. La réalité augmentée de l’espace d’exposition

    Directory of Open Access Journals (Sweden)

    Alessandra Mariani

    2012-07-01

    Full Text Available The rise of installations, as well as immersive and interactive spaces, in both art and science museums has accustomed the public to heightened interactivity, leading to a better understanding of social, natural and scientific phenomena. These spatial systems have also paved the way for the production of innovative environments within exhibition design. This article aims to present a brief overview of the origins of immersive and sensory practices at work in contemporary museums, and to evaluate the potential of these processes to generate critical thinking in the visitor. A concise description of the evolution of the operational and intellectual premise of these museums and their changing practices demonstrates the transformations that have occurred, their modalities, and their application in selected works, notably: The Weather Project by Olafur Eliasson presented at Tate Modern London; Diller + Scofidio’s media pavilion, Blur Building, in Yverdon-les-Bains in Switzerland; and the exhibition Sense of the City at the Canadian Centre for Architecture in Montreal.La multiplication d’installations, d’espaces immersifs et interactifs dans les musées d’art et ensuite dans les musées de sciences, a accoutumé le public à interactivité augmentée favorisant la compréhension de phénomènes sociaux, naturels ou scientifiques. Ces systèmes spatiaux ont ainsi frayé la voie au développement de techniques de scénarisation environnementales. L’article vise à présenter succinctement les origines des pratiques immersives et sensorielles à l’œuvre dans l’espace muséal contemporain et à présenter le potentiel de ces processus à engendrer une réflexion, un raisonnement critique chez le visiteur. Une courte description de l’évolution des postures opérationnelles et intellectuelles du musée et de ces pratiques permettra d’en retracer la transformation, les modalités et l’application dans des œuvres, notamment l

  8. Nuclear pairing within a configuration-space Monte Carlo approach

    Science.gov (United States)

    Lingle, Mark; Volya, Alexander

    2015-06-01

    Pairing correlations in nuclei play a decisive role in determining nuclear drip lines, binding energies, and many collective properties. In this work a new configuration-space Monte Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem, probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems with defined precision and error control are noteworthy merits of CSMC. The features of our CSMC approach are shown using models and realistic examples. Special attention is given to difficult limits: situations with nonconstant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in finite systems are weak, and problems when the relevant configuration space is large.

  9. Direct data domain approach to space-time adaptive processing

    Institute of Scientific and Technical Information of China (English)

    Wen Xiaoqin; Han Chongzhao

    2006-01-01

    In non-homogeneous environment, traditional space-time adaptive processing doesn' t effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A novel methodology utilizing the direct data domain approach to space- time adaptive processing (STAP) in airborne radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to determine the adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range rell,which eliminates calculating the inverse of covariance, and can be implemented to operate in resl-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.

  10. Approach to an Affordable and Productive Space Transportation System

    Science.gov (United States)

    McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.

    2012-01-01

    This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.

  11. Remarks on the Configuration Space Approach to Spin-Statistics

    CERN Document Server

    Reyes-Lega, A F

    2010-01-01

    The angular momentum operators for a system of two spin-zero indistinguishable particles are constructed, using Isham's Canonical Group Quantization method. This mathematically rigorous method provides a hint at the correct definition of (total) angular momentum operators, for arbitrary spin, in a system of indistinguishable particles. The connection with other configuration space approaches to spin-statistics is discussed, as well as the relevance of the obtained results in view of a possible alternative proof of the spin-statistics theorem.

  12. Space charge polarization induced augmented in vitro bioactivity of piezoelectric (Na,K) NbO3

    Science.gov (United States)

    Dubey, Ashutosh Kumar; Yamada, Hiroaki; Kakimoto, Ken-ichi

    2013-09-01

    The present study reports the influence of chemical and electrical treatments (CET) of Li-modified sodium potassium niobate [Li0.06(Na0.5K0.5)0.94NbO3, LNKN] piezo-biomaterial on in vitro bioactivity. The chemical treatment of LNKN substrate was performed by Ti sputtering, followed by immersion in NaOH aqueous solution for various time durations and subsequently, the heat treatment. The chemically treated LNKN substrates were then corona poled. The in vitro biomineralization study suggested that the integrated effect of chemical as well as electrical treatments of LNKN piezoceramics stimulates the early stage apatite crystallization as compared to that of the mere chemical treatment. To reveal the mechanism of polarization on crystal formation, the thermally stimulated depolarization currents (TSDC) were measured before and after the chemically as well as electrically treated substrates being soaked in simulated body fluid for various time durations. It has been observed that the release of surface charge in the low temperature region (˜60 °C) has significant effect on apatite formation and growth. The surface charge density decreases with increase in the soaking period and hence, the influence of surface charge on apatite crystallization can be realized. The dielectric relaxation in the low frequency region as well as TSDC analysis suggests that the space charge polarization is dominant polarization mechanism in the CET piezo-biomaterial.

  13. Optical Approach to Augment Current Float Sensing Method of Determining Cryogen Fluid Height Within a Tank Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research, a small technology development company, has teamed with the University of Southern Mississippi Instrument and Cryogenics Research...

  14. A Multi-agent Approach for Space Occupation Problems

    Directory of Open Access Journals (Sweden)

    Jamila Boussaa

    2012-01-01

    Full Text Available The occupation of space is a recurring problem in many areas for constraint satisfaction and optimization. The used approaches tend to privilege the optimization or the satisfaction without leading to a general solution. In spite of the success of the few methods of space occupation problems, it can be interesting to consider new ways for resolution, in particular methods resulting from Artificial Intelligence techniques. Because the problem is NP-complex, one possibility of overcoming this complexity is to distribute it across multiple processing units and adopt an appropriate form for decision-making. To construct and evaluate possible solutions for this class of problems, we propose in this paper a general architecture that can accommodate several approaches for resolution through agglomerates of specialized solvers. On this basis, a general model of agent solver is provided. The competences and interactions of agents will be studied and classified according to space occupation problem types. One case is presented here, the resolution by coalition.

  15. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne;

    2015-01-01

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student i...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  16. Quantum information processing in phase space: A modular variables approach

    Science.gov (United States)

    Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.

    2016-08-01

    Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.

  17. Hybrid x-space: a new approach for MPI reconstruction

    Science.gov (United States)

    Tateo, A.; Iurino, A.; Settanni, G.; Andrisani, A.; Stifanelli, P. F.; Larizza, P.; Mazzia, F.; Mininni, R. M.; Tangaro, S.; Bellotti, R.

    2016-06-01

    Magnetic particle imaging (MPI) is a new medical imaging technique capable of recovering the distribution of superparamagnetic particles from their measured induced signals. In literature there are two main MPI reconstruction techniques: measurement-based (MB) and x-space (XS). The MB method is expensive because it requires a long calibration procedure as well as a reconstruction phase that can be numerically costly. On the other side, the XS method is simpler than MB but the exact knowledge of the field free point (FFP) motion is essential for its implementation. Our simulation work focuses on the implementation of a new approach for MPI reconstruction: it is called hybrid x-space (HXS), representing a combination of the previous methods. Specifically, our approach is based on XS reconstruction because it requires the knowledge of the FFP position and velocity at each time instant. The difference with respect to the original XS formulation is how the FFP velocity is computed: we estimate it from the experimental measurements of the calibration scans, typical of the MB approach. Moreover, a compressive sensing technique is applied in order to reduce the calibration time, setting a fewer number of sampling positions. Simulations highlight that HXS and XS methods give similar results. Furthermore, an appropriate use of compressive sensing is crucial for obtaining a good balance between time reduction and reconstructed image quality. Our proposal is suitable for open geometry configurations of human size devices, where incidental factors could make the currents, the fields and the FFP trajectory irregular.

  18. The virtual mission approach: Empowering earth and space science missions

    Science.gov (United States)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  19. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  20. Quality factors for space radiation: A new approach.

    Science.gov (United States)

    Borak, Thomas B; Heilbronn, Lawrence H; Townsend, Lawrence W; McBeth, Rafe A; de Wet, Wouter

    2014-04-01

    NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA(Z,β) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, β, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA(Z,β) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA(Z,β). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The revised

  1. Quality factors for space radiation: A new approach

    Science.gov (United States)

    Borak, Thomas B.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; McBeth, Rafe A.; de Wet, Wouter

    2014-04-01

    NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA (Z , β) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, β, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA (Z , β) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA (Z , β). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The

  2. Real Space Approach to Electronic-Structure Calculations

    CERN Document Server

    Tsuchida, E; Tsuchida, Eiji; Tsukada, Masaru

    1994-01-01

    We have applied the Finite Element Method to the self-consistent electronic structure calculations of molecules and solids for the first time. In this approach all the calculations are performed in "real space" and the use of non-uniform mesh is made possible, thus enabling us to deal with localized systems with ease. To illustrate the utility of this method, we perform an all-electron calculation of hydrogen molecule in a supercell with LDA approximation. Our method is also applicable to mesoscopic systems.

  3. Incidence of and Factors Associated with Sinus Membrane Perforation During Maxillary Sinus Augmentation Using the Reamer Drilling Approach: A Double-Center Case Series.

    Science.gov (United States)

    Monje, Alberto; Monje-Gil, Florencio; Burgueño, Miguel; Gonzalez-Garcia, Raúl; Galindo-Moreno, Pablo; Wang, Hom-Lay

    2016-01-01

    Maxillary sinus membrane perforation has been reported as the most common intraoperative complication during sinus augmentation, potentially leading to postoperative infection and consequent loss of graft or even implant failure. Numerous anatomical factors have been demonstrated to affect membrane tearing. However, careful use of proper instrumentation, such as a reamer, seems to play an important role in minimizing the incidence of these complications. Hence, the aim of the present study was to (1) investigate the reliability of reamer drilling for lateral window preparation; (2) examine the incidence of membrane perforation; and (3) study the factors that might influence membrane perforation. Results from this study showed the safety and effectiveness of using a reamer to perform lateral window approach sinus augmentation. The sinus membrane perforation rate was found to be 12.5%. A slightly higher perforation rate was noted in thinner maxillary lateral walls (< 1.25 mm). The authors concluded that reamer drilling is a safe and effective alternate technique for opening the lateral window wall when the lateral wall thickness is ≥ 1.25mm.

  4. a Vector Space Approach to Spatial Spectrum Estimation

    Science.gov (United States)

    Pillai, Unnikrishna S.

    Array processing for spatial spectrum estimation is reexamined from the vector space viewpoint with the objective of finding a common framework within which the various known superresolution estimators may be compared. Based on the experience with eigenstructure methods, which are ideal in the sense that they asymptotically yield unbiased estimates and have infinite resolving power for point sources, a generic form for an ideal spectrum estimator is proposed. Within this context it is shown that the MUltiple SIgnal Classification (MUSIC) method is an exact realization and the well known superresolution estimators, such as the Maximum Likelihood Method (MLM) of Capon and the Linear Prediction Method (LPM), are approximate realizations of this form. Further, this formulation is shown to suggest ways to modify both MLM and LPM so as to achieve asymptotically ideal performance for point sources. In the case of estimated covariance matrices the compensation for the improved performance is shown to be the requirement of larger number of samples compared to the eigenstructure based methods. The question of how to deploy the array elements for improved performance, in terms of the ability of the array to detect and resolve a larger number of sources than conventionally possible, is addressed. A study related to the statistical properties of the estimator of the unknown angles of arrival is reported. This includes a general result based on Cramer-Rao bound, and specific analyses for various superresolution techniques. A test based on higher powers of the eigenvalues of the sample covariance matrix is derived to estimate the number of point sources present in the data. This test is found to be useful even when the number of array elements is less than the number of point sources and is applied to the augmentation technique where negative eigenvalues are encountered. Other results include determination of the sensitivity of the eigenstructure based techniques on element

  5. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    Science.gov (United States)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  6. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    Science.gov (United States)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  7. Understanding space weather with new physical, mathematical and philosophical approaches

    Science.gov (United States)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  8. Developing a space network interface simulator: The NTS approach

    Science.gov (United States)

    Hendrzak, Gary E.

    1993-01-01

    This paper describes the approach used to redevelop the Network Control Center (NCC) Test System (NTS), a hardware and software facility designed to make testing of the NCC Data System (NCCDS) software efficient, effective, and as rigorous as possible prior to operational use. The NTS transmits and receives network message traffic in real-time. Data transfer rates and message content are strictly controlled and are identical to that of the operational systems. NTS minimizes the need for costly and time-consuming testing with the actual external entities (e.g., the Hubble Space Telescope (HST) Payload Operations Control Center (POCC) and the White Sands Ground Terminal). Discussed are activities associated with the development of the NTS, lessons learned throughout the project's lifecycle, and resulting productivity and quality increases.

  9. NASA Communications Augmentation network

    Science.gov (United States)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-09-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  10. Space nuclear reactor system diagnosis: Knowledge-based approach

    International Nuclear Information System (INIS)

    SP-100 space nuclear reactor system development is a joint effort by the Department of Energy, the Department of Defense and the National Aeronautics and Space Administration. The system is designed to operate in isolation for many years, and is possibly subject to little or no remote maintenance. This dissertation proposes a knowledge based diagnostic system which, in principle, can diagnose the faults which can either cause reactor shutdown or lead to another serious problem. This framework in general can be applied to the fully specified system if detailed design information becomes available. The set of faults considered herein is identified based on heuristic knowledge about the system operation. The suitable approach to diagnostic problem solving is proposed after investigating the most prevalent methodologies in Artificial Intelligence as well as the causal analysis of the system. Deep causal knowledge modeling based on digraph, fault-tree or logic flowgraph methodology would present a need for some knowledge representation to handle the time dependent system behavior. A proposed qualitative temporal knowledge modeling methodology, using rules with specified time delay among the process variables, has been proposed and is used to develop the diagnostic sufficient rule set. The rule set has been modified by using a time zone approach to have a robust system design. The sufficient rule set is transformed to a sufficient and necessary one by searching the whole knowledge base. Qualitative data analysis is proposed in analyzing the measured data if in a real time situation. An expert system shell - Intelligence Compiler is used to develop the prototype system. Frames are used for the process variables. Forward chaining rules are used in monitoring and backward chaining rules are used in diagnosis

  11. Augmented Reality in Astrophysics

    OpenAIRE

    Vogt, Frédéric P. A.; Shingles, Luke J.

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented...

  12. Religion and Communication Spaces. A Semio-pragmatic Approach

    Directory of Open Access Journals (Sweden)

    Roger Odin

    2015-11-01

    Full Text Available Following the reflection initiated in his book The Spaces of Communication, Roger Odin suggests a new distinction between physical communication spaces and mental communication spaces (spaces that we have inside us. The suggestion is exemplified by three film analyses dedicated to the relationships between religion and communication.

  13. A Web Based Approach to Integrate Space Culture and Education

    Science.gov (United States)

    Gerla, F.

    2002-01-01

    , who can use it to prepare their lessons, retrieve information and organize the didactic material in order to support their lessons. We think it important to use a user centered "psychology" based on UM: we have to know the needs and expectations of the students. Our intent is to use usability tests not just to prove the site effectiveness and clearness, but also to investigate aesthetical preferences of children and young people. Physics, mathematics, chemistry are just some of the difficult learning fields connected with space technologies. Space culture is a potentially never-ending field, and our scope will be to lead students by hand in this universe of knowledge. This paper will present MARS activities in the framework of the above methodologies aimed at implementing a web based approach to integrate space culture and education. The activities are already in progress and some results will be presented in the final paper.

  14. Novel Approaches to Cellular Transplantation from the US Space Program

    Science.gov (United States)

    Pellis, Neal R.; Homick, Jerry L. (Technical Monitor)

    1999-01-01

    Research in the treatment of type I diabetes is entering a new era that takes advantage of our knowledge in an ever increasing variety of scientific disciplines. Some may originate from very diverse sources, one of which is the Space Program at National Aeronautics and Space Administration (NASA). The Space Program contributes to diabetes-related research in several treatment modalities. As an ongoing effort for medical monitoring of personnel involved in space exploration activities NASA and the extramural scientific community investigate strategies for noninvasive estimation of blood glucose levels. Part of the effort in the space protein crystal growth program is high-resolution structural analysis insulin as a means to better understand the interaction with its receptor and with host immune components and as a basis for rational design of a "better" insulin molecule. The Space Program is also developing laser technology for potential early cataract detection as well as a noninvasive analyses for addressing preclinical diabetic retinopathy. Finally, NASA developed an exciting cell culture system that affords some unique advantages in the propagation and maintenance of mammalian cells in vitro. The cell culture system was originally designed to maintain cell suspensions with a minimum of hydrodynamic and mechanical sheer while awaiting launch into microgravity. Currently the commercially available NASA bioreactor (Synthecon, Inc., Houston, TX) is used as a research tool in basic and applied cell biology. In recent years there is continued strong interest in cellular transplantation as treatment for type I diabetes. The advantages are the potential for successful long-term amelioration and a minimum risk for morbidity in the event of rejection of the transplanted cells. The pathway to successful application of this strategy is accompanied by several substantial hurdles: (1) isolation and propagation of a suitable uniform donor cell population; (2) management of

  15. An Open and Holistic Approach for Geo and Space Sciences

    Science.gov (United States)

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Toshihiko, Iyemori; Yatagai, Akiyo; Koyama, Yukinobu; Murayama, Yasuhiro; King, Todd; Hughes, Steve; Fung, Shing; Galkin, Ivan; Hapgood, Mike; Belehaki, Anna

    2016-04-01

    Geo and space sciences thus far have been very successful, even often an open, cross-domain and holistic approach did not play an essential role. But this situation is changing rapidly. The research focus is shifting into more complex, non-linear and multi-domain specified phenomena, such as e.g. climate change or space environment. This kind of phenomena only can be understood step by step using the holistic idea. So, what is necessary for a successful cross-domain and holistic approach in geo and space sciences? Research and science in general become more and more dependent from a rich fundus of multi-domain data sources, related context information and the use of highly advanced technologies in data processing. Such buzzword phrases as Big Data and Deep Learning are reflecting this development. Big Data also addresses the real exponential growing of data and information produced by measurements or simulations. Deep Learning technology may help to detect new patterns and relationships in data describing high sophisticated natural phenomena. And further on, we should not forget science and humanities are only two sides of the same medal in the continuing human process of knowledge discovery. The concept of Open Data or in particular the open access to scientific data is addressing the free and open availability of -at least publicly founded and generated- data. The open availability of data covers the free use, reuse and redistribution of data which have been established with the formation of World Data Centers already more than 50 years ago. So, we should not forget, the foundation for open data is the responsibility of the individual scientist up until the big science institutions and organizations for a sustainable management of data. Other challenges are discovering and collecting the appropriate data, and preferably all of them or at least the majority of the right data. Therefore a network of individual or even better institutional catalog-based and at least

  16. ARC Code TI: ROC Curve Code Augmentation

    Data.gov (United States)

    National Aeronautics and Space Administration — ROC (Receiver Operating Characteristic) curve Code Augmentation was written by Rodney Martin and John Stutz at NASA Ames Research Center and is a modification of...

  17. Large deviations for Hilbert space valued Wiener processes: a sequence space approach

    OpenAIRE

    Andresen, Andreas; Imkeller, Peter; Perkowski, Nicolas

    2012-01-01

    Ciesielski's isomorphism between the space of alpha-H\\"older continuous functions and the space of bounded sequences is used to give an alternative proof of the large deviation principle for Wiener processes with values in Hilbert space.

  18. Estimating Brazilian Monthly GDP: a State-Space Approach

    Directory of Open Access Journals (Sweden)

    João Victor Issler

    2016-03-01

    Full Text Available This paper has several contributions. The first is to employ a superior interpo lation method that enables to estimate, nowcastandforecast monthly Brazilian GDP for 1980-2012 in an integrated way-see Bernanke, Gertler, & Watson (1997[Systematic monetary policy and the effects of oil price shocks(Brookings Papers in Economic Activity No.1]. Second, along the spirit of Mariano & Murasawa (2003 [A new coincident index of business cycles based on monthly and quarterly series.Journal of Applied Econometrics, 18(4, 427-443], we propose and test a myriad of interpolation models and interpolation auxiliary series-all coincident with GDP from a business-cycle dating point of view. Based on these results, we finally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic ac tivity indicator widely used by practitioners in Brazil-the Brazilian Economic Activity Index (IBC-Br. We found that our monthly GDP tracks economic ac tivity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline that our monthly estimate must add up to the quarterly observed series in any given quarter, which may not hold regarding IBC-Br. Moreover, our method has the advantage to be easily im plemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. Third, in a nowcasting and forecasting exercise, we illustrate the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.

  19. Brighter eyes: combined upper cheek and tear trough augmentation: a systematic approach utilizing two complementary hyaluronic acid fillers.

    Science.gov (United States)

    Tung, Rebecca; Ruiz de Luzuriaga, Arlene M; Park, Kelly; Sato, Mauricio; Dubina, Meghan; Alam, Murad

    2012-09-01

    Non-surgical rejuvenation of the periorbital-cheek complex can be effectively and safely accomplished using a combination of two hyaluronic acid (HA) fillers with distinct viscosities. We present a series of 21 patients with mild to moderate tear trough deformities who were treated with concomitant injection of two dermal fillers (Restylane® and Perlane®). Procedural technique entailed micro-depot injections of the finer viscosity HA into the sub-muscular plane along the orbital rim followed by manual massage. Secondly, injections of the thicker, more firm HA were placed in the sub-muscular and/or deep dermal spaces in the upper malar and lateral zygomatic areas and in the medial aspect of the temporal fossa. On average 0.5 mL Restylane and 0.5 mL Perlane were used per side. Statistically significant improvement in modified Wrinkle Severity Rating Scale scores was seen at 20 weeks. Overall improvement in modified Global Aesthetic Improvement Scale scores occurred in 20 out of 21 patients. Mean patient satisfaction scores increased by 2 grades relative to baseline. Patients' self-reported overall mean improvement was 2.23, indicating moderate (26% to 50%) to good (51% to 75%) improvement. Side effects were limited to transient bruising and swelling. No patients required dissolution of injectant with hyaluronidase. Overall, this combination filler procedure was found to produce both statistically significant and clinically apparent improvement and was associated with an extremely high degree of patient satisfaction. PMID:23135653

  20. A Lattice-Theoretic Approach to Multigranulation Approximation Space

    OpenAIRE

    Xiaoli He; Yanhong She

    2014-01-01

    In this paper, we mainly investigate the equivalence between multigranulation approximation space and single-granulation approximation space from the lattice-theoretic viewpoint. It is proved that multigranulation approximation space is equivalent to single-granulation approximation space if and only if the pair of multigranulation rough approximation operators ( Σ i = 1 n R i ¯ , Σ i = 1 n R i _ ) forms an order-preserving Galois connection, if and only if the collection of lower (resp., upp...

  1. An Open and Holistic Approach for Geo and Space Sciences

    Science.gov (United States)

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Toshihiko, Iyemori; Yatagai, Akiyo; Koyama, Yukinobu; Murayama, Yasuhiro; King, Todd; Hughes, Steve; Fung, Shing; Galkin, Ivan; Hapgood, Mike; Belehaki, Anna

    2016-04-01

    Geo and space sciences thus far have been very successful, even often an open, cross-domain and holistic approach did not play an essential role. But this situation is changing rapidly. The research focus is shifting into more complex, non-linear and multi-domain specified phenomena, such as e.g. climate change or space environment. This kind of phenomena only can be understood step by step using the holistic idea. So, what is necessary for a successful cross-domain and holistic approach in geo and space sciences? Research and science in general become more and more dependent from a rich fundus of multi-domain data sources, related context information and the use of highly advanced technologies in data processing. Such buzzword phrases as Big Data and Deep Learning are reflecting this development. Big Data also addresses the real exponential growing of data and information produced by measurements or simulations. Deep Learning technology may help to detect new patterns and relationships in data describing high sophisticated natural phenomena. And further on, we should not forget science and humanities are only two sides of the same medal in the continuing human process of knowledge discovery. The concept of Open Data or in particular the open access to scientific data is addressing the free and open availability of -at least publicly founded and generated- data. The open availability of data covers the free use, reuse and redistribution of data which have been established with the formation of World Data Centers already more than 50 years ago. So, we should not forget, the foundation for open data is the responsibility of the individual scientist up until the big science institutions and organizations for a sustainable management of data. Other challenges are discovering and collecting the appropriate data, and preferably all of them or at least the majority of the right data. Therefore a network of individual or even better institutional catalog-based and at least

  2. Analysis of Life Histories: A State Space Approach

    Directory of Open Access Journals (Sweden)

    Rajulton, Fernando

    2001-01-01

    Full Text Available EnglishThe computer package LIFEHIST written by the author, is meant for analyzinglife histories through a state-space approach. Basic ideas on which the various programs have beenbuilt are described in this paper in a non-mathematical language. Users can use various programs formultistate analyses based on Markov and semi-Markov frameworks and sequences of transitions implied inlife histories. The package is under constant revision and programs for using a few specific modelsthe author thinks will be useful for analyzing longitudinal data will be incorporated in the nearfuture.FrenchLe système d'ordinateur LIFEHIST écrit par l'auteur est établi pour analyser desévénements au cours de la vie par une approche qui tient compte des états aucours du temps. Les idées fondamentales à la base des divers programmes dumodule sont décrites dans un langage non-mathématique. Le systèmeLIFEHIST peut être utilisé pour des analyses Markov et semi-Markov desséquences d’événements au cours de la vie. Le module est sous révisionconstante, et des programmes que l’auteur compte ajouter pour l'usage dedonnées longitudinales sont décrit.

  3. RFIDice - Augmenting Tabletop Dice with RFID

    Directory of Open Access Journals (Sweden)

    Marc Langheinrich

    2008-08-01

    Full Text Available Augmented dice allow players of tabletop games to have the result of a roll be automatically recorded by a computer, e.g., for supporting strategy games. We have built a set of three augmented-dice-prototypes based on radio frequency identification (RFID technology, which allows us to build robust, cheap, and small augmented dice. Using a corresponding readout infrastructure and a sample application, we have evaluated our approach and show its advantages over other dice augmentation methods discussed in the literature.

  4. Analysis of multinomial models with unknown index using data augmentation

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, R.M.; Link, W.A.

    2007-01-01

    Multinomial models with unknown index ('sample size') arise in many practical settings. In practice, Bayesian analysis of such models has proved difficult because the dimension of the parameter space is not fixed, being in some cases a function of the unknown index. We describe a data augmentation approach to the analysis of this class of models that provides for a generic and efficient Bayesian implementation. Under this approach, the data are augmented with all-zero detection histories. The resulting augmented dataset is modeled as a zero-inflated version of the complete-data model where an estimable zero-inflation parameter takes the place of the unknown multinomial index. Interestingly, data augmentation can be justified as being equivalent to imposing a discrete uniform prior on the multinomial index. We provide three examples involving estimating the size of an animal population, estimating the number of diabetes cases in a population using the Rasch model, and the motivating example of estimating the number of species in an animal community with latent probabilities of species occurrence and detection.

  5. Augmented Virtual Reality Laboratory

    Science.gov (United States)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  6. NAESA Augmentation Pilot Project

    Science.gov (United States)

    Hoover, John J.

    1998-01-01

    This project was one project within the Native American Earth and Space Academy (NAESA). NAESA is a national initiative comprised of several organizations that support programs which focus on 1) enhancing the technological, scientific and pedagogical skills of K-14 teachers who instruct Native Americans, 2) enhancing the understanding and applications of science, technology, and engineering of college-bound Native Americans and teaching them general college "survival skills" (e.g., test taking, time management, study habits), 3) enhancing the scientific and pedagogical skills of the faculty of tribally-controllcd colleges and community colleges with large Native American enrollments, and 4) strengthening the critical relationships between students, their parents, tribal elders, and their communities. This Augmentation Pilot Project focused on the areas of community-school alliances and intemet technology use in teaching and learning and daily living addressing five major objectives.

  7. Augmented Reality in Astrophysics

    CERN Document Server

    Vogt, Frédéric P A

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss p...

  8. Challenges in Individualizing Drug Dosage for Intensive Care Unit Patients: Is Augmented Renal Clearance What We Really Want to Know? Some Suggested Management Approaches and Clinical Software Tools.

    Science.gov (United States)

    Jelliffe, Roger

    2016-08-01

    Acutely ill intensive care unit (ICU) patients often have large apparent volumes of distribution of drugs and, because of this, their drug clearance (CL) is usually also increased. 'Augmented renal Cl' is a current issue in the management of drug therapy for acutely ill and unstable ICU patients; however, Cl, the product of volume and the rate constant for excretion, describes only a theoretical volume of drug cleared per unit of time. Information of the actual rate of movement of the drug itself is obscured. It is suggested that the most useful clinical information is given by describing drug volume and elimination rate constant separately. This also permits better understanding of the patient's separate issues of fluid balance and drug elimination, especially when dialysis, renal replacement therapy, or extracorporeal membrane oxygenation (ECMO) may be used, and facilitates management of these two important separate clinical issues. Optimal management of drug therapy also requires optimal methods embodied in clinical software to describe drug behavior in these highly unstable patients, and considerably more data than for ordinary patients. The interacting multiple model (IMM) clinical software facilitates management of both fluid balance and drug therapy in these unstable patients. Illustrative cases are discussed, and new monitoring and management strategies are suggested. Like other ICU skills, physicians need to learn optimal tools for managing drug therapy in the ICU. Further work should help evaluate these new approaches. PMID:26914772

  9. A Systems Approach to Developing an Affordable Space Ground Transportation Architecture using a Commonality Approach

    Science.gov (United States)

    Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.

    2012-01-01

    This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.

  10. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  11. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    Science.gov (United States)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  12. Inductively Coupled Augmented Railgun

    CERN Document Server

    Bahder, Thomas B

    2011-01-01

    We derive the non-linear dynamical equations for an augmented electromagnetic railgun, whose augmentation circuit is inductively coupled to the gun circuit. We solve these differential equations numerically using example parameter values. We find a complicated interaction between the augmentation circuit, gun circuit, and mechanical degrees of freedom, leading to a complicated optimization problem. For certain values of parameters, we find that an augmented electromagnetic railgun has an armature kinetic energy that is 42% larger than the same railgun with no augmentation circuit. Optimizing the parameters may lead to further increase in performance.

  13. New approaches for mixed reality in urban environments: the CINeSPACE project

    OpenAIRE

    Shapshak, Mans

    2009-01-01

    The CINeSPACE (www.cinespace.eu) project allows tourists to access the rich cultural heritage of urban environments by literally morphing the user into the past through the use of multimedia archives. Tourists use the device which includes both a PDA type of device with a GIS interface displayed on a touch screen to help the user navigate and select multimedia content, and video binoculars to create the augmented reality effects. In addition to this mode of interaction, a survey of Mixed Real...

  14. Space commerce in a global economy - Comparison of international approaches to commercial space

    Science.gov (United States)

    Stone, Barbara A.; Kleber, Peter

    1992-01-01

    A historical perspective, current status, and comparison of national government/commercial space industry relationships in the United States and Europe are presented. It is noted that space technology has been developed and used primarily to meet the needs of civil and military government initiatives. Two future trends of space technology development include new space enterprises, and the national drive to achieve a more competitive global economic position.

  15. Phase space picture of quantum mechanics group theoretical approach

    CERN Document Server

    Kim, Y S

    1991-01-01

    This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.

  16. Fractal electrodynamics via non-integer dimensional space approach

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  17. Approaches to the utilization of space for CO2 research

    Science.gov (United States)

    Glaser, P.; Aronson, J.; Brecher, A.; Csigi, K.; Mcarthur, R.

