WorldWideScience

Sample records for augers

  1. Differential auger spectrometry

    Science.gov (United States)

    Strongin, Myron; Varma, Matesh Narayan; Anne, Joshi

    1976-06-22

    Differential Auger spectroscopy method for increasing the sensitivity of micro-Auger spectroanalysis of the surfaces of dilute alloys, by alternately periodically switching an electron beam back and forth between an impurity free reference sample and a test sample containing a trace impurity. The Auger electrons from the samples produce representative Auger spectrum signals which cancel to produce an Auger test sample signal corresponding to the amount of the impurity in the test samples.

  2. Auger Physicists visit CMS

    CERN Multimedia

    Hoch, Michael

    2012-01-01

    Visit at CERN P5 CMS in the experimental cavern Alan Watson, Auger Spokesperson Emeritus, University of Leeds; Jim Cronin, Nobel Laureate, Auger Spokesperson Emeritus, University of Chicago; Jim Virdee, CMS Former Spokesperson, Imperial College; Jim Matthews, Auger Co-Spokesperson, Louisiana State University

  3. Drill-auger

    Energy Technology Data Exchange (ETDEWEB)

    Levkovich, P.E.; Bratisheva, L.L.; Savich, N.S.

    1981-01-01

    The author proposes a drill-auger with a drilling platform, a sectional auger-bit with a drilling-bit crown, a rotational mechanism, and a feed mechanism with vertical chain grippers. Borehole drilling operations are made more effective by drilling from a single drill platform attitude for the entirety of the auger-bit length (which is equal to the screw length). The chain teeth protrude from the auger to a diameter equal to the height of the teeth. The rotary mechanism is platform mounted with two symmetrically deployed rollers having teeth capable of kinematically interfacing with the auger teeth. The feed mechanism consists of a hydraulic jack deployed between the vertical chain protrusion and the auxiliary grippers which are themselves attached in a hinge-like fashion to the hydraulic-jack cylinder and are capable of interfacing with sections of the auger stem.

  4. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  5. Vertically reciprocating auger

    Science.gov (United States)

    Etheridge, Mark; Morgan, Scott; Fain, Robert; Pearson, Jonathan; Weldi, Kevin; Woodrough, Stephen B., Jr.

    1988-01-01

    The mathematical model and test results developed for the Vertically Reciprocating Auger (VRA) are summarized. The VRA is a device capable of transporting cuttings that result from below surface drilling. It was developed chiefly for the lunar surface, where conventional fluid flushing while drilling would not be practical. The VRA uses only reciprocating motion and transports material through reflections with the surface above. Particles are reflected forward and land ahead of radially placed fences, which prevent the particles from rolling back down the auger. Three input wave forms are considered to drive the auger. A modified sawtooth wave form was chosen for testing, over a modified square wave or sine wave, due to its simplicity and effectiveness. The three-dimensional mathematical model predicted a sand throughput rate of 0.2667 pounds/stroke, while the actual test setup transported 0.075 pounds/stroke. Based on this result, a correction factor of 0.281 is suggested for a modified sawtooth input.

  6. Using augers to extract minerals

    Energy Technology Data Exchange (ETDEWEB)

    Levkovich, P.Ye.; Meznikov, V.I.; Savich, N.S.

    1981-08-25

    The purpose of the device is to increase productivity based on eliminating empty auger trips. Following drilling the length of the auger away from the (preparatory) working area, the auger section is put in place on the side opposite from the drilled part of the (preparatory) working area. Simultaneous with drilling the other shaft opposite to the preparatory working area, the spindle device for injecting the bit into the drilled out part is set in place. Through it the auger sections are extracted from both shafts (facing each other) directly by moving the spindle device from one shaft to the other.

  7. The Pierre Auger Observatory

    International Nuclear Information System (INIS)

    We present the scientific motivation, conceptual design and status of the P. Auger Observatory, a hybrid detector designed to measure both the longitudinal and the lateral profile of giant air-showers produced by cosmic-rays of energy above 1019 eV. Two ground arrays of water Cerenkov tanks overlooked by fluorescence detectors will cover an area of 3000 km2 each. They will be build in the Southern and Northern hemisphere to provide full sky coverage. The total aperture of 14000 km2sr will allow to study all observable aspects of cosmic rays from below 10 EeV up to arbitrarily high energies with an unprecedented accuracy

  8. Auger spectroscopy and surface analysis

    International Nuclear Information System (INIS)

    In 1925 Pierre Auger reported on his observations of low energy electrons associated with core-ionised atoms in cloud chamber experiments. He was able to correctly identify the mechanism for their production, and such electrons are now known as Auger electrons. Typically Auger electrons have energies in the range 10 eV to 2 keV. The short distance that such low energy electrons travel in solids ensures that Auger electrons come from the surface layers. The data generated by the AES technique are complex. There are at least three electrons involved in the process, and there are many possible configurations for the atom. These possibilities led to spectra that are not readily interpreted in detail. Theory lags behind experiment in this area. In principle, it should be possible to find information about the chemical environment of atoms from Auger spectra. While there are clear changes in spectral lineshapes, there is no simple way to go from the spectra to an understanding of the chemical bonding of the atom. There are a number of experiments currently underway which aim to improve our understanding of the Auger process. Synchrotron experiments with tunable energy x-rays are providing new insight. Experiments that use positrons to excite Auger emission have also produced further recent understanding. Coincidence experiments between photoelectrons and Auger electrons have also made recent advances. Auger photoelectron coincidence spectroscopy reduces the complexity of Auger spectra by only counting those electrons that occur as a consequence of selected ionizations. The effect is to reduce the complexity of the spectra, and to isolate processes that are often clouded by the simultaneous occurrence of other effects. (author)

  9. Non-exponential Auger decay

    OpenAIRE

    Ishkhanyan, A. M.; Krainov, V. P.

    2015-01-01

    We discuss the possibility of non-exponential Auger decay of atoms irradiated by X-ray photons. This effect can occur at times, which are greater than the lifetime of a system under consideration. The mechanism for non-exponential depletion of an initial quasi-stationary state is the cutting of the electron energy spectrum of final continuous states at small energies. Then the Auger decay amplitude obeys power-law dependence on long observation times.

  10. Bore-auger servo-mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Levkovich, P.Ye.; Bolotov, N.L.; Kiselev, Ye.I.; Opal' ko, L.L.; Podubniy, V.I.; Savich, N.S.; Tverezyy, Yu.F.

    1980-06-06

    A bore-auger servo-mechanism is proposed for a drilling machine. This unit consists of a drilling bit, an auger boring section with a screw-type surface, upper and lower cutting disks, mounted onto the supports between the main auger sections, and a linear auger section with lateral ties. In order to simplify construction, the upper cutting disk is equipped with its own auger bits, both below and above the disks, thus facilitating interaction with the screw-type surface of the auger sections.

  11. El proyecto AUGER

    Science.gov (United States)

    Etchegoyen, A.

    Hace ya más de 30 años en Volcano Ranch, EE.UU., un extenso chubasco cósmico (ECC) fue detectado con energía en exceso de 1020 eV. Desde entonces, observatorios ubicados en Haverah Park del Reino Unido, Yakutsk de Rusia, AGASA de Japón y Dugway de EE.UU. también han observado ECC con energías mayores que 1020 eV. Poco se sabe de dichos rayos, y en particular cuál es la naturaleza del primario, de dónde provienen, y cómo son acelerados, pero su naturaleza ultrarelativista excluye la mayoría de las respuestas dejando sólo algunas plausibles de ser investigadas experimentalmente. Grupos de científicos de 20 países están trabajando con el fin de construir dos arreglos de detectores gigantes, uno en cada hemisferio a lo largo de 3000 km2 c/u. Dichas dimensiones son necesarias debido al flujo estimado de 1 rayo cósmico/centuria/km2/sr. La sede del Observatorio del Sur es la Argentina. El proyecto fue nombrado Pierre Auger en conmemoración del célebre físico francés que detectó por primera vez chubascos cósmicos en 1938. El proyecto focaliza su interés en rayos cósmicos con energías mayores que 1020 eV.

  12. Quantum-beat Auger spectroscopy

    CERN Document Server

    Zhang, Song Bin

    2015-01-01

    The concept of nonlinear quantum-beat pump-probe Auger spectroscopy is introduced by discussing a relatively simple four-level model system. We consider a coherent wave packet involving two low-lying states that was prepared by an appropriate pump pulse. This wave packet is subsequently probed by a weak, time-delayed probe pulse with nearly resonant coupling to a core-excited state of the atomic or molecular system. The resonant Auger spectra are then studied as a function of the duration of the probe pulse and the time delay. With a bandwidth of the probe pulse approaching the energy spread of the wave packet, the Auger yields and spectra show quantum beats as a function of pump-probe delay. An analytic theory for the quantum-beat Auger spectroscopy will be presented, which allows for the reconstruction of the wave packet by analyzing the delaydependent Auger spectra. The possibility of extending this method to a more complex manifold of electronic and vibrational energy levels is also discussed.

  13. Hydrogen slush production with a large auger

    Science.gov (United States)

    Daney, D. E.; Arp, V. D.; Voth, R. O.

    1990-01-01

    The design and construction of a 178-mm-diameter auger-type hydrogen slush generator are described. A supercritical helium flow loop, which simulates the performance of a helium refrigerator, cools the generator. The coolant temperature varies down to 5 K and the flow varies about the 1.4 L/s (3 cfm) design point. The computer model of the auger-type generator shows that coolant temperature and auger speed have the greatest influence on slush production rate, although coolant flow rate and auger radial clearance are also important.

  14. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  15. Graphite oxide Auger-electron diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Mikoushkin, V.M., E-mail: V.Mikoushkin@mail.ioffe.ru [Ioffe Institute, 194021 Saint-Petersburg (Russian Federation); Kriukov, A.S.; Shnitov, V.V.; Solonitsyna, A.P.; Fedorov, V.Yu.; Dideykin, A.T.; Sakseev, D.A. [Ioffe Institute, 194021 Saint-Petersburg (Russian Federation); Vilkov, O.Yu. [St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lavchiev, V.M. [Institute for Microelectronics and Microsensors, Johannes Kepler University, A-4040 Linz (Austria)

    2015-02-15

    Highlights: • Very large graphite oxide (GO) flakes (∼100 μm) were studied by AES and XPS. • Auger energies for the GO main functional groups were obtained for the first time. • AES technique for determining the GO chemical/elemental composition was developed. • The developed technique gives concentration of chemically bound hydrogen. • The developed technique provides information on the GO surface and bulk. - Abstract: Graphite oxide (GO) nanofilms on the SiO{sub 2}/Si surface have been studied by photoelectron spectroscopy (XPS) with synchrotron radiation and by Auger electron spectroscopy (AES). Auger electron energies were determined for the basic functional GO groups: hydroxyl (C−OH) and epoxide (C−O−C). The data obtained enabled developing a technique for the GO chemical and elemental composition determination. The technique allows controlling the hydrogen content in GO despite the impossibility of Auger emission from hydrogen.

  16. Effective applications of auger electron spectroscopy

    International Nuclear Information System (INIS)

    The goal of this study is to explore different aspects of the AES process and to present the new techniques which can be used effectively for analytical purposes. More emphasis is given to AES data acquisition, sensitivity factor and Auger intensity. The experimental details of a typical scanning Auger microprobe (SAM) is also presented. Applications of AES to selected systems such as microelectronic devices, superconductors, an in metallurgy are described

  17. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    Science.gov (United States)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  18. Secondary Auger electrons and prostate cancer therapy

    International Nuclear Information System (INIS)

    Complete text of publication follows. Auger emitters emit electrons of relatively low energy, from ∼ 25 KeV to ∼ 500 eV, and therefore are of relatively low range. Thus, an important medical application for Auger emitters emerges as an effective means of controlling cancer due to the restrictive irradiation volume surrounding the emitter and therefore the possibility of a selective attack on cancer cells. There are two ways to perform an experiment with an Auger emitter. The first is to use a radionuclide that emits Auger electrons (Barchytherapy). The second is to stimulate a stable, potential Auger emitter inside the malignant cell using external irradiation. To achieve a therapeutic benefit, one must synthesize tumor selective chemicals. These compounds (porphyrins, phthalocaynines) should have two properties: i) Physically, it must have a metal ion with a large atomic number that will produce a large number of Auger electrons, ii) Chemically, it should be water-soluble and able to penetrate the cell membrane and attach itself to the cell target (e.g. DNA). The chemical properties sem contradictory, however, since these compounds are big molecules and have many side chains, one can build a porphyrin molecule that has on one side a hydrophilic component and on the other side a hydrophobic component. The physical and chemical aspects are discussed and some biological results will be presented

  19. Operations of and Future Plans for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  20. The Pierre Auger Cosmic Ray Observatory

    CERN Document Server

    ,

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  1. Observation of the Auger resonant Raman effect

    International Nuclear Information System (INIS)

    Monochromatized synchrotron radiation near the photoionization threshold was used to produce the [2p/sub 3/2/] vacancy state in atomic Xe. Deexcitation of the state through L3-M4M5(1G4) Auger-electron emission was measured. The 5d spectator-electron Auger satellite was observed. The satellite energy exhibits linear dispersion. The observed width of the 1G diagram line decreases by approx. 40% when the exciting photon energy reaches the vicinity of the Xe L3 binding energy. This radiationless process can thus be construed as the Auger analog of the x-ray resonant Raman effect. The 1G diagram line is shifted by -+3 eV due to post-collision interaction; this shift varies with excitation energy

  2. Auger electron transport calculations in biological matter

    International Nuclear Information System (INIS)

    The talk briefly discussed physical, biophysical, and biological aspects of Auger emitters. A summary of radiationless transition data available in published literature and databases were presented. Data were presented for electron capture (EC), internal conversions (IC), binding energies of some commonly used radionuclides 123I, 124I, 125I, and 158Gd. For each of these Auger emitting radionuclides some examples of Monte Carlo calculated electron spectra of individual decays were presented. Because most Auger electrons emitted in the decay of radionuclides are short range low energy electrons below 1 keV, a brief discussion was presented on most recent development of physics models for energy loss of electrons in condensed phase and compared with other models and gas phase data. Accuracy of electron spectra calculated in the decay of electron shower by Auger emitting radionuclides depends on availability of accurate physics data. Currently, there are many gaps in physics data as input data to computer codes in need of new evaluation. In addition, comparison should be made between deterministic and Monte Carlo methods to access the accuracy and sensitivity of data to methods and the chosen parameters. It has long been recognized that Auger electron show a high-LET like characteristics when radionuclide is very closely bound to DNA. As most Auger electrons are short range low energy electrons and mostly absorbed with the DNA duplex when in close vicinity to DNA duplex, we believe the physical and biological dosimetry are best achieved by using Monte Carlo track structure simulations able to simulate tracks of low energy electrons below 1keV and in particular sub 100 eV in condensed phas

  3. 30 CFR 77.1500 - Auger mining; planning.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger mining; planning. 77.1500 Section 77.1500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1500 Auger mining; planning. Auger mining shall be planned and conducted by the operator to...

  4. Auger electron appearance potential spectrum of Ni

    International Nuclear Information System (INIS)

    Electrons are accelerated onto a solid polycrystalline Ni surface. These primary electrons interact with the surface to produce one of two phenomena: x-ray fluorescence, or Auger electron emission. Auger Electron Appearance Potential Spectroscopy (AEAPS) is a process by which the Auger component of the secondary electron flux is analysed to extract qualitative information about the electronic structure of the empty conduction band states. In AEAPS, the threshold behavior of the Auger transitions is examined by taking the first derivative of the secondary electron current with respect to the incident electron energy using the potential modulation technique. Width of the empty band, degree of localization of the conduction band wave functions, overlapping of the 3d band with the 4s, and satellite phenomena are among the important parameters ascertainable by AEAPS. The present AEAPS measurements of L3 levels of Ni are compared with the reported data from Soft X-ray Appear nce Potential Spectroscopy (SXAPS) of Ni. SXAPS is a complimentary process of AEAPS in that it examines the secondary xray fluorescence from the surface in much the same way as AEAPS examines the total electron yield. AEAPS, used alone, or in conjunction with SXAPS, is considered to be a powerful technique for the systematic investgation of series of metals, such as the transition, or lanthanide series

  5. The Pierre Auger Cosmic Ray Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pierre Auger Collaboration

    2015-10-21

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 10{sup 17} eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km{sup 2} overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km{sup 2}, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km{sup 2} sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  6. Hybrid detection with the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory is designed to study the extensive air showers generated by ultra-high energy cosmic rays. It consists of 1600 water Cherenkov detectors spread over 3000 km2 viewed by 24 fluorescence telescopes. The implementation of these two complementary techniques together is known as the hybrid detection and makes Auger unique. The combination of a large ground array and fluorescence detectors allows the reconstruction of the shower axis geometry with much greater accuracy than is achieved with either detector system on its own. Simultaneous independent measurements of longitudinal and transverse shower observables give powerful cross-checks on the data analysis and better control over systematic uncertainties in the energy measurement. The Southern site of the Observatory, under construction in Argentina, has been providing data for more than 2 years. Here the hybrid reconstruction approach and its performance are described. (author)

  7. Reviewing recent results from Pierre Auger Observatory

    International Nuclear Information System (INIS)

    We present some results from the last three years of operation of the Pierre Auger Observatory. This is a short version of the review talk presented at the 18th International Symposium on Particles, Strings and Cosmology (PASCOS2012). The main topics are related to ultra-high energy cosmic rays and their interactions: energy spectrum, mass composition, neutrino spectrum and hadronic cross section at energies above 1018 eV

  8. Hadronic physics with the Pierre Auger Observatory

    OpenAIRE

    Cazon, L.; Collaboration, for the Pierre Auger

    2015-01-01

    Extensive air showers are the result of billions of particle reactions initiated by single cosmic rays at ultra-high energy. Their characteristics are sensitive both to the mass of the primary cosmic ray and to the fine details of hadronic interactions. Ultra-high energy cosmic rays can be used to experimentally extend our knowledge on hadronic interactions in energy and kinematic regions beyond those tested by human-made accelerators. We report on how the Pierre Auger Observatory is able to ...

  9. The Pierre Auger Cosmic Ray Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Grygar, Jiří; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 798, Oct (2014), 172-213. ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * high energy cosmic rays * hybrid observatory * water Cherenkov detectors * air fluorescence detectors Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.216, year: 2014

  10. Distributed Computing for the Pierre Auger Observatory

    Science.gov (United States)

    Chudoba, J.

    2015-12-01

    Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system.

  11. Education and Outreach for the Pierre Auger Observatory

    CERN Document Server

    Snow, Gregory R

    2007-01-01

    The scale and scope of the physics studied at the Auger Observatory offer significant opportunities for original outreach work. Education, outreach, and public relations of the Auger collaboration are coordinated in a task of its own whose goals are to encourage and support a wide range of efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on the impact of the collaboration in Mendoza Province, Argentina, as: the Auger Visitor Center in Malargue that has hosted over 29,000 visitors since 2001, the Auger Celebration and a collaboration-sponsored science fair held on the Observatory campus in November 2005, the opening of the James Cronin School in Malargue in November 2006, public lectures, school visits, and courses for science teachers. As the collaboration prepares the proposal for the northern Auger site foreseen to be in southeast Colorado, plans for a comprehensive outreach program are being...

  12. Calibration and Monitoring of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; DiGiulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; GarcíaGámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kühn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; LaRosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmiałkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; vandenBerg, A M; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2009-01-01

    Reports on the atmospheric monitoring, calibration, and other operating systems of the Pierre Auger Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.

  13. Data Processing at the Pierre Auger Observatory

    CERN Document Server

    Vicha, J

    2015-01-01

    Cosmic-ray particles with ultra-high energies (above $10^{18}$ eV) are studied through the properties of extensive air showers which they initiate in the atmosphere. The Pierre Auger Observatory detects these showers with unprecedented exposure and precision and the collected data are processed via dedicated software codes. Monte Carlo simulations of extensive air showers are very computationally expensive, especially at the highest energies and calculations are performed on the GRID for this purpose. The processing of measured and simulated data is described, together with a brief list of physics results which have been achieved.

  14. Auger and SIMS spectrometry in microelectronics

    International Nuclear Information System (INIS)

    X-ray microanalysis limitations led to the development of analytical techniques more sensitive to the ''surface'' layer of the samples. The need for these methods arises from the importance of such layers in determining the characteristics of semiconductor devices. Two recent methods of surface analysis are described in this paper, namely the Auger Electron Spectrometry (AES) and the Secondary Ion Mass Spectrometry (SIMS). Various AES and SIMS spectrometers are already available on the market, and are currently used in R and D or production laboratories of the electronic industries

  15. Recent Results from the Pierre Auger observatory

    International Nuclear Information System (INIS)

    The Pierre Auger observatory is a hybrid air shower experiment which uses multiple detection techniques to investigate the origin, spectrum, and composition of ultrahigh energy cosmic rays. We present recent results on these topics and discuss their implications to the understanding the origin of the most energetic particles in nature as well as for physics beyond the Standard Model, such as violation of Lorentz invariance and 'top-down' models of cosmic ray production. Future plans, including enhancements underway at the southern site in Argentina will be presented. (author)

  16. Particle physics at the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Ebr, Jan

    Les Ulis: EDP Sciences, 2014 - (Magiera, A.; Stroher, H.; Wronska, A.; Guaraldo, C.), "01021-1"-"01021-6". (EPJ Web of Conferences. 81). ISSN 2100-014X. [MESON 2014 - International Workshop on Meson Production, Properties and Interaction. Kraków (PL), 29.05.2014-03.06.2014] R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * ultra-high energy * hadronic interactions Subject RIV: BF - Elementary Particles and High Energy Physics

  17. Auger spectroscopy of fracture surfaces of ceramics

    Science.gov (United States)

    Marcus, H. L.; Harris, J. M.; Szalkowski, F. J.

    1974-01-01

    Results of Auger electron spectroscopy (AES) studies of fracture surfaces in a series of ceramic materials, including Al2O3, MgO, and Si3N4, which were formed using different processing techniques. AES on the fractured surface of a lunar sample is also discussed. Scanning electron micrograph fractography is used to relate the surface chemistry to the failure mode. Combined argon ion sputtering and AES studies demonstrate the local variations in chemistry near the fracture surface. The problems associated with doing AES in insulators are also discussed, and the experimental techniques directed toward solving them are described.

  18. Education and public outreach of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B.; /Natl. Tech. U., San Rafael; Snow, G.

    2005-08-01

    The Auger collaboration's broad mission in education, outreach and public relations is coordinated in a separate task. Its goals are to encourage and support a wide range of outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on recent activities and future initiatives.

  19. Auger voltage imaging for junction delineation

    International Nuclear Information System (INIS)

    A new method for the two-dimensional characterization of dopant profiles in semiconductors, called 'Auger Voltage Contrast' (AVC), is introduced, which investigates the effect of the dopant on the electronic properties of the device, e.g. the change of the Fermi level across a semiconductor surface. This change can be detected by extracting the shift of the Si-LVV Auger peak with respect to a reference spectrum. AVC linescans across pn-junctions have been modeled using the MINIMOS-NT device simulator, finding the energy shift across a pn-junction is not directly representative for the dopant distribution itself, but that the turning point of the AVC energy shift coincides with the position of the junction, making AVC an applicable tool for junction delineation. Furthermore, contamination experiments showed that small amounts of oxide on the semiconductor surface do not influence the contrast in an AVC image. For processing such an energy shift map, a software tool has been developed, which is able to obtain a map that assigns four regions to the semiconductor: regions that are p-type, regions that are n-type, regions that cannot be assigned to either type due to contamination and regions that act as the 'error bar' between p and n. Experimental data obtained from two-dimensional test structures have been processed with this tool. The resulting images clearly show the n- and p-type regions, and the width of the region corresponding to the junction are clearly below 50 nm. (author)

  20. Particle physics at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Ebr Jan

    2014-01-01

    Full Text Available The Pierre Auger Observatory is the largest detector of ultra-high energy cosmic rays (UHECR in the world. These particles, presumably protons or heavier nuclei of energies up to 1020 eV, initiate extensive air showers which can be detected by sampling the particles that arrive at ground level or observing the fluorescence light generated during the passage of showers through the atmosphere – the Pierre Auger Observatory employs both these techniques. As the center-of-mass energies of the first interactions in the showers can be several orders of magnitude beyond the reach of the LHC, the UHECR provide an unique opportunity to study hadronic interactions. While the uncertainty in modeling these interactions is somewhat degenerate with the unknown composition of the primary beam, interaction models can be tested using data such as the depths of the maxima of the longitudinal development of the showers or their muon content. Particular sensitivity to interaction models is achieved when several observables are combined. Moreover, using careful data selection, proton-air cross section at the c.m.s. energy of 57 TeV per nucleon-nucleon pair can be obtained.

  1. Prospects of GPGPU in the Auger Offline Software Framework

    CERN Document Server

    Winchen, Tobias

    2015-01-01

    The Pierre Auger Observatory is the currently largest experiment dedicated to unveil the nature and origin of the highest energetic cosmic rays. The software framework 'Offline' has been developed by the Pierre Auger Collaboration for joint analysis of data from different independent detector systems used in one observatory. While reconstruction modules are specific to the Pierre Auger Observatory components of the Offline framework are also used by other experiments. The software framework has recently been extended to incorporate data from the Auger Engineering Radio Array (AERA), the radio extension of the Pierre Auger Observatory. The reconstruction of the data of such radio detectors requires the repeated evaluation of complex antenna gain patterns which significantly increases the required computing resources in the joint analysis. In this contribution we explore the usability of massive parallelization of parts of the Offline code on the GPU. We present the result of a systematic profiling of the joint...

  2. Auger emission from solid surfaces bombarded with ions

    International Nuclear Information System (INIS)

    The Auger electron emission from Be, Na, Mg, Al and Si bombarded with 0,5-20 KeV noble gas ions is studied. Sharp structures of the Auger electron spectra of Na and Be were identified. A Monte Carlo program was adapted to simulate the colision cascade in the solid, inner shell excitations and Auger decays. From the comparision of experimental and simulated Auger intensities, the relative role of symmetric and asymmetric collisions in Be K- and Al L-shell excitation were evaluated. In the case of Be, the discussion of the exciting processes to higher projectile energies was extended. To this end, the simulation to early measurements of Be K X-ray yields was applied. From this analysis, information about the variations of the fluorescence yield and outer-shell occupation numbers of Be with projectile energy was obtained. The study of the shape of the sharp Auger structures and their dependence with the energy and incidence projectile angle gives information about the collisional processes, inner hole lifetimes and Auger decays. From the evaluation of the energy and angular distribution of the excited sputtered atoms and the interaction between them and the metallic-surface, the energy shift distributions in the Auger energies were obtained. From the comparison of these distributions with the experimental atomic peaks, the main causes of the broadening of these peaks were determined. (M.E.L.)

  3. Soil chip convey of lunar subsurface auger drill

    Science.gov (United States)

    Zhao, Deming; Tang, Dewei; Hou, Xuyan; Jiang, Shengyuan; Deng, Zongquan

    2016-05-01

    Celestial body subsurface drilling and sampling is a key aspect of near-earth exploration projects. In these sample return missions, the auger drill system is universally used due to the environment and detector load limits. The common failure that the auger faces is chip chocking, which can raise the torque and cause the drill to stick. This paper builds auger drill models describing chip flow in the auger groove to balance geometric parameters, functional capability, and reliability. The features of chip flow are summarized and verified by a series of discrete element method simulations. In contrast to previous auger design, a convey capability factor is defined to indicate the auger's chip removal capacity, and the role of pitch angle and other parameters is assessed through motion analysis of the lunar soil flow process. The theory is verified by testing the drill penetrating speed limit, which combines drill geometry and motion parameters. This work provides a new method for design and optimization of low speed auger drill systems and research on particle flow with small scale mechanical constraints.

  4. Pierre Auger Atmosphere-Monitoring Lidar System

    CERN Document Server

    Filipcic, A; Veberic, D; Zavrtanik, D; Zavrtanik, M; Chiosso, M; Mussa, R; Sequeiros, G; Mostafa, M A; Roberts, M D

    2003-01-01

    The fluorescence-detection techniques of cosmic-ray air-shower experiments require precise knowledge of atmospheric properties to reconstruct air-shower energies. Up to now, the atmosphere in desert-like areas was assumed to be stable enough so that occasional calibration of atmospheric attenuation would suffice to reconstruct shower profiles. However, serious difficulties have been reported in recent fluorescence-detector experiments causing systematic errors in cosmic ray spectra at extreme energies. Therefore, a scanning backscatter lidar system has been constructed for the Pierre Auger Observatory in Malargue, Argentina, where on-line atmospheric monitoring will be performed. One lidar system is already deployed at the Los Leones fluorescence detector site and the second one is currently (April 2003) under construction at the Coihueco site. Next to the established ones, a novel analysis method with assumption on horizontal invariance, using multi-angle measurements is shown to unambiguously measure optica...

  5. Highlights from the Pierre Auger Observatory

    CERN Document Server

    Aab, A; Aglietta, M; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muniz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antivcic, T; Aramo, C; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Barber, K B; Bardenet, R; Baeuml, J; Baus, C; Beatty, J J; Becker, K H; Belletoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blumer, H; Bohacova, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Burton, R E; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Cheng, S H; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Collica, L; Coluccia, M R; Conceicao, R; Contreras, F; Cook, H; Cooper, M J; Coutu, S; Covault, C E; Criss, A; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Diaz, J C; Castro, M L Diaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipcic, A; Foerster, N; Fox, B D; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Frohlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; Garcia, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glaser, C; Glass, H; Albarracin, F Gomez; Berisso, M Gomez; Vitale, P F Gomez; Goncalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Homola, P; Hoerandel, J R; Horvath, P; Hrabovsky, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jansen, S; Jarne, C; Josebachuili, M; Kadija, K; Kambeitz, O; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kegl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; d, J Knapp; Krause, R; Krohm, N; Kroemer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; La Rosa, G; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leao, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopez, R; Aguera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Malacari, M; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martinez; Martraire, D; Meza, J J Masias; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Messina, S; Meyhandan, R; Micanovic, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Mostafa, M; Moura, C A; Muller, M A; Muller, G; Munchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novzka, L; Oehlschlager, J; Olinto, A; Oliveira, M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parra, A; Pastor, S; Paul, T; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Pontz, M; Porcelli, A; Preda, T; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Cabo, I Rodriguez; Fernandez, G Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Frias, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouille-d'Orfeuil, B; Roulet, E; Rovero, A C; Ruhle, C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sanchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovanek, P; Schroeder, F G; Schulz, A; Schulz, J; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Smialkowski, A; Smida, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Straub, M; Stutz, A; Suarez, F; Suomijarvi, T; Supanitsky, A D; Susa, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Tacscuau, O; Tcaciuc, R; Thao, N T; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tome, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Tridapalli, D B; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Galicia, J F Valdes; Valino, I; Valore, L; van Aar, G; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cardenas, B Vargas; Varner, G; Vazquez, J R; Vazquez, R A; Veberic, D; Verzi, V; Vicha, J; Videla, M; Villasenor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczynska, B; Wilczynski, H; Will, M; Williams, C; Winchen, T; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2013-01-01

    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our X$_{max}$ data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.

  6. Experimental KLM + KLN Auger spectrum of Cu

    Energy Technology Data Exchange (ETDEWEB)

    Inoyatov, A.Kh., E-mail: inoyatov@jinr.ru [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Institute of Applied Physics, National University, Tashkent (Uzbekistan); Perevoshchikov, L.L. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Zhdanov, V.S. [Institute of Nuclear Physics, Almaty (Kazakhstan); Filosofov, D.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Kovalík, A. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Nuclear Physics Institute of the ASCR, Řež near Prague (Czech Republic)

    2013-08-15

    Highlights: •The KLM Auger spectrum of Cu was measured for the first time in detail. •Energies and relative intensities of nine resolved spectrum components were determined. •Semi-empirical KLM energy predictions and experiment agree mostly within 3σ with the exception of the transitions involving the M{sub 4,5} atomic subshells. •It was found that the KLM transition rates at Z = 29 should be calculated relativistically in intermediate coupling scheme. -- Abstract: The KLM + KLN Auger electron spectrum of Cu (Z = 29) emitted in the electron capture decay of radioactive {sup 65}Zn in a solid matrix was investigated for the first time using a combined electrostatic electron spectrometer adjusted to the 7 eV instrumental resolution. Energies and relative intensities of nine resolved spectrum components were determined and compared with theoretical expectations. An agreement within 3σ was found between the semi-empirical predictions for the KLM transition energies by Larkins and the experimental data with the exception of the weak (KL{sub 2}M{sub 4,5} + KL{sub 2}N{sub 1}) and (KL{sub 3}M{sub 4,5} + KL{sub 3}N{sub 1}) lines where the differences reached 5σ. From a comparison of the measured relative KLM transition intensities with available theoretical results a conclusion was derived that calculations of the KLM transition rates at Z = 29 should be based on intermediate coupling of angular momenta and take into account relativistic effects.

  7. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not...

  8. Auger relative sensitivivity factors for CdTe oxide

    OpenAIRE

    Bartolo-Pérez, P.; Peña, J. L.; M.H. Farías

    1999-01-01

    The Auger lineshape of Te MNN in measurements of Auger spectra of CdTe oxide films with various degrees of oxidation was analyzed. By using standards from stoichiometric compounds, Auger relative sensitivity factors (RSF´s) of Cd, Te and O for CdTe oxide thin films were obtained. The value of the RFS of oxygen is about constant, 0.27-0.28, for the standard compound, CdO, TeO2 and CdTeO3 (considering the RSF of Cd as 1). However, the obtained RSF of Te changes from 0.69 in CdTe up to 0.87 in C...

  9. The Surface Detector System of the Pierre Auger Observatory

    CERN Document Server

    Allekotte, I; Bauleo, P; Bonifazi, C; Civit, B; Escobar, C O; García, B; Guedes, G; Berisso, M Gomez; Harton, J L; Healy, M; Kaducak, M; Mantsch, P; Mazur, P O; Newman-Holmes, C; Pepe, I; Rodriguez-Cabo, I; Salazar, H; Grande, N Smetniansky-De; Warner, D

    2007-01-01

    The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10^{19} eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000 km^2, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory.

  10. The surface detector system of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 1019eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000km2, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory

  11. The surface detector system of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Allekotte, I. [Instituto Balseiro and Centro Atomico Bariloche (U.N. Cuyo and CNEA, CONICET), 8400 Bariloche (Argentina)], E-mail: ingo@cab.cnea.gov.ar; Barbosa, A.F. [CBPF, Rua Xavier Sigaud 150, Rio de Janeiro (Brazil); Bauleo, P. [Colorado State University, Fort Collins, CO 80523 (United States); Bonifazi, C. [CBPF, Rua Xavier Sigaud 150, Rio de Janeiro (Brazil); Civit, B. [Universidad Tecnologica Nacional Regional Mendoza, Mendoza (Argentina); Escobar, C.O. [Departamento de Raios Cosmicos, Instituto de Fisica, Universidade Estadual de Campinas, CP 6165, 13084-971, Campinas SP (Brazil); Garcia, B. [Universidad Tecnologica Nacional Regional Mendoza, Mendoza (Argentina); Guedes, G. [Universidade Estadual de Feira de Santana (UEFS), Av. Universitaria Km 03 da BR 116, Campus Universitario, 44031-460 Feira de Santana BA (Brazil); Gomez Berisso, M. [Instituto Balseiro and Centro Atomico Bariloche (U.N. Cuyo and CNEA, CONICET), 8400 Bariloche (Argentina); Harton, J.L. [Colorado State University, Fort Collins, CO 80523 (United States); Healy, M. [Department of Physics and Astronomy, University of California, Los Angeles (UCLA), Los Angeles, CA 90095 (United States); Kaducak, M.; Mantsch, P.; Mazur, P.O.; Newman-Holmes, C. [Fermi National Accelerator Laboratory Batavia, IL (United States); Pepe, I. [Universidade Federal da Bahia, Campus de Odina, 40210-340 Salvador BA (Brazil); Rodriguez-Cabo, I. [Dpto. Fisica de Particulas, Universidad de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Salazar, H. [Benemerita Universidad Autonoma de Puebla (BUAP), Ap. Postal J-48, 72500 Puebla, Puebla (Mexico); Smetniansky-De Grande, N. [Laboratorio Tandar, Comision Nacional de Energia Atomica and CONICET, Av. Gral. Paz 1499 (1650) San Martin, Buenos Aires (Argentina); Warner, D. [Colorado State University, Fort Collins, CO 80523 (United States)

    2008-03-01

    The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10{sup 19}eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000km{sup 2}, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory.

  12. A combined Auger-ESCA spectrometer for materials characterization

    International Nuclear Information System (INIS)

    Combining a Auger spectrometer with an ESCA spectrometer offers special advantages for materials characterization. Auger spectrum allows a very high sensitivity to be obtained due to a rather strong electronic excitation that allows also the presence of small particulates of foreign substance monolayers at the surface to be displayed. So the Auger procedure is suitable for surface cleanliness verification. The photoelectron (ESCA) spectroscopy ensures a high resolution that allows precise measurements of the chemical changes and search on bands structures. Auger and ESCA measurements are directly compared. Measurements are effected on the same sample and practically at the same time without perturbing the ultra high vacuum. On the way, a direct comparison of both method sensitivity is made possible. The procedure makes also possible the surface cleaning using an ion gun incorporated inside the apparatus, by separating a thin film from the others and simultaneously analyzing the profile

  13. The Surface Detector System of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Allekotte, I.; Barbosa, A.F.; Bauleo, P.; Bonifazi, C.; Civit, B.; Escobar, C.O.; Garcia, B.; Guedes, G.; Gomez Berisso, M.; Harton, J.L.; Healy, M.; /Cuyo U. /Buenos Aires, CONICET /Natl. Tech. U., San Rafael /Campinas State U. /UEFS, Feira de Santana /Bahia U. /BUAP, Puebla /Santiago de Compostela U. /Fermilab /UCLA /Colorado State U.

    2007-11-01

    The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10{sup 19} eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000 km{sup 2}, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory.

  14. Auger Emitter Based Radiotherapy- A Possible New Treatment for Cancer

    DEFF Research Database (Denmark)

    Fredericia, Pil; Groesser, Torsten; Severin, Gregory; Köster, U.; Jensen, Andreas Tue Ingemann; Jensen, Mikael

    2014-01-01

    Cancer is a major cause of mortality worldwide (1). A large fraction of cancer patients undergo external radiotherapy, delivering a lethal dose of radiation to the patient’s tumour(s). The main problem with this approach is the collateral damage caused to healthy, surrounding tissue and the side...... damage produced by Low-LET radiation used in current radiotherapy (2-3) Considerable efforts have been made in the past twenty years to develop Auger emitter-based radiotherapy However, previous studies lack precise measurement of RBE, which is the fundamental factor defining the relationship between...... local radiation dose and biological damage done for the given Auger emitter, thereby brought the development to a halt. We believe we have the techniques to quantify the biological damage done for a given Auger emitter and thereby pushing the development of Auger emitterbased radiotherapy into reality...

  15. THEORETICAL BASIS OF CALCULATING BULLDOZER WITH AUGER-TYPE INTENSIFIER

    OpenAIRE

    Khmara, L.; de Krol, R. van

    2007-01-01

    New methods of calculating absolute speed of soil particle transported by auger-type intensifier, determination of cutoff frequency of the latter and methods of determining absolute speed of soil particle considering the speed of utility tractor are presented

  16. Core-valence coupling in the Ru 4p photoexcitation/Auger decay process: Auger-photoelectron coincidence spectroscopy study

    International Nuclear Information System (INIS)

    The N23VV Auger spectrum of Ru has been measured in coincidence with 4p1/2 and with 4p3/2 photoelectrons. Unlike other metals that exhibit bandlike Auger decays, we find that the two Auger spectra are not shifted by the difference in core level binding energies. A consistent description of these transitions and the core level line shape requires consideration of the relativistic multiplet splitting in the intermediate core hole state and two-valence-hole Auger final state. The results suggest that the large linewidth of the 4p levels is primarily due to multiplet splitting, and that an N2(N3N45)N45N45 super-Coster-Kronig transition is only a minor decay channel. (c) 2000 The American Physical Society

  17. Recent results from the Pierre Auger observatory

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory has been designed to measure cosmic rays above 1018 eV with unprecedented statistics and precision. After outlining why there is interest in such particles, recent measurements from the Observatory relating to the mass composition and energy spectrum above 1018 eV are described. From measurements of the variation of the depth of shower maximum with energy, there are indications - if models of high-energy interactions are correct - that the mass composition is not proton-dominated at the highest energies. A flattening of the slope of the energy spectrum from (-3.30 ± 0.06) to (-2.62 ± 0.02) is observed at 4.5 x 1018 eV while above 3.6 x 1019 eV the spectrum steepens to a slope of (-4.1 ± 0.4). Because of the composition result, caution needs to be exercised over interpretation of the steepening as the long-sought Greisen-Zatsepin-Kuzmin effect. The importance of data from the LHC for the more accurate interpretation of air-shower measurements is emphasised

  18. Results from the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Perrone Lorenzo

    2013-06-01

    Full Text Available The Pierre Auger Observatory has been designed to investigate the origin and the nature of Ultra High Energy Cosmic Rays using a hybrid detection technique. It islocated in the Province of Mendoza, Argentina, and consists of a surface array of about 3000 km2 overlooked by 27 air fluorescence telescopes grouped in four sites, which together provide a powerful instrument for air shower reconstruction. The combination of information from the surface array, measuring the lateral distributions of secondary particles at the ground, and the fluorescence telescopes, observing the longitudinal profile, enhances the reconstruction capability with respect to the individual detector components. Ultra High Energy Cosmic Rays offer also the unique chance of investigating particle interactions over an energy range well beyondthe one covered by present and future ground-based particle accelerators. A review of selected results is presented with the emphasis given to the measurement of energy spectrum, arrival directions, chemical composition and the search for photons and neutrinos as primary particles.

  19. Hadronic physics with the Pierre Auger Observatory

    CERN Document Server

    Cazon, L

    2015-01-01

    Extensive air showers are the result of billions of particle reactions initiated by single cosmic rays at ultra-high energy. Their characteristics are sensitive both to the mass of the primary cosmic ray and to the fine details of hadronic interactions. Ultra-high energy cosmic rays can be used to experimentally extend our knowledge on hadronic interactions in energy and kinematic regions beyond those tested by human-made accelerators. We report on how the Pierre Auger Observatory is able to measure the proton-air cross section for particle production at a center-of-mass energy per nucleon of 39 TeV and 56 TeV and also to constrain the new hadronic interaction models tuned after the results of the Large Hadron Collider, by measuring: the average shape of the electromagnetic longitudinal profile of air showers, the moments of the distribution of the depth at which they reach their maximum, and the content and production depth of muons in air showers with a primary center-of-mass energy per nucleon around and a...

  20. Latest results from the Pierre Auger Observatory

    CERN Document Server

    Roulet, Esteban

    2011-01-01

    Recent results obtained with the Pierre Auger Observatory are described. These include measurements of the spectrum, anisotropies and composition of ultra-high energy cosmic rays. The ankle of the spectrum is measured at $4\\times 10^{18}$~eV and a suppression above $3\\times 10^{19}$~eV consistent with the GZK effect is observed. At energies above $5.5\\times 10^{19}$~eV a correlation with the distribution of nearby extragalactic objects is found, including an excess around the direction of Centaurus~A, the nearest radio loud active galaxy. Measurements of the depth of shower maximum and its fluctuations suggest a gradual change in the average mass of the primary cosmic rays (under standard extrapolations of hadronic interaction models), being the results consistent with a light composition consisting mostly of protons at few$\\times 10^{18}$~eV and approaching the expectations from iron nuclei at $4\\times 10^{19}$~eV. Upper bounds on the photon fraction and the neutrino fluxes are also obtained.

  1. Auger radiation targeted into DNA: a therapy perspective

    International Nuclear Information System (INIS)

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of α particles. In contrast to α radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided α and β radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  2. Status and recent results of the Pierre Auger Observatory

    CERN Document Server

    Vorobiov, S

    2006-01-01

    The Pierre Auger Observatory aims to determine the nature and origin of the ultra-high energy cosmic rays (UHECR). The Auger hybrid detector combines fluorescence observations of extended air showers, initiated in the atmosphere by these most energetic particles, with measures of the shower front at the ground level by its large array of Cherenkov water tanks. This allows to improve considerably the precision on reconstructed primary cosmic ray parameters, and to make important cross-calibrations between two techniques at these energies, unreachable with accelerator experiments. The Southern Auger site in Argentina is close to completion. The first measure of the primary cosmic rays energy spectrum, the anisotropy search results, and the limit on the photon fraction in the UHECR are discussed.

  3. Atmospheric aerosols at the Pierre Auger Observatory and environmental implications

    CERN Document Server

    Louedec, K

    2012-01-01

    The Pierre Auger Observatory detects the highest energy cosmic rays. Calorimetric measurements of extensive air showers induced by cosmic rays are performed with a fluorescence detector. Thus, one of the main challenges is the atmospheric monitoring, especially for aerosols in suspension in the atmosphere. Several methods are described which have been developed to measure the aerosol optical depth profile and aerosol phase function, using lasers and other light sources as recorded by the fluorescence detector. The origin of atmospheric aerosols traveling through the Auger site is also presented, highlighting the effect of surrounding areas to atmospheric properties. In the aim to extend the Pierre Auger Observatory to an atmospheric research platform, a discussion about a collaborative project is presented.

  4. Lateral width of shower image in the Auger fluorescence detector

    CERN Document Server

    Barbosa, H; Dobrigkeit, C; Engel, R; Gora, D; Heck, D; Homola, P; Klages, H; Medina-Tanco, G; Ortiz, J A; Pekala, J; Risse, M; Wilczynska, B; Wilczynski, H

    2005-01-01

    The impact of the lateral distribution of light in extensive air showers on the detection and reconstruction of shower profiles is investigated for the Auger fluorescence telescopes. Based on three-dimensional simulations, the capability of the Auger telescopes to measure the lateral distribution of light is evaluated. The ability to infer the actual lateral distribution is confirmed by the comparison of detailed simulations with real data. The contribution of pixels located far from the axis of the shower image is calculated and the accepted signal is rescaled in order to reconstruct a correct shower profile. The analysis presented here shows that: (a) the Auger telescopes are able to observe the lateral distribution of showers and (b) the energy corrections to account for the signal in outlying pixels can exceed 10%, depending on shower geometry.

  5. Auger parameter and Wagner plot studies of small copper clusters

    Science.gov (United States)

    Moretti, Giuliano; Palma, Amedeo; Paparazzo, Ernesto; Satta, Mauro

    2016-04-01

    We discuss application of the Auger parameter and Wagner plot concepts to the study of small copper clusters deposited on various supports such as C(graphite), SiO2 and Al2O3. We demonstrate that the cluster size and the electronic properties of the support influence the shifts of both the binding energy of the Cu 2p3/2 transition and the kinetic energy of the Cu L3M45M45; 1G Auger transition. We find that the Cu L3M45M45; 1G-2p3/2 Auger parameter and Wagner plot allow one to single out and measure both initial- and final-state effects with a detail which is superior to that achieved in photoemission studies.