    1985-01-01

    A system study of the potential of space technology to monitor climate changes and improve the understanding of the coupling beteen CO2 and cloud cover is summarized. The basis for the study is scientific data requirements pertinent to the U.S. Department of Energy's CO2 Research Program. The capabilities of space-based sensor systems are matched to meet these requirements. New sensor system concepts are identified, including a Space Shuttle-launched recalibration package to provide for continuity of measurement and recalibration between satellites, a high-orbit radiation budget satellite, or parallax sensor to measure cloud altitude, a passive method for the direct measurements of CO2 and a high-altitude powered platform to monitor select regional parameters. Space-based sensor systems that could be the development focus for the time frames of 0-5, 5-10 and 10-20 years are recommended.

  18. Autonomy for Active Space Debris Removal: Research Issues and Approaches

    OpenAIRE

    PETERS, Susanne; Förstner, Roger; Fiedler, Hauke

    2013-01-01

    Even though the infinite vastness of the universe is an accepted theory, apparently infinity ends when it comes to orbits surrounding the Earth. This was a hard lesson to learn when Iridium 33 and Cosmos 2251 collided in the low Earth orbit in February 2009. Not at least due to this event, the threat of uncontrolled objects in space is subject to a series of activities for the stabilization of the space environment. Besides improved collision propagation and mitigation measurements currently ...

  19. Stochastic Inflation:The Quantum Phase Space Approach

    OpenAIRE

    Habib, Salman

    1992-01-01

    In this paper a quantum mechanical phase space picture is constructed for coarse-grained free quantum fields in an inflationary Universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase space quantum distribution function are found for the cases of power law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field theoretic results (we ...

  20. Design and Implementation of Intelligent Space: a Component Based Approach

    OpenAIRE

    Sasaki, Takeshi; Hashimoto, Hideki

    2010-01-01

    Intelligent robot systems are developed by integration of mechatronics and software technologies. However, the systems are getting more complicated since the cooperation of various types of robots is necessary to realize advanced services for users. Therefore, the system integration becomes an important issue. In order to realize a flexible and scalable system, Intelligent Space (iSpace) is implemented using RT (robot technology) middleware. First we discussed the component design of the info...

  1. Fractal electrodynamics via non-integer dimensional space approach

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2015-09-25

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested. - Highlights: • Electrodynamics of fractal media is described by non-integer dimensional spaces. • Applications of the fractal Gauss's and Ampere's laws are suggested. • Fractal Poisson equation, equation for fractal stream of charges are considered.

  2. Space fusion energy conversion using a field reversed configuration reactor: A new technical approach for space propulsion and power

    Science.gov (United States)

    Schulze, Norman R.; Miley, George H.; Santarius, John F.

    1991-01-01

    The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.

  3. Mobile-based tourism as spatial augmentation

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    By discussing the uses of mobile information mainly for tourism purposes, I argue that the consequence of the use of mobile technologies is neither a collapse nor a doubling of space and place. Rather they are producing new types of places and new types of spatial experiences. In short, mobile...... technologies facilitate an augmentation of space...

  4. Confronting an augmented reality

    OpenAIRE

    Munnerley, Danny; Bacon, Matt; Wilson, Anna,; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial...

  5. Quantitative approach to measuring the cerebrospinal fluid space with CT

    Energy Technology Data Exchange (ETDEWEB)

    Zeumer, H.; Hacke, W.; Hartwich, P.

    1982-01-01

    A method for measuring the subarachnoid space by using an independent CT evaluation unit is described. The normal values have been calculated for patients, according to age, and three examples are presented demonstrating reversible decrease of brain volume in patients suffering anorexia nervosa and chronic alcoholism.

  6. Reflective pattern-based approach to collaborative media space management

    Science.gov (United States)

    Robbins, Wayne; Georganas, Nicolas D.

    1998-12-01

    The role of traditional multimedia systems has been to disseminate information. The advent of media spaces, however, offers an increased potential in terms of presentation as well as facilitating a natural and intuitive environment for interpersonal communication. Combined with Computer Supported Cooperative Work technologies, these shared, media-rich environments offer a natural basis for distributed collaboration through a seamless blend of presentational, conversational and interactive multimedia. The resulting notion underlies the definition of a collaborative media space in which users interact with each other through the experience and manipulation of shared media. The integration of such a diverse array of entities presents many challenges, ranging from the need to support a variety of media types to managing how objects in such a system interact. Indeed, a primary consideration with such system is the coordination (including both causal and temporal synchronization) of entities within the space. This work addresses how to facilitate media space design by employing a pattern-based meta-level architecture and management infrastructure in which reflection is used to isolate system-level issues such as behavioral coordination from low-level, media-specific computation. The architectural framework and its underlying topology are illustrated along with the model's application to a distance education system.

  7. Context-Augmented Robotic Interaction Layer (CARIL) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Today, as humans reach beyond the earth to near and deep space, there is obvious and urgent need to augment the capabilities of human astronauts and (ground-)...

  8. An approach towards problem-based learning in virtual space

    OpenAIRE

    Freudenberg, Lutz S.; Bockisch, Andreas; Beyer, Thomas

    2010-01-01

    Problem-based learning (PBL) is an established and efficient approach to sustainable teaching. Here, we describe translation of PBL into the virtual classroom thereby offering novel teaching aspects in the field of Nuclear Medicine. Our teaching approach is implemented on a "moodle" platform and consists of 2 modules: complementary seminar teaching materials and a virtual PBL-classroom, which can be attended via Skype. Over the course of 4 semesters 539 students have accessed our teaching pla...

  9. A multi-spacecraft formation approach to space debris surveillance

    Science.gov (United States)

    Felicetti, Leonard; Emami, M. Reza

    2016-10-01

    This paper proposes a new mission concept devoted to the identification and tracking of space debris through observations made by multiple spacecraft. Specifically, a formation of spacecraft has been designed taking into account the characteristics and requirements of the utilized optical sensors as well as the constraints imposed by sun illumination and visibility conditions. The debris observations are then shared among the team of spacecraft, and processed onboard of a "hosting leader" to estimate the debris motion by means of Kalman filtering techniques. The primary contribution of this paper resides on the application of a distributed coordination architecture, which provides an autonomous and robust ability to dynamically form spacecraft teams once the target has been detected, and to dynamically build a processing network for the orbit determination of space debris. The team performance, in terms of accuracy, readiness and number of the detected objects, is discussed through numerical simulations.

  10. Embodied Space: a Sensorial Approach to Spatial Experience

    Science.gov (United States)

    Durão, Maria João

    2009-03-01

    A reflection is presented on the significance of the role of the body in the interpretation and future creation of spatial living structures. The paper draws on the body as cartography of sensorial meaning that includes vision, touch, smell, hearing, orientation and movement to discuss possible relationships with psychological and sociological parameters of 'sensorial space'. The complex dynamics of body-space is further explored from the standpoint of perceptual variables such as color, light, materialities, texture and their connections with design, technology, culture and symbology. Finally, the paper discusses the integration of knowledge and experimentation in the design of future habitats where body-sensitive frameworks encompass flexibility, communication, interaction and cognitive-driven solutions.

  11. The STEREO Mission: A New Approach to Space Weather Research

    Science.gov (United States)

    Kaiser, michael L.

    2006-01-01

    With the launch of the twin STEREO spacecraft in July 2006, a new capability will exist for both real-time space weather predictions and for advances in space weather research. Whereas previous spacecraft monitors of the sun such as ACE and SOH0 have been essentially on the sun-Earth line, the STEREO spacecraft will be in 1 AU orbits around the sun on either side of Earth and will be viewing the solar activity from distinctly different vantage points. As seen from the sun, the two spacecraft will separate at a rate of 45 degrees per year, with Earth bisecting the angle. The instrument complement on the two spacecraft will consist of a package of optical instruments capable of imaging the sun in the visible and ultraviolet from essentially the surface to 1 AU and beyond, a radio burst receiver capable of tracking solar eruptive events from an altitude of 2-3 Rs to 1 AU, and a comprehensive set of fields and particles instruments capable of measuring in situ solar events such as interplanetary magnetic clouds. In addition to normal daily recorded data transmissions, each spacecraft is equipped with a real-time beacon that will provide 1 to 5 minute snapshots or averages of the data from the various instruments. This beacon data will be received by NOAA and NASA tracking stations and then relayed to the STEREO Science Center located at Goddard Space Flight Center in Maryland where the data will be processed and made available within a goal of 5 minutes of receipt on the ground. With STEREO's instrumentation and unique view geometry, we believe considerable improvement can be made in space weather prediction capability as well as improved understanding of the three dimensional structure of solar transient events.

  12. An Approach to Autonomous Control for Space Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  13. Hawking radiation and classical tunneling: A ray phase space approach

    Science.gov (United States)

    Tracy, E. R.; Zhigunov, D.

    2016-01-01

    Acoustic waves in fluids undergoing the transition from sub- to supersonic flow satisfy governing equations similar to those for light waves in the immediate vicinity of a black hole event horizon. This acoustic analogy has been used by Unruh and others as a conceptual model for "Hawking radiation." Here, we use variational methods, originally introduced by Brizard for the study of linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of background flows. The variational formulation endows the evolution equations with natural Hermitian and symplectic structures that prove useful for later analysis. We derive a 2 × 2 normal form governing the wave evolution in the vicinity of the "event horizon." This shows that the acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process weakly coupled to a unidirectional non-dispersive wave (the "incoming wave"). Given the normal form, the Hawking "thermal spectrum" can be derived by invoking standard tunneling theory, but only by ignoring the coupling to the incoming wave. Deriving the normal form requires a novel extension of the modular ray-based theory used previously to study tunneling and mode conversion in plasmas. We also discuss how ray phase space methods can be used to change representation, which brings the problem into a form where the wave functions are less singular than in the usual formulation, a fact that might prove useful in numerical studies.

  14. The space of state vectors: A hyperfinite approach

    International Nuclear Information System (INIS)

    We present a version of the formalism of Dirac based on nonstandard analysis, allowing us to deal with state vectors and operators using the resources of finite-dimensional linear algebra. The space of state vectors is a nonstandard Hilbert space with hyperfinite dimension, which includes all square-integrable functions, together with vectors representing states of definite position or momentum. Every vector is normalizable, even when its norm is infinite. Observables are represented by Hermitian operators, which are always (hyper)bounded and defined on the whole space. The connection with the standard theory is established by postulating the existence of 'hyper-observables' and nonstandard states. Each observable in the usual sense appears as a kind of standard-scale approximation of some hyper-observable. We show that the probabilistic predictions are consistent with those of the standard theory. Consistency extends to time evolution, in the sense that if an initial nonstandard state is 'near-standard', then the state after a finite time shall be infinitely near the standard state obtained through the Schroedinger equation

  15. A novel combined surgical approach to vertical alveolar ridge augmentation with titanium mesh, resorbable membrane, and rhPDGF-BB: a retrospective consecutive case series.

    Science.gov (United States)

    Funato, Akiyoshi; Ishikawa, Tomohiro; Kitajima, Hajime; Yamada, Masahiro; Moroi, Hidetada

    2013-01-01

    The purpose of this case series was to report the clinical outcomes and histologic findings of vertical ridge augmentation using a combination of titanium mesh, resorbable collagen membrane, and recombinant human platelet-derived growth factor BB (rhPDGF-BB). Nineteen patients were included, and autogenous bone and anorganic bovine bone particles were used. The bone graft was mixed with rhPDGF-BB and loaded onto the bony defect up to the level of the adjacent alveolar crest. A pre-adapted titanium mesh was placed over the grafted region and covered with a resorbable collagen membrane, leaving no areas of the grafted region exposed. Seventeen patients exhibited good soft tissue healing. Postoperative flap dehiscence occurred relatively early in the healing period in one patient, whereas the covering collagen membrane was exposed during the later phase of the healing period in another. During reentry surgery for removal of the titanium mesh, three patients with favorable soft and hard tissue healing underwent bone biopsies for histologic evaluation of the augmented tissue just below the titanium mesh. The mean vertical height of augmented bone was 8.6 ± 4.0 mm. This report demonstrates the remarkable efficacy of guided bone regeneration using a combination of titanium mesh, resorbable collagen membrane, and rhPDGF for vertical ridge augmentation, thus expanding the indications for implant therapy and allowing recovery of the three-dimensional esthetic architecture in a severely absorbed alveolar ridge. PMID:23820701

  16. Learning the Task Management Space of an Aircraft Approach Model

    Science.gov (United States)

    Krall, Joseph; Menzies, Tim; Davies, Misty

    2014-01-01

    Validating models of airspace operations is a particular challenge. These models are often aimed at finding and exploring safety violations, and aim to be accurate representations of real-world behavior. However, the rules governing the behavior are quite complex: nonlinear physics, operational modes, human behavior, and stochastic environmental concerns all determine the responses of the system. In this paper, we present a study on aircraft runway approaches as modeled in Georgia Tech's Work Models that Compute (WMC) simulation. We use a new learner, Genetic-Active Learning for Search-Based Software Engineering (GALE) to discover the Pareto frontiers defined by cognitive structures. These cognitive structures organize the prioritization and assignment of tasks of each pilot during approaches. We discuss the benefits of our approach, and also discuss future work necessary to enable uncertainty quantification.

  17. Confronting an Augmented Reality

    Science.gov (United States)

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  18. The Virtuality and Reality of Augmented Reality

    Directory of Open Access Journals (Sweden)

    Jung Yeon Ma

    2007-02-01

    Full Text Available This thesis explores the creative possibilities and implications of Augmented Reality, not just as a specific technology of computer science, but as one of high technologies that influence people’s perception and even the concepts of the real and the virtual. For a broader definition of Augmented Reality which has a unique status between virtual environment and real environment, the virtuality and the reality of Augmented Reality are discussed in an interdisciplinary context such as arts, philosophy, and film and animation studies. This approach is rooted in the belief that theory of new media ought to traverse and encompass all realms of academic categories.

  19. A Life Space Perspective to Approach Individual Demographic Processes

    Directory of Open Access Journals (Sweden)

    Robette, Nicolas

    2010-01-01

    Full Text Available AbstractThe concept of life space refers to the different locations with which individualsinteract along their life course. In this article we present several methodologicalproposals to describe and measure various territories to which individualsrelate over time, taking advantage of a rich data source, the Biographies etentourage survey. We produce relevant indicators which can be used in thestudy of different demographic processes and demonstrate how this perspectiveelegantly formalizes the linked dynamics of interactive non-independenttrajectories in the case of the couples’ activity space.RésuméLe concept d’espace de vie désigne l’ensemble des lieux avec lesquels unindividu est en relation au cours de sa vie. Dans cet article, plusieurs méthodessont proposées pour décrire et mesurer les différents territoires auxquels lesindividus sont attachés au fil du temps, en mettant pour cela à profit la richessedes données de l’enquête Biographies et entourage. Plusieurs indicateurs sontconstruits, qui peuvent être utilisés pour l’étude de processus démographiquesvariés. La pertinence d’une perspective en termes d’espace de vie est enfinvalidée par l’analyse des interactions dynamiques entre trajectoires nonindépendantes,appliquée aux espaces d’activité des couples.

  20. Augmented assessment as a means to augmented reality.

    Science.gov (United States)

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming. PMID:16404012

  1. A Survey on Applications of Augmented Reality

    Directory of Open Access Journals (Sweden)

    Andrea Sanna

    2016-01-01

    Full Text Available The term Augmented Reality (AR refers to a set of technologies and devices able to enhance and improve human perception, thus bridging the gap between real and virtual space. Physical and artificial objects are mixed together in a hybrid space where the user can move without constraints. This mediated reality is spread in our everyday life: work, study, training, relaxation, time spent traveling are just some of the moments in which you can use AR applications.This paper aims to provide an overview of current technologies and future trends of augmented reality as well as to describe the main application domains, outlining benefits and open issues.

  2. A Novel Approach of Sensitive Infrared Signal Detection for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative approach to overcome the infrared signal detection difficulties.  In this investigation, a Periodical Poled MgO Lithium Niobate...

  3. Advanced free space optics (FSO) a systems approach

    CERN Document Server

    Majumdar, Arun K

    2015-01-01

    This book provides a comprehensive, unified tutorial covering the most recent advances in the technology of free-space optics (FSO). It is an all-inclusive source of information on the fundamentals of FSO as well as up-to-date information on the state-of-the-art in technologies available today. This text is intended for graduate students, and will also be useful for research scientists and engineers with an interest in the field. FSO communication is a practical solution for creating a three dimensional global broadband communications grid, offering bandwidths far beyond what is possible in the Radio Frequency (RF) range. However, the attributes of atmospheric turbulence and scattering impose perennial limitations on availability and reliability of FSO links. From a systems point-of-view, this groundbreaking book provides a thorough understanding of channel behavior, which can be used to design and evaluate optimum transmission techniques that operate under realistic atmospheric conditions. Topics addressed...

  4. Noise in oscillators: a review of state space decomposition approaches

    CERN Document Server

    Traversa, Fabio L; Corinto, Fernando; Bonani, Fabrizio

    2014-01-01

    We review the state space decomposition techniques for the assessment of the noise properties of autonomous oscillators, a topic of great practical and theoretical importance for many applications in many different fields, from electronics, to optics, to biology. After presenting a rigorous definition of phase, given in terms of the autonomous system isochrons, we provide a generalized projection technique that allows to decompose the oscillator fluctuations in terms of phase and amplitude noise, pointing out that the very definition of phase (and orbital) deviations depends of the base chosen to define the aforementioned projection. After reviewing the most advanced theories for phase noise, based on the use of the Floquet basis and of the reduction of the projected model by neglecting the orbital fluctuations, we discuss the intricacies of the phase reduction process pointing out the presence of possible variations of the noisy oscillator frequency due to amplitude-related effects.

  5. An Approach to Distributed State Space Exploration for Coloured Petri Nets

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Petrucci, Laure

    2004-01-01

    We present an approach and associated computer tool support for conducting distributed state space exploration for Coloured Petri Nets (CPNs). The distributed state space exploration is based on the introduction of a coordinating process and a number of worker processes. The worker processes...... Tools. This makes the distributed state space exploration and analysis largely transparent to the analyst. We illustrate the use of the developed tool on an example....

  6. Comparison of Mouse Brain DTI Maps Using K-space Average, Image-space Average, or No Average Approach

    OpenAIRE

    Sun, Shu-Wei; Mei, Jennifer; Tuel, Keelan

    2013-01-01

    Diffusion tensor imaging (DTI) is achieved by collecting a series of diffusion-weighted images (DWIs). Signal averaging of multiple repetitions can be performed in the k-space (k-avg) or in the image space (m-avg) to improve the image quality. Alternatively, one can treat each acquisition as an independent image and use all of the data to reconstruct the DTI without doing any signal averaging (no-avg). To compare these three approaches, in this study, in vivo DTI data was collected from five ...

  7. Transmandibular approach to polycentric recurrent pleomorphic adenoma of the parapharyngeal space.

    Science.gov (United States)

    Grubor, A; Jovanović, M; Said, M; Vlastarakou, V; Galea, J; Littlejohn, Gingell M

    2005-01-01

    Surgery for tumors of the parapharyngeal space PPS) requires adequate exposure to identify and protect vital structures. Thus transcervical and transcervical-transparotid approaches to the PPS may be enhanced by mandibulotomy for better visualisation. We have chosen this approach with single mandibulotomy just in front of foramen mentale and without lip incision. We present a 39 years old male who was undergone surgery for policentric recurrency of a pleomorphic adenoma of the parapharyngeal space. PMID:16813005

  8. Long-Term Treatment of Restless Legs Syndrome (RLS): An Approach to Management of Worsening Symptoms, Loss of Efficacy, and Augmentation.

    Science.gov (United States)

    Mackie, Susan; Winkelman, John W

    2015-05-01

    Restless legs syndrome (RLS) is a common, frequently chronic, sensorimotor neurological disorder characterized by nocturnal leg dysesthesias and an irresistible urge to move the legs, usually resulting in sleep disturbance. Dopaminergic agonists, alpha-2-delta calcium-channel ligands, and opioids have all demonstrated efficacy to relieve symptoms of RLS and improve sleep. However, long-term treatment with dopamine agonists (the most commonly prescribed agents) is often characterized by worsening symptoms and loss of efficacy. A more worrisome complication of dopaminergic agents is augmentation, an iatrogenic worsening of RLS symptoms that can produce progressively more severe symptoms resulting in around-the-clock restlessness and near sleeplessness. Recent research has yielded consensus regarding a precise definition of augmentation and has contributed to improved knowledge regarding strategies for preventing this complication. When RLS symptoms worsen during the course of treatment, the clinician must consider the myriad of environmental, medical, pharmacologic, and psychiatric factors that can exacerbate RLS. In the absence of fully developed, evidence-based guidelines there remains uncertainty regarding the optimal management strategy if augmentation develops. However, we discuss several key principles based on the available published data and the authors' clinical experience. We also explore the recent increasing interest in alternative initial treatment strategies that avoid dopamine agonists and their associated complications altogether.

  9. An approach towards problem-based learning in virtual space.

    Science.gov (United States)

    Freudenberg, Lutz S; Bockisch, Andreas; Beyer, Thomas

    2010-01-01

    Problem-based learning (PBL) is an established and efficient approach to sustainable teaching. Here, we describe translation of PBL into the virtual classroom thereby offering novel teaching aspects in the field of Nuclear Medicine. Our teaching approach is implemented on a "moodle" platform and consists of 2 modules: complementary seminar teaching materials and a virtual PBL-classroom, which can be attended via Skype.Over the course of 4 semesters 539 students have accessed our teaching platform. 21 students have participated in the PBL seminar (module 2). After resolving some minor technical difficulties our virtual seminars have evolved into a forum of intense studies, whereby the participating students have learned to become more independent along the workup of the teaching cases. This was reflected in the results of the intra-group presentations and discussions.Quantitative and qualitative evaluation of our moodle-based PBL platform indicates an increasing level of acceptance and enthusiasm by the students. This has initiated discussions about opening our PBL concept to a wider audience within the university and beyond the Nuclear Medicine specialty.

  10. An approach towards problem-based learning in virtual space.

    Science.gov (United States)

    Freudenberg, Lutz S; Bockisch, Andreas; Beyer, Thomas

    2010-01-01

    Problem-based learning (PBL) is an established and efficient approach to sustainable teaching. Here, we describe translation of PBL into the virtual classroom thereby offering novel teaching aspects in the field of Nuclear Medicine. Our teaching approach is implemented on a "moodle" platform and consists of 2 modules: complementary seminar teaching materials and a virtual PBL-classroom, which can be attended via Skype.Over the course of 4 semesters 539 students have accessed our teaching platform. 21 students have participated in the PBL seminar (module 2). After resolving some minor technical difficulties our virtual seminars have evolved into a forum of intense studies, whereby the participating students have learned to become more independent along the workup of the teaching cases. This was reflected in the results of the intra-group presentations and discussions.Quantitative and qualitative evaluation of our moodle-based PBL platform indicates an increasing level of acceptance and enthusiasm by the students. This has initiated discussions about opening our PBL concept to a wider audience within the university and beyond the Nuclear Medicine specialty. PMID:21818218

  11. Control Augmented Structural Synthesis

    Science.gov (United States)

    Lust, Robert V.; Schmit, Lucien A.

    1988-01-01

    A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.

  12. Augmented Likelihood Image Reconstruction.

    Science.gov (United States)

    Stille, Maik; Kleine, Matthias; Hägele, Julian; Barkhausen, Jörg; Buzug, Thorsten M

    2016-01-01

    The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.

  13. Freedom space for rivers: a sustainable management approach to enhance river resilience.

    Science.gov (United States)

    Biron, Pascale M; Buffin-Bélanger, Thomas; Larocque, Marie; Choné, Guénolé; Cloutier, Claude-André; Ouellet, Marie-Audray; Demers, Sylvio; Olsen, Taylor; Desjarlais, Claude; Eyquem, Joanna

    2014-11-01

    River systems are increasingly under stress and pressure from agriculture and urbanization in riparian zones, resulting in frequent engineering interventions such as bank stabilization or flood protection. This study provides guidelines for a more sustainable approach to river management based on hydrogeomorphology concepts applied to three contrasted rivers in Quebec (Canada). Mobility and flooding spaces are determined for the three rivers, and three levels of "freedom space" are subsequently defined based on the combination of the two spaces. The first level of freedom space includes very frequently flooded and highly mobile zones over the next 50 years, as well as riparian wetlands. It provides the minimum space for both fluvial and ecological functionality of the river system. On average for the three studied sites, this minimum space was approximately 1.7 times the channel width, but this minimum space corresponds to a highly variable width which must be determined from a thorough hydrogeomorphic assessment and cannot be predicted using a representative average. The second level includes space for floods of larger magnitude and provides for meanders to migrate freely over a longer time period. The last level of freedom space represents exceptional flood zones. We propose the freedom space concept to be implemented in current river management legislation because it promotes a sustainable way to manage river systems, and it increases their resilience to climate and land use changes in comparison with traditional river management approaches which are based on frequent and spatially restricted interventions.

  14. A statistical information-based clustering approach in distance space

    Institute of Scientific and Technical Information of China (English)

    YUE Shi-hong; LI Ping; GUO Ji-dong; ZHOU Shui-geng

    2005-01-01

    Clustering, as a powerful data mining technique for discovering interesting data distributions and patterns in the underlying database, is used in many fields, such as statistical data analysis, pattern recognition, image processing, and other business applications. Density-based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996) is a good performance clustering method for dealing with spatial data although it leaves many problems to be solved. For example,DBSCAN requires a necessary user-specified threshold while its computation is extremely time-consuming by current method such as OPTICS, etc. (Ankerst et al., 1999), and the performance of DBSCAN under different norms has yet to be examined. In this paper, we first developed a method based on statistical information of distance space in database to determine the necessary threshold. Then our examination of the DBSCAN performance under different norms showed that there was determinable relation between them. Finally, we used two artificial databases to verify the effectiveness and efficiency of the proposed methods.

  15. Coordination between Subway and Urban Space: A Networked Approach

    Directory of Open Access Journals (Sweden)

    Lei Mao

    2014-05-01

    Full Text Available This paper selects Changsha as a case study and constructs the models of the subway network and the urban spatial network by using planning data. In the network models, the districts of Changsha are regarded as nodes and the connections between each pair of districts are regarded as edges. The method is based on quantitative analysis of the node weights and the edge weights, which are defined in the complex network theory. And the structures of subway and urban space are visualized in the form of networks. Then, through analyzing the discrepancy coefficients of the corresponding nodes and edges, the paper carries out a comparison between the two networks to evaluate the coordination. The results indicate that only 21.4% of districts and 13.2% of district connections have a rational coordination. Finally, the strategies are put forward for optimization, which suggest adjusting subway transit density, regulating land-use intensity and planning new mass transits for the uncoordinated parts.

  16. Momentum space approach to microscopic effects in elastic proton scattering

    International Nuclear Information System (INIS)

    The microscopic non-relativistic first-order optical potential for proton-nucleus scattering is studied in some detail. Momentum-space calculations have been performed for a number of different target nucli at proton energies above approx.100 MeV and these microscopic predictions are compared with experimental cross section, analyzing power, and spin-rotation function data. The input to these calculations consists of the free on-shell nucleon-nucleon t-matrix, its non-local and off-shell structure, the treatment of the full-folding integral, and target densities obtained from electron scattering. Off-shell and non-local effects, as well as various factorization approximations, are studied. The sensitivity to uncertainies in the off-shell extension of the t-matrix, within the context of the Love-Franey model, is explicitly displayed. Similarly, uncertainties due to non-localities and incomplete knowledge of nuclear densities are shown. Explicit calculations using the t-matrix of Love and Franey indicate that these effects play significant roles only for relatively large angles (THETA less than or equal to 600) and/or lower energies (approx.150 MeV). These studies reinforce the conclusion that the lack of agreement between such first-order predictions and the data for spin observable at small angles arises from a physical effect not included in the non-relativistic first-order theory, rather than from any uncertainty in the calculation or in its input. 31 references

  17. Augmented reality: a review.

    Science.gov (United States)

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries. PMID:22559183

  18. Augmented reality: a review.

    Science.gov (United States)

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  19. Media-Augmented Exercise Machines

    Science.gov (United States)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  20. Augmented sculptures: what you see is not what you see

    OpenAIRE

    Artut, Selçuk Hüseyin; Artut, Selcuk Huseyin

    2015-01-01

    The idea of Augmented Reality Technologies enhances our ability to perceive a location with additional 3D visual elements. A point of interest becomes meta-constructed with addition of extended layers via augmented space elements. Augmented Reality presents us a virtually enriched version of a visually noticeable reality world which already exists and can easily be seen. In this article, in addition to questioning the representative existence of the art object in the work of art called “What ...

  1. Trial and Error: A new Approach to Space-Bounded Learning

    DEFF Research Database (Denmark)

    Ameur, F.; Fischer, Paul; Hoeffgen, H.-U.;

    1996-01-01

    A pac-learning algorithm is d-space bounded, if it stores at most d examples from the sample at any time. We characterize the d-space learnable concept classes. For this purpose we introduce the compression parameter of a concept class 𝒞 and design our trial and error learning algorithm. We...... show: 𝒞 is d-space learnable if and only if the compression parameter of 𝒞 is at most d. This learning algorithm does not produce a hypothesis consistent with the whole sample as previous approaches, for example, by Floyd, who presents consistent space bounded learning algorithms, but has to...

  2. Minimal inframammary incision for breast augmentation

    Science.gov (United States)

    Fanous, Nabil; Tawilé, Caroline; Brousseau, Valérie J

    2008-01-01

    The inframammary approach in breast augmentation, still the most popular technique among plastic surgeons, has always been hampered by the undesirable appearance of its scar. The present paper describes a modified approach to inframammary augmentation with saline-filled prostheses. This approach uses a very short incision, thus resulting in a much less noticeable scar. The surgical technique is easy to learn, simple to execute, does not necessitate any special equipment and gives consistent results. Decreasing the scar length to an absolute minimum ensures higher patient and surgeon satisfaction. PMID:19554159

  3. Super's Life-Span, Life-Space Approach and Its Outlook for Refinement.

    Science.gov (United States)

    Herr, Edwin L.

    1997-01-01

    Describes the major elements of a lifespan, life-space approach to career development. Looks at the origins of these elements and briefly describes their evolution. Suggests five categories of possible future refinements in this approach so as to enhance theory building, testing, and synthesizing this model's applicability. (RJM)

  4. Marketing and Augmented Reality

    OpenAIRE

    Zelený, Martin

    2010-01-01

    The main goal of this diploma thesis is to identify the usage of augmented reality in contemporary marketing practice and the expectations of marketers for the future use. This will be achieved by conducting a quantitative and qualitative research among existing creative and advertising companies. Secondary goal is introducing the concept of augmented reality from the theoretical point of view and also description of potential utilization based on known examples. The tools for the practical p...

  5. Interactive augmented reality

    OpenAIRE

    Moret Gabarró, Roger

    2010-01-01

    Projecte final de carrera realitzat en col.laboració amb el Royal Institute of Technology Augmented reality can provide a new experience to users by adding virtual objects where they are relevant in the real world. The new generation of mobile phones offers a platform to develop augmented reality application for industry as well as for the general public. Although some applications are reaching commercial viability, the technology is still limited. The main problem designers have to face w...

  6. Confronting an augmented reality

    Directory of Open Access Journals (Sweden)

    John Hedberg

    2012-08-01

    Full Text Available How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial augmentation of reality links to existing theories of education and learning, focusing on ideas of cognitive dissonance and the confrontation of new realities implied by exposure to new and varied perspectives. We also discuss connections with broader debates brought on by the social and cultural changes wrought by the increased digitalisation of our lives, especially the concept of the extended mind. Rather than offer a prescription for augmentation, our intention is to throw open debate and to provoke deep thinking about what interacting with and creating an augmented reality might mean for both teacher and learner.

  7. Spatial Polygamy and Contextual Exposures (SPACEs): Promoting Activity Space Approaches in Research on Place and Health.

    Science.gov (United States)

    Matthews, Stephen A; Yang, Tse-Chuan

    2013-08-01

    Exposure science has developed rapidly and there is an increasing call for greater precision in the measurement of individual exposures across space and time. Social science interest in an individual's environmental exposure, broadly conceived, has arguably been quite limited conceptually and methodologically. Indeed, we appear to lag behind our exposure science colleagues in our theories, data, and methods. In this paper we discuss a framework based on the concept of spatial polygamy to demonstrate the need to collect new forms of data on human spatial behavior and contextual exposures across time and space. Adopting new data and methods will be essential if we want to better understand social inequality in terms of exposure to health risks and access to health resources. We discuss the opportunities and challenges focusing on the potential seemingly offered by focusing on human mobility, and specifically the utilization of activity space concepts and data. A goal of the paper is to spatialize social and health science concepts and research practice vis-a-vis the complexity of exposure. The paper concludes with some recommendations for future research focusing on theoretical and conceptual development, promoting research on new types of places and human movement, the dynamic nature of contexts, and on training. "When we elect wittingly or unwittingly, to work within a level … we tend to discern or construct - whichever emphasis you prefer - only those kinds of systems whose elements are confined to that level."Otis Dudley Duncan (1961, p. 141)."…despite the new ranges created by improved transportation, local government units have tended to remain medieval in size."Torsten Hägerstrand (1970, p.18)"A detective investigating a crime needs both tools and understanding. If he has no fingerprint powder, he will fail to find fingerprints on most surfaces. If he does not understand where the criminal is likely to have put his fingers, he will not look in the right

  8. 14 CFR 91.1061 - Augmented flight crews.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any...

  9. Surgical combined approach for alveolar ridge augmentation with titanium mesh and rhPDGF-BB: a 3-year clinical case series.

    Science.gov (United States)

    De Angelis, Nicola; De Lorenzi, Marco; Benedicenti, Stefano

    2015-01-01

    The purpose of this case series was to report the clinical outcomes and histologic findings of vertical ridge augmentation using a combination of titanium mesh and recombinant human platelet-derived growth factor BB (rhPDGF-BB). Two patients were included, and anorganic bovine bone particles were used. The bone graft was mixed with rhPDGF-BB and loaded onto the bony defect up to the level of the adjacent alveolar crest. A preadapted titanium mesh was placed over the grafted region; no areas of the grafted region were exposed. Postoperative healing was without complications. During reentry surgery for removal of the titanium mesh, all implants could be placed according to the prosthetic design. This report demonstrates the remarkable efficacy of guided bone regeneration using a combination of titanium mesh and rhPDGF for vertical ridge augmentation, thus expanding the indications for implant therapy and allowing recovery of the three-dimensional esthetic architecture in a severely resorbed alveolar ridge. PMID:25738343

  10. Transferencia de calor incrementada en espacios anulares con elementos helicoidales insertados//Review of augmentation techniques for heat transfer coefficient in annular spaces using helical elements

    Directory of Open Access Journals (Sweden)

    Josué Imbert‐González

    2014-08-01

    Full Text Available La transferencia de calor incrementada por métodos pasivos se emplea en diversosintercambiadores de calor de alta efectividad. El objetivo del trabajo presentado fue la evaluación del estado de las investigaciones en el campo de la transferencia de calor mejorada en espacios anulares, a partir del empleo de elementos turbulizadores helicoidales como técnicas pasivas. La revisión se centró en el empleo de láminas helicoidales y espirales, la obtención de ecuaciones de correlación del coeficiente de transferencia de calor incrementado, el coeficiente de fricción y la evaluación que se realiza de este proceso por parte de diferentes autores. El análisis crítico permitió realizar valoraciones integradas y recomendar sobre los aspectos que podrían ser analizados en el futuro en esta temática.Palabras claves: transferencia de calor incrementada, láminas helicoidales, espirales, espacios anulares, métodos pasivos._______________________________________________________________________________AbstractThe transfer enhancement by passive methods is used in several heat exchanger of high effectiveness. The objective of the presented work was the evaluation of the state of the investigations in heat transfer enhancement in annular spaces, from the employment of elements helical. The revision was centered in the employment of twisted tape and wire coil in spiral, the equations of correlation obtained of the coefficient of transfer of increased heat, the coefficient of friction and the evaluation that was carried out of this process on the part of different authors. From the critical analysis of the published results, the authors recommend on the topics that can be analyzed in the future in this area.Key words: heat transfer enhancement, twisted tape, helical springs, annular spaces, passive methods.

  11. Digital Illumination for Augmented Studios

    Directory of Open Access Journals (Sweden)

    Stefanie Zollmann

    2006-12-01

    Full Text Available Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computer-generated information. Digital light projection allows a controlled spatial, temporal, chrominance and luminance modulation of illumination opening new possibilities for TV studios.

  12. Augmenting computer networks

    Science.gov (United States)

    Bokhari, S. H.; Raza, A. D.

    1984-01-01

    Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps.

  13. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    Science.gov (United States)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  14. Solar chimney: A sustainable approach for ventilation and building space conditioning

    Directory of Open Access Journals (Sweden)

    Lal, S.,

    2013-03-01

    Full Text Available The residential and commercial buildings demand increase with rapidly growing population. It leads to the vertical growth of the buildings and needs proper ventilation and day-lighting. The natural air ventilation system is not significantly works in conventional structure, so fans and air conditioners are mandatory to meet the proper ventilation and space conditioning. Globally building sector consumed largest energy and utmost consumed in heating, ventilation and space conditioning. This load can be reduced by application of solar chimney and integrated approaches in buildings for heating, ventilation and space conditioning. It is a sustainable approach for these applications in buildings. The authors are reviewed the concept, various method of evaluation, modelings and performance of solar chimney variables, applications and integrated approaches.

  15. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj;

    2000-01-01

    drives the optimization iterates of the time-intensive model using the fast model. Several algorithms have been developed for SM optimization, including the original SM algorithm, Aggressive Space Mapping (ASM), Trust Region Aggressive Space Mapping (TRASM) and Hybrid Aggressive Space Mapping (HASM......We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. SM......). An essential subproblem of any SM based optimization algorithm is parameter extraction. The uniqueness of this optimization subproblem has been crucial to the success of SM optimization. Different approaches to enhance the uniqueness are reviewed. We also discuss new developments in Space Mapping...

  16. CCSDS - An approach to the definition of common standards for space data and information systems

    Science.gov (United States)

    Greene, Edward P.; Honvault, Claude

    1990-01-01

    The Consultative Committee for Space Data Systems (CCSDS) was formed in 1982 to develop common space system data structures, protocols, and interfaces which would facilitate mutual international support and interoperability. It soon emerged that CCSDS's activities exerted synergistic forces on systems development efforts. Currently, CCSDS is composed of both member-status and observer-status agencies; while only one member agency is admitted from any one country, multiple additional agencies may participate as observers. CCSDS recommendations to date have identified a common architectural approach for the handling and processing of space data.

  17. An analytical approach to space charge distortions for time projection chambers

    CERN Document Server

    Rossegger, S; Riegler, W

    2010-01-01

    In a time projection chamber (TPC), the possible ion feedback and also the primary ionization of high multiplicity events result in accumulation of ionic charges inside the gas volume (space charge). This charge introduces electrical field distortions and modifies the cluster trajectory along the drift path, affecting the tracking performance of the detector. In order to calculate the track distortions due to an arbitrary space charge distribution in the TPC, novel representations of the Green's function for a TPC geometry were worked out. This analytical approach finally permits accurate predictions of track distortions due to an arbitrary space charge distribution by solving the Langevin equation.

  18. Aircraft Control Augmentation and Health Monitoring Using FADS Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research proposal is aimed at demonstrating the feasibility of an innovative architecture comprising control augmentation and on-line health monitoring...

  19. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  20. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR-applikat......Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  1. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  2. Handling Occlusions for Robust Augmented Reality Systems

    Directory of Open Access Journals (Sweden)

    Maidi Madjid

    2010-01-01

    Full Text Available Abstract In Augmented Reality applications, the human perception is enhanced with computer-generated graphics. These graphics must be exactly registered to real objects in the scene and this requires an effective Augmented Reality system to track the user's viewpoint. In this paper, a robust tracking algorithm based on coded fiducials is presented. Square targets are identified and pose parameters are computed using a hybrid approach based on a direct method combined with the Kalman filter. An important factor for providing a robust Augmented Reality system is the correct handling of targets occlusions by real scene elements. To overcome tracking failure due to occlusions, we extend our method using an optical flow approach to track visible points and maintain virtual graphics overlaying when targets are not identified. Our proposed real-time algorithm is tested with different camera viewpoints under various image conditions and shows to be accurate and robust.

  3. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  4. THE BLOSSOM APPROACH TO THE DIMENSION OF THE BIVARIATE SPLINE SPACE

    Institute of Scientific and Technical Information of China (English)

    Yu-yu Feng; Zhi-bin Chen

    2000-01-01

    The dimension of the bivariate spline space S r n(Δ) may depend on geometric properties of triangulation Δ, in particular if n is not much bigger than r. In the paper, the blossom approach to the dimension count is outlined. It leads to the symbolic algorithm that gives the answer if a triangulation is singular or not. The approach is demonstrated on the case of Morgan-Scott partition and twice differentiable splines.

  5. Collaborative augmented reality environments

    DEFF Research Database (Denmark)

    Büscher, Monika; Christensen, Michael; Grønbæk, Kaj;

    2000-01-01

    This paper describes Manufaktur, a prototype of a concept and infrastructure that goes beyond the classical CVE systems toward a collaborative augmented reality environment, where users? documents and objects appear as live representations in a 3D workspace. Manufaktur supports collaborative...

  6. Augmented Reality og kulturarv

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Kirkedahl Lysholm

    2013-01-01

    Museerne står overfor at skulle omfavne den digitale kultur i håndteringen af den store mængde viden, institutionerne repræsenterer. Augmented Reality-systemer forbinder ved hjælp af moderne teknologi det virtuelle med det virkelige, og kan derfor synes som en oplagt anvendelsesmulighed i...

  7. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  8. Collaboration in Augmented Reality

    NARCIS (Netherlands)

    Lukosch, S.; Billinghurst, M.; Alem, L.; Kiyokawa, K.

    2015-01-01

    Augmented Reality (AR) is a technology that allows users to view and interact in real time with virtual images seamlessly superimposed over the real world. AR systems can be used to create unique collaborative experiences. For example, co-located users can see shared 3D virtual objects that they int

  9. Two approaches in scanner-printer calibration: colorimetric space-based vs. “closed-loop&rdquo

    OpenAIRE

    Ostromoukhov, V.; Hersch, R. D.; Peraire, C. (C.); Emmel, P.; Amidror, I.

    1994-01-01

    Studies two different table-based approaches for the calibration of electronic imaging systems. The first approach, which is the classical one, uses the device-independent CIE-XYZ colorimetric space as an intermediate standard space. Input and output devices such as scanners, displays and printers are calibrated separately with respect to the objective CIE-XYZ space. The calibration process requires establishing a 3D mapping between a scanner's device-dependent RGB space and a device-independ...

  10. CLASSING APPROACH TO ANALYZING THE INVESTMENT SPACE OF SILK INDUSTRY OF UZBEKISTAN

    OpenAIRE

    Madjidov, Shakhrukh; Ibragimova, Sabokhat

    2015-01-01

    In the article the results of verification were brought which were dedicated for cluster approach and analyzing the investment space of silk industry of Uzbekistan. In particular the purpose of investment’s direction to the main capital of silk industry in corresponding class while proceeding from closeness to manual forces and raw material resources.

  11. Electronic transport through nanowires: a real-space finite-difference approach

    NARCIS (Netherlands)

    Khomyakov, Petr

    2006-01-01

    Nanoelectronics is a fast developing ¯eld. Therefore understanding of the electronic transport at the nanoscale is currently of great interest. This thesis "Electronic transport through nanowires: a real-space ¯nite-difference approach" aims at a general theoretical treatment of coherent electronic

  12. Learning in the Liminal Space: A Semiotic Approach to Threshold Concepts

    Science.gov (United States)

    Land, Ray; Rattray, Julie; Vivian, Peter

    2014-01-01

    The threshold concepts approach to student learning and curriculum design now informs an empirical research base comprising over 170 disciplinary and professional contexts. It draws extensively on the notion of troublesomeness in a "liminal" space of learning. The latter is a transformative state in the process of learning in which there…

  13. Truncated Hilbert space approach to the 2d $\\phi^{4}$ theory

    CERN Document Server

    Bajnok, Z

    2015-01-01

    We apply the massive analogue of the truncated conformal space approach to study the two dimensional $\\phi^{4}$ theory in finite volume. We focus on the broken phase and determine the finite size spectrum of the model numerically. We compare these results against semi-classical analysis and the Bethe-Yang spectrum.

  14. A NOVEL APPROACH OF LIMITED-RANDOMNESS FOUNTAIN CODES IN DEEP SPACE COMMUNICATION

    Institute of Scientific and Technical Information of China (English)

    Gu Shushi; Zhang Qinyu; Jiao Jian

    2011-01-01

    Digital fountain is applied into deep space communication for its rateless and non-feedback forward error correction.However,the long code length and encoding overhead are confined factors to guarantee a considerable recovery probability as power and buffer-limited equipment in deep space environment.At the same time,the typical fountain decoding is sub-optimum decoding algorithm.We propose a new approach,Dependent Sequences Compensation Algorithm (DSCA),to improve the encoding efficiency by restricting the randomness in fountain encoding.While decoding algorithm is also optimized by redundant information in stopping set.The results show that the optimized method can obtain a 10-4 decoding failure rate with overhead under 0.20 for code length 500,which indicates the usefulness of the proposed approach in deep space communication.

  15. Pure Laparoscopic Augmentation Ileocystoplasty

    Directory of Open Access Journals (Sweden)

    Rafael B. Rebouças

    2014-12-01

    Full Text Available Introduction Guillain-Barre syndrome is an acute neuropathy that rarely compromises bladder function. Conservative management including clean intermittent catheterization and pharmacotherapy is the primary approach for hypocompliant contracted bladder. Surgical treatment may be used in refractory cases to improve bladder compliance and capacity in order to protect the upper urinary tract. We describe a case of pure laparoscopic augmentation ileocystoplasty in a patient affected by Guillain-Barre syndrome. Presentation A 15-year-old female, complaining of voiding dysfunction, recurrent urinary tract infection and worsening renal function for three months. A previous history of Guillain-Barre syndrome on childhood was related. A voiding cystourethrography showed a pine-cone bladder with moderate post-void residual urine. The urodynamic demonstrated a hypocompliant bladder and small bladder capacity (190mL with high detrusor pressure (54 cmH2O. Nonsurgical treatments were attempted, however unsuccessfully. The patient was placed in the exaggerated Trendelenburg position. A four-port transperitoneal technique was used. A segment of ileum approximately 15-20cm was selected and divided with its pedicle. The ileal anastomosis and creation of ileal U-shaped plate were performed laparoscopically, without staplers. Bladder mobilization and longidutinal cystotomy were performed. Enterovesical anastomosis was done with continuous running suture. A suprapubic cystostomy was placed through a 5mm trocar. Results The total operative time was 335 min. The blood loss was minimal. The patient developed ileus in the early days, diet acceptance after the fourth day and was discharged on the seventh postoperative day. The urethral catheter was removed after 2 weeks. At 6-month follow-up, a cystogram showed a significant improvement in bladder capacity. The patient adhered well to clean intermittent self-catheterization and there was no report for febrile infections

  16. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex® model of the U-tube. Flownex® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state variables

  17. Strategies and Innovative Approaches for the Future of Space Weather Forecasting

    Science.gov (United States)

    Hoeksema, J. T.

    2012-12-01

    The real and potential impacts of space weather have been well documented, yet neither the required research and operations programs, nor the data, modeling and analysis infrastructure necessary to develop and sustain a reliable space weather forecasting capability for a society are in place. The recently published decadal survey "Solar and Space Physics: A Science for a Technological Society" presents a vision for the coming decade and calls for a renewed national commitment to a comprehensive program in space weather and climatology. New resources are imperative. Particularly in the current fiscal environment, implementing a responsible strategy to address these needs will require broad participation across agencies and innovative approaches to make the most of existing resources, capitalize on current knowledge, span gaps in capabilities and observations, and focus resources on overcoming immediate roadblocks.

  18. Arithmetic gravity and Yang-Mills theory: An approach to adelic physics via algebraic spaces

    CERN Document Server

    Schmidt, Rene

    2008-01-01

    This work is a dissertation thesis written at the WWU Muenster (Germany), supervised by Prof. Dr. Raimar Wulkenhaar. We present an approach to adelic physics based on the language of algebraic spaces. Relative algebraic spaces X over a base S are considered as fundamental objects which describe space-time. This yields a formulation of general relativity which is covariant with respect to changes of the chosen domain of numbers S. With regard to adelic physics the choice of S as an excellent Dedekind scheme is of interest (because this way also the finite prime spots, i.e. the p-adic degrees of freedom are taken into account). In this arithmetic case, it turns out that X is a Neron model. This enables us to make concrete statements concerning the structure of the space-time described by X. Furthermore, some solutions of the arithmetic Einstein equations are presented. In a next step, Yang-Mills gauge fields are incorporated.

  19. Graph-like continua, augmenting arcs, and Menger's theorem

    DEFF Research Database (Denmark)

    Thomassen, Carsten; Vella, Antoine

    2008-01-01

    We show that an adaptation of the augmenting path method for graphs proves Menger's Theorem for wide classes of topological spaces. For example, it holds for locally compact, locally connected, metric spaces, as already known. The method lends itself particularly well to another class of spaces, ...

  20. Service Areas of Local Urban Green Spaces: AN Explorative Approach in Arroios, Lisbon

    Science.gov (United States)

    Figueiredo, R.; Gonçalves, A. B.; Ramos, I. L.

    2016-09-01

    The identification of service areas of urban green spaces and areas with lack of these is increasingly necessary within city planning and management, as it translates into important indicators for the assessment of quality of life. In this setting, it is important to evaluate the attractiveness and accessibility dynamics through a set of attributes, taking into account the local reality of the territory under study. This work presents an operational methodology associated with these dynamics in local urban green spaces, assisting in the planning and management of this type of facilities. The methodology is supported firstly on questionnaire surveys and then on network analysis, processing spatial data in a Geographic Information Systems (GIS) environment. In the case study, two local green spaces in Lisbon were selected, on a local perspective explorative approach. Through field data, it was possible to identify service areas for both spaces, and compare the results with references in the literature. It was also possible to recognise areas with lack of these spaces. The difficulty to evaluate the dynamics of real individuals in their choices of urban green spaces and the respective route is a major challenge to the application of the methodology. In this sense it becomes imperative to develop different instruments and adapt them to other types of urban green spaces.

  1. Asteroid Redirect Mission concept: A bold approach for utilizing space resources

    Science.gov (United States)

    Mazanek, Daniel D.; Merrill, Raymond G.; Brophy, John R.; Mueller, Robert P.

    2015-12-01

    The utilization of natural resources from asteroids is an idea that is older than the Space Age. The technologies are now available to transform this endeavor from an idea into reality. The Asteroid Redirect Mission (ARM) is a mission concept which includes the goal of robotically returning a small Near-Earth Asteroid (NEA) or a multi-ton boulder from a large NEA to cislunar space in the mid-2020s using an advanced Solar Electric Propulsion (SEP) vehicle and currently available technologies. The paradigm shift enabled by the ARM concept would allow in-situ resource utilization (ISRU) to be used at the human mission departure location (i.e., cislunar space) versus exclusively at the deep-space mission destination. This approach drastically reduces the barriers associated with utilizing ISRU for human deep-space missions. The successful testing of ISRU techniques and associated equipment could enable large-scale commercial ISRU operations to become a reality and enable a future space-based economy utilizing processed asteroidal materials. This paper provides an overview of the ARM concept and discusses the mission objectives, key technologies, and capabilities associated with the mission, as well as how the ARM and associated operations would benefit humanity's quest for the exploration and settlement of space.

  2. Intelligent Augmented Reality Training for Motherboard Assembly

    Science.gov (United States)

    Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark

    2015-01-01

    We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…

  3. Two-component density functional theory within the projector augmented-wave approach: Accurate and self-consistent computations of positron lifetimes and momentum distributions

    Science.gov (United States)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc

    2015-09-01

    Many techniques have been developed in the past in order to compute positron lifetimes in materials from first principles. However, there is still a lack of a fast and accurate self-consistent scheme that could handle accurately the forces acting on the ions induced by the presence of the positron. We will show in this paper that we have reached this goal by developing the two-component density functional theory within the projector augmented-wave (PAW) method in the open-source code abinit. This tool offers the accuracy of the all-electron methods with the computational efficiency of the plane-wave ones. We can thus deal with supercells that contain few hundreds to thousands of atoms to study point defects as well as more extended defects clusters. Moreover, using the PAW basis set allows us to use techniques able to, for instance, treat strongly correlated systems or spin-orbit coupling, which are necessary to study heavy elements, such as the actinides or their compounds.

  4. MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Chen Zhongying; Wu Bin; Xu Yuesheng

    2005-01-01

    We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstrate the efficiency and accuracy of the methods. In these examples we use the proposed augmentation method to solve large scale linear systems resulting from the recently developed wavelet Galerkin methods and fast collocation methods applied to integral equations of the secondkind. Our numerical results confirm that this augmentation method is particularly efficient for solving large scale linear systems induced from wavelet compression schemes.

  5. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    Science.gov (United States)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    environment and methodology, with associated laboratories that uses lean development methods and creativity-enhancing processes to invent and develop new solutions for space exploration. This paper will discuss the Swamp Works approach to developing space mining and resource extraction systems and the vision of space development it serves. The ultimate goal of the Swamp Works is to expand human civilization into the solar system via the use of local resources utilization. By mining and using the local resources in situ, it is conceivable that one day the logistics supply train from Earth can be eliminated and Earth independence of a space-based community will be enabled.

  6. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches. PMID:25969148

  7. AR DOC: Augmented reality documentaries

    DEFF Research Database (Denmark)

    Vistisen, Peter

    2014-01-01

    Augmented Reality Documentaries (AR DOC) er et ’lille’ Shareplay projekt (ansøgte midler augmented reality cross media løsninger, til at skabe engagerende publikumsformidling...... indenfor oplevelsesindustrien. Projektet har genereret ny viden omkring, hvordan fysisk og digital formidling kan understøttes via Augmented Reality som formidlingsformat....

  8. Yeast Augmented Network Analysis (YANA: a new systems approach to identify therapeutic targets for human genetic diseases [v1; ref status: indexed, http://f1000r.es/3gk

    Directory of Open Access Journals (Sweden)

    David J. Wiley

    2014-06-01

    Full Text Available Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA approach and test it with the X-linked spinal muscular atrophy (SMA disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases.

  9. A New Approach to Provide Reliable Data Systems Without Using Space-Qualified Electronic Components

    Science.gov (United States)

    Häbel, W.

    This paper describes the present situation and the expected trends with regard to the availability of electronic components, their quality levels, technology trends and sensitivity to the space environment. Many recognized vendors have already discontinued their MIL production line and state of the art components will in many cases not be offered in this quality level because of the shrinking market. It becomes therefore obvious that new methods need to be considered "How to build reliable Data Systems for space applications without High-Rel parts". One of the most promising approaches is the identification, masking and suppression of faults by developing Fault Tolerant Computer systems which is described in this paper.

  10. The transareolar incision for breast augmentation revisited.

    Science.gov (United States)

    Kompatscher, Peter; Schuler, Christine; Beer, Gertrude M

    2004-01-01

    Of the various possible incisions for breast augmentation, the transareolar access has gained only limited popularity. The potential side effects of this incision are said to be altered nipple sensation, impaired lactation, an increased rate of infections with capsular fibrosis, well visible scar formation with hypopigmentation, and the need for an additional access in case a breast ptosis correction should prove necessary at a later date. The purpose of this retrospective study was to judge advantages and limitations of transareolar breast augmentation, and to verify whether the reluctant attitude toward this surgical approach is justified. A sample of 18 patients with a transareolar, retropectoral breast augmentation was selected for a retrospective evaluation. The suitability of the technique in general was examined together with early postoperative complications, sensory changes, and late complications on the basis of an evaluation system for cosmetic surgical results. The study showed that only women with an areolar diameter of 3.5 cm or more without pronounced breast ptosis were suitable for the transareolar access. No early infections were noted. The rate of capsular fibrosis was 11%. Two years after breast augmentation, 16 women (89%) judged their breast sensation to be normal, but objective assessment showed that mean pressure and vibration sensation were moderately compromised in all parts of the breast. The scars were of good quality, with very little hypopigmentation. With appropriate patient selection, respecting the advantages and limitations, the transareolar incision has its definite place among the different incisions for breast augmentation. PMID:15164231

  11. Simple Implant Augmentation Rhinoplasty.

    Science.gov (United States)

    Nguyen, Anh H; Bartlett, Erica L; Kania, Katarzyna; Bae, Sang Mo

    2015-11-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  12. A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration

    CERN Document Server

    Smelyanskiy, Vadim N; Knysh, Sergey I; Williams, Colin P; Johnson, Mark W; Thom, Murray C; Macready, William G; Pudenz, Kristen L

    2012-01-01

    In this article, we show how to map a sampling of the hardest artificial intelligence problems in space exploration onto equivalent Ising models that then can be attacked using quantum annealing implemented in D-Wave machine. We overview the existing results as well as propose new Ising model implementations for quantum annealing. We review supervised and unsupervised learning algorithms for classification and clustering with applications to feature identification and anomaly detection. We introduce algorithms for data fusion and image matching for remote sensing applications. We overview planning problems for space exploration mission applications and algorithms for diagnostics and recovery with applications to deep space missions. We describe combinatorial optimization algorithms for task assignment in the context of autonomous unmanned exploration. Finally, we discuss the ways to circumvent the limitation of the Ising mapping using a "blackbox" approach based on ideas from probabilistic computing. In this ...

  13. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  14. An analytical approach to space charge distortion for time projection chambers

    International Nuclear Information System (INIS)

    Full text: In a Time Projection Chamber (TPC), the possible ion feedback and also the primary ionization of high multiplicity events result in accumulation of static charge inside the gas volume (space charge). This charge introduces electrical field distortions and modifies the cluster trajectory along the drift path, affecting the tracking performance of the detector. In order to calculate the track distortions due to an arbitrary space charge distribution in the TPC, the Green's function for a TPC geometry was worked out. Three different representations were derived which, if combined, lead to fast converging expressions for every electric field component within a coaxial cavity. This analytic approach finally permits accurate predictions of track distortions due to an arbitrary space charge distribution by solving the Langevin equation. Furthermore, the inclusion of the magnetic field map allows to study the necessary corrections of the Lorentz angle due to the non-parallelism of the E and B fields within the TPC drift volume. (author)

  15. An analytic halo approach to the bispectrum of galaxies in redshift space

    CERN Document Server

    Yamamoto, Kazuhiro; Hikage, Chiaki

    2016-01-01

    We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the non-linear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the LOWZ sample of the SDSS-III BOSS survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.

  16. A NEW FUZZY LOGIC BASED SPACE VECTOR MODULATION APPROACH ON DIRECT TORQUE CONTROLLED INDUCTION MOTORS

    Directory of Open Access Journals (Sweden)

    Fatih Korkmaz

    2013-11-01

    Full Text Available The induction motors are indispensable motor types for industrial applications due to its wellknown advantages. Therefore, many kind of control scheme are proposed for induction motors over the past years and direct torque control has gained great importance inside of them due to fast dynamic torque response behavior and simple control structure. This paper suggests a new approach on the direct torque controlled induction motors, Fuzzy logic based space vector modulation, to overcome disadvantages of conventional direct torque control like high torque ripple. In the proposed approach, optimum switching states are calculated by fuzzy logic controller and applied by space vector pulse width modulator to voltage source inverter. In order to test and compare the proposed DTC scheme with conventional DTC scheme simulations, in Matlab/Simulink, have been carried out in different speed and load conditions. The simulation results showed that a significant improvement in the dynamic torque and speed responses when compared to the conventional DTC scheme.

  17. A Novel Approach for Video-Based Absolute Navigation in Space Exploration Missions

    Science.gov (United States)

    Tadewos, Tadewos Getahun; Prinetto, Paolo; Rolfo, Daniele; Trotta, Pascal; Lanza, Piergiorgio; Martelli, Andrea; Tramutola, Antonio

    2014-08-01

    In the last years, Video-based Navigation is becoming an hot topic since camera sensors will be more and more included in future space exploration missions, to allow a visual comprehension of the surrounding unknown environment. This paper proposes a novel approach for Video-based Absolute Navigation focusing on the Entry, Descent and Landing phase of spacecrafts on planets. Moreover the paper shows how a Video-based Absolute Navigation processing chain can exploit Field Programmable Gate Array (FPGA) devices to achieve high throughput, in terms of frames-per-seconds. Experimental results highlight the robustness and limited memory requirements of the proposed approach.

  18. Formulation space search approach for the teacher/class timetabling problem

    Directory of Open Access Journals (Sweden)

    Kochetov Yuri

    2008-01-01

    Full Text Available We consider the well known NP-hard teacher/class timetabling problem. Variable neighborhood search and tabu search heuristics are developed based on idea of the Formulation Space Search approach. Two types of solution representation are used in the heuristics. For each representation we consider two families of neighborhoods. The first family uses swapping of time periods for teacher (class timetable. The second family bases on the idea of large Kernighan-Lin neighborhoods. Computation results for difficult random test instances show high efficiency of the proposed approach. .

  19. An economic analysis of a commercial approach to the design and fabrication of a space power system

    Science.gov (United States)

    Putney, Z.; Been, J.

    1979-01-01

    This paper discusses a commercial approach to the design and fabrication of an economical space power system. With the advent of the space shuttle, steps can be taken to back away from the presently used space qualified approach in order to reduce cost of space hardware by incorporating, where possible, commercial design, fabrication, and quality assurance methods. Cost reductions are projected through the conceptual design of a 2 kW space power system built with the capability for having serviceability. The approach to system costing that has been used takes into account both the constraints of operation in space and commercial production engineering approaches. The cost of this power system reflects a variety of cost/benefit tradeoffs that would reduce system cost as a function of system reliability requirements, complexity, and the impact of rigid specifications. A breakdown of the system design, documentation, fabrication and reliability and quality assurance cost estimates are detailed.

  20. An Indoor Navigation Approach Considering Obstacles and Space Subdivision of 2d Plan

    Science.gov (United States)

    Xu, Man; Wei, Shuangfeng; Zlatanova, Sisi

    2016-06-01

    The demand for indoor navigation is increasingly urgent in many applications such as safe management of underground spaces or location services in complex indoor environment, e.g. shopping centres, airports, museums, underground parking lot and hospitals. Indoor navigation is still a challenging research field, as currently applied indoor navigation algorithms commonly ignore important environmental and human factors and therefore do not provide precise navigation. Flexible and detailed networks representing the connectivity of spaces and considering indoor objects such as furniture are very important to a precise navigation. In this paper we concentrate on indoor navigation considering obstacles represented as polygons. We introduce a specific space subdivision based on a simplified floor plan to build the indoor navigation network. The experiments demonstrate that we are able to navigate around the obstacles using the proposed network. Considering to well-known path-finding approaches based on Medial Axis Transform (MAT) or Visibility Graph (VG), the approach in this paper provides a quick subdivision of space and routes, which are compatible with the results of VG.