  6. Defect identification by compositional defect review using auger electron spectroscopy

    International Nuclear Information System (INIS)

    Defect identification plays an enabling role in determining the source of particles that occur during semiconductor processing and are subsequently detected by defect inspection tools. Auger electron spectroscopy provides a high spatial resolution, surface sensitive analytical probe that is well matched to examining small, thin or complex defects. A focused ion beam (FIB) can be used to cross-section buried defects and structures for subsequent Auger analysis. Such measurements have been made on defects from two wafers pulled at different process steps. One wafer was analyzed after poly-Si deposition, and the other wafer was analyzed after metal 2 etch. The defects on the poly-Si wafer are Si particles. Three types of particles were found on the metal 2 wafer: C-based, stainless steel, and Si-oxide. The majority of defects on this wafer are C-based. Auger, EDS and FIB results will be compared for representative defects on these two wafers

  7. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    CERN Document Server

    Aab, A; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Awal, N; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bridgeman, A; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Freire, M M; Fuchs, B; Fujii, T; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Hemery, N; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kuempel, D; Mezek, G Kukec; Kunka, N; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Louedec, K; Lu, L; Lucero, A; Malacari, M; Maldera, S; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Meyhandan, R; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zhu, Y; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-01-01

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m$^2$ plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  8. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  9. On the Equivalent Dose for Auger Electron Emitters

    OpenAIRE

    Howell, Roger W.; Narra, Venkat R.; Sastry, Kandula S. R.; Rao, Dandamudi V.

    1993-01-01

    Radionuclides that emit Auger electrons are widely used in nuclear medicine (e.g., 99mTc, 123I, 201T1) and biomedical research (e.g., 51Cr, 125I), and they are present in the environment (e.g., 40K, 55Fe). Depending on the subcellular distribution of the radionuclide, the biological effects caused by tissue-incorporated Auger emitters can be as severe as those from high-LET α particles. However, the recently adopted recommendations of the International Commission on Radiological Protection (I...

  10. Mass sensitive observables of the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Unger M.

    2013-06-01

    Full Text Available In this article we will discuss measurements of the longitudinal development of air showers at the Pierre Auger Observatory. The longitudinal development of the electromagnetic component can be directly observed by the fluorescence telescopes of the Auger Observatory and we will present the results on the evolution of the average shower maximum and its fluctuations as a function of energy. Moreover, two observables from the surface detector, the asymmetry of the rise time of the station signals and the muon production depth, will be discussed and the measurements will be compared to predictions from air shower simulations for different primary particle types.

  11. Digital Electronics for the Pierre Auger Observatory AMIGA Muon Counters

    OpenAIRE

    Wainberg, O.; A. Almela; Platino, M.; Sanchez, F.; Suarez, F.; Lucero, A.; Videla, M.; B. Wundheiler; Melo, D.; Hampel, M.; Etchegoyen, A.

    2013-01-01

    The "Auger Muons and Infill for the Ground Array" (AMIGA) project provides direct muon counting capacity to the Pierre Auger Observatory and extends its energy detection range down to 0.3 EeV. It currently consists of 61 detector pairs (a Cherenkov surface detector and a buried muon counter) distributed over a 23.5 km2 area on a 750 m triangular grid. Each counter relies on segmented scintillator modules storing a logical train of '0's and '1's on each scintillator segment at a given time slo...

  12. Analysis report for 241-BY-104 auger samples

    International Nuclear Information System (INIS)

    This document details the analytical sample results for two auger samples of the tip 15 cm (6 in.) of tank 241-BY-104 salt cake. The thermal response of tank 241-BY-104 auger samples is generally mild. The level of cyanide and iron, and therefore of ferrocyanide is very low. Evidence of inhomogeneity is present for tank 241-By-104 salt cake. Mass and charge balances were less than ideal. The concentrations found for the major constituents, except chromium, are in line with the expectations

  13. Double Auger Emission of fixed-in-space Carbon Monoxide following Core-Excitation and Ionization

    International Nuclear Information System (INIS)

    Double Auger decay after core-level photo excitation and after ionization through synchrotron radiation in gas phase carbon monoxide has been studied. We report the first experiment where both Auger electrons in double Auger decay have been measured in coincidence with the ionic fragments.

  14. Manipulation of resonant Auger processes with strong optical fields

    Science.gov (United States)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  15. Suppression of auger recombination in ""giant"" core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Santamaria, Florencio [Los Alamos National Laboratory; Vela, Javier [Los Alamos National Laboratory; Schaller, Richard D [Los Alamos National Laboratory; Hollingsworth, Jennifer A [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Chen, Yongfen [NON LANL

    2009-01-01

    Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ('blinking') of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has been a longstanding goal in colloidal nanocrystal research. Here, we demonstrate that such suppression is possible using so-called 'giant' nanocrystals that consist of a small CdSe core and a thick CdS shell. These nanostructures exhibit a very long biexciton lifetime ({approx}10 ns) that is likely dominated by radiative decay instead of non-radiative Auger recombination. As a result of suppressed Auger recombination, even high-order multiexcitons exhibit high emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 me V) and record low excitation thresholds.

  16. Auger coefficient in GaInN-based laser structures

    International Nuclear Information System (INIS)

    Todays GaInN-based light emitting devices such as LEDs and laser diodes show excellent properties in terms of quantum efficiency or threshold current in the violet-blue spectral region. With increasing wavelength towards the green this performance decreases strongly. In particular at longer wavelengths, the quantum efficiency decreases for higher current densities, called the efficiency droop. This phenomenon is still subject to intensive research and different mechanisms such as Auger recombination, losses due to dislocations and carrier escape have been named as possible explanations. We combine optical gain measurements using the variable stripe length technique with model calculations of the optical gain spectra to derive the carrier lifetime. From the dependence of the inverse effective lifetime on carrier density we determine the recombination coefficients for radiative, nonradiative and Auger recombination. The Auger coefficients we obtained are about 1-2 x 10-31 cm6/s for GaInN quantum wells with 2.5eVg<3.1 eV which is more than an order of magnitude lower than estimated from photoluminescence and thus too low to explain the LED droop. Nevertheless, Auger recombination seems to contribute to laser threshold.

  17. Operations of and Future Plans for the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; agoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; DiGiulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; GarcíaGámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kühn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; LaRosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmiałkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; VandenBerg, A M; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2009-01-01

    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.

  18. 30 CFR 819.19 - Auger mining: Backfilling and grading.

    Science.gov (United States)

    2010-07-01

    ... environment. (5) Spoil placed on the outslope during previous mining operations shall not be disturbed if such... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Backfilling and grading. 819.19 Section 819.19 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF...

  19. Simulations for MARTA (Muon Auger RPC for the Tank Array)

    Energy Technology Data Exchange (ETDEWEB)

    Maurizio, D.; Shellard, R.C. [CBPF, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: The Muon Auger RPC for the Tank Array (MARTA) detector is being studied as part of the Pierre Auger Observatory upgrade. The aim of this detector is to provide a very good capability to discriminate muons in an air shower. This property is very important for it allows Auger to investigate the changes in the hadronic interactions at high energies; to improve the energy evolution by better understanding the muon component of the showers, as well as the missing energy into neutrinos; to increase the primary photon discrimination. A simulation package was developed to integrate with the regular Auger software to describe the behaviour of the detector and allow the fine running of the parameters that define the detector. This package use Geant4 to describe the detector and the electronics response. However this package is very computer intensive so we are developing a fast version of simulation, using Python as the program language. In this paper we describe some of physics parameters results provided by the simulation. (author)

  20. Results and Perspectives of the Auger Engineering Radio Array

    CERN Document Server

    ,

    2016-01-01

    The Auger Engineering Radio Array (AERA) is an extension of the Pierre Auger Cosmic-Ray Observatory. It is used to detect radio emission from extensive air showers with energies beyond $10^{17}~$eV in the $30 - 80~$MHz frequency band. After three phases of deployment, AERA now consists of more than 150 autonomous radio stations with different spacings, covering an area of about $17~$km$^2$. It is located at the same site as other Auger low-energy detector extensions enabling combinations with various other measurement techniques. The radio array allows different technical schemes to be explored as well as cross-calibration of our measurements with the established baseline detectors of the Auger Observatory. We report on the most recent technological developments and give an overview of the experimental results obtained with AERA. In particular, we will present the measurement of the radiation energy, i.e., the amount of energy that is emitted by the air shower in the form of radio emission, and its dependence...

  1. Experimental KLM plus KLN Auger spectrum of Cu

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Perevoshchikov, L. L.; Zhdanov, V. S.; Filosofov, D. V.; Kovalík, Alojz

    2013-01-01

    Roč. 18, AUG (2013), s. 23-26. ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896 Institutional support: RVO:61389005 Keywords : electron spectroscopy * Auger spectra * KLM transitions * transitions energy * Cu-65 * Zn-65 Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders Impact factor: 1.552, year: 2013

  2. Cosmic ray composition studies with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Boncioli, Denise, E-mail: denise.boncioli@aquila.infn.it [INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe (Argentina)

    2014-04-01

    The Pierre Auger Observatory in Argentina is the largest cosmic ray detector array ever built. Although the construction was completed in 2008, the Observatory has been taking data continuously since January 2004. Its main goal is to measure ultra high energy cosmic rays (UHECRs, energy above 10{sup 18} eV) with unprecedented statistics and precision. Measurements of the energy spectrum, chemical composition (including neutrinos and photons) and arrival directions of UHECRs can provide hints for understanding their origin, propagation and interactions. The fluorescence detector of the Pierre Auger Observatory measures the atmospheric depth, X{sub max}, where the longitudinal profile of a high energy air shower reaches its maximum. This is sensitive to the nuclear mass composition of the cosmic ray and to the characteristics of the hadronic interactions at very high energy. Due to its hybrid design, the Pierre Auger Observatory also provides independent experimental observables obtained from the surface detector for the study of the shower development. A selection of the Pierre Auger Observatory results on the study of the UHECRs will be presented, focusing on composition results. In particular, the measurements and the different roles of the observables with respect to mass composition will be discussed.

  3. Field screening of a fuel farm using hand auger borings

    International Nuclear Information System (INIS)

    Twenty-seven hand auger borings were drilled within and around the northern fuel farm at Naval Air Station Moffett Field, California. The placement and depth of: (1) hand auger borings, (2) deep soil borings and (3) monitoring wells were established to define the horizontal extent of field-detected contamination. Upon delineation of the hydrocarbon plume and the buried channel deposit, two A1 aquifer monitoring wells and three free product wells were installed. Each location was initialized as a sod boring employing continuous core drilling for stratigraphic information. The two monitoring wells were screened within sand units exhibiting substantial levels of contaminants detected using a photoionizer. The three free product wells were installed in keeping within the scope of the work plan which required that a free product well be installed wherever free product was observed on the ground-water in the open borehole. The three locations contained thicknesses from 1 to 3 mm of yellow oily product when measured with a clear acrylic bailer in the open 'hand auger' hole. After installation of the two monitoring wells and the additional installation of observation wells, one aquifer test was conducted to acquire hydrogeologic data for fate and transport modeling and remediation of the area. This paper will discuss a field study that used hand augers as a screening method. This method provided a cost-effective means of delineating the horizontal extent of a shallow hydrocarbon plume, defined the extent of a free product plume, defined aquifer characteristics and aided in the proper selection of well location and screen placement. The paper demonstrates how the field screening method of hand augered borings resulted in optimum monitoring well placement by discussion of groundwater analytical results from the monitoring wells, geologic data and aquifer tests from the selectively placed monitoring wells

  4. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  5. Upflow bioreactor having a septum and an auger and drive assembly

    Science.gov (United States)

    Hansen, Carl S.; Hansen, Conly L.

    2007-11-06

    An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes an auger positioned in the aperture of the septum. The vessel includes an opening in the top for receiving the auger. The auger extends from a drive housing, which is position over the opening and provides a seal around the opening. The drive housing is adjustable relative to the vessel. The position of the auger in the aperture can be adjusted by adjusting the drive housing relative to the vessel. The auger adjustment mechanism allows the auger to be accurately positioned within the aperture. The drive housing can also include a fluid to provide an additional seal around the shaft of the auger.

  6. Results from and prospects for the Auger Engineering Radio Array

    Directory of Open Access Journals (Sweden)

    van den Berg A.M.

    2013-06-01

    Full Text Available The Auger Engineering Radio Array (AERA is one of the low-energy enhancements of the Pierre Auger Observatory. AERA is based on experience obtained with the LOPES and CODALEMA experiments in Europe and aims to study in the MHz region the details of the emission mechanism of radio signals from extensive air showers. The data from AERA will be used to assess the sensitivity of MHz radiation to the mass composition of cosmic rays. Because of its energy threshold at 2 × 1017 eV the dip region in the cosmic-ray flux spectrum can be studied in detail. We present first results of AERA and of its prototypes and we provide an outlook towards the future.

  7. Resistive Plate Chambers for the Pierre Auger array upgrade

    International Nuclear Information System (INIS)

    In the framework of the Pierre Auger Observatory upgrade, Resistive Plate Chambers (RPCs) have been proposed as a dedicated detector to better estimate the muonic component of Extensive Air Showers (EAS), further constraining the nature of the cosmic rays and hadronic interactions that take place in Extensive Air Showers development. RPCs are a very interesting option to fulfill the requirements: to cover large areas at low cost; particle counting from one to thousands of particles; few ns time resolution and outdoor standalone operation with very low maintenance. The present work refers to the latest advances and outcomes in order to ensure the capability of RPCs to fulfill the totality of the Auger upgrade requirements

  8. Nitridation of silicon /111/ - Auger and LEED results

    Science.gov (United States)

    Delord, J. F.; Schrott, A. G.; Fain, S. C., Jr.

    1980-01-01

    Clean silicon (111) (7x7) surfaces at up to 1050 C have been reacted with nitrogen ions and neutrals produced by a low energy ion gun. The LEED patterns observed are similar to those previously reported for reaction of silicon (111) (7x7) with NH3. The nitrogen KLL peak exhibits no shift or change in shape with nitride growth. At the same time the magnitude of the elemental silicon LVV peak at 92 eV decreases progressively as a new peak at 84 eV increases. The position of both peaks appears to be independent of the degree of nitridation. Since the Auger spectra are free of oxygen and other impurities, these features can be attributed only to silicon, nitrogen, and their reaction products. Characteristic features of the Auger spectra are related to LEED observations and to the growth of microcrystals of Si3N4.

  9. Warped extra dimension and inclined events at Pierre Auger Observatory

    CERN Document Server

    Kisselev, A V

    2016-01-01

    The generalized solution for the warp factor of the Randall-Sundrum metric is presented which is symmetric with respect to both branes and explicitly periodic in extra variable. Given that the curvature of the 5-dimensional space-time is small, the expected rate of neutrino-induced inclined events at the Surface Detector of the Pierre Auger Observatory is calculated. Both the "downward-going" (DG) and "Earth-skimming" (ES) neutrinos are considered. By comparing the expected event rate with the recent Auger data on searching for neutrino candidates, the lower bound on the fundamental gravity scale M_5 is obtained. The ratio of the number of the ES air showers to the number of the DG showers is estimated as a function of M_5.

  10. Muons in Air Showers at the Pierre Auger Observatory

    Science.gov (United States)

    Unger, M.

    We present measurements of muons in air showers at ultra-high energies with the Pierre Auger Observatory. The number of muons at the ground in air showers detected at large zenith angles is determined as a function of energy and the results are compared to air shower simulations. Furthermore, using data collected at zenith angles smaller than 60°, rescaling factors are derived that quantify the deficit of muon production in air shower simulations.

  11. Metastable states in NO2+ probed with Auger spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Püttner, R.; Sekushin, V.; Fukuzawa, H.; Uhlíková, T.; Špirko, Vladimír; Asahina, T.; Kuze, N.; Kato, H.; Hoshino, M.; Tanaka, H.; Thomas, T. D.; Kukk, E.; Tamenori, Y.; Kaindl, G.; Ueda, K.

    2011-01-01

    Roč. 13, č. 41 (2011), s. 18436-18446. ISSN 1463-9076 Grant ostatní: GA ČR(CZ) GP203/09/P306; GA AV ČR(CZ) IAA400400504; GA MŠk(CZ) LC06071 Institutional research plan: CEZ:AV0Z40550506 Keywords : NO2 +metastable states * Auger spectroscopy * vibrational energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  12. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  13. Triggers for the Pierre Auger Observatory, the current status and plans for the future

    CERN Document Server

    Szadkowski, Z

    2009-01-01

    The Pierre Auger Observatory is a multi-national organization for research on ultra-high energy cosmic rays. The Southern Auger Observatory (Auger-South) in the province of Mendoza, Argentina, has been completed in 2008. First results on the energy spectrum, mass composition and distribution of arrival directions on the southern sky are really impressive. The planned Northern Auger Observatory in Colorado, USA, (Auger-North) will open a new window into the universe and establish charged particle astronomy to determine the origin and nature of ultra-high energy cosmic rays. These cosmic particles carry information complementary to neutrinos and photons and to gravitational waves. They also provide an extremely energetic beam for the study of particle interactions at energies that thirty times higher than those reached in terrestrial accelerators. The Auger Observatory is a hybrid detector consisting of a Surface Detector (SD) and an atmospheric Fluorescence Detector (FD). The hybrid data set obtained when both...

  14. Ramsey method for Auger-electron interference induced by an attosecond twin pulse

    OpenAIRE

    Buth, Christian; Schafer, Kenneth J.

    2010-01-01

    We examine the archetype of an interference experiment for Auger electrons: two electron wave packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with a variable time delay. This setting is an attosecond realization of the Ramsey method of separated oscillatory fields. Interference of the two ejected Auger-electron wave packets is predicted, indicating that the coherence between the two pulses is passed to the Auger electrons. For the detection of the...

  15. Observation of resonance recombination lines in electron excited Auger spectra of Gd

    International Nuclear Information System (INIS)

    Combined measurements of electron excited Nsub(4,5) Auger spectra and photoelectron emission on clean and oxidized Gd lead to a distinction between Auger lines originating from 4d → continuum and 4d → 4f resonance excitations. Several Auger structures are identified as due to the direct recombination of 4d94f8 states with the 4f and valence electrons. The shape of the most prominent Auger line for oxidized Gd agrees perfectly with the Fano profile of the 4f photoemission intensity. (orig.)

  16. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  17. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Keilhauer Bianca

    2015-01-01

    Full Text Available The Pierre Auger Observatory detects high-energy cosmic rays with energies above ∼1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  18. Enhanced radiative Auger emission from lithiumlike 20Ca17+

    International Nuclear Information System (INIS)

    Radiative Auger emission (RAE) from lithiumlike 20Ca17+ projectiles excited in collisions with He has been measured. The intensity of RAE photons relative to Kα X-ray emission is enhanced by a factor of 10-17 compared with theoretical calculations for ions with few electron vacancies. The enhancement of RAE for Ca17+ is consistent with the results reported previously for lithiumlike 16S13+ and 23V20+ and indicates a systematic dependence on Z. Both the enhancement and the relative RAE transition rate increase with Z. (orig.)

  19. Enhanced radiative Auger emission from lithiumlike 16S13+

    International Nuclear Information System (INIS)

    The radiative Auger emission (RAE) from 0.94--6.25-MeV/u 16S13+ (lithiumlike) projectiles excited in collisions with He target atoms has been measured. For these highly stripped ions the intensity of RAE photons relative to Kα x-ray emission is enhanced by about a factor of five compared with theoretical calculations and an earlier experimental measurement for S ions with few electron vacancies. The enhancement of RAE for S13+ is qualitatively similar to results reported previously for lithiumlike 23V20+; however, some differences between S and V are evident

  20. Sequential double Auger decay in atoms: A quantum informatic analysis

    International Nuclear Information System (INIS)

    We theoretically show that the process of inner-shell photoionization in an atom A, followed by the spontaneous sequential emission of two Auger electrons, produces various kinds of spin-entangled states of three flying electronic qubits. All properties of these states are completely pre-determined by the total spin quantum numbers of the electronic states of four atomic species (i.e., A, A+*, A2+*, A3+) participating in this process in the Russell-Saunders coupling. These tripartite states are readily characterized experimentally by measuring only energies of the three emitted electrons, without requiring any entanglement witness or other such protocols.

  1. Sequential double Auger decay in atoms: A quantum informatic analysis

    Science.gov (United States)

    Parida, S.; Chandra, N.

    2009-05-01

    We theoretically show that the process of inner-shell photoionization in an atom A, followed by the spontaneous sequential emission of two Auger electrons, produces various kinds of spin-entangled states of three flying electronic qubits. All properties of these states are completely pre-determined by the total spin quantum numbers of the electronic states of four atomic species (i.e., A, A, A, A) participating in this process in the Russell-Saunders coupling. These tripartite states are readily characterized experimentally by measuring only energies of the three emitted electrons, without requiring any entanglement witness or other such protocols.

  2. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    Energy Technology Data Exchange (ETDEWEB)

    Felter, T.E.; Stulen, R.H. (Sandia National Labs., Livermore, CA (USA)); Schnepple, W.F.; Ortale, C.; Van den Berg, L. (EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations)

    1989-11-01

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T {approx equal} 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored. (orig.).

  3. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    Science.gov (United States)

    Felter, T. E.; Stulen, R. H.; Schnepple, W. F.; Ortale, C.; van den Berg, L.

    1989-11-01

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T ≈ 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored.

  4. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    International Nuclear Information System (INIS)

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T ≅ 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored. (orig.)

  5. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    OpenAIRE

    Abreu, P; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; D. Allard; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; J. Alvarez-Muñiz; Alves Batista, R.; Ambrosio, M.; Aminaei, A.

    2013-01-01

    The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort fromthe technical and administrative staff in Malarg¨ue. The authors are very grateful to the following agencies and organizations for financial support: Comisi´on Nacional de Energ´ıa At´omica, Fundaci ´on Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malarg¨ue, NDM Holdings and Valle Las Le˜...

  6. The Fluorescence Detector of the Pierre Auger Observatory

    OpenAIRE

    Abrahams, J.; Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hörandel, J. R.; Horneffer, A; Jiraskova, S.; Schoorlemmer, H.; Timmermans, C

    2009-01-01

    The successful installation and commissioning of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing c...

  7. Aperture calculation of the Pierre Auger Observatory surface detector

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D.; Allekotte, I.; Armengaud, E.; Aublin, J.; Bertou, Xavier; Chou, A.; Ghia, P.L.; Gomez Berisso, M.; Hamilton, J.C.; Lhenry-Yvon, I.; Medina, C.; Navarra, G.; Parizot, E.; Tripathi, A.

    2005-08-01

    We determine the instantaneous aperture and integrated exposure of the surface detector of the Pierre Auger Observatory, taking into account the trigger efficiency as a function of the energy, arrival direction (with zenith angle lower than 60 degrees) and nature of the primary cosmic-ray. We make use of the so-called Lateral Trigger Probability function (or LTP) associated with an extensive air shower, which summarizes all the relevant information about the physics of the shower, the water tank Cherenkov detector, and the triggers.

  8. A worm section of an auger drilling installation

    Energy Technology Data Exchange (ETDEWEB)

    Levkovich, P.E.; Kiseleve, E.I.; Krutilin, V.I.; Manzhula, I.T.; Ovsiannikov, P.A.; Savich, N.S.; Tverezyi, Iu.F.

    1981-01-01

    A worm section of an auger drilling installation, comprising columns arranged in parallel and adapters for decreasing the disturbance of the walls of the wells, is characterized in that for the purpose of decreasing the consumption of energy, the adapter for the decrease in the disturbance in the walls of the wells is made in the form of a cylindrical cover with longitudinal windows, arranged on a segment of the length of the worm, with which each cover is positioned rigidly in order to prevent it from shifting lengthwise by means of a support, reinforced on the shaft of the worm. Cylindrical covers are interconnected by a connection element.

  9. The LIDAR systems for atmospheric monitoring in Auger

    International Nuclear Information System (INIS)

    A LIDAR network is being built for the measurement and online monitoring of the atmospheric optical parameters, which play a central role in the energy measurement of ultra-high-energy cosmic rays. Four LIDAR systems, each one equipped by an Nd:YAG UV laser and three parabolic mirrors with PMTs for the detection of the backscatter photons, are scheduled to be installed in the proximity of the four fluorescence detectors of the Pierre Auger Observatory (Malarguee, Argentina). In this paper a report describing hardware components, commissioning and shooting strategies of the LIDAR systems is given

  10. Thin glass mirrors for the Pierre Auger project

    Czech Academy of Sciences Publication Activity Database

    Schovánek, Petr; Palatka, Miroslav; Hrabovský, Miroslav; Vlček, Martin

    Washington : SPIE The International Society for Optical Engineering, 2003 - (Zajac, M.; Masajada, J.), s. 210-214 ISBN 0-8194-5146-0. ISSN 0277-786X. - (SPIE - The International Society for Optical Engineering.. 5259). [Polish-Czech-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics /13./. Krzyzowa (PL), 09.09.2002-13.09.2002] R&D Projects: GA MŠk LN00A006 Institutional research plan: CEZ:AV0Z1010920 Keywords : Auger * fluorescence detector * mirrors * reflection Subject RIV: BF - Elementary Particles and High Energy Physics

  11. Interatomic Coulombic decay of NeAr dimers following Auger decay

    International Nuclear Information System (INIS)

    Using momentum-resolved electron-ion multicoincidence, we have investigated interatomic Coulombic decay (ICD). We observed ICD processes in NeAr dimers following Ar LMM and Ne KLL Auger decay. From Auger final state of Ar2+(3s−2), we observed ICD where three electrons participate in.

  12. Drilling Power Consumption and Soil Conveying Volume Performances of Lunar Sampling Auger

    Institute of Scientific and Technical Information of China (English)

    TIAN Ye; TANG Dewei; DENG Zongquan; JIANG Shengyuan; QUAN Qiquan

    2015-01-01

    The sampling auger used in lunar sampling and return mission is to transmit power and convey soil, and its performance is the key factor of the whole mission. However, there is currently a lack of the optimization research on soil conveying volume and power consumption models in auger structure design. To provide the drilled object, the simulation lunar soil, whose physical and mechanical property is the same as the real soil, is made by reducing soil void ratio. The models are formulated to analyze the influence of auger structure parameters on power consumption and soil conveying volume. To obtaln the optimized structure parameters of auger, the multi-objective optimization functions of the maximum soil conveying volume and minimum power consumption are developed. To verify the correctness of the models, the performances of different augers drilling simulation soil are tested. The test results demonstrate that the power consumption of optimized auger is the lowest both in theory and test, and the experimental results of soil conveying volume are in agreement with theoretical analysis. Consequently, a new method for designing a lunar sampling auger is proposed which includes the models of soil conveying volume and transportation power consumption, the optimization of structure parameters and the comparison tests. This method provides a reference for sampling auger designing of the Chinese Lunar Sample Mission.

  13. Geometry dependence of Auger carrier capture rates into cone-shaped self-assembled quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Bischoff, Svend; Uskov, A.V.; Mørk, Jesper

    2003-01-01

    We calculate carrier capture rates into cone- and truncated-cone-shaped quantum dots mediated by Auger processes. It is demonstrated that the capture rates depend strongly on both dot size and shape. The importance of phonon-mediated versus the Auger-mediated capture processes is discussed....

  14. Atmospheric Aerosol Attenuation Measurements at the Pierre Auger Observatory

    CERN Document Server

    Valore, Laura

    2014-01-01

    The Fluorescence Detector (FD) of the Pierre Auger Observatory provides a nearly calorimetric measurement of the primary particle energy, since the fluorescence light produced is proportional to the energy dissipated by an Extensive Air Shower (EAS) in the atmosphere. The atmosphere therefore acts as a giant calorimeter, whose properties need to be well known during data taking. Aerosols play a key role in this scenario, since their effect on light transmission is highly variable even on a time scale of one hour, and the corresponding correction to EAS energy can range from a few percent to more than 40%. For this reason, hourly Vertical Aerosol Optical Depth (taer(h)) profiles are provided for each of the four FD stations. Starting from 2004, up to now 9 years of taer(h) profiles have been produced using data from the Central Laser Facility (CLF) and the eXtreme Laser Facility (XLF) of the Pierre Auger Observatory. The two laser facilities, the techniques developed to measure taer(h) profiles using laser dat...

  15. The Central Raman Laser Facility at the Pierre Auger Observatory

    Science.gov (United States)

    medina, C.; Mayotte, E.; Wiencke, L. R.; Rizi, V.; Grillo, A.

    2013-12-01

    We describe the newly upgraded Central Raman Laser Facility (CRLF) located close to the center of the Piere Auger observatory (PAO) in Argentina. The CRLF features a Raman Lidar receiver, a 335 nm wavelength solid state laser, a robotic beam energy calibration system, and a weather station, all powered by solar energy and operated autonomously using a single board computer. The system optics are arranged to direct the laser beam into the atmosphere in steered and vertical modes with adjustable polarization settings,and it is measured in a bi-static configuration by the 4 fluorescence stations of the Pierre Auger observatory. Additionally the system optics can be easily switched to provide a fixed vertical beam that is measured by a Raman Lidar receiver in mono-static configuration,allowing an independent measurement of the aerosol optical depth τ(z,t) and other properties of the atmosphere. A description of the CLRF's installation, hardware and software integration, initial operations and examples of data collected, will also be presented.

  16. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    P. Abreu

    2013-01-01

    Full Text Available The observation of ultrahigh energy neutrinos (UHEνs has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν or in the Earth crust (Earth-skimming ν, producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere. In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.

  17. The offline software framework of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Argiro, S.; Barroso, S.L.C.; Dagoret-Campagne, S.; Gonzalez, Javier G.; Nellen, L.; Paul, T.; Porter, T.; Prado, L., Jr.; Roth, M.; Ulrich, R.; Veberic, D.

    2005-08-01

    The Pierre Auger Observatory is designed to unveil the nature and origin of the highest energy cosmic rays through the analysis of extensive air showers. The large and geographically dispersed collaboration of physicists and the wide-ranging collection of simulation and reconstruction tasks pose some special challenges for the offline analysis software. They have designed and implemented a general purpose framework which allows Auger collaborators to contribute algorithms and configuration instructions to build up the variety of applications they require. The framework includes machinery to manage these user codes, to organize the abundance of user-contributed configuration files, to facilitate multi-format file handling, and to provide access to event and time-dependent detector information residing in many data sources. A number of utilities are also provided, including a novel geometry package allowing manipulation of abstract geometrical objects independent of coordinate system choice. The framework is implemented in C++ and takes advantage of object oriented design and common open source tools, while keeping the user-side simple enough for C++ novices to learn in a reasonable time. The distribution system incorporates unit and acceptance testing in order to support rapid development of both the core framework and the contributed user codes.

  18. Auger neutralization and ionization in grazing ion-surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, R. (Inst. of Nuclear Physics, Univ. Muenster (Germany)); Miskovic, Z.L. (Boris Kidric Inst. of Nuclear Sciences, Belgrade (Yugoslavia))

    1991-06-01

    The effect of the projectile velocity parallel to the surface v{sub parallel} on Auger-type neutralization and ionization processes during grazing scattering of atomic particles from surfaces will be discussed. It is found that, contrary to the static case (v{sub parallel}=0), under grazing collision the Auger-type electron exchange between the metallic conduction band and an atomic orbital is a two-way process: atomic particles may be neutralized, as well as ionized. In particular, two types of v{sub parallel} dependence are obtained: (1) a gradual decrease of the final atomic level population with increasing v{sub parallel} in the case of atomic levels below the Fermi level E{sub F}, and (2) a peak-shaped v{sub parallel} dependence for atomic levels above E{sub F}. The leading features of these basic electron-exchange mechanisms between atoms and surfaces are illustrated for various atomic quasi-one-electron systems scattered from silver and magnesium surfaces. (orig.).

  19. Digital electronics for the Pierre Auger Observatory AMIGA muon counters

    Science.gov (United States)

    Wainberg, O.; Almela, A.; Platino, M.; Sanchez, F.; Suarez, F.; Lucero, A.; Videla, M.; Wundheiler, B.; Melo, D.; Hampel, M. R.; Etchegoyen, A.

    2014-04-01

    The ``Auger Muons and Infill for the Ground Array'' (AMIGA) project provides direct muon counting capacity to the Pierre Auger Observatory and extends its energy detection range down to 0.3 EeV. It currently consists of 61 detector pairs (a Cherenkov surface detector and a buried muon counter) distributed over a 23.5 km2 area on a 750 m triangular grid. Each counter relies on segmented scintillator modules storing a logical train of `0's and `1's on each scintillator segment at a given time slot. Muon counter data is sampled and stored at 320 MHz allowing both the detection of single photoelectrons and the implementation of an offline trigger designed to mitigate multi-pixel PMT crosstalk and dark rate undesired effects. Acquisition is carried out by the digital electronics built around a low power Cyclone III FPGA. This paper presents the digital electronics design, internal and external synchronization schemes, hardware tests, and first results from the Observatory.

  20. Digital Electronics for the Pierre Auger Observatory AMIGA Muon Counters

    CERN Document Server

    Wainberg, O; Platino, M; Sanchez, F; Suarez, F; Lucero, A; Videla, M; Wundheiler, B; Melo, D; Hampel, M; Etchegoyen, A

    2013-01-01

    The "Auger Muons and Infill for the Ground Array" (AMIGA) project provides direct muon counting capacity to the Pierre Auger Observatory and extends its energy detection range down to 0.3 EeV. It currently consists of 61 detector pairs (a Cherenkov surface detector and a buried muon counter) distributed over a 23.5 km2 area on a 750 m triangular grid. Each counter relies on segmented scintillator modules storing a logical train of '0's and '1's on each scintillator segment at a given time slot. Muon counter data is sampled and stored at 320 MHz allowing both the detection of single photoelectrons and the implementation of an offline trigger designed to mitigate multi-pixel PMT crosstalk and dark rate undesired effects. Acquisition is carried out by the digital electronics built around a low power Cyclone III FPGA. This paper presents the digital electronics design, internal and external synchronization schemes, hardware tests, and first results from the Observatory.

  1. Three-dimensional atomic-arrangement reconstruction from an Auger-electron hologram

    International Nuclear Information System (INIS)

    Current methods for reconstructing three-dimensional atomic arrangements from photoelectron holograms require data sets recorded using multiple incident photon energies. These techniques are thus difficult to apply to Auger-electron holography, since the kinetic energy of the Auger electron is element specific and independent of excitation energy. We propose a scattering pattern extraction algorithm using a maximum-entropy method for reconstructing the three-dimensional atomic arrangement from a single-energy Auger-electron hologram. The algorithm provides a clear atomic image by taking into account the scattering of the electron by nearby atoms and the non-s-wave nature of the Auger electron. We have applied the algorithm to an Auger-electron hologram of Cu(001) recorded at SPring-8's soft x-ray synchrotron radiation beamline BL25SU and succeeded in determining the positions of 102 atoms of the Cu fcc structure

  2. Measurement of sub-10 fs Auger processes in monolayer graphene.

    Science.gov (United States)

    Giovanni, David; Yu, Guannan; Xing, Guichuan; Leek, Meng Lee; Sum, Tze Chien

    2015-08-10

    Despite the concerted efforts to directly probe the electron-electron (e-e) scattering mediated relaxation process in graphene using transient absorption spectroscopy, the initial sub-10 fs photoexcited carrier relaxation dynamics has remained elusive. Herein, we utilize a simple z-scan approach to elucidate this process and discern its mechanisms in CVD grown single layer graphene using femtosecond laser pulses with temporal pulse widths far longer than the relaxation time. We report the first experimental observation of e-e scattering lifetime shortening with increasing fluence, which had been theoretically predicted. Analysis from two-body Coulombic scattering suggests that Auger processes are essential relaxation channels in single layer graphene. Importantly, our straightforward approach on the graphene model system is applicable to the family of emergent layered materials. PMID:26367961

  3. The Fluorescence Detector of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bacher, A; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barbosa, H J M; Barenthien, N; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Bollmann, E; Bolz, H; Bonifazi, C; Bonino, R; Borodai, N; Bracci, F; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, D CaminL; Caruso, R; Carvalho, W; Castellina, A; Castro, J; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordero, A; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J W; Cuautle, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daudo, F; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; Di Giulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dornic, D; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fonte, R; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Gibbs, K; Giller, M; Gitto, J; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gomez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Grashorn, E; Grassi, V; Grebe, S; Grigat, M; Grillo, A F; Grygar, J; Guardincerri, Y; Guardone, N; Guerard, C; Guarino, F; Gumbsheimer, R; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Hartmann, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hofman, G; Hörandel, J R; Horneffer, A; Horvat, M; Hrabovský, M; Hucker, H; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kern, H; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Kopmann, A; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Malek, M; Mandat, D; Mantsch, P; Marchetto, F; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Martineau, O; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mucchi, M; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nerling, F; Newman-Holmes, C; Newton, D; Nhung, P T; Nicotra, D; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Ortolani, F; Oßwald, B; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Pichel, A; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Pouryamout, J; Prado, L; Privitera, P; Prouza, M; Quel, E J; Rautenberg, G Raia J; Ravel, O; Ravignani, D; Redondo, A; Reis, H C; Reucroft, S; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Roberts, M D; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; b, H Salazar; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, G Schleif A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Sequieros, G; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Smiałkowski, A; Šmída, R; Smith, A G K; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Trapani, P; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tuci, V; Tueros, M; Tusi, E; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vitali, G; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Westerhoff, S; Whelan, B J; Wild, N; Wiebusch, C; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wörner, G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; b, A Zepeda; Ziolkowski, M

    2009-01-01

    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

  4. High-energy interactions at the Pierre Auger Observatory

    CERN Document Server

    ,

    2015-01-01

    The interaction of Ultra High Energy Cosmic Rays (UHECRs) with the atoms of the atmosphere can occur at center-of-mass energies that surpass 100 TeV, while present human-made accelerators go up to 13 TeV. Therefore it provides a unique opportunity to explore hadronic interactions at the highest energies. However, the extraction of hadronic interaction properties from the Extensive Air Showers (EAS) characteristics, which are induced by the UHECR, is intrinsically related to the nature of the primary cosmic ray. As such, to break the degeneracy between hadronic interactions and primary mass composition, a consistent description of the shower observables must be achieved. Such detailed studies have been conducted in the last years at the Pierre Auger Observatory, the largest UHECRs detector in the world. It combines two complementary techniques to measure the EAS characteristics. In this talk, we will present the latest measurements on shower observables, both on the electromagnetic and muonic shower components...

  5. A method and equipment for auger coal excavation

    Energy Technology Data Exchange (ETDEWEB)

    Lozovskii, I.I.; Levkovich, T.E.; Savich, N.S.

    1981-01-01

    The purpose of this invention is to provide automated coal excavation in seams containing unstable rock. This is achieved by an arrangement whereby the auger coal excavation method, which includes advancing two parallel development workings, excavating and transporting the coal, and delivering the rock and filling the worked out area with this rock, which is performed by screw conveyors which are kinematically linked to the working tools, the worked-out space is filled at the same time the coal is excavated; the coal is transported to one of the development workings by a screw conveyor, and the rock is delivered to the work-out area by a second screw conveyor connected to a second development working. One of the conveyors is shortened during the coal excavation, while the second conveyor is lengthened. This device includes a working tool, two sectional screw conveyors and a conveyor drive; the screw conveyors are located on opposite sides of the working tool.

  6. Exploring the cosmic rays energy frontier with the Auger Observatory

    CERN Document Server

    CERN. Geneva

    2006-01-01

    The existence of cosmic rays with energies in excess of 1020 eV represents a longstanding scientific mystery. Unveileing the mechanism and source of production/acceleration of particles of such enormous energies is a challenging experimental task due to their minute flux, roughly one km2 century. The Pierre Auger Observatory, now nearing completion in Malargue, Mendoza Province, Argentina, is spread over an area of 3000 km2. Two techniques are employed to observe the cosmic ray showers: detection of the shower particles on the ground and detection of fluorescence light produced as the shower particles pass through the atmosphere. I will describe the status of the Observatory and its detectors, and early results from the data recorded while the observatory is reaching its completion.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  7. Astrophysics Motivation behind the Pierre Auger Southern Observatory Enhancements

    CERN Document Server

    Medina-Tanco, Gustavo

    2007-01-01

    The Pierre Auger Collaboration intends to extend the energy range of its southern observatory in Argentina for high quality data from 0.1 to 3 EeV. The extensions, described in accompanying papers, include three additional fluorescence telescopes with a more elevated field of view (HEAT) and a nested surface array with 750 and 433 m spacing respectively and additional muon detection capabilities (AMIGA). The enhancement of the detector will allow measurement of cosmic rays, using the same techniques, from below the second knee up to the highest energies observed. The evolution of the spectrum through the second knee and ankle, and corresponding predicted changes in composition, are crucial to the understanding of the end of Galactic confinement and the effects of propagation on the lower energy portion of the extragalactic flux. The latter is strongly related to the cosmological distribution of sources and to the composition of the injected spectrum. We discuss the science motivation behind these enhancements...

  8. The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Buroker, L; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jansen, S; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Meyhandan, R; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Cabo, I Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Garcia, B Zamorano; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2012-01-01

    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10^17 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e.g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air show...

  9. MARTA - Muon Auger RPC for the Tank Array

    Energy Technology Data Exchange (ETDEWEB)

    Shellard, R.C.; Maurizio, D. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Pimenta, M. [LIP, Lisboa (Portugal)

    2013-07-01

    Full text: The Pierre Auger Observatory was built with the goal of making a major contribution to the understanding of Ultra High Energy Cosmic Rays (UHECR), their origin and nature. It is sensitive to energies above roughly 10{sup 18} eV and it is fully efficient above 3 X 10{sup 18} eV. It has collected data with an exposure of over 31000 km{sup 2} .sr.year, since 2008. However, it has a poor discrimination capability to separate the electromagnetic and the muonic component of an air shower. A good separation capability is an important tool to improve the identification of the primary composition of cosmic rays. MARTA is a proposed detector to address this issue. It based on a well known technology of RPC's (Resistive Plate Chambers). We will present the physics requirements of Auger, for a muon detector, that leads to a better understanding of the structure of air showers and describe how MARTA comply with them. This will allow to: Measure the energy evolution of the distribution of the number of muons in the showers; Disentangle mass composition changes from a change in hadronic interactions at high energies; Improve the energy measurement by subtracting the muon component from the tank signal; Increase the primary photon discrimination power; Improve the estimation of the missing energy in air showers. We describe the detector, its capabilities, and the prototypes with are already installed in the Observatory. We discuss the problems which may arise in running these type of detectors under the harsh conditions of the pampas and the solutions that are proposed to face them. (author)

  10. Rutherford Backsattering and Auger spectroscopy of mercuric iodide detectors

    International Nuclear Information System (INIS)

    The electrical properties of metallic contacts on solid state x-ray detectors can play an important role in determining the overall response and sensitivity of these devices. Rutherford Backscattering (RBS) and Auger electron spectroscopies have been utilized to characterize thin palladium contacts on mercuric iodide (HgI2) detectors. The RBS measurements were performed at room temperature with the metal contact preventing evaporate loss of the HgI2 and reducing contamination to the vacuum chamber. Computer simulations of the RBS results indicate that the interface region of a sample with a palladium contact had approximately the ideal stoichiometry but that the palladium film thickness (350 /angstrom/) was less than expected from the deposition conditions. Auger sputter profiling which removes the metal contact ''cap'' was performed with a rapid transfer system equipped with liquid nitrogen cooling to avoid evaporative loss of the sample and reduce vacuum system contamination. This technique indicated significant penetration of Hg and I into the Pd contact for a variety of samples. In many cases, the penetration extended all the way to the surface. For a 600 /angstrom/ contact, approximately two thirds or 400 /angstrom/ of the contact is part of a ''reaction zone'' in which there is strong intermixing of the palladium, mercury, and iodine. In one case, where copper was tried as an electrode, the ''reaction zone'' extended all the way to the surface, and the device failed as a detector. The relationship of the contact stoichiometry to the deposition process and device performance will be discussed. 5 refs., 4 figs

  11. Rutherford Backsattering and Auger spectroscopy of mercuric iodide detectors

    Energy Technology Data Exchange (ETDEWEB)

    Felter, T. E.; Stulen, R. H.; Schnepple, W. F.; Ortale, C.; van den Berg, L.

    1987-01-01

    The electrical properties of metallic contacts on solid state x-ray detectors can play an important role in determining the overall response and sensitivity of these devices. Rutherford Backscattering (RBS) and Auger electron spectroscopies have been utilized to characterize thin palladium contacts on mercuric iodide (HgI/sub 2/) detectors. The RBS measurements were performed at room temperature with the metal contact preventing evaporate loss of the HgI/sub 2/ and reducing contamination to the vacuum chamber. Computer simulations of the RBS results indicate that the interface region of a sample with a palladium contact had approximately the ideal stoichiometry but that the palladium film thickness (350 /angstrom/) was less than expected from the deposition conditions. Auger sputter profiling which removes the metal contact ''cap'' was performed with a rapid transfer system equipped with liquid nitrogen cooling to avoid evaporative loss of the sample and reduce vacuum system contamination. This technique indicated significant penetration of Hg and I into the Pd contact for a variety of samples. In many cases, the penetration extended all the way to the surface. For a 600 /angstrom/ contact, approximately two thirds or 400 /angstrom/ of the contact is part of a ''reaction zone'' in which there is strong intermixing of the palladium, mercury, and iodine. In one case, where copper was tried as an electrode, the ''reaction zone'' extended all the way to the surface, and the device failed as a detector. The relationship of the contact stoichiometry to the deposition process and device performance will be discussed. 5 refs., 4 figs.

  12. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  13. MARTA - Muon Auger RPC for the Tank Array

    International Nuclear Information System (INIS)

    Full text: The Pierre Auger Observatory was built with the goal of making a major contribution to the understanding of Ultra High Energy Cosmic Rays (UHECR), their origin and nature. It is sensitive to energies above roughly 1018 eV and it is fully efficient above 3 X 1018 eV. It has collected data with an exposure of over 31000 km2 .sr.year, since 2008. However, it has a poor discrimination capability to separate the electromagnetic and the muonic component of an air shower. A good separation capability is an important tool to improve the identification of the primary composition of cosmic rays. MARTA is a proposed detector to address this issue. It based on a well known technology of RPC's (Resistive Plate Chambers). We will present the physics requirements of Auger, for a muon detector, that leads to a better understanding of the structure of air showers and describe how MARTA comply with them. This will allow to: Measure the energy evolution of the distribution of the number of muons in the showers; Disentangle mass composition changes from a change in hadronic interactions at high energies; Improve the energy measurement by subtracting the muon component from the tank signal; Increase the primary photon discrimination power; Improve the estimation of the missing energy in air showers. We describe the detector, its capabilities, and the prototypes with are already installed in the Observatory. We discuss the problems which may arise in running these type of detectors under the harsh conditions of the pampas and the solutions that are proposed to face them. (author)

  14. The Cherenkov Surface Detector of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km2), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense “infill” subarray. - Highlights: • The water Cherenkov technique is used in the Surface Detector of the Pierre Auger Observatory. • Cross-calibrated with the Fluorescence Detector, it provides a measurement of the primary energy. • The spectrum of the UHE cosmic rays exhibits clearly an “ankle” and a cutoff. • The muon observed muon content of the atmospheric showers is larger than expected from the models. • Stringent limits on the flux of UHE neutrinos and photons are obtained

  15. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Billoir, Pierre, E-mail: billoir@lpnhe.in2p3.fr [LPNHE, CNRS/IN2P3 and Univ. P. and M. Curie and Univ. D. Diderot, 4 place Jussieu 75272 Paris Cedex 05 (France); Observatorio Pierre Auger, av. San Martín Norte, 304 5613, Malargüe (Argentina)

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km{sup 2}), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense “infill” subarray. - Highlights: • The water Cherenkov technique is used in the Surface Detector of the Pierre Auger Observatory. • Cross-calibrated with the Fluorescence Detector, it provides a measurement of the primary energy. • The spectrum of the UHE cosmic rays exhibits clearly an “ankle” and a cutoff. • The muon observed muon content of the atmospheric showers is larger than expected from the models. • Stringent limits on the flux of UHE neutrinos and photons are obtained.

  16. 45-Day deliverable for Tank 241-BX-105 Auger samples, risers 2 and 6

    International Nuclear Information System (INIS)

    Two auger samples from single-shell tank 241-BX-105 (BX-105) were extruded, broken down, and analyzed for DSC, TGA, and total alpha as prescribed. Analytical results were tracked and reported using the laboratory information management system known as LabCore. This is the final report for the fiscal year 1995 BX-105 auger sample characterization effort. Included are copies of the differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) scans as requested. Also included is a copy of any immediate notification documentation, chain of custody forms, the hot cell work plan, extruded segment [auger] description sheets, and total alpha data

  17. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  18. Radio detection of high-energy cosmic rays at the Pierre Auger Observatory

    OpenAIRE

    Berg, A. M. van den; Collaboration, for the Pierre Auger

    2007-01-01

    The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with those from the well-calibrated baseline detectors of the Pierre Auger Observatory. Furthermore, human-induced radio noise levels at the southern Auger site are relatively low. We have started an R&D program to test various radio-detection concepts. Ou...

  19. Properties of Auger electrons following excitation of polarized atoms by polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kupliauskiene, A. [Institute of Theoretical Physics and Astronomy of Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania)], E-mail: akupl@itpa.lt; Tutlys, V. [Institute of Theoretical Physics and Astronomy of Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania)

    2009-01-15

    In non-relativistic approximation, the most general expression for differential cross sections describing the properties of Auger-electron emission induced in the excitation of polarized atoms by polarized electrons is obtained for the first time. The ways of the application of the general expressions suitable for the specific experimental conditions are outlined by deriving the expressions for the asymmetry parameters and the magnetic dichroism of the angular distribution of the Auger electrons as well as of the angular correlations between the scattered and Auger electrons.

  20. Investigation of SiGe/Si heterostructures using state-of-the-art Auger Nanoprobes

    International Nuclear Information System (INIS)

    The capabilities of nano-Auger were assessed for the characterization of SiGe multilayers epitaxially grown on Si(001) wafers. Reference sample consisting in stack of (300–500)-nm thick SiGe layers with a Ge content increasing in discrete steps from 6 to 30 % (as determined by X-ray diffraction) were used to that end. Composition measurements were performed on cross-sections with localized Auger Electron Spectroscopy using point analysis. The promising results obtained should enable in the near future high performance Auger mapping of real devices. The effect of native oxide removal either by argon sputtering or by HF etching was also addressed. Complementary results were otherwise obtained with Auger depth profiling using argon sputtering with Zalar rotation.

  1. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; DiGiulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; GarcíaGámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kühn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; LaRosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmia\\lkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; vandenBerg, A M; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2009-01-01

    Studies of the composition of the highest energy cosmic rays with the Pierre Auger Observatory, including examination of hadronic physics effects on the structure of extensive air showers. Submissions to the 31st ICRC, Lodz, Poland (July 2009).

  2. Ellog Auger Drilling -"3-in-one" method for hydrogeological data collection

    DEFF Research Database (Denmark)

    Sørensen, Kurt; Larsen, Flemming

    1999-01-01

    The Ellog auger drilling method is an integrated approach for hydrogeological data collection during auger drilling in unconsolidated sediments. The drill stem is a continuous flight, hollow-stem auger with integrated electrical and gamma logging tools. The geophysical logging is performed...... continuously while drilling. Data processing is carried out in the field, and recorded log features are displayed as drilling advances. A slotted section in the stem, above the cutting head, allows anaerobic water and soil-gas samples to be taken at depth intervals of approximately 0.2 m. The logging, water....... The Ellog auger drilling method provides detailed information on small-scale changes in lithology, sediment chemistry, and water, as well as gas compositions in aquifer systems - data essential to hydrogeological studies....

  3. Study of interfaces in the oxidised Fe/Si system: Use of the Auger parameter

    International Nuclear Information System (INIS)

    Measurements of the Auger Parameter for silicon in the interfaces exposed in oxidised Fe/Si alloys, when compared with similar measurements on standards, have provided valuable chemical information that is in agreement with theoretical predictions. (Author)

  4. Absolute auger electron spectra obtained by a novel cylindrical mirror analyzer

    International Nuclear Information System (INIS)

    A novel cylindrical mirror analyzer (CMA) has been developed to obtain standard spectra in Auger electron spectroscopy. We obtained Auger electron spectra of gold, nickel, and soot (carbon). For gold, the details of the spectra are shown and the possible Auger transitions are identified for the whole range of energy by subtracting a background of assumed simple polynomial function. The total range spectra of nickel and soot are reported for the primary accelerating voltages ranging 1-5000 V. In other words, the spectra of true secondary electron, Auger electron, loss electrons which excited shell electron and plasmon, and elastically backscattered primary electron are shown. It is found that the carbon (soot) as evacuated always presents clean surface without any ion sputtering treatment and the surface is quite stable. (author)

  5. Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Bäcker, T; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Beatty, J J; Becker, B R; Becker, K H; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Caballero-Mora, K S; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Clay, R W; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; del Peral, L; Deligny, O; Dembinski, H; Denkiewicz, A; Di Giulio, C; Diaz, J C; Castro, M L Díaz; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fröhlich, U; Fuchs, B; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Gascon, A; Gemmeke, H; Gesterling, K; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Gookin, B; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hague, J D; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kadija, K; Kampert, K H; Karhan, P; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Ludwig, M; Lyberis, H; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Mičanović, S; Micheletti, M I; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostafá, M; Moura., C A; Mueller, S; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Parrisius, J; Parsons, R D; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Phan, N; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rivera, H; Rivière, C; Rizi, V; Robledo, C; de Carvalho, W Rodrigues; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tamashiro, A; Tapia, A; Taşcău, O; Tcaciuc, R; Tegolo, D; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tiwari, D K; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Winders, L; Winnick, M G; Wommer, M; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M; 10.1016/j.nima.2011.01.049

    2011-01-01

    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of...

  6. Auger electron spectroscopy as a tool for measuring intramolecular charges of adsorbed molecules

    Science.gov (United States)

    Magkoev, T. T.

    1993-10-01

    A way for the determination of the values of intramolecular charges of adsorbed molecules of some binary dielectrics, based on Auger electron spectroscopy (AES), is proposed. These values can be obtained from the coverage dependences of the ratios of intensities of anion KL 23L 23 and KL 1L 1 Auger transitions, which are sensitive to the amount of charge at the 2p-orbitals. As an example, MgO adsorbed on Mo(110) is presented.

  7. Search for ultra high energy primary photons at the Pierre Auger Observatory

    Science.gov (United States)

    Colalillo, Roberta

    2016-07-01

    The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture in the search for primary photons with energy above 1017 eV over a large portion of the southern sky. Such photons can be detected in principle via the air showers they initiate at such energies, using the complement of Auger Observatory detectors. We discuss the results obtained in diffuse and directional searches for primary photons in the EeV energy range.

  8. Biophysical aspects of Auger processes: A review of the literature 1987--1991

    International Nuclear Information System (INIS)

    The workshop on Auger emitters held in Oxfordshire in 1987 produced papers on physical dosimetry, molecular damage, biologic effects, and therapeutic applications. These are briefly summarized. Since that time there has appeared in the literature a number of reports on Auger processes as they relate to microscopic and cellular dosimetry, DNA damage, biologic consequences, and therapeutic potential. A number of these are reviewed as background for the Second International Symposium

  9. Magnetic field influence on Auger effect on shallow donors in CdF2:Mn+ luminescence

    International Nuclear Information System (INIS)

    Direct observation of the suppression of the Auger effect on shallow donors by magnetic field in the luminescence of manganese ions in semiconducting CdF2:Mn crystals is presented. The magnetic field decreases the probability of the Auger effect, which is spin-dependent energy transfer from the manganese ions to the electrons occupying shallow donors. This results in the increase in the decay times of the luminescence. (author)

  10. Argon and krypton Auger spectra induced by ion bombardment of aluminium and silicon surfaces

    International Nuclear Information System (INIS)

    Measurements are reported of Auger (autoionization) spectra of Ar and Kr produced by bombarding Al and Si substrates with Ar+ and Kr+ ions in the 110 eV-5 keV energy range. These are shown to be consistent with the simple Doppler model suggested, for Ne and Al and Si, in a previous paper. Once corrected using the model, the observed Auger energies are shown to correspond to theoretical predictions produced using Dirac-Fock calculations. (Author)

  11. Ne, Ar, Fe, and Cu Auger-electron production at National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Energetic K and L Auger electrons produced by focussed, filtered, broad-band synchrotron radiation have been measured at the x-ray ring of the National Synchrotron Light Source (NSLS). The x-ray beam was used to study inner-shell photoionization of Ne and Ar gas and Fe and Cu solid film targets. The Auger electrons were analyzed by means of a semi-hemispherical electrostatic electron spectrometer at the energy resolution of ∼ 3 %. The electrons were detected at both 90 degree and 0 degree with respect to the photon beam direction. Broad distributions of the inner-shell photoelectrons were also observed, reflecting the incoming photon flux distribution. The Fe and Cu K Auger electron spectra were found to be very similar to the Ar K Auger electron spectra. This was expected, since deep inner-shell Auger processes are not affected by the outer valence electrons. Above 3 keV in electron energy, there have been few previous Auger electron measurements. 2 figs., 13 refs

  12. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Science.gov (United States)

    Billoir, Pierre

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km2), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense "infill" subarray.

  13. AMIGA at the Auger observatory: the telecommunications system

    International Nuclear Information System (INIS)

    AMIGA is an extension of the Pierre Auger Observatory that will consist of 85 detector pairs, each one composed of a surface water-Cherenkov detector and a buried muon counter. Each muon counter has an area of 30 square meters and is made of scintillator strips, with doped optical fibers glued to them, which guide the light to 64 pixel photomultiplier tubes. The detector pairs are arranged at 433 m and 750 m array spacings. In this paper we present the telecommunications system designed to connect the muon counters with the central data processing system at the observatory campus in Malarg and quot;ue. The telecommunications system consists of a point-to-multipoint radio link designed to connect the 85 muon counters or subscribers to two coordinators located at the Coihueco fluorescence detector building. The link provides TCP/IP remote access to the scintillator modules through router boards installed on each of the surface detectors of AMIGA. This setup provides a flexible LAN configuration for each muon counter connected to a WAN that links all the data generated by the muon counters and the surface detectors to the Central Data Acquisition System, or CDAS, at the observatory campus. We present the design parameters, the proposed telecommunications solution and the laboratory and field tests proposed to guarantee its functioning for the whole data traffic generated between each surface detector and muon counter in the AMIGA array and the CDAS

  14. Performance of the Pierre Auger Observatory Surface Array

    CERN Document Server

    Bertou, X

    2005-01-01

    The surface detector of the Pierre Auger Observatory is a 1600 water Cherenkov tank array on a triangular 1.5 km grid. The signals from each tank are read out using three 9'' photomultipliers and processed at a sampling frequency of 40 MHz, from which a local digital trigger efficiently selects shower candidates. GPS signals are used for time synchronization and a wireless communication system connects all tanks to the central data acquisition system. Power is provided by a stand-alone solar panel system. With large ambient temperature variations, that can reach over 20 degrees in 24 hours, high salinity, dusty air, high humidity inside the tank, and remoteness of access, the performance and reliability of the array is a challenge. Several key parameters are constantly monitored to ensure consistent operation. The Surface Array has currently over 750 detectors and has been in reliable operation since January 2004. Good uniformity in the response of different detectors and good long term stability is observed.

  15. On the results of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, Martin, E-mail: lemoine@iap.f [Institut d' Astrophysique de Paris, CNRS, UPMC, 98 bis boulevard Arago, F-75014 Paris (France)

    2009-05-15

    This paper discusses the correlation recently reported by the Pierre Auger Observatory (PAO) of the arrival directions of the highest energy cosmic rays with active galactic nuclei (AGN) located within 75 Mpc. It is argued that these correlating AGN do not have the power required to be the sources of those particles. It is further argued that the current PAO data disfavors giant radio-galaxies (both Fanaroff-Riley type I and II) as sources of ultra-high energy cosmic rays. The reported correlation with AGN should thus be understood as follows: the AGN trace the distribution of the local large scale structure, in which the actual sources of ultrahigh energy cosmic rays camouflage. The most promising theoretical candidates for these sources are then gamma-ray bursts and magnetars. One important consequence of the above is that one will not detect counterparts in gamma-rays, neutrinos or gravitational waves to the sources of these observed ultrahigh energy cosmic rays, since the cosmic rays are delayed by extragalactic magnetic fields on timescales approx10{sup 4}-10{sup 5} yrs much larger than the emission timescale of these sources.

  16. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF/sub 2/ as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states. (GHT)

  17. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  18. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.

    Science.gov (United States)

    Kurzmann, Annika; Ludwig, Arne; Wieck, Andreas D; Lorke, Axel; Geller, Martin

    2016-05-11

    In quantum dots (QDs), the Auger recombination is a nonradiative process in which the electron-hole recombination energy is transferred to an additional carrier. It has been studied mostly in colloidal QDs, where the Auger recombination time is in the picosecond range and efficiently quenches the light emission. In self-assembled QDs, on the other hand, the influence of Auger recombination on the optical properties is in general neglected, assuming that it is masked by other processes such as spin and charge fluctuations. Here, we use time-resolved resonance fluorescence to analyze the Auger recombination and its influence on the optical properties of a single self-assembled QD. From excitation-power-dependent measurements, we find a long Auger recombination time of about 500 ns and a quenching of the trion transition by about 80%. Furthermore, we observe a broadening of the trion transition line width by up to a factor of 2. With a model based on rate equations, we are able to identify the interplay between tunneling and Auger rate as the underlying mechanism for the reduced intensity and the broadening of the line width. This demonstrates that self-assembled QDs can serve as an ideal model system to study how the charge recapture process, given by the band-structure surrounding the confined carriers, influences the Auger process. Our findings are not only relevant for improving the emission properties of colloidal QD-based emitters and dyes, which have recently entered the consumer market, but also of interest for more visionary applications, such as quantum information technologies, based on self-assembled quantum dots. PMID:27087053

  19. Radio detection of cosmic ray induced air showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    AERA - the Auger Engineering Radio Array - is currently being set up at the southern site of the Pierre Auger Observatory. AERA will explore the potential of the radio-detection technique to cosmic ray induced air showers with respect to the next generation of large-scale surface detectors. As AERA is co-located with the low-energy enhancements of the Pierre Auger Observatory, the observation of air showers in coincidence with the Auger surface and fluorescence detector will allow to study the radio emission processes in detail and to calibrate the radio signal. Finally, the combined reconstruction of shower parameters with three independent techniques promises new insights into the nature of cosmic rays in the transition region from 1017 to 1019 eV. Besides the detection of coherent radiation in the MHz frequency range, the setups AMBER - Air-shower Microwave Bremsstrahlung Experimental Radiometer - and MIDAS - MIcrowave Detection of Air Showers - prepare to check the possibility to detect air showers due the emission of molecular bremsstrahlung in the GHz range at the Auger site. This article presents the status of the radio-detection setups and discusses their physics potential as well as experimental challenges. Special focus is laid on the first stage of AERA which is the startup to the construction of a 20 km2 radio array.

  20. 45-Day safety screening for Tank 241-B-102 auger samples, riser 1

    International Nuclear Information System (INIS)

    This is the 45-Day report for the fiscal year 1994 Tank 241-B-102 auger sampling characterization effort. Only one of the two planned auger samples was received by the 222-S Laboratory, however it was decided to begin the 45-day clock and issue a report based on receipt of the first auger sample. Included are copies of the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) scans as requested. Also included is a copy of any immediate notification documentation, chain of custody forms, the hot cell work plan, extruded segment [auger] description sheets, and total alpha data. The TGA percent moisture results are below the safety criteria limit of 17% in a subsample taken approximately five minutes after extrusion and a second subsample taken from the lower half of the auger. Verbal and written notifications were made as prescribed. The DSC analysis of all subsamples indicates the presence of fraction exotherms, however the results are a factor of two or more below the notification limit of 523 Joules/gram (J/g). Total alpha results are all below the detection limit. In some cases, the tank characterization plan (TCP) accuracy and precision criteria are not met. If a re-run was not performed when a TCP quality control limit was not met, then reasons for not performing the re-run are provided

  1. Education and Public Outreach of the Pierre Auger Cosmic Ray Observatory

    Science.gov (United States)

    Snow, Gregory

    2012-03-01

    The scale and scope of the physics studied at the Auger Observatory offer significant opportunities for original outreach work. Education, outreach and public relations of the Auger collaboration are coordinated in a separate task whose goals are to encourage and support a wide range of education and outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. The presentation will focus on the impact of the collaboration in Mendoza Province, Argentina, as: the Auger Visitor Center in Malarg"ue that has hosted over 60,000 visitors since 2001 and a third collaboration-sponsored science fair held on the Observatory campus in November 2010. The Rural Schools Program, which is run by Observatory staff and which brings cosmic-ray science and infrastructure improvements to remote schools, will be highlighted. Numerous online resources, video documentaries, and animations of extensive air showers have been created for wide public release. Increasingly, collaborators draw on these resources to develop Auger related displays and outreach events at their institutions and in public settings to disseminate the science and successes of the Observatory worldwide.

  2. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array (PISA 2015)

    CERN Document Server

    Schröder, Frank G

    2016-01-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about View the $17\\,$km$^2$, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of...

  3. The Auger Engineering Radio Array and multi-hybrid cosmic ray detection

    Science.gov (United States)

    Holt, E. M.; Pierre Auger Collaboration

    2016-05-01

    The Auger Engineering Radio Array (AERA) aims at the detection of air showers induced by high-energy cosmic rays. As an extension of the Pierre Auger Observatory, it measures complementary information to the particle detectors, fluorescence telescopes and to the muon scintillators of the Auger Muons and Infill for the Ground Array (AMIGA). AERA is sensitive to all fundamental parameters of an extensive air shower such as the arrival direction, energy and depth of shower maximum. Since the radio emission is induced purely by the electromagnetic component of the shower, in combination with the AMIGA muon counters, AERA is perfect for separate measurements of the electrons and muons in the shower, if combined with a muon counting detector like AMIGA. In addition to the depth of the shower maximum, the ratio of the electron and muon number serves as a measure of the primary particle mass.

  4. Attosecond imaging of XUV-induced atomic photoemission and Auger decay in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Zherebtsov, S; Wirth, A; Uphues, T; Znakovskaya, I; Herrwerth, O; Gagnon, J; Korbman, M; Yakovlev, V S; Kling, M F [Max-Planck Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Vrakking, M J J [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Drescher, M, E-mail: matthias.kling@mpq.mpg.de [Fachbereich fuer Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2011-05-28

    Velocity-map imaging has been employed to study the photoemission in Ne and N{sub 4,5}OO Auger decay in Xe induced by an isolated 85 eV extreme ultraviolet (XUV) pulse in the presence of a strong few-cycle near-infrared (NIR) laser field. Full three-dimensional momentum information about the released electrons was obtained. The NIR and XUV pulse parameters were extracted from the measured Ne streaking traces using a FROG CRAB retrieval algorithm. The attosecond measurements of the Auger decay in Xe show pronounced broadening of the Auger lines corresponding to the formation of sidebands. The temporal evolution of the sideband signals and their asymmetry along the laser polarization axis exhibit oscillations similar to those known from attosecond streaking measurements. The experimental results are in good agreement with model calculations based on an analytical solution of the Schroedinger equation within the strong field approximation.

  5. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM2,3VV

  6. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission

    International Nuclear Information System (INIS)

    Radioactive copper (II) (diacetyl-bis N4-methylthiosemicarbazone) (Cu-ATSM) isotopes were originally developed for the imaging of hypoxia in tumors. Because the decay of a 64Cu atom is emitting not only positrons but also Auger electrons, this radionuclide has great potential as a theranostic agent. However, the success of 64Cu-ATSM internal radiation therapy would depend on the contribution of Auger electrons to tumor cell killing. Therefore, we designed a cell culture system to define the contributions to cell death from Auger electrons to support or refute our hypothesis that the majority of cell death from 64Cu-ATSM is a result of high-LET Auger electrons and not positrons or other low-LET radiation. Chinese hamster ovary (CHO) wild type and DNA repair–deficient xrs5 cells were exposed to 64Cu-ATSM during hypoxic conditions. Surviving fractions were compared with those surviving gamma-radiation, low-LET hadron radiation, and high-LET heavy ion exposure. The ratio of the D10 values (doses required to achieve 10% cell survival) between CHO wild type and xrs5 cells suggested that 64Cu-ATSM toxicity is similar to that of high-LET Carbon ion radiation (70 keV/μm). γH2AX foci assays confirmed DNA double-strand breaks and cluster damage by high-LET Auger electrons from 64Cu decay, and complex types of chromosomal aberrations typical of high-LET radiation were observed after 64Cu-ATSM exposure. The majority of cell death was caused by high-LET radiation. This work provides strong evidence that 64Cu-ATSM damages DNA via high-LET Auger electrons, supporting further study and consideration of 64Cu-ATSM as a cancer treatment modality for hypoxic tumors. (author)

  7. Data Acquisition, Triggering, and Filtering at the Auger Engineering Radio Array

    CERN Document Server

    Kelley, J L

    2012-01-01

    The Auger Engineering Radio Array (AERA) is currently detecting cosmic rays of energies at and above 10^17 eV at the Pierre Auger Observatory, by triggering on the radio emission produced in the associated air showers. The radio-detection technique must cope with a significant background of man-made radio-frequency interference, but can provide information on shower development with a high duty cycle. We discuss our techniques to handle the challenges of self-triggered radio detection in a low-power autonomous array, including triggering and filtering algorithms, data acquisition design, and communication systems.

  8. Effects of the atomic level shift in the Auger neutralization rates of noble metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, R.C., E-mail: r.c.monreal@uam.es [Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Centre (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Goebl, D.; Primetzhofer, D.; Bauer, P. [Institut für Experimentalphysik, Abteilung für Atom-und Oberflächenphysik, Johannes Kepler Universität Linz, 4040 Linz (Austria)

    2013-11-15

    In this work we compare characteristics of Auger neutralization of He{sup +} ions at noble metal and free-electron metal surfaces. For noble metals, we find that the position of the energy level of He with respect to the Fermi level has a non-negligible influence on the values of the calculated Auger rates through the evaluation of the surface dielectric susceptibility. We conclude that even though our calculated rates are accurate, further theoretical effort is needed to obtain realistic values of the energy level of He in front of these surfaces.

  9. Radiotoxicity induced by auger electron emitters in human osteosarcoma cell line using comet assay

    International Nuclear Information System (INIS)

    The comet assay (single cell gel electrophoresis assay) was used to evaluate the radiotoxicity of Auger electron emitters in the human osteosarcoma cell line (HOS-8603). After internal exposure to 67Ga-EDTMP, the sarcoma cell has been injured severely. The comet length was longer along with the increase of dose, the appearance of comet tail was different from that with respect to the 60Co γ-ray irradiation. DNA damage of cell was mainly due to the radiation effect of Auger electrons. The 67Ga may be a therapeutic radionuclide with good prospect for tumor treatment and palliation of bone pain induced by metastasis

  10. Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    OpenAIRE

    The Pierre Auger Collaboration; Aab, Alexander; Abreu, Pedro; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muñiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin

    2015-01-01

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For ...

  11. Photoelectron recapture and reemission process associated with double Auger decay in Ar

    Science.gov (United States)

    Hikosaka, Y.; Mashiko, R.; Odagiri, T.; Adachi, J.; Tanaka, H.; Kosuge, T.; Ito, K.

    2016-06-01

    Multielectron coincidence spectroscopy has been performed for Ar at a photon energy of only 0.2 eV above the 2 p1 /2 threshold. It is revealed that a postcollision interaction induced by double Auger decay leads to photoelectron recapture, followed by reemission of the captured electron, where the recapture of the slow photoelectron forms the A r2 + Rydberg-excited states which subsequently undergo autoionization. The energy correlation of the emitted electrons discloses that both direct and cascade paths in the double Auger decay contribute to the photoelectron recapture.

  12. Prospects for discovery of physics beyond the Standard Model at the Pierre Auger Observatory

    CERN Document Server

    Anchordoqui, Luis A

    2003-01-01

    I summarize the discovery potential for physics beyond the electroweak scale at the Pierre Auger Observatory. This observatory is designed to study ultra-high energy cosmic rays with unprecedented precision, with the primary goal of shedding light on their composition and origins. In addition, since the center-of-mass energies of Auger events are well beyond those reached at terrestrial colliders, they provide an opportunity to search for new physics. I discuss here some of the relevant observables and techniques which may be used to weed out theories beyond the standard model.

  13. Chirped Auger electron emission due to field-assisted post-collision interaction

    Directory of Open Access Journals (Sweden)

    Bonitz M.

    2013-03-01

    Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.

  14. Communication: Formation of slow electrons in the Auger decay of core-ionized water molecules

    Science.gov (United States)

    Hikosaka, Y.; Yamamoto, K.; Nakano, M.; Odagiri, T.; Soejima, K.; Suzuki, I. H.; Lablanquie, P.; Penent, F.; Ito, K.

    2012-11-01

    Double Auger decay of O1s-1 and its satellite states in H2O has been studied with a multi-electron coincidence method, and a process leading to autoionizing O* fragments has been revealed. The breaking of the two O-H bonds producing the autoionizing O* fragments occurs for highly excited H2O2+ populated by the initial Auger decay. The O* fragments are more favorably produced in the decay from the satellite states, resulting from the larger population of highly excited H2O2+ states inheriting the valence excitation in the initial state.

  15. Conformational and nuclear dynamics effects in molecular Auger spectra: fluorine core-hole decay in CF4

    International Nuclear Information System (INIS)

    In a molecular Auger spectrum information on the decaying state is implicitly ensemble-averaged. For a repulsive core-ionized state, for example, contributions from all parts of its potential curve are superimposed in the Auger spectrum. Using carbon tetrafluoride (CF4, tetrafluoromethane), we demonstrate for the first time that these contributions can be disentangled by recording photoelectron–Auger electron coincidence spectra with high energy resolution. For the F K-VV spectrum of CF4, there are significant differences in the Auger decay at different intermediate state (single core hole) geometries. With the help of calculations, we show that these differences result primarily from zero-point fluctuations in the neutral molecular ground state, but are amplified by the nuclear dynamics during Auger decay. (paper)

  16. Theory and experiment on laser-enabled inner-valence Auger decay of rare-gas atoms

    International Nuclear Information System (INIS)

    In rare-gas atoms, an inner-valence shell ns hole cannot be filled by Auger decay because of an energy deficiency. We show theoretically and experimentally that by adding a moderately intense infrared laser, Auger decay is possible with decay rates increasing dramatically for laser intensities ≥1013 W/cm2. For Xe atoms, the simulated laser-enabled Auger decay yields are comparable with the experimental one, while for Ar atoms, the simulated ones are much smaller. We attribute the discrepancies to screening effects of the photoelectron. Laser-enabled Auger decay is of fundamental importance for understanding attosecond science, and is also important for experimental applications in ultrafast atomic, molecular, and materials dynamics using x rays. More importantly it may provide a way to control the Auger decay time and selectively break chemical bonds of molecules using a control infrared laser field.

  17. Fluorescence and Auger Decay Properties of the Core-Excited F-Like Ions from Ne to Kr

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-Li; DONG Chen-Zhong; SU Mao-Gen; KOIKE Fumihiro

    2012-01-01

    We systematically study the decay properties of the K-shell excited F-like ions with 10Auger transition rates, radiative, Auger and natural widths, as well as fluorescence and Auger yields for K-shell excited F-like ions are presented. It is shown by means of concrete figures that the decay properties change significantly with the increase of the atomic number Z; the Auger rate is overtaken at Z = 30 by the radiative decay rate. Several fitting formulae for the radiative and Auger widths and the fluorescence yields have been evaluated which is expected to be useful in plasma analysis and plasma modeling.%Ve systematically study the decay properties of the K-shell excited F-like ions with 10≤Z≤36 based on the multiconfiguration Dirac-Fock method.The Breit interaction,the QED corrections and the nuclear finite mass effects are also considered as perturbation.Auger transition rates,radiative,Auger and natural widths,as well as fluorescence and Auger yields for K-shell excited F-like ions are presented.It is shown by means of concrete figures that the decay properties change significantly with the increase of the atomic number Z;the Auger rate is overtaken at Z =30 by the radiative decay rate.Several fitting formulae for the radiative and Auger widths and the fluorescence yields have been evaluated which is expected to be useful in plasma analysis and plasma modeling.

  18. Study of the Pierre Auger Observatory ground detectors: tests, simulation and calibration; Etude des detecteurs de surface de l'observatoire Pierre Auger: tests, simulation et etalonnage

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, A

    2004-10-01

    The Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of these showers requires a comprehensive understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare these results with those of the Observatory detectors in the fifth chapter. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition has begun this year. The construction will be finished by end of 2005. From this moment, The Pierre Auger Observatory will allow us to contribute to solving the cosmic rays puzzle. (author)

  19. Attosecond streaking of shake-up and Auger electrons in xenon

    Directory of Open Access Journals (Sweden)

    Drescher M.

    2013-03-01

    Full Text Available We present first results of simultaneous attosecond streaking measurements of shake-up electrons and Auger electrons emitted from xenon. We extract relative photo-emission delays for electrons emitted from the 4d, 5s and 5p subshell, as well as for the 5p−25d correlation satellite (shake-up electrons.

  20. Attosecond streaking of shake-up and Auger electrons in xenon

    Science.gov (United States)

    Verhoef, A. J.; Mitrofanov, A.; Krikunova, M.; Kabachnik, N. M.; Drescher, M.; Baltuska, A.

    2013-03-01

    We present first results of simultaneous attosecond streaking measurements of shake-up electrons and Auger electrons emitted from xenon. We extract relative photo-emission delays for electrons emitted from the 4d, 5s and 5p subshell, as well as for the 5p-25d correlation satellite (shake-up electrons).

  1. Highlights from the Pierre Auger Obseervatory - the birth of the hybrid era

    CERN Document Server

    Watson, A A

    2008-01-01

    Highlights from the Pierre Auger Observatory are presented. In particular there is a detailed discussion of of the cosmic ray energy spectrum from 0.3 EeV to 100 EeV and of the mass composition above 1 EeV.

  2. 30 CFR 912.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 912.819 Section 912.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO §...

  3. 30 CFR 905.819 - Special performance standards-Auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-Auger mining. 905.819 Section 905.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  4. 30 CFR 910.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 910.819 Section 910.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA §...

  5. 30 CFR 937.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 937.819 Section 937.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON §...

  6. 30 CFR 942.819 - Special performance standards-Auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-Auger mining. 942.819 Section 942.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  7. 30 CFR 941.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 941.819 Section 941.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH...

  8. 30 CFR 922.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 922.819 Section 922.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  9. 30 CFR 921.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 921.819 Section 921.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  10. 30 CFR 903.819 - Special performance standards-Auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-Auger mining. 903.819 Section 903.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE ARIZONA §...

  11. 30 CFR 939.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 939.819 Section 939.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE RHODE...

  12. 30 CFR 933.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 933.819 Section 933.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  13. 30 CFR 947.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 947.819 Section 947.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  14. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; DiGiulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; GarcíaGámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kühn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; LaRosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmiałkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; vandenBerg, A M; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2009-01-01

    Studies of the correlations of ultra-high energy cosmic ray directions with extra-Galactic objects, of general anisotropy, of photons and neutrinos, and of other astrophysical effects, with the Pierre Auger Observatory. Contributions to the 31st ICRC, Lodz, Poland, July 2009.

  15. New method for atmospheric calibration at the Pierre Auger Observatory using FRAM, a robotic astronomical telescope

    Czech Academy of Sciences Publication Activity Database

    BenZvi, S.; Boháčová, Martina; Connolly, B.; Grygar, Jiří; Hrabovský, Miroslav; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nosek, D.; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vitale, P.; Westerhoff, S.

    Mexico : Universidad National Autonóma, 2007, s. 1-4. [International Cosmic Ray Conference /30./. Merida (MX), 03.07.2007-11.07.2007] R&D Projects: GA MŠk LA 134 Institutional research plan: CEZ:AV0Z10100502 Keywords : Pierre Auger Observatory * atmospheric calibration * FRAM * telescope Subject RIV: BF - Elementary Particles and High Energy Physics

  16. Surface sensitivity effects with local probe scanning Auger-scanning electron microscopy

    NARCIS (Netherlands)

    Van Agterveld, DTL; Palasantzas, G; De Hosson, JTM; Bentley, J; Allen, C; Dahmen, U; Petrov,

    2001-01-01

    Ultra-high-vacuum segregation studies on in-situ fractured Cu-Sb alloys were performed in terms of nanometer scale scanning Auger/Electron microscopy. S contamination leads to the formation Of Cu2S precipitates which, upon removal due to fracture, expose pits with morphology that depends on the prec

  17. Radio detection of extensive air showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km2. Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported

  18. Radio detection of extensive air showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Deployed at the end of 2010 at the Pierre Auger Observatory, the first stage of the Auger Engineering Radio Array, AERA24, consists of 24 radio stations covering an area of 0.5 km2. AERA measures the radio emission from cosmic-ray induced air showers. The amplitude of this radio emission is used to constrain the characteristics of the primary particle: arrival direction, energy and nature. These studies are possible thanks to an instrumentation development allowing self-triggered and externally triggered measurements in the MHz domain and an improved understanding of radio emission processes. In May 2013, 100 new stations were installed to cover an area of ≃6 km2, for a total of 124 stations. This stage 2 will provide higher statistics and will enhance both the estimate of the nature of the primary cosmic ray and the energy resolution above 1017 eV as an addition to detectors such as the Auger fluorescence telescopes and particle detectors. We will present the main results obtained with the stage 1 of AERA and the current status of the experiment. We will end with a brief overview of the GHz-experiments installed at the Pierre Auger Observatory

  19. Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs 'radio-hybrid' measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.

  20. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Torres, R.

    2012-08-15

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wear relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.

  1. Postcollision interactions in the Auger decay of the Ar L-shell

    Energy Technology Data Exchange (ETDEWEB)

    Samson, J.A.R.; Stolte, W.C.; He, Z.X. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The photoionization cross sections for Ar{sup +} through Ar{sup 4+}, produced by the Auger decay of an inner shell 2p hole, have been measured between 242 eV and 253 eV on beamline 9.0.1 and 6.3.2. In this study the authors are interested in near threshold phenomenon involving postcollision interactions (PCI), which are related to the Auger decay of a vacancy in the Ar L-shell. During an Auger decay a postcollision interaction can occur causing the out-going photoelectron to be retarded thus losing a certain amount of energy. If the retardation is sufficiently large the photoelectron will not escape. This result produces a singly charged ion, which normally would not be present. Such evidence of electron capture by the PCI effect was first shown clearly by Eberhardt et al. and, with higher resolution, in the present work. However, capture of the photoelectron is expected to be 100% exactly at the L{sub 2,3} thresholds. Thus, from the authors results they would have expected the Ar{sup 2+} signal to be zero at threshold, but it was not? The authors can explain this anomoly on the basis that during the Auger decay the photoelectrons are captured into high lying excited states of Ar{sup +}, which subsequently decay through autoionization yielding Ar{sup 2+}. Future work in this area will seek experimental evidence to verify this prediction.

  2. Towards a lateral distribution function reconstruction of radio measurements in offline with the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Cosmic ray induced air showers radiate appreciable power at radio frequencies via the geosynchrotron process. The Pierre Auger Observatory is constructing radio detection technique on large scales, the Auger Engineering Radio Array (AERA). For this purpose the Auger software-framework called offline, is being enhanced to analyze and reconstruct radio data. Our target is to reconstruct the intensity of the measured radio emission versus the distance from the shower-axis, representing the lateral distribution, which needs to be reconstructed from the Auger-data collected at one of the test sites for radio detection, located in the western part of the observatory near the surface detector tank Olaia, where three poles forming an equilateral triangle with a baseline of 100 m constitutes our setup of dual-polarized log-periodic dipole antennas. Our analysis focuses on a comparison of different functional dependencies for the LDF, such as exponential and polynomial one. The final aim is to have an independent energy estimation, direction reconstruction and, if possible, composition of the primary particle which induced the shower, to compare and integrate with the surface and fluorescence detector reconstructions.

  3. Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades

    International Nuclear Information System (INIS)

    Monte Carlo calculations are performed of the physical and chemical interactions in liquid water by electrons produced during Auger cascades resulting from the decay of various radionuclides. Estimates are also made of the number of direct physical and indirect chemical interactions that would be produced on DNA located near the decay site. 13 refs., 8 figs

  4. Measurements of the muon shower content at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Yushkov A.

    2013-06-01

    Full Text Available Several methods for estimating the muonic part of the signal observed in the surface Cherenkov detectors have been developed within the Pierre Auger Collaboration in the recent years. The muon shower content, derived from data with these methods, is found to be significantly larger in comparison with predictions of QGSJET II interaction model.

  5. Auger electron spectroscopic study of CO2 adsorption on Zircaloy-4 surfaces

    International Nuclear Information System (INIS)

    We investigate the adsorption of CO2 onto Zircaloy-4 (Zry-4) surfaces at 150, 300 and 600 K using Auger electron spectroscopy (AES). Following CO2 adsorption at 150 K the graphitic form of carbon is detected, whereas upon chemisorption at 300 and 600 K we detect the carbidic phase. As the adsorption temperature is increased, the carbon Auger signal increases, whereas the oxygen signal decreases. Adsorption at all three temperatures results in a shift of the Zr Auger features, indicating surface oxidation. The effect of adsorbed CO2 on the Zr(MVV) and Zr(MNV) transitions depends on adsorption temperature and is less pronounced at higher temperatures. On the other hand, changes in the Zr(MNN) feature are similar for all three adsorption temperatures. The changes in the Zr Auger peak shapes and positions are attributed to oxygen from dissociated CO2, with the differences observed at various temperatures indicative of the diffusion of oxygen into the subsurface region

  6. Measurements of the muon content of air showers at the Pierre Auger Observatory

    Science.gov (United States)

    Valiño, I.; Pierre Auger Collaboration

    2015-08-01

    The Pierre Auger Observatory offers a unique window to study cosmic rays and particle physics at energies above 3 EeV (corresponding to a centre-of-mass energy of 75 TeV in proton-proton collisions) inaccessible to accelerator experiments. We discuss the different methods of estimating the number of muons in showers recorded at the Pierre Auger Observatory, which is an observable sensitive to primary mass composition and to properties of the hadronic interactions in the shower. The muon content, derived from data with these methods, is presented and compared to predictions from the post-LHC hadronic interaction models for different primary composition. We find that models do not reproduce well the Auger observations, displaying a deficit of muons at the ground. In the light of these results, a better understanding of ultra-high energy extensive air showers and hadronic interactions is crucial to determine the composition of ultra-high energy cosmic rays. We report on the upgrade plans of the Pierre Auger Observatory to achieve this science goal.

  7. The KLL Auger spectrum of Cu-65 measured from the EC decay of Zn-65

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Perevoshchikov, L. L.; Kovalík, Alojz; Filosofov, D. V.; Gorozhankin, V. M.

    2009-01-01

    Roč. 171, 1-3 (2009), s. 53-56. ISSN 0368-2048 Institutional research plan: CEZ:AV0Z10480505 Keywords : Electron spectroscopy * Auger effect * KLL transitions Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.942, year: 2009

  8. Application of Auger electron spectroscopy in studies about diffusion of Cu in thin Ni films

    International Nuclear Information System (INIS)

    The diffusion coefficient of Cu in thin Ni films (350A) at low temperatures is determined by using Auger electron spectroscopy and timepermeation technic. A grain-boundary mechanism is proposed for the diffusion of Cu in Ni. The activation energy is determined to Q=0,6eV. (Author)

  9. VO auger experience with large-scale simulations on the grid

    Czech Academy of Sciences Publication Activity Database

    Chudoba, Jiří

    Amsterdam : EGI.eu, 2013 - (Coelho, S.). s. 18-18 ISBN 978 90 816927 2 4. [EGI Community Forum. 08.04.2013-12.04.2013, Manchester] Institutional support: RVO:68378271 Keywords : auger Virtual Organisation (VO) * EGI grid resources Subject RIV: IN - Informatics, Computer Science

  10. 45 Day safety screen results for Tank 241-C-108 -- Augers 94-012, 94-014 and 94-015

    International Nuclear Information System (INIS)

    Three auger samples from Tank C-108 (on the Ferrocyanide Watch List) were received by the 222-S laboratories. These samples underwent safety screening analysis (DSC, TGA, and Alpha Total) in accordance with reference below. No results exceeded the notification criteria. Due to the calculated depth of sludge at riser 7, two augers were used to sample the sludge. The first (94-AUG-012) was a ten inch auger, the second (94-AUG-014) was a 20 inch auger. One 20 inch auger (94-AUG-015) was used to sample the tank C-108 contents at riser 4. Results are compiled in this report

  11. Time-and-energy-resolved measurement of Auger cascades following Kr 3d excitation by attosecond pulses

    International Nuclear Information System (INIS)

    We show that attosecond metrology has evolved from proof-of-principle experiments to a level where complex processes can be resolved in time that cannot be accessed using any other existing technique. The cascaded Auger decay following ionization and excitation of the 3d-subshell in Kr with subfemtosecond 94 eV soft x-ray pulses has been energy- and time-resolved in an x-ray pump-infrared probe experiment. This Auger cascade reveals rich multi-electron dynamics, which despite the fact that there are many experimental and theoretical data available, is not yet fully understood. We present time-resolved data showing the sequence of the temporal dynamics in the cascaded Auger decay. The decay time of several groups of lines has been measured, including the lines at the low-energy part of the spectrum, which are predominantly produced by the second-step Auger transitions. Our experimental data reveal long lifetimes (up to 70 fs) of the subvalence excited ionic (intermediate) states in the cascaded resonant Auger decay. Extensive theoretical calculations within the multiconfiguration Dirac-Fock (MCDF) approach show that the observed long lifetime may be attributed to the second-step Auger decay of the resonantly excited 3d-1np states with n = 6,7. Furthermore, our experimental data show that the electrons with a kinetic energy around 25 eV (generally assigned as M4,5N1N1 1S0 normal Auger lines) have a component corresponding to the second-step Auger decay of the ion after resonant Auger transition 3d-1np → 4s2 4p3 4dnp → 4s2 4p4 with a lifetime of 26 ± 4 fs. (paper)

  12. Fragmentation of CF3Br induced by fluroine is core excitation: Energy resolved auger electron multiple-ion coincidence measurements

    International Nuclear Information System (INIS)

    Fragmentation processes in CF3Br near the F K edge were investigated using synchrotron radiation and Energy Resolved Auger Electron Multiple Ion Coincidence (ERAEMICO). Time-of flight mass spectra were collected in coincidence with either selected F 1s Auger or resonant-Auger electrons which were energy analyzed with a hemispherical detector. In addition, a more inclusive mass spectrum was taken near the F 1s ionization potential in coincidence with low energy electrons. Preliminary spectra the Br2+ ion intensity is negligible and the relative CF+ abundance is higher. These differences confirm the notion that the electronic state prior to bond breakage governs the resulting fragmentation pattern

  13. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  14. Auger electron spectroscopy of the surface of a pipe-like solid C60+18n

    International Nuclear Information System (INIS)

    Auger and electron energy loss spectra obtained when probing the surface of nanofiber carbon material by an electron beam point out to C60 football-type of covers with the outlet to the surface of nanopipe carbon molecules

  15. Pierre Auger Observatory and Telescope Array: Joint Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013)

    CERN Document Server

    Array, The Telescope; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fujii, T; Fukushima, M; Goto, K; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, K; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nanpei, H; Nonaka, T; Nozato, A; Ogio, S; Oh, S; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shirahama, T; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Takamura, M; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wada, Y; Wong, T; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z; Aab, A; Abreu, P; Aglietta, M; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muniz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antivcic, T; Aramo, C; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Barber, K B; Bardenet, R; Baeuml, J; Baus, C; Beatty, J J; Becker, K H; Belletoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blumer, H; Bohacova, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Burton, R E; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Cheng, S H; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Collica, L; Coluccia, M R; Conceicao, R; Contreras, F; Cook, H; Cooper, M J; Coutu, S; Covault, C E; Criss, A; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Diaz, J C; Castro, M L Diaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipcic, A; Foerster, N; Fox, B D; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Frohlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; Garcia, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glaser, C; Glass, H; Albarracin, F Gomez; Berisso, M Gomez; Vitale, P F Gomez; Goncalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Homola, P; Hoerandel, J R; Horvath, P; Hrabovsky, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jansen, S; Jarne, C; Josebachuili, M; Kadija, K; Kambeitz, O; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kegl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Krause, R; Krohm, N; Kroemer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; La Rosa, G; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leao, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopez, R; Aguera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Malacari, M; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martinez; Martraire, D; Meza, J J Masias; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Messina, S; Meyhandan, R; Micanovic, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Mostafa, M; Moura, C A; Muller, M A; Muller, G; Munchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novzka, L; Oehlschlager, J; Olinto, A; Oliveira, M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parra, A; Pastor, S; Paul, T; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Pontz, M; Porcelli, A; Preda, T; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Cabo, I Rodriguez; Fernandez, G Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Frias, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouille-d'Orfeuil, B; Roulet, E; Rovero, A C; Ruhle, C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sanchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovanek, P; Schroeder, F G; Schulz, A; Schulz, J; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Smialkowski, A; Smida, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Straub, M; Stutz, A; Suarez, F; Suomijarvi, T; Supanitsky, A D; Susa, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Tacscuau, O; Tcaciuc, R; Thao, N T; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tome, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Tridapalli, D B; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Galicia, J F Valdes; Valino, I; Valore, L; van Aar, G; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cardenas, B Vargas; Varner, G; Vazquez, J R; Vazquez, R A; Veberic, D; Verzi, V; Vicha, J; Videla, M; Villasenor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczynska, B; Wilczynski, H; Will, M; Williams, C; Winchen, T; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2013-01-01

    Joint contributions of the Pierre Auger and Telescope Array Collaborations to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013: cross-calibration of the fluorescence telescopes, large scale anisotropies and mass composition.

  16. Measurement of the Energy Spectrum of Ultra-High Energy Cosmic Rays using Hybrid Data of the Pierre Auger Observatory

    OpenAIRE

    Schüssler, Fabian

    2009-01-01

    The subject of this thesis is the measurement of the energy spectrum of ultra-high energy cosmic rays from simultaneous observation of fluorescence and surface detectors of the Pierre Auger Observatory. Extending the nominal energy range of the Pierre Auger Observatory to lower energy, the hybrid energy spectrum above 10^{18} eV is measured. It shows a significant break of the power-law behavior at 10^{18.7} eV.

  17. Energy ordering effects in the arrival directions of ultra-high energy cosmic rays measured by the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory is the world's largest experiment for the measurement of ultra-high energy cosmic rays (UHECRs). These UHECRs are assumed to be to be charged particles, and thus are deflected in cosmic magnetic fields. Recent results of the Pierre Auger Observatory addressing the complex of energy ordering of the UHECRs arrival directions are reviewed in this contribution. So far no significant energy ordering has been observed. (author)

  18. Measurement of the Muon Production Depths at the Pierre Auger Observatory

    CERN Document Server

    ,

    2016-01-01

    The muon content of extensive air showers is an observable sensitive to the primary composition and to the hadronic interaction properties. The Pierre Auger Observatory uses water-Cherenkov detectors to measure particle densities at the ground and therefore is sensitive to the muon content of air showers. We present here a method which allows us to estimate the muon production depths by exploiting the measurement of the muon arrival times at the ground recorded with the Surface Detector of the Pierre Auger Observatory. The analysis is performed in a large range of zenith angles, thanks to the capability of estimating and subtracting the electromagnetic component, and for energies between $10^{19.2}$ and $10^{20}$ eV.