  1. Practical approaches to handle the singularities of a wrist-partitioned space manipulator

    Science.gov (United States)

    Xu, Wenfu; Liang, Bin; Xu, Yangsheng

    2011-01-01

    Space robotic systems are expected to play an increasingly important role in the future. However, the control methods based on the inverse kinematics are affected by singularities. In this paper, practical approaches are proposed to solve the problems of a wrist-partitioned space manipulator. For spacecraft-referenced end-point motion control, we presented the singularity separation plus damped reciprocal (SSPDR) method, which separates the singularity parameters from the inverse of the Jacobian, and replaces their reciprocals using the damped reciprocals. For another control strategy, i.e. inertially referenced end-point motion control, including spacecraft attitude-controlled mode and free-floating mode, the linear momentum equation is used to eliminate three independent variables. With modifying some expressions, the SSPDR method is utilized to solve the singularities of spacecraft attitude-controlled space robot. When the space robot is free-floating, the singularities, i.e. the so-called dynamic singularities, cannot be predicted according to its kinematic structure. Combining with the measured angular velocity of the base, the dynamic singularity handling problem is transformed into real-time kinematic singularity avoiding problem, which can be solved by the SSPDR method. Since the SVD decomposition, the estimation of the minimum singularity value, and the calculation of the generalized Jacobian matrix are not required, the algorithm has lower computation load. Another advantage is that, only the accuracy of part velocity components is reduced by adding the damped coefficients. Simulation results verify the proposed approaches.

  2. Real space Eliashberg approach to charge order of electrons coupled to dynamic antiferromagnetic fluctuations

    OpenAIRE

    Bauer, Johannes; Sachdev, Subir(Department of Physics, Harvard University, Cambridge, MA, 02138, USA)

    2015-01-01

    We study charge ordered solutions for fermions on a square lattice interacting with dynamic antiferromagnetic fluctuations. Our approach is based on real space Eliashberg equations which are solved self-consistently. We first show that the antiferromagnetic fluctuations can induce arc features in the spectral functions, as spectral weight is suppressed at the hot spots; however, no real pseudogap is generated. At low temperature spontaneous charge order with a $d$-form factor can be stabilize...

  3. Study of nuclear pairing with Configuration-Space Monte-Carlo approach

    OpenAIRE

    Lingle, Mark; Volya, Alexander

    2015-01-01

    Pairing correlations in nuclei play a decisive role in determining nuclear drip-lines, binding energies, and many collective properties. In this work a new Configuration-Space Monte-Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte-Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are d...

  4. A nucleus-dependent valence-space approach to nuclear structure

    CERN Document Server

    Stroberg, S R; Hergert, H; Holt, J D; Bogner, S K; Roth, R; Schwenk, A

    2016-01-01

    We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture 3N forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space ab initio methods, generally to the 1\\% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper $p$ and $sd$ shells. Finally, we address the $1^+$/$3^+$ ground-state inversion problem in $^{22}\\text{Na}$ and $^{46}\\text{V}$. This approach extends the reach of ab initio nuclear structure calculations to essentially all light- and medium-mass nuclei.

  5. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  6. Averaged Extended Tree Augmented Naive Classifier

    Directory of Open Access Journals (Sweden)

    Aaron Meehan

    2015-07-01

    Full Text Available This work presents a new general purpose classifier named Averaged Extended Tree Augmented Naive Bayes (AETAN, which is based on combining the advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN and Averaged One-Dependence Estimator (AODE classifiers. We describe the main properties of the approach and algorithms for learning it, along with an analysis of its computational time complexity. Empirical results with numerous data sets indicate that the new approach is superior to ETAN and AODE in terms of both zero-one classification accuracy and log loss. It also compares favourably against weighted AODE and hidden Naive Bayes. The learning phase of the new approach is slower than that of its competitors, while the time complexity for the testing phase is similar. Such characteristics suggest that the new classifier is ideal in scenarios where online learning is not required.

  7. Interactive learning environments in augmented reality technology

    Directory of Open Access Journals (Sweden)

    Rafał Wojciechowski

    2010-01-01

    Full Text Available In this paper, the problem of creation of learning environments based on augmented reality (AR is considered. The concept of AR is presented as a tool for safe and cheap experimental learning. In AR learning environments students may acquire knowledge by personally carrying out experiments on virtual objects by manipulating real objects located in real environments. In the paper, a new approach to creation of interactive educational scenarios, called Augmented Reality Interactive Scenario Modeling (ARISM, is mentioned. In this approach, the process of building learning environments is divided into three stages, each of them performed by users with different technical and domain knowledge. The ARISM approach enables teachers who are not computer science experts to create AR learning environments adapted to the needs of their students.

  8. Telescopic multi-resolution augmented reality

    Science.gov (United States)

    Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold

    2014-05-01

    To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.

  9. Wireless Augmented Reality Prototype (WARP)

    Science.gov (United States)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  10. Spatial augmented reality merging real and virtual worlds

    CERN Document Server

    Bimber, Oliver

    2005-01-01

    Like virtual reality, augmented reality is becoming an emerging platform in new application areas for museums, edutainment, home entertainment, research, industry, and the art communities using novel approaches which have taken augmented reality beyond traditional eye-worn or hand-held displays. In this book, the authors discuss spatial augmented reality approaches that exploit optical elements, video projectors, holograms, radio frequency tags, and tracking technology, as well as interactive rendering algorithms and calibration techniques in order to embed synthetic supplements into the real

  11. Augmenting Clozapine With Sertindole

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Emborg, Charlotte; Gydesen, Susanne;

    2012-01-01

    randomized 1:1 to either sertindole 16 mg or placebo, and assessment was done at baseline and after 6 and 12 weeks. Assessment included the Positive and Negative Syndrome Scale, Clinical Global Impression, Udvalg for Kliniske Undersøgelser, World Health Organization Quality of Life Brief, Drug Attitude...... Inventory, fasting glucose, lipids, and electrocardiogram. Clozapine augmentation with sertindole was not superior to placebo regarding total score or subscale score of the Positive and Negative Syndrome Scale, Clinical Global Impression, World Health Organization Quality of Life Brief, or Drug Attitude...

  12. Neurally augmented sexual function.

    Science.gov (United States)

    Meloy, S

    2007-01-01

    Neurally Augmented Sexual Function (NASF) is a technique utilizing epidural electrodes to restore and improve sexual function. Orgasmic dysfunction is common in adult women, affecting roughly one quarter of populations studied. Many male patients suffering from erectile dysfunction are not candidates for phosphdiesterase therapy due to concomitant nitrate therapy. Positioning the electrodes at roughly the level of the cauda equina allows for stimulation of somatic efferents and afferents as well as modifying sympathetic and parasympathetic activity. Our series of women treated by NASF is described. Our experience shows that the evaluation of potential candidates for both correctable causes and psychological screening are important considerations. PMID:17691397

  13. Learning in Earth and space science: a review of conceptual change instructional approaches

    Science.gov (United States)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-03-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the general characteristics of the research, the conceptual change instructional approaches that were used, and the methods employed to evaluate the effectiveness of these approaches. The findings of this review support four assertions about the existing research: (1) astronomical phenomena have received greater attention than geological phenomena; (2) most studies have viewed conceptual change from a cognitive perspective only; (3) data about conceptual change were generated pre- and post-intervention only; and (4) the interventions reviewed presented limited opportunities to involve students in the construction and manipulation of multiple representations of the phenomenon being investigated. Based upon these assertions, the authors recommend that new research in the Earth and space science disciplines challenges traditional notions of conceptual change by exploring the role of affective variables on learning, focuses on the learning of geological phenomena through the construction of multiple representations, and employs qualitative data collection throughout the implementation of an instructional approach.

  14. Astronomy and Space Science Olympiads in Israel - A Different Approach to Conducting the Contests

    Science.gov (United States)

    Meidav, M.

    2001-09-01

    On 22 March 2001, the final stage of the 7th annual Israeli Astronomy and Space Science Olympiads took place at Tel Aviv University. More than 400(!) young contestants, aged 15-17 years of age, participated in the first stage, a written test with questions covering various areas in astronomy and space sciences. Only 89 contestants progressed to the second stage, which included both multiple-choice and open-ended questions. The top five contestants went on to the final stage. The final and most exciting stage of all the Olympiads (attendance is open to the public) includes three rounds. In the first and third rounds, contestants are confronted with typical open and closed questions, similar to those used in most such competitions. In the second round, however, several different approaches have been implemented by us over the years. One of these approaches not only enabled us to examine the contestants' knowledge, but also was interesting to the audience. This approach required us to compose a short article about astronomical phenomena, with about 15 errors deliberately planted in each text. The contestants were requested to detect as many errors as they could. In this demonstration, we will illustrate this approach by means of one of these articles, about pulsars and a question from the 3rd round.

  15. A GOCE-only global gravity field model by the space-wise approach

    DEFF Research Database (Denmark)

    Migliaccio, Federica; Reguzzoni, Mirko; Gatti, Andrea;

    2011-01-01

    The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...... is to exploit the spatial correlation of the gravity field to estimate grids of potential and its second order radial derivatives at mean satellite altitude; from these grids, spherical harmonic coefficients are then derived by numerical integration. The filtering strategy includes also a Wiener filter along...

  16. SENSORS FOR LOCATION-BASED AUGMENTED REALITY THE EXAMPLE OF GALILEO AND EGNOS

    OpenAIRE

    Pagani, Alain; Henriques, José; Stricker, Didier

    2016-01-01

    Augmented Reality has long been approached from the point of view of Computer Vision and Image Analysis only. However, much more sensors can be used, in particular for location-based Augmented Reality scenarios. This paper reviews the various sensors that can be used for location-based Augmented Reality. It then presents and discusses several examples of the usage of Galileo and EGNOS in conjonction with Augmented Reality.

  17. Sensors for Location-Based Augmented Reality the Example of Galileo and Egnos

    Science.gov (United States)

    Pagani, Alain; Henriques, José; Stricker, Didier

    2016-06-01

    Augmented Reality has long been approached from the point of view of Computer Vision and Image Analysis only. However, much more sensors can be used, in particular for location-based Augmented Reality scenarios. This paper reviews the various sensors that can be used for location-based Augmented Reality. It then presents and discusses several examples of the usage of Galileo and EGNOS in conjonction with Augmented Reality.

  18. Assessing the standard Molybdenum projector augmented wave VASP potentials

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Multi-Scale Science

    2014-07-01

    Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing high confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.

  19. Dynamics of multibody systems in space environment; Lagrangian vs. Eulerian approach

    Science.gov (United States)

    Santini, P.; Gasbarri, P.

    2004-01-01

    The paper describes the motion of a multibody in space environment: by space environment we mean space-varying gravity, gradient forces, control forces, if any. In the Eulerian approach, the motion of each individual member is described through kinematic parameters: (a) position of its CM with respect to the inertial frame; (b) rotation of the members with respect to the inertial frame; amplitude of the elastic modes (free-free). The said parameters are of different order of magnitudes, and therefore an adequate separation of them is highly desirable. Therefore, individual positions are replaced by overall position of the system (of the order of Earth's radius), and by the motion of each bar relative to it (of the order of members dimension), and for modes amplitudes modal equations are used.It should be noted, however, that the above-described motion parameters are redundant, and we must introduce: (a) reactions between members, (b) equations of compatibility of the same number of reactions.In summary, (i) the set of unknowns is: motion parameters, reactions, control forces; (ii) the equations are equilibrium, compatibility, control. Control is introduced by prescribing the motion of some members, produced by control moments of forces. By simple matrix algebra, it is reduced to a system with motion parameters (overall + local) only. In the Lagrangian approach, motion parameters are selected which are already consistent with compatibility conditions. In this case, as customarily, the expression of kinetic, potential, elastic energy is written, and the application of Lagrangian techniques provides directly the solving system. No reactions and compatibility equations appear here, however; for control purpose, prescribed motion law must again be introduced. Comparison of the two approaches shows perfect agreement (as one should have expected), since they are both exact models referring to the same physical system. In general, however, the Eulerian approach lends

  20. Thermoelectric Generators on Satellites—An Approach for Waste Heat Recovery in Space

    Directory of Open Access Journals (Sweden)

    Marian von Lukowicz

    2016-07-01

    Full Text Available Environmental radiation in space (from the Sun, etc. and operational thermal loads result in heat flows inside the structure of satellites. Today these heat flows remain unused and are collected, transported to a radiator and emitted to space to prevent the satellite from overheating, but they hold a huge potential to generate electrical power independently of solar panels. Thermoelectric generators are a promising approach for such applications because of their solid state characteristics. As they do not have any moving parts, they do not cause any vibrations in the satellite. They are said to be maintenance-free and highly reliable. Due to the expected small heat flows modern devices based on BiTe have to be considered, but these devices have no flight heritage. Furthermore, energy harvesting on space systems is a new approach for increasing the efficiency and reliability. In this paper, different systems studies and applications are discussed based some experimental characterisation of the electrical behaviour and their dependence on thermal cycles and vibration.

  1. AUGMENTATION-RELATED BRAIN PLASTICITY

    OpenAIRE

    Giovanni eDi Pino; Angelo eMaravita; Loredana eZollo; Eugenio eGuglielmelli; Vincenzo eDi Lazzaro

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyzes the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain.Hitherto, few studies investigated the neural correlates of augmentati...

  2. Augmentation-related brain plasticity

    OpenAIRE

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentat...

  3. Augmented Sustainability Measures for Scotland

    OpenAIRE

    John C. V. Pezzey; Nick Hanley; Karen Turner; Dugald Tinch

    2003-01-01

    We estimate and compare two empirical measures of the weak sustainability of an economy for the first time: the change in augmented green net national product (GNNP), and the interest on augmented genuine savings (GS). Yearly calculations are given for each measure for Scotland during 1992-99. Augmentation means including, using projections to 2020, production possibilities enabled by exogenous technical progress or changing terms of trade. In passing, we clarify the treatment of environmenta...

  4. Space-Hotel Early Bird - An Educational and Public Outreach Approach

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    education and public outreach can be combined and how a cooperation among an association, the industry and academia can work successfully. Representatives of the DGLR and the academia developed a method to spread space related knowledge in a short time to a motivated working group. The project was a great success in the sense to involve other disciplines in space related topics by interdisciplinary work and in the sense of public and educational outreach. With more than 2.3 million contacts the DGLR e.V. promoted space and the vision of living (in) space to the public. The task of the paper is mainly to describe the approach and the experience made related to the organization, lectures, financing and outreach efforts in respect to similar future international outreach activities, which are planned for the 54th International Astronautical Congress in Bremen/Germany. www.spacehotel.org

  5. Combined treatment with areola approach for capsular contracture after breast augmentation with implants%经乳晕切口综合处理假体隆乳术后包膜挛缩

    Institute of Scientific and Technical Information of China (English)

    罗盛康; 陈光平; 汪海滨; 孙中生; 徐翔; 伍艳群

    2012-01-01

    目的 探讨经乳晕切口采用多种方法综合处理假体隆乳术后包膜挛缩的效果.方法 2005年2月至2011年6月,对94例168侧假体隆乳术后包膜挛缩进行治疗并置入假体,其挛缩程度均为Baker分类法Ⅲ、Ⅳ级.94例均采用乳晕切口,根据原假体置入腔隙及乳腺、胸大肌厚度等条件,采取重新剥离腔隙、去除或不去除包膜组织,甚至二期手术,于胸大肌或乳腺后间隙置入假体等方法综合处理,术中严格止血.结果 术后94例中46例获得门诊随访,其余病例均获得电话随访,时间6 ~37个月,平均9.9个月,术后包膜挛缩复发Ⅲ级者2例、Ⅳ级者1例,其余病例乳房外观均丰满、挺拔,柔软度较好,电话随访病例均对乳房塑形效果满意.本组病例均无血肿、感染、乳房假体破裂、乳房下垂及上移等并发症发生.结论 应用乳晕切口对假体隆乳术后包膜挛缩进行综合而有效地处理,术后包膜挛缩复发率较低,可以获得较满意的乳房塑形效果.%Objective To investigate the combined treatment with areola approach for capsular contracture after breast augmentation with implants.Methods From Feb.2005 to Jun.2011,94 cases ( 168 sides) with Baker Ⅲ and Ⅳ capsular contracture after breast augmentation with implants were treated with areola approach.The implants cavity was recreated,with or without removal of capsule.The implants were reimplanted behind pectoralis major or breast at the second stage in some patients.Results 46 cases were followed up by clinic visit and the others were followed up by telephone for 6-37 months,with an average of 9.9 months.The capsular contracture was relapsed in 2 cases as Baker Ⅲ and 1 case as Baker Ⅳ.All the other breasts got a good appearance with good soft texture and feeling.No hematoma,infection,implants rupture,breast ptosis or implant displacement happened.Conclusions Combined treatment with areola approach has a good therapeutic effect for

  6. Sensory augmentation for the blind

    Directory of Open Access Journals (Sweden)

    Silke Manuela Kärcher

    2012-03-01

    Full Text Available Enacted theories of consciousness conjecture that perception and cognition arise from an active experience of the regular relations that are tying together the sensory stimulation of different modalities and associated motor actions. Previous experiments investigated this concept by employing the technique of sensory substitution. Building on these studies, here we test a set of hypotheses derived from this framework and investigate the utility of sensory augmentation in handicapped people. We provide a late blind subject with a new set of sensorimotor laws: A vibro-tactile belt continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. This experimental approach demonstrates the potential of sensory augmentation devices for the help of

  7. Crime Scenes as Augmented Reality

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    2010-01-01

    Using the concept of augmented reality, this article will investigate how places in various ways have become augmented by means of different mediatization strategies. Augmentation of reality implies an enhancement of the places' emotional character: a certain mood, atmosphere or narrative surplus......, physical damage: they are all readable and interpretable signs. As augmented reality the crime scene carries a narrative which at first is hidden and must be revealed. Due to the process of investigation and the detective's ability to reason and deduce, the crime scene as place is reconstructed as virtual...

  8. Primary osteosynthesis augmented with autologous bone graft with total knee arthroplasty in patients with stress fractures of medial femoral condyle with knee osteoarthritis: a cost effective approach

    Directory of Open Access Journals (Sweden)

    Vikram Indrajit Shah

    2016-06-01

    Results: Mean follow-up was 7.0 years. All patients showed statistically significant improvement in their WOMAC total scores (p <0.05. Stress fractures united with good knee alignment. All patients had recovered full range of motion with no pain at the time of final follow-up. No adverse events were noted in any of the patient treated. Conclusions: The present approach is a successful procedure for the elderly population with an arthritic knee with stress fracture of medial femoral condyle. Return to pre-morbid level of functional activity occurs very swiftly. [Int J Res Med Sci 2016; 4(6.000: 2408-2412

  9. A semiclassical approach to many-body interference in Fock-space

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Thomas

    2015-11-01

    Many-body systems draw ever more physicists' attention. Such an increase of interest often comes along with the development of new theoretical methods. In this thesis, a non-perturbative semiclassical approach is developed, which allows to analytically study many-body interference effects both in bosonic and fermionic Fock space and is expected to be applicable to many research areas in physics ranging from Quantum Optics and Ultracold Atoms to Solid State Theory and maybe even High Energy Physics. After the derivation of the semiclassical approximation, which is valid in the limit of large total number of particles, first applications manifesting the presence of many-body interference effects are shown. Some of them are confirmed numerically thus verifying the semiclassical predictions. Among these results are coherent back-/forward-scattering in bosonic and fermionic Fock space as well as a many-body spin echo, to name only the two most important ones.

  10. A General Approach to the Construction of Conservation Laws for Birkhoffian Systems in Event Space

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi

    2008-01-01

    For a Birkhoman system in the event space, a general approach to the construction of conservation laws is presented. The conservation laws are constructed by finding corresponding integrating factors for the parametric equations of the system. First, the parametric equations of the Birkhoffian system in the event space are established, and the definition of integrating factors for the system is given; second the necessary conditions for the existence of conservation laws are studied in detail, and the relation between the conservation laws and the integrating factors of the system is obtained and the generalized Killing equations for the determination of the integrating factors are given; finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the results.

  11. A New Approach to Space Situational Awareness using Small Ground-Based Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Chen, Cliff S.

    2014-12-01

    This report discusses a new SSA approach evaluated by Pacific Northwest National Laboratory (PNNL) that may lead to highly scalable, small telescope observing stations designed to help manage the growing space surveillance burden. Using the methods and observing tools described in this report, the team was able to acquire and track very faint satellites (near Pluto’s apparent brightness). Photometric data was collected and used to correlate object orbital position as a function of atomic clock-derived time. Object apparent brightness was estimated by image analysis and nearby star calibration. The measurement performance was only limited by weather conditions, object brightness, and the sky glow at the observation site. In the future, these new SSA technologies and techniques may be utilized to protect satellite assets, detect and monitor orbiting debris fields, and support Outer Space Treaty monitoring and transparency.

  12. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    Science.gov (United States)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  13. Semiclassical shell-structure moment of inertia within the phase-space approach

    CERN Document Server

    Gorpinchenko, D V; Bartel, J; Blocki, J P

    2014-01-01

    The moment of inertia for nuclear collective rotations was derived within the semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows to express quite accurately the shell components of the moment of inertia in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, in good agreement with the quantum calculations.

  14. A tow concept for the space shuttle orbiter approach and landing test

    Science.gov (United States)

    Bonner, T. F., Jr.; Pride, J. D., Jr.

    1976-01-01

    The tow concept provides the means for evaluating the orbiter aerodynamic performance and handling qualities in the same configuration as expected in actual space shuttle flight operation. A Boeing 747-100 aircraft has engine-out capability to tow the orbiter to an altitude that permits a safe orbiter approach and landing. The tow concept also provides a means for conducting a comprehensive ground test program before proceeding into the actual ALT flight operations. The implementation of the tow concept requires only a minor structural modification in the nose section of the orbiter vehicle; requires minor modifications in the 747 cargo bay; and makes use of those orbiter onboard systems installed in the ALT orbiter vehicle. The 747 wake turbulence does not constitute a problem for the orbiter during take-off or climb to altitude. The impact that the tow concept would have on the cost and schedule of the space shuttle program was not evaluated in this study.

  15. Robust control of uncertain dynamic systems a linear state space approach

    CERN Document Server

    Yedavalli, Rama K

    2014-01-01

    This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...

  16. Temporal Coherence Strategies for Augmented Reality Labeling.

    Science.gov (United States)

    Madsen, Jacob Boesen; Tatzqern, Markus; Madsen, Claus B; Schmalstieg, Dieter; Kalkofen, Denis

    2016-04-01

    Temporal coherence of annotations is an important factor in augmented reality user interfaces and for information visualization. In this paper, we empirically evaluate four different techniques for annotation. Based on these findings, we follow up with subjective evaluations in a second experiment. Results show that presenting annotations in object space or image space leads to a significant difference in task performance. Furthermore, there is a significant interaction between rendering space and update frequency of annotations. Participants improve significantly in locating annotations, when annotations are presented in object space, and view management update rate is limited. In a follow-up experiment, participants appear to be more satisfied with limited update rate in comparison to a continuous update rate of the view management system. PMID:26780810

  17. Combined Neuropeptide S and D-Cycloserine Augmentation Prevents the Return of Fear in Extinction-Impaired Rodents: Advantage of Dual versus Single Drug Approaches

    Science.gov (United States)

    Maurer, Verena; Murphy, Conor; Schmuckermair, Claudia; Muigg, Patrick; Neumann, Inga D.; Whittle, Nigel

    2016-01-01

    Background: Despite its success in treating specific anxiety disorders, the effect of exposure therapy is limited by problems with tolerability, treatment resistance, and fear relapse after initial response. The identification of novel drug targets facilitating fear extinction in clinically relevant animal models may guide improved treatment strategies for these disorders in terms of efficacy, acceleration of fear extinction, and return of fear. Methods: The extinction-facilitating potential of neuropeptide S, D-cycloserine, and a benzodiazepine was investigated in extinction-impaired high anxiety HAB rats and 129S1/SvImJ mice using a classical cued fear conditioning paradigm followed by extinction training and several extinction test sessions to study fear relapse. Results: Administration of D-cycloserine improved fear extinction in extinction-limited, but not in extinction-deficient, rodents compared with controls. Preextinction neuropeptide S caused attenuated fear responses in extinction-deficient 129S1/SvImJ mice at extinction training onset and further reduced freezing during this session. While the positive effects of either D-cycloserine or neuropeptide S were not persistent in 129S1/SvImJ mice after 10 days, the combination of preextinction neuropeptide S with postextinction D-cycloserine rendered the extinction memory persistent and context independent up to 5 weeks after extinction training. This dual pharmacological adjunct to extinction learning also protected against fear reinstatement in 129S1/SvImJ mice. Conclusions: By using the potentially nonsedative anxiolytic neuropeptide S and the cognitive enhancer D-cycloserine to facilitate deficient fear extinction, we provide here the first evidence of a purported efficacy of a dual over a single drug approach. This approach may render exposure sessions less aversive and more efficacious for patients, leading to enhanced protection from fear relapse in the long term. PMID:26625894

  18. Cosmology with quantum matter and a classical gravitational field: the approach of configuration-space ensembles

    CERN Document Server

    Reginatto, Marcel

    2013-01-01

    I consider the formulation of hybrid cosmological models that consists of a classical gravitational field interacting with a quantized massive scalar field in the formalism of ensembles on configuration space. This is a viable approach that provides an alternative to semiclassical gravity. I discuss a particular, highly nonclassical solution in two approximations, minisuperspace and spherically-symmetric midisuperspace. In both cases, the coupling of the quantum scalar field and classical gravitational field leads to a cosmological model which has a quantized radius of the universe.

  19. Modern Gemini-Approach to Technology Development for Human Space Exploration

    Science.gov (United States)

    White, Harold

    2010-01-01

    In NASA's plan to put men on the moon, there were three sequential programs: Mercury, Gemini, and Apollo. The Gemini program was used to develop and integrate the technologies that would be necessary for the Apollo program to successfully put men on the moon. We would like to present an analogous modern approach that leverages legacy ISS hardware designs, and integrates developing new technologies into a flexible architecture This new architecture is scalable, sustainable, and can be used to establish human exploration infrastructure beyond low earth orbit and into deep space.

  20. Spectrasat - A hybrid ROWS/SAR approach to monitor ocean waves from space

    Science.gov (United States)

    Beal, Robert C.

    1987-01-01

    Evidence from both Seasat and the Shuttle Imaging Radar indicates that Doppler contamination in synthetic aperture radar (SAR) at the shorter azimuth (along-track) ocean wavelengths can seriously limit the instrument performance. Although the problem is alleviated at low orbital altitudes, it is never completely eliminated, particularly for higher wave slopes. By combining a SAR with a conically scanning altimeter (a radar ocean-wave spectrometer) on a common low-altitude platform, the disadvantages of each tend to be offset by the advantages of the other. Thus, a hybrid combination of the two may be the most practical approach to monitoring ocean waves from space.

  1. Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.

    Science.gov (United States)

    Zhang, Hou-Dao; Yan, YiJing

    2016-05-19

    Kinetic rate kernels in general multisite systems are formulated on the basis of a nonperturbative quantum dissipation theory, the hierarchical equations of motion (HEOM) formalism, together with the Nakajima-Zwanzig projection operator technique. The present approach exploits the HEOM-space linear algebra. The quantum non-Markovian site-to-site transfer rate can be faithfully evaluated via projected HEOM dynamics. The developed method is exact, as evident by the comparison to the direct HEOM evaluation results on the population evolution. PMID:26757138

  2. Legacy Making Through Illness Blogs: Online Spaces for Young Adults Approaching the End-of-Life.

    Science.gov (United States)

    Keim-Malpass, Jessica; Adelstein, Katharine; Kavalieratos, Dio

    2015-12-01

    Little is known about young adults with cancer at the end-of-life, but life review and legacy making may be important modalities to process the emotions associated with anticipatory grief. The study analyzed the illness blogs of five young women (aged 25-39 years) at the end-of-life using a narrative approach. Key elements of legacy making and grief processing were explored. The women had varying experiences before their death, but uniform posthumous occurrences with the use of the blog for a space of grief for loved ones. The use of online blogs among adolescents and young adults with advanced cancer is an area of needed further study.

  3. Augmented reality system

    Science.gov (United States)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  4. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  5. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    Science.gov (United States)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space

  6. Study of nuclear pairing with Configuration-Space Monte-Carlo approach

    CERN Document Server

    Lingle, Mark

    2015-01-01

    Pairing correlations in nuclei play a decisive role in determining nuclear drip-lines, binding energies, and many collective properties. In this work a new Configuration-Space Monte-Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte-Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem, probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems with defined precision and error control, are noteworthy merits of CSMC. The features of our CSMC approach are shown using models and realistic examples. Special attention is given to difficult limits: situations with non-constant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in finite systems are weak, and pr...

  7. OPTIMAL ANTENNA SUBSET SELECTION AND BLIND DETECTION APPROACH APPLIED TO ORTHOGONAL SPACE-TIME BLOCK CODING

    Institute of Scientific and Technical Information of China (English)

    Xu Hongji; Liu Ju; Gu Bo

    2007-01-01

    An approach combining optimal antenna subset selection with blind detection scheme for Orthogonal Space-Time Block Coding (OSTBC) is proposed in this paper. The optimal antenna subset selection is taken into account at transmitter and/or receiver sides, which chooses the optimal antennas to increase the diversity order of OSTBC and improve further its performance. In order to enhance the robustness of the detection used in the conventional OSTBC scheme, a blind detection scheme based on Independent Component Analysis (ICA) is exploited which can directly extract transmitted signals without channel estimation. Performance analysis shows that the proposed approach can achieve the full diversity and the flexibility of system design by using the antenna selection and the ICA based blind detection schemes.

  8. Adaptive information design for outdoor augmented reality.

    Science.gov (United States)

    Neuhöfer, Jan A; Govaers, Felix; El Mokni, Hichem; Alexander, Thomas

    2012-01-01

    Augmented Reality focuses on the enrichment of the user's natural field of view by consistent integration of text, symbols and interactive three-dimensional objects in real time. Placing virtual objects directly into the user's view in a natural context empowers highly dynamic applications. On the other hand, this necessitates deliberate choice of information design and density, in particular for deployment in hazardous environments like military combat scenarios. As the amount of information needed is not foreseeable and strongly depends on the individual mission, an appropriate system must offer adequate adaptation capabilities. The paper presents a prototypical, vehicle-mountable Augmented Reality vision system, designed for enhancing situation awareness in stressful urban warfare scenarios. Tracking, as one of the most crucial challenges for outdoor Augmented Reality, is accomplished by means of a Differential-GPS approach while the type of display to attach can be modified, ranging from ocular displays to standard LCD mini-screens. The overall concept also includes envisioning of own troops (blue forces), for which a multi-sensor tracking approach has been chosen. As a main feature, the system allows switching between different information categories, focusing on friendly, hostile, unidentified or neutral data. Results of an empirical study on the superiority of an in-view navigation cue approach conclude the paper.

  9. Augmenting the Stability of OB Dump by Using Fly Ash: A Geo Technical Approach to Sustainably Manage OB Dump at Jharia Coal Field, India

    Directory of Open Access Journals (Sweden)

    Anup Kumar Gupta*

    2016-04-01

    Full Text Available This paper is mainly focused over the possible utilization of fly ash along with OB dump to enhance the stability of OB dump and thus provide a sustainable approach for better waste management of both these materials simultaneously. Instability of coal mine overburden (OB dumps is an important problem in most of the coal mines like Jharia coalfields in India. This is mainly occurring due to sliding nature of the rock material, lack of vegetation etc. Numbers of Environmental and health issues are associated with these unstable OB dumps. As it may easily flow with running water can contaminate the nearby water resource as well as carbonaceous content of the dump causes air pollution due to simultaneous combustion. On the other hand management of coal ash that is produced from thermal plants is also an important task. Dumping of fly ash in open may cause number of environmental problems. Various geotechnical and physical parameters such as particle size analysis, specific gravity, density, and friction angle/cohesion test have been performed to check the stability of OB dump and to analyze impacts of fly ash utilization to stabilize the OB dump.