  19. Origin of atmospheric aerosols at the Pierre Auger Observatory using backward trajectory of air masses

    CERN Document Server

    Louedec, K

    2013-01-01

    The Pierre Auger Observatory is the largest operating cosmic ray observatory ever built. Calorimetric measurements of extensive air showers induced by cosmic rays are performed with a fluorescence detector. Thus, one of the main challenges is the monitoring of the atmosphere, both in terms of atmospheric state variables and optical properties. To better understand the atmospheric conditions, a study of air mass trajectories above the site is presented. Such a study has been done using an air-modelling program well known in atmospheric sciences. Its validity has been checked using meteorological radiosonde soundings performed at the Pierre Auger Observatory. Finally, aerosol concentration values measured by the Central Laser Facility are compared to backward trajectories.

  20. The KLL Auger spectrum of neon from the EC-decay of 22Na

    International Nuclear Information System (INIS)

    The low energy KLL Auger electrons of neon emitted after EC decay of 22Na have been investigated with the 4 eV instrumental resolution using an electrostatic spectrometer and a solid state radioactive source. This is the first experimental investigation of the KLL Auger spectrum of neon originating in the solid state surrounding. Relative intensities and energies of all resolved spectrum components were determined. Measured absolute energy of the dominant KL2L3(1D) transition was found to be 824.5(19) eV, i.e. by about 20 eV higher than that obtained in experiments with free Ne atoms. Within the experimental uncertainties, no influence of solid state effects on relative intensities of the KLL transitions was found

  1. Temperature dependence of ion-induced Auger electron emission from (111) silicon: Pt. 1

    International Nuclear Information System (INIS)

    Measurements have been made of both the secondary electron emission coefficient, γ, and SiL23 Auger yield, ρA for a (111)Si target bombarded by high fluence of noble gas ions. For Si irradiated at room temperature at doses more than 1017 ions per cm2, a monotonically increasing variation of γ and ρA with incidence angle i was observed. For Si irradiated at a temperature more than a critical value, γ(i) and ρA(i) curves exhibited minima superimposed on the monotonic variation when the ion beam penetrated the crystal along low index directions. In the range 20-6500C, the Auger yield temperature dependence showed a sharp variation around a critical value depending on the ion mass for a given incident energy. These results are linked to an amorphous-crystalline phase transition. (author)

  2. Temperature dependence of ion-induced Auger electron emission from (111) silicon: Pt. 1; Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Benazeth, C.; Hecquet, P.; Mayoral, C.; Benazeth, N. (Toulouse-3 Univ., 31 (France))

    1989-06-01

    Measurements have been made of both the secondary electron emission coefficient, gamma, and SiL{sub 23} Auger yield, rho{sub A} for a (111)Si target bombarded by high fluence of noble gas ions. For Si irradiated at room temperature at doses more than 10{sup 17} ions per cm{sup 2}, a monotonically increasing variation of gamma and rho{sub A} with incidence angle i was observed. For Si irradiated at a temperature more than a critical value, gamma(i) and rho{sub A}(i) curves exhibited minima superimposed on the monotonic variation when the ion beam penetrated the crystal along low index directions. In the range 20-650{sup 0}C, the Auger yield temperature dependence showed a sharp variation around a critical value depending on the ion mass for a given incident energy. These results are linked to an amorphous-crystalline phase transition. (author).

  3. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory

  4. Tank 241-SY-103 auger samples, risers 7A, 14B and 22A

    International Nuclear Information System (INIS)

    Preliminary differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) data were reported in a letter from K.L. Kocher, WHC, to G.D. Johnson; et. al, WHC, ''40 Day Deliverable for Tank 241-SY-103'', dated July 14, 1994. This report is the final report for the Sy-1-3 auger sample characterization effort; some of the data reported earlier may have changed. A copy of the hot cell work plan, chain of custody forms, extruded segment description sheets, and photographs of the extruded augers were also included in the cited letter. The final DSC, TGA, total organic carbon (TOC), and total inorganic carbon (TIC) data, and the DSC and TGA scans and analytical cards, are reported here

  5. Atmospheric Profiles at the Southern Pierre Auger Observatory and their Relevance to Air Shower Measurement

    CERN Document Server

    Keilhauer, B; Engel, R; Gora, D; Homola, P; Klages, H; Pekala, J; Risse, M; Unger, M; Wilczynska, B; Wilczynski, H

    2005-01-01

    The dependence of atmospheric conditions on altitude and time have to be known at the site of an air shower experiment for accurate reconstruction of extensive air showers and their simulations. The height-profile of atmospheric depth is of particular interest as it enters directly into the reconstruction of longitudinal shower development and of the primary energy and mass of cosmic rays. For the southern part of the Auger Observatory, the atmosphere has been investigated in a number of campaigns with meteorological radio soundings and with continuous measurements of ground-based weather stations. Focussing on atmospheric depth and temperature profiles, temporal variations are described and monthly profiles are developed. Uncertainties of the monthly atmospheres that are currently applied in the Auger reconstruction are discussed.

  6. Nanodosimetry of 125I – Auger electrons – Experiment and modeling

    International Nuclear Information System (INIS)

    The experiment with 125I-Auger electrons, interacting with gaseous nitrogen with size equivalent to segment of DNA in mass per unit area scale, are described. The discrete ionization cluster-size distributions have been obtained. The shapes of which are definitely determined by the size of the interaction volumes. The volume sizes studied in the present work are comparable with a segment of DNA and of nucleosome. The experiments have been carried out with the set up, called Jet Counter, and are the first cluster-size distributions as yet measured for an Auger-electron emitter like 125I. The experimental results have been compared with those obtained by Monte Carlo simulation. The results for 125I have been compared with calculated cluster size distribution for 131I.

  7. Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    CERN Document Server

    2009-01-01

    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.

  8. Slow Auger Recombination of Charged Excitons in Nonblinking Perovskite Nanocrystals without Spectral Diffusion

    CERN Document Server

    Hu, Fengrui; Zhang, Huichao; Sun, Chun; Yu, William W; Zhang, Chunfeng; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-01-01

    Over the last two decades, intensive research efforts have been devoted to the suppressions of photoluminescence (PL) blinking and Auger recombination in metal-chalcogenide nanocrystals (NCs), with significant progresses being made only very recently in several specific heterostructures. Here we show that nonblinking PL is readily available in the newly-synthesized perovskite CsPbI3 (cesium lead iodide) NCs, and their Auger recombination of charged excitons is greatly slowed down, as signified by a PL lifetime about twice shorter than that of neutral excitons. Moreover, spectral diffusion is completely absent in single CsPbI3 NCs at the cryogenic temperature, leading to a resolution-limited PL linewidth of ~200 {\\mu}eV.

  9. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander; et al.

    2014-08-08

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  10. The aperture for UHE tau neutrinos of the Auger fluorescence detector using a Digital Elevation Map

    Energy Technology Data Exchange (ETDEWEB)

    Miele, Gennaro [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cinthia, I-80126 Naples (Italy); Pastor, Sergio [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Ed. Institutos de Investigacion, Apdo. 22085, E-46071 Valencia (Spain)]. E-mail: pastor@ific.uv.es; Pisanti, Ofelia [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cinthia, I-80126 Naples (Italy)

    2006-03-09

    We perform a new study of the chances of the fluorescence detector (FD) at the Pierre Auger Observatory to detect the tau leptons produced by Earth-skimming ultra high energy {nu}{sub {tau}}'s. We present a new and more detailed evaluation of the effective aperture of the FD that considers a reliable fiducial volume for the experimental set up. In addition, we take into account the real elevation profile of the area near Auger. We find a significant increase in the number of expected events with respect to the predictions of a previous semi-analytical determination, and our results show the enhancement effect for neutrino detection from the presence of the near mountains.

  11. Electronic structure of quasicrystals deduced from Auger and x-ray photoelectron spectroscopies

    International Nuclear Information System (INIS)

    Specific features in the electronic structure of Al-transition metal quasicrystals are analysed by a combination of Auger and x-ray photoelectron spectroscopies. We first demonstrate that different degrees of asymmetry in the transition metals' 2p core-level lineshape observed across different types of surface structure correspond to variations in the density of states at the Fermi level, DOS(EF). Using this effect, we explore the controversial issue of whether the quasicrystalline, decagonal AlNiCo system is electronically stabilized. We find strong evidence for the presence of a reduced DOS(EF) in this system, as expected for electronically stabilized compounds, and as observed in the quasicrystalline, icosahedral AlPdMn and AlCuFe alloys. Finally, qualitative information on the nature of the electronic states in quasiperiodic structures extracted from the core-valence-valence Auger lines are presented and discussed. (author)

  12. Numerical evaluation of Auger recombination coefficients in relaxed and strained germanium

    Science.gov (United States)

    Dominici, Stefano; Wen, Hanqing; Bertazzi, Francesco; Goano, Michele; Bellotti, Enrico

    2016-05-01

    The potential applications of germanium and its alloys in infrared silicon-based photonics have led to a renewed interest in their optical properties. In this letter, we report on the numerical determination of Auger coefficients at T = 300 K for relaxed and biaxially strained germanium. We use a Green's function based model that takes into account all relevant direct and phonon-assisted processes and perform calculations up to a strain level corresponding to the transition from indirect to direct energy gap. We have considered excess carrier concentrations ranging from 1016 cm-3 to 5 × 1019 cm-3. For use in device level simulations, we also provide fitting formulas for the calculated electron and hole Auger coefficients as functions of carrier density.

  13. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    CERN Document Server

    ,

    2016-01-01

    Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muon counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The...

  14. Anomalous two-election Auger resonance in thorium near the 5d(O5) photothreshold

    International Nuclear Information System (INIS)

    The photoexcited O5P3V (5dsub(3/2) 6psub(3/2) valence) Auger emission line for thorium metal shows an anomalous increase in kinetic energy of approximately 1 eV as the photon energy hν is increased through the atomic-like 5d → 5f resonant excitation at hνsub(r) = 89 eV. Possible mechanisms for this anomalous behavior are discussed, and it is suggested that it can be interpreted as a two-electron resonance involving the O5P3V Auger excitation and a shake-up satellite of the 6psub(3/2) core level excitation. (author)

  15. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    CERN Document Server

    Aab, A; Aglietta, M; Ahlers, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Cheng, S H; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Criss, A; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; de Jong, S J; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L D\\'\\iaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Fröhlich, U; Fuchs, B; Fuji, T; Gaior, R; Garc\\'\\ia, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gate, F; Gemmeke, H; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Glaser, C; Glass, H; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Islo, K; Jandt, I; Jansen, S; Jarne, C; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; La Rosa, G; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agëra, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Malacari, M; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Mart\\'\\inez; Martraire, D; Meza, J J Mas\\'\\ias; Mathes, H J; Mathys, S; Matthews, A J; Matthews, J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Messina, S; Meyhandan, R; Mićanović, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morello, C; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Newton, D; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Olinto, A; Oliveira, M; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Papenbreer, P; Parente, G; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Peters, C; Petrera, S; Petrolini, A; Petrov, Y; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Cabo, I Rodriguez; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodr\\'\\iguez-Fr\\'\\ias, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Roulet, E; Rovero, A C; Rühle, C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovánek, P; Schulz, A; Schulz, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; kowski, A Śmiał; Šm\\'\\ida, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Taborda, O A; Tapia, A; Tartare, M; Thao, N T; Theodoro, V M; Tiffenberg, J; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Whelan, B J; Widom, A; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2014-01-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^\\circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  16. Direct observation of the double Auger decay of a K hole

    International Nuclear Information System (INIS)

    The double Auger (DA) decay of a K hole has been observed directly by detecting the two emitted electrons in coincidence. The hole was created in 37Cl following the electron-capture decay of 37Ar. The probability of DA decay, per Auger decay, with the two electrons both having an energy greater than 250 eV was found to be 3.7±0.2%. The DA probability was found to decrease exponentially as the energy partitioning between the two electrons changed from the asymmetric case (E1>E2) to the symmetric case (E1≅E2). The DA probability accounts for the bulk of the intensity of high charge states previously measured in 37Cl. copyright 1996 The American Physical Society

  17. Nonradiative Auger recombination of biexcitons in CdSe/CdS core-shell nanocrystal quantum dots

    Science.gov (United States)

    Vaxenburg, Roman; Rodina, Anna; Lifshitz, Efrat; Efros, Alexander

    Semiconductor nanocrystals are known for their applicative potential as light-emitting components in lasers and LEDs, as well as light absorbers in solar cells. The performance of these nanocrystal-based devices, however, strongly depends on the dissipative nonradiative Auger recombination. The study of dynamics of the Auger processes is therefore of key importance in connection with the performance of nanocrystals devices. Here we report on a theoretical study of the Auger recombination dynamics of biexcitons in CdSe/CdS core-shell nanocrystals. Biexcitons can decay by the Auger process via negative or positive trion recombination channels. We study the dependence of the rate of each one of these channels on the angular momentum of the initial biexciton state, nanocrystal geometry, and temperature. We observe that the overall dependence of the rates of both channels is strongly oscillating with nanocrystal geometry, indicating large differences in the Auger rates in nanocrystals of similar size. We find that the rate of the negative trion channel is independent of the initial biexciton angular momentum and is generally slower than the rate of the positive trion channel, which, in contrast, is sensitive to the biexciton angular momentum. Further, we demonstrate that by variation of temperature the Auger rate can be varied across a wide range of values.

  18. Observing muon decays in water Cherenkov detectors at the Pierre Auger Observatory

    OpenAIRE

    Allison, P.; Arneodo, F.; Bertou, X.; Busca, N.G.; Ghia, P.L.; C. Medina; Navarra, G.; Nellen, L.; Ibarguen, H. Salazar; Ranchon, S.; Urban, M.; Villasenor, L.; Collaboration, for the Pierre Auger

    2005-01-01

    Muons decaying in the water volume of a Cherenkov detector of the Pierre Auger Observatory provide a useful calibration point at low energy. Using the digitized waveform continuously recorded by the electronics of each tank, we have devised a simple method to extract the charge spectrum of the Michel electrons, whose typical signal is about 1/8 of a crossing vertical muon. This procedure, moreover, allows continuous monitoring of the detector operation and of its water level. We have checked ...

  19. Satellite X-ray lines and KLL Auger electrons from fluorine compounds

    International Nuclear Information System (INIS)

    Fluorine K X-rays are excited by irradiation of solid samples (LiF, NaF, KF, RbF, CsF, AgF; BeF2, MgF2, CaF2, CrF2, FeF2, CoF2, NiF2, CuF2, SnF2, ZnF2, PbF2, BaF2) with α-particles. Optimal conditions for the observation of Kαsub(3,4) satellites from thick samples are obtained with 2 MeV4He+ particles from a Van de Graaff generator. X-rays are analysed with a Bragg spectrometer equipped with a flat crystal of TIAP, the resolution is 1.2 eV for Fluorine K X-rays. Auger electrons are excited by irradiation of same samples with Al Kαsub(1,2) X-rays; electrons from the main KLL Auger line are detected with a resolution of about 1 eV. The observations made on these compounds are in accordance with previous data on a few samples as reported by Deconninck et al. (1978). Important variations in shape and amplitude are observed in Kαsub(3,4) X-ray and KLL Auger spectra. The relative amplitude of the Kαsub(3,4) peak is maximum in ionic compound and the peak width is narrower, this amplitude decreases with increasing covalency and the presence of energy band is observed by the energy spreading of the peaks (X-ray and Auger). The competition between different decay modes is investigated in an attempt to interpretate the relative amplitude of the satellite peaks. (author)

  20. Search for Ultra-High Energy Photons with the Pierre Auger Observatory

    CERN Document Server

    Healy, M D

    2007-01-01

    Data taken at the Pierre Auger Observatory are used to search for air showers initiated by ultra-high energy (UHE) photons. Results of searches are reported from hybrid observations where events are measured with both fluorescence and array detectors. Additionally, a more stringent test of the photon fluxes predicted with energies above 10^19 eV is made using a larger data set measured using only the surface detectors of the observatory.

  1. Exploring cosmic rays at the highest-energy frontier with the Pierre Auger Observatory

    OpenAIRE

    Dobrigkeit Carola

    2015-01-01

    The Pierre Auger Observatory studies the most energetic cosmic rays arriving at Earth, those with energies from 1017 eV up to 1020 eV and beyond. In continuous operation since 2004, the Observatory employs two complementary detection techniques for measuring air showers induced by those extremely energetic particles. For the past few years new detectors and techniques are being added in order to augment the sensitivity of the measurements. Data accumulated in ten years have led to major advan...

  2. Scanning Auger Microscopy of laser-produced Cu ions implanted in silicon

    Czech Academy of Sciences Publication Activity Database

    Mezzasalma, A. M.; Torrisi, L.; Gammino, S.; Mondio, G.; Franco, G.; Wolowski, J.; Parys, P.; Badziak, J.; Krása, Josef; Láska, Leoš

    Frascati : C. R. ENEA Frascati, 2005 - (Strangio, C.), x [ECLIM 2004: European Conference on Laser Interaction with Matter /28./. Roma (IT), 06.09.2004-10.09.2004] R&D Projects: GA MŠk(CZ) LN00A100 Institutional research plan: CEZ:AV0Z10100523 Keywords : ion implantation * pulsed laser irradiation * Scanning Auger Microscopy Subject RIV: BH - Optics, Masers, Lasers

  3. Design of Continuous Flight Auger Pile Foundation for a Multi-Storey Apartment Building

    OpenAIRE

    Yatskevich, Yulia

    2010-01-01

    The object of this work was studying, systemizing and describing continuous flight auger (CFA) pile foundation design for a residential complex and calculating the bearing capacity of a single СFA pile on the basis of Russian Building Code. This thesis was written on the request of the YIT Lentek JSK Design Department. The information for the theoretical part was gathered from Russian Building Codes, theoretical manuals, other common available materials (including the Internet), and proje...

  4. The Pierre Auger project: An observatory for measuring extremely high-energy cosmic rays

    International Nuclear Information System (INIS)

    We present the scientific motivation and conceptual design of the P. Auger Observatory. Two giant ground arrays of water Cerenkov tanks overlooked by fluorescence detectors will cover an area of 3000 km2 each. They will be build in the Southern and Northern hemisphere to provide full sky coverage. The total aperture of 14000 km2sr will allow to study all observable aspects of cosmic rays from below 10 EeV up to arbitrarily high energies with an unprecedented accuracy

  5. Composition studies of Ultra High Energy Cosmic Rays using Data of the Pierre Auger Observatory

    OpenAIRE

    Caballero Mora, Karen Salomé

    2010-01-01

    The subject of this work is the estimation of the mass composition of Ultra High Energy Cosmic Rays recorded by the surface detector of the Pierre Auger Observatory. The time traces of the surface detector stations are explored to obtain a new observable sensitive to the mass composition. The new observable is calibrated with the most mass-sensitive observable of the Observatory, the depth of the shower maximum to obtain a new estimation. Results on mass composition, from this, are reported.

  6. Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory

    OpenAIRE

    Arganda, E.; Arqueros Martínez, Fernando; Blanco Ramos, Francisco; García Pinto, Diego; Ortiz Ramis, Montserrat; Rosado Vélez, Jaime; Vázquez Peñas, José Ramón

    2011-01-01

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis...

  7. Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    OpenAIRE

    PIERRE AUGER Collaboration; Abreu, P; Pastor, Sergio

    2013-01-01

    The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aer...

  8. Constraints on hadronic models in extensive air showers with the Pierre Auger Observatory

    CERN Document Server

    ,

    2016-01-01

    Extensive air showers initiated by ultra-high energy cosmic rays are sensitive to the details of hadronic interactions models, so we present the main results obtained using the data of the Pierre Auger Observatory. The depth at which the maximum of the electromagnetic development takes place is the most sensitive parameter to infer the nature of the cosmic rays. However, the hadronic models cannot describe consistently the maximum and the muon measurements at energies higher than those reached at the LHC.

  9. Inner-valence states of CO+: Comparison of photoelectron and resonant Auger spectra

    International Nuclear Information System (INIS)

    We have recorded very-high-resolution photoelectron spectra of the inner-valence structure of CO+, excited with synchrotron radiation, and have resolved fine structure never previously observed. Recently presented resonant Auger decay spectra (Sundin et al. 1997 Phys. Rev. A56 480, 1997 J. Phys. B: At. Mol. Opt. Phys. 30 4267) have established the energy of two-hole one-particle Rydberg states, and a comparison with these has been made to explain some details of the spectra

  10. Multilevel-targeted polymer Auger electron emitter delivery system for cancer therapy

    Czech Academy of Sciences Publication Activity Database

    Hrubý, Martin; Sedláček, Ondřej; Studenovský, Martin; Kučka, Jan; Větvička, D.

    Nantes: Laboratoire Subatech, 2013. s. 55. [Workshop on Innovative Personalized Radioimmunotherapy - WIPR 2013 "Radiopharmaceuticals: from research to industry". 09.07.2013-12.07.2013, Nantes] R&D Projects: GA ČR GA13-08336S; GA MPO FR-TI4/625 Grant ostatní: AV ČR(CZ) M200501201 Institutional support: RVO:61389013 Keywords : Auger electron emitter * drug delivery * intercalator Subject RIV: CA - Inorganic Chemistry

  11. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2015-01-01

    Roč. 91, č. 9 (2015), "092008-1"-"092008-14". ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : cosmic rays * Pierre Auger * ultrahigh energy * surface detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  12. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 12 (2014), "122006-1"-"122006-12". ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * air-shower * fluorescence telescopes Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  13. A model for the time uncertainty measurements in the Auger surface detector array

    OpenAIRE

    Bonifazi, C.; Letessier-Selvon, A.; Santos, E. M.

    2007-01-01

    The precise determination of the arrival direction of cosmic rays is a fundamental prerequisite for the search for sources or the study of their anisotropies on the sky. One of the most important aspects to achieve an optimal measurement of these directions is to properly take into account the measurement uncertainties in the estimation procedure. In this article we present a model for the uncertainties associated with the time measurements in the Auger surface detector array. We show that th...

  14. Relativistic K-LL Auger spectra in the intermediate-coupling scheme with configuration interaction

    Science.gov (United States)

    Chen, M. H.; Crasemann, B.; Mark, H.

    1980-01-01

    Theoretical K-LL Auger spectra from relativistic Dirac-Hartree-Slater calculations in intermediate coupling with configuration interaction (ICWCI) are considered. Calculated transition rates for 25 elements with Z between 18 and 96, inclusive, are listed and compare well with experimental data. Relativistic effects are found to be important above Z equal to about 35, and ICWCI is necessary to describe the spectra for Z less than about 60.

  15. Muons in air showers at the Pierre Auger Observatory: mean number in highly inclined events

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2015-01-01

    Roč. 91, č. 3 (2015), , "032003-1"-"032003-12". ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * air showers * ultrahigh energies * cosmic rays * detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  16. Muons in air showers at the Pierre Auger Observatory: measurement of atmospheric production depth

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 1 (2014), "012012-1"-"012012-15". ISSN 1550-7998 R&D Projects: GA ČR(CZ) GA14-17501S; GA MŠk(CZ) 7AMB14AR005; GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * detector * cosmic rays * muon s * air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  17. Some results of Auger spectroscopy and emission spectroscopy applied to impregnated cathodes

    International Nuclear Information System (INIS)

    A study of impregnated cathodes using combined Auger spectroscopy and emission microscopy shows that a realistic pressures regions of thick-film coverage emit more strongly than monolayer regions. The presence of sulphur and phosphorus on the surface of dispenser cathodes has been correlated with poor emission. These contaminants may be removed by heating cathodes in oxygen, a process which increases substantially the emission available from poor cathodes. (orig.)

  18. Investigation of surface layer composition of the rhodium-ruthenium catalysts by means of auger spectroscopy

    International Nuclear Information System (INIS)

    The surface layer composition of skeleton catalysts of the rhodium-ruthenium system by means of Auger-electron spectroscopy and electron spectroscopy for the chemical analysis is investigated. It is shown that apart from rhodium, ruthenium aluminium and silicon there is a certain quantity of chemosorbed oxygen accumulated in case of catalysts conservation over a long period of time. The dependence of filling catalysts by chemosorbed oxygen on the alloy composition has been found

  19. Azimuthal signal variations in the engineering array of the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    K.S. Caballero-Mora

    2008-01-01

    Full Text Available Estudiamos la variación azimutal de las señales detectadas en tanques seleccionados de la red de ingeniería del Observatorio Pierre Auger. Ajustamos una parametrización a las variaciones observadas. También notamos que es posible analizar las variaciones para detectar errores en el cableado entre los tubos fotomultiplicadores y la tarjeta controladora.

  20. Secondary electron emission due to Auger de-excitation of metastable nitrogen molecules at metallic surfaces

    OpenAIRE

    Marbach, J.; Bronold, F. X.; Fehske, H.

    2011-01-01

    With an eye on plasma walls we investigate, within an effective model for the two active electrons involved in the process, secondary electron emission due to Auger de-excitation of metastable nitrogen $N_2(^3\\sigma^+_u)$ molecules at metallic surfaces. Modelling bound and unbound molecular states by a LCAO approach and a two-center Coulomb wave, respectively, and the metallic states by the eigenfunctions of a step potential we employ Keldysh Green's functions to calculate the secondary elect...

  1. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    OpenAIRE

    Aloisio, R.; Berezinsky, V.; P. Blasi(INAF Arcetri)

    2013-01-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate $X_{max}(E)$ and dispersion $\\sigma(X_{max})$ as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must ...

  2. Reconstruction accuracy of the surface detector array of the Pierre Auger Observatory

    CERN Document Server

    Ave, M

    2007-01-01

    The reconstruction of extensive air showers (arrival direction, core position and energy estimation) by the surface detector of the Pierre Auger Observatory is discussed together with the corresponding accuracy. We determine the angular reconstruction accuracy as a function of the station multiplicity by using two different aproaches. We discuss statistical and systematic uncertainties in the determination of the signal at 1000 m from the core, S(1000), which is used to estimate the primary energy.

  3. The in-situ fracture and Auger analysis of Nicalon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N. [Oak Ridge National Lab., TN (United States); Osborne, M.C. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-09-01

    A technique has been developed to fracture irradiated Nicalon SiC fibers in a Scanning Auger Microprobe (SAM) and analyze the fracture surfaces without contaminating the specimen chamber. The technique, which was evaluated using as-received fibers, requires only minor modification of two standard specimen holders and should be applicable to other fibers or materials that can be broken under low loads in bending. The technique is simple, rapid, reduces beam charging, and eliminates the need for ion sputtering.

  4. Chemical-state imaging of Li using scanning Auger electron microscopy

    International Nuclear Information System (INIS)

    Highlights: •Scanning Auger electron microscopy is used to image chemical states of Li. •The combined use of AES and EELS signals for the elemental mapping is powerful. •Distribution corresponding to metallic and oxidized states of Li can be imaged. -- Abstract: The demand for measurement tools to detect Li with high spatial resolution and precise chemical sensitivity is increasing with the spread of lithium-ion batteries (LIBs) for use in a wide range of applications. In this work, scanning Auger electron microscopy (SAM) is used to image chemical states of a partially oxidized Li surface on the basis of the Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS) data obtained during an oxidation process of a metal Li. We show that distribution of metallic and oxidized states of Li is clearly imaged by mapping the intensity of the corresponding AES and EELS peaks. Furthermore, a tiny difference in the extent of oxidation can be distinguished by comparing the elemental map of an AES peak with that of an EELS peak owing to the different behaviors of those signals to the chemical states of Li

  5. Measurements of the muonic component of air showers at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Allen Jeff

    2013-06-01

    Full Text Available Several methods have been developed by the Pierre Auger Collaboration to estimate the muon content of air showers from ultra-high energy cosmic rays. The data of the Pierre Auger Observatory will be compared with predictions based upon EPOS 1.99 and QGSJET-II-3 hadronic interaction models. In addition to the direct measures of the muonic content, the combination of a fluorescence detector and a muon sensitive surface array allows for a direct test of air shower simulations which is sensitive to both the shower core and large distances from the core. These methods reveal a deficit of muons in air shower simulations with proton primaries and that the energy assignment basedupon simulations of the surface array signal is systematically higher than that derived from the florescence detector. Summary: I will discuss the deficit in the number of muons currently predicted by simulations when compared to the data of the Pierre Auger Observatory. I will describe the methods used to measure the muon content, including sources of systematic uncertainty, and give their current results. Finally, I will present the Collaborations current understanding of the nature of the discrepancy, which could arise from an energy scale problem, composition, or deficiencies in the hadronic interaction models. See references [1, 2].

  6. 45-Day safety screen results for Tank 241-C-101, auger sample 95-AUG-019

    International Nuclear Information System (INIS)

    One auger sample from Tank 241-C-101 was received by the 222-S Laboratory and underwent safety screening analyses--differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha analysis--in accordance with the tank characterization plan. Analytical results for the TGA on the crust sample (the uppermost portion of the auger sample) (sample number S95T000823) were less than the safety screening notification limit of 17 weight percent water. Verbal and written notifications were made on May 3, 1995. No exotherms were observed in the DSC analyses and the total alpha results were well below the safety screening notification limit. This report includes the primary safety screening results obtained from the analyses and copies of all DSC and TGA raw data scans as requested per the TCP. Although not included in this report, a photograph of the extruded sample was taken and is available. This report also includes bulk density measurements required by Characterization Plant Engineering. Additional analyses (pH, total organic carbon, and total inorganic carbon) are being performed on the drainable liquid at the request of Characterization Process Control; these analyses will be reported at a later date in a final report for this auger sample. Tank C-101 is not part of any of the four Watch Lists

  7. Radio detection of high-energy cosmic rays at the Pierre Auger Observatory

    CERN Document Server

    Berg, A M van den

    2007-01-01

    The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with those from the well-calibrated baseline detectors of the Pierre Auger Observatory. Furthermore, human-induced radio noise levels at the southern Auger site are relatively low. We have started an R&D program to test various radio-detection concepts. Our studies will reveal Radio Frequency Interferences (RFI) caused by natural effects such as day-night variations, thunderstorms, and by human-made disturbances. These RFI studies are conducted to optimise detection parameters such as antenna design, frequency interval, antenna spacing and signal processing. The data from our initial setups, which presently consist of typically 3 - 4 antennas, will be used to characterise the shower from radio signals and to optimise the initial concepts. Furthermore, the operation of ...

  8. Distribution of strand breaks produced by Auger electrons in decay of iodine 125 in triplex DNA

    International Nuclear Information System (INIS)

    In this study we investigate the possibility of using Auger electrons as a probing agent for the study of structures of nucleic acids. To this end, we present the distribution of breaks produced in strands of a DNA duplex and a triplex-forming oligonucleotide (TFO) carrying Auger emitting radionuclide 125I. The method of calculation includes use of a molecular model of plasmid DNA duplex with bound TFO carrying a labelled 125I at position C5 of a single deoxycytosine residue, a source of Auger spectra, Monte Carlo electron track structure and the ensuing chemistry codes, to simulate the distribution of breaks produced in both strands of a plasmid DNA. Frequencies of fragment length distributions were obtained for the TFO, the purine and the pyrimidine strands. The frequency of breaks in the purine strand showed good correlation with the published experimental results, while that for the pyrimidine strand is lower by a factor of 3. It is concluded that the true structure of triplex DNA may not be purely of B-form

  9. Distribution of strand breaks produced by Auger electrons in decay of iodine 125 in triplex DNA

    Energy Technology Data Exchange (ETDEWEB)

    Nikjoo, H.; Panyutin, I.G.; Terrissol, M.; Vrigneaud, J.M.; Laughton, C.A. [MRC Radiation and Genome Stability Unit, Harwell (United Kingdom)

    2000-11-01

    In this study we investigate the possibility of using Auger electrons as a probing agent for the study of structures of nucleic acids. To this end, we present the distribution of breaks produced in strands of a DNA duplex and a triplex-forming oligonucleotide (TFO) carrying Auger emitting radionuclide {sup 125}I. The method of calculation includes use of a molecular model of plasmid DNA duplex with bound TFO carrying a labelled {sup 125}I at position C5 of a single deoxycytosine residue, a source of Auger spectra, Monte Carlo electron track structure and the ensuing chemistry codes, to simulate the distribution of breaks produced in both strands of a plasmid DNA. Frequencies of fragment length distributions were obtained for the TFO, the purine and the pyrimidine strands. The frequency of breaks in the purine strand showed good correlation with the published experimental results, while that for the pyrimidine strand is lower by a factor of 3. It is concluded that the true structure of triplex DNA may not be purely of B-form.

  10. An analysis of the Auger highest energy events close to the radiogalaxy Centaurus A

    International Nuclear Information System (INIS)

    Full text: The Pierre Auger Observatory was constructed to study the most energetic cosmic rays with energies higher than 1 EeV (1 EeV = 1018 eV). The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of the arrival directions of the cosmic rays at the highest energies (E > Eth = 55 EeV). These show a correlation with the local distribution of matter at a maximum distance of about 100 Mpc (1 pc ∼ 3.3light-years). In this context, the region with the largest over density of arrival directions is centered at galactic coordinates (l,b) = (46.6 deg, 17.7 deg) and it is only at 4 deg away from the location of the radiogalaxy Cen A and it is not far from the direction of the Centaurus cluster. Cen A is the closest Active Galactic Nuclei (AGN) at 3.8 Mpc. Several events above the 55 EeV threshold lie close to the extended radio lobes of this AGN, leading to an excess of pairs at small angular separation ( Ψ < 11 deg) with respect to an isotropic distribution. We present here the details of a posteriori analysis of the Auger highest energy events distribution around Cen A, showing their impact on the autocorrelation function and comparisons with other regions of the sky. (author)

  11. Study of the Pierre Auger Observatory ground detectors: tests, simulation and calibration

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of these showers requires a comprehensive understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare these results with those of the Observatory detectors in the fifth chapter. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition has begun this year. The construction will be finished by end of 2005. From this moment, The Pierre Auger Observatory will allow us to contribute to solving the cosmic rays puzzle. (author)

  12. Calculation of Auger-neutralization probabilities for He{sup +}-ions in LEIS

    Energy Technology Data Exchange (ETDEWEB)

    Goebl, D., E-mail: dominik.goebl@jku.at [Institut Fuer Experimentalphysik, Abt. Atom- und Oberflaechenphysik, Johannes Kepler Universitaet, A-4040 Linz (Austria); Monreal, R.C.; Valdes, D.; Primetzhofer, D. [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Bauer, P. [Institut Fuer Experimentalphysik, Abt. Atom- und Oberflaechenphysik, Johannes Kepler Universitaet, A-4040 Linz (Austria)

    2011-06-01

    In Low Energy Ion Scattering (LEIS), Auger-neutralization is an omnipresent charge exchange mechanism, especially when noble gas ions are used as projectiles, with a primary energy below the threshold energy, E{sub th}, for collision induced charge exchange processes (neutralization and reionization). Recent experiments revealed a significant dependence of the ion survival probability, P{sup +}, on the crystal plane, when He{sup +} ions are scattered from a metal surface. This is in contrast to the fact, that the neutralization probability in LEIS is usually assumed to be independent of the chemical environment of the collision partner (absence of matrix effects). In order to investigate this crystal effect, an existent theory on Auger-neutralization (based on a Linear Combination of Atomic Orbitals) is adapted to the LEIS geometry. With this model, Auger-neutralization rates are calculated for a Ag(1 1 0) surface. Trajectories for He particles scattered from this surface into different azimuth directions are obtained by means of Molecular Dynamics simulations. Subsequently, the ion survival probability is calculated and compared to measurements. Good agreement is obtained which gives confidence in the applicability of this model in the LEIS regime. Moreover, it was possible to obtain detailed information on the properties of the neutralization process.

  13. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    Science.gov (United States)

    Schröder, Frank G.

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  14. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  15. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    International Nuclear Information System (INIS)

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  16. Measurement of the background in Auger-photoemission coincidence spectra (APECS) associated with inelastic or multi-electron valence band photoemission processes

    OpenAIRE

    Satyal, S.; Joglekar, P. V.; Shastry, K.; Kalaskar, S.; Dong, Q.; Hulbert, S. L.; Bartynksi, R. A.; Weiss, A. H.

    2014-01-01

    Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band (VB) photoelectrons. However the APECS method alone cannot eliminate the background due to valence band photoemission processes in which the initial photon energy is shared by two or more electrons and one of th...

  17. AugerNext: innovative research studies for the next generation ground-based ultra-high energy cosmic ray experiment

    Directory of Open Access Journals (Sweden)

    Haungs Andreas

    2013-06-01

    Full Text Available The findings so far of the Pierre Auger Observatory and also of the Telescope Array define the requirements for a possible next generation experiment: it needs to be considerably increased in size, it needs a better sensitivity to composition, and it should cover the full sky. AugerNext aims to perform innovative research studies in order to prepare a proposal fulfilling these demands. Such R&D studies are primarily focused in the following areas iconsolidation of the detection of cosmic rays using MHz radio antennas; iiproof-of-principle of cosmic-ray microwave detection; iiitest of the large-scale application of a new generation photo-sensors; ivgeneralization of data communication techniques; vdevelopment of new ways of muon detection with surface arrays. These AugerNext studies on new innovative detection methods for a next generation cosmic-ray experiment are performed at the Pierre Auger Observatory. The AugerNext consortium consists presently of fourteen partner institutions from nine European countries supported by a network of European funding agencies and it is a principal element of the ASPERA/ApPEC strategic roadmaps.

  18. Firmware, detector performance and first data of the AMIGA muon counters for the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    With the Pierre Auger Observatory, being the largest air shower detector setup in the world, ultra-high-energy cosmic rays are studied with full trigger efficiency above E=3 x 1018 eV. In order to achieve a more detailed understanding of cosmic ray physics at lower energies down to E∼1017 eV, e.g. the transition from galactic to extragalactic sources and a possible change in the composition of the primary cosmic rays, the observatory is currently upgraded by the AMIGA enhancement (Auger Muons and Infill for the Ground Array). The muon counters of AMIGA, buried underground, will allow for dedicated measurements of the number of muons in air showers, thus increasing the precision in determining the type of the primary particle. Until middle of 2012, eight prototype muon counters of the AMIGA enhancement were installed at the experimental site of the Pierre Auger Observatory at Malargue, Argentina, forming one detector hexagon referred to as the pre-unitary cell (PUC). Each muon counter comprises a highly modular electronics readout system. Following the production of these systems, tests of single components as well as of the full readout electronics were carried out. In the framework of this thesis dedicated firmware, allowing for the commissioning and first data taking with the PUC, has been developed and tested. Among other features, this firmware includes a self-trigger of the muon counters as well as algorithms for the synchronization of the muon detector (MD) with the existing surface detector (SD) array. The functionality and performance of the electronics readout system with regard to this firmware has been investigated. In addition, first analyses of combined MD and SD data have been performed.

  19. Firmware, detector performance and first data of the AMIGA muon counters for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Uwe

    2013-10-30

    With the Pierre Auger Observatory, being the largest air shower detector setup in the world, ultra-high-energy cosmic rays are studied with full trigger efficiency above E=3 x 10{sup 18} eV. In order to achieve a more detailed understanding of cosmic ray physics at lower energies down to E∼10{sup 17} eV, e.g. the transition from galactic to extragalactic sources and a possible change in the composition of the primary cosmic rays, the observatory is currently upgraded by the AMIGA enhancement (Auger Muons and Infill for the Ground Array). The muon counters of AMIGA, buried underground, will allow for dedicated measurements of the number of muons in air showers, thus increasing the precision in determining the type of the primary particle. Until middle of 2012, eight prototype muon counters of the AMIGA enhancement were installed at the experimental site of the Pierre Auger Observatory at Malargue, Argentina, forming one detector hexagon referred to as the pre-unitary cell (PUC). Each muon counter comprises a highly modular electronics readout system. Following the production of these systems, tests of single components as well as of the full readout electronics were carried out. In the framework of this thesis dedicated firmware, allowing for the commissioning and first data taking with the PUC, has been developed and tested. Among other features, this firmware includes a self-trigger of the muon counters as well as algorithms for the synchronization of the muon detector (MD) with the existing surface detector (SD) array. The functionality and performance of the electronics readout system with regard to this firmware has been investigated. In addition, first analyses of combined MD and SD data have been performed.

  20. Modelling of radiation risk induced by radon and sources of Auger electrons

    International Nuclear Information System (INIS)

    This thesis follows the national and worldwide radon research and application Auger radionuclides in nuclear medicine. Results of this thesis can be summarised into several points: (1) For the prediction of cancer risk following the exposure, it is also necessary to consider the mean cycle time of target cells. From our analyses it can be concluded that the mean cycle time of target cells should exceed 100 days. (2) The value of excess relative risk is for smokers ERR/WLM = (2.4-4.1)x10-3 WLM-1 and that of the nonsmokers ERR/WLM=(4.2-10.7)x10-3 WLM-1, considering the underground medium. Excess relative risk for the nonsmokers ERR/(Bq m-3) = (1.0-3.5) Bq-1 m3 and for smokers ERR/(Bq m-3) = (0.3-1.2) 10-3 Bq-1 m3 is supposed in dwellings. (3) Microdosimetric models are very helpful and suitable for prediction of the radon risk for underground conditions, as well as for indoor radon risk evaluation and they are also able to take into account the influence of the smoking habit. (4) The spatial distribution of energy deposition events and their magnitude is an essential input to evaluate the effects of radiation on biological systems. Therefore, for the calculation of deposited energy from the DNA incorporated Auger emitters, it is necessary at the DNA level to employ the MC calculation. In an effort to save computer time and memory it is possible to use the fitted function for monoenergetic electrons for estimation of at least relative radiotoxicity. The value of energy deposited in a small volume (sphere of diameter 2 nm) can be considered as the first estimation of an Auger emitter's radiotoxicity. (author)

  1. Calculations of Auger-cascade-induced reactions with DNA in aqueous solution

    International Nuclear Information System (INIS)

    The biological effects of radionuclides incorporated into mammalian cells are of considerable interest for radiation biology and radiation protection. Simulation of the nuclear and atomic events associated with the decay of several Auger-electron-emitting radionuclides was accomplished using Monte Carlo calculational techniques. Calculations of the energies of Auger electrons produced from a number of decays have been performed for the radionuclides Pt-195m, Pt-193m, I-125, In-111, and Fe-55. The Monte Carlo radiation transport code OREC (8, 11-13) has been used to transport the electrons produced during the Auger cascades through liquid water surrounding the decay site and to calculate the physical and chemical interactions produced. In order to estimate the interactions that might be produced with a DNA molecule, a very simple model has been assumed. A segment of double-stranded DNA is represented as a right circular cylinder of radius 1 nm with ''sugar'' and ''base'' reactive sites alternating along two helical strands on the surface. For the purposes of this paper two types of interactions with the DNA are considered. During the charged-particle transport the DNA cylinder is treated as though it were water, and if an inelastic energy loss event occurs within the cylinder it is considered to represent a ''direct'' physical event. An ''indirect'' chemical event is considered to result when a reactive chemical species interacts with a ''sugar'' or ''base'' site on the DNA. Although no attempt is made to identify the consequences of these direct or indirect events, it is interesting to compare the relative numbers of such events for various types of radiation. 13 refs., 4 figs

  2. Auger Electron Therapy: Photoelectric Absorption at the L-edge for Cancer Radiotherapy

    International Nuclear Information System (INIS)

    In this in vivo study, the emission of Auger electrons from platinum atoms, physiologically-targeted to tumor cell DNA, were used to enhance the radiation dose to a murine mammary carcinoma in a radiotherapeutic technique, Auger Electron Therapy (AET). AET requires the simultaneous presence of two agents, a) a radiation source whose energies are suitable for inducing a photoelectric effect in a high Z atom, and b) a molecule that transports the high Z atom in or near tumor cell DNA. Unlike most studies where the K absorption edge is used to stimulate Auger emission after the induction of a photoelectric effect in a high Z atom, this work exploited the L edge of platinum. Soft γ-rays from palladium-103 brachytherapy seeds (20 keV), implanted directly in the radio-resistant KHJJ breast tumor (TCD50 = 54Gy) borne subcutaneously on the thigh, generated a photoelectric effect at the L edge of platinum atoms (13.8 keV) transported to tumor cell DNA by the porphyrin, PtTMPyP(4) after an i.p. injection of 40 mg/kg. The photoelectric event resulted in tumor growth delay by a factor of 5 for mice receiving the AET treatment [PtTMPyP(4) and 103Pd] compared to those with the implanted 103Pd seeds alone. The outcome of the experiment suggests the potential application of AET in the radiotherapy clinic where brachytherapy is deemed the treatment of choice. This work was supported by the Israel Ministry of Trade and Industry and by Rotem Industries

  3. Observing muon decays in water Cherenkov detectors at the Pierre Auger Observatory

    CERN Document Server

    Allison, P; Bertou, X; Busca, N G; Ghia, P L; Medina, C; Navarra, G; Nellen, L; Ibarguen, H S; Ranchon, S; Urban, M; Villaseñor, L

    2005-01-01

    Muons decaying in the water volume of a Cherenkov detector of the Pierre Auger Observatory provide a useful calibration point at low energy. Using the digitized waveform continuously recorded by the electronics of each tank, we have devised a simple method to extract the charge spectrum of the Michel electrons, whose typical signal is about 1/8 of a crossing vertical muon. This procedure, moreover, allows continuous monitoring of the detector operation and of its water level. We have checked the procedure with high statistics on a test tank at the Observatory base and applied with success on the whole array.

  4. Observation of the long term stability of water stations in the Pierre Auger surface detector

    Energy Technology Data Exchange (ETDEWEB)

    Allekotte, I.; Arisaka, K.; Barnhill, D.; Bertou, Xavier; Bonifazi, C.; Healy, M.D.; Lee, J.; Medina, C.; Ohnuki, T.; Tripathi, A.

    2005-07-01

    The results of a study examining the long-term behavior of Pierre Auger surface detectors is presented. The station properties, such as water quality, liner reflectivity and the water level must be continuously monitored. Such monitoring provides information on the long-term stability of the detectors, which have been designed to operate for twenty years. Using pulse height and shapes of cosmic ray muons, water quality changes are monitored and a technique developed to identify and monitor long-term trends in the array.

  5. Enhancement of radiative Auger emission in lithium-like 23V20+ ions

    International Nuclear Information System (INIS)

    Measurements have been made of projectile X-ray spectra coincident with single electron losss in collisions of 3.5-9.0 MeV amu-123Vq+ (q = 19, 20, 21) ions with He targets under single collision conditions. Non-monoenergetic X-rays observed in the coincidence spectra for V20+ (lithium-like) projectiles are attributed to the radiative Auger effect (RAE). The intensity of RAE photons relative to the characteristic K x-ray yield is more than an order of magnitude larger than expected from theoretical calculations and from earlier measurements for atomic targets. (author)

  6. Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer

    OpenAIRE

    Kato, Yoshiaki; Enomoto, Ryohei; Akazawa, Minami; Kojima, Yasuo

    2016-01-01

    A bench-scale auger reactor was designed for use as a laboratory-scale fast pyrolyzer for producing bio-oil from Japanese cedar. An analytical pyrolysis method was performed simultaneously to determine the distribution of pyrolysis products. The pyrolysis temperature was found to have the greatest influence on the bio-oil characteristics; bio-oil yields increased as the pyrolysis temperature increased from 450 to 550 °C. The concentration of levoglucosan in the bio-oil, however, decreased sig...

  7. SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRs ARRIVAL DIRECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/ Paranimf 1, E-46730 Gandia (Spain); Al Samarai, I.; Aubert, J-J.; Bertin, V. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, F-13288 Marseille (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Laboratory of Applied Bioacoustics, Technical University of Catalonia, Rambla Exposicio, E-08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Beemster, L. J.; Bogazzi, C.; Bouwhuis, M. C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B. [APC-Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Basa, S. [LAM-Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, F-13388 Marseille Cedex 13 (France); Biagi, S. [INFN-Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Bigongiari, C. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna CSIC, Universitat de Valencia, Apdo. de Correos 22085, E-46071 Valencia (Spain); and others

    2013-09-01

    A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E {sup -2} energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 Multiplication-Sign 10{sup -8} GeV cm{sup -2} s{sup -1} per source is derived.

  8. SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRs ARRIVAL DIRECTIONS

    International Nuclear Information System (INIS)

    A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E –2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 × 10–8 GeV cm–2 s–1 per source is derived

  9. Studies of Cosmic Rays at the Highest Energies with the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    de Mello Neto J. R. T.

    2014-04-01

    Full Text Available This paper summarizes the status and the recent measurements of the Pierre Auger Observatory. The energy spectrum is described and its features discussed. Searches for anisotropy of cosmic ray arrival directions on large scales and through correlation with catalogues of celestial objects are reported. The first measurement of the proton-air cross section around 1018 eV is discussed. The mass composition is addressed with measurements of the variation of the depth of shower maximum with energy and with muon density at the ground. An update on the searches for neutrinos and photons is also presented.

  10. The Lateral Trigger Probability function for UHE Cosmic Rays Showers detected by the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vícha, Jakub

    2011-01-01

    Roč. 35, č. 5 (2011), 266-276. ISSN 0927-6505 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : trigger * cosmic ray shower s Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.216, year: 2011 http://www.auger.org/technical_info/pdfs/PerroneLTP_Published.pdf

  11. A multivariate study of mass composition for simulated showers at the Auger South Observatory

    CERN Document Server

    Medina-Tanco, G A; Tanco, Gustavo A. Medina; Sciutto, Sergio J.

    2001-01-01

    The output parameters from the ground array of the Auger South observatory, were simulated for the typical instrumental and environmental conditions at its Malarg\\"ue site using the code sample-sim. Extensive air showers started by photons, protons and iron nuclei at the top of the atmosphere were used as triggers. The study utilized the air shower simulation code Aires with both QGSJet and Sibyll hadronic interaction models. A total of 1850 showers were used to produce more than 35,000 different ground events. We report here on the results of a multivariate analysis approach, including principal component analysis and neural networks, to the development of new primary composition diagnostics.

  12. A multivariate study of mass composition for simulated showers at the Auger South Observatory

    OpenAIRE

    Tanco, Gustavo A. Medina; Sciutto, Sergio J.

    2001-01-01

    The output parameters from the ground array of the Auger South observatory, were simulated for the typical instrumental and environmental conditions at its Malarg\\"ue site using the code sample-sim. Extensive air showers started by photons, protons and iron nuclei at the top of the atmosphere were used as triggers. The study utilized the air shower simulation code Aires with both QGSJet and Sibyll hadronic interaction models. A total of 1850 showers were used to produce more than 35,000 diffe...

  13. Resonant Auger-intercoulombic hybridized decay in the photoionization of endohedral fullerenes

    CERN Document Server

    Javani, Mohammad H; De, Ruma; Madjet, Mohamed E; Manson, Steven T; Chakraborty, Himadri S

    2013-01-01

    Considering the photoionization of Ar@C60, we predict resonant femtosecond decays of both Ar and C60 vacancies through the continua of atom-fullerene hybrid final states. The resulting resonances emerge from the interference between simultaneous autoionizing and intercoulombic decay (ICD) processes. For Ar 3s-->np excitations, these resonances are far stronger than the Ar-to-C60 resonant ICDs, while for C60 excitations they are strikingly larger than the corresponding Auger features. The results indicate the power of hybridization to enhance decay rates, and modify lifetimes and line profiles.

  14. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    OpenAIRE

    PIERRE AUGER Collaboration; Abreu, P; Pastor, Sergio

    2013-01-01

    The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and adminis- trative staff in Malargüe. We are very grateful to the following agencies and organiza- tions for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in grat...

  15. The thermal behaviour of three different auger pressure grouted piles used as heat exchangers

    OpenAIRE

    Loveridge, F.; Olgun, C.G.; Brettmann, T.; Powrie, W.

    2014-01-01

    Three auger pressure grouted (APG) test piles were constructed at a site in Richmond, Texas. The piles were each equipped with two U-loops of heat transfer pipes so that they could function as pile heat exchangers. The piles were of two different diameters and used two different grouts, a standard APG grout and a thermally enhanced grout. Thermal response tests, where fluid heated at a constant rate is circulated through the pipe loops, were carried out on the three piles, utilising either ...

  16. Radiotoxicity induced by Auger electron emitters in human osteosarcoma cell line using comet assay

    Institute of Scientific and Technical Information of China (English)

    XU Yu-Jie; LI Qing-Nuan; ZHU Ran; ZHU Ben-Xing; ZHANG Yong-Ping; ZHANG Xiao-Dong; FAN Wo; HONG Cheng-Jiao; LI Wen-Xin

    2003-01-01

    The comet assay (single cell gel electrophoresis assay) was used to evaluate the radiotoxicity of Augerelectron emitters in the human osteosarcoma cell line (HOS-8603). After internal exposure to 67Ga-EDTMP, the sar-coma cell has been injured severely. The comet length was longer along with the increase of dose, the appearance ofcomet tail was different from that with respect to the 60Co γ-ray irradiation. DNA damage of cell was mainly due tothe radiation effect of Auger electrons. The 67Ga may be a therapeutic radionuclide with good prospect for tumortreatment and palliation of bone pain induced by metastasis.

  17. On the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    We report different analyses of the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory between 1 January 2004 and 31 December 2009. We update the measured fraction of arrival directions correlating with the positions of objects in the Veron-Cetty and Veron (VCV) catalog. We examine the arrival directions in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei in the Swift-BAT hard X-ray catalog. We also show the 2-point autocorrelation function and analyse the sky region with the largest excess compared to isotropic expectations.

  18. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  19. Shape analysis of mirrors for Pierre Auger Project using Ronchi test

    Czech Academy of Sciences Publication Activity Database

    Mandát, Dušan; Nožka, Libor; Hrabovský, Miroslav; Pech, Miroslav

    Sibiu : University "Lucian Blaga" of Sibiu and ARTENS, 2007 - (Pastrav, I.), s. 81-82 ISBN 978-973-739-456-9. [Danubia-Adria symposium of developments in experimental mechanics /24./. Sibiu (RO), 19.09.2007-22.09.2007] R&D Projects: GA MŠk(CZ) 1M06002; GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100522 Keywords : shape analysis * mirrors * Pierre Auger Project * Ronchi test Subject RIV: BH - Optics, Masers, Lasers

  20. Study of very thin oxide layers by conversion and Auger electrons

    International Nuclear Information System (INIS)

    Oxidic layers as thin as 20-30 A on α-Fe and stainless steel are studied by 57Fe-DCEMS with K-conversion electrons and ICEMS. No indication of a vanishing f-factor could be found. Moessbauer spectra, recorded by use of LMM-Auger electrons (AEMS) and by electrons emitted with energies below 15 eV (LEEMS), contain information on the surface layer as well as on the bulk material, showing that part of these electrons are due to secondary effects and the high escape depths of K-conversion electrons. (orig.)

  1. Trigger and aperture of the surface detector array of the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abraham, J.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr

    2010-01-01

    Roč. 613, č. 1 (2010), s. 29-39. ISSN 0168-9002 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA AV ČR KJB100100904; GA AV ČR KJB300100801; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : cosmic rays * trigger * Pierre Auger Observatory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.142, year: 2010

  2. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Bäcker, T; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Beatty, J J; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Clay, R W; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Tapia, I Fajardo; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Gascon, A; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Guzman, A; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Ruiz, C G Tavera; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; 10.1016/j.astropartphys.2011.12.002

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malarg\\"ue and averaged monthly models, the utility of the GDAS data is shown.

  3. Depth resolution at profile Auger analysis of the ZnS-PbxSn1-xTe structures

    International Nuclear Information System (INIS)

    The reasons have been studied of anomalously large broadening of profiles at the interface at profile Auger-analysis of the structures ZnS-PbxSn1-xTe, grown by a moleclar-beam epitaxy method. It is shown that this broadening is not related with the existance of the extended region of a valiable composition. Other possible mechanisms of profile persistance have been studied experimentally. In place of the analysis an effectively greater rate of ion etching is observed. It is found that the Auger-profile shape near the interface is determined by the surface relief formation at ion etching. It is shown that the reason of the formation of a developed relief of the surface in the place periodically irradiated by the electron beam during obtaining the Auger-spectra has an electrostatic character. Two possible mechanisms of such relies formation are discussed

  4. Improvements upon the continuum wavefunctions of Auger electrons by use of the least-squares variational method

    International Nuclear Information System (INIS)

    A variational least-squares technique is developed to obtain an iterative improvements upon the wavefunctions of Auger electrons emitted by the ion Ar2+. The core potentials seen by the Auger electrons are evaluated on the basis of the Hartree-Fock orbitals delivered by the conventional Hartree-Fock programs. In order to illustrate our technique, the transition rates of the Auger electrons emitted from Ar corresponding to different configurations, namely 1s → 3p 3p, 1s → 3s 3s, 1s → 2s 2s, 1s → 2p 2p, 1s → 2s 3s and 1s → 2p 3p are calculated. (author)

  5. The detail study of the LMN+LMM Auger spectrum of .sup.67.sub.30Zn from the EC-decay of .sup.67.sub.31Ga

    Czech Academy of Sciences Publication Activity Database

    Kovalík, Alojz; Lubashevsky, A. V.; Filosofov, D. V.; Inoyatov, A. K.; Gorozhankin, V. M.; Vylov, Ts.; Mahmoud, M. A.; Štekl, I.

    2003. s. 43. [International Conference of the Nuclear Spectroscopy and Nuclear Structure "Nucleus-2003" /53./. 07.11.2003-10.11.2003, Moscow] R&D Projects: GA ČR GA202/02/0157 Institutional research plan: CEZ:AV0Z1048901 Keywords : Auger effect * LMM Auger group Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  6. The KLL Auger spectrum of .sup.67.sub.Zn from the EC-decay of .sup61.sub.31Ga

    Czech Academy of Sciences Publication Activity Database

    Kovalík, Alojz; Lubashevsky, A. V.; Filosofov, D. V.; Inoyatov, A. K.; Gorozhankin, V. M.; Vylov, Ts.; Štekl, I.

    2003. s. 40. [International Conference Nuclear Spectroscopy and Nuclear Structure "Nucleus-2003" /53./. 07.11.2003-10.11.2003, Moscow] R&D Projects: GA ČR GA202/02/0157 Institutional research plan: CEZ:AV0Z1048901 Keywords : Auger effect * KLL Auger group Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  7. The first measurement of the KLM+KLN Auger spectrum of .sup.67.sub30Zn from the EC-decay of .sup.61.sub31Ga

    Czech Academy of Sciences Publication Activity Database

    Kovalík, Alojz; Lubashevsky, A. V.; Filosofov, D. V.; Inoyatov, A. K.; Gorozhankin, V. M.; Vylov, Ts.; Štekl, I.

    2003. s. 41. [International Conference Nuclear Spectroscopy and Nuclear Structure "Nucleus-2003" /53./. 07.11.2003-10.11.2003, Moscow] R&D Projects: GA ČR GA202/02/0157 Institutional research plan: CEZ:AV0Z1048901 Keywords : Auger effect * KLM Auger group Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  8. The dynamic Auger Doppler effect in HF and DF: control of fragment velocities in femtosecond dissociation through photon energy detuning

    Science.gov (United States)

    Wiesner, K.; Naves de Brito, A.; Sorensen, S. L.; Burmeister, F.; Gisselbrecht, M.; Svensson, S.; Björneholm, O.

    2002-03-01

    The Auger-Doppler effect in the experimental spectra of HF and DF is presented, and the dynamics of ultra-fast dissociation in the core-excited state are discussed. The Doppler splitting of the atomic Auger peak is calculated and simulated using a classical model and a very good agreement is found between experiment and simulation. It is shown that the difference in photon energy relative to the resonance is transferred completely into the kinetic energy release (KER). This is expected to be a general phenomenon, but is clearly illuminated in the HF/DF case. Thus the fragment velocity can be controlled through photon energy detuning.

  9. The Low Energy Auger Electron Spectroscopy Lines as an Index of the Ba Overlayer Order on the Ni(110 Surface

    Directory of Open Access Journals (Sweden)

    D. Vlachos

    2014-01-01

    Full Text Available We investigate the interaction of Ba with the Ni(110 surface at elevated temperatures by means of Auger electron spectroscopy and low energy electron diffraction. The results show that annealing of the substrate causes desorption and ordering of the initially amorphous overlayer, resulting in c(2×2 and (2×2 structures. It is observed that the induced ordering crucially affects the lineshape of the double Auger transition line Ba(73 eVN45O23P1, establishing this line as an index of ordering of the Ba overlayer. The underlying physics of this effect is discussed.

  10. Multiparametric topological analysis (MTA) for the study of the primary CR composition: Performances with Auger simulated data

    Science.gov (United States)

    D'Urso, D.; Ambrosio, M.; Aramo, C.; Guarino, F.; Valore, L.; Pierre Auger Collaboration

    2008-04-01

    We describe the application of a multiparametric analysis to estimate the UHE Cosmic Rays composition. The proposed method, MTA (Multiparametric Topological Analysis), is based on the study of the correlations among different shower observables. This technique is designed to fully exploit the complementarity of Auger fluorescence and ground array data. In the present work, we report the results of the application to Conex showers, fully simulated through the Auger detector, using only parameters describing the longitudinal development of air showers as recorded by fluorescence detector for hybrid data.

  11. Measurements and polarization analysis of radio pulses from cosmic-ray-induced air showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The Auger Engineering Radio Array (AERA) is designed to study the radio emissions from extensive air showers at the Pierre Auger Observatory. The array currently consists of a grid of 23 autonomous radio detector stations that measure the radio emissions from cosmic-ray-induced air showers since April 2011. The array is still under construction and is planned to be extended to 160 stations. The new detection technique provides an augmentation of the existing detectors, improves the sensitivity of the observatory and sheds new light on the shower physics. An analysis of the emission processes based on the polarization of the radio pulses is presented.

  12. X-ray photoelectron and X-ray Auger electron spectroscopy studies of heavy ion irradiated C60 films

    International Nuclear Information System (INIS)

    The influence of 200 MeV Au ion irradiation on the surface properties of polycrystalline fullerene films has been investigated. The X-ray photoelectron and X-ray Auger electron spectroscopies are employed to study the ion-induced modification of the fullerene, near the surface region. The shift of C 1s core level and decrease in intensity of shake-up satellite were used to investigate the structural changes (like sp2 to sp3 conversion) and reduction of π electrons, respectively, under heavy ion irradiation. Further, X-ray Auger electron spectroscopy was employed to investigate hybridization conversion qualitatively as a function of ion fluence

  13. Energy and Auger Widths of Triply Excited 3p3p3p 2po State of Lithium

    Institute of Scientific and Technical Information of China (English)

    苟秉聪; 俞开智

    2003-01-01

    The high-lying triply excited 3p3p3p 2po state of the double hollow lithium atom is studied by using the saddlepoint complex-rotation method. The energy and Auger widths of this resonance are calculated. The relativistic corrections and mass polarization are included. The total Auger width is obtained by coupling the important open channels and summing over the other channels. The oscillator strength is also calculated. The results are compared with other theoretical and experimental data in the literature.

  14. An upper limit to the photon fraction in cosmic rays above 1019 eV from the Pierre Auger Observatory

    Science.gov (United States)

    Abraham, J.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J. C.; Aramo, C.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Bacelar, J.; Bäcker, T.; Badagnani, D.; Barbosa, A. F.; Barbosa, H. M. J.; Barkhausen, M.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Blümer, H.; Boghrat, P.; Boháčová, M.; Bonifazi, C.; Bonino, R.; Boratav, M.; Brack, J.; Brunet, J. M.; Buchholz, P.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Capdevielle, J. N.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazón, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Claes, D.; Clark, P. D. J.; Clay, R. W.; Clay, S. B.; Connolly, B.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Cronin, J.; Dagoret-Campagne, S.; Dang Quang, T.; Darriulat, P.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Carvalho, L. A.; de Donato, C.; de Jong, S. J.; de Mello, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Oliveira, M. A. L.; de Souza, V.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Dobrigkeit, C.; D'Olivo, J. C.; Dornic, D.; Dorofeev, A.; Dova, M. T.; D'Urso, D.; Duvernois, M. A.; Engel, R.; Epele, L.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Ewers, A.; Facal San Luis, P.; Falcke, H.; Fauth, A. C.; Fazio, D.; Fazzini, N.; Fernández, A.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fokitis, E.; Fonte, R.; Fuhrmann, D.; Fulgione, W.; García, B.; Garcia-Pinto, D.; Garrard, L.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Geranios, A.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gobbi, F.; Gold, M. S.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Herrero, R.; Gonçalves Do Amaral, M.; Gongora, J. P.; Gonzalez, D.; Gonzalez, J. G.; González, M.; Góra, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A.; Grunfeld, C.; Grupen, C.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Hamilton, J. C.; Harakeh, M. N.; Harari, D.; Harmsma, S.; Hartmann, S.; Harton, J. L.; Healy, M. D.; Hebbeker, T.; Heck, D.; Hojvat, C.; Homola, P.; Hörandel, J.; Horneffer, A.; Horvat, M.; Hrabovský, M.; Iarlori, M.; Insolia, A.; Kaducak, M.; Kalashev, O.; Kampert, K. H.; Keilhauer, B.; Kemp, E.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Kolotaev, Y.; Kopmann, A.; Krömer, O.; Kuhlman, S.; Kuijpers, J.; Kunka, N.; Kusenko, A.; Lachaud, C.; Lago, B. L.; Lebrun, D.; Lebrun, P.; Lee, J.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Longo, G.; López, R.; Lopez Agüera, A.; Lucero, A.; Maldera, S.; Malek, M.; Maltezos, S.; Mancarella, G.; Manceñido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Martello, D.; Martinez, N.; Martínez, J.; Martínez, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurin, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, G.; Medina, M. C.; Medina Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Morris, C.; Mostafá, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nguyen Thi, T.; Nichol, R.; Nierstenhöfer, N.; Nitz, D.; Nogima, H.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Ohnuki, T.; Olinto, A.; Oliveira, L. F. A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ostapchenko, S.; Otero, L.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Patel, M.; Paul, T.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pham Ngoc, D.; Pham Thi, T. N.; Piegaia, R.; Pierog, T.; Pisanti, O.; Porter, T. A.; Pouryamout, J.; Prado, L.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Reis, H. C.; Reucroft, S.; Revenu, B.; Řídký, J.; Risi, A.; Risse, M.; Rivière, C.; Rizi, V.; Robbins, S.; Roberts, M.; Robledo, C.; Rodriguez, G.; Rodríguez Frías, D.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Ros, G.; Rosado, J.; Roth, M.; Roucelle, C.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santos, E. M.; Sarkar, S.; Sato, R.; Scherini, V.; Schmidt, T.; Scholten, O.; Schovánek, P.; Schüssler, F.; Sciutto, S. J.; Scuderi, M.; Semikoz, D.; Sequeiros, G.; Shellard, R. C.; Siffert, B. B.; Sigl, G.; Skelton, P.; Slater, W.; Smetniansky de Grande, N.; Smiałkowski, A.; Šmída, R.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Ticona, R.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tonachini, A.; Torresi, D.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Tunnicliffe, V.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberič, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vo van, T.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Waldenmaier, T.; Walker, P.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wiebusch, C.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Xu, J.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Zha, M.; Ziolkowski, M.

    2007-03-01

    An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies greater than 1019 eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample support the conclusion that a photon origin of the observed events is not favored.

  15. Modification of valence-band symmetry and Auger threshold energy in biaxially compressed InAs1-xSbx

    International Nuclear Information System (INIS)

    Strained-layer superlattices (SLS's) with biaxially compressed InAs1-xSbx were characterized using magnetophotoluminescence and compared with unstrained InAs1-xSbx alloys. Holes in the SLS exhibited a decrease in effective mass, approaching that of the electrons. In the two-dimensional limit, a large increase in the Auger threshold energy accompanies this strain-induced change in SLS valence-band symmetry. Correspondingly, the activation energy for nonradiative recombination in the SLS's displayed a marked increase compared with that of the unstrained alloys. Strained-layer superlattices and alloy activation energies are in agreement with estimated Auger threshold energies

  16. Revised final report for tank 241-C-203, auger samples 95-AUG-20 and 95-AUG-21. Revision 1

    International Nuclear Information System (INIS)

    Two auger samples from tank 241-C-203 (C-203) were received at the 222-S Laboratories and underwent safety screening analyses, consisting of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha activity. No notification limits were exceeded for the analyses. Two samples were submitted for a density determination at the request of Characterization Plant Engineering. SCOPE This document is the revised final report for the tank C-203 auger samples collected on April 5, 1995 (samples 95-AUG-20 and 95-AUG-021)

  17. Particle physics @ $\\sqrt{s_{pp}}$ > 50 TeV with the Pierre Auger Observatory

    CERN Document Server

    Travnicek, Petr

    2013-01-01

    The Pierre Auger Observatory in Argentina provides the largest data sample of the cosmic ray events with energy above 10$^{18}$ eV. These high energy events can be used to test our understanding of the hadronic interactions at energies beyond the reach of colliders and to probe the basic properties of these interactions such as the inelastic cross-section of proton-air collisions. The combination of an array of surface detectors and the fluorescence telescopes of the Pierre Auger Observatory reduces significantly the dependency of the shower energy estimation on MC simulations. Despite that, the interpretation of mass sensitive quantities such as the shower maximum in terms of chemical composition of cosmic rays still depends on the hadronic interaction models. This contribution describes the main results of the observatory concerning the chemical composition of the cosmic rays and focuses on the problem of muon deficit in hadronic interaction models and on the estimation of proton-air cross-section from air-...

  18. Secondary electron yield and Auger electron spectroscopy measurements on oxides, carbide, and nitride of niobium

    International Nuclear Information System (INIS)

    Secondary electron yield measurements before and after Ar ion sputtercleaning were made on Nb and Nb compounds of interest for rf superconductingcavities. Total secondary electron yields (sigma) for primary energies 20--1500 eV were measured for solid Nb (sigma/sub max/ = 1.3 at 300 eV), anodized Nb2O5 (sigma/sub max/ = 1.2 at 300 eV), and powders of Nb(sigma/sub max/ = 1.0 at 400 eV), NbO (sigma/sub max/ = 0.9 at 400 eV), NbO2 (sigma/sub max/ = 1.0 at 400 eV), Nb2O5 (sigma/sub max/ = 0.95 at 400 eV), NbC(sigma/sub max/ = 0.8 at 400 eV), and NbN (sigma/sub max/ = 0.8 at 500 eV). Determinations were made for Auger elemental sensitivities, and the relationship between Auger peak heights and oxide stoichiometry is discussed. The sputter etch rate of anodized Nb2O5 was measured by depth profiling anodic coatings of known thickness

  19. 123I: Calculation of the Auger electron spectrum and assessment of the strand breakage efficiency

    International Nuclear Information System (INIS)

    Auger cascades induced by electron capture in 123I have been simulated by the Monte Carlo technique with special emphasis on the determination of the electron kinetic energies. By using an approach which considers the individual electron population of all electronic shells before and after a transition, errors in the electron energy normally introduced when applying the so-called (Z+1)-approximation are avoided. Thus, the energy of the electrons released in transitions between higher shells were found to be about half the value mentioned in the literature. An average total number of 7.6 electrons (6.4 Auger-, and 1.2 shake-off electrons) has been determined to be emitted per decay, a number which is considerably lower than those reported in similar studies. The efficiency of strand break induction has been assessed to be 0.4 DSB and 1.1 additional SSB per decay of DNA bound 123I. A comparison with the corresponding DSB values of 125I reveals that 125I is 2.5 times more effective than 123I. This is about the same ratio as that determined by Makrigiorgos on the basis of cell killing experiments

  20. Site-selective resonant Auger spectroscopy of iso-dichloroethylene at the carbon K-edge

    International Nuclear Information System (INIS)

    Highlights: ► We provide detailed results on electron decay following core excitations to two carbon atoms to the LUMO in different chemical environments to the LUMO in CH2=CCl2. ► The experimental results are compared with high-quality theoretical calculations. ► We report calculated valence spectra in the ground-state, C (CH2) and C (CCl2) core-excited states. -- Abstract: This study focuses on the two C1s-to-LUMO (lowest unoccupied molecular orbital) excitations of the iso-dichloroethylene (H2C=CCl2) and the subsequent Auger decay. We investigate the effect of the two different carbon core excitations on the population of the cation produced after electronic relaxation. The resonant Auger spectra are interpreted by comparison to the valence shells photoionization spectrum and with the help of theoretical calculations. Several consequences of the core-hole localization on the electronic decay are observed. In particular, the resonant excitation of the C1s(CH2) to the LUMO leads to a large intensity increase in the region of the first satellite state, whereas no dramatic changes are observed for the C1s(CCl2) excitation.

  1. Search for energy-position correlated multiplets in the data of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Full text: The identification of sources of ultra-high-energy cosmic rays has been a challenge over the last decades. Finding possible sources is complicated by the deflections that cosmic rays suffer when traversing the intervening magnetic fields in the propagation from their sources to Earth. These deflections are expected to be inversely proportional to the energy of the cosmic rays. We present the results of a search for groups of directionally- aligned events recorded by the Pierre Auger Observatory, exhibiting strong correlation between arrival directions and the inverse of their energies. Such a signature is foreseen for sets of events coming from a same source after having been deflected by a coherent magnetic field. A search for energy-position correlated multiplets in the data above 20 EeV has been performed. The largest multiplets found are one 12-plet and two independent decuplets. The positions of the potential sources in the sky are reconstructed for the observed multiplets and the deflection power of the eventual sources is also estimated. Given that the probability of such formations appearing by chance from an isotropic distribution of events is 6% for the 12-plet and 20% for at least three multiplets with ten or more events, there is still no significant evidence for the presence of multiplets arising from magnetic deflection in the data so far. Future data of the Pierre Auger Observatory will allow to check whether the observed multiplets grow significantly and if new multiplets appear. (author)

  2. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    International Nuclear Information System (INIS)

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate Xmax(E) and dispersion σ(Xmax) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E-γ with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 1018 eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E-2.7). In this sense, at the ankle EA≈ 5× 1018 eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande

  3. Methods for Determining Metal Uptake in Cellular DNA for Auger Electron Therapy

    International Nuclear Information System (INIS)

    Stable indium-labeled tetra(4-N-methylpyridyl)porphyrin [InTMPyP(4)] was evaluated as a carrier of a high Z atom, indium (In), into tumor cell DNA for its subsequent activation by radiation in a proposed radiotherapeutic technique, Auger Electron Therapy (AET). Porphyrins with metals can bind to DNA and are useful vehicles for transporting the indium to the DNA of the tumor. AET combines the use of a metalloporphyrin with a stable high Z atom, such as indium, and photons emitted from radioactive brachytherapy seeds, such as iodine-125, to increase the radiation dose in the DNA of the tumor by generating a photoelectric effect in the K absorption edge of the indium (In) atom. This results in the emission of cascading Auger electrons that act as high LET radiation and thus impart significant non-reparable damage to the tumor compared to the radiation alone. The K absorption edge of In is 27.9 keV and the average photon energy of the iodine-125 seeds is ∼ 28 keV

  4. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    Science.gov (United States)

    The Pierre Augur Collaboration

    2016-02-01

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muon counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. The completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here.

  5. New electronics for the surface detectors of the Pierre Auger Observatory

    Science.gov (United States)

    Kleifges, M.

    2016-07-01

    The Pierre Auger Observatory is the largest installation worldwide for the investigation of ultra-high energy cosmic rays. Air showers are detected using a hybrid technique with 27 fluorescence telescopes and 1660 water-Cherenkov detectors (WCD) distributed over about 3000 km2. The Auger Collaboration has decided to upgrade the electronics of the WCD and complement the surface detector with scintillators (SSD). The objective is to improve the separation between the muonic and the electron/photon shower component for better mass composition determination during an extended operation period of 8-10 years. The surface detector electronics records data locally and generates time stamps based on the GPS timing. The performance of the detectors is significantly improved with a higher sampling rate, an increased dynamic range, new generation of GPS receivers, and FPGA integrated CPU power. The number of analog channels will be increased to integrate the new SSD, but the power consumption needs to stay below 10 W to be able to use the existing photovoltaic system. In this paper, the concept of the additional SSD is presented with a focus on the design and performance of the new surface detector electronics.

  6. Kinetic energies to analyze the experimental auger electron spectra by density functional theory calculations

    Science.gov (United States)

    Endo, Kazunaka

    2016-02-01

    In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.

  7. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Aloisio, R.; Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—50125 Firenze (Italy); Berezinsky, V., E-mail: aloisio@arcetri.astro.it, E-mail: berezinsky@lngs.infn.it, E-mail: blasi@arcetri.astro.it [Gran Sasso Science Institute (INFN), viale F. Crispi 7, 67100 L' Aquila (Italy)

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion σ(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E{sup -γ} with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E{sup -2.7}). In this sense, at the ankle E{sub A}≈ 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  8. Auger electron spectroscopy applied to inner shell ionization by fast charged particles

    International Nuclear Information System (INIS)

    Until recently, inner shell ionization by charged particle impact was studied almost exclusively through the use of x-ray spectroscopy. This method is limited in accuracy, however, for ionization of inner shells where the fluorescence yield is small. For K-shell ionization of elements with atomic number less than about ten the fluorescence yield can be considered negligible and Auger electron emission cross section provide direct information regarding the ionization cross section. The ionization cross sections determined in this way are accurate to approximately 20 percent whereas x-ray measurements may be uncertain by a factor of five or more due to uncertainties in fluorescence yields. In addition to ionization cross sections, Auger emission spectra provide information regarding multiple ionization, effects of molecular binding on inner shell ionization and, when coupled with x-ray measurements, provide fluorescence yields as a function of the final state of the target atom. These points will be illustrated for ionization by fast protons along with some results for heavier incident particles

  9. Subcellular Distribution of Gallium-67 and other Auger-emitting Radionuclides in Human and Animal Tissues

    International Nuclear Information System (INIS)

    The subcellular distributions of the Auger-emitting radiopharmaceuticals 67Ga citrate, 111In-bleomycin, 63Zn-bleomycin, 123/125/I-Conray and 123/125I-Biligram in human and animal tumours and normal tissues were studied using differential centrifugation. For 67Ga, at 19 to 54 h after injection, the observed subcellular distribution patterns were similar in all the tissues studied with 2-5% of the total tissue radioactivity being associated with the cell nuclei. For 63Zn and 111In administered as the bleomycin complex or as chloride, as well as for the X ray contrast media 135/125I-Conray and 123/125I-Biligram the fraction associated with the nuclei was only 1-2%. The studies indicate that, for the 67Ga, 111In, 63Zn complexes or compounds studied, only γ1 to 4% of the Auger emissions are likely to arise in the cell nucleus. (author)

  10. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    International Nuclear Information System (INIS)

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na+ and F+ desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H+, Li+, and F+ are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N2-O2 multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF2 and a series of alkali halides are discussed in terms of desorption mechanisms

  11. Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    CERN Document Server

    Aab, Alexander; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muñiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin; Anastasi, Gioacchino Alex; Anchordoqui, Luis; Andringa, Sofia; Aramo, Carla; Arqueros, Fernando; Arsene, Nicusor; Asorey, Hernán Gonzalo; Assis, Pedro; Aublin, Julien; Avila, Gualberto; Awal, Nafiun; Badescu, Alina Mihaela; Baus, Colin; Beatty, Jim; Becker, Karl Heinz; Bellido, Jose A; Berat, Corinne; Bertaina, Mario Edoardo; Bertou, Xavier; Biermann, Peter; Billoir, Pierre; Blaess, Simon G; Blanco, Alberto; Blanco, Miguel; Blazek, Jiri; Bleve, Carla; Blümer, Hans; Boháčová, Martina; Boncioli, Denise; Bonifazi, Carla; Borodai, Nataliia; Brack, Jeffrey; Brancus, Iliana; Bretz, Thomas; Bridgeman, Ariel; Brogueira, Pedro; Buchholz, Peter; Bueno, Antonio; Buitink, Stijn; Buscemi, Mario; Caballero-Mora, Karen S; Caccianiga, Barbara; Caccianiga, Lorenzo; Candusso, Marina; Caramete, Laurentiu; Caruso, Rossella; Castellina, Antonella; Cataldi, Gabriella; Cazon, Lorenzo; Cester, Rosanna; Chavez, Alan G; Chiavassa, Andrea; Chinellato, Jose Augusto; Chudoba, Jiri; Cilmo, Marco; Clay, Roger W; Cocciolo, Giuseppe; Colalillo, Roberta; Coleman, Alan; Collica, Laura; Coluccia, Maria Rita; Conceição, Ruben; Contreras, Fernando; Cooper, Mathew J; Cordier, Alain; Coutu, Stephane; Covault, Corbin; Cronin, James; Dallier, Richard; Daniel, Bruno; Dasso, Sergio; Daumiller, Kai; Dawson, Bruce R; de Almeida, Rogerio M; de Jong, Sijbrand J; De Mauro, Giuseppe; Neto, Joao de Mello; De Mitri, Ivan; de Oliveira, Jaime; de Souza, Vitor; del Peral, Luis; Deligny, Olivier; Dhital, Niraj; Di Giulio, Claudio; Di Matteo, Armando; Diaz, Johana Chirinos; Castro, Mary Lucia Díaz; Diogo, Francisco; Dobrigkeit, Carola; Docters, Wendy; D'Olivo, Juan Carlos; Dorofeev, Alexei; Hasankiadeh, Qader Dorosti; Anjos, Rita dos; Dova, Maria Teresa; Ebr, Jan; Engel, Ralph; Erdmann, Martin; Erfani, Mona; Escobar, Carlos O; Espadanal, Joao; Etchegoyen, Alberto; Falcke, Heino; Fang, Ke; Farrar, Glennys; Fauth, Anderson; Fazzini, Norberto; Ferguson, Andrew P; Fick, Brian; Figueira, Juan Manuel; Filevich, Alberto; Filipčič, Andrej; Fratu, Octavian; Freire, Martín Miguel; Fujii, Toshihiro; García, Beatriz; Garcia-Gamez, Diego; Garcia-Pinto, Diego; Gate, Florian; Gemmeke, Hartmut; Gherghel-Lascu, Alexandru; Ghia, Piera Luisa; Giaccari, Ugo; Giammarchi, Marco; Giller, Maria; Głas, Dariusz; Glaser, Christian; Glass, Henry; Golup, Geraldina; Berisso, Mariano Gómez; Vitale, Primo F Gómez; González, Nicolás; Gookin, Ben; Gordon, Jacob; Gorgi, Alessio; Gorham, Peter; Gouffon, Philippe; Griffith, Nathan; Grillo, Aurelio; Grubb, Trent D; Guarino, Fausto; Guedes, Germano; Hampel, Matías Rolf; Hansen, Patricia; Harari, Diego; Harrison, Thomas A; Hartmann, Sebastian; Harton, John; Haungs, Andreas; Hebbeker, Thomas; Heck, Dieter; Heimann, Philipp; Herve, Alexander E; Hill, Gary C; Hojvat, Carlos; Hollon, Nicholas; Holt, Ewa; Homola, Piotr; Hörandel, Jörg; Horvath, Pavel; Hrabovský, Miroslav; Huber, Daniel; Huege, Tim; Insolia, Antonio; Isar, Paula Gina; Jandt, Ingolf; Jansen, Stefan; Jarne, Cecilia; Johnsen, Jeffrey A; Josebachuili, Mariela; Kääpä, Alex; Kambeitz, Olga; Kampert, Karl Heinz; Kasper, Peter; Katkov, Igor; Keilhauer, Bianca; Kemp, Ernesto; Kieckhafer, Roger; Klages, Hans; Kleifges, Matthias; Kleinfeller, Jonny; Krause, Raphael; Krohm, Nicole; Kuempel, Daniel; Mezek, Gasper Kukec; Kunka, Norbert; Awad, Alaa Metwaly Kuotb; LaHurd, Danielle; Latronico, Luca; Lauer, Robert; Lauscher, Markus; Lautridou, Pascal; Coz, Sandra Le; Lebrun, Didier; Lebrun, Paul; de Oliveira, Marcelo Augusto Leigui; Letessier-Selvon, Antoine; Lhenry-Yvon, Isabelle; Link, Katrin; Lopes, Luis; López, Rebeca; Casado, Aida López; Louedec, Karim; Lucero, Agustin; Malacari, Max; Mallamaci, Manuela; Maller, Jennifer; Mandat, Dusan; Mantsch, Paul; Mariazzi, Analisa; Marin, Vincent; Mariş, Ioana; Marsella, Giovanni; Martello, Daniele; Martinez, Humberto; Bravo, Oscar Martínez; Martraire, Diane; Meza, Jimmy Masías; Mathes, Hermann-Josef; Mathys, Sebastian; Matthews, James; Matthews, John; Matthiae, Giorgio; Maurizio, Daniela; Mayotte, Eric; Mazur, Peter; Medina, Carlos; Medina-Tanco, Gustavo; Meissner, Rebecca; Mello, Victor; Melo, Diego; Menshikov, Alexander; Messina, Stefano; Micheletti, Maria Isabel; Middendorf, Lukas; Minaya, Ignacio A; Miramonti, Lino; Mitrica, Bogdan; Molina-Bueno, Laura; Mollerach, Silvia; Montanet, François

    2015-01-01

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy density is determined from the radio pulses at each observer position and is interpolated using a two dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving per...

  12. Scanning Auger electron spectroscopy studies of grain-boundary segregation in Type 304 stainless steel

    International Nuclear Information System (INIS)

    Scanning Auger electron spectroscopy studies have been conducted on grain-boundary surfaces of Type 304 stainless steel that were fractured in situ. To enhance the probability of intergranular fracture, the specimens were first subjected to creep deformation for 1000 h at 7000C. A semiquantitative surface chemical composition was calculated from the peak heights of Auger electron spectra. The concentration of Cr at the fracture surface was not different from the bulk value. This indicates that the long-term heat treatment caused healing of the sensitization. The concentrations of S, C, and Si at the fracture surface were at least an order of magnitude higher than the bulk values. Chemical composition profiles obtained by ion-sputtering indicated that segregation of S, C, P, and Si occurred within a depth of several atomic monolayers from the grain-boundary surface. Mo, Mn and Cu were not detected. The concentrations of Ni and Fe are in good agreement with the bulk chemical analysis

  13. Sputtering measurements on controlled thermonuclear reactor materials using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Simultaneous auger electron spectroscopy and ion sputtering have been used to measure the sputter yield, S (atom/ion), for Ar+ on carbon, tungsten, niobium, and silver in the energy range from 0.5 to 1.5 keV and for H+ on tungsten, carbon, and silver at 11 keV. All measurements were performed on thin films, ranging in thickness from 150 to 6000 A, which were maintained at room temperature during bombardment. These films were produced by vacuum vapor deposition, and the thicknesses were measured by surface profilometry. The auger electron signals were used to determine the time required to etch through a film; from these measurements and a knowledge of the ion current density, the sputter yield was determined. For Ar+, 0.7 less than or equal to S less than or equal to 5.1 and for H+, 0.004 less than or equal to S less than or equal to 0.04 for the various materials studied in this energy range. Agreement with earlier experimental results is generally within +-25 percent

  14. The characterisation of non-evaporable getters by Auger electron spectroscopy Analytical potential and artefacts

    CERN Document Server

    Scheuerlein, C; Taborelli, M

    2002-01-01

    The surfaces of getter materials are particularly difficult to analyse because of their high chemical reactivity. The results obtained can be strongly influenced by the experimental set-up and procedures. In this paper the experimental influence on the Auger electron spectroscopy results is discussed, based on the measurements of more than 100 different non-evaporable getter (NEG) materials. There are four typical changes in the Auger electron spectra when a NEG becomes activated. The oxygen peak intensity decreases, the shape of the metal peaks changes, the carbon peak shape changes shape and intensity and a chlorine peak occurs. All these changes are affected by instrumental artefacts. The Zr-MNV peak shape changes occurring during the reduction of ZrO2 are well suited to determine the onset of NEG activation, while the slope with which the O-KLL peak intensity decreases in a certain temperature range is a better criterion for the determination of the temperature at which activation is complete. The O-KLL i...

  15. The energy spectrum of cosmic rays measured with the HEAT extension at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    This thesis describes the calculation of the energy spectrum of cosmic rays, that is the absolute flux of cosmic rays as a function of energy, from data of air showers observed with the HEAT (High Elevation Auger Telescopes) extension and the fluorescence detector of the Pierre Auger Observatory. The Pierre Auger Observatory is the largest observatory for the study of cosmic rays. The Pierre Auger Observatory observes air showers, that are cascades of particles that were instigated by cosmic rays hitting the Earth's atmosphere, with two different detection concepts. The surface detector samples the secondary particles of air showers that hit the ground with an array of surface detector stations, whereas the fluorescence detector measures the energy loss profile of air showers by detecting fluorescence light, produced by the air showers when they travel through the atmosphere, with optical telescopes. The properties of the cosmic rays are not directly measurable but have to be reconstructed from the observed air shower parameters. Properties of particular interest are the type of the primary cosmic ray particle, its energy and its arrival direction. HEAT is an extension to the fluorescence detector of the Pierre Auger Observatory. It is designed to lower the energy threshold by one order of magnitude down to 1017 eV or lower. HEAT is taking data since 2010. The calculation of the absolute flux of cosmic rays needs two ingredients: the number of detected air showers as a function of shower energy and the exposure of the detector as a function of energy. The studied air shower class are hybrid events, which are events that have been detected by a fluorescence detector and at least one surface detector station. The used air showers were observed in a time period of fifteen month starting from June 2010. A first step of the analysis is the reconstruction of air showers and cosmic ray parameters from raw data. To calculate the exposure, the uptime, that is the integral

  16. K-shell photoionization and interatomic Coulombic decay following Auger decay in van der Waals neon clusters

    International Nuclear Information System (INIS)

    We investigated K-shell photoionization and interatomic Coulombic decay (ICD) following Ne KL1L23Auger decay in Nen by momentum-resolved electron-ion multi-coincidence. The angular distributions of the photoelectrons depend only on the direction of the polarization vector, whereas those of the ICD electrons depend on the neither the polarization vector nor the ion emission directions.

  17. Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argiro, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clay, R. W.; Colombo, E.; Conceicao, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Escobar, C. O.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; do Amaral, M. Goncalves; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Gorgi, A.; Gouffon, P.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kruppke, D.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Lopez, R.; Lopez Agueera, A.; Lozano Bahilo, J.; Lucero, A.; Luna Garcia, R.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marquez Falcon, H. R.; Martello, D.; Martinez, J.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; McNeil, R. R.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafa, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravignani, D.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Riviere, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Martino, J. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuessler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Smetniansky De Grande, N.; Smialkowski, A.; Smida, R.; Smith, B. E.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Tascau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tuci, V.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberic, D.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Younk, P.; Yuan, G.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2009-01-01

    Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming nu(tau) may interact in the Earth's crust and produce a tau lepton by means of charged-current interactions. The tau lepton may emerge from

  18. Characteristic X-ray radiation and Auger electrons from resonant coherently excited highly charged ions under channeling

    OpenAIRE

    Balashov, V.V.; Sokolik, A.; Stysin, A.

    2008-01-01

    Density-matrix approach to treat resonant coherent excitation of swift ions in oriented crystals is applied for unified theoretical description of charge state distribution of relativistic resonant coherently excited ions, their characteristic X-ray radiation and, as a new aspect, Auger electron production from doubly excited states.

  19. Calculations of energies and absolute intensities of Auger electrons and X-rays arising from electron capture decay

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chun-Mei; WU Zhen-Dong; HUANG Xiao-Long

    2005-01-01

    Calculations of energies and absolute intensities of Auger electron and X-ray arising from electron capture are introduced briefly. The calculation codes and main process are also presented. The application is also given by taking 55Fe ε decay as an example.

  20. Composition-sensitive parameters measured with the surface detector of the Pierre Auger Observatory

    CERN Document Server

    Healy, M D

    2007-01-01

    A key step towards the understanding of the origin of ultra-high energy cosmic rays is their mass composition. Primary photons and neutrinos produce markedly different showers from nuclei, while showers of different nuclear species are not easy to distinguish. To maximise the discrimination with the Pierre Auger Observatory ideally all mass-sensitive observables should be combined, but the 10% duty cycle of the fluorescence detector limits the use of direct measurements of shower maximum at the highest energies. Therefore, we investigate mass-sensitive observables accessible with the surface detectors alone. These are the signal risetime in the Cherenkov stations, the curvature of the shower front, the muon-to-electromagnetic ratio, and the azimuthal signal asymmetry. Risetime and curvature depend mainly on the depth of the shower development in the atmosphere, and thus on primary energy and mass. The muon content of a shower depends on the primary energy and the number of nucleons, while asymmetry about the ...

  1. Design of the photomultiplier bases for the surface detectors of the Pierre Auger Observatory

    CERN Document Server

    Genolini, B; Pouthas, J; Lhenry-Yvon, I; Parizot, E; Suomijärvi, T

    2001-01-01

    The design of the photomultiplier bases for the surface detectors of the Pierre Auger Observatory is presented. The bleeder is purely resistive. The base comprises two outputs: one from the anode and another one from the last dynode followed by an amplifier. The charge ratio between the anode and the amplified dynode is around 30. The design ensures a low consumption (less than 100 mu A at 2 kV), a stability of the gain and of the base line during the whole period of measurement (20 mu s per event) and for the whole dynamic range (max. 1 to 3x10^4 in amplitude). First measurement with a prototype base on the Hamamatsu R5912 photomultiplier tube are presented.

  2. Interfering line in trace analysis by X-ray spectrometry: Radiative auger satellites

    International Nuclear Information System (INIS)

    Strong characteristic X-ray lines (e.g. Kα and Kβ) are accompanied by broad low-energy satellites caused by the radiative Auger effect (RAE). In order to prove how the RAE satellites interfere the analysis of minor elements, low-energy side spectra of Ca and Ti Kβ, and Ca-Fe Kα were measured. The obtained RAE intensities are summarized together with published experimental and theoretical data. The integrated intensities of satellites due to K → MM, K → LM and K → LL RAE relative to that of Kα are determined to be of the order of 0.01-0.1%. This warns that the neglecting of the RAE satellites will introduce a serious error in trace analysis. (author)

  3. Cosmic rays at the highest energies — first data from the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The southern Pierre Auger Observatory, presently under construction in Malargue, Argentina, is nearing completion. The instrument is designed to measure extensive air-showers with energies ranging from 1018-1020eV and beyond. It combines two complementary observation techniques; the detection of particles at ground and the coincident observation of associated fluorescence light generated in the atmosphere above the ground. This is being realized by employing an array of 1600 water Cherenkov detectors, distributed over an area of 3000 km2, and operating 24 wide-angle Schmidt telescopes, positioned at four sites at the border of the ground array. The Observatory will reach its full size only in 2007 but data are routinely recorded already and have started to provide relevant science results. This talk will focus on the detector characterizations and presents first results on the arrival direction of extremely-high energy cosmic rays, their energy spectrum, and on the upper limit of the photon fraction. (author)

  4. Techniques for Measuring Aerosol Attenuation using the Central Laser Facility at the Pierre Auger Observatory

    CERN Document Server

    ,

    2013-01-01

    The Pierre Auger Observatory in Malarg\\"ue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that re...