  10. Augmented Reality Comes to Physics

    Science.gov (United States)

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  11. Third International Scientific and Practical Conference «Space Travel is Approaching Reality» (Successful Event in Difficult Times

    Directory of Open Access Journals (Sweden)

    Matusevych Tetiana

    2015-02-01

    Full Text Available The article analyzes the presentations of participants of III International Scientific and Practical Conference «Space Travel – approaching reality», held on 6–7 November 2014 in Kharkiv, Ukraine

  12. A reciprocal space approach for locating symmetry elements in Patterson superposition maps

    Energy Technology Data Exchange (ETDEWEB)

    Hendrixson, T.

    1990-09-21

    A method for determining the location and possible existence of symmetry elements in Patterson superposition maps has been developed. A comparison of the original superposition map and a superposition map operated on by the symmetry element gives possible translations to the location of the symmetry element. A reciprocal space approach using structure factor-like quantities obtained from the Fourier transform of the superposition function is then used to determine the best'' location of the symmetry element. Constraints based upon the space group requirements are also used as a check on the locations. The locations of the symmetry elements are used to modify the Fourier transform coefficients of the superposition function to give an approximation of the structure factors, which are then refined using the EG relation. The analysis of several compounds using this method is presented. Reciprocal space techniques for locating multiple images in the superposition function are also presented, along with methods to remove the effect of multiple images in the Fourier transform coefficients of the superposition map. In addition, crystallographic studies of the extended chain structure of (NHC{sub 5}H{sub 5})SbI{sub 4} and of the twinning method of the orthorhombic form of the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} are presented. 54 refs.

  13. The Hilbert space of the Chern-Simons theory on a cylinder: a loop quantum gravity approach

    Energy Technology Data Exchange (ETDEWEB)

    Constantinidis, Clisthenis P; Piguet, Olivier [Departamento de Fisica, Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil); Luchini, Gabriel, E-mail: cpconstantinidis@pq.cnpq.b, E-mail: opiguet@pq.cnpq.b, E-mail: gabriel.luchini@usp.b [Instituto de Fisica de Sao Carlos (IFSC), Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil)

    2010-03-21

    As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.

  14. A wavelet space based approach for Doppler ultrasound blood signals separation

    Institute of Scientific and Technical Information of China (English)

    JIN Dawei; WANG Yuanyuan; WANG Weiqi

    2007-01-01

    In medical Doppler ultrasound systems, a high-pass filter which is usually employed to filter wall clutter components, will remove the information of the low velocity blood flow.To extract intact Doppler ultrasound blood signals, a novel approach is proposed based on the spatially selective noise filtration. The wall signals are firstly estimated by the spatially selective noise filtration from wavelet spatial correlation property. Then the wall clutters are exactly obtained by a wavelet threshold de-noising technique which eliminates the residual blood flow signals. Finally the intact blood flow signals are achieved by subtracting the wall signals from the mixed signals. This approach is applied to both computer simulated and in vivo carotid Doppler ultrasound signals. The experiment results show that the wavelet space based approach can exactly extract the blood flow signals, and achieve about 45% lower results in the mean absolute error than that of the high-pass filtering. This approach is expected to be an effective method to remove the wall clutters in Doppler ultrasound systems.

  15. A study of magnetism in disordered Pt-Mn, Pd-Mn and Ni-Mn alloys: an augmented space recursion approach

    International Nuclear Information System (INIS)

    In this paper we shall study three binary alloy systems, one constituent of which is Mn. The other constituents are chosen from a particular column of the periodic table: Ni(3d), Pt (4d) and Pd (5d). As we go down the column, the d-bands become wider, discouraging spin-polarization. In a disordered alloy, the situation becomes more complicated, as the exchange interaction between two atoms is environment dependent. We shall compare and contrast their magnetic behaviour using robust electronic structure techniques. In all three alloy systems conjectures are made to explain experimental data. In this paper we shall examine whether there is any basis to these conjectures. (paper)

  16. Adaptive fuzzy approach to modeling of operational space for autonomous mobile robots

    Science.gov (United States)

    Musilek, Petr; Gupta, Madan M.

    1998-10-01

    Robots operating in an unstructured environment need high level of modeling of their operational space in order to plan a suitable path from an initial position to a desired goal. From this perspective, operational space modeling seems to be crucial to ensure a sufficient level of autonomy. In order to compile the information from various sources, we propose a fuzzy approach to evaluate each unit region on a grid map by a certain value of transition cost. This value expresses the cost of movement over the unit region: the higher the value, the more expensive the movement through the region in terms of energy, time, danger, etc. The approach for modeling, proposed in this paper, employs fuzzy granulation of information on various terrain features and their combination based on a fuzzy neural network. In order to adapt to the changing environmental conditions, and to improve the validity of constructed cost maps on-line, the system can be endowed with learning abilities. The learning subsystem would change parameters of the fuzzy neural network based decision system by reinforcements derived from comparisons of the actual cost of transition with the cost obtained from the model.

  17. Contaminant ingress into multizone buildings: An analytical state-space approach

    KAUST Repository

    Parker, Simon

    2013-08-13

    The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time series in different internal locations. A state-space approach is adopted to represent the concentration dynamics within multizone buildings. Analysis based on this approach is used to demonstrate that the exposure in every interior location is limited to the exterior exposure in the absence of removal mechanisms. Estimates are also developed for the short term maximum concentration and exposure in a multizone building in response to a step-change in concentration. These have considerable potential for practical use. The analytical development is demonstrated using a simple two-zone building with an inner zone and a range of existing multizone models of residential buildings. Quantitative measures are provided of the standard deviation of concentration and exposure within a range of residential multizone buildings. Ratios of the maximum short term concentrations and exposures to single zone building estimates are also provided for the same buildings. © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  18. U(1) Gauge Field in 6D Space-Time With Compact Noncommutative Dimensions: A Coherent State Approach

    CERN Document Server

    Nasseri, M; Souri, M

    2012-01-01

    We consider the U(1) gauge field defined over a six dimensional space-time with extra dimensions compactified on a noncommutative toroidal orbifold, within the context of coherent state approach to the noncommutative spaces. We demonstrate that the fuzzines of extra dimensions can lead to the canceling of the part of electrostatic interaction mediated by the massive KK modes.

  19. Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2008-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper

  20. Bayesian missing data problems EM, data augmentation and noniterative computation

    CERN Document Server

    Tan, Ming T; Ng, Kai Wang

    2009-01-01

    Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-world problems, the authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms. After introducing the missing data problems, Bayesian approach, and poste

  1. Extending peripersonal space representation without tool-use: evidence from a combined behavioural-computational approach

    Directory of Open Access Journals (Sweden)

    Andrea Serino

    2015-02-01

    Full Text Available Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e. peripersonal space (PPS. PPS dynamically modifies depending on experience, e.g. it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioural approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e. selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioural experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioural settings showed that asynchronous tactile and auditory inputs did not change PPS. We conclude by proposing a biological-plausible model to explain plasticity in PPS representation after tool-use, supported by computational and behavioural data.

  2. Gradual approach to realize lightning monitoring from space by means of VHF observations

    Science.gov (United States)

    Morimoto, T.; Kikuchi, H.; Ushio, T.; Kawasaki, Z.

    2010-12-01

    Lightning Research Group of Osaka University (LRG-OU) has been developing VHF Broadband Digital Interferometer (DITF) to image precise lightning channels and monitor lightning activity widely. DITF is an equipment to locate sources of impulsive VHF radiation based on the digital interferometric technique. In other words, DITF is a system to visualize lightning channel by VHF radio observations. The feature of DITF is its ultra-wide bandwidth (from 25 MHz to 100 MHz) and implicit redundancy for the direction-of-arrival (DOA) estimation. LRG-OU considers an application of the broadband DITF to the spaceborne measurement system because its fairly high resolutions and the compactness of the system are great advantages to be the space-borne one. To realize space-borne DITF, LRG-OU intends to have gradual approach for the development. As their first step, a VHF sensor on Maido-1 satellite is proposed to examine the feasibility of receiving VHF lightning impulses in space. Maido-1 is a small satellite manufactured by factory members of SOHLA (Space Oriented Higashi-Osaka Leading Associate). The SOHLA project represents a technology transfer program to expand the range of the space development community in Japan. The objective is to get SMEs (Small and Medium sized manufacturing Enterprises) involved in small space projects and new space technologies. Under the cooperative agreement, JAXA (Japan Aerospace Exploration Agency) intends to contribute to socio-economic development by returning its R&D results to the society, and SOHLA tries to revitalize the local economy through the commercialization of versatile small satellites. Maido-1 is in sun-synchronous polar orbit at an altitude of 660 kilometers. The VHF sensor comprises a single pair of an antenna, a band-pass filter with a pass band of 30-100MHz, an amplifier with a gain of 45dB and an analog-to-digital converter with a sampling rate of 200MS/s and 8-bit resolution to record broadband VHF signals. The 100 waveforms

  3. An approach to ground based space surveillance of geostationary on-orbit servicing operations

    Science.gov (United States)

    Scott, Robert (Lauchie); Ellery, Alex

    2015-07-01

    On Orbit Servicing (OOS) is a class of dual-use robotic space missions that could potentially extend the life of orbiting satellites by fuel replenishment, repair, inspection, orbital maintenance or satellite repurposing, and possibly reduce the rate of space debris generation. OOS performed in geostationary orbit poses a unique challenge for the optical space surveillance community. Both satellites would be performing proximity operations in tight formation flight with separations less than 500 m making atmospheric seeing (turbulence) a challenge to resolving a geostationary satellite pair when viewed from the ground. The two objects would appear merged in an image as the resolving power of the telescope and detector, coupled with atmospheric seeing, limits the ability to resolve the two objects. This poses an issue for obtaining orbital data for conjunction flight safety or, in matters pertaining to space security, inferring the intent and trajectory of an unexpected object perched very close to one's satellite asset on orbit. In order to overcome this problem speckle interferometry using a cross spectrum approach is examined as a means to optically resolve the client and servicer's relative positions to enable a means to perform relative orbit determination of the two spacecraft. This paper explores cases where client and servicing satellites are in unforced relative motion flight and examines the observability of the objects. Tools are described that exploit cross-spectrum speckle interferometry to (1) determine the presence of a secondary in the vicinity of the client satellite and (2) estimate the servicing satellite's motion relative to the client. Experimental observations performed with the Mont Mégantic 1.6 m telescope on co-located geostationary satellites (acting as OOS proxy objects) are described. Apparent angular separations between Anik G1 and Anik F1R from 5 to 1 arcsec were observed as the two satellites appeared to graze one another. Data

  4. Vertebral Augmentation: State of the Art

    Science.gov (United States)

    Nabhane, Linda; Issa El Khoury, Fouad; Kreichati, Gaby; El Rachkidi, Rami

    2016-01-01

    Osteoporotic vertebral compression fractures (OVF) are an increasing public health problem. Cement augmentation (vertebroplasty of kyphoplasty) helps stabilize painful OVF refractory to medical treatment. This stabilization is thought to improve pain and functional outcome. Vertebroplasty consists of injecting cement into a fractured vertebra using a percutaneous transpedicular approach. Balloon kyphoplasty uses an inflatable balloon prior to injecting the cement. Although kyphoplasty is associated with significant improvement of local kyphosis and less cement leakage, this does not result in long-term clinical and functional improvement. Moreover, vertebroplasty is favored by some due to the high cost of kyphoplasty. The injection of cement increases the stiffness of the fracture vertebrae. This can lead, in theory, to adjacent OVF. However, many studies found no increase of subsequent fracture when comparing medical treatment to cement augmentation. Kyphoplasty can have a protective effect due to restoration of sagittal balance. PMID:27114782

  5. Zion Augmented Reality Application (ZARA): An Augmented Heritage Prototype

    OpenAIRE

    Odland, Johannes Johannesen

    2007-01-01

    This paper describes the investigation and development of a virtual heritage application that employs augmented reality to disseminate a model of the Zion castle. The developed system is a flexible prototype that leverages several open source frameworks and applications.

  6. Projector augmented wave method: ab initio molecular dynamics with full wave functions

    Indian Academy of Sciences (India)

    Peter E Blöchl; Clemens J Först; Johannes Schimpl

    2003-01-01

    A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.

  7. Augmented Reality Comes to Physics

    Science.gov (United States)

    Buesing, Mark; Cook, Michael

    2013-04-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.

  8. Augmented reality visualization for thoracoscopic spine surgery

    Science.gov (United States)

    Sauer, Frank; Vogt, Sebastian; Khamene, Ali; Heining, Sandro; Euler, Ekkehard; Schneberger, Marc; Zuerl, Konrad; Mutschler, Wolf

    2006-03-01

    We are developing an augmented reality (AR) image guidance system in which information derived from medical images is overlaid onto a video view of the patient. The centerpiece of the system is a head-mounted display custom fitted with two miniature color video cameras that capture the stereo view of the scene. Medical graphics is overlaid onto the video view and appears firmly anchored in the scene, without perceivable time lag or jitter. We have been testing the system for different clinical applications. In this paper we discuss minimally invasive thoracoscopic spine surgery as a promising new orthopedic application. In the standard approach, the thoracoscope - a rigid endoscope - provides visual feedback for the minimally invasive procedure of removing a damaged disc and fusing the two neighboring vertebrae. The navigation challenges are twofold. From a global perspective, the correct vertebrae on the spine have to be located with the inserted instruments. From a local perspective, the actual spine procedure has to be performed precisely. Visual feedback from the thoracoscope provides only limited support for both of these tasks. In the augmented reality approach, we give the surgeon additional anatomical context for the navigation. Before the surgery, we derive a model of the patient's anatomy from a CT scan, and during surgery we track the location of the surgical instruments in relation to patient and model. With this information, we can help the surgeon in both the global and local navigation, providing a global map and 3D information beyond the local 2D view of the thoracoscope. Augmented reality visualization is a particularly intuitive method of displaying this information to the surgeon. To adapt our augmented reality system to this application, we had to add an external optical tracking system, which works now in combination with our head-mounted tracking camera. The surgeon's feedback to the initial phantom experiments is very positive.

  9. Understanding augmented reality concepts and applications

    CERN Document Server

    Craig, Alan B

    2013-01-01

    Augmented reality is not a technology. Augmented reality is a medium. Likewise, a book on augmented reality that only addresses the technology that is required to support the medium of augmented reality falls far short of providing the background that is needed to produce, or critically consume augmented reality applications. One reads a book. One watches a movie. One experiences augmented reality. Understanding Augmented Reality addresses the elements that are required to create compelling augmented reality experiences. The technology that supports

  10. Lattice and momentum space approach to bound states and excitonic condensation via user friendly interfaces

    Science.gov (United States)

    Jamell, Christopher Ray

    In this thesis, we focus on two broad categories of problems, exciton condensation and bound states, and two complimentary approaches, real and momentum space, to solve these problems. In chapter 2 we begin by developing the self-consistent mean field equations, in momentum space, used to calculate exciton condensation in semiconductor heterostructures/double quantum wells and graphene. In the double quantum well case, where we have one layer containing electrons and the other layer with holes separated by a distance d, we extend the analytical solution to the two dimensional hydrogen atom in order to provide a semi-quantitative measure of when a system of excitons can be considered dilute. Next we focus on the problem of electron-electron screening, using the random phase approximation, in double layer graphene. The literature contains calculations showing that when screening is not taken into account the temperature at which excitons in double layer graphene condense is approximately room temperature. Also in the literature is a calculation showing that under certain assumptions the transition temperature is approximately mK. The essential result is that the condensate is exponentially suppressed by the number of electron species in the system. Our mean field calculations show that the condensate, is in fact, not exponentially suppressed. Next, in chapter 3, we show the use of momentum space to solve the Schrodinger equation for a class of potentials that are not usually a part of a quantum mechanics courses. Our approach avoids the typical pitfalls that exist when one tries to discretize the real space Schrodinger equation. This technique widens the number of problems that can presented in an introductory quantum mechanics course while at the same time, because of the ease of its implementation, provides a simple introduction to numerical techniques and programming in general to students. We have furthered this idea by creating a modular program that allows

  11. Truncated Conformal Space Approach for Perturbed Wess-Zumino-Witten $SU(2)_k$ Models

    CERN Document Server

    Beria, M; Lepori, L; Konik, R M; Sierra, G

    2013-01-01

    We outline the application of the truncated conformal space approach (TCSA) to perturbations of $SU(2)_k$ Wess-Zumino-Witten theories. As examples of this methodology, we consider two distinct perturbations of $SU(2)_1$ and one of $SU(2)_2$. $SU(2)_1$ is first perturbed by its spin-1/2 field, a model which is equivalent to the sine-Gordon model at a particular value of its coupling $\\beta$. The sine-Gordon spectrum is correctly reproduced as well as the corresponding finite size corrections. We next study $SU(2)_1$ with a marginal current-current perturbation. The TCSA results can be matched to perturbation theory within an appropriate treatment of the UV divergences. Finally, we consider $SU(2)_2$ perturbed by its spin-1 field, which is equivalent to three decoupled massive Majorana fermions.In this case as well the TCSA reproduces accurately the known spectrum.

  12. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  13. Truncated Hilbert Space Approach for the 1+1D phi^4 Theory

    CERN Document Server

    CERN. Geneva

    2016-01-01

    (an informal seminar, not a regular string seminar) We used the massive analogue of the truncated conformal space approach to study the broken phase of the 1+1 dimensional scalar phi^4 model in finite volume, similarly to the work by S. Rychkov and L. Vitale. In our work, the finite size spectrum was determined numerically using an effective eigensolver routine, which was followed by a simple extrapolation in the cutoff energy. We analyzed both the periodic and antiperiodic sectors. The results were compared with semiclassical and Bethe-Yang results as well as perturbation theory. We obtained the coupling dependence of the infinite volume breather and kink masses for moderate couplings. The results fit well with semiclassics and perturbative estimations, and confirm the conjecture of Mussardo that at most two neutral excitations can exist in the spectrum. We believe that improving our method with the renormalization procedure of Rychkov et al. enables to measure further interesting quantities such as decay ra...

  14. Classical and quantum mechanics of complex Hamiltonian systems: An extended complex phase space approach

    Indian Academy of Sciences (India)

    R S Kaushal

    2009-08-01

    Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted $\\mathcal{PT}$ symmetry in the studies of complex power potentials as a particular case of the present general framework in which two additional degrees of freedom are produced by extending each coordinate and momentum into complex planes. With a view to account for the subjective component of physical reality inherent in the collected data, e.g., using a Chevreul (hand-held) pendulum, a generalization of the Hamilton’s principle of least action is suggested.

  15. A new approach to the analysis of the phase space of f(R)-gravity

    CERN Document Server

    Carloni, Sante

    2015-01-01

    We propose a new dynamical system formalism for the analysis of f(R) cosmologies. The new approach eliminates the need for cumbersome inversions to close the dynamical system and allows the analysis of the phase space of f(R)-gravity models which cannot be investigated using the standard technique. Differently form previously proposed similar techniques, the new method is constructed in such a way to associate to the fixed points scale factors, which contain four integration constants (i.e. solutions of fourth order differential equations). In this way a new light is shed on the physical meaning of the fixed points. We apply this technique to some f(R) Lagrangians relevant for inflationary and dark energy models.

  16. Newtonian approach for the Kepler-Coulomb problem from the point of view of velocity space

    CERN Document Server

    Núñez-Yépez, H N; González-Villanueva, A; Romero, R P M; Salas-Brito, A L

    1998-01-01

    The hodograph of the Kepler-Coulomb problem, that is, the path traced by its velocity vector, is shown to be a circle and then it is used to investigate other properties of the motion. We obtain the configuration space orbits of the problem starting from initial conditions given using nothing more than the methods of synthetic geometry so close to Newton's approach. The method works with elliptic, parabolic and hyperbolic orbits; it can even be used to derive Rutherford's relation from which the scattering cross section can be easily evaluated. We think our discussion is both interesting and useful inasmuch as it serves to relate the initial conditions with the corresponding trajectories in a purely geometrical way uncovering in the process some seldom discussed interesting connections.

  17. A multifractal approach to space-filling recovery for PET quantification

    Energy Technology Data Exchange (ETDEWEB)

    Willaime, Julien M. Y., E-mail: julien.willaime@siemens.com; Aboagye, Eric O. [Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith Hospital, London W12 0NN (United Kingdom); Tsoumpas, Charalampos [Division of Medical Physics, University of Leeds, LS2 9JT (United Kingdom); Turkheimer, Federico E. [Department of Neuroimaging, Institute of Psychiatry, King’s College London, London SE5 8AF (United Kingdom)

    2014-11-01

    Purpose: A new image-based methodology is developed for estimating the apparent space-filling properties of an object of interest in PET imaging without need for a robust segmentation step and used to recover accurate estimates of total lesion activity (TLA). Methods: A multifractal approach and the fractal dimension are proposed to recover the apparent space-filling index of a lesion (tumor volume, TV) embedded in nonzero background. A practical implementation is proposed, and the index is subsequently used with mean standardized uptake value (SUV {sub mean}) to correct TLA estimates obtained from approximate lesion contours. The methodology is illustrated on fractal and synthetic objects contaminated by partial volume effects (PVEs), validated on realistic {sup 18}F-fluorodeoxyglucose PET simulations and tested for its robustness using a clinical {sup 18}F-fluorothymidine PET test–retest dataset. Results: TLA estimates were stable for a range of resolutions typical in PET oncology (4–6 mm). By contrast, the space-filling index and intensity estimates were resolution dependent. TLA was generally recovered within 15% of ground truth on postfiltered PET images affected by PVEs. Volumes were recovered within 15% variability in the repeatability study. Results indicated that TLA is a more robust index than other traditional metrics such as SUV {sub mean} or TV measurements across imaging protocols. Conclusions: The fractal procedure reported here is proposed as a simple and effective computational alternative to existing methodologies which require the incorporation of image preprocessing steps (i.e., partial volume correction and automatic segmentation) prior to quantification.

  18. Optimization of the ethanol recycling reflux extraction process for saponins using a design space approach.

    Directory of Open Access Journals (Sweden)

    Xingchu Gong

    Full Text Available A solvent recycling reflux extraction process for Panax notoginseng was optimized using a design space approach to improve the batch-to-batch consistency of the extract. Saponin yields, total saponin purity, and pigment yield were defined as the process critical quality attributes (CQAs. Ethanol content, extraction time, and the ratio of the recycling ethanol flow rate and initial solvent volume in the extraction tank (RES were identified as the critical process parameters (CPPs via quantitative risk assessment. Box-Behnken design experiments were performed. Quadratic models between CPPs and process CQAs were developed, with determination coefficients higher than 0.88. As the ethanol concentration decreases, saponin yields first increase and then decrease. A longer extraction time leads to higher yields of the ginsenosides Rb1 and Rd. The total saponin purity increases as the ethanol concentration increases. The pigment yield increases as the ethanol concentration decreases or extraction time increases. The design space was calculated using a Monte-Carlo simulation method with an acceptable probability of 0.90. Normal operation ranges to attain process CQA criteria with a probability of more than 0.914 are recommended as follows: ethanol content of 79-82%, extraction time of 6.1-7.1 h, and RES of 0.039-0.040 min-1. Most of the results of the verification experiments agreed well with the predictions. The verification experiment results showed that the selection of proper operating ethanol content, extraction time, and RES within the design space can ensure that the CQA criteria are met.

  19. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, L. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1993-06-23

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented.

  20. Modeling solvation effects in real-space and real-time within density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alain [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy); Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana (Cuba); Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy)

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  1. Space station electrical power distribution analysis using a load flow approach

    Science.gov (United States)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  2. Truncated conformal space approach in d dimensions a Cheap Alternative to the Lattice?

    CERN Document Server

    Hogervorst, Matthijs; van Rees, Balt C

    2015-01-01

    We show how to perform accurate, nonperturbative and controlled calculations in quantum field theory in d dimensions. We use the Truncated Conformal Space Approach (TCSA), a Hamiltonian method which exploits the conformal structure of the UV fixed point. The theory is regulated in the IR by putting it on a sphere of a large finite radius. The QFT Hamiltonian is expressed as a matrix in the Hilbert space of CFT states. After restricting ourselves to energies below a certain UV cutoff, an approximation to the spectrum is obtained by numerical diagonalization of the resulting finite-dimensional matrix. The cutoff dependence of the results can be computed and efficiently reduced via a renormalization procedure. We work out the details of the method for the phi^4 theory in d dimensions with d not necessarily integer. A numerical analysis is then performed for the specific case d = 2.5, a value chosen in the range where UV divergences are absent. By going from weak to intermediate to strong coupling, we are able to...

  3. Space-time-wavelength mapping: a new approach for electronic control of optical tweezers

    CERN Document Server

    Rahman, Shah; Zhao, Qiancheng; Atasever, Tuva; Boyraz, Ozdal

    2015-01-01

    We present a new approach for electronic control of optical tweezers. The key technique, called 'space-time-wavelength mapping', involves time-domain modulation which is translated onto spatial domain by diffraction and enables direct control of location and polarity of force hot-spots created by Lorentz force (gradient force). In this study 150 fs optical pulses are dispersed in time and space to achieve a focused elliptical beam that is ~20 {\\mu}m long and ~2 {\\mu}m wide. In order to manipulate the intensity gradient along the beam at the focal spot, we use an electro-optic modulator to modulate power spectral distribution of the femtosecond beam after temporal dispersion. The electro-optic modulator is supplied with a chosen RF waveform that dictates the manipulation of the power spectral distribution. By choosing the appropriate RF waveform, it is possible to create force fields for cell stretching and compression as well as multiple hot spots (of > 200 pN force) for attractive or repulsive forces. We pre...

  4. Reliability Analysis of a 3-Machine Power Station Using State Space Approach

    Directory of Open Access Journals (Sweden)

    WasiuAkande Ahmed

    2014-07-01

    Full Text Available With the advent of high-integrity fault-tolerant systems, the ability to account for repairs of partially failed (but still operational systems become increasingly important. This paper presents a systemic method of determining the reliability of a 3-machine electric power station, taking into consideration the failure rates and repair rates of the individual component (machine that make up the system. A state-space transition process for a 3-machine with 23 states was developed and consequently, steady state equations were generated based on Markov mathematical modeling of the power station. Important reliability components were deduced from this analysis. This research simulation was achieved with codes written in Excel® -VBA programming environment. System reliability using state space approach proofs to be a viable and efficient technique of reliability prediction as it is able to predict the state of the system under consideration. For the purpose of neatness and easy entry of data, Graphic User Interface (GUI was designed.

  5. A modified approach for change detection using change vector analysis in posterior probability space

    Science.gov (United States)

    Azzouzi, S. A.; Vidal, A.; Bentounes, H. A.

    2015-04-01

    The multispectral and multitemporal data coming from satellites allow us to extract valuable spatiotemporal change. Consequently, Earth surface change detection analysis has been used in the past to monitor land cover changes caused by different reasons. Several techniques have been used for that purpose and change vector analysis (CVA) has been frequently employed to carry out automatic spatiotemporal information extraction. This work describes a modified methodology based on Supervised Change Vector Analysis in Posterior probability Space (SCVAPS) with the final aim of obtaining a change detection map in Blida, Algeria. The proposed technique is a Modified version of Supervised Change Vector Analysis Posterior probability Space (MSCVAPS) and it is applied at the same region that the original technique studied in the literature. The classical Maximum Likelihood classifier is the selected method for supervised classification since it provides good properties in the posterior probability map. An improved method for threshold determination based on Double Flexible Pace Search (DFPS) is proposed in this work and it is employed to obtain the most adequate threshold value. Then, the MSCVAPS approach is evaluated by two cases study of the land cover change detection in the region of Blida, Algeria, and in the region of Shunyi District, Beijing, China, using a pair of Landsat Thematic Mapper images and pair of Landsat Enhanced Thematic Mapper images, respectively. The final evaluation is given by the overall accuracy of changed and unchanged pixels and the kappa coefficient. The results show that the modified approach gives excellent results using the same area of study that was selected in the literature.

  6. Augmenter of liver regeneration

    Directory of Open Access Journals (Sweden)

    Gandhi Chandrashekhar R

    2012-07-01

    Full Text Available Abstract ‘Augmenter of liver regeneration’ (ALR (also known as hepatic stimulatory substance or hepatopoietin was originally found to promote growth of hepatocytes in the regenerating or injured liver. ALR is expressed ubiquitously in all organs, and exclusively in hepatocytes in the liver. ALR, a survival factor for hepatocytes, exhibits significant homology with ERV1 (essential for respiration and viability protein that is essential for the survival of the yeast, Saccharomyces cerevisiae. ALR comprises 198 to 205 amino acids (approximately 22 kDa, but is post-translationally modified to three high molecular weight species (approximately 38 to 42 kDa found in hepatocytes. ALR is present in mitochondria, cytosol, endoplasmic reticulum, and nucleus. Mitochondrial ALR may be involved in oxidative phosphorylation, but also functions as sulfhydryl oxidase and cytochrome c reductase, and causes Fe/S maturation of proteins. ALR, secreted by hepatocytes, stimulates synthesis of TNF-α, IL-6, and nitric oxide in Kupffer cells via a G-protein coupled receptor. While the 22 kDa rat recombinant ALR does not stimulate DNA synthesis in hepatocytes, the short form (15 kDa of human recombinant ALR was reported to be equipotent as or even stronger than TGF-α or HGF as a mitogen for hepatocytes. Altered serum ALR levels in certain pathological conditions suggest that it may be a diagnostic marker for liver injury/disease. Although ALR appears to have multiple functions, the knowledge of its role in various organs, including the liver, is extremely inadequate, and it is not known whether different ALR species have distinct functions. Future research should provide better understanding of the expression and functions of this enigmatic molecule.

  7. Spaces

    Directory of Open Access Journals (Sweden)

    Maziar Nekovee

    2010-01-01

    Full Text Available Cognitive radio is being intensively researched as the enabling technology for license-exempt access to the so-called TV White Spaces (TVWS, large portions of spectrum in the UHF/VHF bands which become available on a geographical basis after digital switchover. Both in the US, and more recently, in the UK the regulators have given conditional endorsement to this new mode of access. This paper reviews the state-of-the-art in technology, regulation, and standardisation of cognitive access to TVWS. It examines the spectrum opportunity and commercial use cases associated with this form of secondary access.

  8. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant. PMID:15959688

  9. The periareolar approach management of postoperative complication of breast augmentation by injected polyacrylamide hydrophilic gel%经乳晕切口治疗聚丙烯酰胺水凝胶注射隆乳术后并发症

    Institute of Scientific and Technical Information of China (English)

    李巍; 刘长松; 王涛; 陈伟华

    2011-01-01

    探讨聚丙烯酰胺水凝胶(PAHG)注射隆乳术后并发症及治疗方法.方法:自2003年7月~ 2009年5月,我科共收治PAHG注射隆乳术后患者67例,年龄32 ~ 50岁,均为双侧注射,术前常规行乳腺彩超和MRI检查,明确注射层次和周围组织浸润等情况.术中采用乳晕下缘切口,直视下取出注射物,根据肌肉的完整程度、有无感染以及注射物残留情况决定是否进行Ⅰ期乳房假体置入手术,其中有28例患者Ⅰ期置入乳房假体.结果:本组患者随访6个月~2年,所有患者术前症状基本消失,无假体疝出、感染、切口裂开、双侧乳房不对称等并发症出现,治疗效果良好.结论:经乳晕切口行PAHG取出术可最大程度的取出注射物,可在直视下了解周围组织破坏程度,决定乳房假体置入时机,可取得良好的治疗效果.%Objective To investigate postoperative complications of breast augmentation by injected polyacrylamide hydrophilic gel (PAHG) and discuss treatment through the periareolar approach. Methods From July 2003 to May 2009.67 patients with bilateral breast augmentation by injected PAHG underwent operation in our department, The age of patients ranged from 32 to 50 years.Ultrasound and MRI were performed before operation to show the distribution of PAHG and the tissue infiltration around the PAHG.The fillers were removed under direct vision through the periareolar approach.According to the muscle integrity, infection and PAHG residue, whether breast implants were implanted at the same stage was determined,and the breast implantation operation were performed in 28 patients. Results The patients were followed up for 6 months to 2 years.The symptoms before operation disappeared in ail patients , there was no complication of implant hernia, infection,wound disruption, or asymmetry. Conclusions The PAHG can be removed mostly and the degree of histoclasia can be known under direct vision.and the time for breast implantion

  10. Augmented reality based real-time subcutaneous vein imaging system.

    Science.gov (United States)

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  11. Augmented reality based real-time subcutaneous vein imaging system.

    Science.gov (United States)

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690

  12. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  13. Applying the system engineering approach to devise a master’s degree program in space technology in developing countries

    Science.gov (United States)

    Jazebizadeh, Hooman; Tabeshian, Maryam; Taheran Vernoosfaderani, Mahsa

    2010-11-01

    Although more than half a century is passed since space technology was first developed, developing countries are just beginning to enter the arena, focusing mainly on educating professionals. Space technology by itself is an interdisciplinary science, is costly, and developing at a fast pace. Moreover, a fruitful education system needs to remain dynamic if the quality of education is the main concern, making it a complicated system. This paper makes use of the System Engineering Approach and the experiences of developed countries in this area while incorporating the needs of the developing countries to devise a comprehensive program in space engineering at the Master's level. The needs of the developing countries as regards space technology education may broadly be put into two categories: to raise their knowledge of space technology which requires hard work and teamwork skills, and to transfer and domesticate space technology while minimizing the costs and maximizing its effectiveness. The requirements of such space education system, which include research facilities, courses, and student projects are then defined using a model drawn from the space education systems in universities in North America and Europe that has been modified to include the above-mentioned needs. Three design concepts have been considered and synthesized through functional analysis. The first one is Modular and Detail Study which helps students specialize in a particular area in space technology. Second is referred to as Integrated and Interdisciplinary Study which focuses on understanding and development of space systems. Finally, the third concept which has been chosen for the purpose of this study, is a combination of the other two, categorizing the required curriculum into seven modules, setting aside space applications. This helps students to not only specialize in one of these modules but also to get hands-on experience in a real space project through participation in summer group

  14. MetaTree: augmented reality narrative explorations of urban forests

    Science.gov (United States)

    West, Ruth; Margolis, Todd; O'Neil-Dunne, Jarlath; Mendelowitz, Eitan

    2012-03-01

    As cities world-wide adopt and implement reforestation initiatives to plant millions of trees in urban areas, they are engaging in what is essentially a massive ecological and social experiment. Existing air-borne, space-borne, and fieldbased imaging and inventory mechanisms fail to provide key information on urban tree ecology that is crucial to informing management, policy, and supporting citizen initiatives for the planting and stewardship of trees. The shortcomings of the current approaches include: spatial and temporal resolution, poor vantage point, cost constraints and biological metric limitations. Collectively, this limits their effectiveness as real-time inventory and monitoring tools. Novel methods for imaging and monitoring the status of these emerging urban forests and encouraging their ongoing stewardship by the public are required to ensure their success. This art-science collaboration proposes to re-envision citizens' relationship with urban spaces by foregrounding urban trees in relation to local architectural features and simultaneously creating new methods for urban forest monitoring. We explore creating a shift from overhead imaging or field-based tree survey data acquisition methods to continuous, ongoing monitoring by citizen scientists as part of a mobile augmented reality experience. We consider the possibilities of this experience as a medium for interacting with and visualizing urban forestry data and for creating cultural engagement with urban ecology.

  15. An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space.

    Science.gov (United States)

    Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan

    2014-03-01

    Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. PMID:24296116

  16. Natural heat transfer augmentation in passive advanced BWR plants

    International Nuclear Information System (INIS)

    In the European Simplified Boiling Water Reactor (ESBWR), the long-term post-accident containment pressure is determined by the combination of non condensable gas pressure and steam pressure in the wet well gas space. Since there are no active systems for heat removal in the wet well, energy transmitted to the wet well gas space, by a variety of means, must be removed by passive heat transfer to the walls and suppression pool (SP). The cold suppression pool located below the hotter gas space provides a stable configuration in which convection currents are suppressed thus limiting heat and mass transfer between the gas space and pool. However, heat transfer to the walls results in natural circulation currents that can augment the heat and mass transfer to the pool surface. Using a simplified model, parametric studies are carried out to show that augmentation of the order of magnitude expected can significantly impact the heat and mass transfer to the pool. Additionally a review of available literature in the area of augmentation and mixed convection of this type is presented and indicates the need for additional experimental work in order to develop adequate models for heat and mass transfer augmentation in the configuration of a BWR suppression pool. (author)

  17. Localized atomic basis set in the projector augmented wave method

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Vanin, Marco; Mortensen, Jens Jørgen;

    2009-01-01

    We present an implementation of localized atomic-orbital basis sets in the projector augmented wave (PAW) formalism within the density-functional theory. The implementation in the real-space GPAW code provides a complementary basis set to the accurate but computationally more demanding grid...

  18. Real-space density functional theory on graphical processing units: computational approach and comparison to Gaussian basis set methods

    OpenAIRE

    Andrade, Xavier; Aspuru-Guzik, Alan

    2013-01-01

    We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a su...

  19. A novel approach to the identification of urban sprawl patches based on the scaling of geographic space

    OpenAIRE

    Liu, Xintao; Jiang, Bin

    2011-01-01

    This paper introduces a novel approach to identifying urban sprawl patches based on the statistics of blocks and natural cities under the principle of scaling of geographic space. Blocks are the minimum cycles decomposed from a road network and the important geographic elements in the process of urbanization. Scaling of geographic space refers to the phenomenon that small geographic objects are far more numerous than large ones. In this study, the measurements of block area, morphology and st...

  20. Unpower aerocraft augmented state feedback tracking guaranteed cost control

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aimed at designing the unpower aerocraft attitude control system in a simple and practical way,the guaranteed cost control is adopted.To eliminate the steady-error,a novel tracking control approach-augmented state feedback tracking guaranteed cost control is proposed.Firstly,the unpower aerocraft is modeled as a linear system with norm bounded parameter uncertain,then the linear matrix inequality based state feedback gnaranteed cost control law is combined with the augmented state feedback tracking control from a new point of view.The sufficient condition of the existence of the augmented state feedback tracking guaranteed cost control is derived and converted to the feasible problem of the linear matrix inequality.Finally,the proposed approach is applied to a specified unpower aerocraft.The six dimensions of freedom simulation results show that the proposed approach is effective and feasible.

  1. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  2. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    CERN Document Server

    Andrade, Xavier; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Ángel

    2015-01-01

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  3. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems.

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Angel

    2015-12-21

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.

  4. Phase-space densities and effects of resonance decays in a hydrodynamic approach to heavy ion collisions

    International Nuclear Information System (INIS)

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions

  5. Coral growth on three reefs: development of recovery benchmarks using a space for time approach

    Science.gov (United States)

    Done, T. J.; Devantier, L. M.; Turak, E.; Fisk, D. A.; Wakeford, M.; van Woesik, R.

    2010-12-01

    This 14-year study (1989-2003) develops recovery benchmarks based on a period of very strong coral recovery in Acropora-dominated assemblages on the Great Barrier Reef (GBR) following major setbacks from the predatory sea-star Acanthaster planci in the early 1980s. A space for time approach was used in developing the benchmarks, made possible by the choice of three study reefs (Green Island, Feather Reef and Rib Reef), spread along 3 degrees of latitude (300 km) of the GBR. The sea-star outbreaks progressed north to south, causing death of corals that reached maximum levels in the years 1980 (Green), 1982 (Feather) and 1984 (Rib). The reefs were initially surveyed in 1989, 1990, 1993 and 1994, which represent recovery years 5-14 in the space for time protocol. Benchmark trajectories for coral abundance, colony sizes, coral cover and diversity were plotted against nominal recovery time (years 5-14) and defined as non-linear functions. A single survey of the same three reefs was conducted in 2003, when the reefs were nominally 1, 3 and 5 years into a second recovery period, following further Acanthaster impacts and coincident coral bleaching events around the turn of the century. The 2003 coral cover was marginally above the benchmark trajectory, but colony density (colonies.m-2) was an order of magnitude lower than the benchmark, and size structure was biased toward larger colonies that survived the turn of the century disturbances. The under-representation of small size classes in 2003 suggests that mass recruitment of corals had been suppressed, reflecting low regional coral abundance and depression of coral fecundity by recent bleaching events. The marginally higher cover and large colonies of 2003 were thus indicative of a depleted and aging assemblage not yet rejuvenated by a strong cohort of recruits.

  6. Summer school in the field of Space Technologies: A novel approach for teenage education

    Science.gov (United States)

    Dolea, Paul; Vladut Dascal, Paul

    2014-05-01

    This paper presents the main practical aspects regarding the organization of a summer school in the field of Space Technologies and Radio Science. This one-week summer school is aimed for education of teenagers between 12 and 16 years. Currently, the summer school reached its third edition. During this educational activities some especially designed prototype equipments were used with the main purpose of educating adolescents towards a scientific career in the field of Space Technologies and Radio Science. The main equipments and associated experiments are presented as follows: 1. A teaching purpose radio telescope emphasizing the working principle of professional radio telescopes. The experiments were focused on scanning the sky for identifying the positions of geostationary satellites and the Sun. 2. A weather satellite reception equipment used for downloading real-time APT (Automatic Picture Transmission) weather data from NOAA (National Oceanic and Atmospheric Administration) weather satellite fleet. The visual images were used for emphasizing the clouds and cloud systems over Europe. 3. A prototype equipment for receiving electromagnetic waves in the field of VLF (Very Low Frequency) with the purpose of analyzing the electromagnetic radio frequency spectrum. The main emphasized phenomenons in the VLF band (3 kHz - 30 kHz) are related to radio transmitters, electrical discharges in the atmosphere (lightning) and the electromagnetic pollution. 4. An equipment designed for initiating teenagers in the field of radio communication. This equipment was used for transmission and reception of images and sound over a distance of few kilometers, by using high-gain directional antennas. 5. Other sets of experiments were undertaken with the main purpose of mapping the countryside area in which the experiments had taken place. For this activity GPS devices were used. This paper may be considered a practical guideline for those who want to attract young students towards a

  7. State-space approach for the analysis of soil water content and temperature in a sugarcane crop

    Directory of Open Access Journals (Sweden)

    Dourado-Neto Durval

    1999-01-01

    Full Text Available The state-space approach is used to describe surface soil water content and temperature behaviour, in a field experiment in which sugarcane is submitted to different management practices. The treatments consisted of harvest trash mulching, bare soil, and burned trash, all three in a ratoon crop, after first cane harvest. One transect of 84 points was sampled, meter by meter, covering all treatments and borders. The state-space approach is described in detail and the results show that soil water contents measured along the transect could successfully be estimated from water content and temperature observations made at the first neighbour.

  8. Freegaming: Mobile, Collaborative, Adaptive and Augmented Exergaming

    Directory of Open Access Journals (Sweden)

    Levent Görgü

    2012-01-01

    Full Text Available Addressing the obesity epidemic that plagues many societies remains an outstanding public health issue. One innovative approach to addressing this problem is Exergaming. A combination of Exercise and Gaming, the objective is to motivate people participate in exercise regimes, usually in their home environment. In this article a more holistic interpretation of this exercise paradigm is proposed. Freegaming augments Exergaming in a number of key dimensions but especially through the promotion of games in outdoor mobile contexts and within a social environment. The design and implementation of a platform for Freegaming is described and illustrated through the description of a sample game.

  9. Using Laser Scanners to Augment the Systematic Error Pointing Model

    Science.gov (United States)

    Wernicke, D. R.

    2016-08-01

    The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.

  10. State space model extraction of thermohydraulic systems Part I: a linear graph approach

    OpenAIRE

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space represen...

  11. Distribution function approach to redshift space distortions. Part V: perturbation theory applied to dark matter halos

    CERN Document Server

    Vlah, Zvonimir; Okumura, Teppei; Desjacques, Vincent

    2013-01-01

    Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k<0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use perturbation theory (PT) and halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k~0.15h/Mpc at z=0, without the need to have fr...

  12. Runoff modelling using radar data and flow measurements in a stochastic state space approach.

    Science.gov (United States)

    Krämer, S; Grum, M; Verworn, H R; Redder, A

    2005-01-01

    In urban drainage the estimation of runoff with the help of models is a complex task. This is in part due to the fact that rainfall, the most important input to urban drainage modelling, is highly uncertain. Added to the uncertainty of rainfall is the complexity of performing accurate flow measurements. In terms of deterministic modelling techniques these are needed for calibration and evaluation of the applied model. Therefore, the uncertainties of rainfall and flow measurements have a severe impact on the model parameters and results. To overcome these problems a new methodology has been developed which is based on simple rain plane and runoff models that are incorporated into a stochastic state space model approach. The state estimation is done by using the extended Kalman filter in combination with a maximum likelihood criterion and an off-line optimization routine. This paper presents the results of this new methodology with respect to the combined consideration of uncertainties in distributed rainfall derived from radar data and uncertainties in measured flows in an urban catchment within the Emscher river basin, Germany.

  13. A State-Space Modeling Approach for Active Structural Acoustic Control

    Directory of Open Access Journals (Sweden)

    Leopoldo P.R. de Oliveira

    2009-01-01

    Full Text Available The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle's cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.

  14. A space-for-time (SFT substitution approach to studying historical phenological changes in urban environment.

    Directory of Open Access Journals (Sweden)

    Alexander Buyantuyev

    Full Text Available Plant phenological records are crucial for predicting plant responses to global warming. However, many historical records are either short or replete with data gaps, which pose limitations and may lead to erroneous conclusions about the direction and magnitude of change. In addition to uninterrupted monitoring, missing observations may be substituted via modeling, experimentation, or gradient analysis. Here we have developed a space-for-time (SFT substitution method that uses spatial phenology and temperature data to fill gaps in historical records. To do this, we combined historical data for several tree species from a single location with spatial data for the same species and used linear regression and Analysis of Covariance (ANCOVA to build complementary spring phenology models and assess improvements achieved by the approach. SFT substitution allowed increasing the sample size and developing more robust phenology models for some of the species studied. Testing models with reduced historical data size revealed thresholds at which SFT improved historical trend estimation. We conclude that under certain circumstances both the robustness of models and accuracy of phenological trends can be enhanced although some limitations and assumptions still need to be resolved. There is considerable potential for exploring SFT analyses in phenology studies, especially those conducted in urban environments and those dealing with non-linearities in phenology modeling.

  15. Momentum-space approach to nuclear reaction studies: opportunities and perspectives

    International Nuclear Information System (INIS)

    The application of momentum-space three- and four-body scattering equations to the description of nuclear reactions involving systems of three and four nucleons is reviewed, and major achievements and challenges are identified. The calculations include realistic state-of-the-art interactions between nucleon pairs, together with the Coulomb interaction between protons. The effect of including three- and four-nucleon forces is discussed. Further calculations are shown involving the study of nuclear reactions where three-body degrees of freedom play a significant role. These studies involve not just an attempt to describe data in terms of a full three-body model that is solved numerically in a converged way, but also to use this exact framework to validade and test the accuracy of approximate reaction methods such as continuum discretized coupled channel (CDCC), distorted wave impulse approximation (DWIA), plane-wave impulse approximation (PWIA) and the Glauber multiple scattering approach. These comparisons are able to teach researchers under which conditions approximate methods can be used to extract important structural information about exotic nuclei. Prospects and challenges are discussed. (paper)

  16. Distribution function approach to redshift space distortions. Part V: perturbation theory applied to dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Vlah, Zvonimir; Seljak, Uroš [Institute for Theoretical Physics, University of Zürich, Zürich (Switzerland); Okumura, Teppei [Institute for the Early Universe, Ewha Womans University, Seoul, S. Korea (Korea, Republic of); Desjacques, Vincent, E-mail: zvlah@physik.uzh.ch, E-mail: seljak@physik.uzh.ch, E-mail: teppei@ewha.ac.kr, E-mail: Vincent.Desjacques@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics (CAP) Université de Genéve, Genéve (Switzerland)

    2013-10-01

    Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.

  17. Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Report.

    Science.gov (United States)

    Connors, Christopher A; Liacouras, Peter C; Grant, Gerald T

    2016-01-01

    This is a case report of a custom titanium ridge augmentation matrix (CTRAM). Using cone beam computed tomography (CBCT), a custom titanium space-maintaining device was developed. Alveolar ridges were virtually augmented, a matrix was virtually designed, and the CTRAM was additively manufactured with titanium (Ti6Al4V). Two cases are presented that resulted in sufficient increased horizontal bone volume with successful dental implant placement. The CTRAM design allows for preoperative planning for increasing alveolar ridge dimensions to support dental implants, reduces surgical time, and prevents the need for a second surgical site to gain sufficient alveolar ridge bone volume for dental implant therapy. PMID:27560675

  18. REVIEW OF HEAT TRANSFER AUGMENTATION WITH TAPE INSERTS

    Directory of Open Access Journals (Sweden)

    S.S.JOSHI,

    2011-03-01

    Full Text Available Heat transfer augmentation techniques refer to different methods used to increase rate of heat transfer without affecting much the overall performance of the system. These techniques are used in heat exchangers. Some of the applications of heat exchangers are-in process industries, thermal Power plants, airconditioning equipments, refrigerators, radiators for space vehicles, automobiles etc. These techniques broadly are of three types viz. passive, active and compound techniques. The present paper is a review of the passive augmentation techniques used in the recent past.

  19. Augmented Reality Tower Technology Assessment

    Science.gov (United States)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  20. Transaxillary endoscopic silicone gel breast augmentation.

    Science.gov (United States)

    Strock, Louis L

    2010-09-01

    Following the return of silicone gel breast implants to the US market in 2006, augmentation with these implants has become increasingly popular. Surgeons have an array of refined techniques from which to choose when performing these procedures, many of which offer the advantage of reduced or less-obvious postoperative scarring. For obvious reasons, many patients are requesting placement of the implants through incisions that are removed from the breast area (and thereby hidden). The challenge of these approaches is to provide a level of technical control that matches what is afforded with the traditional inframammary approach. The addition of endoscopic assistance has provided a level of tissue visualization and technical control not previously possible with the transaxillary approach, with results that rival those of an inframammary procedure. In this article, the author presents his current operative technique, which has allowed for the routine placement of silicone gel breast implants through a transaxillary incision using endoscopic assistance.

  1. Augmentation-related brain plasticity

    Science.gov (United States)

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  2. AUGMENTATION-RELATED BRAIN PLASTICITY

    Directory of Open Access Journals (Sweden)

    Giovanni eDi Pino

    2014-06-01

    Full Text Available Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyzes the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain.Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools.Augmentation modifies function and structure of a number of areas, i.e. primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the

  3. Space commerce in a global economy: Comparison of US and Australian approaches

    Science.gov (United States)

    Stone, Barbara A.; Page, John R.

    1993-01-01

    The United States and Australia are among the 20 or more nations of the world having industries currently engaging in some form of space commerce. As a matter of national policy, the United States has encouraged private investment and involvement in space activities since 1984, when the Congress declared it in the best interest of the Nation that NASA '...seek and encourage to the maximum extent possible, the fullest commercial use of space.' Australia's space policy, announced in 1986, has the objective of encouraging greater involvement by industry in space research and development, and the development of commercial space activities. This paper discusses the underlying policies, current status, and prospects for the future of commercial space business activities in the two countries.

  4. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    2015-01-01

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...

  5. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  6. Modelling trends in climatic time series using the state space approach

    Science.gov (United States)

    Laine, Marko; Kyrölä, Erkki

    2014-05-01

    A typical feature of an atmospheric time series is that they are not stationary but exhibit both slowly varying and abrupt changes in the distributional properties. These are caused by external forcing such as changes in the solar activity or volcanic eruptions. Further, the data sampling is often nonuniform, there are data gaps, and the uncertainty of the observations can vary. When observations are combined from various sources there will be instrument and retrieval method related biases. The differences in sampling lead to uncertainties, also. Dynamic regression with state space representation of the underlying processes provides flexible tools for these challenges in the analysis. By explicitly allowing for variability in the regression coefficients we let the system properties change in time. This change in time can be modelled and estimated, also. Furthermore, the use of unobservable state variables allows modelling of the processes that are driving the observed variability, such as seasonality or external forcing, and we can explicitly allow for some modelling error. The state space approach provides a well-defined hierarchical statistical model for assessing trends defined as long term background changes in the time series. The modelling assumptions can be evaluated and the method provides realistic uncertainty estimates for the model based statements on the quantities of interest. We show that a linear dynamic model (DLM) provides very flexible tool for trend and change point analysis in time series. Given the structural parameters of the model, the Kalman filter and Kalman smoother formulas can be used to estimate the model states. Further, we provide an efficient way to account for the structural parameter uncertainty by using adaptive Markov chain Monte Carlo (MCMC) algorithm. Then, the trend related statistics can be estimated by simulating realizations of the estimated processes with fully quantified uncertainties. This presentation will provide a

  7. Real-space density functional theory on graphical processing units: computational approach and comparison to Gaussian basis set methods

    CERN Document Server

    Andrade, Xavier

    2013-01-01

    We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code OCTOPUS, can reach a sustained performance of up to 90 GFlops for a single GPU, representing an important speed-up when compared to the CPU version of the code. Moreover, for some systems our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.

  8. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.

    Science.gov (United States)

    Andrade, Xavier; Aspuru-Guzik, Alán

    2013-10-01

    We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs. PMID:26589153

  9. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.

    Science.gov (United States)

    Andrade, Xavier; Aspuru-Guzik, Alán

    2013-10-01

    We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.

  10. Marker-Based Embodied Interaction for Handheld Augmented Reality Games

    Directory of Open Access Journals (Sweden)

    Michael Rohs

    2007-05-01

    Full Text Available This article deals with embodied user interfaces for handheld augmented reality games, which consist of both physical and virtual components. We have developed a number of spatial interaction techniques that optically capture the device’s movement and orientation relative to a visual marker. Such physical interactions in 3D space enable manipulative control of mobile games. In addition to acting as a physical controller that recognizes multiple game-dependent gestures, the mobile device augments the camera view with graphical overlays. We describe three game prototypes that use ubiquitous product packaging and other passive media as backgrounds for handheld augmentation. The prototypes can be realized on widely available off-the-shelf hardware and require only minimal setup and infrastructure support.

  11. HDF Augmentation: Interoperability in the Last Mile

    Science.gov (United States)

    Plutchak, J.; Folk, M. J.; Habermann, T.; Knox, L.

    2014-12-01

    Science data files are generally written to serve well-defined purposes for a small science teams. In many cases, the organization of the data and the metadata are designed for custom tools developed and maintained by and for the team. Using these data outside of this context many times involves restructuring, re-documenting, or reformatting the data. This expensive and time-consuming process usually prevents data reuse and thus decreases the total life-cycle value of the data considerably. If the data are unique or critically important to solving a particular problem, they can be modified into a more generally usable form or metadata can be added in order to enable reuse. This augmentation process can be done to enhance data for the intended purpose or for a new purpose, to make the data available to new tools and applications, to make the data more conventional or standard, or to simplify preservation of the data. The HDF Group has addressed augmentation needs in many ways: by adding extra information, by renaming objects or moving them around in the file, by reducing complexity of the organization, and sometimes by hiding data objects that are not understood by specific applications. In some cases these approaches require re-writing the data into new files and in some cases it can be done externally, without affecting the original file. We will describe and compare several examples of each approach.

  12. Flow of Fractal Fluid in Pipes: Non-Integer Dimensional Space Approach

    CERN Document Server

    Tarasov, Vasily E

    2015-01-01

    Using a generalization of vector calculus for the case of non-integer dimensional space we consider a Poiseuille flow of an incompressible viscous fractal fluid in the pipe. Fractal fluid is described as a continuum in non-integer dimensional space. A generalization of the Navier-Stokes equations for non-integer dimensional space, its solution for steady flow of fractal fluid in a pipe and corresponding fractal fluid discharge are suggested.

  13. A Nanotechnology Approach to Lightweight Multifunctional Polyethylene Composite Materials for Use Against the Space Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene-based composite materials are under consideration as multifunctional structural materials, with the expectation that they can provide radiation...

  14. SpecSwap RMC: A novel reverse Monte Carlo approach using a discrete configuration space and pre-computed properties

    CERN Document Server

    Leetmaa, Mikael; Pettersson, Lars G M

    2009-01-01

    We present a novel approach to reverse Monte Carlo (RMC) modeling, SpecSwap-RMC, which makes use of pre-computed property data from a discrete configuration space replacing atomistic moves with swap moves of contributions to a sample-set representing the average, or summed property. The approach is particularly suitable for disordered systems and properties which require significant computer time to compute. We demonstrate the approach by fitting jointly and separately the EXAFS signal and x-ray absorption spectrum (XAS) of ice Ih using as SpecSwap sample-set 80 configurations from a space of 1382 local structures with associated pre-computed spectra. As an additional demonstration we compare SpecSwap and FEFFIT fits of EXAFS data on crystalline copper finding excellent agreement.

  15. Augmenting digital displays with computation

    Science.gov (United States)

    Liu, Jing

    As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion

  16. Keeping It Real: Revisiting a Real-Space Approach to Running Ensembles of Cosmological N-body Simulations

    CERN Document Server

    Orban, Chris

    2012-01-01

    In setting up initial conditions for cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to the real-space clustering. As a stringent test of both approaches, I perform ensembles of simulations using power law models and exploit the self-similarity of these initial conditions to quantify the accuracy of the results. Originally proposed by Pen 1997 and implemented by Sirko 2005, I show that the real-space motivated approach, which allows the DC mode to vary, performs well in exhibiting the expected self-similar behavior in the mean xi(r) and P(k) and in both methods this behavior extends below the scale of the initial mean interparticle spacing. I also test the real-space method with simulations of a simplified, powerlaw model for baryon acoustic oscillations, again with success, and mindful of the need to generate mock catalogs using simulations I show extensive po...

  17. Trial and Error: A new Approach to Space-Bounded Learning

    DEFF Research Database (Denmark)

    Ameur, F.; Fischer, Paul; Hoeffgen, H.-U.;

    1996-01-01

    A pac-learning algorithm is d-space bounded, if it stores at most d examples from the sample at any time. We characterize the d-space learnable concept classes. For this purpose we introduce the compression parameter of a concept class 𝒞 and design our trial and error learning algorithm. We ...

  18. Considering Race and Space: Mapping Developmental Approaches for Providing Culturally Responsive Advising

    Science.gov (United States)

    Mitchell, Roland W.; Wood, Gerald K.; Witherspoon, Noelle

    2010-01-01

    This exploratory essay critically examines how social relations structure the production of space on a college campus. In particular, we analyze how the organization of one particular site--the student advising office at a southeastern university--calls attention to the relationship between race and space in ways that re-inscribe narrow…

  19. Different Approaches for the Einstein Energy Associated with the de Sitter C-Space-time

    CERN Document Server

    Salti, M

    2005-01-01

    The paper is purposed to elaborate the problem of gravitational energy localization in de Sitter(dS) C-space-time (the C space-time in a background with a cosmological constant $\\Lambda$). In this connection, using the energy-momentum definition of Einstein, we find the same energy in both general relativity and tele-parallel gravity.

  20. Building HIA approaches into strategies for green space use: an example from Plymouth's (UK) Stepping Stones to Nature project.

    Science.gov (United States)

    Richardson, J; Goss, Z; Pratt, A; Sharman, J; Tighe, M

    2013-12-01

    The health and well-being benefits of access to green space are well documented. Research suggests positive findings regardless of social group, however barriers exist that limit access to green space, including proximity, geography and differing social conditions. Current public health policy aims to broaden the range of environmental public health interventions through effective partnership working, providing opportunities to work across agencies to promote the use of green space. Health Impact Assessment (HIA) is a combination of methods and procedures to assess the potential health and well-being impacts of policies, developments and projects. It provides a means by which negative impacts can be mitigated and positive impacts can be enhanced, and has potential application for assessing green space use. This paper describes the application of a HIA approach to a multi-agency project (Stepping Stones to Nature--SS2N) in the UK designed to improve local green spaces and facilitate green space use in areas classified as having high levels of deprivation. The findings suggest that the SS2N project had the potential to provide significant positive benefits in the areas of physical activity, mental and social well-being. Specific findings for one locality identified a range of actions that could be taken to enhance benefits, and mitigate negative factors such as anti-social behaviour. The HIA approach proved to be a valuable process through which impacts of a community development/public health project could be enhanced and negative impacts prevented at an early stage; it illustrates how a HIA approach could enhance multi-agency working to promote health and well-being in communities.

  1. A new approach to provide high-reliability data systems without using space-qualified electronic components

    Science.gov (United States)

    Haebel, Wolfgang

    2004-08-01

    This paper describes the present situation and the expected trends with regard to the availability of electronic components, their quality levels, technology trends and sensitivity to the space environment. Many recognized vendors have already discontinued their MIL production line and state of the art components will in many cases not be offered in this quality level because of the shrinking market. It becomes therefore obvious that new methods need to be considered "How to build reliable Data Systems for space applications without High-Rel parts". One of the most promising approaches is the identification, masking and suppression of faults by developing fault-tolerant computer systems which is described in this paper.

  2. Augmented reality and its practical application

    OpenAIRE

    ZÍTKOVÁ, Helena

    2011-01-01

    This thesis combines topic of augmented reality with tourism. For analyzing the state of the use of augmented reality was composed case studies. It was created product, which is called Guide to mobile phone.

  3. Phase-space densities and effects of resonance decays in a hydrodynamic approach to heavy ion collisions

    CERN Document Server

    Akkelin, S V; 10.1103/PhysRevC.70.064901

    2004-01-01

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase- space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase- space dens...

  4. Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operators

    CERN Document Server

    Fasshauer, Gregory E; 10.1007/s00211-011-0391-2

    2012-01-01

    In this paper we introduce a generalized Sobolev space by defining a semi-inner product formulated in terms of a vector distributional operator $\\mathbf{P}$ consisting of finitely or countably many distributional operators $P_n$, which are defined on the dual space of the Schwartz space. The types of operators we consider include not only differential operators, but also more general distributional operators such as pseudo-differential operators. We deduce that a certain appropriate full-space Green function $G$ with respect to $L:=\\mathbf{P}^{\\ast T}\\mathbf{P}$ now becomes a conditionally positive definite function. In order to support this claim we ensure that the distributional adjoint operator $\\mathbf{P}^{\\ast}$ of $\\mathbf{P}$ is well-defined in the distributional sense. Under sufficient conditions, the native space (reproducing-kernel Hilbert space) associated with the Green function $G$ can be isometrically embedded into or even be isometrically equivalent to a generalized Sobolev space. As an applica...

  5. Restarted FOM Augmented with Ritz Vectors for Shifted Linear Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The restarted FOM method presented by Simoncini [7] according to the natural collinearity of all residuals is an efficient method for solving shifted systems, which generates the same Krylov subspace when the shifts are handled simultaneously. However, restarting slows down the convergence. We present a practical method for solving the shifted systems by adding some Ritz vectors into the Krylov subspace to form an augmented Krylov subspace.Numerical experiments illustrate that the augmented FOM approach (restarted version) can converge more quickly than the restarted FOM method.

  6. Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models

    Institute of Scientific and Technical Information of China (English)

    LI Chaokui; ZHU Qing; SONG Chengfang

    2003-01-01

    This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.

  7. A compressive sensing approach to the calculation of the inverse data space

    KAUST Repository

    Khan, B. H.

    2012-01-01

    Seismic processing in the Inverse Data Space (IDS) has its advantages like the task of removing the multiples simply becomes muting the zero offset and zero time data in the inverse domain. Calculation of the Inverse Data Space by sparse inversion techniques has seen mitigation of some artifacts. We reformulate the problem by taking advantage of some of the developments from the field of Compressive Sensing. The seismic data is compressed at the sensor level by recording projections of the traces. We then process this compressed data directly to estimate the inverse data space. Due to the smaller number of data set we also gain in terms of computational complexity.

  8. Augmented Reality for Multi-disciplinary Collaboration

    OpenAIRE

    Wang, Xiangyu; Rui

    2010-01-01

    This chapter presents a framework for multi-disciplinary collaboration. Tangible Augmented Reality has been raised as one of suitable systems for design collaboration. Furthermore, it emphasizes the advantages of Tangible Augmented Reality to illustrate the needs for integrating the Tangible User Interfaces and Augmented Reality Systems.

  9. Ways toward a European Vocational Education and Training Space: A "Bottom-Up" Approach

    Science.gov (United States)

    Blings, Jessica; Spottl, Georg

    2008-01-01

    Purpose: This paper seeks to concentrate on bottom-up approaches in order to promote a European vocational education and training (VET) concept. The overall aim of this article is to demonstrate that sophisticated approaches still have a chance of becoming common practice in European countries. Design/methodology/approach: The centre of the…

  10. Approach and Issues Relating to Shield Material Design to Protect Astronauts from Space Radiation

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.

    2001-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Since aluminum (traditionally used in spacecraft to avoid potential radiation risks) leads to prohibitively expensive mission launch costs, alternative materials need to be explored. An overview of the materials related issues and their impact on human space exploration will be given.

  11. A hierarchical decomposition approach to retail shelf space management and assortment decisions

    OpenAIRE

    Irion, J.; J-C Lu; F A Al-Khayyal; Y-C Tsao

    2011-01-01

    Shelf management is a crucial task in retailing. Because of the large number of products found in most retail stores (sometimes more than 60 000), current shelf space management models can only solve sub-problems of the overall store optimization problem, since the size of the complete optimization problem would be prohibitively large. Consequently, an optimal allocation of store shelf space to products has not yet been achieved. We show that a hierarchical decomposition technique, consisting...

  12. Fixed functional space maintainer: novel aesthetic approach for missing maxillary primary anterior teeth

    OpenAIRE

    Khare, Vikram; Nayak, Prathibha Anand; Khandelwal, Vishal; Nayak, Ullal Anand

    2013-01-01

    The first-line treatment of non-restorable traumatically injured or carious deciduous teeth is extraction which may be a curse for the future dentition as well as social activity of a child. Various therapeutic modalities from removable partial dentures to fixed space maintainer can be used for replacement of such lost teeth. Two types of fixed aesthetic space maintainers for replacing premature loss of maxillary deciduous incisors in 4-year-old children are discussed.

  13. A covariant approach to general field space metric in multi-field inflation

    International Nuclear Information System (INIS)

    We present a covariant formalism for general multi-field system which enables us to obtain higher order action of cosmological perturbations easily and systematically. The effects of the field space geometry, described by the Riemann curvature tensor of the field space, are naturally incorporated. We explicitly calculate up to the cubic order action which is necessary to estimate non-Gaussianity and present those geometric terms which have not yet been known before

  14. Fixed functional space maintainer: novel aesthetic approach for missing maxillary primary anterior teeth.

    Science.gov (United States)

    Khare, Vikram; Nayak, Prathibha Anand; Khandelwal, Vishal; Nayak, Ullal Anand

    2013-06-03

    The first-line treatment of non-restorable traumatically injured or carious deciduous teeth is extraction which may be a curse for the future dentition as well as social activity of a child. Various therapeutic modalities from removable partial dentures to fixed space maintainer can be used for replacement of such lost teeth. Two types of fixed aesthetic space maintainers for replacing premature loss of maxillary deciduous incisors in 4-year-old children are discussed.

  15. Augmenting Probabilistic Risk Assesment with Malevolent Initiators

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; David Schwieder

    2011-11-01

    As commonly practiced, the use of probabilistic risk assessment (PRA) in nuclear power plants only considers accident initiators such as natural hazards, equipment failures, and human error. Malevolent initiators are ignored in PRA, but are considered the domain of physical security, which uses vulnerability assessment based on an officially specified threat (design basis threat). This paper explores the implications of augmenting and extending existing PRA models by considering new and modified scenarios resulting from malevolent initiators. Teaming the augmented PRA models with conventional vulnerability assessments can cost-effectively enhance security of a nuclear power plant. This methodology is useful for operating plants, as well as in the design of new plants. For the methodology, we have proposed an approach that builds on and extends the practice of PRA for nuclear power plants for security-related issues. Rather than only considering 'random' failures, we demonstrated a framework that is able to represent and model malevolent initiating events and associated plant impacts.

  16. Effective Augmentation of Complex Networks

    Science.gov (United States)

    Wang, Jinjian; Yu, Xinghuo; Stone, Lewi

    2016-05-01

    Networks science plays an enormous role in many aspects of modern society from distributing electrical power across nations to spreading information and social networking amongst global populations. While modern networks constantly change in size, few studies have sought methods for the difficult task of optimising this growth. Here we study theoretical requirements for augmenting networks by adding source or sink nodes, without requiring additional driver-nodes to accommodate the change i.e., conserving structural controllability. Our “effective augmentation” algorithm takes advantage of clusters intrinsic to the network topology, and permits rapidly and efficient augmentation of a large number of nodes in one time-step. “Effective augmentation” is shown to work successfully on a wide range of model and real networks. The method has numerous applications (e.g. study of biological, social, power and technological networks) and potentially of significant practical and economic value.

  17. Building a quality culture in the Office of Space Flight: Approach, lessons learned and implications for the future

    Science.gov (United States)

    Roberts, C. Shannon

    The purpose of this paper is to describe the approach and lessons learned by the Office of Space Flight (OSF), National Aeronautics and Space Administration (NASA), in its introduction of quality. In particular, the experience of OSF Headquarters is discussed as an example of an organization within NASA that is considering both the business and human elements of the change and the opportunities the quality focus presents to improve continuously. It is hoped that the insights shared will be of use to those embarking upon similar cultural changes. The paper is presented in the following parts: the leadership challenge; background; context of the approach to quality; initial steps; current initiatives; lessons learned; and implications for the future.

  18. Novel approach for evaluation of air change rate in naturally ventilated occupied spaces based on metabolic CO2 time variation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Markov, Detelin G.

    2014-01-01

    , air-tight space, constant indoor pressure and temperature. The proposed approach for ACR evaluation can be applied to time intervals with any length, even with varying parameters of both indoor and outdoor air, in which metabolic CO2 generation rate is known and constant. This approach makes possible......IAQ in many residential buildings relies on non-organized natural ventilation. Accurate evaluation of air change rate (ACR) in this situation is difficult due to the nature of the phenomenon - intermittent infiltration-exfiltration periods of mass exchange between the room air and the outdoor air...

  19. Psychotherapy Augmentation through Preconscious Priming

    OpenAIRE

    Borgeat, François; O’Connor, Kieron; Amado, Danielle; St-Pierre-Delorme, Marie-Ève

    2013-01-01

    Objective: To test the hypothesis that repeated preconscious (masked) priming of personalized positive cognitions could augment cognitive change and facilitate achievement of patients’ goals following a therapy. Methods: Twenty social phobic patients (13 women) completed a 36-weeks study beginning by 12 weeks of group behavioral therapy. After the therapy, they received 6 weeks of preconscious priming and 6 weeks of a control procedure in a randomized cross-over design. The Priming conditi...

  20. Psychotherapy augmentation through preconscious priming

    OpenAIRE

    Francois eBorgeat; Kieron eO'Connor; Danielle eAmado; Marie-Eve eSt-Pierre-Delorme

    2013-01-01

    Objective: To test the hypothesis that repeated preconscious (masked) priming of personalized positive cognitions could augment cognitive change and facilitate achievement of patients’ goals following a therapy.Methods: Twenty social phobic patients (13 women) completed a 36 weeks study beginning by 12 weeks of group behavioural therapy. After the therapy, they received 6 weeks of preconscious priming and 6 weeks of a control procedure in a randomized cross-over design. The Priming condition ...

  1. Invariant-Based Augmented Reality on Mobile Phones

    Directory of Open Access Journals (Sweden)

    Jie Shen

    2010-12-01

    Full Text Available A calibration-free augmented reality based on affine invariant is firstly formulated by tensor method. This approach does not use the calibration parameters of the camera and the 3D locations of the environment’s object, and can realize the augmentation of virtual objects. Meanwhile, a new approach to resolving occlusion problem in augmented reality is presented. Based on an arm-optimized implementation of  the Scale Invariant Feature Transform (SIFT algorithm developed by David Lowe and Random Sample Consensus (RANSAC algorithm, the point correspondences in any two views are determined. According to the invariant for two views and these point correspondences, the occluding contours can be transferred to any views, so the occlusion is resolved. Some typical experiments show that the approach of invariant-based augmented reality is feasible on mobile phones. 

  2. Solving Integrable Broer-Kaup Equations in (2+1)-Dimensional Spaces via an Improved Variable Separation Approach

    Institute of Scientific and Technical Information of China (English)

    LI De-Sheng; LUO Cheng-Xin; ZHANG Hong-Qing

    2004-01-01

    Starting from Backlund transformation and using Cole-Hopf transformation, we reduce the integrable Broer-Kaup equations in (2+1)-dimensional spaces to a simple linear evolution equation with two arbitrary functions of {x,t} and {y,t} in this paper. And we can obtain some new solutions of the original equations by investigating the simple nonlinear evolution equation, which include the solutions obtained by the variable separation approach.

  3. State-Space Approaches For Modelling Reduction Of Pilot Symbol Assisted Modulation And Their Impact On The Channel Estimation

    Directory of Open Access Journals (Sweden)

    Hayder J. Albattat

    2012-09-01

    Full Text Available This paper outlines the use of a balance truncation algorithm to design low order infinite impulse response (IIR interpolator for pilot symbol assisted modulation. A state space model is developed to optimize filter coefficients. The proposed design for the filter has a frequency response is quite stable. This approach is highly beneficial for systems employing fading channel estimation. A comparison is given for the achieved results to that with ideal case.

  4. Augmented robotic device for EVA hand manoeuvres

    Science.gov (United States)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved

  5. An adaptive brain actuated system for augmenting rehabilitation

    OpenAIRE

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation an...

  6. Tracking for Outdoor Mobile Augmented Reality: Further development of the Zion Augmented Reality Application

    OpenAIRE

    Strand, Tor Egil Riegels

    2008-01-01

    This report deals with providing tracking to an outdoor mobile augmented reality system and the Zion Augmented Reality Application. ZionARA is meant to display a virtual recreation of a 13th century castle on the site it once stood through an augmented reality Head Mounted Display. Mobile outdoor augmented/mixed reality puts special demands on what kind of equipment is practical. After briefly evaluating the different existing tracking methods, a solution based on GPS and an augmented inertia...

  7. TOWARDS ENHANCING SOLUTION SPACE DIVERSITY IN MULTI-OBJECTIVE OPTIMIZATION: A HYPERVOLUME-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Kamyab Tahernezhadiani

    2012-02-01

    Full Text Available Diversity is an important notion in multi-objective evolutionary algorithms (MOEAs and a lot ofresearchers have investigated this issue by means of appropriate methods. However most of evolutionarymulti-objective algorithms have attempted to take control on diversity in the objective space only andmaximized diversity of solutions (population on Pareto- front. Nowadays due to importance of Multiobjectiveoptimization in industry and engineering, most of the designers want to find a diverse set ofPareto-optimal solutions which cover as much as space in its feasible regain of the solution space. Thispaper addresses this issue and attempt to introduce a method for preserving diversity of non-dominatedsolution (i.e. Pareto-set in the solution space. This paper introduces the novel diversity measure as a firsttime, and then this new diversity measure is integrated efficiently into the hypervolume based Multiobjectivemethod. At end of this paper we compare the proposed method with other state-of-the-artalgorithms on well-established test problems. Experimental results show that the proposed methodoutperforms its competitive MOEAs respect to the quality of solution space criteria and Pareto-setapproximation.

  8. Approach to develop space solar power as a new energy system for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, Makoto [Inst. of Space and Astronautical Science, Sagamihara (Japan)

    1996-12-31

    The idea of space solar power proposed by Glaser was explained as a set of a solar power station in geostationary earth orbit to transmit microwave power and a ground station to receive the microwave power. Most of the ideas and concepts since Glaser used the same context. On the other hand, Collins et al. introduced the concept of microwave `fuel` to assess the commercial relations of power from space, in which space solar power stations are considered to sell microwave power to any unspecified rectenna. This concept changed the theoretical context of `power from space` to an industrial and economic relation of producers and buyers of an industrial product. This new context has been applied to the SPS 2000 conceptual study. As a result, if 2.45 GHz microwave power transmission is used, each rectenna can be planned and engineered independently from the space sector by local users, especially in developing countries, who are familiar with such activities as introducing solar energy systems. 7 refs., 3 figs.

  9. Time-dependent generalized-active-space configuration-interaction approach to photoionization dynamics of atoms and molecules

    Science.gov (United States)

    Bauch, S.; Sørensen, L. K.; Madsen, L. B.

    2014-12-01

    We present a wave-function-based method to solve the time-dependent many-electron Schrödinger equation with special emphasis on strong-field ionization phenomena. The theory builds on the configuration-interaction (CI) approach supplemented by the generalized-active-space concept from quantum chemistry. The latter allows for a controllable reduction in the number of configurations in the CI expansion by imposing restrictions on the active orbital space. The method is similar to the recently formulated time-dependent restricted-active-space CI method [D. Hochstuhl and M. Bonitz, Phys. Rev. A 86, 053424 (2012), 10.1103/PhysRevA.86.053424]. We present details of our implementation and address convergence properties with respect to the active spaces and the associated account of electron correlation in both ground-state and excitation scenarios. We apply the time-dependent generalized-active-space CI theory to strong-field ionization of polar diatomic molecules and illustrate how the method allows us to uncover a strong correlation-induced shift of the preferred direction of emission of photoelectrons.

  10. The Soft Stowage® catalog: A new approach to procuring space qualified hardware

    Science.gov (United States)

    Smith, David A.

    2000-01-01

    The patented Soft Stowage® Human Space Logistics System had already proven itself within the Shuttle system of reusable carriers where it has been used extensively to transport cargo both up to and down from the Russian Mir Space Station. For the International Space Station (ISS) however, Boeing wanted to offer a seamless product line that offered launch/landing and orbital stowage hardware, as well as associated integration services that reduce the time, documentation, and cost of transporting goods between earth and earth orbit. To meet that objective Boeing developed a comprehensive Soft Stowage® commercial catalog that offers both fixed pricing and delivery of standard items six weeks from order. The ability to obtain modular stowage accommodation elements through a standardized catalog promises to significantly reduce the cost and time to get payload to orbit. To date, Boeing's Soft Stowage® Catalog has supported delivery of over 600 elements to Spacelab, SPACEHAB, ISS and other payload customers. .

  11. CCSDS - An approach to the definition of common standards for understanding space-related data

    Science.gov (United States)

    Drexler, Manfred; Sawyer, Don; Smith, Gene

    1990-01-01

    International cooperation for space data projects requires common data processing goals and unique data exchange mechanisms. The absence of standards has led to project unique interface definitions and special software on diverse systems. To address this problem, CCSDS Panel 2 is creating a set of standards to support self description of data using standard structures. The proposed standard data interchange mechanism - the Standard Formatted Data Unit (SFDU) - reduces information loss in data transfers, increases automated information exchange, and extends the lifetime of data. Data interchange structures, languages, and services are being developed with necessary control functions to provide these benefits. A set of recommendations for agency review has been issued this year to be the basis for future data exchange and to enhance access to older mission data sets. Space agencies and other space data handling facilities are being encouraged to implement the SFDU concept for ongoing and planned projects.

  12. A Simple Approach for Synthesis of TAPO-11 Molecular Sieve with Controllable Space Group

    Institute of Scientific and Technical Information of China (English)

    Yue Ming LIU; Huan Yan ZHANG; Hai Jiao ZHANG; Hai Hong WU; Peng WU; Ming Yuan HE

    2006-01-01

    A TAPO-11 molecular sieve with the space group Icm2 was synthesized successfully.The samples with different space group were controlled simply only by adjusting the crystallization temperature (CT) in the hydrothermal system. In the system of gel with a molar composition of 0.7R: xTiO2: P2O5: Al2O3: 30H2O, where x is 0.01-0.10 and the R is a mixture of di-n-propylamine and diisopropylamine as templates. When CT was between 150-160℃, the calcined sample showed the space group of Icm2, while it showed Pna21 at CTlarger than 190℃.The characterizations of UV-Vis and FT-IR confirmed that Ti was incorporated into the AEL framework successfully.

  13. Unified matrix approach to the description of phase-space rotators.

    Science.gov (United States)

    Gitin, Andrey V

    2016-03-01

    In optics, the rotation of a phase-space can be realized via light propagation through both an inhomogeneous medium with a radial gradient of refractive index and two special kinds of mirror-symmetrical optical systems suggested by Lohmann. Although light propagation through Lohmann's systems is described in terms of matrix optics, light propagation through the gradient-index medium is traditionally described as a solution of the wave equation. The difference in these descriptions hinders the understanding of the phase-space rotators. Fortunately, there is a matrix description of light propagation through a gradient-index medium too. A general description of the phase-space rotators is presented, which can be used to treat light propagation through both Lohmann's systems and the gradient-index medium in a unified matrix manner.

  14. Unified matrix approach to the description of phase-space rotators.

    Science.gov (United States)

    Gitin, Andrey V

    2016-03-01

    In optics, the rotation of a phase-space can be realized via light propagation through both an inhomogeneous medium with a radial gradient of refractive index and two special kinds of mirror-symmetrical optical systems suggested by Lohmann. Although light propagation through Lohmann's systems is described in terms of matrix optics, light propagation through the gradient-index medium is traditionally described as a solution of the wave equation. The difference in these descriptions hinders the understanding of the phase-space rotators. Fortunately, there is a matrix description of light propagation through a gradient-index medium too. A general description of the phase-space rotators is presented, which can be used to treat light propagation through both Lohmann's systems and the gradient-index medium in a unified matrix manner. PMID:26974609

  15. Mobile Indoor Augmented Reality. Exploring applications in hospitality environments.

    OpenAIRE

    Bernardos Barbolla, Ana M.; Casar Corredera, Jose Ramon; Cano García, Jesús

    2011-01-01

    Augmented reality (AR) is been increasingly used in mobile devices. Most of the available applications are set to work outdoors, mainly due to the availability of a reliable positioning system. Nevertheless, indoor (smart) spaces offer a lot of opportunities of creating new service concepts. In particular, in this paper we explore the applicability of mobile AR to hospitality environments (hotels and similar establishments). From the state-of-the-art of technologies and applications, a portfo...

  16. A K-theoretic approach to the classification of symmetric spaces

    CERN Document Server

    Bohle, Dennis

    2011-01-01

    We show that the classification of the symmetric spaces can be achieved by K-theoretical methods. We focus on Hermitian symmetric spaces of non-compact type, and define K-theory for JB*-triples along the lines of C*-theory. K-groups have to be provided with further invariants in order to classify. Among these are the cycles obtained from so called grids, intimately connected to the root systems of an underlying Lie-algebra and thus reminiscent of the classical classification scheme.

  17. A systems engineering approach to automated failure cause diagnosis in space power systems

    Science.gov (United States)

    Dolce, James L.; Faymon, Karl A.

    1987-01-01

    Automatic failure-cause diagnosis is a key element in autonomous operation of space power systems such as Space Station's. A rule-based diagnostic system has been developed for determining the cause of degraded performance. The knowledge required for such diagnosis is elicited from the system engineering process by using traditional failure analysis techniques. Symptoms, failures, causes, and detector information are represented with structured data; and diagnostic procedural knowledge is represented with rules. Detected symptoms instantiate failure modes and possible causes consistent with currently held beliefs about the likelihood of the cause. A diagnosis concludes with an explanation of the observed symptoms in terms of a chain of possible causes and subcauses.

  18. Control Space Analysis of Three-Degree Decelerating Approaches at Amsterdam Airport Schiphol

    NARCIS (Netherlands)

    De Jong, P.M.A.; In 't Veld, A.C.; De Leege, A.M.P.; Van Paassen, M.M.; Mulder, M.

    2010-01-01

    Amsterdam Schiphol Airport currently uses a Continuous Descent Approach during night time operations only, due to reduced runway capacity caused by unpredictable individual aircraft behavior. The Three-Degree Decelerating Approach (TDDA) has been developed to increase predictability and runway capac

  19. Extended overview techniques for outdoor augmented reality.

    Science.gov (United States)

    Veas, Eduardo; Grasset, Raphaël; Kruijff, Ernst; Schmalstieg, Dieter

    2012-04-01

    In this paper, we explore techniques that aim to improve site understanding for outdoor Augmented Reality (AR) applications. While the first person perspective in AR is a direct way of filtering and zooming on a portion of the data set, it severely narrows overview of the situation, particularly over large areas. We present two interactive techniques to overcome this problem: multi-view AR and variable perspective view. We describe in details the conceptual, visualization and interaction aspects of these techniques and their evaluation through a comparative user study. The results we have obtained strengthen the validity of our approach and the applicability of our methods to a large range of application domains. PMID:22402683

  20. Reconfigurable hardware for an augmented reality application

    Science.gov (United States)

    Toledo Moreo, F. Javier; Martinez Alvarez, J. Javier; Garrigos Guerrero, F. Javier; Ferrandez Vicente, J. Manuel

    2005-06-01

    An FPGA-based approach is proposed to build an augmented reality system in order to aid people affected by a visual disorder known as tunnel vision. The aim is to increase the user's knowledge of his environment by superimposing on his own view useful information obtained with image processing. Two different alternatives have been explored to perform the required image processing: a specific purpose algorithm to extract edge detection information, and a cellular neural network with the suitable template. Their implementations in reconfigurable hardware pursue to take advantage of the performance and flexibility that show modern FPGAs. This paper describes the hardware implementation of both the Canny algorithm and the cellular neural network, and the overall system architecture. Results of the implementations and examples of the system functionality are presented.

  1. An effective approach to reducing strategy space for maintenance optimisation of multistate series–parallel systems

    International Nuclear Information System (INIS)

    Maintenance optimisation of series–parallel systems is a research topic of practical significance. Nevertheless, a cost-effective maintenance strategy is difficult to obtain due to the large strategy space for maintenance optimisation of such systems. The heuristic algorithm is often employed to deal with this problem. However, the solution obtained by the heuristic algorithm is not always the global optimum and the algorithm itself can be very time consuming. An alternative method based on linear programming is thus developed in this paper to overcome such difficulties by reducing strategy space of maintenance optimisation. A theoretical proof is provided in the paper to verify that the proposed method is at least as effective as the existing methods for strategy space reduction. Numerical examples for maintenance optimisation of series–parallel systems having multistate components and considering both economic dependence among components and multiple-level imperfect maintenance are also presented. The simulation results confirm that the proposed method is more effective than the existing methods in removing inappropriate maintenance strategies of multistate series–parallel systems. - Highlights: • A new method using linear programming is developed to reduce the strategy space. • The effectiveness of the new method for strategy reduction is theoretically proved. • Imperfect maintenance and economic dependence are considered during optimisation

  2. Linear State-Space Identification of Interconnected Systems: A structured approach

    NARCIS (Netherlands)

    Torres Tapia, P.I.

    2014-01-01

    In this thesis, three novel state-space identification algorithms for linear interconnected systems are proposed. The computational complexity and the topology reconstruction of the interconnected system are addressed. Possible applications of this theory can be found in Biology, Economics, Transpor

  3. A quantitative approach to measuring the cerebrospinal fluid space with CT

    International Nuclear Information System (INIS)

    A method for measuring the subarachnoid space by using an independent CT evaluation unit is described. The normal values have been calculated for patients, according to age, and three examples are presented demonstrating reversible decrease of brain volume in patients suffering anorexia nervosa and chronic alcoholism. (orig.)

  4. Opening My Voice, Claiming My Space: Theorizing the Possibilities of Postcolonial Approaches to Autoethnography

    OpenAIRE

    Archana A. Pathak

    2010-01-01

    This essay examines the ways in which postcoloniality and autoethnography can be integrated to create a space of scholarly inquiry that disrupts the colonialist enterprise prevalent in the academy. By utilizing González's four ethics of postcolonial ethnography, this essay presents an ethics for postcolonial autoethnography as a mode to build a body of scholarly research that disrupts scientific imperialism.

  5. Graphical Programming: A systems approach for telerobotic servicing of space assets

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, J.T. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science; McDonald, M.J.; Palmquist, R.D. [Sandia National Labs., Albuquerque, NM (United States); Patten, R. [Oceaneering Space Systems, Webster, TX (United States)

    1993-08-01

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970`s. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle`s robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenges presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.

  6. CALOCUBE: an approach to high-granularity and homogenous calorimetry for space based detectors

    International Nuclear Information System (INIS)

    Future space experiments dedicated to the observation of high-energy gamma and cosmic rays will increasingly rely on a highly performing calorimetry apparatus, and their physics performance will be primarily determined by the geometrical dimensions and the energy resolution of the calorimeter deployed. Thus it is extremely important to optimize its geometrical acceptance, the granularity, and its absorption depth for the measurement of the particle energy with respect to the total mass of the apparatus which is the most important constraint for a space launch. The proposed design tries to satisfy these criteria while staying within a total mass budget of about 1.6 tons. Calocube is a homogeneous calorimeter instrumented with Cesium iodide (CsI) crystals, whose geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic CsI crystals. The total radiation length in any direction is more than adequate for optimal electromagnetic particle identification and energy measurement, whilst the interaction length is at least suficient to allow a precise reconstruction of hadronic showers. Optimal values for the size of the crystals and spacing among them have been studied. The design forms the basis of a three-year R and D activity which has been approved and financed by INFN. An overall description of the system, as well as results from preliminary tests on particle beams will be described

  7. International Space Station Logistics Approach: Partnership and Dialog for a Successful Future

    Science.gov (United States)

    Banasik, Natalie

    2000-01-01

    This article seeks to investigate trends and challenges for establishing a successful partnership in a multi-cultural Logistics environment. The U.S. - Russian relationship in the field of space studies is used as the model for this inquiry. Case studies of culture specific responses to a variety of Logistics situations developed during the initial phase of this cooperation are discussed.

  8. Designing with Space Syntax: A configurative approach to architectural layout, proposing a computational methodology

    NARCIS (Netherlands)

    Nourian, P.; Rezvani, S.; Sariyildiz, I.S.

    2013-01-01

    This paper introduces a design methodology and a toolkit developed as a parametric CAD program for configurative design of architectural plan layouts. Using this toolkit, designers can start plan layout process with sketching the way functional spaces need to connect to each other. A tool draws an i

  9. Space Weathering: A Proposed Laboratory Approach to Explaining the Sulfur Depletion on Eros

    Science.gov (United States)

    Franzen, M. A.; Kracher, A.; Sears, D. W. G.; Cassidy, W.; Hapke, B.

    2005-01-01

    Space weathering is the cumulative effect of physical and chemical changes that occur to substances exposed on the exterior of body void of an atmosphere [1], in this case the regolith on asteroid Eros. It is only recently that the scientific community has accepted the theory first developed in the mid- 1970s by Hapke and his colleagues of how space weathering occurs. The theory [1] asserts that optical and magnetic effects, first studied on moon rocks and lunar regolith, are caused by submicroscopic metallic iron (SMFe), smaller than the wavelength of light in vapor deposit coatings, on regolith grains, and in agglutinates. This vapor is generated by solar wind and micrometeorite impacts and does not require additional heating, melting, or a reducing environment to produce space weathering. One of the major finds of the first detailed reconnaissance of an asteroid by the NEAR Shoemaker mission was that the surface of Eros was essentially chondritic yet showed major depletions in sulfur [2, 3]. Here we propose space weathering sputtering experiments that may contribute to the explanation of sulfur depletion on asteroid Eros.

  10. Utilizing Social Bookmarking Tag Space for Web Content Discovery: A Social Network Analysis Approach

    Science.gov (United States)

    Wei, Wei

    2010-01-01

    Social bookmarking has gained popularity since the advent of Web 2.0. Keywords known as tags are created to annotate web content, and the resulting tag space composed of the tags, the resources, and the users arises as a new platform for web content discovery. Useful and interesting web resources can be located through searching and browsing based…

  11. Contaminant ingress into multizone buildings: An analytical state-space approach

    DEFF Research Database (Denmark)

    Parker, Simon; Coffey, Chris; Gravesen, Jens;

    2014-01-01

    The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time series in different internal locations. A state-spac...

  12. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    of the sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for important process characteristics such as lead-time-dependent conditional precisions and direction-dependent cross...

  13. INDOOR RADON REDUCTION IN CRAWL-SPACE HOUSES: A REVIEW OF ALTERNATIVE APPROACHES

    Science.gov (United States)

    An analysis has been completed of the performance, mechanisms, and costs of alternative technologies for preventing radon entry into the living areas of houses having crawl-space foundations. Sub-membrane depressurization (SMD) is consistently the most effective technique, often ...

  14. Graphical Programming: A systems approach for telerobotic servicing of space assets

    International Nuclear Information System (INIS)

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970's. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle's robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenges presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability

  15. An Experimental Approach to Understanding the Optical Effects of Space Weathering

    Science.gov (United States)

    Noble, Sarah K.; Keller, Lindsay P.; Pieters, Carle M.

    2007-01-01

    The creation and accumulation of nanophase iron (npFe(sup 0)) is the primary mechanism by which spectra of materials exposed to the space environment incur systematic changes referred to as "space weathering." The optical effects of this npFe(sup 0) on lunar soils are well documented. Space weathering though, should occur on the surface of any planetary body that is not protected by an atmosphere. There is no reason to assume that cumulative space weathering products throughout the solar system will be the same as those found in lunar soils. In fact, these products are likely to be very dependent on the specific environmental conditions under which they were produced. We have prepared a suite of analog soils to explore the optical effects of npFe(sup 0). By varying the size and concentration of npFe(sup 0) in the analogs we found significant systematic changes in the Vis/NIR spectral properties of the materials. Smaller npFe(sup 0) (40 nm in diameter) lowers the albedo across the Vis/NIR range with little change in the overall shape of the continuum. Intermediate npFe(sup 0) sizes impact the spectra in a distinct pattern that changes with concentration. The products of these controlled experiments have implications for space-weathered material throughout the inner solar system. Our results indicate that the lunar soil continuum is best modeled by npFe(sup 0) particles with bulk properties in the approx.15-25 nm size range. Larger npFe0 grains result in spectra that are similar in shape to the Mercury continuum. The continuum of S-type asteroid spectra appear to be best represented by small amounts of npFe(sup 0) that is similar to, but slightly smaller on average, than the npFe(sup 0) in lunar soils (approx.10-15 nm).

  16. The World is not Enough. Augmenting playgrounds for Mobile Serious Games

    NARCIS (Netherlands)

    Klemke, Roland

    2014-01-01

    The talk looks at today’s educational situation and motivates reasons to combine gaming and learning. Various developments from the fields of context-modeling and contextualization approaches, information brokering, federated learning environments, personalization, serious games and augmented realit

  17. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  18. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

    International Nuclear Information System (INIS)

    Highlights: • A novel hybrid modeling method is proposed for short-term wind speed forecasting. • Support vector regression model is constructed to formulate nonlinear state-space framework. • Unscented Kalman filter is adopted to recursively update states under random uncertainty. • The new SVR–UKF approach is compared to several conventional methods for short-term wind speed prediction. • The proposed method demonstrates higher prediction accuracy and reliability. - Abstract: Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. In this study, unscented Kalman filter (UKF) is integrated with support vector regression (SVR) based state-space model in order to precisely update the short-term estimation of wind speed sequence. In the proposed SVR–UKF approach, support vector regression is first employed to formulate a nonlinear state-space model and then unscented Kalman filter is adopted to perform dynamic state estimation recursively on wind sequence with stochastic uncertainty. The novel SVR–UKF method is compared with artificial neural networks (ANNs), SVR, autoregressive (AR) and autoregressive integrated with Kalman filter (AR-Kalman) approaches for predicting short-term wind speed sequences collected from three sites in Massachusetts, USA. The forecasting results indicate that the proposed method has much better performance in both one-step-ahead and multi-step-ahead wind speed predictions than the other approaches across all the locations

  19. EXACT AUGMENTED LAGRANGIAN FUNCTION FOR NONLINEAR PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    DU Xue-wu; ZHANG Lian-sheng; SHANG You-lin; LI Ming-ming

    2005-01-01

    An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions,the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, from the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.

  20. A numerical based design approach for automotive space frame structures considering their crash behaviour

    OpenAIRE

    Nagle, Anuja Pramod

    2015-01-01

    Computer Aided Engineering techniques (CAE) are extensively used for designing car body structures. However, their success depends on the accuracy of input data used in the analysis. This poses restrictions on their use in concept design phase of the car body, as the accuracy and availability of input data is limited during this phase. This thesis develops a knowledge-based design approach to address these challenges. It also demonstrates the application of this approach for conceptual design...

  1. Webizing mobile augmented reality content

    Science.gov (United States)

    Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun

    2014-01-01

    This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.

  2. Indeterminacy and labor augmenting externalities

    DEFF Research Database (Denmark)

    Poulsen, Odile; Goenka, Aditya

    2002-01-01

    In this two-sector discrete time model of endogenous economic growth intersectoral effects are assumed to be "labor augmenting" We derive necessary and sufficient conditions for local indeterminacy and multiplicity of the balanced growth path in terms of factor intensities in both sectors....... The balanced growth path is unique if the consumption good sector is more capital intensive. However, it can be indeterminate. When the investment good sector is more capital intensive a sufficient condition for indeterminacy is that there exists at least three balanced growth paths....

  3. Research and Education in Basic Space Science The Approach Pursued in the UN/ESA Workshops

    CERN Document Server

    Al-Naimiy, H M K; Chamcham, K; de Alwis, S P; De Carias, M C P; Haubold, H J; Boggino, A E T

    2000-01-01

    Since 1990, the United Nations in cooperation with the European Space Agencyis holding annually a workshop on basic space science for the benefit of theworldwide development of astronomy. These workshops have been held in countriesof Asia and the Pacific (India, Sri Lanka), Latin America and the Caribbean(Costa Rica, Colombia, Honduras), Africa (Nigeria), Western Asia (Egypt,Jordan), and Europe (Germany, France). Additional to the scientific benefits ofthe workshops and the strengthening of international cooperation, the workshopslead to the establishment of astronomical telescope facilities in Colombia,Egypt, Honduras, Jordan, Morocco, Paraguay, Peru, Philippines, Sri Lanka, andUruguay. The annual UN/ESA Workshops continue to pursue an agenda to networkthese astronomical telescope facilities through similar research and educationprogrammes. Teaching material and hands-on astrophysics material has beendeveloped for the operation of such astronomical telescope facilities in anuniversity environment.

  4. A Perturbative Approach to the Redshift Space Power Spectrum: Beyond the Standard Model

    CERN Document Server

    Bose, Benjamin

    2016-01-01

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate it's application within the light of upcoming high precision RSD data.

  5. STANDALONE PHOTOVOLTAIC SYSTEMS SIZING OPTIMIZATION USING DESIGN SPACE APPROACH: CASE STUDY FOR RESIDENTIAL LIGHTING LOAD

    Directory of Open Access Journals (Sweden)

    D. F. AL RIZA

    2015-07-01

    Full Text Available This paper presents a sizing optimization methodology of panel and battery capacity in a standalone photovoltaic system with lighting load. Performance of the system is identified by performing Loss of Power Supply Probability (LPSP calculation. Input data used for the calculation is the daily weather data and system components parameters. Capital Cost and Life Cycle Cost (LCC is calculated as optimization parameters. Design space for optimum system configuration is identified based on a given LPSP value, Capital Cost and Life Cycle Cost. Excess energy value is used as an over-design indicator in the design space. An economic analysis, including cost of the energy and payback period, for selected configurations are also studied.

  6. Approaching Environmental Health Disparities and Green Spaces: An Ecosystem Services Perspective

    Directory of Open Access Journals (Sweden)

    Viniece Jennings

    2015-02-01

    Full Text Available Health disparities occur when adverse health conditions are unequal across populations due in part to gaps in wealth. These disparities continue to plague global health. Decades of research suggests that the natural environment can play a key role in sustaining the health of the public. However, the influence of the natural environment on health disparities is not well-articulated. Green spaces provide ecosystem services that are vital to public health. This paper discusses the link between green spaces and some of the nation’s leading health issues such as obesity, cardiovascular health, heat-related illness, and psychological health. These associations are discussed in terms of key demographic variables—race, ethnicity, and income. The authors also identify research gaps and recommendations for future research.

  7. A perturbative approach to the redshift space power spectrum: beyond the Standard Model

    Science.gov (United States)

    Bose, Benjamin; Koyama, Kazuya

    2016-08-01

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.

  8. Time-dependent generalized-active-space configuration-interaction approach to photoionization dynamics of atoms and molecules

    CERN Document Server

    Bauch, Sebastian; Madsen, Lars Bojer

    2014-01-01

    We present a wave-function based method to solve the time-dependent many-electron Schr\\"odinger equation (TDSE) with special emphasis on strong-field ionization phenomena. The theory builds on the configuration-interaction (CI) approach supplemented by the generalized-active-space (GAS) concept from quantum chemistry. The latter allows for a controllable reduction in the number of configurations in the CI expansion by imposing restrictions on the active orbital space. The method is similar to the recently formulated time-dependent restricted-active-space (TD-RAS) CI method [D. Hochstuhl, and M. Bonitz, Phys. Rev. A 86, 053424 (2012)]. We present details of our implementation and address convergence properties with respect to the active spaces and the associated account of electron correlation in both ground state and excitation scenarios. We apply the TD-GASCI theory to strong-field ionization of polar diatomic molecules and illustrate how the method allows us to uncover a strong correlation-induced shift of ...

  9. Hybrid Planning: Task-Space Control and Sampling-Based Planning

    OpenAIRE

    Haschke, Robert

    2012-01-01

    We propose a hybrid approach to motion planning for redundant robots, which combines a powerful control framework with a sampling-based planner. We argue that a suitably chosen task controller already manages a huge amount of trajectory planning work. However, due to its local approach to obstacle avoidance, it may get stuck in local minima. Therefore we augment it with a globally acting planner, which operates in a lower-dimensional search space, thus circumventing the curse of dimensionalit...

  10. Analytical Approach to Space-and Time-Fractional Burgers Equations

    Institute of Scientific and Technical Information of China (English)

    Ahmet Yildirim; Syed Tauseef Mohyud-Din

    2010-01-01

    @@ A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method.The fractional derivatives axe considered in the Caputo sense.The solutions are given in the form of series with easily computable terms.Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.

  11. An Implicit Hierarchical Fixed-Point Approach to General Variational Inequalities in Hilbert Spaces

    OpenAIRE

    Wen Ching-Feng; Yao JC; Zeng LC

    2011-01-01

    Abstract Let be a nonempty closed convex subset of a real Hilbert space . Let be a -Lipschitzian and -strongly monotone operator with constants , be nonexpansive mappings with where denotes the fixed-point set of , and be a -contraction with coefficient . Let and , where . For each , let be a unique solution of the fixed-point equation . We derive the following conclusions on the behavior of the net along the curve : (i) if , as , then strongly, which is the ...

  12. A new approach for the sequence spaces of fuzzy level sets with the partial metric

    Directory of Open Access Journals (Sweden)

    Uğur Kadak

    2014-03-01

    Full Text Available In this paper, we investigate the classical sets of sequences of fuzzy numbers by using partial metric which is based on a partial ordering. Some elementary notions and concepts for partial metric and fuzzy level sets are given. In addition, several necessary and sufficient conditions for partial completeness are established by means of fuzzy level sets. Finally, we give some illustrative examples and present some results between fuzzy and partial metric spaces.

  13. Opening My Voice, Claiming My Space: Theorizing the Possibilities of Postcolonial Approaches to Autoethnography

    Directory of Open Access Journals (Sweden)

    Archana A. Pathak

    2010-01-01

    Full Text Available This essay examines the ways in which postcoloniality and autoethnography can be integrated to create a space of scholarly inquiry that disrupts the colonialist enterprise prevalent in the academy. By utilizing González's four ethics of postcolonial ethnography, this essay presents an ethics for postcolonial autoethnography as a mode to build a body of scholarly research that disrupts scientific imperialism.

  14. Collision probability due to space debris clouds through a continuum approach

    OpenAIRE

    Letizia, Francesca; Colombo, Camilla; Lewis, Hugh

    2015-01-01

    As the debris population increases, the probability of collisions in space grows. Because of the high level of released energy, even collisions with small objects may produce thousands of fragments. Propagating the trajectories of all the objects produced by a breakup could be computationally expensive. Therefore, in this work, debris clouds are modeled as a fluid, whose spatial density varies with time under the effect of atmospheric drag. By introducing some simplifying assumptions, such as...

  15. Analysing time-varying trends in stratospheric ozone time series using the state space approach

    OpenAIRE

    M. Laine; N. Latva-Pukkila; E. Kyrölä

    2014-01-01

    We describe a hierarchical statistical state space model for ozone profile time series. The time series are from satellite measurements by the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Global Ozone Monitoring by Occultation of Stars (GOMOS) instruments spanning the years 1984–2011. Vertical ozone profiles were linearly interpolated on an altitude grid with 1 km resolution covering 20–60 km. Monthly averages were calculated for each altitude level and 10° wid...

  16. Free Fock space and functional calculus approach to the n-point information about the "Universe"

    OpenAIRE

    Hanckowiak, Jerzy

    2010-01-01

    Starting from a differential equation for the unique field, the equation for the generating vector |V> of the n-point information (correlation and smeared functions) in the free Fock space is derived. In derived equation, due to appropriate extension of the right invertible operators, the physical vacuum vector |0> appears with a global characteristic of the field. For so called resolvent regularization of the original systems, the closed equations for the n-point information are analysed wit...

  17. Mechanistic approaches to understanding and predicting mammalian space use: Recent advances, future directions

    OpenAIRE

    Moorcroft, Paul R.

    2012-01-01

    The coming of age of global positioning system telemetry, in conjunction with recent theoretical innovations for formulating quantitative descriptions of how different ecological forces and behavioral mechanisms shape patterns of animal space use, has led to renewed interest and insight into animal home-range patterns. This renaissance is likely to continue as a result of ongoing synergies between these empirical and theoretical advances. In this article I review key developments that have oc...

  18. Diagnosis of Multiple Fixture Faults in Multiple-Station Manufacturing Processes Based on State Space Approach

    Institute of Scientific and Technical Information of China (English)

    田兆青; 来新民; 林忠钦

    2004-01-01

    Dimensional quality is one of the most critical challenges in industries, which uses the multistage manufacturing process (MMP) such as assembly and machining for automotive and aerospace industries. According to investigations, fixture faults accounted for 72% of all the dimensional faults. Previous studies focused on only one fault or multiple faults occurred in one station or one fault in multiple stations, but these cases rarely appear in the real manufacturing. This paper presents a method for diagnosis of multiple fixture faults in the multi-station manufacturing process. The proposed method is based on the state space model of the MMP processes, which carries the information of the fixture layout geometry and sensor position. To identify the root cause, three continuous steps were used: a) development of the state space model and the construction of the statistics variables on offline mode, b) measurement of the coordinate measuring machines data on online mode and calculation of the statistics variables, and c) diagnostic algorithm for identifying the root cause. The presented paper integrates the state space model of the manufacturing processes and hypothesis test considering the impact of the measure noises. A case study verifies the proposed method.

  19. A Description Of Space Relations In An NLP Model: The ABBYY Compreno Approach

    Directory of Open Access Journals (Sweden)

    Aleksey Leontyev

    2015-12-01

    Full Text Available The current paper is devoted to a formal analysis of the space category and, especially, to questions bound with the presentation of space relations in a formal NLP model. The aim is to demonstrate how linguistic and cognitive problems relating to spatial categorization, definition of spatial entities, and the expression of different locative senses in natural languages can be solved in an artificial intelligence system. We offer a description of the locative groups in the ABBYY Compreno formalism – an integral NLP framework applied for machine translation, semantic search, fact extraction, and other tasks based on the semantic analysis of texts. The model is based on a universal semantic hierarchy of the thesaurus type and includes a description of all possible semantic and syntactic links every word can attach. In this work we define the set of semantic locative relations between words, suggest different tools for their syntactic presentation, give formal restrictions for the word classes that can denote spaces, and show different strategies of dealing with locative prepositions, especially as far as the problem of their machine translation is concerned.

  20. Dynamic analysis of Space Shuttle/RMS configuration using continuum approach

    Science.gov (United States)

    Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.

    1994-01-01

    The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.

  1. An Ensemble Approach to Extreme Space Weather Event Probability -- A First Look

    Science.gov (United States)

    Jonas, S.; Fronczyk, K.; McCarron, E.; Pratt, L. M.

    2015-12-01

    An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social wellbeing. Space weather events occur regularly, but extreme events occur less frequently with only several historical examples over the last 160 years. During the past decade, published works have (1) forensically examined the physical characteristics of the extreme historical events; and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present an analysis of several of these studies. We created a unified statistical framework to visualize previous analyses, and developed a model from an ensemble using statistical methods. We look at geomagnetic disturbance probability across multiple return periods. We discuss what the most likely 100-year extreme event (a parameter of interest to policy makers and planners) and the return period for other extreme historical events. We discuss the current state of these analyses, their utility to policy makers and planners, the current limitations (in data and understanding) when compared to other hazards, and the gaps that need to be filled to enhance space weather risk assessments.

  2. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    Science.gov (United States)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  3. Crimes Scenes as Augmented Reality, off-screen, online and offline

    OpenAIRE

    Sandvik, Kjetil; Waade, Anne-Marit

    2008-01-01

    Our field of investigation is site specific realism in crimefiction and spatial production as media specific features.We analyze the (re)production of crime scenes in respectivelycrime series, computer games and tourist practice,and relate this to the ideas of augmented reality. Using a distinctionbetween places as locations situated in the physicalworld and spaces as imagined or virtuallocations as our point of departure, this paper investigates how placesin various ways have become augmente...

  4. Radar Time and a State-Space Based Approach To Quantum Field Theory In Gravitational and Electromagnetic Backgrounds

    CERN Document Server

    Dolby, C E; Dolby, Carl E.; Gull, Stephen F.

    2002-01-01

    In a recent paper (hep-th/0103228) a new initial value formulation of fermionic QFT was presented that is applicable to an arbitrary observer in any electromagnetic background. This approach suggests a consistent particle interpretation at all times, with the concept of `radar time' used to generalise this interpretation to an arbitrarily moving observer. In the present paper we extend this formalism to allow for gravitational backgrounds. The observer-dependent particle interpretation generalises Gibbons' definition to non-stationary spacetimes. This allows any observer to be considered, providing a particle interpretation that depends {\\it only} on the observer's motion and the background, not on any choice of coordinates or gauge, or on details of their particle detector. Consistency with known results is demonstrated for the cases of Rindler space and deSitter space. Radar time is also considered for an arbitrarily moving observer in an arbitrary 1+1 dimensional spacetime, and for a comoving observer in a...

  5. Pore space characteristics vs. stress-strain markers: two contrasting approaches on how to predict durability of porous natural stone

    Science.gov (United States)

    Prikryl, Richard; Weishauptova, Zuzana; Lokajicek, Tomas

    2016-04-01

    Pore space characteristics, specifically its textural properties derived from mercury porosimetry present useful data that are often employed as one of the proxies for the evaluation of the durability of porous construction materials, specifically of natural stone or bricks. Interconnected pore spaces present pathways for migration of moisture, water, or water-soluble salts in porous materials, but do not provide direct evidence on mechanical properties including resistance to brittle damage caused by various physical weathering processes. On contrary, experimentally derived rock mechanical properties are used very rarely for the estimation of the durability of natural stone. This concerns not only basic rock mechanical properties (strength) but also deformation (stress-strain behaviour) and energetic parameters derived from it. In the recent study, we are discussing both these approaches and looking for possible correlation or for mutual use of data from both types of tests.

  6. A Numerical Approach to Estimate the Ballistic Coefficient of Space Debris from TLE Orbital Data

    Science.gov (United States)

    Narkeliunas, Jonas

    2016-01-01

    Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and fragments from explosions and collisions. As of 2009, more than 21,000 orbital debris larger than 10 cm are known to exist], and while it is hard to track anything smaller than that, the estimated population of particles between 1 and 10 cm in diameter is approximately 500,000, whereas small as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies speeds usually exceed 7 kms. The shape of their orbit varies from almost circular to highly elliptical and covers all LEO, a region in space between 160 and 2,000 km above sea level. Unfortunately, LEO is also the place where most of our active satellites are situated, as well as, International Space Station (ISS) and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.This poses a real threat as debris can collide with satellites and deal substantial damage or even destroy them.Collisions between two or more debris create clouds of smaller debris, which are harder to track and increase overall object density and collision probability. At some point, the debris density couldthen reach a critical value, which would start a chain reaction and the number of space debris would grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded that it would lead to creation of debris belt, which would vastly complicate satellite operations in LEO. The debris density is already relatively high, as seen from several necessary debris avoidance maneuvers done by Shuttle, before it was discontinued, and ISS. But not all satellites have a propulsion system to avoid collision, hence different methods need to be applied. One of the proposed collision avoidance concepts is called LightForce and it suggests using photon pressure to induce small orbital corrections to deflect debris from colliding. This method is very efficient as seen from

  7. Improving the Modeling of Hydrogen Solubility in Heavy Oil Cuts Using an Augmented Grayson Streed (AGS Approach Modélisation améliorée de la solubilité de l’hydrogène dans des coupes lourdes par l’approche de Grayson Streed Augmenté (GSA

    Directory of Open Access Journals (Sweden)

    Torres R.

    2013-04-01

    Full Text Available The Grayson Streed (GS method [Grayson H.G. and Streed C.W. (1963 6th World Petroleum Congress , Frankfurt am Main, Germany, 19-26 June, pp. 169-181] is often used by the industry for calculating hydrogen solubility in petroleum fluids. However, its accuracy becomes very bad when very heavy fluids are considered. An improvement is proposed in this work, based on a Flory-augmented activity coefficient model. Hydrogen solubilities in n-alkanes from n−C7 up to n−C36 have been investigated and a decreasing Henry constant with molecular weight is evidenced. The analysis of the Henry constant behaviour with molecular weight suggests a simple improvement to the model, using a Flory entropic contribution, thus keeping its predictive character. This improvement led to the necessity of refitting a number of fundamental hydrogen parameters. The resulting model behaves better for heavy components and for aromatics. The petroleum fractions evaluated with the Augmented Grayson-Streed (AGS model are taken from Cai et al. [Cai H.Y. et al. (2001 Fuel 80, 1055-1063] and Lin et al. [Lin H.M. et al. (1981 Ind. Eng. Chem. Process Des. Dev. 20, 2, 253-256]. The importance of the petroleum fluid characterization is stressed. A sensitivity analysis has shown that the solubility parameter has a much larger effect than the other parameters: great care must be taken at calculating that property. The predictions of hydrogen solubility in petroleum fractions and in coal liquids were improved compared with the Grayson Streed model, resulting in an Absolute Average Deviation (AAD of 30% for AGS model compared to 55% for Grayson-Streed model, in the range of 80-380°C and 6.3-258.9 bar. La méthode de Grayson Streed (GS [Grayson H.G. and Streed C.W. (1963 6th World Petroleum Congress, Frankfurt am Main, Germany, 19-26 June, pp. 169-181] est souvent préconisée dans l’industrie pour calculer la solubilité de l’hydrogène dans des coupes pétrolières. Il se fait

  8. Augmented reality in medical education?

    Science.gov (United States)

    Kamphuis, Carolien; Barsom, Esther; Schijven, Marlies; Christoph, Noor

    2014-09-01

    Learning in the medical domain is to a large extent workplace learning and involves mastery of complex skills that require performance up to professional standards in the work environment. Since training in this real-life context is not always possible for reasons of safety, costs, or didactics, alternative ways are needed to achieve clinical excellence. Educational technology and more specifically augmented reality (AR) has the potential to offer a highly realistic situated learning experience supportive of complex medical learning and transfer. AR is a technology that adds virtual content to the physical real world, thereby augmenting the perception of reality. Three examples of dedicated AR learning environments for the medical domain are described. Five types of research questions are identified that may guide empirical research into the effects of these learning environments. Up to now, empirical research mainly appears to focus on the development, usability and initial implementation of AR for learning. Limited review results reflect the motivational value of AR, its potential for training psychomotor skills and the capacity to visualize the invisible, possibly leading to enhanced conceptual understanding of complex causality. PMID:24464832

  9. Psychotherapy augmentation through preconscious priming

    Directory of Open Access Journals (Sweden)

    Francois eBorgeat

    2013-03-01

    Full Text Available Objective: To test the hypothesis that repeated preconscious (masked priming of personalized positive cognitions could augment cognitive change and facilitate achievement of patients’ goals following a therapy.Methods: Twenty social phobic patients (13 women completed a 36 weeks study beginning by 12 weeks of group behavioural therapy. After the therapy, they received 6 weeks of preconscious priming and 6 weeks of a control procedure in a randomized cross-over design. The Priming condition involved listening twice daily with a passive attitude to a recording of individualized formulations of appropriate cognitions and attitudes masked by music. The Control condition involved listening to an indistinguishable recording where the formulations had been replaced by random numbers. Changes in social cognitions were measured by the Social Interaction Self Statements Test (SISST.Results: Patients improved following therapy. The Priming procedure was associated with increased positive cognitions and decreased negative cognitions on the SISST while the Control procedure was not. The Priming procedure induced more cognitive change when applied immediately after the group therapy. Conclusion: An effect of priming was observed on social phobia related cognitions in the expected direction. This self administered addition to a therapy could be seen as an augmentation strategy.

  10. Augmented reality in medical education?

    Science.gov (United States)

    Kamphuis, Carolien; Barsom, Esther; Schijven, Marlies; Christoph, Noor

    2014-09-01

    Learning in the medical domain is to a large extent workplace learning and involves mastery of complex skills that require performance up to professional standards in the work environment. Since training in this real-life context is not always possible for reasons of safety, costs, or didactics, alternative ways are needed to achieve clinical excellence. Educational technology and more specifically augmented reality (AR) has the potential to offer a highly realistic situated learning experience supportive of complex medical learning and transfer. AR is a technology that adds virtual content to the physical real world, thereby augmenting the perception of reality. Three examples of dedicated AR learning environments for the medical domain are described. Five types of research questions are identified that may guide empirical research into the effects of these learning environments. Up to now, empirical research mainly appears to focus on the development, usability and initial implementation of AR for learning. Limited review results reflect the motivational value of AR, its potential for training psychomotor skills and the capacity to visualize the invisible, possibly leading to enhanced conceptual understanding of complex causality.

  11. AN EFFECTIVE MULTI-CLUSTERING ANONYMIZATION APPROACH USING DISCRETE COMPONENT TASK FOR NON-BINARY HIGH DIMENSIONAL DATA SPACES

    Directory of Open Access Journals (Sweden)

    L.V. Arun Shalin

    2016-01-01

    Full Text Available Clustering is a process of grouping elements together, designed in such a way that the elements assigned to similar data points in a cluster are more comparable to each other than the remaining data points in a cluster. During clustering certain difficulties related when dealing with high dimensional data are ubiquitous and abundant. Works concentrated using anonymization method for high dimensional data spaces failed to address the problem related to dimensionality reduction during the inclusion of non-binary databases. In this work we study methods for dimensionality reduction for non-binary database. By analyzing the behavior of dimensionality reduction for non-binary database, results in performance improvement with the help of tag based feature. An effective multi-clustering anonymization approach called Discrete Component Task Specific Multi-Clustering (DCTSM is presented for dimensionality reduction on non-binary database. To start with we present the analysis of attribute in the non-binary database and cluster projection identifies the sparseness degree of dimensions. Additionally with the quantum distribution on multi-cluster dimension, the solution for relevancy of attribute and redundancy on non-binary data spaces is provided resulting in performance improvement on the basis of tag based feature. Multi-clustering tag based feature reduction extracts individual features and are correspondingly replaced by the equivalent feature clusters (i.e. tag clusters. During training, the DCTSM approach uses multi-clusters instead of individual tag features and then during decoding individual features is replaced by corresponding multi-clusters. To measure the effectiveness of the method, experiments are conducted on existing anonymization method for high dimensional data spaces and compared with the DCTSM approach using Statlog German Credit Data Set. Improved tag feature extraction and minimum error rate compared to conventional anonymization

  12. Tangible Interaction in Learning Astronomy through Augmented Reality Book-Based Educational Tool

    Science.gov (United States)

    Sin, Aw Kien; Badioze Zaman, Halimah

    Live Solar System (LSS) is an Augmented Reality book-based educational tool. Augmented Reality (AR) has its own potential in the education field, because it can provide a seamless interaction between real and virtual objects. LSS applied the Tangible Augmented Reality approach in designing its user interface and interaction. Tangible Augmented Reality is an interface which combines the Tangible User Interface and Augmented Reality Interface. They are naturally complement each other. This paper highlights the tangible interaction in LSS. LSS adopts the 'cube' as the common physical object input device. Thus, LSS does not use the traditional computer input devices such as the mouse or keyboard. To give users a better exploration experience, Visual Information Seeking Mantra principle was applied in the design of LSS. Hence, LSS gives users an effective interactive-intuitive horizontal surface learning environment.

  13. Logistical and Analytical Approach to a Failure Aboard the International Space Station

    Science.gov (United States)

    McDanels, Seve; Wright, M. Clara; Salazar, Victoria; Lubas, David; Tucker, Bryan

    2009-01-01

    The starboard Solar Alpha Rotary Joint (SARJ) from the International Space Station (ISS) began exhibiting off-nominal electrical demands and vibration. Examination by spacewalking astronauts revealed metallic debris contaminating the system and damage to the outboard race of the SARJ. Samples of the contamination were returned to Earth and analyzed. Excessive friction caused the nitride region of the 15-5 PH stainless steel race to spall, generating the debris and damaging the race surface. Excessive vibration and excess power was required to operate the system as a result.

  14. An AI Approach to Ground Station Autonomy for Deep Space Communications

    Science.gov (United States)

    Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve

    1998-01-01

    This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).

  15. A novel approach for the diagnosis of ventricular tachycardia based on phase space reconstruction of ECG

    CERN Document Server

    Koulaouzidis, George; Cappiello, Grazia; Mazomenos, Evangelos B; Maharatna, Koushik; Morgan, John

    2014-01-01

    Ventricular arrhythmias comprise a group of disorders which manifest clinically in a variety of ways from ventricular premature beats (VPB) and no sustained ventricular tachycardia (in healthy subjects) to sudden cardiac death due to ventricular tachyarrhythmia in patients with and/or without structural heart disease. Ventricular fibrillation (VF) and ventricular tachycardia (VT) are the most common electrical mechanisms for cardiac arrest. Accurate and automatic recognition of these arrhythmias from electrocardiography (ECG) is a crucial task for medical professionals. The purpose of this research is to develop a new index for the differential diagnosis of normal sinus rhythm (SR) and ventricular arrhythmias, based on phase space reconstruction (PSR).

  16. MEMS Functional Validation Using the Configuration Space Approach to Simulation and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.; Sacks, E.

    1999-03-09

    We have developed an interactive computer-aided design program that supports mechanical design of devices fabricated in surface micro-machining processes. The program automates kinematic analysis via a novel configuration space computation code, performs real-time simulation, and supports functional parametric design. Designers can visualize system function under a range of operating conditions, can find and correct design flaws, and can optimize performance. We used the program to detect and correct a design flaw in a micro-mechanical indexing mechanism fabricated at Sandia with the SUMMiT process.

  17. A hybrid approach to test-analysis-model development for large space structures

    Science.gov (United States)

    Kammer, D. C.

    1991-01-01

    The present FEM reduction method for the generation of test-analysis-models (TAMs) in test-analysis correlation addresses contentions that the current modal TAM is hypersensitive to differences between test model shapes and analysis mode shapes, thereby generating large off-diagonal terms within the orthogonality and cross-orthogonality matrices employed in test-analysis mode-shape correlation. A hybrid TAM methodology is accordingly developed which combines the exact representation of the FEM target modes from the modal TAM with the more accurate TAM representation of the residual modes; the superior residual dynamics representation of the hybrid TAM is demonstrated for a detailed representation of a large space structure.

  18. Scale relativity and fractal space-time a new approach to unifying relativity and quantum mechanics

    CERN Document Server

    Nottale, Laurent

    2011-01-01

    This book provides a comprehensive survey of the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling the basis of quantum mechanics on the principle of relativity, provided this principle is extended to scale transformations of the reference system. In the framework of such a newly generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that unifies

  19. A non-commutative Path Space approach to stationary free Stochastic Differential Equations

    CERN Document Server

    Dabrowski, Yoann

    2010-01-01

    By defining tracial states on a non-commutative analogue of a path space, we construct Markov dilations of certain conservative completely Markov semigroups on finite von Neumann algebras. For well chosen semigroups they solve certain stationary free SDEs previously considered by D. Shlyakhtenko. Among applications, we prove a non-commutative Talagrand's inequality for non-microstate free entropy. We also use those new deformations in conjunction with Popa's deformation/rigidity techniques. For instance, combining our results with techniques of Popa-Ozawa and Peterson, we prove that the von Neumann algebra of a countable discrete group with CMAP and positive first L^2 Betti number has no Cartan subalgebras.

  20. Preprint ARPPS Augmented Reality Pipeline Prospect System

    OpenAIRE

    Zhang, Xiaolei; Han, Yong; Hao, DongSheng; Lv, Zhihan

    2015-01-01

    This is the preprint version of our paper on ICONIP. Outdoor augmented reality geographic information system (ARGIS) is the hot application of augmented reality over recent years. This paper concludes the key solutions of ARGIS, designs the mobile augmented reality pipeline prospect system (ARPPS), and respectively realizes the machine vision based pipeline prospect system (MVBPPS) and the sensor based pipeline prospect system (SBPPS). With the MVBPPS's realization, this paper studies the neu...