  5. New method for atmospheric calibration at the Pierre Auger Observatory using FRAM, a robotic astronomical telescope

    CERN Document Server

    BenZvi, Segev; Connolly, Brian; Grygar, Jiri; Hrabovsky, Miroslav; Karova, Tatiana; Mandat, Dusan; Necesal, Petr; Nosek, Dalibor; Nozka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Ridky, Jan; Schovanek, Petr; Smida, Radomir; Travnicek, Petr; Vitale, Primo; Westerhoff, Stefan

    2007-01-01

    FRAM - F/(Ph)otometric Robotic Atmospheric Monitor is the latest addition to the atmospheric monitoring instruments of the Pierre Auger Observatory. An optical telescope equipped with CCD camera and photometer, it automatically observes a set of selected standard stars and a calibrated terrestrial source. Primarily, the wavelength dependence of the attenuation is derived and the comparison between its vertical values (for stars) and horizontal values (for the terrestrial source) is made. Further, the integral vertical aerosol optical depth can be obtained. A secondary program of the instrument, the detection of optical counterparts of gamma-ray bursts, has already proven successful. The hardware setup, software system, data taking procedures, and first analysis results are described in this paper.

  6. New method for atmospheric calibration at the Pierre Auger Observatory using FRAM, a robotic astronomical telescope

    Science.gov (United States)

    Trávníček, Petr; Benzvi, Segev; Boháčová, Martina; Connolly, Brian; Grygar, Jiří; Hrabovský, Miroslav; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nosek, Dalibor; Nožka, Libor; Palatka, Miroslav; sPech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Šmída, Radomír; Vitale, Primo; Westerhoff, Stefan

    FRAM - F/(Ph)otometric Robotic Atmospheric Monitor is the latest addition to the atmospheric monitoring instruments of the Pierre Auger Observatory. An optical telescope equipped with CCD camera and photometer, it automatically observes a set of selected standard stars and a calibrated terrestrial source. Primarily, the wavelength dependence of the attenuation is derived and the comparison between its vertical values (for stars) and horizontal values (for the terrestrial source) is made. Further, the integral vertical aerosol optical depth can be obtained. A secondary program of the instrument, the detection of optical counterparts of gamma-ray bursts, has already proven successful. The hardware setup, software system, data taking procedures, and first analysis results are described in this paper.

  7. Trigger and Aperture of the Surface Detector Array of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa, A F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; Di Giulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; DuVernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; Gonzalez, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mueller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Ridky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmiałkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcău, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2011-01-01

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above $3\\times 10^{18}$ eV, for all zenith angles between 0$^\\circ$ and 60$^\\circ$, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.

  8. Quality studies of the data taking conditions for the Auger Fluorescence Detector

    CERN Document Server

    Caruso, R; Insolia, A; Petrera, S; Martino, J R

    2005-01-01

    As more than half of the Fluorescence Detector (FD) of the Auger Observatory is completed, data taking is becoming a routine job. It is then necessary to follow strict procedures to assure the quality of the data. An overview of the data taking methods is given. The nature of the FD background signal is due to the night sky brightness (stars and planet faint light, moonlight, twilight, airglow, zodiacal and artificial light) and to the electronic background (photomultiplier and electronic noise). The analysis of the fluctuations in the FADC signal (variance analysis), directly proportional to the background mean light level, performed for each night of data taking is used to monitor the FD background signal. The data quality is analysed using different techniques, described in detail. Examples of trigger rates, number of stereo events, dead time due to moonlight, weather or hardware problems are given. The analysis comprises several months of data taking, giving an overview of the FD capabilities, performance...

  9. Upper Limit on the Diffuse Flux of Ultrahigh Energy Tau Neutrinos from the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth's crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an Eν-2 differential energy spectrum the limit set at 90% C.L. is Eν2dNντ/dEν-7 GeV cm-2 s-1 sr-1 in the energy range 2x1017 eVν19 eV

  10. Exploring cosmic rays at the highest-energy frontier with the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Dobrigkeit Carola

    2015-01-01

    Full Text Available The Pierre Auger Observatory studies the most energetic cosmic rays arriving at Earth, those with energies from 1017 eV up to 1020 eV and beyond. In continuous operation since 2004, the Observatory employs two complementary detection techniques for measuring air showers induced by those extremely energetic particles. For the past few years new detectors and techniques are being added in order to augment the sensitivity of the measurements. Data accumulated in ten years have led to major advances in our knowledge of the origin and nature of cosmic rays. We present a summary of the latest results for the spectrum of cosmic rays, their arrival directions and composition, as well as the challenges for the future operation of the Observatory.

  11. Studying the shower front curvature of extensive air showers with the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The shape of the shower front in extensive air showers (EAS) is related to the properties of the primary cosmic ray and to the shower development in the atmosphere. In particular the radius of curvature for ultra high energy cosmic rays (above 1018 eV) can be estimated using the large statistics of events collected by the Pierre Auger Observatory. The Observatory, located in Malargue (Argentina), consists of a Surface Detector (SD) and a Fluorescence Detector (FD) that can be combined in a hybrid detection mode providing precise measurements of the geometry and the energy of the primary particle. The surface detectors sample the lateral distribution and the arrival time of particles at the ground. These information are used to study the curvature of the shower front and its dependence on shower parameters. Results and implications for the reconstruction are discussed.

  12. Measurements of the longitudinal shower development with the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    de Souza V.

    2013-06-01

    Full Text Available In this work we explain how the Pierre Auger Observatory measures and reconstructs the longitudinal development of air showers. The measurement of the energy deposit in the atmosphere by the detection of the emitted fluorescence light is going to be briefly reviewed and the reconstruction procedure is going to be explained in detail. The two main outputs of this analysis are: a the depth at which the shower reaches its maximum (Xmax and b the shower energy. In this work we concentrate on the analysis techniques developed with the aim to evaluate the unbiased Xmax distributions. We show how using measured events it is possible to estimate the range of the true Xmax distribution. Then we select events with geometries that allow an unbiased measurement of Xmax anywhere along its estimated range. The analysis procedure explained here is a fundamental step in the measurements of cosmic ray mass composition and proton-air cross section.

  13. Measurement of atmospheric production depths of muons with the pierre auger observatory

    Directory of Open Access Journals (Sweden)

    García-Gámez D.

    2013-06-01

    Full Text Available The time structure of muons at ground retains valuable information about the longitudinal development of the hadronic component in extensive air showers. Using the signals collected by the surface detector array of the Pierre Auger Observatory it is possible to reconstruct the Muon Production Depth (MPD distribution. In this work we explore the main features of these reconstructions for zenith angles around 60° and different energies of the primary particle. From the MPDs we define a new observable, Xμmax as the depth, along the shower axis, where the maximum number of muons is produced. The potentiality of Xμmax to infer the mass composition of cosmic rays is studied.

  14. Double Core-Hole Production in N2: Beating the Auger Clock

    International Nuclear Information System (INIS)

    We investigate the creation of double K-shell holes in N2 molecules via sequential absorption of two photons on a time scale shorter than the core-hole lifetime by using intense x-ray pulses from the Linac Coherent Light Source free electron laser. The production and decay of these states is characterized by photoelectron spectroscopy and Auger electron spectroscopy. In molecules, two types of double core holes are expected, the first with two core holes on the same N atom, and the second with one core hole on each N atom. We report the first direct observations of the former type of core hole in a molecule, in good agreement with theory, and provide an experimental upper bound for the relative contribution of the latter type.

  15. Deterministic Assessment of Continuous Flight Auger Construction Durations Using Regression Analysis

    Directory of Open Access Journals (Sweden)

    Hossam E. Hosny

    2015-07-01

    Full Text Available One of the primary functions of construction equipment management is to calculate the production rate of equipment which will be a major input to the processes of time estimates, cost estimates and the overall project planning. Accordingly, it is crucial to stakeholders to be able to compute equipment production rates. This may be achieved using an accurate, reliable and easy tool. The objective of this research is to provide a simple model that can be used by specialists to predict the duration of a proposed Continuous Flight Auger job. The model was obtained using a prioritizing technique based on expert judgment then using multi-regression analysis based on a representative sample. The model was then validated on a selected sample of projects. The average error of the model was calculated to be about (3%-6%.

  16. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Using Auger electron spectroscopy and secondary electron microscopy, studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel in order to determine the types of surface changes leading to the improved friction and wear behaviour of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behaviour. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions. (author)

  17. Interference of O Kα ghost features in X-ray-excited Auger spectra

    International Nuclear Information System (INIS)

    We have noted the interference of O Kα ghost peaks in spectra obtained using unmonochromatized X-ray sources, particularly in C(KVV) and O(KVV) X-ray-excited Auger spectra. The source of the undesirable O Kα photons is a surface oxide on the Mg or Al anode of the polychromatic X-ray sources used. A calculation of the oxide thickness required to give the observed ghost intensity in measurements on a gold sample using a heavily oxidized Mg anode is given and the estimated oxide thickness found plausible. Since it may be impossible to operate the anode with no oxide present, the use of standard Au sample is suggested as an excellent test for the presence of O Kα X-radiation from unmonochromatized X-ray sources. (orig.)

  18. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H2 and D2, and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  19. Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    CERN Document Server

    Abraham, J; Aguirre, C; Allard, D; Allekotte, I; Allison, P; Alvarez, C; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, Luis A; Anjos, J C; Aramo, C; Arisaka, K; Armengaud, E; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Atulugama, B S; Aublin, J; Ave, M; Avila, G; Bacelar, J; Backer, T; Badagnani, D O; Barbosa-Ademarlaudo, F; Barbosa, H M J; Barkhausen, M; Barnhill, D; Barroso, S L C; Bauleo, P; Beatty, J; Beau, T; Becker, B R; Becker, K H; Bellido, J A; Ben Zvi, S; Bérat, C; Bergmann, T; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blasi, P; Bleve, C; Blümer, H; Boghrat, P; Bohacova, M; Bonifazi, C; Bonino, R; Boratav, M; Brack, J; Brunet, J M; Buchholz, P; Busca, N G; Caballero-Mora, K S; Cai, B; Camin, D V; Capdevielle, J N; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chye, J; Claes, D; Clark, P D J; Clay, R W; Clay, S B; Connolly, B; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Cronin, J; Dagoret-Campagne, S; Dang Quang, T; Darriulat, Pierre; Daumiller, K; Dawson, B R; De Almeida, R M; De Carvalho, L A; De Donato, C; De Jong, S J; De Mello Junior, W J M; De Mello-Neto, J R T; De Mitri, I; De Oliveira, M A L; De Souza, V; Del Peral, L; Deligny, O; Della Selva, A; Delle Fratte, C; Dembinski, H; Di Giulio, C; Diaz, J C; Dobrigkeit, C; D'Olivo, J C; Dornic, D; Dorofeev, A; Dova, M T; D'Urso, D; Duvernois, M A; Engel, R; Epele, L N; Erdmann, M; Escobar, C O; Etchegoyen, A; Ewers, A; Facal San Luis, P; Falcke, H; Fauth, A C; Fazio, D; Fazzini, N; Fernández, A; Ferrer, F; Ferry, S; Fick, B; Filevich, A; Filipcic, A; Fleck, I; Fokitis, E; Fonte, R; Fuhrmann, D; Fulgione, W; García, B; Garcia-Pinto, D; Garrard, L; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Geranios, A; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gobbi, F; Gold, M S; Gomez Albarracin, F; Gomez Berisso, M; Gómez-Herrero, R; Goncalvesdo Amaral, M; Gongora, J P; González, D; Gonzalez, J G; González, M; Gora, D; Gorgi, A; Gouffon, P; Grassi, V; Grillo, A; Grunfeld, C; Grupen, C; Guarino, F; Guedes, G P; Gutíerrez, J; Hague, J D; Hamilton, J C; Harakeh, M N; Harari, D; Harmsma, S; Hartmann, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Heck, D; Hojvat, C; Homola, P; Horandel, J; Horneffer, A; Horvat, M; Hrabovsky, M; Huege, T; Iarlori, M; Insolia, A; Kaducak, M; Kalashev, O; Kampert, K H; Keilhauer, B; Kemp, E; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D H; Kolotaev, Yu; Kopmann, A; Krömer, O; Kuhlman, S; Kuijpers, J; Kunka, N; Kusenko, A; Lachaud, C; Lago, B L; Lebrun, D; Lebrun, P; Lee, J; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; Longo, G; López, R; López-Aguera, A; Lucero, A; Maldera, S; Malek, M; Maltezos, S; Mancarella, G; Mancenido, M E; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Martello, D; Martínez, N; Martínez, J; Martínez, O; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, Giorgio; Maurin, G; Maurizio, D; Mazur, P O; McCauley, T; McEwen, M; McNeil, R R; Medina, G; Medina, M C; Medina Tanco, G; Meli, A; Melo, D; Menichetti, E; Menshikov, A; Meurer, C; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Mollerach, S; Monasor, M; Monnier Ragaigne, D; Montanet, François; Morales, B; Morello, C; Moreno, E; Morris, C; Mostafa, M; Muller, M A; Mussa, R; Navarra, G; Nellen, L; Newman-Holmes, C; Newton, D; Nguyen Thi, T; Nichol, R; Nierstenhofer, N; Nitz, D; Nogima, H; Nosek, D; Nozka, L; Oehlschläger, J; Ohnuki, T; Olinto, A; Oliveira, L F A; Olmos-Gilbaja, V M; Ortiz, M; Ostapchenko, S; Otero, L; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Patel, M; Paul, T; Payet, K; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Petrera, S; Petrinca, P; Petrov, Y; Pham Ngoc, D; Pham Thi, T N; Piegaia, R; Pierog, T; Pisanti, O; Porter, T A; Pouryamout, J; Prado Junior, L; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Reis, H C; Reucroft, S; Revenu, B; Rídky, J; Risi, A; Risse, M; Rivière, C; Rizi, V; Robbins, S; Roberts, M; Robledo, C; Rodríguez, G; Rodriguez Frias, D; Rodríguez-Martino, J; Rodriguez Rojo, J; Ros, G; Rosado, J; Roth, M; Roucelle, C; Rouille-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santos, E M; Sarkar, S; Sato, R; Scherini, V; Schieler, H; Schmidt, T; Scholten, O; Schovanek, P; Schussler, F; Sciutto, S J; Scuderi, M; Semikoz, Dmitry V; Sequeiros, G; Shellard, R C; Siffert, B B; Sigl, G; Skelton, P; Slater, W; Smetniansky De Grande, N; Smialkowski, A; Smida, R; Smith, B E; Snow, G R; Sokolsky, P; Sommers, P; Sorokin, J; Spinka, H; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tascau, O; Ticona, R; Timmermans, C; Tkaczyk, W; Todero Peixoto, C J

    2006-01-01

    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius $A$. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.

  20. Auger electron spectroscopy of oxidized titanium overlayers: Speciation of homogeneous and heterogenous samples

    International Nuclear Information System (INIS)

    Auger electron spectroscopy (AES) is often used for the determination of the quantitative composition and the speciation of the materials under investigation. The present work illustrates the quantitative analysis of titanium oxides and its application to the characterization of a partially oxidized titanium overlayer on top of a copper substrate. The quantfication procedure described provides an average composition of the surface area investigated. Care has to be taken to convert this composition into an information about the chemical species present at the sample surface because the observed fine structures of the AES spectra cannot be correlated unambiguously with the chemical species present. The AES spectra are not suited to distinguish conclusively between a homogeneous composition of the analyzed volume and the presence of a mixture of several titanium species. Additional information is required for a final distinction between the two possibilities, which can be achieved, for example, by X-ray photoelectron spectroscopy (XPS). (orig.)

  1. Les saisons des armes : Notes sur les armoiries de l'abbé Auger de Gogenx

    OpenAIRE

    Desachy, Matthieu

    2009-01-01

    S'il est un détail que le visiteur de l'abbaye ne peut ignorer lors de sa visite, c'est bien la répétition presque obsédante d'un écu sculpté ou peint visible sur de nombreuses parties de l'abbaye de Lagrasse : dans la halle, dans le logis abbatial, dans la chapelle Saint-Barthélémy, dans l'abbatiale, et depuis peu, sur une porte près de la salle à la cheminée, se retrouvent des armoiries sobres à motifs géométriques. Ce sont celles de l'abbé Auger de Gogenx, grand réformateur de la fin du XI...

  2. Searches for ultra-high energy neutrinos at the Pierre Auger observatory

    International Nuclear Information System (INIS)

    Neutrinos in the sub-EeV energy range and above can be detected and identified with the Surface Detector array of the Pierre Auger Observatory. The identification can be efficiently done for neutrinos of all flavours interacting in the atmosphere, typically above 60° (downward-going), as well as for “Earth-skimming” neutrino interactions in the case of tau neutrinos (upward-going). Three sets of identification criteria were designed to search for downward-going neutrinos in the zenith angle bins 60° − 75° and 75° − 90° as well as for upward-going neutrinos. The three searches have been recently combined, providing, in the absence of candidates in data from 1 January 04 until 31 December 12, a stringent limit to the diffuse flux of ultra-high energy neutrinos

  3. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Tománková, L.; Trávníček, Petr; Vícha, Jakub

    50-52, Dec (2013), s. 92-101. ISSN 0927-6505 R&D Projects: GA TA ČR TA01010517; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk LA08015; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : ultra-high energy * cosmic rays * Pierre Auger Observatory * extensive air showers * atmospheric monitoring * clouds * satellites Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.450, year: 2013 http://ac.els-cdn.com/S0927650513001461/1-s2.0-S0927650513001461-main.pdf?_tid=4b00c808-76c4-11e3-b670-00000aab0f27&acdnat=1389007299_31196c76f30ae652

  4. Experiments performed on granite in the underground research laboratory at Fanay-Augeres, France

    International Nuclear Information System (INIS)

    The Department de Protection Technique (DPT), of the Institut de Protection et de Surete Nucleaire (IPSN), of the Commissariat a l'Energie Atomique (CEA) has developed in the Fanay-Augeres uranium mine, near Limoges, in a granitic formation of the Massif Central, and underground research laboratory in order to improve the knowledge of the properties and behaviour of the fractured medium. Two main programs are at present underway in this laboratory. They are: a study of the influence of the scale effect on the measured value of the permeability and dispersion coefficients and a hydro-thermo-mechanical experiment. This paper is devoted to the review and to the description of the second program, which is now being initiated

  5. Performance of the Pierre Auger Fluorescence Detector and Analysis of well recontructed events

    CERN Document Server

    Argiro, S

    2003-01-01

    The Pierre Auger Observatory is designed to elucidate the origin and nature of Ultra High Energy Cosmic Rays using a hybrid detection technique. A first run of data taking with a prototype version of both detectors (the so called Engineering Array) took place in 2001-2002, allowing the Collaboration to evaluate the performance of the two detector systems and to approach an analysis strategy. In this contribution, after a brief description of the system, we will report some results on the behavior of the Fluorescence Detector (FD) Prototype. Performance studies, such as measurements of noise, sensitivity and duty cycle, will be presented. We will illustrate a preliminary analysis of selected air showers. This analysis is performed using exclusively the information from the FD, and includes reconstruction of the shower geometry and of the longitudinal profile

  6. The exposure of the hybrid detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-01

    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The 'hybrid' detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.

  7. Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Science.gov (United States)

    Abraham, J.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J. C.; Aramo, C.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Bacelar, J.; Bäcker, T.; Badagnani, D.; Barbosa, A. F.; Barbosa, H. M. J.; Barkhausen, M.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Blümer, H.; Boghrat, P.; Boháčová, M.; Bonifazi, C.; Bonino, R.; Boratav, M.; Brack, J.; Brunet, J. M.; Buchholz, P.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Capdevielle, J. N.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazón, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Claes, D.; Clark, P. D. J.; Clay, R. W.; Clay, S. B.; Connolly, B.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Cronin, J.; Dagoret-Campagne, S.; Quang, T. Dang; Darriulat, P.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Carvalho, L. A.; de Donato, C.; de Jong, S. J.; de Mello, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Oliveira, M. A. L.; de Souza, V.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Dobrigkeit, C.; D'Olivo, J. C.; Dornic, D.; Dorofeev, A.; Dova, M. T.; D'Urso, D.; Duvernois, M. A.; Engel, R.; Epele, L.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Ewers, A.; Facal San Luis, P.; Falcke, H.; Fauth, A. C.; Fazio, D.; Fazzini, N.; Fernández, A.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fokitis, E.; Fonte, R.; Fuhrmann, D.; Fulgione, W.; García, B.; Garcia-Pinto, D.; Garrard, L.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Geranios, A.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gobbi, F.; Gold, M. S.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Herrero, R.; Gonçalves Do Amaral, M.; Gongora, J. P.; Gonzalez, D.; Gonzalez, J. G.; González, M.; Góra, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A.; Grunfeld, C.; Grupen, C.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Hamilton, J. C.; Harakeh, M. N.; Harari, D.; Harmsma, S.; Hartmann, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Heck, D.; Hojvat, C.; Homola, P.; Hörandel, J.; Horneffer, A.; Horvat, M.; Hrabovský, M.; Huege, T.; Iarlori, M.; Insolia, A.; Kaducak, M.; Kalashev, O.; Kampert, K. H.; Keilhauer, B.; Kemp, E.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Kolotaev, Y.; Kopmann, A.; Krömer, O.; Kuhlman, S.; Kuijpers, J.; Kunka, N.; Kusenko, A.; Lachaud, C.; Lago, B. L.; Lebrun, D.; Lebrun, P.; Lee, J.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Longo, G.; López, R.; Lopez Agüera, A.; Lucero, A.; Maldera, S.; Malek, M.; Maltezos, S.; Mancarella, G.; Manceñido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Martello, D.; Martinez, N.; Martínez, J.; Martínez, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurin, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, G.; Medina, M. C.; Medina Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Morris, C.; Mostafá, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Thi, T. Nguyen; Nichol, R.; Nierstenhöfer, N.; Nitz, D.; Nogima, H.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Ohnuki, T.; Olinto, A.; Oliveira, L. F. A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ostapchenko, S.; Otero, L.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Patel, M.; Paul, T.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pham Ngoc, D.; Pham Thi, T. N.; Piegaia, R.; Pierog, T.; Pisanti, O.; Porter, T. A.; Pouryamout, J.; Prado, L.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Reis, H. C.; Reucroft, S.; Revenu, B.; Řídký, J.; Risi, A.; Risse, M.; Rivière, C.; Rizi, V.; Robbins, S.; Roberts, M.; Robledo, C.; Rodriguez, G.; Rodríguez Frías, D.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Ros, G.; Rosado, J.; Roth, M.; Roucelle, C.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santos, E. M.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, T.; Scholten, O.; Schovánek, P.; Schüssler, F.; Sciutto, S. J.; Scuderi, M.; Semikoz, D.; Sequeiros, G.; Shellard, R. C.; Siffert, B. B.; Sigl, G.; Skelton, P.; Slater, W.; de Grande, N. Smetniansky; Smiałkowski, A.; Šmída, R.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Ticona, R.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tonachini, A.; Torresi, D.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Tunnicliffe, V.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberič, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vo van, T.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Waldenmaier, T.; Walker, P.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wiebusch, C.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Xu, J.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Zha, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2007-04-01

    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius A. Also the events detected simultaneously by the surface and fluorescence detectors (the ‘hybrid’ data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.

  8. Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile

    Directory of Open Access Journals (Sweden)

    Hoľko Michal

    2014-12-01

    Full Text Available The article deals with numerical analyses of a Continuous Flight Auger (CFA pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed.

  9. Scanning Auger and work-function measurements applied to dispenser cathodes

    International Nuclear Information System (INIS)

    A method fo perform spatially resolved work-function measurements has been developed using a modified scanning Auger microprobe (SAM). The method is based on patches of different work function giving rise to different onsets of secondary electron emission. The combined SAM work-function measurement permits a microscopic correlation of emissive or surface dipole properties with local elemental composition. The system offers a surface spatial resolution of 0.2 μm provided by the focused incident electron beam, and a work function resolution of better than 0.05 eV for most surface features of size approx. equal to 4.0 μm or larger. Results are presented for elemental samples which served as a test of the work-function mapping ability. Some initial results on dispenser cathode surfaces are also presented. (orig.)

  10. Atmospheric calorimetry above 1019 ev: Shooting lasers at the Pierre Auger Cosmic-Ray Observatory

    International Nuclear Information System (INIS)

    The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a calorimeter to measure extensive air-showers created by particles of astrophysical origin. Some of these particles carry joules of energy. At these extreme energies, test beams are not available in the conventional sense. Yet understanding the energy response of the observatory is important. For example, the propagation distance of the highest energy cosmic-rays through the cosmic microwave background radiation (CMBR) is predicted to be strong function of energy. This paper will discuss recently reported results from the observatory and the use of calibrated pulsed UV laser 'test-beams' that simulate the optical signatures of ultra-high energy cosmic rays. The status of the much larger 200,000 km3 companion detector planned for the northern hemisphere will also be outlined.

  11. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    Energy Technology Data Exchange (ETDEWEB)

    Arp, U. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Electron and Optical Physics Div.; LeBrun, T.; Southworth, S.H.; Jung, M. [Argonne National Lab., IL (United States). Physics Div.; MacDonald, M.A. [E.P.S.R.C. Daresbury Lab., Warrington (United Kingdom)

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  12. Contribution to the identification of primary ultra high energy cosmic rays using the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    This research thesis focuses on an apparent mismatch noticed during experiments performed by the Pierre Auger Observatory on ultra-high energy cosmic rays (UHECR) and mass composition. Surface detectors are used to detect the Cherenkov light emitted by particle flurry, and record data in fast analog/digital converters in order to identify the presence of sudden jumps with that of muons. The author studied the separation between light (protons) and heavy (iron) primers which can be expected from the total jump value. An energy analysis in then applied to the study of detected flurries which confirmed the mismatch with the predictions of flurry development models. The jump method is applied to UHECRs pointing towards Cen A. The second part of the thesis reports the development of a simplified simulation code (simulation of electromagnetic and hadronic showers)

  13. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    CERN Document Server

    ,

    2014-01-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60 deg. and different energies of the primary particle. From these distributions we define X(mu)max as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of X(mu)max as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  14. Calibration of the Pierre Auger Observatory fluorescence detectors and the effect on measurements

    Science.gov (United States)

    Gookin, Ben

    The Pierre Auger Observatory is a high-energy cosmic ray observatory located in Malargue, Mendoza, Argentina. It is used to probe the highest energy particles in the Universe, with energies greater than 1018 eV, which strike the Earth constantly. The observatory uses two techniques to observe the air shower initiated by a cosmic ray: a surface detector composed of an array of more than 1600 water Cherenkov tanks covering 3000 km2, and 27 nitrogen fluorescence telescopes overlooking this array. The Cherenkov detectors run all the time and therefore have high statistics on the air showers. The fluorescence detectors run only on clear moonless nights, but observe the longitudinal development of the air shower and make a calorimetric measure of its energy. The energy measurement from the the fluorescence detectors is used to cross calibrate the surface detectors, and makes the measurements made by the Auger Observatory surface detector highly model-independent. The calibration of the fluorescence detectors is then of the utmost importance to the measurements of the Observatory. Described here are the methods of the absolute and multi-wavelength calibration of the fluorescence detectors, and improvements in each leading to a reduction in calibration uncertainties to 4% and 3.5%, respectively. Also presented here are the effects of introducing a new, and more detailed, multi-wavelength calibration on the fluorescence detector energy estimation and the depth of the air shower maximum measurement, leading to a change of 1+-0.03% in the absolute energy scale at 1018 eV, and a negligible change in the measurement on shower maximum.

  15. Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A. W.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2016-06-01

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy—corrected for geometrical effects—is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.

  16. Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Universitat Siegen (Germany). et al.

    2015-08-19

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy density is determined from the radio pulses at each observer position and is interpolated using a two dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge excess emission components. We found that the spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy – corrected for geometrical effects – is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. Finally we find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.

  17. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Juan Daniel, E-mail: juand.martinez@upb.edu.co [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza (Spain); Grupo de Investigaciones Ambientales, Instituto de Energía, Materiales y Medio Ambiente, Universidad Pontificia Bolivariana, Circular 1 N°70-01, Bloque 11, piso 2, Medellín (Colombia); Murillo, Ramón; García, Tomás; Veses, Alberto [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza (Spain)

    2013-10-15

    Highlights: • The continuous pyrolysis of waste tire has been demonstrated at pilot scale in an auger reactor. • More than 500 kg of waste tires were processed in 100 operational hours. • The yields and characteristics of the pyrolysis products remained constant. • Mass and energy balances for an industrial scale plant are provided. • The reaction enthalpy necessary to perform the waste tire pyrolysis was determined. -- Abstract: This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kW{sub th}. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550 °C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.

  18. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na/sup +/ and F/sup +/ desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H/sup +/, Li/sup +/, and F/sup +/ are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N/sub 2/-O/sub 2/ multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF/sub 2/ and a series of alkali halides are discussed in terms of desorption mechanisms.

  19. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor

    International Nuclear Information System (INIS)

    Highlights: • The continuous pyrolysis of waste tire has been demonstrated at pilot scale in an auger reactor. • More than 500 kg of waste tires were processed in 100 operational hours. • The yields and characteristics of the pyrolysis products remained constant. • Mass and energy balances for an industrial scale plant are provided. • The reaction enthalpy necessary to perform the waste tire pyrolysis was determined. -- Abstract: This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550 °C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign

  20. World's largest air shower array now on track of super-high-energy cosmic-rays Pierre Auger Observatory seeks source of highest-energy extraterrestrial particles

    CERN Multimedia

    2003-01-01

    "With the completion of its hundredth surface detector, the Pierre Auger Observatory, under construction in Argentina, this week became the largest cosmic-ray air shower array in the world. Managed by scientists at the Department of Energy's Fermi National Accelerator Laboratory, the Pierre Auger project so far encompasses a 70-square-mile array of detectors that are tracking the most violent-and perhaps most puzzling- processes in the entire universe" (1 page).

  1. Quantitative auger electron spectroscopy of the interface carbon layer formation on the vacuum cleavage surfaces of layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    The results of the qualitative Auger electron spectroscopy of the interface carbon layer formation on the high vacuum cleavage surfaces of layered semiconductor In4Se3 crystals are presented. The kinetics of interfacial carbon layer formation on the cleavage surfaces of crystals and the elemental and phase composition of the interface dependent on the exposition time in high vacuum and on the dose of electron irradiation have been studied by the quantitative Auger electron and mass-spectroscopy methods

  2. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies

    Energy Technology Data Exchange (ETDEWEB)

    Inoyatov, A.Kh., E-mail: inoyatov@jinr.ru [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Institute of Applied Physics, National University, Tashkent, Republic of Uzbekistan (Uzbekistan); Perevoshchikov, L.L. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Kovalík, A. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Filosofov, D.V.; Yushkevich, Yu.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Ryšavý, M. [Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Lee, B.Q.; Kibédi, T.; Stuchbery, A.E. [Department of Nuclear Physics, RSPE, The Australian National University, Canberra, ACT 0200 (Australia); Zhdanov, V.S. [Nuclear Physics Institute, Almaty (Kazakhstan)

    2014-12-15

    Highlights: • The K, L{sub 1–3}, M{sub 1–3} electron binding energies in Kr in the Pt bulk determined. • The K, L{sub 1–3}, M{sub 1–3} electron binding energies in Kr in an evaporated Rb layer obtained. • The krypton K, L{sub 1–3}, M{sub 1} atomic level widths determined for the both host matrices. • The Kr KL{sub 2}L{sub 3}({sup 1}D{sub 2}) Auger transition energies measured for the both host matrices. • The KL{sub 2}L{sub 3}({sup 1}D{sub 2}) energy difference between Rb and Kr in the Pt host measured. • Dirac–Fock calculations of the Kr KLL Auger transitions performed. - Abstract: The low-energy electron spectra emitted in the radioactive decay of the {sup 83}Rb and {sup 83}Sr isotopes were measured with a combined electrostatic electron spectrometer. Radioactive sources used were prepared by ion implantation of {sup 83}Sr into a high purity polycrystalline platinum foil at 30 keV and by vacuum-evaporation deposition of {sup 83}Rb on the same type of foil. From the measured conversion electron spectra, the electron binding energies (referenced to the Fermi level) for the K, L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, and M{sub 3} shell/subshells of krypton in the platinum host were determined to be 14316.4(12), 1914.3(9), 1720.3(9), 1667.6(9), 281.5(9), 209.6(13), and 201.2(15) eV, respectively, and those for the evaporated layer were observed to be lower by 0.7(1) eV. For both host matrices, values of 2.3(2), 4.6(2), 1.7(2), 1.3(2), and 3.2(3) eV were obtained for the krypton K, L{sub 1}, L{sub 2}, L{sub 3}, and M{sub 1} natural atomic level widths, respectively. The absolute energies of 10838.5(9) and 10839.5(10) eV were measured for the KL{sub 2}L{sub 3}({sup 1}D{sub 2}) Auger transition in krypton implanted in Pt and generated in the evaporated rubidium layer, respectively. A value of 601.0(8) eV was measured for the energy difference of the KL{sub 2}L{sub 3}({sup 1}D{sub 2}) transitions in Rb and Kr in the Pt host

  3. Relationship Between Chromatin Structure and Sensitivity to Molecularly Targeted Auger Electron Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage (γH2AX assay) and clonogenic survival were evaluated after exposure to 111In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of 111In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. Results: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of γH2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 μM) compared with IR alone (16 ± 0.6 and 14 ± 0.3 vs. 12 ± 0.4 and 11 ± 0.2, respectively). More γH2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to 111In-DTPA-hEGF (6 MBq/μg) plus SAHA vs. 111In-DTPA-hEGF alone (11 ± 0.3 and 12 ± 0.7 vs. 9 ± 0.4 and 7 ± 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and 111In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 μM) vs. IR alone (0.6% ± 0.01 and 0.3% ± 0.2 vs. 5.8% ± 0.2 and 2% ± 0.1, respectively) and after 111In-DTPA-hEGF plus SAHA compared to 111In-DTPA-hEGF alone (21% ± 0.4% and 19% ± 4.6 vs. 33% ± 2.3 and 32% ± 3.7). SAHA did not affect 111In-DTPA-hEGF nuclear localization. Hypertonic treatment resulted in fewer γH2AX foci per cell after IR and 111In-DTPA-hEGF compared to controls but did not significantly alter clonogenic survival

  4. Complex multireference configuration interaction calculations for the K-vacancy Auger states of Nq+ (q = 2-5) ions

    International Nuclear Information System (INIS)

    K-vacancy Auger states of Nq+ (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly in the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future

  5. A study of quantitative chemical state analysis on cerium surface by using auger electron spectroscopy and factor analysis

    International Nuclear Information System (INIS)

    A reaction with oxygen during oxygen exposure to Cerium metal surface under ultra high vacuum condition and depth profiling on formed Cerium oxide layer were investigated in term of chemical state analysis by Auger electron spectroscopy (AES) and by factor analysis. Principal component analysis (PCA) on Ce NON Auger spectra suggested that three physically meaningful components existed from the analyzed data in both cases. After the PCA, three spectra were extracted from the data and these showed significant peak shape changes in each spectrum which were corresponding to different chemical states. In addition, the profiles constructed by factor analysis showed the chemical state changes on the Cerium metal surface during oxidation or chemical depth distributions in the oxide layer. (author)

  6. 45-Day safety screen results for Tank 241-BY-103, auger samples 95-AUG-012 and 95-AUG-013

    International Nuclear Information System (INIS)

    Two auger samples from tank 241-BY-103 (BY-103) were received by the 222-S Laboratories and underwent safety screening analysis, consisting of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha activity. Analytical results for the TGA analyses for both samples were less than the safety screening notification limit. Since notification is made if the sample is analyzed at less than 17% water, notification was made on April 20, 1995. Although the sample results were below this limit, no secondary analyses were required or performed. Included in this report are the primary safety screening results obtained from the analyses and copies of all DSC and TGA raw data scans as requested per the TCP. Photographs of the auger samples were taken during extrusion and, although not included in this report, are available. Tank BY-103 is on the ferrocyanide Watch List

  7. Auger electron spectroscopy depth profile study in fracture surfaces of sinterized YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Auger electron spectroscopy depth profiles from different surfaces of the YBa2Cu3O7-x polycrystalline compound, such as fracture and polished fracture surface of sintered ceramics, fracture of isostatically pressed powder and powder surface, have been measured. For the first time in this material, a study of the apparent enrichments in the Auger profiles compared with a preferential sputtering model in nonsimple oxides, recently tested in other perovskite oxide compound, is reported. These data show an oxygen surface release and an intergrain copper enrichment as consequence of thermal processing of the material. Thus, the existence of different stoichiometry in the grain boundaries as an additional contribution to the formation of weak links appears confirmed

  8. Study of the stepwise oxidation and nitridation of Si(111) by electron stimulated desorption and Auger spectroscopy

    International Nuclear Information System (INIS)

    Electron stimulated desorption (ESD) and Auger electron spectroscopy (AES) measurements are reported for the electron-activated stepwise oxidation and nitridation of the Si(111) surface. In ESD it is found that appreciable levels of surface hydrogen are present which can lead to hydroxyl formation upon oxidation. The hydroxyl-rich films are unstable in an electron beam, while surfaces oxidized with activated O2, where no OH is formed, are much more stable. On the OH-free oxide, ESD shows two chemically distinct O species, one thought to be SiO2 and the other either adsorbed O2 or a chemical intermediate. The Auger spectra for both oxide and nitride films, which show a continual change from Si to Si-compound nature, suggests that in the earliest stages of reaction the reacted film is made up mainly of low coordination intermediates which gradually evolve to the full compound as the coordination increases

  9. Antennas for the Detection of Radio Emission Pulses from Cosmic-Ray induced Air Showers at the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boh\\'{čová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Buroker, L; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jansen, S; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Meyhandan, R; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Cabo, I Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmia\\lkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Garcia, B Zamorano; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; Charrier, D; Denis, L; Hilgers, G; Mohrmann, L; Philipps, B; Seeger, O

    2012-01-01

    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective l...

  10. A variety of characteristic behaviour of resonant KL23L23 Auger decays following Si K-shell photoexcitation of SiCl4

    International Nuclear Information System (INIS)

    Spectator resonant Auger electron spectra with the Si 1s photoexcitation of SiCl4 have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a 1s electron into the 9t2 valence orbital, generates the resonant Auger decay in which the excited electron remains in the 9t2 orbital. A TIY peak positioned slightly above the 1s ionization threshold induces Auger decay in which the slow photoelectron is re-captured into a higher lying Rydberg orbital or the normal Auger peak shape is distorted due to a post-collision interaction effect. Another structure above the threshold, originating from a doubly excited state, yields the normal Auger peak with the distortion of peak shape and a resonant Auger peak with a higher kinetic energy. These findings provide a clear understanding of the properties of the excited orbitals which were ambiguous previously. (paper)

  11. Parameters sensitive to the mass composition of cosmic rays and their application at the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Vícha, Jakub

    Praha : Matfyzpress, 2012 - (Šafránková, J.; Pavlů, J.), s. 137-141 ISBN 978-80-7378-226-9. [Annual Conference of Doctoral Students - WDS 2012 /21./. Praha (CZ), 29.05.2012-01.06.2012] R&D Projects: GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502 Keywords : ultra-high energy cosmic rays * Pierre Auger Observatory * mass composition Subject RIV: BF - Elementary Particles and High Energy Physics

  12. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2015-01-01

    Roč. 75, č. 6 (2015), s. 269. ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * detector * cosmic rays Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.084, year: 2014

  13. Weather induced effects on extensive air showers observed with the surface detector of the Pierre Auger Observatory

    CERN Document Server

    Bleve, Carla

    2007-01-01

    The rate of events measured with the surface detector of the Pierre Auger Observatory is found to be modulated by the weather conditions. This effect is due to the increasing amount of matter traversed by the shower as the ground pressure increases and to the inverse proportionality of the Moliere radius to the air density near ground. Air-shower simulations with different realistic profiles of the atmosphere support this interpretation of the observed effects.

  14. Physical conditions in nearby active galaxies correlated with ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

    OpenAIRE

    Gureev, Sergey; Troitsky, Sergey

    2008-01-01

    We analyze the active-galaxy correlation reported in 2007 by the Pierre Auger Collaboration. The signal diminishes if the correlation-function approach (counting all "source-event" pairs and not only "nearest neighbours") is used, suggesting that the correlation may reveal individual sources and not their population. We analyze available data on physical conditions in these individual correlated sources and conclude that acceleration of protons to the observed energies is hardly possible in a...

  15. Limits to the diffuse flux of UHE tau neutrinos at EeV energies from the Pierre Auger Observatory

    CERN Document Server

    Bigas, O Blanch

    2007-01-01

    With the Pierre Auger Observatory we have the capability of detecting ultra-high energy neutrinos by searching for very inclined showers with a significant electromagnetic component. In this work we discuss the discrimination power of the instrument for earth skimming tau neutrinos with ultra-high energies. Based on the data collected since January 2004 an upper limit to the diffuse flux of neutrinos atEeV energies is presented and systematic uncertainties are discussed.

  16. Study of the stepwise oxidation and nitridation of Si(111): Electron stimulated desorption, Auger spectroscopy, and electron loss spectroscopy

    International Nuclear Information System (INIS)

    Electron stimulated desorption, Auger line shape analysis, and electron loss spectroscopy measurements are reported for the electron activated stepwise oxidation and nitridation of the Si(111) surface. In ESD it is found that appreciable levels of surface hydrogen can be present which can lead to hydroxyl formation upon oxidation. The hydroxyl rich films are unstable in an electron beam, while surfaces oxidized with activated oxygen, where no OH is formed, are much more stable. The nitrided films are always stable in the electron beam even though there too hydrogen is always found. On the OH-free oxide, ESD shows two chemically distinct O species, one thought to be SiO2 and the other adsorbed O2 or a chemical intermediate. The Si(L23VV) Auger spectra for both the oxide and nitride are treated by background subtraction, integration, deconvolution, and subtraction of the elemental part of the spectrum, as a function of reaction time over a well controlled series of reaction steps. The Auger spectra for both oxide and nitride films suggest that in the earliest stages of reaction, the reacted film is made up of low coordination intermediates which gradually evolve to the stoichiometric compound as the coordination increases. In loss spectroscopy, both the Si(L23) core loss and the near elastic loss were measured. The L23 core loss shows the same gradual evolution to the oxide seen in the Auger results, with an intermediate oxidation state dominating in the early stages of reaction. The near elastic loss spectra, by contrast, quickly saturate in the early stages of reaction to the final oxide spectrum which is characterized by features both of the full oxide and a suboxide. Similar results are found for the nitride

  17. Atmospheric Calorimetry above 10$^{19}$ eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory

    OpenAIRE

    Wiencke, L.; Collaboration, for the Pierre Auger

    2008-01-01

    The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a calorimeter to measure extensive air-showers created by particles of astrophysical origin. Some of these particles carry joules of energy. At these extreme energies, test beams are not available in the conventional sense. Yet understanding the energy response of the observatory is important. For example, the propagation distance of the highest energy cosmic-rays through the cosmic microwave background radiation (CMBR) is...

  18. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    International Nuclear Information System (INIS)

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H2O: 18.4 wt%, and served a good calorific value of 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, 13C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously

  19. Auger Recombination in III-Nitride Nanowires and Its Effect on Nanowire Light-Emitting Diode Characteristics

    KAUST Repository

    Guo, Wei

    2011-04-13

    We have measured the Auger recombination coefficients in defect-free InGaN nanowires (NW) and InGaN/GaN dot-in-nanowire (DNW) samples grown on (001) silicon by plasma-assisted molecular beam epitaxy. The nanowires have a density of ∼1×1011 cm-2 and exhibit photoluminescence emission peak at λ ∼ 500 nm. The Auger coefficients as a function of excitation power have been derived from excitation dependent and time-resolved photoluminescence measurements over a wide range of optical excitation power density. The values of C0, defined as the Auger coefficient at low excitation, are 6.1 × 10-32 and 4.1×10-33 cm6·s-1 in the NW and DNW samples, respectively, which are in reasonably good agreement with theoretical predictions for InGaN alloy semiconductors. Light-emitting diodes made with the NW and DNW samples exhibit no efficiency droop up to an injection current density of 400 A/cm 2. © 2011 American Chemical Society.

  20. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Shun; Ebitani, Kohki, E-mail: ebitani@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Miyazato, Akio [Nanotechnology Center, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-02-01

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H{sub 2}O: 18.4 wt%, and served a good calorific value of 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, {sup 13}C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.

  1. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    International Nuclear Information System (INIS)

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions

  2. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    Science.gov (United States)

    Nishimura, Shun; Miyazato, Akio; Ebitani, Kohki

    2016-02-01

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H2O: 18.4 wt%, and served a good calorific value of 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, 13C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.

  3. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)

    2014-08-15

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.

  4. THE ELECTRONIC STRUCTURE OF AG/CU(100) SURFACE ALLOYS STUDIES BY AUGER-PHOTOELECTRON COINCIDENCE SPECTROSCOPY.

    Energy Technology Data Exchange (ETDEWEB)

    ARENA,D.A.; BARTYNSKI,R.A.; HULBERT,S.L.

    2001-10-08

    We have measured the Ag and Pd M{sub 5}VV Auger spectrum in coincidence with Ag and Pd 4d{sub 5/2} photoelectrons for the Ag/Cu(100) and Pd/Cu(100) systems, respectively, as a function of admetal coverage. These systems form surface alloys (i.e. random substitutional alloys in the first atomic layer) for impurity concentrations in the 0.1 monolayer range. For these systems, the centroid of the impurity 4d levels is expected to shift away from the Fermi level by {approx}1 eV [Ruban et al., Journal of Molecular Catalysis. A 115 (1997) 421], an effect that should be easily seen in coincidence core-valence-valence Auger spectra. We find that the impurity Auger spectra of both systems shift in a manner that is consistent with d-band moving away from EF. However, the shift for Pd is considerably smaller than expected, and a shift almost absent for Ag. The disagreement between theory and experiment is most likely caused by the neglect of lattice relaxations in the calculations.

  5. Auger neutralization of He{sup +} on Cu surfaces: Simulation of azimuthal scans

    Energy Technology Data Exchange (ETDEWEB)

    Goebl, D., E-mail: dominik.goebl@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler Universität Linz, 4040 Linz (Austria); Primetzhofer, D. [Institutionen för Fysik och Astronomi, Uppsala Universitet, Box 516, S-751 20 Uppsala (Sweden); Abad, E. [Departamento de Física Teórica de la Materia Condensada C5, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Monreal, R.C. [Departamento de Física Teórica de la Materia Condensada C5, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Centro de Investigación de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Bauer, P. [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler Universität Linz, 4040 Linz (Austria)

    2013-12-15

    Charge exchange by Auger neutralization (AN) plays an important role in surface analysis techniques such as low energy ion scattering (LEIS). Recent advances in the theoretical description of AN have included a model based on a linear combination of atomic orbitals (LCAO) approach, which is able to calculate accurate neutralization probabilities of He{sup +} due to AN in LEIS. Previous investigations have shown that the neutralization probability is strongly influenced by the distance dependent shift of the He 1s level. In this study simulations of He{sup +} scattered from Cu(1 0 0) and Cu(1 1 0) surfaces at fixed azimuth angles are presented. Additionally, the azimuth dependence of ion- and neutral-yield for He{sup +} scattered from Cu(1 0 0) is simulated and compared to experimental data. Calculations were performed using the LCAO model in combination with molecular dynamics simulations. The excellent agreement between simulation and experiment provides evidence that the obtained values for the level shift are a characteristic property of the surface.

  6. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A.; et al.

    2014-12-31

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  7. Microstructural and auger microanalytical characterization of Cu-Hf and Cu-Ti catalysts.

    Science.gov (United States)

    Pisarek, M; Janik-Czachor, M

    2006-06-01

    Degradation processes occurring at the surface and in the bulk of Cu-based amorphous alloys during cathodic hydrogen charging were used for promoting the catalytic activity of such alloys. These processes modifying the structure, composition, and morphology of the substrate proved to be useful methods for transforming Cu-Hf and inactive Cu-Ti amorphous alloy precursors into active and durable catalysts. Indeed, their catalytic activity for dehydrogenation of 2-propanol increased up to a conversion level of approximately 60% at selectivities to acetone of about 99% for Cu-Ti and to conversion of approximately 90% at selectivities of approximately 95% for Cu-Hf. Previous attempts carried out by aging in air or hydrogen charging from the gas phase resulted in a maximum conversion level up to 15% for Cu-Hf and up to 3% for Cu-Ti. High resolution Auger spectroscopy allowed changes occurring during the activation process to be identified, namely, the formation of small Cu particles on the HfO2 surface and the formation of highly porous particles containing mostly Cu and some Ti and O (Cu-Ti-O) on a Cu-Ti substrate. Differences in the chemistry and structure of both catalysts are discussed, and the implications for catalytic function are considered. A probable configuration of active sites on the Cu-Ti-O/Ti-O-Cu catalyst for dehydrogenation of 2-propanol is proposed. PMID:17481359

  8. Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE-7GeVcm-2s-1sr-1 at 90% C.L. in the energy range 1x1017eV20eV.

  9. Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Stephen H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

  10. Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    CERN Document Server

    Aab, A; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Anjos, R C dos; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A Kuotb; LaHurd, D; Latronico, L; Lauscher, M; Lautridou, P; Lebrun, P; Legumina, R; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Mockler, D; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Naranjo, I; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Pereira, L A S; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Strafella, F; Stutz, A; Suarez, F; Durán, M Suarez; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valbuena-Delgado, A; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yelos, D; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-01-01

    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, $(\\sec \\theta)_\\mathrm{max}$, sensitive to the mass composition of cosmic rays above $3 \\times 10^{18}$ eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understa...

  11. Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Strafella, F.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-04-01

    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec θ )max , sensitive to the mass composition of cosmic rays above 3 ×1018 eV . By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modeling that must be resolved before the mass composition can be inferred from (sec θ )max.

  12. Challenges for lithium species identification in complementary Auger and X-ray photoelectron spectroscopy

    Science.gov (United States)

    Hoffmann, M.; Zier, M.; Oswald, S.; Eckert, J.

    2015-08-01

    The combination of high spatial resolution and near-surface chemical information makes Auger electron spectroscopy (AES) a powerful tool for comprehensive surface analysis. The recent interest in lithium metal as an active material in lithium sulphur or lithium air batteries increases the demand for a thorough knowledge of the reactions happening at the electrode interface. Applying AES to the complex surfaces of batteries, however, requires a detailed understanding of the interactions occurring with the highly reactive materials during investigation, especially when using metallic lithium with its passivation layers formed even under glove box atmosphere. The article is focused on the influence of electron beam damage and residual gas under ultra-high vacuum conditions on the observations made. Immediate irradiation effects are shown to highly depend on electron dose leading to misinterpretation the surface composition and a non-sufficient stability of the sample. The results are further supported by coupled X-ray photoelectron spectroscopy (XPS) measurements that help to understand the beam induced phenomena. An improved output of the spectroscopic measurement could be achieved employing AES mappings. This allows an improved insight into the local distribution of different lithium compounds in the material surface and can also be applied to other battery active materials.

  13. Diffraction and holography with photoelectrons and Auger electrons: Some new directions

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S. (California Univ., Davis, CA (United States) Lawrence Berkeley Lab., CA (United States))

    1992-06-01

    The current status of photoelectron and Auger-electron diffraction is reviewed, with emphasis on new directions of activity. The use of forward scattering in the study of adsorbed molecules, epitaxial overlayers, and clean surfaces is one of the most developed applications, and one that will become more powerful as higher energy resolution and perhaps spin analysis are used to resolve emitters on the basis of chemical state, position at a surface, or magnetic state. The use of larger data sets spanning a considerable fraction of the solid angle above a surface will also much enhance the structural information available, for example, in the growth of epitaxial layers or nanostructures on surfaces. Detailed fitting of experimental data to theoretical calculations based upon either single scattering or multiple scattering should also provide more rich structural information, including such parameters as substrate interlayer relaxation. Surface phase transitions in which near-surface layers become highly disordered can also be studied, with results that are complementary to those from such techniques as low energy electron diffraction and medium energy ion scattering. Short-range magnetic order also can be probed by somehow resolving the spin of the outgoing electrons, e.g. by using multiplet-split core levels.

  14. An auger spectroscopy investigation of the surfaces of austenitic stainless steels

    International Nuclear Information System (INIS)

    Full text.Various studies have been shown that during annealing of stainless steels, various impurities and alloying elements segregate to the surface of the material, leading to a considerable effect on the properties. The object of this work is to study the segregation of elements such as chromium, phosphorous, sulphur and nitrogen to the surface of an austenitic stainless steel made by UGINE (France) and BCR (Algeria). The investigation is carried out by in-situ annealing inside the ultra-vacuum chamber of an Auger electron spectrometer (AES). The specimens are initially homogenised by an anneal at 1050 celsius degree inside evacuated silica capsules. They are then introduced inside the vacuum chamber of the AES where they are first of all activated, at room temperature, by ionic bombardment and then heat treated at various temperatures ranging from 600 celsius degree to 900 celsius degree. the results are obtained in the form of AES spectra recorded in the differential mode. It is found that the surface of the material undergoes alterations, some of which are temporary and others durable. These alterations are : co-segregation of nitrogen and chromium, segregation of sulphur and competition between nitrogen and sulphur and between phosphorous and sulphur. The driving force of segregation is in the following order : S>P>N

  15. Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data

    International Nuclear Information System (INIS)

    Full text. Using data collected between 1 January, 2004 and 31 August, 2007, the Pierre Auger Observatory has reported evidence of anisotropy in the arrival directions of cosmic rays (CR) with energies exceeding 60 EeV. The arrival directions were correlated with the positions of nearby objects from the 12th edition of the catalog of quasars and active galactic nuclei (AGN) by Veron-Cetty and Veron (VCV catalog). This analysis provides clues to the extragalactic origin of the CR with the highest energies and suggests that the suppression of the flux is due to interaction with the cosmic background radiation. In this work we update this analysis by including data collected through 31 March, 2009 and analyse the distribution of arrival directions with respect to the location of the Centaurus cluster and the radio source Cen A. We also compare this arrival directions distribution with that of populations of potential astrophysical sources. For this purpose, we use two complementary statistical tests allowing one to describe and quantify the degree of compatibility between data and a given sources catalogue. We applied these tests to active galactic nuclei detected in X-rays by SWIFT-BAT and to galaxies found in the HI Parkes and in the 2 Micron All-Sky Surveys. (author)

  16. Auger recombination in In(Ga)Sb/InAs quantum dots

    International Nuclear Information System (INIS)

    We report on the epitaxial formation of type II In0.5Ga0.5Sb/InAs and InSb/InAs quantum dot ensembles using metal organic vapor phase epitaxy. Employing scanning tunneling spectroscopy, we determine spatial quantum dot dimensions smaller than the de Broglie wavelength of InGaSb, which strongly indicates a three dimensional hole confinement. Photoluminescence spectroscopy at low temperatures yields an enhanced radiative recombination in the mid-infrared regime at energies of 170–200 meV. This luminescence displays a strong excitation power dependence with a blueshift indicating a filling of excited quantum dot hole states. Furthermore, a rate equation model is used to extract the Auger recombination coefficient from the power dependent intensity at 77 K yielding values of 1.35 × 10−28 cm6/s for In0.5Ga0.5Sb/InAs quantum dots and 1.47 × 10−27 cm6/s for InSb/InAs quantum dots, which is about one order of magnitude lower as previously obtained values for InGaSb superlattices

  17. Investigation of grain boundary chemistry in Al-Li 2195 welds using Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.H. [National Aeronautics and Space Administration, Huntsville, AL (United States). George C. Marshall Space Flight Center

    1996-05-01

    Al-Li alloy 2195 is a low-density material with high fracture toughness that is particularly well-suited for aerospace systems. It will replace Al-Cu alloy 2219 in the Super Light Weight Tank (SLWT), a modified version of the external tank being developed for the Space Shuttle to support Space Station deployment. Recent efforts have focused on joining 2195 with variable polarity plasma arc welding, as well as repairing 2195 welds with tungsten inert gas techniques. During this study, Auger electron spectroscopy (AES) was used to examine grain boundary chemistry in 2195 welds. Results indicated that weld integrity depends on whether (and how much) the grain boundaries are covered with thin films comprised of a mixture of discontinuous Al{sub 2}O{sub 3} in Al (Al/Al{sub 2}O{sub 3}), which form during weld solidification. O was probably introduced as a contaminant in the shielding gases, occurring at low levels considered negligible for Al alloys that do not contain Li. However, oxidation kinetics in 2195 are increased by Li enrichment of small quantities of Al{sub 2}O{sub 3}, further enhancing thin film formation at the grain boundaries. Al{sub 2}O{sub 3} can ultimately occupy sufficient grain boundary area to degrade the material`s mechanical properties, producing negative effects that are compounded by the cumulative heat input of multi-pass repair welding. (orig.)

  18. Auger and photoluminescence analysis of ZnO nanowires grown on AlN thin film

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Ramin, E-mail: yousefi.ramin@gmail.com [Solid State Laboratory, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kamaluddin, Burhanuddin [Solid State Laboratory, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ghoranneviss, Mahmood; Hajakbari, Fatemeh [Plasma Physics Research Center, Science and Research Campus, Islamic Azad University, 14665-678 Tehran (Iran, Islamic Republic of)

    2009-05-15

    ZnO nanowires were grown on AlN thin film deposited on the glass substrates using a physical vapor deposition method in a conventional tube furnace without introducing any catalysts. The temperature of the substrates was maintained between 500 and 600 deg. C during the growth process. The typical average diameters of the obtained nanowires on substrate at 600 and 500 deg. C were about 57 and 22 nm respectively with several micrometers in length. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into the ZnO nanowires for the sample grown at 600 deg. C. Photoluminescence of the nanowires exhibits appearance of two emission bands, one related to ultraviolet emission with a strong peak at 380-382 nm, and the other related to deep level emission with a weak peak at 503-505 nm. The ultraviolet peak of the nanowires grown at 500 deg. C was blue shifted by 2 nm compared to those grown at 600 deg. C. This shift could be attributed to surface effect.

  19. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    CERN Document Server

    ,

    2014-01-01

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62{\\deg} and 80{\\deg}. The measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A $10^{19}$ eV shower with a zenith angle of 67{\\deg}, which arrives at the Surface Detector array at an altitude of 1450 m above sea level, contains on average $(2.68 \\pm 0.04 \\pm 0.48\\,(\\mathrm{sys.})) \\times 10^{7}$ muons with energies larger than 0.3 GeV. The logarithmic gain $\\text{d}\\ln{N_\\mu} / \\text{d}\\ln{E}$ of muons with increasing energy between $4 \\times 10^{18}$ eV and $5\\times 10^{19}$ eV is measured to be $(1.029\\, \\pm\\, 0.024\\, \\pm 0.030\\,(\\mathrm{sys.}))$.

  20. Study of the Fluorescence Detector Upgrade of the Auger Observatory of Cosmic Rays

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory (PAO) consists of two kinds of detectors: fluorescence detectors (FD) and surface detectors (SD). In this work we evaluate the effect, on the number and quality of the reconstructed events, of new telescopes (or 'eyes') with an enhanced field of view (FOV) up to approximately 60 degrees in elevation. By using numerical simulations, we calculated the mean total efficiency of the eye, the resolution of reconstruction of the basic parameters that characterize the primary cosmic rays (CR) and the elongation rate. To do this, we considered showers of protons and irons with energies of log(E/eV) between 17.50 and 18.25, impinging inside a circular area, placed in front of the eye at distances varying between 3.5 and 11 km. The extension of the FOV of the eye turns to be very convenient for the selected energy range, due to the fact that the atmospheric depths where the showers develop their maximum number of secondary particles (Xmax) are directly observed by the extended eye in most of the cases. Being this Xmax a parameter sensible to the chemical composition of the primary cosmic ray, its correct determination is very important in composition studies

  1. Auger neutralization of He+ on Cu surfaces: Simulation of azimuthal scans

    Science.gov (United States)

    Goebl, D.; Primetzhofer, D.; Abad, E.; Monreal, R. C.; Bauer, P.

    2013-12-01

    Charge exchange by Auger neutralization (AN) plays an important role in surface analysis techniques such as low energy ion scattering (LEIS). Recent advances in the theoretical description of AN have included a model based on a linear combination of atomic orbitals (LCAO) approach, which is able to calculate accurate neutralization probabilities of He+ due to AN in LEIS. Previous investigations have shown that the neutralization probability is strongly influenced by the distance dependent shift of the He 1s level. In this study simulations of He+ scattered from Cu(1 0 0) and Cu(1 1 0) surfaces at fixed azimuth angles are presented. Additionally, the azimuth dependence of ion- and neutral-yield for He+ scattered from Cu(1 0 0) is simulated and compared to experimental data. Calculations were performed using the LCAO model in combination with molecular dynamics simulations. The excellent agreement between simulation and experiment provides evidence that the obtained values for the level shift are a characteristic property of the surface.

  2. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    Science.gov (United States)

    Wei, W.; Lankford, J.

    1987-01-01

    An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.

  3. A Bayesian analysis of the 69 highest energy cosmic rays detected by the Pierre Auger Observatory

    CERN Document Server

    Khanin, Alexander

    2016-01-01

    The origins of ultra-high energy cosmic rays (UHECRs) remain an open question. Several attempts have been made to cross-correlate the arrival directions of the UHECRs with catalogs of potential sources, but no definite conclusion has been reached. We report a Bayesian analysis of the 69 events from the Pierre Auger Observatory (PAO), that aims to determine the fraction of the UHECRs that originate from known AGNs in the Veron-Cety & Veron (VCV) catalog, as well as AGNs detected with the Swift Burst Alert Telescope (Swift-BAT), galaxies from the 2MASS Redshift Survey (2MRS), and an additional volume-limited sample of 17 nearby AGNs. The study makes use of a multi-level Bayesian model of UHECR injection, propagation and detection. We find that for reasonable ranges of prior parameters, the Bayes factors disfavour a purely isotropic model. For fiducial values of the model parameters, we report 68% credible intervals for the fraction of source originating UHECRs of 0.09+0.05-0.04, 0.25+0.09-0.08, 0.24+0.12-0....

  4. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides

    International Nuclear Information System (INIS)

    The purpose of our studies is to elucidate the kinetics of DNA strand breaks caused by low-energy Auger electron emitters in close proximity to DNA. Previously we have studied the DNA break yields in plasmids after the decay of indium-111 bound to DNA or free in solution. In this work, we compare the DNA break yields in supercoiled DNA of iodine-125 decaying close to DNA following DNA intercalation, minor-groove binding, or surface binding, and at a distance form DNA. Supercoiled DNA, stored at 4 C to accumulate radiation dose from the decay of 125I, was then resolved by gel electrophoresis into supercoiled, nicked circular, and linear forms, representing undamaged DNA, single-strand breaks, and double-strand breaks respectively. DNA-intercalated or groove-bound 125I is more effective than surface-bound radionuclide or 125I free in solution. The hydroxyl radical scavenger DMSO protects against damage by 125I free in solution but has minimal effect on damage by groove-bound 125I. (orig.)

  5. The Pierre Auger observatory's project of detecting photons and neutrinos at very high energies

    International Nuclear Information System (INIS)

    Cosmic radiations of ultra high energy (RCUHE, beyond 1018 eV) are difficult to study because of their low flux on the earth surface: about 1 photon per year and per km2. The observatory Pierre Auger proposes to study RCUHE by designing 2 sites of 3000 km2 (one in each hemisphere) allowing the observation of the shower initiated by cosmic radiation by using 4 fluorescence telescopes and a network of 1600 Cherenkov detectors. The identification of the primary particle is a very delicate point, the detection of neutrino or photon at these energies would bring valuable information for the understanding of potential sources of RCUHE. The first part of this work presents the project and its assets to perform its task. The second part is dedicated to the description of the Cherenkov detectors, of the trigger system, and of the centralized data acquisition system. The last part present the prototype installation that is under construction at Macargue in Argentina. (A.C.)

  6. New trigger algorithm of the Auger fluorescence telescopes and validation of their single electron resolution

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory analyses air shower events of ultra high energy cosmic rays. For the first time the two detector techniques to measure Cherenkov and fluorescence light have been combined to detect primary particle with energies >1019eV. The raw data rate, as measured by the telescope's electronics, is in the order of 9 Gigabyte per second. A multi level trigger system, which reduces the data systematically in several levels and complexities without rejecting important shower events, is necessary. The different trigger levels are realised in hardware as well as in software. A new ansatz for the first software trigger and its functionality is developed and discussed. The trigger is based on the so far not used information of the readout electronics. The resulting trigger level is more efficient and rejects sheet lightning better compared with present trigger level. Thus, the trigger rate to the next trigger level is decreased and the DAQ system is released. Different calibration methods, which are made regularly, are essential for an experiment. The results of different calibration methods have to be consistent to each other. The single electron resolution of the photomultiplier tubes play an important role in this context. The single electron resolution is a geometry and material dependent factor and up to now only known from Monte Carlo simulations. The experimental validation through direct measurement and the importance of the single electron resolution are discussed. The measurement was possible with small modifications of the configuration. The result of the single electron resolution is within its error in good agreement with the one known from Monte Carlo simulations. The low statistical error of 4% shows a low manufacturing tolerance, so that we can assume the resolution to be constant for the type of photomultiplier tubes used. (orig.)

  7. In situ auger analysis of surface composition during high fluence ion implantation

    Science.gov (United States)

    Baldwin, D. A.; Sartwell, B. D.; Singer, I. L.

    1985-03-01

    A multi-technique ultrahigh vacuum (UHV) target chamber has been used to perform in situ Auger electron spectroscopic (AES) analysis during ion implantation and AES sputter depth profiling of the substrate within 1-2 min after implantation. Iron was implanted with 150 keV Ti + at a 45° angle of incidence in a target chamber with pressures ranging from 8 × 10 -9 Torr of residual gases up to 1 × 10 -5 Torr of intentionally admitted CO gas. A fluence of ∼1.0 × 10 16cm -2 was needed to sputter away the C-covered air-formed oxide. The implanted Ti reached the surface at the 1 at.% level by ∼1.5 × 10 16cm -2. With increasing fluence, the Ti surface concentration increased to ∼15 at.% at steady-state with a curve shape that was concave downward at all fluences. The surface C concentration was found to be proportional to that of Ti for implants in CO, supporting a vacuum carburization model. Substantial O surface concentration (15-20 at.%) was detected for these runs but depth profiles showed only carburization, not oxidation, of the implanted layer. Even in the best vacuum available (8 × 10 -9Torr), some carburization was observed and was attributed to residual gas absorption. An increase in Ti retained dose with increasing CO pressure has been observed but not yet independently confirmed. The Ti/Fe surface concentration ratio is higher for implants done in CO, and this is discussed in terms of modification of the sputter yield for Ti.

  8. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy

    International Nuclear Information System (INIS)

    Targeting of radiation damage to specific DNA sequences is the essence of antigene radiotherapy. This technique also provides a tool to study molecular mechanisms of DNA repair on a defined, single radio damaged site. It was achieved such sequence-specific radio damage by combining the highly localized DNA damage produced by the decay of Auger-electron-emitters such as 125I with the sequence-specific action of triplex-forming oligonucleotides (TFO). TFO complementary to polypurine-polypyrimidine regions of human genes were synthesized and labeled with 125I-dCTP by the primer extension method. 125I-TFO were delivered into cells with several delivery systems. In addition, human enzymes capable of supporting DNA single-strand-break repair were isolated and assessed for their role in the repair of this lesion. Also, the mutagenicity and repairability of 125I-TFO-induced double strand breaks (DSB) were assessed by repair of plasmid possessing a site-specific DSB lesion. Using plasmids containing target polypurine-polypyrimidine tracts, it was obtained the fine structure of sequence-specific DNA breaks produced by decay of 125I with single-nucleotide resolution. It was showed that the designed 125I-TFO in nanomolar concentrations could bind to and introduce double-strand breaks into the target sequences in situ, i.e., within isolated nuclei and intact digitonin-permeabilized cells. It was also showed 125I-TFO-induced DSB to be highly mutagenic lesions resulting in a mutation frequency of nearly 80%, with deletions comprising the majority of mutations. The results obtained demonstrate the ability of 125I-TFO to target specific sequences in their natural environment - within eukaryotic nucleus. Repair of 125I-TFO-induced DNA damage should typically result in mutagenic gene inactivation

  9. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Panyutin, I.G.; Winters, T.A.; Feinendegen, L.E.; Neumann, R.D. [National Institutes of Health, Bethesda, MD (United States). Dept. of Nuclear Medicine

    2000-09-01

    Targeting of radiation damage to specific DNA sequences is the essence of antigen radiotherapy. This technique also provides a tool to study molecular mechanisms of DNA repair on a defined, single radio damaged site. It was achieved such sequence-specific radio damage by combining the highly localized DNA damage produced by the decay of Auger-electron-emitters such as {sup 125}I with the sequence-specific action of triplex-forming oligonucleotides (TFO). TFO complementary to polypurine-polypyrimidine regions of human genes were synthesized and labeled with {sup 125}I-dCTP by the primer extension method. {sup 125}I-TFO were delivered into cells with several delivery systems. In addition, human enzymes capable of supporting DNA single-strand-break repair were isolated and assessed for their role in the repair of this lesion. Also, the mutagenicity and repairability of {sup 125}I-TFO-induced double strand breaks (DSB) were assessed by repair of plasmid possessing a site-specific DSB lesion. Using plasmids containing target polypurine-polypyrimidine tracts, it was obtained the fine structure of sequence-specific DNA breaks produced by decay of {sup 125}I with single-nucleotide resolution. It was showed that the designed {sup 125}I-TFO in nanomolar concentrations could bind to and introduce double-strand breaks into the target sequences in situ, i.e., within isolated nuclei and intact digitonin-permeabilized cells. It was also showed {sup 125}I-TFO-induced DSB to be highly mutagenic lesions resulting in a mutation frequency of nearly 80%, with deletions comprising the majority of mutations. The results obtained demonstrate the ability of {sup 125}I-TFO to target specific sequences in their natural environment - within eukaryotic nucleus. Repair of {sup 125}I-TFO-induced DNA damage should typically result in mutagenic gene inactivation.

  10. Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    A convenient measure of surface sensitivity in Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) is the mean escape depth (MED). If the effects of elastic-electron scattering are neglected, the MED is equal to the electron inelastic mean free path (IMFP) multiplied by the cosine of the emission angle with respect to the surface normal, and depends on the material and electron energy of interest. An overview is given here of recent calculations of IMFPs for 50-2000 eV electrons in a range of materials. This work has led to the development of a predictive formula based on the Bethe equation for inelastic electron scattering in matter from which IMFPs can be determined. Estimates show, however, that elastic-electron scattering can significantly modify the MED. Thus, for AES, the MED will be reduced by up to about 35%. For XPS, however, the MED can be changed by up to ±30% for common measurement conditions although it can be much larger (by up to a factor of 2) for near-grazing emission angles. Ratios of MED values, calculated with elastic scattering considered and neglected for XPS from the 3s, 3p, and 3d subshells of silver with Mg Kα X-rays are approximately constant (to about 10%) over a range of emission angles that varies from 40 to 60 depending on the subshell and the angle of X-ray incidence. Recommendations are given on how to determine the optimum range of emission angles for satisfactory analysis of angle-resolved XPS (ARXPS) data. Definitions are included of three terms often used for describing surface sensitivity (IMFP, MED, and effective attenuation length (EAL)), and examples are given of the varying magnitudes of these quantities for different analytical conditions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. X-ray absorption and resonant Auger spectroscopy of O2 in the vicinity of the O 1s→σ* resonance: Experiment and theory

    International Nuclear Information System (INIS)

    We report on an experimental and theoretical investigation of x-ray absorption and resonant Auger electron spectra of gas phase O2 recorded in the vicinity of the O 1s→σ* excitation region. Our investigation shows that core excitation takes place in a region with multiple crossings of potential energy curves of the excited states. We find a complete breakdown of the diabatic picture for this part of the x-ray absorption spectrum, which allows us to assign an hitherto unexplained fine structure in this spectral region. The experimental Auger data reveal an extended vibrational progression, for the outermost singly ionized X 2Πg final state, which exhibits strong changes in spectral shape within a short range of photon energy detuning (0 eV>Ω>-0.7 eV). To explain the experimental resonant Auger electron spectra, we use a mixed adiabatic/diabatic picture selecting crossing points according to the strength of the electronic coupling. Reasonable agreement is found between experiment and theory even though the nonadiabatic couplings are neglected. The resonant Auger electron scattering, which is essentially due to decay from dissociative core-excited states, is accompanied by strong lifetime-vibrational and intermediate electronic state interferences as well as an interference with the direct photoionization channel. The overall agreement between the experimental Auger spectra and the calculated spectra supports the mixed diabatic/adiabatic picture

  12. Transport and capture properties of Auger-generated high-energy carriers in (AlInGa)N quantum well structures

    International Nuclear Information System (INIS)

    Recent photoluminescence experiments presented by M. Binder et al. [Appl. Phys. Lett. 103, 071108 (2013)] demonstrated the visualization of high-energy carriers generated by Auger recombination in (AlInGa)N multi quantum wells. Two fundamental limitations were deduced which reduce the detection efficiency of Auger processes contributing to the reduction in internal quantum efficiency: the transfer probability of these hot electrons and holes in a detection well and the asymmetry in type of Auger recombination. We investigate the transport and capture properties of these high-energy carriers regarding polarization fields, the transfer distance to the generating well, and the number of detection wells. All three factors are shown to have a noticeable impact on the detection of these hot particles. Furthermore, the investigations support the finding that electron-electron-hole exceeds electron-hole-hole Auger recombination if the densities of both carrier types are similar. Overall, the results add to the evidence that Auger processes play an important role in the reduction of efficiency in (AlInGa)N based LEDs

  13. 99mTcO4 −-, Auger-Mediated Thyroid Stunning: Dosimetric Requirements and Associated Molecular Events

    OpenAIRE

    Cambien, Béatrice; Franken, Philippe R; Lamit, Audrey; Mauxion, Thibault; Richard-Fiardo, Peggy; Guglielmi, Julien; Crescence, Lydie; Mari, Bernard; Pourcher, Thierry; Darcourt, Jacques; Bardiès, Manuel; Vassaux, Georges

    2014-01-01

    Low-energy Auger and conversion electrons deposit their energy in a very small volume (a few nm3) around the site of emission. From a radiotoxicological point of view the effects of low-energy electrons on normal tissues are largely unknown, understudied, and generally assumed to be negligible. In this context, the discovery that the low-energy electron emitter, 99mTc, can induce stunning on primary thyrocytes in vitro, at low absorbed doses, is intriguing. Extrapolated in vivo, this observat...

  14. Adjustment of the set of imperfect data to principal component and factor analysis. The case of Auger spectra

    Energy Technology Data Exchange (ETDEWEB)

    Siuda, R.; Balcerowska, G.; Rozwadowski, M. [Institute of Matematics and Physics, University of Technology and Agriculture, Bydgoszcz (Poland); Chojnacki, S. [Faculty of Telekomunication and Electrical Engineering, University of Technology and Agriculture, Bydgoszcz (Poland); Aberdam, D. [Laboratoire de Crystallographie, CNRS, Grenoble (France)

    1998-12-31

    Any set of digitized signals, coming from an instrument that reveals untraceable scale of the quantity used for displaying of the signal records, can be analysed with neither principal component analysis (PCA) nor factor analysis (FA). The paper presents a method for numerical treatment of directly measured signals. The method allows to improve the structure of the data set so that they fit the requirements of PCA or FA. Both instrumental imperfections and the proposed treatment of directly measured signals are illustrated with a set of Auger spectra recorded during cleaning of contaminated Ag(110) surface with Ar ions. (author) 7 refs, 7 figs, 3 tabs

  15. Origin of Atmospheric Aerosols at the Pierre Auger Observatory Using Studies of Air Mass Trajectories in South America

    OpenAIRE

    Aab, A.; Aminaei, A.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Schulz, J.; Timmermans, C; Aar, G. van(IMAPP, Radboud University Nijmegen, Nijmegen, Netherlands); van Velzen, S.; Wykes, S.

    2016-01-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth $\\tau_{\\rm a}(z)$ values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The...

  16. Elemental analysis of aerosols collected at the Pierre Auger Cosmic Ray Observatory with PIXE technique complemented with SEM/EDX

    International Nuclear Information System (INIS)

    The aim of this work is to characterize surface aerosols at the Pierre Auger Cosmic Ray Observatory located at Pampa Amarilla, near Malargüe city, in the Andes region of Argentina, with experimental sampling techniques used for the first time in a cosmic ray observatory, adding to information provided by the existing Auger aerosol monitors. A good knowledge of the optical attenuation due to aerosols is crucial for a good reconstruction of the signals from cosmic ray showers detected by the fluorescence detectors of the Observatory. Aerosols were collected in filters, during the Southern Hemisphere winter and spring in 2008. Concentrations in PM2.5 and PM2.5–10 filters were determined by gravimetric analysis and their elemental composition by the PIXE technique, complemented with SEM/EDX. Low aerosol concentrations were measured during the sampling period. The mean total mass PM10 (=PM2.5 + PM2.5–10 fractions) value was [mean(se)] 9.8(1.0) μg/m3 [sd = 5.9 μg/m3]. The mean PM10 value during winter was 7(1.1) μg/m3 [sd = 4.5 μg/m3], about half of the 13.1(1.5) [sd = 5.7 μg/m3] measured during springtime. The PM2.5 fraction was approximately 30% of the PM10 fraction. PIXE results gave levels of S, Cl, K, Ca, Ti, Mn, Fe in the analyzed aerosol samples, showing that these elements correspond to 25% and 13% of the PM2.5 and PM2.5–10 total mass respectively. The rest of the mass was due to the elements with low Z (below 16) which cannot be detected by our X-ray setup. Comparison with SEM/EDX analysis showed that most of them were Si and Al (aluminosilicates). Our results indicate that most of the aerosols at the Auger Observatory would most likely come from the soil of the region. Due to its vast atmospheric monitoring network, the Auger Observatory is an interesting reference site for further atmospheric studies.

  17. Deriving upper limits on cosmic ray photon flux with the hybrid data of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The detection of UHE photons is a key issue in cosmic ray physics with large impact on astrophysics, cosmology, particle and fundamental physics. The Pierre Auger Observatory has been designed to study the origin and nature of the highest energy cosmic radiation. It consists of a surface array detector overlooked by air fluorescence telescopes which together provide a powerful instrument for discriminating primary particles and searching for photons. Hybrid data have been used to derive upper limits on photon fraction in the EeV range. As a complement, the upper limits on photon flux in the same energy range are here derived. A revisited analysis and preliminary results are presented.

  18. Measurement of the Proton-Air Cross Section at root s=57 TeV with the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vícha, Jakub

    2012-01-01

    Roč. 109, č. 6 (2012), "062002-1"-"062002-9". ISSN 0031-9007 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : center-of-mass energies * cross section * particle production * Pierre Auger observatory * systematic uncertainties Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 7.943, year: 2012

  19. 45-day safety screen results for tank 241-C-204, auger samples 95-Aug-022 and 95-Aug-023

    International Nuclear Information System (INIS)

    Two auger samples from tank 241-C-204 (C-204) were received at the 222-S Laboratories and underwent safety screening analysis, consisting of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha activity. The three samples submitted to energetics determination by DSC exceeded the notification limit. As required by the Tank Characterization Plan, the appropriate notifications were made within 24 hours of official confirmation that the limit was exceeded. Secondary analyses have been initiated. Results from secondary analyses will be included in a revision to this report

  20. Weather induced effects on extensive air showers observed with the surface detector of the Pierre Auger Observatory

    Science.gov (United States)

    Bleve, Carla

    The rate of events measured with the surface detector (SD) of the Pierre Auger Observatory is found to be modulated by the weather conditions. This effect, observed in different ranges of S(1000), the signal measured at 1000 m from the shower core, is due to the increasing amount of matter traversed by a shower as the ground pressure increases and to the inverse proportionality of the Moliere radius to the air density near ground. The latter effect results in a modulation of the lateral spread of the shower with T and P. Air- shower simulations with different realistic profiles of the atmosphere support this interpretation of the observed effects.

  1. Systematic study of atmosphere-induced influences and uncertainties on shower reconstruction at the Pierre Auger Observatory

    CERN Document Server

    Prouza, Michael

    2007-01-01

    A wide range of atmospheric monitoring instruments is employed at the Pierre Auger Observatory: two laser facilities, elastic lidar stations, aerosol phase function monitors, a horizontal attenuation monitor, star monitors, weather stations, and balloon soundings. We describe the impact of analyzed atmospheric data on the accuracy of shower reconstructions, and in particular study the effect of the data on the shower energy and the depth of shower maximum (Xmax). These effects have been studied using the subset of golden hybrid events - events observed with high quality in the fluorescence and surface detector - used in the calibration of the surface detector energy spectrum.

  2. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    OpenAIRE

    Aranda, V. M.(Universidad Complutense de Madrid, Madrid, Spain); Arqueros Martínez, Fernando; García Pinto, Diego; Minaya Flores, Ignacio Andrés; Rosado Vélez, Jaime; Vázquez Peñas, José Ramón

    2015-01-01

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E >= 6 x 10(19) eV by analyzing cosmic rays with energies above E >= 5 x 10(18) eV arriving within an angular separation of approximately 15 degrees. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy cor...

  3. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    OpenAIRE

    Arganda, E.; Arqueros Martínez, Fernando; Blanco Ramos, Francisco; García Pinto, Diego; Ortiz Ramis, Montserrat; Rosado Vélez, Jaime; Vázquez Peñas, José Ramón

    2011-01-01

    The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E-th = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > E-th are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at ener...

  4. Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory

    OpenAIRE

    2009-01-01

    Abstract From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV (1 EeV ? 1018 eV) respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and...

  5. Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory

    OpenAIRE

    PIERRE AUGER Collaboration; Pastor, Sergio; Abraham, J.; Pinto Cejas, Teguayco; Abreu, P

    2009-01-01

    From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV (1 EeV equivalent to 10(18) eV), respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and they...

  6. Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    OpenAIRE

    PIERRE AUGER Collaboration; Abreu, P; Pastor, Sergio

    2013-01-01

    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained ...

  7. Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory

    OpenAIRE

    PIERRE AUGER Collaboration; Pastor, Sergio; Abraham, J.; Abreu, P

    2010-01-01

    The successful installation and commissioning of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperati...

  8. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    OpenAIRE

    Aab, A.; Abreu, P; Aglietta, M.; Giller, Maria; Śmiałkowski, Andrzej; Szadkowski, Zbigniew; Winchen, T.

    2014-01-01

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E≥6×10^19 eV by analyzing cosmic rays with energies above E≥5×10^18 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one...

  9. Auger electron spectroscopy and electron energy loss spectroscopy studies on carbonization of Si(100) and (111) surfaces with ethylene

    International Nuclear Information System (INIS)

    The reactions of Si(100) and Si(111) surfaces at 700 deg. C (973 K) with ethylene (C2H4) at a pressure of 1.3x10-4 Pa for various periods of time were studied by using Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS). For a C2H4 exposure level, the amount of C on the (111) surface was larger than that on the (100) surface. The formation of β-SiC grain was deduced by comparing the CKLL spectra from the sample subjected to various C2H4 exposure levels, and from β-SiC crystal

  10. A ball cratering method for Auger analysis of oxide layers on 20-25-Nb CAGR cladding

    International Nuclear Information System (INIS)

    A ball cratering method has been developed for the Auger analysis of oxide layers on 20-25-Nb CAGR cladding to overcome the inadequacies of ion etching for producing composition-depth profiles. Besides enabling much faster analysis, the ball cratering method reveals irregularity in the oxide layer structure, eliminates the interface smearing caused by ion etching and enables a determination of the oxide thickness to be made. The method may be extended to the analysis of other specimens, three fundamental geometries (flat, cylindrical and spherical) being considered. (author)

  11. Adjustment of the set of imperfect data to principal component and factor analysis. The case of Auger spectra

    International Nuclear Information System (INIS)

    Any set of digitized signals, coming from an instrument that reveals untraceable scale of the quantity used for displaying of the signal records, can be analysed with neither principal component analysis (PCA) nor factor analysis (FA). The paper presents a method for numerical treatment of directly measured signals. The method allows to improve the structure of the data set so that they fit the requirements of PCA or FA. Both instrumental imperfections and the proposed treatment of directly measured signals are illustrated with a set of Auger spectra recorded during cleaning of contaminated Ag(110) surface with Ar ions. (author)

  12. Auger electron spectroscopy study on the characterization and stability of the Cu9Al4/TiN/Si system

    International Nuclear Information System (INIS)

    Diffusion barrier properties of TiN films to silicon and the Cu9Al4 compound have been studied using Auger electron spectroscopy. The experimental results indicate that the TiN layer of 800A is effective as a diffusion barrier at 670degC. It is found that the reaction of Al in the compound with Ti in the barrier results in the failure of the system due to intermixing of elements at 700degC. The failure temperature of 700degC, which is higher than that of aluminum or copper metallization, is due to the stability of the Cu9Al4 compound itself. (author)

  13. Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Bäcker, T; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Beatty, J J; Becker, B R; Becker, K H; Bellido, J A; Benzvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Caballero-Mora, K S; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Clay, R W; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; del Peral, L; Deligny, O; Dembinski, H; Denkiewicz, A; Di Giulio, C; Diaz, J C; Castro, M L Díaz; Diep, P N; D'Olivo, C Dobrigkeit J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fröhlich, U; Fuchs, B; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Gascon, A; Gemmeke, H; Gesterling, K; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Gookin, B; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hague, J D; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kadija, K; Kampert, K H; Karhan, P; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Ludwig, M; Lyberis, H; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Mićanović, S; Micheletti, M I; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostafá, M; Moura., C A; Mueller, S; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Parrisius, J; Parsons, R D; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Phan, N; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rivera, H; Rivière, C; Rizi, V; Robledo, C; de Carvalho, W Rodrigues; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tamashiro, A; Tapia, A; Taşcău, O; Tcaciuc, R; Tegolo, D; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tiwari, D K; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Winders, L; Winnick, M G; Wommer, M; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; 10.1016/j.astropartphys.2010.12.007

    2011-01-01

    We present the results of searches for dipolar-type anisotropies in different energy ranges above $2.5\\times 10^{17}$ eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% $C.L.$ for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.

  14. Elemental analysis of aerosols collected at the Pierre Auger Cosmic Ray Observatory with PIXE technique complemented with SEM/EDX

    Energy Technology Data Exchange (ETDEWEB)

    Micheletti, M.I., E-mail: micheletti@ifir-conicet.gov.ar [Instituto de Fisica Rosario (IFIR) - CONICET/UNR, Bv. 27 de Febrero 210 bis (2000), Rosario (Argentina); Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, UNR, Suipacha 531 (2000), Rosario (Argentina); CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas), Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina); Murruni, L.G. [Servicio Geologico Minero Argentino (SEGEMAR), Buenos Aires (Argentina); Debray, M.E. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Universidad Nacional de Gral. San Martin, M. de Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Rosenbusch, M. [CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas), Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina); Graf, M. [Instituto de Fisica Rosario (IFIR) - CONICET/UNR, Bv. 27 de Febrero 210 bis (2000), Rosario (Argentina); and others

    2012-10-01

    The aim of this work is to characterize surface aerosols at the Pierre Auger Cosmic Ray Observatory located at Pampa Amarilla, near Malarguee city, in the Andes region of Argentina, with experimental sampling techniques used for the first time in a cosmic ray observatory, adding to information provided by the existing Auger aerosol monitors. A good knowledge of the optical attenuation due to aerosols is crucial for a good reconstruction of the signals from cosmic ray showers detected by the fluorescence detectors of the Observatory. Aerosols were collected in filters, during the Southern Hemisphere winter and spring in 2008. Concentrations in PM2.5 and PM2.5-10 filters were determined by gravimetric analysis and their elemental composition by the PIXE technique, complemented with SEM/EDX. Low aerosol concentrations were measured during the sampling period. The mean total mass PM10 (=PM2.5 + PM2.5-10 fractions) value was [mean(se)] 9.8(1.0) {mu}g/m{sup 3} [sd = 5.9 {mu}g/m{sup 3}]. The mean PM10 value during winter was 7(1.1) {mu}g/m{sup 3} [sd = 4.5 {mu}g/m{sup 3}], about half of the 13.1(1.5) [sd = 5.7 {mu}g/m{sup 3}] measured during springtime. The PM2.5 fraction was approximately 30% of the PM10 fraction. PIXE results gave levels of S, Cl, K, Ca, Ti, Mn, Fe in the analyzed aerosol samples, showing that these elements correspond to 25% and 13% of the PM2.5 and PM2.5-10 total mass respectively. The rest of the mass was due to the elements with low Z (below 16) which cannot be detected by our X-ray setup. Comparison with SEM/EDX analysis showed that most of them were Si and Al (aluminosilicates). Our results indicate that most of the aerosols at the Auger Observatory would most likely come from the soil of the region. Due to its vast atmospheric monitoring network, the Auger Observatory is an interesting reference site for further atmospheric studies.

  15. Auger electron spectroscopy in sputtering measurements: Application to low-energy Ar+ sputtering of Ag and Nb

    International Nuclear Information System (INIS)

    The sputtering of Ag and Nb by Ar+ in the energy range from 0.5 to 1.5 keV has been measured. The agreement with extant data, where available, is good. The experimental technique is a new adaptation of certain earlier methods and employs Auger electron spectroscopy of a continuously sputtered area of a thin-film composite structure, produced by vapor deposition. This new method should permit very low sputter yields (Sapproximately-less-than10-3) to be measured in subsequent experiments

  16. Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit

    Science.gov (United States)

    Incerti, S.; Suerfu, B.; Xu, J.; Ivantchenko, V.; Mantero, A.; Brown, J. M. C.; Bernal, M. A.; Francis, Z.; Karamitros, M.; Tran, H. N.

    2016-04-01

    A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.

  17. 45-day safety screen results and final report for Tank 241-C-203, Auger samples 95 AUG-020 and 95-AUG-021

    International Nuclear Information System (INIS)

    This document serves as the 45-day report deliverable for the tank C-203 auger samples collected on April 5, 1995 (samples 95-AUG-20 and 95-AUG-021). As no secondary analyses were required and no other analyses have been requested, this document also serves as the final report for C-203 auger sampling. Each sample was received, extruded, and analyzed by the 222-S Laboratories in accordance with the Tank Characterization Plan (TCP) referenced below. Included in this report are the primary safety screening results (DSC, TGA, and alpha) and density results. The worklists and raw data are included in this report. Photographs of the auger samples were taken during extrusion and, although not included in this report, are available

  18. Auger electron nanoscale mapping and x-ray photoelectron spectroscopy combined with gas cluster ion beam sputtering to study an organic bulk heterojunction

    International Nuclear Information System (INIS)

    The lateral and vertical distributions of organic p/n bulk heterojunctions for an organic solar cell device are, respectively, investigated using nanometer-scale Auger electron mapping and using X-ray photoelectron spectroscopy (XPS) with Ar gas cluster ion beam (GCIB) sputtering. The concentration of sulfur, present only in the p-type material, is traced to verify the distribution of p-type (donor) and n-type (acceptor) materials in the blended structure. In the vertical direction, a considerable change in atomic sulfur concentration is observed using XPS depth profiling with Ar GCIB sputtering. In addition, Auger electron mapping of sulfur reveals the lateral 2-dimensional distribution of p- and n-type materials. The combination of Auger electron mapping with Ar GCIB sputtering should thereby allow the construction of 3-dimensional distributions of p- and n-type materials in organic photovoltaic cells

  19. 45-day safety screen results and final report for tank 241-C-202, auger samples 95-Aug-026 and 95-Aug-027

    International Nuclear Information System (INIS)

    Two auger samples from tank 241-C-202 (C-202) were received at the 222-S Laboratories and underwent safety screening analysis, consisting of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha activity. Two samples were submitted for energetics determination by DSC. Within the triplicate analyses of each sample, one of the results for energetics exceeded the notification limit. The sample and duplicate analyses for both augers exceeded the notification limit for TGA. As required by the Tank Characterization Plan, the appropriate notifications were made within 24 hours of official confirmation that the limits were violated

  20. Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory

    OpenAIRE

    Homola, P.; Risse, M.; Engel, R.; Gora, D.; Pekala, J.; Wilczynska, B.; Wilczynski, H.

    2006-01-01

    Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and initiate a preshower, i.e. a particle cascade before entering the atmosphere. We compare the preshower characteristics at the southern and northern sites of the Pierre Auger Observatory. In addition to a shift of the preshower patterns on the sky due to the different pointing of the local magnetic field vectors, the fact that the northern Auger site is closer to the geomagnetic pole results in a different energy depend...

  1. An upper limit to the photon fraction in cosmic rays above 10^19 eV from the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aguirre, C; Allard, D; Allekotte, I; Allison, P; Alvarez, C; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, Luis A; Anjos, J C; Aramo, C; Arisaka, K; Armengaud, E; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Atulugama, B S; Aublin, J; Ave, M; Avila, G; Bacelar, J; Bäcker, T; Badagnani, D O; Barbosa-Ademarlaudo, F; Barbosa, H M J; Barkhausen, M; Barnhill, D; Barroso, S L C; Bauleo, P; Beatty, J; Beau, T; Becker, B R; Becker, K H; Bellido, J A; BenZvi, S; Bérat, C; Bergmann, T; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blasi, P; Bleve, C; Blümer, H; Boghrat, P; Bohacova, M; Bonifazi, C; Bonino, R; Boratav, M; Brack, J; Brunet, J M; Buchholz, P; Busca, N G; Caballero-Mora, K S; Cai, B; Camin, D V; Capdevielle, J N; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chye, J; Claes, D; Clark, P D J; Clay, R W; Clay, S B; Connolly, B; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Cronin, J; Dagoret-Campagne, S; Dang Quang, T; Darriulat, Pierre; Daumiller, K; Dawson, B R; De Almeida, R M; De Carvalho, L A; De Donato, C; De Jong, S J; De Mello Junior, W J M; De Mello-Neto, J R T; De Mitri, I; De Oliveira, M A L; De Souza, V; Del Peral, L; Deligny, O; Della Selva, A; Delle Fratte, C; Dembinski, H; Di Giulio, C; Diaz, J C; Dobrigkeit, C; D'Olivo, J C; Dornic, D; Dorofeev, A; Dova, M T; D'Urso, D; Duvernois, M A; Engel, R; Epele, L N; Erdmann, M; Escobar, C O; Etchegoyen, A; Ewers, A; Facal San Luis, P; Falcke, H; Fauth, A C; Fazio, D; Fazzini, N; Fernández, A; Ferrer, F; Ferry, S; Fick, B; Filevich, A; Filipcic, A; Fleck, I; Fokitis, E; Fonte, R; Fuhrmann, D; Fulgione, W; García, B; Garcia-Pinto, D; Garrard, L; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Geranios, A; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gobbi, F; Gold, M S; Gomez Albarracin, F; Gomez Berisso, M; Gómez-Herrero, R; Goncalvesdo Amaral, M; Gongora, J P; González, D; Gonzalez, J G; González, M; Gora, D; Gorgi, A; Gouffon, P; Grassi, V; Grillo, A; Grunfeld, C; Grupen, C; Guarino, F; Guedes, G P; Gutíerrez, J; Hague, J D; Hamilton, J C; Harakeh, M N; Harari, D; Harmsma, S; Hartmann, S; Harton, J L; Healy, M D; Hebbeker, T; Heck, D; Hojvat, C; Homola, P; Horandel, J; Horneffer, A; Horvat, M; Hrabovsky, M; Iarlori, M; Insolia, A; Kaducak, M; Kalashev, O; Kampert, K H; Keilhauer, B; Kemp, E; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D H; Kolotaev, Yu; Kopmann, A; Krömer, O; Kuhlman, S; Kuijpers, J; Kunka, N; Kusenko, A; Lachaud, C; Lago, B L; Lebrun, D; Lebrun, P; Lee, J; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; Longo, G; López, R; López-Aguera, A; Lucero, A; Maldera, S; Malek, M; Maltezos, S; Mancarella, G; Mancenido, M E; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Martello, D; Martínez, N; Martínez, J; Martínez, O; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, Giorgio; Maurin, G; Maurizio, D; Mazur, P O; McCauley, T; McEwen, M; McNeil, R R; Medina, G; Medina, M C; Medina Tanco, G; Meli, A; Melo, D; Menichetti, E; Menshikov, A; Meurer, C; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Mollerach, S; Monasor, M; Monnier Ragaigne, D; Montanet, François; Morales, B; Morello, C; Moreno, E; Morris, C; Mostafa, M; Muller, M A; Mussa, R; Navarra, G; Nellen, L; Newman-Holmes, C; Newton, D; Nguyen Thi, T; Nichol, R; Nierstenhofer, N; Nitz, D; Nogima, H; Nosek, D; Nozka, L; Oehlschläger, J; Ohnuki, T; Olinto, A; Olmos-Gilbaja, V M; Ortiz, M; Ostapchenko, S; Otero, L; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Patel, M; Paul, T; Payet, K; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Petrera, S; Petrinca, P; Petrov, Y; Pham Ngoc, D; Pham Thi, T N; Piegaia, R; Pierog, T; Pisanti, O; Porter, T A; Pouryamout, J; Prado Junior, L; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Reis, H C; Reucroft, S; Revenu, B; Rídky, J; Risi, A; Risse, M; Rivière, C; Rizi, V; Robbins, S; Roberts, M; Robledo, C; Rodríguez, G; Rodriguez Frias, D; Rodríguez-Martino, J; Rodriguez Rojo, J; Ros, G; Rosado, J; Roth, M; Roucelle, C; Rouille-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santos, E M; Sarkar, S; Sato, R; Scherini, V; Schmidt, T; Scholten, O; Schovanek, P; Schussler, F; Sciutto, S J; Scuderi, M; Semikoz, Dmitry V; Sequeiros, G; Shellard, R C; Siffert, B B; Sigl, G; Skelton, P; Slater, W; Smetniansky De Grande, N; Smialkowski, A; Smida, R; Smith, B E; Snow, G R; Sokolsky, P; Sommers, P; Sorokin, J; Spinka, H; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tascau, O; Ticona, R; Timmermans, C; Tkaczyk, W; Todero Peixoto, C J; Tonachini, A; Torresi, D; Travnicek, P; Tripathi, A

    2006-01-01

    An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies above 10^19 eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favoured.

  2. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    International Nuclear Information System (INIS)

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in

  3. Chemical Effect on K Shell X-ray Fluorescence Parameters and Radiative Auger Ratios of Co, Ni, Cu, and Zn Complexes

    Science.gov (United States)

    Cengiz, Erhan; Bıyıklıoğlu, Zekeriya; Küp Aylıkcı, Nuray; Aylıkcı, Volkan; Apaydın, Gökhan; Tıraşoğlu, Engin; Kantekin, Halit

    2010-04-01

    The production cross-sections, intensity ratios, and radiative Auger intensity ratios of Co, Ni, Cu, and Zn elements in different complexes were measured. The chemical effects on the K shell fluorescence parameters and the radiative Auger intensity ratios of these elements were investigated and the changes in these parameters were interpreted according to the charge transfer process. The samples were excited by 59.5 keV γ-rays from a 241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV.

  4. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  5. Observation of resonant transfer and excitation in O5+ + He collisions through high resolution O0 Auger electron spectroscopy

    International Nuclear Information System (INIS)

    In this paper we present new evidence that (resonant transfer and excitation) RTE is an important mechanism for the production of Be-like doubly excited states in energetic collisions of Li-like O5+ ions incident on He. We have measured the cross sections for the production of Auger electrons from the decay of the (1s2s2p2)3D and the (1s2s2p2)1D states in O4+ in high resolution at O0, as a function of the incident ion energy. We observe a resonant increase in the Auger cross section with a maximum at approx.13 MeV and full-width-at-half-maximum of approx.7 MeV. This feature is seen to sit on a non-resonant NTE background, which populates the same intermediate states through a two step capture and excitation process governed by the electron-nucleus Coulomb interaction. 13 ref., 3 figs

  6. First principle calculations of core-level binding energy and Auger kinetic energy shifts in metallic solids

    Energy Technology Data Exchange (ETDEWEB)

    Olovsson, Weine, E-mail: weine.olovsson@gmail.co [Department of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Marten, Tobias [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Holmstroem, Erik [Instituto de Fisica, Universidad Austral de Chile, Valdivia (Chile); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johansson, Boerje [Department of Physics and Materials Science, Uppsala University, P.O. Box 530, SE-751 21 Uppsala (Sweden); Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Abrikosov, Igor A. [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2010-05-15

    We present a brief overview of recent theoretical studies of the core-level binding energy shift (CLS) in solid metallic materials. The focus is on first principles calculations using the complete screening picture, which incorporates the initial (ground state) and final (core-ionized) state contributions of the electron photoemission process in X-ray photoelectron spectroscopy (XPS), all within density functional theory (DFT). Considering substitutionally disordered binary alloys, we demonstrate that on the one hand CLS depend on average conditions, such as volume and overall composition, while on the other hand they are sensitive to the specific local atomic environment. The possibility of employing layer resolved shifts as a tool for characterizing interface quality in fully embedded thin films is also discussed, with examples for CuNi systems. An extension of the complete screening picture to core-core-core Auger transitions is given, and new results for the influence of local environment effects on Auger kinetic energy shifts in fcc AgPd are presented.

  7. A global autocorrelation study after the first Auger data impact on the number density of UHECR sources

    CERN Document Server

    Cuoco, A; Haugbølle, T; Kachelrieß, M; Serpico, P D

    2009-01-01

    We perform an autocorrelation study of the Auger data with the aim to constrain the number density ns of ultrahigh energy cosmic ray (UHECR) sources, estimating at the same time the effect on ns of the systematic energy scale uncertainty and of the distribution of UHECR. The use of global analysis has the advantage that no biases are introduced, either in ns or in the related error bar, by the a priori choice of a single angular scale. The case of continuous, uniformly distributed sources is nominally disfavored at 99% CL and the fit improves if the sources follow the large-scale structure of matter in the universe. The best-fit values obtained for the number density of proton sources are within a factor ~2 around ns 1 × 10–4Mpc–3 and depend mainly on the Auger energy calibration scale, with lower densities being preferred if the current scale is correct. The data show no significant small-scale clustering on scales smaller than a few degrees. This might be interpreted as a signature of magnetic smearing...

  8. The Lateral Trigger Probability function for the ultra-high energy cosmic ray showers detected by the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65o. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  9. Measurement of the ultra high energy cosmic ray flux from data of very inclined showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    This work describes the derivation of the energy dependent flux of ultra-high energy cosmic rays from data of very inclined air showers observed with the Pierre Auger Observatory. It focuses on the event class of very inclined air showers with zenith angles larger than 60 . The lateral ground profile of these showers is muon dominated and not radially symmetric around the shower axis due to geomagnetic deflections and other effects. The dependency of this profile on the direction, energy and mass of the cosmic ray is discussed with a mixture of detailed Monte-Carlo simulations and a simplified analytical model of the air shower cascade. It is found in agreement with other studies that the normalized shape of the muon density profile is approximately universal over the range of cosmic ray energies and masses measured at the Pierre Auger Observatory, that the amplitude of the profile is almost proportional to the cosmic ray energy, and that its shower-to-shower fluctuations are sensitive to the mass composition of the cosmic rays. (orig.)

  10. Specific energy from Auger and conversion electrons of 131I, 188Re-anti-CD20 to a lymphocyte's nucleus

    Science.gov (United States)

    Torres-García, E.; Carrillo-Cazares, T. A.

    2011-01-01

    The typical radionuclides used to label anti-CD20 in the treatment of non-Hodgkin's lymphoma are 90Y, 131I, and 188Re, with the emission of beta particles, Auger electrons, and conversion electrons for the latter two. The aim of the present work was to calculate the contribution of high linear energy transfer radiation as Auger electrons (AE) and conversion electrons (CE) of 131I and 188Re-anti-CD20 to mean specific energy into the cell nucleus by Monte Carlo simulation (MCS), so as to infer therapeutic effectiveness on a dosimetric basis. MCS was used to quantify the frequency-mean specific energy into the cell nucleus, where the cell was modeled by two concentric spheres, considering two cell models. The results showed that 10% and 33% of the mean-specific energies (z¯) per disintegration imparted to the cell nucleus for both geometries are due to AE and CE; on the other hand, if the hit of AE and CE occurs, the contribution to (z¯) is about 64% and 86% for 131I and 188Re, respectively. According to the amount of specific energy from AE and CE into the cell nucleus by positive event, they can cause catastrophic effects in the nuclear DNA in the treatment of non-Hodgkin's lymphoma with 131I, 188Re-anti-CD20.

  11. Study of ultra-energetic cosmic rays at the Pierre Auger Observatory from particle detection to anisotropy measurement

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory, still under construction in Argentina, is designed to study the cosmic rays with energies above a few EeV. The experiment combines two complementary techniques: the fluorescence light detection and the sampling of the shower with an array of detectors at ground, covering a surface of 3000 square kilometers. The calculation of the acceptance of the detector, which is of utmost importance to establish the energy spectrum, has been achieved. The method of computation of the acceptance is simple and reliable. The detection efficiency depends on the nature of primary cosmic rays, allowing to study the cosmic rays composition with the surface detector. The calculation of the cosmic rays energy spectrum has been performed, using different methods to estimate the energy of the events. A cross calibration between the fluorescence and the surface detector provides an estimation of the energy almost independent of hadronic interaction models. The study of large scale anisotropies in the cosmic rays angular distribution provides useful informations about the cosmic rays sources and the conditions of propagation. A new analysis method is presented, allowing to estimate the parameters of an underlying dipolar and quadrupolar anisotropy in the data. The method is applied to a preliminary Auger data set. (author)

  12. Characterisation of the surface over-layer of welded uranium by FIB, SIMS and Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Secondary ion mass spectrometry (SIMS), focused ion beam (FIB) milling and Auger electron spectroscopy have been used to examine the composition and surface structure of uranium welded by an electron beam. Four characteristic areas of the metal surface were designated, these being: body (unaffected by the welding process), heat affected zone (HAZ), weld edge and weld. Surface composition to a depth of a few microns was determined using SIMS profiling, and direct thickness measurements of surface over-layers on the metal were made using FIB. Marked variations in both the thickness and composition of the over-layers were found when comparing the body/HAZ, weld edge and weld material. Additionally, numerous prismatic inclusions, approximately 5 μm2, were observed at the surface of the weld material. Auger and SIMS analyses indicated these inclusions were nitro-carbides. An increased concentration of these inclusions and other elemental impurities at the margins of the weld and within the HAZ indicated that during welding a segregation of impurities from the molten metal had occurred. The results are discussed in terms of processes considered to be occurring during welding and their implications in regard to corrosion in hydrogen atmospheres.

  13. Measurement of the ultra high energy cosmic ray flux from data of very inclined showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Hans Peter

    2009-12-03

    This work describes the derivation of the energy dependent flux of ultra-high energy cosmic rays from data of very inclined air showers observed with the Pierre Auger Observatory. It focuses on the event class of very inclined air showers with zenith angles larger than 60 . The lateral ground profile of these showers is muon dominated and not radially symmetric around the shower axis due to geomagnetic deflections and other effects. The dependency of this profile on the direction, energy and mass of the cosmic ray is discussed with a mixture of detailed Monte-Carlo simulations and a simplified analytical model of the air shower cascade. It is found in agreement with other studies that the normalized shape of the muon density profile is approximately universal over the range of cosmic ray energies and masses measured at the Pierre Auger Observatory, that the amplitude of the profile is almost proportional to the cosmic ray energy, and that its shower-to-shower fluctuations are sensitive to the mass composition of the cosmic rays. (orig.)

  14. Surface compositions of atomic layer deposited Zn1−xMgxO thin films studied using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    In this paper, the authors present Auger electron spectroscopy (AES) studies of Zn1−xMgxO (ZMO) films grown via interrupted atomic-layer deposition (ALD) techniques. The ZMO films were fabricated by alternating ALD deposition of ZnO and MgO layers up to 1000 cycles. Zn1−xMgxO films with progressively decreasing Mg/Zn ratios (Mg/Zn = 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/9, and 2/8, 3/12, 4/16, and 5/20) were fabricated for this study. The AES results exhibit an abrupt drop of Mg composition on the ZMO surface when the Mg/Zn < 1/3. Additionally, the surface composition ratios of O to Mg, O to Zn, and Mg to Zn were estimated with known Auger sensitivity factors. The results indicate that Mg ions diffuse into the bulk, forming Zn1−xMgxO alloys

  15. An improved limit to the diffuse flux of ultra-high energy neutrinos from the Pierre Auger Observatory

    CERN Document Server

    Aab, Alexander; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muñiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin; Anchordoqui, Luis; Andringa, Sofia; Aramo, Carla; Aranda, Victor Manuel; Arqueros, Fernando; Arsene, Nicusor; Asorey, Hernán Gonzalo; Assis, Pedro; Aublin, Julien; Ave, Maximo; Avenier, Michel; Avila, Gualberto; Awal, Nafiun; Badescu, Alina Mihaela; Barber, Kerri B; Bäuml, Julia; Baus, Colin; Beatty, Jim; Becker, Karl Heinz; Bellido, Jose A; Berat, Corinne; Bertaina, Mario Edoardo; Bertou, Xavier; Biermann, Peter; Billoir, Pierre; Blaess, Simon G; Blanco, Alberto; Blanco, Miguel; Bleve, Carla; Blümer, Hans; Boháčová, Martina; Boncioli, Denise; Bonifazi, Carla; Borodai, Nataliia; Brack, Jeffrey; Brancus, Iliana; Bridgeman, Ariel; Brogueira, Pedro; Brown, William C; Buchholz, Peter; Bueno, Antonio; Buitink, Stijn; Buscemi, Mario; Caballero-Mora, Karen S; Caccianiga, Barbara; Caccianiga, Lorenzo; Candusso, Marina; Caramete, Laurentiu; Caruso, Rossella; Castellina, Antonella; Cataldi, Gabriella; Cazon, Lorenzo; Cester, Rosanna; Chavez, Alan G; Chiavassa, Andrea; Chinellato, Jose Augusto; Chudoba, Jiri; Cilmo, Marco; Clay, Roger W; Cocciolo, Giuseppe; Colalillo, Roberta; Coleman, Alan; Collica, Laura; Coluccia, Maria Rita; Conceição, Ruben; Contreras, Fernando; Cooper, Mathew J; Cordier, Alain; Coutu, Stephane; Covault, Corbin; Cronin, James; Dallier, Richard; Daniel, Bruno; Dasso, Sergio; Daumiller, Kai; Dawson, Bruce R; de Almeida, Rogerio M; de Jong, Sijbrand J; De Mauro, Giuseppe; Neto, Joao de Mello; De Mitri, Ivan; de Oliveira, Jaime; de Souza, Vitor; del Peral, Luis; Deligny, Olivier; Dembinski, Hans; Dhital, Niraj; Di Giulio, Claudio; Di Matteo, Armando; Diaz, Johana Chirinos; Castro, Mary Lucia Díaz; Diogo, Francisco; Dobrigkeit, Carola; Docters, Wendy; D'Olivo, Juan Carlos; Dorofeev, Alexei; Hasankiadeh, Qader Dorosti; Dova, Maria Teresa; Ebr, Jan; Engel, Ralph; Erdmann, Martin; Erfani, Mona; Escobar, Carlos O; Espadanal, Joao; Etchegoyen, Alberto; Falcke, Heino; Fang, Ke; Farrar, Glennys; Fauth, Anderson; Fazzini, Norberto; Ferguson, Andrew P; Fernandes, Mateus; Fick, Brian; Figueira, Juan Manuel; Filevich, Alberto; Filipčič, Andrej; Fox, Brendan; Fratu, Octavian; Freire, Martín Miguel; Fuchs, Benjamin; Fujii, Toshihiro; García, Beatriz; Garcia-Pinto, Diego; Gate, Florian; Gemmeke, Hartmut; Gherghel-Lascu, Alexandru; Ghia, Piera Luisa; Giaccari, Ugo; Giammarchi, Marco; Giller, Maria; Głas, Dariusz; Glaser, Christian; Glass, Henry; Golup, Geraldina; Berisso, Mariano Gómez; Vitale, Primo F Gómez; González, Nicolás; Gookin, Ben; Gordon, Jacob; Gorgi, Alessio; Gorham, Peter; Gouffon, Philippe; Griffith, Nathan; Grillo, Aurelio; Grubb, Trent D; Guardincerri, Yann; Guarino, Fausto; Guedes, Germano; Hampel, Matías Rolf; Hansen, Patricia; Harari, Diego; Harrison, Thomas A; Hartmann, Sebastian; Harton, John; Haungs, Andreas; Hebbeker, Thomas; Heck, Dieter; Heimann, Philipp; Herve, Alexander E; Hill, Gary C; Hojvat, Carlos; Hollon, Nicholas; Holt, Ewa; Homola, Piotr; Hörandel, Jörg; Horvath, Pavel; Hrabovský, Miroslav; Huber, Daniel; Huege, Tim; Insolia, Antonio; Isar, Paula Gina; Jandt, Ingolf; Jansen, Stefan; Jarne, Cecilia; Johnsen, Jeffrey A; Josebachuili, Mariela; Kääpä, Alex; Kambeitz, Olga; Kampert, Karl Heinz; Kasper, Peter; Katkov, Igor; Kégl, Balazs; Keilhauer, Bianca; Keivani, Azadeh; Kemp, Ernesto; Kieckhafer, Roger; Klages, Hans; Kleifges, Matthias; Kleinfeller, Jonny; Krause, Raphael; Krohm, Nicole; Krömer, Oliver; Kuempel, Daniel; Kunka, Norbert; LaHurd, Danielle; Latronico, Luca; Lauer, Robert; Lauscher, Markus; Lautridou, Pascal; Coz, Sandra Le; Lebrun, Didier; Lebrun, Paul; de Oliveira, Marcelo Augusto Leigui; Letessier-Selvon, Antoine; Lhenry-Yvon, Isabelle; Link, Katrin; Lopes, Luis; López, Rebeca; Casado, Aida López; Louedec, Karim; Lu, Lu; Lucero, Agustin; Malacari, Max; Maldera, Simone; Mallamaci, Manuela; Maller, Jennifer; Mandat, Dusan; Mantsch, Paul; Mariazzi, Analisa; Marin, Vincent; Mariş, Ioana; Marsella, Giovanni; Martello, Daniele; Martin, Lilian; Martinez, Humberto; Bravo, Oscar Martínez; Martraire, Diane; Meza, Jimmy Masías; Mathes, Hermann-Josef; Mathys, Sebastian; Matthews, James; Matthews, John; Matthiae, Giorgio; Maurel, Detlef; Maurizio, Daniela; Mayotte, Eric; Mazur, Peter; Medina, Carlos; Medina-Tanco, Gustavo; Meissner, Rebecca; Mello, Victor; Melo, Diego; Menshikov, Alexander; Messina, Stefano; Meyhandan, Rishi; Micheletti, Maria Isabel; Middendorf, Lukas; Minaya, Ignacio A; Miramonti, Lino; Mitrica, Bogdan; Molina-Bueno, Laura; Mollerach, Silvia; Montanet, François; Morello, Carlo; Mostafá, Miguel; Moura, Celio A; Muller, Marcio Aparecido; Müller, Gero; Müller, Sarah; Mussa, Roberto; Navarra, Gianni; Navarro, Jose Luis; Navas, Sergio; Necesal, Petr; Nellen, Lukas; Nelles, Anna; Neuser, Jens; Nguyen, Phong H; Niculescu-Oglinzanu, Mihai; Niechciol, Marcus; Niemietz, Lukas; Niggemann, Tim; Nitz, Dave; Nosek, Dalibor; Novotny, Vladimir; Nožka, Lyberis; Ochilo, Livingstone; Oikonomou, Foteini; Olinto, Angela; Pacheco, Noelia; Selmi-Dei, Daniel Pakk; Palatka, Miroslav; Pallotta, Juan; Papenbreer, Philipp; Parente, Gonzalo; Parra, Alejandra; Paul, Thomas; Pech, Miroslav; Pękala, Jan; Pelayo, Rodrigo; Pepe, Iuri; Perrone, Lorenzo; Petermann, Emily; Peters, Christine; Petrera, Sergio; Petrov, Yevgeniy; Phuntsok, Jamyang; Piegaia, Ricardo; Pierog, Tanguy; Pieroni, Pablo; Pimenta, Mário; Pirronello, Valerio; Platino, Manuel; Plum, Matthias; Porcelli, Alessio; Porowski, Czeslaw; Prado, Raul Ribeiro; Privitera, Paolo; Prouza, Michael; Purrello, Victor; Quel, Eduardo J; Querchfeld, Sven; Quinn, Sean; Rautenberg, Julian; Ravel, Olivier; Ravignani, Diego; Revenu, Benoît; Ridky, Jan; Riggi, Simone; Risse, Markus; Ristori, Pablo; Rizi, Vincenzo; de Carvalho, Washington Rodrigues; Fernandez, Gonzalo Rodriguez; Rojo, Jorge Rubén Rodriguez; Rodríguez-Frías, Maria Dolores; Rogozin, Dmytro; Rosado, Jaime; Roth, Markus; Roulet, Esteban; Rovero, Adrian; Saffi, Steven J; Saftoiu, Alexandra; Salamida, Francesco; Salazar, Humberto; Saleh, Ahmed; Greus, Francisco Salesa; Salina, Gaetano; Sánchez, Federico; Sanchez-Lucas, Patricia; Santos, Edivaldo Moura; Santos, Eva; Sarazin, Fred; Sarkar, Biswaijt; Sarmento, Raul; Sato, Ricardo; Scarso, Carlos; Schauer, Markus; Scherini, Viviana; Schieler, Harald; Schiffer, Peter; Schmidt, David; Scholten, Olaf; Schoorlemmer, Harm; Schovánek, Petr; Schröder, Frank G; Schulz, Alexander; Schulz, Johannes; Schumacher, Johannes; Sciutto, Sergio; Segreto, Alberto; Settimo, Mariangela; Shadkam, Amir; Shellard, Ronald C; Sidelnik, Iván; Sigl, Guenter; Sima, Octavian; Śmiałkowski, Andrzej; Šmída, Radomir; Snow, Gregory; Sommers, Paul; Sorokin, J; Squartini, Ruben; Srivastava, Yogendra N; Stanca, Denis; Stanič, Samo; Stapleton, James; Stasielak, Jaroslaw; Stephan, Maurice; Stutz, Anne; Suarez, Federico; Suomijärvi, Tiina; Supanitsky, A Daniel; Sutherland, Michael; Swain, John; Szadkowski, Zbigniew; Taborda, Oscar Alejandro; Tapia, Alex; Tepe, Andreas; Theodoro, Vanessa Menezes; Tiffenberg, Javier; Timmermans, Charles; Peixoto, Carlos J Todero; Toma, Gabriel; Tomankova, Lenka; Tomé, Bernardo; Tonachini, Aurelio; Elipe, Guillermo Torralba; Machado, Diego Torres; Travnicek, Petr; Ulrich, Ralf; Unger, Michael; Urban, Martin; Galicia, Jose F Valdés; Valiño, Ines; Valore, Laura; van Aar, Guus; van Bodegom, Patrick; Berg, Ad M van den; van Velzen, Sjoert; van Vliet, Arjen; Varela, Enrique; Cárdenas, Bernardo Vargas; Varner, Gary; Vasquez, Rafael; Vázquez, Jose R; Vázquez, Ricardo; Veberič, Darko; Verzi, Valerio; Vicha, Jakub; Videla, Mariela; Villaseñor, Luis; Vlcek, Brian; Vorobiov, Serguei; Wahlberg, Hernan; Wainberg, Oscar; Walz, David; Watson, Alan; Weber, Marc; Weidenhaupt, Klaus; Weindl, Andreas; Werner, Felix; Widom, Allan; Wiencke, Lawrence; Wilczyński, Henryk; Winchen, Tobias; Wittkowski, David; Wundheiler, Brian; Wykes, Sarka; Yang, Lili; Yapici, Tolga; Yushkov, Alexey; Zas, Enrique; Zavrtanik, Danilo; Zavrtanik, Marko; Zepeda, Arnulfo; Zhu, Yue; Zimmermann, Benedikt; Ziolkowski, Michael; Zuccarello, Francesca

    2015-01-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultra-high energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time-structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins $60^\\circ-75^\\circ$ and $75^\\circ-90^\\circ$ as well as for upward-going neutrinos, are combined to give a single limit. The $90\\%$ C.L. single-flavor limit to the diffuse flux of ultra-high energy neutrinos with an $E^{-2}$ spectrum in the energy ra...

  16. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Anzalone, A; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Bäcker, T; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Beatty, J J; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Caballero-Mora, K S; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Clay, R W; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Diaz, J C; Castro, M L Díaz; Diep, P N; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Tapia, I Fajardo; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Gascon, A; Gemmeke, H; Gesterling, K; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Gookin, B; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Guzman, A; Hague, J D; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Mićanović, S; Micheletti, M I; Miller, W; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mueller, S; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; ‡, G Navarra; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Parsons, R D; Pastor, S; Paul, T; Pech, M; Pękala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Phan, N; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; Robledo, C; de Carvalho, W Rodrigues; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tamashiro, A; Tapia, A; Tartare, M; Taşcău, O; Ruiz, C G Tavera; Tcaciuc, R; Tegolo, D; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tiwari, D K; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Winnick, M G; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Silva, M Zimbres; Ziolkowski, M

    2011-01-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an extensive air shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10^{17} and 10^{19} eV and zenith angles up to 65 degs. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte-Carlo results sho...

  17. Development and featuring of hemispherical photomultipliers for cosmic ray detection - calibration of surface detectors and analysis of horizontal showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The large photomultipliers (PMT) are currently used in astro-particle and neutrino experiments where they have to detect low levels of light. We have studied and characterised large PMTs developed by the PHOTONIS Group Company. The first part of this thesis is dedicated to the full characterization of two types of multipliers currently used in large PMTs. Then, we present results of a new photocathode process, applied on the XPI805 (PMT used in the Pierre Auger Observatory) in order to improve the quantum efficiency. Finally, we study the PMT diameter influence on main parameters (5, 8 and 10 inches). The second part is devoted to the study of the water Cerenkov tank (WCD) response to the shower particles and the horizontal air showers analysis with the Pierre Auger Observatory. The main parameters of a WCD simulation developed in the Auger IPN group were calibrated with several measurements on vertical and inclined muons, performed on dedicated test tanks. The kind of detector used in the surface detector allows detecting very inclined events with a good sensitivity (zenith angle superior to 70 degrees). We have established specific methods to analyze these events (selection and reconstruction). These methods were applied to the Auger data in order to obtain the energy spectrum of the horizontal events. Finally, we detailed two methods to test directly the hadronic models predictions by studying the air showers muonic component. (author)

  18. Auger electron, electron energy loss and secondary electron emission spectroscopic studies on the oxidation of zirconium at high temperatures and room temperature

    International Nuclear Information System (INIS)

    Auger electron (AES), electron energy loss (EELS) and secondary electron emission spectroscopy (SES) have been used to investigate the surface oxidation of zirconium at room temperature and high temperatures, 773-973 K, under low oxygen pressures 1.3 x 10-5 - 1.3 x 10-3 Pa. The kinetic energies of the Auger and the secondary electrons and the electron losses by single electron excitations are explained by the electronic structure in the core and the valence states of the metal and the oxide of zirconium. The energy loss by the collective excitation of plasmon is also observed in the EELS measurement for the metal and the oxide surface. The increase in the relative peak-to-peak height of the oxygen Auger transition and of the zirconium Auger transition by oxidation at high temperature does not depend simply on the oxygen exposure represented by the product of oxygen pressure and exposure time, i.e. exposure in Langmuir, because of the dynamic competition between surface processes and the diffusion process of oxygen into the bulk. The rate of oxide growth is found to be parabolic at high temperature (773 K) and at 1.3 x 10-5 Pa. (Author)

  19. An upper limit to the photon fraction in cosmic rays above 10(19) eV from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J. C.; Aramo, C.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Bacelar, J.; Baecker, T.; Badagnani, D.; Barbosa, A. F.; Barbosa, H. M. J.; Barkhausen, M.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Bluemer, H.; Boghrat, P.; Bohacova, M.; Bonifazi, C.; Bonino, R.; Boratav, M.; Brack, J.; Brunet, J. M.; Buchholz, P.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Capdevielle, J. N.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Claes, D.; Clark, P. D. J.; Clay, R. W.; Clay, S. B.; Connolly, B.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Cronin, J.; Dagoret-Campagne, S.; Quang, T. Dang; Darriulat, P.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Carvalho, L. A.; De Donato, C.; de Jong, S. J.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, M. A. L.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Dobrigkeit, C.; D'Olivo, J. C.; Dornic, D.; Dorofeev, A.; Dova, M. T.; D'Urso, D.; DuVernois, M. A.; Engel, R.; Epele, L.; Escobar, C. O.; Etchegoyen, A.; Ewers, A.; San Luis, P. Facal; Falcke, H.; Fauth, A. C.; Fazio, D.; Fazzini, N.; Fernandez, A.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fokitis, E.; Fonte, R.; Fuhrmann, D.; Fulgione, W.; Garcia, B.; Garcia-Pinto, D.; Garrard, L.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Geranios, A.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gobbi, F.; Gold, M. S.; Albarracin, F. Gomez; Berisso, M. Gomez; Herrero, R. Gomez; do Amaral, M. Goncalves; Gongora, J. P.; Gonzalez, D.; Gonzalez, J. G.; Gonzalez, M.; Gora, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A.; Grunfeld, C.; Grupen, C.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Hamilton, J. C.; Harakeh, M. N.; Harari, D.; Harmsma, S.; Hartmann, S.; Harton, J. L.; Healy, M. D.; Hebbeker, T.; Heck, D.; Hojvat, C.; Homola, P.; Hoerandel, J.; Horneffer, A.; Horvat, M.; Hrabovsky, M.; Iarlori, M.; Insolia, A.; Kaducak, M.; Kalashev, O.; Kampert, K. H.; Keilhauer, B.; Kemp, E.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Kolotaev, Y.; Kopmann, A.; Kroemer, O.; Kuhlman, S.; Kuijpers, J.; Kunka, N.; Kusenko, A.; Lachaud, C.; Lago, B. L.; Lebrun, D.; LeBrun, P.; Lee, J.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Longo, G.; Lopez, R.; Aguera, A. Lopez; Lucero, A.; Maldera, S.; Malek, M.; Maltezos, S.; Mancarella, G.; Mancenido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Martello, D.; Martinez, N.; Martinez, J.; Martinez, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurin, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, G.; Medina, M. C.; Tanco, G. Medina; Meli, A.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Mostafa, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Thi, T. Nguyen; Nichol, R.; Nierstenhoefer, N.; Nitz, D.; Nogima, H.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Ohnuki, T.; Olinto, A.; Oliveira, L. F. A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ostapchenko, S.; Otero, L.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Patel, M.; Paul, T.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Ngoc, D. Pham; Thi, T. N. Pham; Piegaia, R.; Pierog, T.; Pisanti, O.; Porter, T. A.; Pouryamout, J.; Prado, L.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Reis, H. C.; Reucroft, S.; Revenu, B.; Ridky, J.; Risi, A.; Risse, M.; Riviere, C.; Rizi, V.; Robbins, S.; Roberts, M.; Robledo, C.; Rodriguez, G.; Frias, D. Rodriguez; Martino, J. Rodriguez; Rojo, J. Rodriguez; Ros, G.; Roulet, E.; Rovero, A. C.; Rosado, J.; Roth, M.; Roucelle, C.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santos, E. M.; Sarkar, S.; Sato, R.; Scherini, V.; Schmidt, T.; Scholten, O.; Schovanek, P.; Schuessler, F.; Sciutto, S. J.; Scuderi, M.; Semikoz, D.; Sequeiros, G.; Shellard, R. C.; Siffert, B. B.; Sigl, G.; Skelton, P.; Slater, W.; De Grande, N. Smetniansky; Smialkowski, A.; Smida, R.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Ticona, R.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tonachini, A.; Torresi, D.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Tunnicliffe, V.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Van, T. Vo; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Waldenmaier, T.; Walker, P.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wiebusch, C.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Zha, M.; Ziolkowski, M.

    2007-01-01

    An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies greater than 10(19) eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by obs

  20. 45-day safety screening results and final report for Tank 241-BX-106, auger samples 95-AUG-049 and 95-AUG-050

    International Nuclear Information System (INIS)

    Two Auger Samples from tank 241-BX-106 were received at the 222-S Laboratory and underwent safety screening analyses - differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), total alpha analysis, and bulk density measurements - in accordance with the sampling and analysis plan

  1. 60-day safety screen results and final report for tank 241-C-111, auger samples 95-Aug-002, 95-Aug-003, 95-Aug-016, and 95-Aug-017

    International Nuclear Information System (INIS)

    This report presents the details of the auger sampling events for underground waste tank C-111. The samples were shipped to the 222-S laboratories were they underwent safety screening analysis and primary ferricyanide analysis. The samples were analyzed for alpha total, total organic carbon, cyanide, Ni, moisture, and temperature differentials. The results of this analysis are presented in this document

  2. Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory

    CERN Document Server

    Homola, P; Engel, R; Gora, D; Pekala, J; Wilczynska, B; Wilczynski, H

    2006-01-01

    Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and initiate a preshower, i.e. a particle cascade before entering the atmosphere. We compare the preshower characteristics at the southern and northern sites of the Pierre Auger Observatory. In addition to a shift of the preshower patterns on the sky due to the different pointing of the local magnetic field vectors, the fact that the northern Auger site is closer to the geomagnetic pole results in a different energy dependence of the preshower effect: photon conversion can start at smaller energies, but full conversion is reached for the whole sky at higher energies compared to the southern Auger site. We show how the complementary preshower features at the two sites can be used to search for ultra-high energy photons among cosmic rays. In particular, the different preshower characteristics at the northern Auger site may provide an elegant and unambiguous confirmation if a photon signal is detected at the southern site.

  3. The determination of carbon, nitrogen and oxygen in TiCsub(x)Nsub(y)Osub(z) with the Auger electron spectroscopy (AES)

    International Nuclear Information System (INIS)

    The possibility of determining the carbon, nitrogen and oxygen contents in TiCsub(x)Nsub(y)Osub(z) with the Auger-electron-spectroscopy (AES) is discussed. As an example the concentration dependence over the cross section of 1 μm thick TiN-layers is presented. (orig.)

  4. Resonant Auger decay of Ar 2p3/2-14s and 2p3/2-14p states excited by electron impact

    International Nuclear Information System (INIS)

    Auger spectra of resonantly excited 2p3/2-14s and 2p3/2-14p states in argon were measured by (e,2e) technique. The 99.2-eV scattered electrons were detected in coincidence with L3-M23M23 Auger electrons, and the experiment was performed at 343.6- and 344.9-eV electron impact to tune the energy loss to the energy of the dipole-allowed and the dipole-forbidden excitations, respectively. The resonant Auger spectra are obtained upon subtraction of the overlapping signal due to the outer-shell ionization, which was recorded at 340-eV electron-impact energy. The most intense groups of Auger transitions from 2p3/2-14s (J=1,2) and 2p3/2-14p (J=0,1,2,3) states are identified by comparison with the results of the two-step model, based on distorted-wave Born approximation with exchange and multiconfiguration descriptions of the relaxed states. The 4 s spectrum displays a substantially larger shake-up contribution than the one observed in photoexcitation experiments, which may be explained by the interference of the resonant decay path with the direct ionization excitation of the Ar 3p subshell. The majority of the observed 4p signal is assigned to the monopole and quadrupole excitations of the ground state.

  5. The influence from low energy x-rays and Auger electrons on 4πβ-γ coincidence measurements of electron-capture-decaying nuclides

    International Nuclear Information System (INIS)

    The influence of low energy x-rays and Auger electrons emitted by electron capture nuclides on 4πβ-γ coincidence measurements is investigated. Under the assumption that these radiations are not detected, correction terms are developed for a number of nuclides that are in common use. (author)

  6. Influence from low energy x-rays and Auger electrons on 4. pi beta. -. gamma. coincidence measurements of electron-capture-decaying nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Funck, E.; Larsen, A.N. (Physikalisch-Technische Bundesanstalt, Braunschweig (Germany, F.R.). Abt. Atomphysik; Commission of the European Communities, Geel (Belgium). Central Bureau for Nuclear Measurements)

    1983-03-01

    The influence of low energy x-rays and Auger electrons emitted by electron capture nuclides on 4..pi beta..-..gamma.. coincidence measurements is investigated. Under the assumption that these radiations are not detected, correction terms are developed for a number of nuclides that are in common use.

  7. An innovative apparatus provided with a cutting auger for producing short logs for biomass energy from fast-growing tree species

    Energy Technology Data Exchange (ETDEWEB)

    Colorio, G.; Tomasone, R.; Cedrola, C.; Pagano, M.; Pochi, D.; Fanigliulo, R.; Sperandio, G. [Council for Research in Agriculture, Agricultural Engineering Research Unit, Rome (Italy)

    2010-07-01

    This paper reported on a new cutting mechanism that cuts fresh wood into small pieces instead of wood chips in order to avoid the problem of fermentation that occurs in storage. The prototype cutting device performs a gradual and oblique cut. It consists of a large auger in which a knife is inserted on the outer edge of the helicoid. Tree trunks up to 20 cm in diameter are fed perpendicularly into the machine and are pushed along the axis where slices are cut off against a fixed sharp-edged counter blade. The cylinder enclosing the auger is the main frame of the machine, and is closed at one end, where a heavy flywheel delivers the energy coming from the tractor's power take-off (PTO). The wood pieces ranging in length from 4 to 19 cm exit through the opposite end. The auger is 700 mm in diameter with a 300 mm pitch spacing. The logs are pushed into the machine by counter-rotating rollers placed in the feed funnel. Tests were conducted to determine the operative performance and power requirements of the machine. The cutting method requires less power compared to wood chipping machines. Work capacity is greater when producing slices instead of chips and the system produces less noise and fewer vibrations. The auger reaches a constant velocity of 200 RPM and can easily cut fresh wood of different species.

  8. Study of the performance of the photovoltaic system of the Pierre Auger Observatory and proposal for an upgrade

    International Nuclear Information System (INIS)

    Full text: Each one of the 1660 stations of the Surface Detector of the Pierre Auger Observatory is powered by a 100W stand-alone photovoltaic (PV) system composed of a solar panel and two batteries in series on a 24 V setup. Each station continuously stores information by use of a data logger and a radio link. Data is recorded and transmitted roughly every 6 minutes to the Central Data Acquisition Building. In addition to cosmic ray related data, PV performance parameters are also monitored. As a consequence, Auger constitutes an interesting setup for PV stand-alone systems research. In this work, we present the control processes used to ensure optimal performance of the solar power system in the Auger Observatory and propose an upgrade to ensure a better system performance. Most of the work is centered on the batteries, which are the most sensitive elements of the power chain. The batteries are of the Valve Regulated Lead-Acid (VRLA) type, manufactured by Moura-Brazil. A dedicated system has been designed and built in order to qualify the batteries before installation in the field. During regular operation, the monitoring data are exhaustively analyzed in order to detect failures. A set of analysis tools has been developed, both for anomalies detection and for lifetime predictions. From the reported analysis, it has been possible to identify some aspects of the adopted PV system that may be improved, mainly on the batteries voltage unbalance, which rises on charging two batteries in series on a 24V setup. We show that the same behavior is observed in laboratory tests. In order to reduce battery failures, we proposed and tested the detector electronics performance when working with batteries in parallel on a 12V setup. The main changes on the solar power system of the detector are the connections of the solar panel and batteries (from 24V to 12V), the replacement of the charge controller and the introduction a low power DC-DC converter. Our results show that this

  9. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Science.gov (United States)

    Rezaee, Mohammad; Hunting, Darel J.; Sanche, Léon

    2015-01-01

    Purpose The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by 125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results For a single decay of 125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions Ultra-low-energy electrons (nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric

  10. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Collica, Laura [Univ. of Milan (Italy); Paris Diderot Univ. (France)

    2014-01-01

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.

  11. Atmospheric aerosols at the Pierre Auger Observatory: characterization and effect on the energy estimation for ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    The Pierre Auger Observatory, located in the Province of Mendoza in Argentina, is making good progress in understanding the nature and origin of the ultra-high energy cosmic rays. Using a hybrid detection technique, based on surface detectors and fluorescence telescopes, it provides large statistics, good mass and energy resolution, and solid control of systematic uncertainties. One of the main challenges for the fluorescence detection technique is the understanding of the atmosphere, used as a giant calorimeter. To minimize as much as possible the systematic uncertainties in fluorescence measurements, the Auger Collaboration has developed an extensive atmospheric monitoring program. The purpose of this work is to improve our knowledge of the atmospheric aerosols, and their effect on fluorescence light propagation. Using a modelling program computing air mass displacements, it has been shown that nights with low aerosol concentrations have air masses coming much more directly from the Pacific Ocean. For the first time, the effect of the aerosol size on the light propagation has been estimated. Indeed, according to the Ramsauer approach, large aerosols have the largest effect on the light scattering. Thus, the dependence on the aerosol size has been added to the light scattering parameterizations used by the Auger Collaboration. A systematic overestimation of the energy and of the maximum air shower development Xmax is observed. Finally, a method based on the very inclined laser shots fired by the Auger central laser has been developed to estimate the aerosol size. Large aerosol sizes ever estimated at the Pierre Auger Observatory can now be probed. First preliminary results using laser-shot data collected in the past have identified a population of large aerosols. (author)

  12. Scanning Auger and XPS studies of fracture surfaces of B4C hot pressed with excess carbon

    International Nuclear Information System (INIS)

    A series of boron carbide materials was hot pressed with 0-7% excess carbon. The strength of each material was determined by four point bending, and found to decrease from about 600 MPa to 300 MPa as the carbon content increased from 0% to 7%. Diamond indentation yielded hardness values that decreased from 28.3 to 25.0 GPa and toughness values that increased over the same carbon range. Each sample was fractured in situ in ultrahigh vacuum (UHV) and examined by scanning Auger microanalysis (SAM) and XPS to determine both the elemental and chemical state distributions. For the samples with excess carbon, localized carbon rich regions are observed on fracture surfaces by SAM. XPS reveals a 50% enhancement of excess carbon on the fracture surface compared to the bulk for the sample with 7% excess carbon

  13. Electronic Doppler effect in resonant Auger decay of CO molecules upon excitation near a shake-up Π resonance

    International Nuclear Information System (INIS)

    We present an experimental observation of the electronic Doppler effect in resonant Auger spectra upon core excitation slightly above the carbon K edge of the CO molecule. Thus the electronic Doppler effect has been identified in above-threshold excitation, and in a transition of Π symmetry. Ab initio calculations of the potential energy curves of the relevant states of CO and the wave packet technique have been employed to provide a theoretical background to the experimental studies. The weak feature around 299.4 eV in the photoabsorption spectrum, whose decay has been investigated by the present experiment, is assigned to double (core-valence) excitations to C 1s shake-up states |1sC-11π-1π*2> with a strong dissociative character, and the Doppler splitting of the atomic peak has been reproduced by the simulation

  14. Measurements of the Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory and their Composition Implications

    Science.gov (United States)

    de Souza, V.

    We describe how the analysis of air showers detected by the Pierre Auger Observatory leads to an accurate determination of the depth of maximum (Xmax). First, the analysis of the air-shower which leads to the reconstruction of Xmax is discussed. The properties of the detector and its measurement biases are treated and carefully taken into consideration. The Xmax results are interpreted in terms of composition, where the interpretation depends mainly on the hadronic interaction models. A global fit of the Xmax distribution yields an estimate of the abundance of four primaries species. The analysis represents the most statistically significant composition information ever obtained for energies above 1017.8 eV. The scenario that emerges shows no support for a strong flux of iron nuclei and a strong energy dependence of the proton fraction.

  15. 45-Day safety screen results for Tank 241-C-201, Auger samples 95-AUG-025 and 95-AUG-026

    International Nuclear Information System (INIS)

    Two auger samples from tank 241-C-201 (C-201) were received by the 222-S Laboratories and underwent safety screening analysis, consisting of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha activity. Analytical results for the DSC analyses of both samples exceeded the notification limit of 481 J/g (dry weight basis). As well, the TGA analyses for both samples were less than the safety screening notification limit (notification is made if the sample is analyzed at less than 17 percent water). Notification of both of these occurrences was made on May,15, 1995, and secondary analysis of total organic carbon (TOC) was initiated. These TOC analysis results are also included in this report

  16. Electronic many-body effects at metal-organic interfaces studied with PES, NEXAFS and resonant Auger Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haeming, M.; Schoell, A.; Reinert, F. [Universitaet Wuerzburg, Experimentelle Physik VII, D-97074 Wuerzburg (Germany); Umbach, E. [Karlsruhe Institut fuer Technologie (KIT) D-76021 Karlsruhe (Germany)

    2011-07-01

    Electronic many-body and correlation effects have been studied intensively at transition metal compounds with localized d/f electrons. They are related to interesting material properties, e.g. Mott metal-insulator transitions, charge transfer satellites and superconductivity. Recent investigations of graphene,{sup 1} C{sub 60},{sup 2} and TTF-TCNQ{sup 3} showed that many-body effects can also be important for organic thin films. We have investigated several organic thin films (PTCDA, PTCDI, BTCDA, BTCDI, SnPc) deposited on a Ag(111) surfaces with photoelectron spectroscopy, NEXAFS and resonant Auger Raman spectroscopy. Our data provide significant indications for electronic many-body effects involving substrate-adsorbate charge transfer, which can be understood by concepts developed for charge transfer compounds. These results give insight into new, interesting aspects of physics at metal-organic interfaces. {sup 1} I.

  17. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.

    Science.gov (United States)

    Gessner, Oliver; Gühr, Markus

    2016-01-19

    The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and

  18. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy

    Science.gov (United States)

    Ponomaryov, Semyon S.; Yukhymchuk, Volodymyr O.; Lytvyn, Peter M.; Valakh, Mykhailo Ya

    2016-02-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%.

  19. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6 x 1019 eV by analyzing cosmic rays with energies above E ≥ 5 x 1018 eVarriving within an angular separation of approximately 15 circle. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources. (orig.)

  20. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 × 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies