WorldWideScience

Sample records for auger electron spectrum

  1. Many-electron effect in the resonant L23-M23V Auger-electron spectrum of Ti metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    Above the L23 absorption edge the L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectrum of Ti metal shows a normal L 23 -M 23 V Auger decay spectrum at a constant kinetic energy (K.E.). Here LX and MY are the atomic shells Lx and My, respectively. Apart from a weak spectral feature of the L2-M23V Auger transition appearing around the L2 edge, the RAES spectra of Ti meal show a very little difference between the L2 and L3 regions [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421]. It is shown that the time scale of relaxation of the resonantly excited L23-hole state to the L23-electron ionized state is much shorter than that of the L23-hole decay so that the L 23 -M 23 V RAES spectrum of Ti metal resembles much the normal L 23 -M 23 V Auger decay spectrum. The relaxation of the resonantly excited L23-hole state to the fully relaxed L23-hole state before the L23-hole decays, explains the extra width which is the primary cause of the discrepancy between the experimental high resolution near edge X-ray absorption spectroscopy (XAS) spectrum of Ti metal and the one calculated by the particle-hole Green's function including the Coulomb exchange interaction between the 2p hole and the 3d electron. The time scale of relaxation of the L3V two-hole state created by the L2-L3V Coster-Kronig (CK) decay to the single L3-hole state is much shorter than that of the L3-hole decay so that the L2-L3V-L3-M23V CK preceded Auger decay spectrum resembles much the L3-M23V Auger decay one

  2. Xe N4,5O-OOO satellite Auger spectrum

    International Nuclear Information System (INIS)

    Partanen, L; Huttula, M; Heinaesmaeki, S; Aksela, H; Aksela, S

    2007-01-01

    The N 4,5 O 1,2,3 -O 1,2,3 O 2,3 O 2,3 Auger transitions, appearing as a satellite structure in the N 4,5 -OO Auger spectrum of xenon, were studied in detail. By measuring the N 4,5 O-OOO satellite Auger spectrum both below and above the 4p ionization threshold, we were able to separate the satellite production via the direct photo-double ionization and the Auger cascade from the 4p states. The N 3 -N 4,5 O 2,3 Coster-Kronig transitions and the subsequent N 4,5 O 2,3 -O 2,3 O 2,3 O 2,3 satellite Auger transitions were calculated using the HF wavefunctions and the most intense satellite lines were assigned. The Xe N 4,5 O-OOO satellite spectrum was compared with the previously studied Kr M 4,5 N-NNN satellite Auger spectrum. The 5s orbital in Xe was found to reveal more pronounced electron correlation than the 4s orbital in Kr

  3. A computer simulation of auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ragheb, M S; Bakr, M H.S. [Dept. Of Accellerators and Ion Sources, Division of Basic Nuclear Sciences, NRC, Atomic Energy Authority, (Egypt)

    1997-12-31

    A simulation study of Auger electron spectroscopy was performed to reveal how far the dependency between the different parameters governing the experimental behavior affects the peaks. The experimental procedure followed by the AC modulation technique were reproduced by means of a computer program. It generates the assumed output Auger electron peaks, exposes them to a retarding AC modulated field and collects the resulting modulated signals. The program produces the lock-in treatment in order to demodulate the signals revealing the Auger peaks. It analyzes the spectrum obtained giving the peak positions and energies. Comparison between results of simulation and the experimental data showed good agreement. The peaks of the spectrum obtained depend upon the amplitude, frequency and resolution of the applied modulated signal. The peak shape is effected by the rise time, the slope and the starting potential of the retarding field. 4 figs.

  4. Many-electron effect in the resonant Auger electron spectroscopy spectra of adsorbates

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that a resonantly excited core hole state in a chemisorbed molecule such as CO/Ni, CO/Pd, and CO/Pt relaxes to a fully relaxed one, i.e., the ionized core hole state of the smallest binding energy observed by photoelectron spectroscopy, before the core hole decays so that the resonant Auger electron spectroscopy (RAES) spectrum shows the normal Auger decay spectrum. It is shown by a many-body theory that the Auger peaks on the higher kinetic energy (K.E.) side in the RAES or AES spectrum, i.e., so called back-bonding peaks, are the two-hole states consisting of a valence hole and a hole in the adsorbate-substrate hybrid states below the substrate Fermi level. The latter hole is the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the back-bonding peak energy and the single valence-hole energy provides an important information about the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the RAES spectrum measured at the resonance energy and the AES spectrum measured at far above the ionization limit shows the competition between relaxation and decay of shakeup satellites such as the charge transfer (CT) shakeup. The relaxation rate of the CT shakeup state can be determined by Auger-photoelectron coincidence spectroscopy (APECS)

  5. The participant Coster-Kronig preceded Auger transition in the resonant L2,3-M2,3V Auger electron spectrum of Ti metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    The L 2,3 -M 2,3 V resonant Auger electron spectroscopy (RAES) spectrum of Ti metal measured by Le Fevre et al. [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421] is analyzed in the light of relaxation and decay of the resonantly excited L 2,3 -hole states. The relaxation time of the resonantly excited L 2,3 -hole state to the fully relaxed (screened) one is much shorter than the L 2,3 -hole Auger decay time, whereas the participant Coster-Kronig (CK) decay time of the resonantly excited L 2 -hole state to the fully relaxed L 3 -hole state at the L 2 resonance is as short as the relaxation time of the resonantly excited L 2 -hole state to the fully relaxed one. The excited electron is predominantly either rapidly decoupled from the L 2,3 -hole decay or annihilated by the participant CK decay. Thus, near the L 2,3 edges the L 2,3 -M 2,3 V RAES spectral peak appears at constant kinetic energy. The L 2,3 -M 2,3 V RAES spectrum shows a normal L 2,3 -M 2,3 V Auger decay profile not modulated by the density of empty d states probed by the resonant excitation. Not only the relaxation time but also the participant CK decay time depends on photon energy because they depend on the density of empty d states probed by the resonant excitation. As a result, the L 2,3 X-ray absorption spectroscopy spectral line broadening depends on photon energy

  6. Differential Auger spectrometry

    International Nuclear Information System (INIS)

    Strongin, M.; Varma, M.N.; Anne, J.

    1976-01-01

    A differential Auger spectroscopy method is given for increasing the sensitivity of micro-Auger spectroanalysis of the surfaces of dilute alloys, by alternately periodically switching an electron beam back and forth between an impurity free reference sample and a test sample containing a trace impurity. The Auger electrons from the samples produce representative Auger spectrum signals which cancel to produce an Auger test sample signal corresponding to the amount of the impurity in the test samples

  7. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.

    1975-01-01

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  8. Ion induced Auger spectroscopy

    International Nuclear Information System (INIS)

    Thomas, E.W.; Legg, K.O.; Metz, W.A.

    1980-01-01

    Auger electron spectra are induced by impact of heavy ions (e.g. Ar + ) on surfaces; it has been suggested that analysis of such spectra would be a useful technique for surface analysis. We have examined the Auger spectra for various projectile-target combinations and present as representative data the spectra for 100 keV Ar + impact on Al, Cr, Mn, Fe and Co. For a projectile incident on a species of higher nuclear charge the spectrum is dominated by Auger lines from the projectile, broadened considerably by the Doppler effect due to the projectile's motion. The spectra are not characteristic of the target and therefore offer no opportunity for surface analysis. For a projectile incident on a target of lower nuclear charge the spectrum is that of the target species but the spectrum is consistent with the source being sputtered excited atoms; the Auger electrons do not come from the surface. We conclude that the ion induced Auger spectra are in general not a convenient method for surface analysis. (orig.)

  9. Experimental studies of fundamental aspects of Auger emission process in Cu(100) and Ag(100)

    Science.gov (United States)

    Joglekar, Prasad Vivek

    Auger spectra at the low energies are accompanied by large contributions unrelated to the Auger transition. The Auger unrelated contributions can obscure the Auger peak and affect the quantitative analysis of the materials under investigation. In this dissertation we present a methodology to measure experimentally the Auger unrelated contributions and eliminate it from the Auger spectrum for obtaining an Auger spectrum inherent to the Auger transition. We used Auger Photoelectron Coincidence Spectroscopy (APECS) to obtain the Auger spectrum. APECS measures the Auger spectrum in coincidence with the core energy level and thus discriminating the contributions arising from secondary electrons and electrons arising from the non-Auger transition. Although APECS removes most of the Auger unrelated contributions, it cannot distinguish the contribution which is measured in coincidence with the inelastically scattered valence band electrons emitted at the core energy. To measure this inelastically scattered valence band contribution we did a series of measurements on Ag(100) to study NVV Auger spectrum in coincidence with 4p energy level and Cu(100) to study MVV Auger spectrum in coincidence with 3p energy level. The coincidence detection of the core and Auger-valence electrons was achieved by the two cylindrical mirror analyzers (CMAs). One CMA was fixed over a range of energies in between VB and core energy level while other CMA scanned corresponding low energy electrons from 0 to70eV. The spectrums measured were fit to a parameterized function which was extrapolated to get an estimate of inelastically scattered valence band electrons. The estimated contribution was subtracted for the Ag and Cu APECS spectrum to obtain a spectrum solely due to Auger transition with inelastically scattered Auger electron and multi Auger decay contributions associated with the transition. In the latter part of this dissertation, we propose a theoretical model based on the spectral intensity

  10. Many-electron effect in the Si K-LL resonant Auger-electron spectroscopy spectra of the Si delta layer in GaAs

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    The Si K-LL resonant Auger-electron spectroscopy (RAES) spectra of silicon delta dopped layers in GaAs with very thin capping layers show both normal Auger decay and resonant Auger decay, when the core-level electron is excited to the conduction band. The resonant Auger peak kinetic energy (KE) shows no dispersion with photon energy, except when excited by the highest energy photons [M.D. Jackson, J.M.C. Thornton, D. Lewis, A. Robinson, M. Fahy, A. Aviary, P. Weightman, Phys. Rev. B71 (2005) 075313]. The RAES spectra are analyzed using a many-body theory. The presence of resonant Auger decay and no dispersion of resonant Auger peak KE with photon energy is explained in terms of the relaxation of a metastable excited core-hole state to a stable one on the time scale of core-hole decay. The excited electron in the conduction band either delocalizes rapidly leaving the ionized Si to decay by a normal Auger decay or drops to a state localized in the Si delta layer before the core-hole decays so that the RAES spectrum has both normal Auger decay and resonant Auger decay. As a result of the relaxation, the resonant Auger peak KE does not show any dispersion with photon energy. The variations with photon energy of the normal or resonant Auger peak intensity, KE, and width are explained in a consistent manner by a many-body theory

  11. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    Science.gov (United States)

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  12. Effect of relaxation and decay of a charge transfer shakeup satellite on Auger-electron spectroscopy spectra and Auger-photoelectron coincidence spectroscopy spectra of adsorbates

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    An electron excited to an unoccupied part of adsorbate-substrate hybrid states in a chemisorbed molecule by a resonant core electron excitation or charge transfer (CT) shakeup may delocalize on time scale of core-hole decay so that the excited core-hole state relaxes partly or completely to a fully relaxed one. The Auger decay of the fully relaxed core-hole state via the relaxation of the excited one introduces an additional feature in the resonant Auger-electron spectroscopy (RAES) spectrum and the AES spectrum. However, the additional feature in the RAES spectrum is a normal AES spectrum by decay of the fully relaxed core-hole state, whereas the one in the AES spectrum is the AES spectrum by decay of the fully relaxed core-hole state broadened by the photoelectron spectroscopy (PES) CT shakeup satellite weighted by the branching ratio of the relaxation width. The discrepancies between the AES spectrum measured at high above the ionization threshold and the additional feature in the RAES spectrum consist of the symmetric-like part by the decay of the fully relaxed core-hole state via the relaxation of the CT shakeup state and the asymmetric part by the direct decay of the shakeup states. The asymmetric part increases with a decrease in the hybridization strength. This explains the variation with the hybridization strength in the discrepancies between the RAES spectra and the AES spectra of chemisorbed molecules such as CO/Ni, CO/Cu and CO/Ag. A comparison of the singles PES spectrum with the one measured in coincidence with the AES main line of a selected kinetic energy (KE) provides the delocalization rate of the excited electron in the CT shakeup state as a function of photoelectron KE. The coincidence measurement to obtain the partial singles PES spectrum is discussed

  13. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  14. Photoion Auger-electron coincidence measurements near threshold

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Keller, N.; Liljeby, L.; Short, R.T.; Sellin, I.A.; Lindle, D.W.

    1990-01-01

    The vacancy cascade which fills an atomic inner-shell hole is a complex process which can proceed by a variety of paths, often resulting in a broad distribution of photoion charge states. We have measured simplified argon photoion charge distributions by requiring a coincidence with a K-LL or K-LM Auger electron, following K excitation with synchrotron radiation, as a function of photon energy, and report here in detail the argon charge distributions coincident with K-L 1 L 23 Auger electrons. The distributions exhibit a much more pronounced photon-energy dependence than do the more complicated non-coincident spectra. Resonant excitation of the K electron to np levels, shakeoff of these np electrons by subsequent decay processes, double-Auger decay, and recapture of the K photoelectron through postcollision interaction occur with significant probability. 17 refs

  15. Modeling of LMM-MVV Auger-Auger Coincidence Spectra From Solids

    Science.gov (United States)

    Sundaramoorthy, R.; Weiss, A. H.; Hulbert, S. L.; Bartynski, R. A.

    2006-03-01

    Atoms that are highly excited due to the presence of a hole in an inner shell often relax via an Auger transition. This auto-ionizing process results in a final state with two or more holes from an Auger cascade. We present results of the direct measurements of the second and third Auger decays in this sequence. We have measured the Mn MVV Auger spectra from a single-crystal sample of MnO in time coincidence with Auger electrons emitted from prior Mn LMM Auger decays and find these to be much wider than the MVV spectrum measured in time coincidence with M core photoelectron emission. We present a model which attributes the increased energy width of the MVV transitions that follow LMM decays to the rearrangement of ``not so innocent'' bystander hole(s) in the valence band. The energetics of the Auger cascade process are modeled mathematically in terms of correlation integral(s) and convolution integral(s) over the valence band density of states. Comparisons with recent Auger-Auger coincidence studies of Ag and Pd will be made. Acknowledgements: Welch Foundation, NSF DMR98-12628, NSF DMR98-01681, and DOE DE-AC02-98CH10886.

  16. Auger electron emitters: Insights gained from in vitro experiments

    International Nuclear Information System (INIS)

    Makrigiorgos, G.; Adelstein, S.J.; Kassis, A.I.

    1990-01-01

    This paper outlines the evolution of the current rationale for research into the biological effects of tissue-incorporated Auger electron emitters. The first section is a brief review of the research conducted by several groups in the last fifteen years. The second section describes the in vitro model used in our studies, dosimetric calculations, experimental techniques and recent findings. The third section focuses on the use of Auger electron emitters as in vitro microprobes for the investigation of the radiosensitivity of distinct subcellular components. Examination of the biological effects of the Auger electron emitter 125 I located in different cellular compartments of a single cell line (V 79 hamster lung fibroblast) verifies that DNA is the critical cell structure for radiation damage and that the sensitive sites are of nanometer dimensions. The data from incorporation of several Auger electron emitters at the same location within DNA suggest that there are no saturation effects from the decay of these isotopes (i.e. all the emitted energy is biologically effective) and provide some insight into which of the numerous physical mechanisms accompanying the Auger decay are most important in causing cell damage. Finally the implications of Auger electron emission for radiotherapy and radiation protection in diagnostic nuclear medicine are detailed and further research possibilities are suggested. (orig.)

  17. A coincidence study between photo- and Auger electrons

    International Nuclear Information System (INIS)

    Ricz, S.; Koever, A.; Varga, D.; Molnar, J.; Aksela, S.; Jurvansuu, M.

    2000-01-01

    Complete text of publication follows. The investigation of double differential cross sections of photon induced Auger electrons provides very sensitive method for studying the rearrangement process, especially when the angular correlation between photo- and Auger electrons is also studied. Such type of measurements could reveal a new aspect in studying the electron-electron, hole-electron and photoelectron - Auger electron interactions. It enables one to separate the overlapping Auger lines belonging to different initial holes. The traditional coincidence measurement is very time consuming and causes serious calibration problems. In order to overcome these experimental difficulties a new electron-spectrometer (ESA-22) was developed in ATOMKI, Debrecen in cooperation with the Electron spectroscopy group of University of Oulu, Finland. The analyzer consists of a spherical and a cylindrical part. It is very similar to the ESA-21 analyzer. The main differences is that the focal ring can be set different diameters thus either a series of channel detectors can be used to detect the electrons at different angles or a position sensitive channel plate can be applied for simultaneous angular recording of electrons. Furthermore the outer sphere and cylinder are cut into two parts so the spectrometer is capable to analyze two independent angularly resolved electron spectra (in the 0 deg - 180 deg region) at different energy regions, simultaneously. A special electronic control and data handling electronics and software was worked out to control the analyzer. The first results were presented in. In the last year the ESA-22 electron-spectrometer was transported to the I411 beam line of MAX-II synchrotron in Lund, Sweden. The advanced properties of the spectrometer was investigated by measuring coincidences between the photoelectrons originated from the Ar L 3 subshell and the Ar Auger electrons in the 203-207 eV energy region. Fig. 1 shows the single and the coincidence spectra

  18. Auger electron spectroscopy of alloy surfaces

    International Nuclear Information System (INIS)

    Overbury, S.H.; Somorjai, G.A.

    1975-03-01

    Regular solution models are used to predict surface segregation of the constituent of lowest surface free energy in homogeneous multicomponent systems. Analysis of the Auger electron emission intensities from alloys yield the surface composition and the depth distribution of the composition near the surface. Auger Electron Spectroscopy (AES) studies of the surface composition of the Ag--Au and Pb--In systems have been carried out as a function of bulk composition and temperature. Although these alloys have very different regular solution parameters their surface compositions are predictable by the regular solution models. (U.S.)

  19. Back-view Auger electron spectrometer-diffractometer

    International Nuclear Information System (INIS)

    Antipov, V.G.; Bol'shunov, I.B.; Romanov, S.S.

    1990-01-01

    Design of a device on the base of quasispherical four-grid energy analyzer for recording the Auger electron spectra (AES) and observation of the patterns of slow electron diffraction (SED) on the side of an electron gun, is described. A layout of a small-sized electron gun providing for diffraction pattern recording up to the electron energies E ≅ 20 eV, is presented. At E=100 eV the gun current is ≅ 0.8 muA at electron beam diameter on a sample ≤ 1 mm. In the AES regime the gun allows one to record Auger spectra at electron energy E ≤ 3 keV, current ≅ 5 muA and electron beam diameter on a sample ≤ 0.2 mm. The maximum gun current is ≅ 25 muA for an increased beam diameter. Exapmles illustrating the device operation in AES and SED regimes, are presented

  20. The K Auger spectrum of krypton from the 83Rb decay

    International Nuclear Information System (INIS)

    Kovalik, A.; Gorozhankin, V.M.; Novgorodov, A.F.

    1990-01-01

    The K Auger spectrum of krypton was analyzed at the instrumental resolution of 6.5 eV using the evaporated 83 Rb source. The energies and relative intensities of the KLL-, KLX-, and KMX- Auger transitions were determined as well as the natural energy widths some of them. The results were compared with the theoretical predictions. 31 refs.; 3 figs.; 6 tabs

  1. Correlation of the Auger electrons direction of movement with the internal electron conversion direction of movement

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2013-01-01

    On installation of coincidences of γ-quanta with electrons and with law energy electrons about zero area the spatial correlation of the direction emitting Auger-electrons and electron of internal conversion was investigated at the 152 Eu decay. Auger-electrons were registered on e 0 -electrons of the secondary electron emission (γ e IC e 0 -coincidences). It was established, that Auger-electrons of M-series, as well as electrons 'shake-off' at β-decay and internal conversion, are strongly correlated at the direction of movement with the direction of movement of basic particle (β -particle, conversion electron), moving together mainly in the forward hemisphere. The intensity of correlated M-Auger radiation in range energy 1000 - 1700 eV is equal to intensity of correlated radiation 'shake-off' electron from internal conversion in this range. The assumption, that the presence of spatial correlating Auger-electron and conversion electron caused by cur-rent components of electron-electron interaction of particles in the final state is made

  2. Physical design of the positron induced auger electron spectrometer

    International Nuclear Information System (INIS)

    Qin Xiubo; Jiang Xiaopan; Wang Ping; Yu Runsheng; Wang Baoyi; Wei Long

    2009-01-01

    Positron Annihilation Induced Auger Electron Spectroscopy (PAES) has several advantages over those excited by X-rays, high energy electrons or neutrons, such as excellent surface selectivity, high signal-to-noise ratio, low radiation damage,etc. A physical design of time of flight PAES (TOF-PAES) apparatus based on the Beijing Intense Slow Positron Beam (BIPB) is described in this paper. The positrons and electrons are transported in a 4 x 10 -3 T uniform magnetic field, and the gradient of magnetic field is designed to pluralize the Auger electrons emitted with 2π angle. The Auger electron energy is adjusted by a Faraday cage to optimize the energy resolution,which can be better than 2 eV. (authors)

  3. 135La as an auger-electron emitter for targeted internal radiotherapy

    DEFF Research Database (Denmark)

    Fonslet, Jesper; Lee, Boon Quan; Tran, Thuy A.

    2018-01-01

    Introduction: 135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, imaging characteristics, and dosimetry related to 135La therapy. Methods and Results: 135La was produced by 16.5 Me....... The generated Auger spectrum was used to recalculate cellular S-factors. Conclusion: 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy. ....... recovered > 98 % of the 135La with an effective molar activity of 70 ±20 GBq/µmol. To better assess cellular and organ dosimetry of this nuclide, we have recalculated the X-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade...

  4. Ab Initio Analysis of Auger-Assisted Electron Transfer.

    Science.gov (United States)

    Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V

    2015-01-15

    Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.

  5. Chemical information from Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Madden, H.H.

    1981-01-01

    The nature of chemical information in Auger electron spectroscopy (AES) data is reviewed with special emphasis on data from solid surface systems. Two strategies are most frequently used to extract this information: (i) measuring and analyzing energy (chemical) shifts in Auger peaks; and (ii) making use of the shapes of Auger signals to determine the chemical environment at the site of the initial core hole. Chemical shift data are primarily illustrated by highlighting the interaction of oxygen with solids; and analyses of these data based on core-level binding-energy shifts, relaxation, and hole--hole interactions are outlined and discussed. Auger transitions that involve valence electrons are usually those for which lineshapes are taken as indications of the local chemistry at the initial core-hole site. Attempts at extracting valence band density-of-states information from lineshapes are proving successful and this approach to the surface chemical information in AES is illustrated with the aid of examples dealing with the interaction of silicon with hydrogen and with oxygen. The use of the AES lineshapes simply as ''fingerprints'' of the core-hole-site chemistry is examined and illustrated by examples which include studies of silicon nitride properties, of solid surface properties related to catalytic reactions, and of passive films on iron. Auger decay activated desorption processes are briefly examined and found to promise new and unique chemical information when combined with conventional AES. Some gas phase AES studies are also briefly reviewed

  6. Recommended Auger-electron kinetic energies for 42 elemental solids

    International Nuclear Information System (INIS)

    Powell, C.J.

    2010-01-01

    An analysis is presented of Auger-electron kinetic energies (KEs) from four data sources for 65 Auger transitions in 45 elemental solids. For each data source, a single instrument had been used to measure KEs for many elements. In order to compare KEs from two sources, it was necessary to recalibrate the energy scales of each instrument using recommended reference data. Mean KEs are given for most of the Auger transitions for which there were at least two independent measurements and for which differences from the mean KEs were considered acceptably small. In several cases, comparisons were made to published KE data to resolve discrepancies. We are able to recommend mean KEs for 59 Auger transitions from 42 elemental solids and to provide estimates of the uncertainties of these KEs. This compilation should be useful for the determination of chemical shifts of Auger peaks in Auger electron spectroscopy and X-ray photoelectron spectroscopy.

  7. 3 to 15 keV Ar+ induced Auger electron emission from Si and Ar

    International Nuclear Information System (INIS)

    Kempf, J.; Kaus, G.

    1977-01-01

    Ar + induced Auger electrons from Si and Ar were investigated at bombardment energies between 3-15 keV and target currents of a few μA. The Auger electron yields were compared with secondary ion yields of Si and Ar by simultaneous SIMS-AES measurements. In the ion induced Auger spectra of Si five Auger peaks and in the Ar spectra three Auger peaks were observed. The ion induced Auger electron yield of Si and Ar were found to be strongly dependent upon the primary ion energy. 'Bulk like' and 'atomic like' Auger transitions of ion induced Auger electrons of Si were observed. (orig.) [de

  8. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  9. Ne, Ar, Fe, and Cu Auger-electron production at National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Lee, D.H.; Johnson, B.M.; Jones, K.W.; Guardala, N.A.; Price, J.L.; Stumborg, M.F.; Glass, G.A.

    1992-01-01

    Energetic K and L Auger electrons produced by focussed, filtered, broad-band synchrotron radiation have been measured at the x-ray ring of the National Synchrotron Light Source (NSLS). The x-ray beam was used to study inner-shell photoionization of Ne and Ar gas and Fe and Cu solid film targets. The Auger electrons were analyzed by means of a semi-hemispherical electrostatic electron spectrometer at the energy resolution of ∼ 3 %. The electrons were detected at both 90 degree and 0 degree with respect to the photon beam direction. Broad distributions of the inner-shell photoelectrons were also observed, reflecting the incoming photon flux distribution. The Fe and Cu K Auger electron spectra were found to be very similar to the Ar K Auger electron spectra. This was expected, since deep inner-shell Auger processes are not affected by the outer valence electrons. Above 3 keV in electron energy, there have been few previous Auger electron measurements. 2 figs., 13 refs

  10. Optical and mechanical design for 1 nm resolution Auger spectroscopy in an electron microscope

    International Nuclear Information System (INIS)

    Bleeker, A.J.

    1991-01-01

    Detailed information about the atomic structure of surfaces and interfaces is vital for the progress in materials science and physics. One widely used surface sensitive technique is Auger spectroscopy (AS). This technique, in which the electron energy spectrum emerging from the sample is evaluated, gives information about the average elemental composition of the surface over a relative large surface area (>30nm). Electron microscopy (EM), on the other hand, is capable of producing surface structural, but no elemental, information with almost atomic resolution. EM and AS techniques have not been combined so far because of the different nature of the instrumentation used in both techniques. In AS instruments the sample is placed in an Ultra High Vacuum (UHV) system with a relatively large open space around the sample. In EM the sample is situated in the tight volume between the magnetic polepieces of the probe forming objective lens. The space around the sample is therefore tight. Furthermore the vacuum in most electron microscopes is not in UHV range. Radical mechanical changes to improve the vacuum are necessary to do AS in an electron microscope. Since the sample is immersed in the strong magnetic field of the objective lens the Auger electrons can not be extracted with conventional electrostatical methods. The only possibility to extract the Auger electrons is through the upper bore of the objective lens. However, this has large implications on the optical system of the microscope and requires a thorough investigation of the extraction of the Auger electrons. In this work it will be discussed how the surface sensitive AS can be combined with the high spatial resolution of the electron microscope in a practical instrument. (author). 102 refs.; 81 figs.; 4 tabs

  11. Resonant Auger studies of metallic systems

    International Nuclear Information System (INIS)

    Coulthard, I.; Antel, W. J. Jr.; Frigo, S. P.; Freeland, J. W.; Moore, J.; Calaway, W. S.; Pellin, M. J.; Mendelsohn, M.; Sham, T. K.; Naftel, S. J.

    2000-01-01

    Results of resonant Auger spectroscopy experimental are presented for Cu, Co, and oxidized Al. Sublifetime narrowing of Auger spectra and generation of sublifetime narrowed absorption spectra constructed from Auger yield measurements were observed. Resonant Auger yields are used to identify three chemical states of oxidized Al. Partial absorption yield spectra were derived giving detailed electronic information and thickness information for the various chemical states of the bulk metal, the passivating aluminum oxide layer, and the metal-oxide interface region. In addition, the total absorption yield spectrum for the oxidized Al sample was constructed from the partial yield data, supporting the consistency of our method. (c) 2000 American Vacuum Society

  12. Manipulation of resonant Auger processes with strong optical fields

    Science.gov (United States)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  13. Positron annihilation induced Auger electron spectroscopic studies of oxide surfaces

    Science.gov (United States)

    Nadesalingam, Manori

    2005-03-01

    Defects on oxide surfaces are well known to play a key role in catalysis. TiO2, MgO, SiO2 surfaces were investigated using Time-Of-Flight Positron induced Auger Electron Spectroscopy (TOF-PAES). Previous work in bulk materials has demonstrated that positrons are particularly sensitive to charged defects. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. Annealed samples in O2 environment show a strong Auger peak of Oxygen. The implication of these results will be discussed

  14. Photoelectron-Auger electron coincidence spectroscopy of free molecules: New experiments

    International Nuclear Information System (INIS)

    Ulrich, Volker; Barth, Silko; Lischke, Toralf; Joshi, Sanjeev; Arion, Tiberiu; Mucke, Melanie; Foerstel, Marko; Bradshaw, Alex M.; Hergenhahn, Uwe

    2011-01-01

    Photoelectron-Auger electron coincidence spectroscopy probes the dicationic states produced by Auger decay following the photoionization of core or inner valence levels in atoms, molecules or clusters. Moreover, the technique provides valuable insight into the dynamics of core hole decay. This paper serves the dual purpose of demonstrating the additional information obtained by this technique compared to Auger spectroscopy alone as well as of describing the new IPP/FHI apparatus at the BESSY II synchrotron radiation source. The distinguishing feature of the latter is the capability to record both the photoelectron and Auger electron with good energy and angle resolution, for which purpose a large hemispherical electrostatic analyser is combined with several linear time-of-flight spectrometers. New results are reported for the K-shell photoionization of oxygen (O 2 ) and the subsequent KVV Auger decay. Calculations in the literature for non-coincident O 2 Auger spectra are found to be in moderately good agreement with the new data.

  15. Interaction of measles virus vectors with Auger electron emitting radioisotopes

    International Nuclear Information System (INIS)

    Dingli, David; Peng, K.-W.; Harvey, Mary E.; Vongpunsawad, Sompong; Bergert, Elizabeth R.; Kyle, Robert A.; Cattaneo, Roberto; Morris, John C.; Russell, Stephen J.

    2005-01-01

    A recombinant measles virus (MV) expressing the sodium iodide symporter (NIS) is being considered for therapy of advanced multiple myeloma. Auger electrons selectively damage cells in which the isotope decays. We hypothesized that the Auger electron emitting isotope 125 I can be used to control viral proliferation. MV was engineered to express both carcinoembryonic antigen and NIS (MV-NICE). Cells were infected with MV-NICE and exposed to 125 I with appropriate controls. MV-NICE replication in vitro is inhibited by the selective uptake of 125 I by cells expressing NIS. Auger electron damage is partly mediated by free radicals and abrogated by glutathione. In myeloma xenografts, control of MV-NICE with 125 I was not possible under the conditions of the experiment. MV-NICE does not replicate faster in the presence of radiation. Auger electron emitting isotopes effectively stop propagation of MV vectors expressing NIS in vitro. Additional work is necessary to translate these observations in vivo

  16. A quantitative study of valence electron transfer in the skutterudite compound CoP3 by combining x-ray induced Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Diplas, S; Prytz, Oe; Karlsen, O B; Watts, J F; Taftoe, J

    2007-01-01

    We use the sum of the ionization and Auger energy, the so-called Auger parameter, measured from the x-ray photoelectron spectrum, to study the valence electron distribution in the skutterudite CoP 3 . The electron transfer between Co and P was estimated using models relating changes in Auger parameter values to charge transfer. It was found that each P atom gains 0.24 e - , and considering the unit formula CoP 3 this is equivalent to a donation of 0.72 e - per Co atom. This is in agreement with a recent electron energy-loss spectroscopy study, which indicates a charge transfer of 0.77 e - /atom from Co to P

  17. A study of Al/Si interface by photoemission, Auger electron yield and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.; Barth, J.; Gerken, F.; Kunz, C.; Deutsches Elektronen-Synchrotron

    1980-06-01

    Photoemission, Auger electron yield and Auger electron spectra were observed for Al/Si(111) interfaces with various Al coverage prepared by successive deposition using a molecular beam source. The Al 3p derived states are introduced at around the top of the valence band by the Al coverage of less than one monolayer. The Al surface layer behaves as a 'metal' and the Fermi level is stabilized in the Al 3p derived states at about 0.3 eV above the top of the valence band of Si. The Schottky barrier height in this stage is about 0.8 eV and further increase in Al coverage does not change the barrier height. A covalent bonding model of the Al/Si interface based on the experimental results is proposed. The present result favors the on-top geometry of Al atoms on Si(111) surface among the geometries used in the pseudopotential calculation by Zhang and Schlueter. (orig.)

  18. Electron capture Auger aftereffect of ammine cobalt complex

    International Nuclear Information System (INIS)

    Harada, Masayuki; Sano, Hirotoshi

    1976-01-01

    The study of ammine cobalt complex by luminescent Moessbauer spectrometry method was performed. The method was compared with hot atom chemistry method. The electron states in atoms are changed by the aftereffect on Auger emission following the electron capture process. The state of oxidation of disintegration products is usually higher than that of parent nuclei. However, sometimes, lower oxidation is seen in Fe-57, the daughter nuclei of Co-57. This phenomenon may be due to radiation chemistry process, and this effect can be observed by the luminescent Moessbauer spectrometry method. However, the range of the effect can not be seen by the Moessbauer method. Estimation showed that the Auger electrons stay within the surrounding area of the disintegration atom, and the effect does not reach to distant places. The yield of Fe-57 in the electron capture process of Co-57 in cobalt complex, the G-value, and the hot atom chemical yield were obtained. It is concluded that the aftereffect of the Auger process is the localized radiation chemistry effect. Good correlation was seen between the present method and the hot atom chemistry method. (Kato, T.)

  19. 135La as an Auger-electron emitter for targeted internal radiotherapy

    Science.gov (United States)

    Fonslet, J.; Lee, B. Q.; Tran, T. A.; Siragusa, M.; Jensen, M.; Kibédi, T.; E Stuchbery, A.; Severin, G. W.

    2018-01-01

    135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, and dosimetry related to 135La therapy. 135La was produced by 16.5 MeV proton irradiation of metallic natBa on a medical cyclotron, and was isolated and purified by trap-and-release on weak cation-exchange resin. The average production rate was 407  ±  19 MBq µA-1 (saturation activity), and the radionuclidic purity was 98% at 20 h post irradiation. Chemical separation recovered  >  98 % of the 135La with an effective molar activity of 70  ±  20 GBq µmol-1. To better assess cellular and organ dosimetry of this nuclide, we have calculated the x-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade. The generated Auger spectrum was used to calculate cellular S-factors. 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy.

  20. Influence of the partial temporal coherence of short FEL pulses on two-colour photoionization and photoinduced Auger decay of atoms

    International Nuclear Information System (INIS)

    Kazansky, A K; Sazhina, I P; Kabachnik, N M

    2013-01-01

    The influence of the partial temporal coherence of free electron laser (FEL) radiation on the sidebands arising in the electron spectra of laser-assisted photoionization and photoinduced Auger decay of atoms is theoretically analysed. A simple model is developed which describes the inner-shell photoionization by a short (femtosecond) FEL pulse and the following Auger decay in a strong field of an infrared laser. The model is based on the time-dependent approach and uses the strong field approximation for both photo- and Auger electrons. Particular calculations have been carried out for Ne 1s photoionization and KLL Auger emission. We demonstrate that the temporal coherence of FEL pulses influences the line widths in the photoelectron spectrum. For a small coherence time the sidebands in this spectrum cannot be resolved. On the other hand, our calculations show that in the Auger electron spectrum the sidebands are practically independent of the coherence time of the ionizing pulse.

  1. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  2. Auger electron spectroscopy for the advanced student laboratory

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Mazur, Piotr; Debowska, Ewa

    2009-01-01

    This paper presents Auger electron spectroscopy with a retarding field analyser designed for an advanced physics experiment carried out in 'Physics Laboratory II' at the Institute of Experimental Physics, University of Wroclaw, Poland. The authors discuss the process of setting up the experiment and the results of the measurement of Auger spectra. The advantages and disadvantages of the apparatus are discussed along with its implementation in the teaching process

  3. X-ray induced production and yield kinetics of photo- and Auger Electrons in semiconductors

    International Nuclear Information System (INIS)

    Peregudov, V.I.; Pashaev, Eh.M.

    1991-01-01

    The paper is dedicated to theoretical and experimental analysis of the mechanism of indirect excitation of soft Auger-electrons due to atom electron ionization using Ge crystal exposed to MoK α radiation as an example. Process of generation of these Auger-electrons is considered in detail, solution of kinetic equation for electrons, as well as, experimental data proving crucial role of indirect processes in generation of soft Auger-electrons are given

  4. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    Science.gov (United States)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  5. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    Science.gov (United States)

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  6. Application of positron annihilation induced auger electron spectroscopy to the study of surface chemistry

    International Nuclear Information System (INIS)

    Weiss, A.H.; Yang, G.; Nangia, A.; Kim, J.H.; Fazleev, N.G.

    1996-01-01

    Positron annihilation induced Auger Electron Spectroscopy (PAES), makes use a beam of low energy positrons to excite Auger transitions by annihilating core electrons. This novel mechanism provides PAES with a number of unique features which distinguishes it from other methods of surface analysis. In PAES the very large collisionally induced secondary electron background which is present under the low energy Auger peaks using conventional techniques can be eliminated by using a positron beam whose energy is below the range of Auger electron energies. In addition, PAES is more surface selective than conventional Auger Spectroscopy because the PAES signal originates almost exclusively from the topmost atomic layer due to the fact that the positrons annihilating with the core electrons are trapped in an image correlation well just outside the surface. In this paper, recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) to the study of surface structure and surface chemistry will be discussed including studies of the growth, alloying and inter-diffusion of ultrathin layers of metals, metals on semiconductors, and semiconductors on semiconductors. In addition, the possibilities for future application of PAES to the study of catalysis and surface chemistry will be outlined. (author)

  7. A new calculational method to assess the therapeutic potential of Auger electron emission

    International Nuclear Information System (INIS)

    Humm, J.L.; Charlton, D.E.

    1989-01-01

    This paper discusses a new computer code to estimate the efficacy of Auger electron sources in cancer therapy. Auger electron emission accompanies the decay of many radionuclides already commonly used in nuclear medicine, for example; 99m Tc and 201 Tl. The range of these electrons is in general sub-cellular, therefore, the toxicity of the source depends on the site of decay relative to the genetic material of the cell. Electron track structure methods have been used which enable the study of energy deposition from Auger sources down to the Angstrom level. A figure for the minimum energy required per single strand break is obtained by fitting our energy deposition calculations for 125 I decays in a model of the DNA to experimental data on break lengths from 125 I labeled plasmid fragments. This method is used to investigate the efficiency of double strand break production by other Auger sources which have potential value for therapy. The high RBE of Auger sources depends critically on the distance between the source and target material. The application of Auger emitters for therapy may necessitate a carrier molecule that can append the source to the DNA. Many DNA localizing agents are known in the field of chemotherapy, some of which could be carrier molecules for Auger sources; the halogenated thymidine precursors are under scrutiny in this field. The activation of Auger cascades in situ by high energy, collimated X ray and neutron beams is also assessed

  8. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  9. Auger Electron Therapy And Brachytherapy Tumor Treatment

    International Nuclear Information System (INIS)

    Laster, B.H.; Shani, G.

    2002-01-01

    Auger Electron Therapy (AET) is a binary approach for improving cancer radiotherapy. It involves the selective targeting of an atom to tumor cells using physiological pathway. The atom is then irradiated by a specific radiation that produces secondary radiation called Auger electrons. One of the problems associated with the clinical application of AET, is that the energy of the photons required for stimulating photoelectric absorption in most of the available high Z target atoms, is too low to achieve penetration through normal surrounding tissues to the depth of the tumor, when an external source is used. The solution is therefore the use of a brachytherapy technique. There are two other problems associated with the use of radiation as a cancer treatment. The first is the limitation on radiation dose to the normal tissue within the treatment volume. The second problem is the limitation imposed by the miniscule size of the critical target of the cell, namely the DNA (0.25% of the cell mass). The solution to the first problem can be achieved by using the brachytherapy technique. The second problem can be resolved by placing the radiation source in close position to the DNA. AET, as we apply it, provides the two solutions to the two problems. When a photon is absorbed by an electron in the K or L shell of an high Z atom, the electron is ejected from the atom, creating a vacancy in the shell. This vacancy is immediately filled with an electron from an upper shell. The energy difference between the two shells is sometimes emitted as an x-ray, however, frequently the energy is transferred to an outer shell electron that is emitted as an Auger electron. These electrons are emitted at energies of up to ∼30 keV and therefore have a very short range in the cell. They will deposit all their energy within 20-30 nm from the point of emission. i.e. all the energy is deposited in the DNA. In our work indium is used as the high Z atom

  10. Electronic excitation and Auger spectroscopy of hexamethyldissilane

    International Nuclear Information System (INIS)

    Souza, G.G.B. de; Azevedo e Souza, A.C. de; Martins, R.J.; Lucas, C.A.

    1988-01-01

    In this work, it is presented an spectroscopic study of Si 2 (CH 3 ) 6 which presents interesting characteristics in the Si - Si bond. Electron energy loss technique was used in the energy range of 500 - 200 eV for the electron beam. Electronic excitation spectra were obtained for the energy loss range from 5 to 30 eV, and also Auger spectra. (A.C.A.S.) [pt

  11. Average L-shell fluorescence, Auger, and electron yields

    International Nuclear Information System (INIS)

    Krause, M.O.

    1980-01-01

    The dependence of the average L-shell fluorescence and Auger yields on the initial vacancy distribution is shown to be small. By contrast, the average electron yield pertaining to both Auger and Coster-Kronig transitions is shown to display a strong dependence. Numerical examples are given on the basis of Krause's evaluation of subshell radiative and radiationless yields. Average yields are calculated for widely differing vacancy distributions and are intercompared graphically for 40 3 subshell yields in most cases of inner-shell ionization

  12. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    International Nuclear Information System (INIS)

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-01-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  13. Comparison of the PCI distortion effects on the Auger lineshape for electron and photon impact ionization

    International Nuclear Information System (INIS)

    Paripas, B.; Vitez, G.; Vikor, Gy.; Tokesi, K.; Sankari, R.; Calo, A.

    2005-01-01

    The distortion effects of the post-collision interaction (PCI) on the Ar LMM Auger electron lineshape for electron and photon impact ionization have been calculated. The calculations were based on the eikonal model of Kuchiev and Sheinerman [Sov. Phys. - Tech. Phys. 32 (1987) 879]. It is shown that the Auger peak asymmetry depends on the emission angle of the Auger electron relative to the primary beam (and the polarization vector of the photon beam). At a given excess energy, defined as the difference between the impact energy and the binding energy, the absolute value of the Auger peak asymmetry is always larger for electron impact ionization than for photoionization. At the same time, the angular dependence of the PCI distortion is stronger for photoionization. In both cases the Auger peak asymmetry has a maximum when the energy of the ejected electron and that of the Auger electron are nearly equal. The calculations are in good agreement with our previous experimental results

  14. PAES: Positron annihilation induced Auger electron spectrometer

    OpenAIRE

    Hugenschmidt, Christoph

    2015-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) is a newly developed application for surface studies with high elemental selectivity and exceptional surface sensitivity. The instrument is operated by the Technische Universität München and is located at NEPOMUC.

  15. PAES: Positron annihilation induced Auger electron spectrometer

    Directory of Open Access Journals (Sweden)

    Christoph Hugenschmidt

    2015-08-01

    Full Text Available Positron annihilation induced Auger electron spectroscopy (PAES is a newly developed application for surface studies with high elemental selectivity and exceptional surface sensitivity. The instrument is operated by the Technische Universität München and is located at NEPOMUC.

  16. Evidence for a new class of many-electron Auger transitions in atoms

    International Nuclear Information System (INIS)

    Lee, I.; Wehlitz, R.; Becker, U.; Amusia, M.Ya.; Academy of Sciences, Saint Petersburg

    1993-01-01

    The possibility of the joint decay of two holes and one excited electron is discussed as one way many-electron Auger transitions can take place. It is shown that existing experimental decay spectra of resonantly excited states in krypton and xenon exhibit weak lines which may be associated with this new type of Auger process. (Author)

  17. Transition from the radiationless resonant Raman scattering to the normal Auger decay in a charge transfer system

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    The transition from the radiationless resonant Raman scattering to the normal Auger decay in resonant Auger-electron spectroscopy (RAES) spectra of charge transfer (CT) systems is discussed by treating the relaxation and the core-hole decay of the excited core-hole state on the same footing by a many-body theory. When the resonantly excited electron remains at the excited atomic site during the core-hole decay, the RAES spectrum shows the characteristic feature of the resonant Auger-Raman effect, whereas when the excited electron has been transferred from the atomic site before the core-hole decays, the RAES spectrum shows the normal Auger decay. The present theory supports the interpretation of the variation with photon energy of the intensity ratio of the latter spectrum to the former one in the RAES spectrum by the Ar 2p → 4s resonance of Ar atoms adsorbed on Ru(0 0 1) surface reported by Keller et al. [C. Keller, M. Stichler, G. Comelli, F. Esch, S. Lizzit, D. Menzel, W. Wurth, Phys. Rev. B 57 (1998) 11951]. The transition from the radiationless resonant Raman scattering to the normal Auger decay in the RAES spectrum of CuO reported by Finazzi et al. [M. Finazzi, G. Ghiringhell, O. Tjernberg, Ph. Ohresser, N.B. Brookes, Phys. Rev. B 61 (2000) 4629] is discussed in terms of the relaxation of the resonantly excited core-hole state to the core-electron ionized main-line state by the hole-particle excitations. The merging of the resonant Raman-Auger-electron kinetic energy into the normal one about 2 eV above the absorption maximum in Cu 2 O reported by Finazzi et al. [M. Finazzi, G. Ghiringhell, O. Tjernberg, Ph. Ohresser, N.B. Brookes, Phys. Rev. B 61 (2000) 4629] is explained in terms of the change in the characteristics of the screening electron in the two-hole final state. The Ti L 23 -M 23 V RAES spectra of TiO 2 and TiO 2-x are also analyzed

  18. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  19. Positron annihilation induced Auger electron spectroscopy and its implementation at accelerator based low energy positron factories

    International Nuclear Information System (INIS)

    Weiss, A.; Koeymen, A.R.; Mehl, D.; Lee, K.H.; Yang Gimo; Jensen, K.

    1991-01-01

    Positron annihilation induced auger electron spectroscopy (PAES) makes use of a beam of low energy positrons to excite Auger transitions by annihilating core electrons. The large secondary electron background usually present in Auger spectra can be eliminated by setting the positron beam energy well below the Auger electron energy. This allows true Auger lineshapes to be obtained. Further, because the positron is localized just outside the surface before it annihilates, PAES is extremely sensitive to the topmost atomic layer. Recent PAES results obtained at the University of Texas at Arlington will be presented. In addition, the use of high resolution energy analyzers with multichannel particle detection schemes to prevent problems due to the high data rates associated with accelerator based positron beams will be discussed. (orig.)

  20. A new route to nanoscale tomographic chemical analysis: Focused ion beam-induced auger electron spectrosocpy

    Science.gov (United States)

    Parvaneh, Hamed

    -filtered FIB (MS-FIB) from Orsay Physics has been integrated with a VersaProbe 5000 XPS instrument from ULVAC-PHI. The integration process involved overcoming major mechanical and electrical obstacles and numerous problem-solving situations. The major reason for choosing the VersaProbe was to utilize its analytical concentric hemispherical analyzer (CHA) to measure the kinetic energy of the Auger electrons induced by the ions generated from a gold-silicon liquid alloy source. Subsequently the acquisition and detection parameters of both MS-FIB and the electron energy analyzer were successfully optimized and IAES of selected elements in third-row of the periodic table, namely Mg, Al, Si, and the ones in the fourth-row, namely Ti, V, Cr, Mn, Fe, Co, Ni and Cu acquired using Si++ and Au+ incident ions. As a result of energetic collisions between the incident and target atoms, in addition to plasmon excitations, Auger electrons from both colliding particles were generated and detected. Different components of the electron energy spectra acquired were carefully analyzed and the origin of different features observed identified. Then the relative efficiencies of Auger electron generation by ion impact from the above mentioned targets, acquired under the same conditions, were compared with each other and the origin of the differences in line shape were explained. The elements on the third row of periodic table in particular show narrow peaks emanat-ed mainly from the decay of excited atoms. For heavier elements, however, the increase of fluorescence yield by increasing atomic number and smaller lifetime for the inner shell vacancies result in reduction of atomic contribution to the spectrum. The absolute yield of Auger electrons were also evaluated using an indirect method using the ion-induced electron emission yield and, in particular, estimation for Al and Cr, where the values of ion-induced electron emission were available in the literature, was provided. The resolution of the

  1. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    International Nuclear Information System (INIS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-01-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E≅1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube

  2. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  3. Application of a digital data acquisition system for time of flight Positron annihilation-induced Auger Electron Spectroscopy

    Science.gov (United States)

    Gladen, R. W.; Chirayath, V. A.; McDonald, A. D.; Fairchild, A. J.; Chrysler, M. D.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.

    We describe herein a digital data acquisition system for a time-of-flight Positron annihilation-induced Auger Electron Spectrometer. This data acquisition system consists of a high-speed digitizer collecting signals induced by Auger electrons and annihilation gammas in a multi-channel plate electron detector and a BaF2 gamma detector, respectively. The time intervals between these two signals is used to determine the times of flight of the Auger electrons, which are analyzed by algorithms based on traditional nuclear electronics methods. Ultimately, this digital data acquisition system will be expanded to incorporate the first coincidence measurements of Auger electron and annihilation gamma energies.

  4. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  5. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A; Benabdallah, N; Desbree, A [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses (France)

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres of unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S

  6. Chirped Auger electron emission due to field-assisted post-collision interaction

    Directory of Open Access Journals (Sweden)

    Bonitz M.

    2013-03-01

    Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.

  7. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Science.gov (United States)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrère, D.; Rijllart, A.; Saban, R.

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument's capabilities.

  8. Electron stimulated carbon adsorption in ultra high vacuum monitored by Auger Electron Spectroscopy (AES)

    CERN Document Server

    Scheuerlein, C

    2001-01-01

    Electron stimulated carbon adsorption at room temperature (RT) has been studied in the context of radiation induced surface modifications in the vacuum system of particle accelerators. The stimulated carbon adsorption was monitored by AES during continuous irradiation by 2.5 keV electrons and simultaneous exposure of the sample surface to CO, CO2 or CH4. The amount of adsorbed carbon was estimated by measuring the carbon Auger peak intensity as a function of the electron irradiation time. Investigated substrate materials are technical OFE copper and TiZrV non-evaporable getter (NEG) thin film coatings, which are saturated either in air or by CO exposure inside the Auger electron spectrometer. On the copper substrate electron induced carbon adsorption from gas phase CO and CO2 is below the detection limit of AES. During electron irradiation of the non-activated TiZrV getter thin films, electron stimulated carbon adsorption from gas phase molecules is detected when either CO or CO2 is injected, whereas the CH4 ...

  9. Local radiolytic effectiveness of Auger electrons of iodine-125 in benzene-iodine solutions

    International Nuclear Information System (INIS)

    Uenak, P.; Uenak, T.

    1987-01-01

    High radiotoxicity of iodine-125 has been mainly attributed to the local radiolytic effects of Auger electrons on biological systems. In the present study, experimental and theoretical results are compared. The agreement between the experimental and theoretical results explains that the energy absorption of iodine aggregates has an important role in the radiolytic effectiveness of Auger electrons and iodine-125 in benzene-iodine solutions. (author) 18 refs.; 3 figs

  10. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  11. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)

    2014-08-15

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.

  12. Auger electron and X-ray spectroscopy of hollow atoms

    NARCIS (Netherlands)

    Morgenstern, R; Johnson, RL; Schmidtbocking, H; Sonntag, BF

    1997-01-01

    Hollow atoms as formed during collisions of multiply charged ions on metallic, semiconducting and insulating surfaces have in recent years successfully been investigated by various spectroscopic methods: low- and high-resolution X-ray spectroscopy as well as high resolution Auger electron

  13. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  14. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory

    OpenAIRE

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Anastasi, G.A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.

    2017-01-01

    We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above $5 \\cdot 10^{18}$ eV, i.e.~the region of the all-particle spectrum above the so-called "ankle" feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism...

  15. Auger decay of 1σg and 1σu hole states of the N2 molecule. II. Young-type interference of Auger electrons and its dependence on internuclear distance

    International Nuclear Information System (INIS)

    Cherepkov, N. A.; Semenov, S. K.; Schoeffler, M. S.; Titze, J.; Petridis, N.; Jahnke, T.; Cole, K.; Schmidt, L. Ph. H.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Akoury, D.; Williams, J. B.; Landers, A. L.; Osipov, T.; Lee, S.; Prior, M. H.; Belkacem, A.; Weber, Th.

    2010-01-01

    Theoretical two-center interference patterns produced (i) by the K-shell photoionization process of the N 2 molecule and (ii) by the Auger decay process of the K-shell hole state of the N 2 molecule are compared for the case of equal photo- and Auger-electron energies of about 360 eV. The comparison shows that both the angular distribution of the photoelectrons and the angular distribution of the Auger electrons of equal energy in the molecular frame are primarily defined by the Young interference. The experimental data for the angular resolved K-shell Auger electrons as a function of the kinetic-energy release (KER) obtained earlier [Phys. Rev. A 81, 043426 (2010)] have been renormalized in order to visualize the angular variation in the regions of low Auger-electron intensities. That renormalized data are compared with the corresponding theoretical results. From the known behavior of the potential energy curves, the connection between the KER and the internuclear distance can be established. Since the Young interference pattern is sensitive to the internuclear distance in the molecule, from the measured KER dependence of the Young interference pattern one can trace the behavior of the Auger-electron angular distribution for different molecular terms as a function of internuclear distance. The results of that analysis are in a good agreement with the corresponding theoretical predictions.

  16. Measurement of Auger electron energies and intensities from muonic transitions in silver

    International Nuclear Information System (INIS)

    Callies, R.; Daniel, H.; Egidy, T. von; Hagn, H.; Hartmann, F.J.; Neumann, W.

    1983-01-01

    There is now general agreement that Coulomb capture of mesonic particles and deexcitation of the formed exotic atom must be accompanied by Auger electron emission. Auger electrons from a thin silver foil were counted by Si-pn-junction detectors with an extraordinarily thin dead layer. Lines could be resolved and intensity ratios determined. Two types of experiments were performed simultaneously, (I) with the slow-muon telescope in coincidence with any e - detector of the array and (II) as above but with an additional Ag X-ray coincidence from a Ge(Li) detector placed close to the target. (Auth.)

  17. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  18. Study of the Auger line shape of polyethylene and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M; Pepper, S V

    1984-03-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account according to the theories of Cini and Sawatzky and Lenselink.

  19. Origin of Si(LMM) Auger Electron Emission from Silicon and Si-Alloys by keV Ar+ Ion Bombardment

    Science.gov (United States)

    Iwami, Motohiro; Kim, Su Chol; Kataoka, Yoshihide; Imura, Takeshi; Hiraki, Akio; Fujimoto, Fuminori

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar+ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  20. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  1. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  2. Summary Report of Consultants' Meeting on Auger Electron Emission Data Needs for Medical Applications

    International Nuclear Information System (INIS)

    Noy, Roberto Capote; Chung, Hyun Kyung; Bartschat, Klaus; Dong, Chenzhong; Jonsson, Per; Kibedi, Tibor; Kondev, Filip G.; Nikjoo, Hooshang; Palffy, Adriana

    2013-11-01

    A summary is given of a Consultants' Meeting on 'Auger Electron Emission Data Needs for Medical Applications'. Participants assessed and reviewed detailed atomic and nuclear data needs for a number of Auger emitters deemed as potentially suitable for applications in nuclear medicine and radiotherapy. Technical discussions are described in this report, along with recommendations for future work, along with recommendations for future work. Presentations by the consultants at the meeting are available at http://www-nds.iaea.org/index-meeting-crp/CM-Auger-2013/. (author)

  3. Observation of suppressed Auger mechanism in type-I quantum well structures with delocalized electron-hole wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Hassani Nia, Iman; Fathipour, Vala; Mohseni, Hooman, E-mail: hmohseni@ece.northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-08-15

    We report the first observation of non-threshold Auger mechanism for a quantum well structure with Type-I band alignment. Excitation-dependent photoluminescence measurements were used to extract the Auger recombination coefficients from 77 K up to room temperature. The results verify the role of interface mediated momentum exchange as well as suppression of Auger recombination for delocalized electron-hole wavefunctions.

  4. Atomic Auger spectroscopy: Historical perspective and recent highlights

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    2000-01-01

    The non-radiating decay of an inner-shell ionized atom by the emission of an electron was discovered by Pierre Auger in cloud-chamber experiments in the years 1923 to 1926. The first spectroscopic investigation of Auger electrons was performed by Robinson and Cassie in 1926, marking the birth date of Auger spectroscopy. The following seven decades of Auger spectroscopy will be divided into three periods. In the first period (1926-1960) Auger spectroscopy was mainly connected with β-ray spectroscopy where inner-shell ionization of atoms in the solid state was caused either by γ-conversion or by electron capture. The second period (beginning in 1960) is characterized by the external excitation of gas-phase or free metallic atoms, opening Auger spectroscopy to electron energies in the range of few eV to few keV. The third period (beginning in 1977/78) is characterized by the use of synchrotron radiation with its outstanding properties of tunability, polarization and narrow-band high intensity for the excitation and ionization of inner-shell electrons. Finally, two recent highlights of Auger spectroscopy, the interference between photo- and Auger electron with equal energies and an 'almost' complete experiment for Auger decay, will be presented

  5. The KLM plus KLN Auger electron spectrum of rubidium in different matrices

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Kovalík, Alojz; Perevoshchikov, L. L.; Filosofov, D. V.; Vénos, Drahoslav; Lee, B. Q.; Ekman, J.; Baimukhanova, A.

    2017-01-01

    Roč. 50, č. 15 (2017), č. článku 155001. ISSN 0953-4075 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Rb-85 * Sr-85 * KLM- * KLN-Auger transitions * atomic environment * chemical shift * multiconfiguration Dirac-Hartree-Fock calculations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.792, year: 2016

  6. X-ray photoelectron and x-ray-induced auger electron spectroscopic data, 2

    International Nuclear Information System (INIS)

    Baba, Yuji; Sasaki, Teikichi

    1984-04-01

    The intrinsic data of the X-ray photoelectron spectra (XPS) and X-ray-induced Auger electron spectra (XAES) for 4d transition-metals and related oxides were obtained by means of a spherical electron spectrometer. The metallic surfaces were cleaned by two different metheds : mechanical filing and Ar + ion etching. In the case of the Ar + io n bombarded Y, Zr, and Nb metals, the binding energies of the core-lines and the kinetic energies of the Auger lines shift from those for the mechanically filed surfaces. The energy shifts were interpreted in terms of the ion-induced lattice distortion of the metal surfaces. The oxides examined are typical compounds such as Y 2 O 3 , ZrO 2 , Nb 2 O 5 , MoO 3 and RuO 2 . The data consists of 4 wide scans, 33 core-line spectra, 10 valence-band spectra and 12 XAES spectra. The peak positions of the core-lines and the Auger lines were summarized in 6 tables together with their chemical shifts. (author)

  7. Quantum coherence in the time-resolved Auger measurement

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Olga; Yakovlev, Vladislav S; Scrinzi, Armin

    2003-12-19

    We present a quantum mechanical model of the attosecond-XUV (extreme ultraviolet) pump and laser probe measurement of an Auger decay [Drescher et al., Nature (London) 419, 803 (2002)10.1038/nature01143] and investigate effects of quantum coherence. The time-dependent Schroedinger equation is solved by numerical integration and in analytic form. We explain the transition from a quasiclassical energy shift of the spectrum to the formation of sidebands and the enhancement of high- and low-energy tails of the Auger spectrum due to quantum coherence between photoionization and Auger decay.

  8. Use of analytical electron microscopy and auger electron spectroscopy for evaluating materials

    International Nuclear Information System (INIS)

    Jones, R.H.; Bruemmer, S.M.; Thomas, M.T.; Baer, D.R.

    1982-11-01

    Analytical electron microscopy (AEM) can be used to characterize the microstructure and microchemistry of materials over dimensions less than 10 nm while Auger electron spectroscopy (AES) can be used to characterize the chemical composition of surfaces and interfaces to a depth of less than 1 nm. Frequently, the information gained from both instruments can be coupled to give new insight into the behavior of materials. Examples of the use of AEM and AES to characterize segregation, sensitization and radiation damage are presented. A short description of the AEM and AES techniques are given

  9. Origin of Si(LMM) Auger electron emission from silicon and Si-alloys by keV Ar/sup +/ ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, M; Kim, S; Kataoka, Y; Imura, T; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar/sup +/ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  10. Resonant Auger electron-photoion coincidence study of the fragmentation dynamics of an acrylonitrile molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kooser, K; Ha, D T; Granroth, S; Itaelae, E; Nommiste, E; Kukk, E [Department of Physics, University of Turku, FIN-20014 Turku (Finland); Partanen, L; Aksela, H, E-mail: kunkoo@utu.f [Department of Physics, University of Oulu, Box 3000, FIN-90014 Oulu (Finland)

    2010-12-14

    Monochromatic synchrotron radiation was used to promote K-shell electrons of nitrogen and carbon from the cyano group (C {identical_to} N) of gaseous acrylonitrile (C{sub 2}H{sub 3}-CN) to the unoccupied antibonding {pi}*{sub C} {sub {identical_to} N} orbital. Photofragmentation of acrylonitrile molecules following selective resonant core excitations of carbon and nitrogen core electrons to the {pi}*{sub C} {sub {identical_to} N} orbital was investigated using the electron-energy-resolved photoelecton-photoion coincidence technique. The fragment ion mass spectra were recorded in coincidence with the resonant Auger electrons, emitted in the decay process of the core-excited states. Singly and triply deuterated samples were used for fragment identification. The results showed the initial core-hole localization to be of minor importance in determining the dissociation pattern of the molecular cation. The participator and spectator Auger transitions produce entirely different fragmentation patterns and the latter indicates that complex nuclear rearrangements take place. It is suggested that the calculated kinetic energy releases are caused by the existence of metastable states, which appear with the opening of the spectator Auger channels.

  11. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double-strand breaks: a Monte Carlo study using Geant4 toolkit.

    Science.gov (United States)

    Piroozfar, Behnaz; Raisali, Gholamreza; Alirezapour, Behrouz; Mirzaii, Mohammad

    2018-04-01

    In this study, the effect of 111 In position and Auger electron energy on direct induction of DSBs was investigated. The Geant4-DNA simulation toolkit was applied using a simple B-DNA form extracted from PDBlib library. First, the simulation was performed for electrons with energies of 111 In and equal emission probabilities to find the most effective electron energies. Then, 111 In Auger electrons' actual spectrum was considered and their contribution in DSB induction analysed. The results showed that the most effective electron energy is 183 eV, but due to the higher emission probability of 350 eV electrons, most of the DSBs were induced by the latter electrons. Also, it was observed that most of the DSBs are induced by electrons emitted within 4 nm of the central axis of the DNA and were mainly due to breaks with <4 base pairs distance in opposing strands. Whilst, when 111 In atoms are very close to the DNA, 1.3 DSBs have been obtained per decay of 111 In atoms. The results show that the most effective Auger electrons are the 350 eV electrons from 111 In atoms with <4 nm distance from the central axis of the DNA which induce ∼1.3 DSBs per decay when bound to the DNA. This value seems reasonable when compared with the reported experimental data.

  12. Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra

    Directory of Open Access Journals (Sweden)

    Thomas J. A. Wolf

    2017-07-01

    Full Text Available Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.

  13. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    Kuijers, F.J.

    1978-01-01

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  14. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    Science.gov (United States)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  15. Auger-electron spectroscopy investigation of thin Ag-As-S-Se films

    International Nuclear Information System (INIS)

    Todorov, R; Spasov, G; Petkov, K; Tasseva, J

    2010-01-01

    The photoinduced changes in the refractive index and optical band-gap of thin As 32 S 34 Se 34 films photodoped with silver were studied using spectrophotometric methods. The compositional profile of the films was revealed by means of Auger-electron spectroscopy.

  16. New electronics for the surface detectors of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Kleifges, M., E-mail: Matthias.Kleifges@kit.edu [Karlsruhe Institute of Technology – Institute for Data Processing and Electronics, Karlsruhe (Germany)

    2016-07-11

    The Pierre Auger Observatory is the largest installation worldwide for the investigation of ultra-high energy cosmic rays. Air showers are detected using a hybrid technique with 27 fluorescence telescopes and 1660 water-Cherenkov detectors (WCD) distributed over about 3000 km{sup 2}. The Auger Collaboration has decided to upgrade the electronics of the WCD and complement the surface detector with scintillators (SSD). The objective is to improve the separation between the muonic and the electron/photon shower component for better mass composition determination during an extended operation period of 8–10 years. The surface detector electronics records data locally and generates time stamps based on the GPS timing. The performance of the detectors is significantly improved with a higher sampling rate, an increased dynamic range, new generation of GPS receivers, and FPGA integrated CPU power. The number of analog channels will be increased to integrate the new SSD, but the power consumption needs to stay below 10 W to be able to use the existing photovoltaic system. In this paper, the concept of the additional SSD is presented with a focus on the design and performance of the new surface detector electronics.

  17. Effective applications of auger electron spectroscopy

    International Nuclear Information System (INIS)

    Golnabi, H.

    1996-01-01

    The goal of this study is to explore different aspects of the AES process and to present the new techniques which can be used effectively for analytical purposes. More emphasis is given to AES data acquisition, sensitivity factor and Auger intensity. The experimental details of a typical scanning Auger microprobe (SAM) is also presented. Applications of AES to selected systems such as microelectronic devices, superconductors, an in metallurgy are described

  18. Auger-electron spectroscopy investigation of thin Ag-As-S-Se films

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R; Spasov, G; Petkov, K; Tasseva, J, E-mail: jordanka@clf.bas.b [Acad. J. Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 1113 Sofia (Bulgaria)

    2010-04-01

    The photoinduced changes in the refractive index and optical band-gap of thin As{sub 32}S{sub 34}Se{sub 34} films photodoped with silver were studied using spectrophotometric methods. The compositional profile of the films was revealed by means of Auger-electron spectroscopy.

  19. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  20. Clean and contaminated TiD2 films: Fabrication and Auger spectra

    International Nuclear Information System (INIS)

    Malinowski, M.E.

    1978-01-01

    Clean and intentionally contaminated stoichiometric TiD 2 thin films have been formed under controlled conditions and the surface compositions of the films measured using Auger electron spectroscopy. The unique ultrahigh vacuum system used to fabricate the films is described in detail. In addition, the Auger spectra of clean and CO- and CO 2 -contaminated films, before and after deuteriding, are presented. The MVV and LMV peaks in the differential spectrum of TiD 2 are significantly different from the corresponding peaks in the Ti spectrum, presumably a result of the deuteride formation. Films intentionally contaminated with CO and CO 2 have Auger spectra with oxygen peaks and carbide-like carbon peaks. The C and O peak heights and shapes for Ti exposed to CO and CO 2 do not change upon formation of TiD 2 . In addition, for each of these gases, a definite ratio of C/O peak heights was observed: For CO, the C/O ratio was approx.1.3, while for CO 2 it was approx.0.58. Both ratios were independent of gas exposures up to approx.1 Torr s

  1. Auger processes in ion-surface collisions

    International Nuclear Information System (INIS)

    Zampieri, Guillermo.

    1985-01-01

    Bombardment of solid targets with low-energy noble gas ions can produce Auger electron emission from the target atoms and/or from the projectiles. In the case of Auger emission from the projectile, Auger emission was observed during the bombardment of Na, Mg, Al and Si with Ne + ions. This emission was studied as a function of the energy, incidence angle and charge state of the projectile. From the analysis, it is concluded that the emission originates in the decay in vacuum of excited and reflected Ne atoms, moving outside the surface. Auger emission was not observed during the bombardment of K, V and Ni with Ar + ions; Zr and Cs with Kr + , and Xe + ions, respectively; and Li and Be with He + ions. In the case of Auger emission from the target, studies of certain aspects of the Na, Mg and Al Auger electron emission spectra were made. The results allow to identify two components in the Auger feature, coresponding to two kinds of Auger transition. The total spectra results from the superposition of both kinds of emission. Auger spectra from K obtained during Ar + and K + bombardment of K-implanted Be, Mg, Al and Cu were also analyzed. Similar to the Na, Mg and Al Auger spectra, the K Auger feature is composed of an atomic like peak superimposed on a bandlike structure. Both components correspond to Auger transitions in K atoms with a 3p vacancy, occuring in vacuum and inside the solid, respectively. (M.E.L.) [es

  2. Method to deduce the energy spectrum by the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Maris, I.; Roth, M.; Schmidt, T.; Schuessler, F.; Unger, M. [Univ. Karlsruhe (Germany); Bluemer, J. [Univ. Karlsruhe (Germany); Forschungszentrum Karlsruhe (Germany)

    2007-07-01

    Taken into account the great advantage of having a hybrid detector it has been developed a method, simulation independent, to determine the energy of the comic rays recorded by the surface detector of the Pierre Auger Observatory. The method assumes that the cosmic ray flux has the same distribution in zenith angle for all energy ranges. Therefore one can relate the calorimetric measurement of the fluorescence detector of the CR energy with a SD quantity, e.g. shower size at 1000m distance from the core, corrected for the different attenuations in the atmosphere. The method of measuring and calibrating the primary energy and the influence of reconstruction uncertainties on the energy spectrum are presented. (orig.)

  3. X-ray photoelectron and x-ray-induced Auger electron spectroscopic data, 1

    International Nuclear Information System (INIS)

    Baba, Yuji; Sasaki, T.A.

    1984-02-01

    The intrinsic data of the X-ray photoelectron spectra (XPS) and X-ray-induced Auger electron spectra (XAES) for 3d transition-metals and related oxides were presented. The clean surfaces of the metals were obtained by two different methods ; mechanical filings and Ar + ion etchings. The oxides examined are typical compounds such as Sc 2 O 3 , TiO 2 , V 2 O 5 and NiO. The report consists of 4 wide scans, 26 core-line spectra, 10 valence-band spectra and 20 XAES spectra. The peak positions of the core-lines and the Auger lines were summarized in 8 tables together with their chemical shifts. (author)

  4. Two and three electron Auger transitions in collisions of highly-charged ions with surfaces

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Andriamonje, S.; Andrae, H.J.

    1991-01-01

    The Auger electron spectra from Ar 9+ approaching at 265 eV a Si or metal surface in vacua of 10 -5 Pa or UHV are identical. Experiments on atomic physics in front of surfaces are thus possible in standard vacuum. N 7+ approaching a surface at 1000 eV penetrates with great probability into the bulk and gives rise to K 2 L 2 L double Auger lines, observed for the first time with low energy highly charged ions. (orig.)

  5. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A. [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen (Netherlands); Abreu, P.; Andringa, S. [Laboratório de Instrumentação e Física Experimental de Partículas—LIP and Instituto Superior Técnico—IST, Universidade de Lisboa—UL (Portugal); Aglietta, M. [Osservatorio Astrofisico di Torino (INAF), Torino (Italy); Samarai, I. Al [Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3 (France); Albuquerque, I.F.M. [Universidade de São Paulo, Inst. de Física, São Paulo (Brazil); Allekotte, I. [Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET) (Argentina); Almela, A.; Andrada, B. [Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (Argentina); Castillo, J. Alvarez [Universidad Nacional Autónoma de México, México (Mexico); Alvarez-Muñiz, J. [Universidad de Santiago de Compostela (Spain); Anastasi, G.A. [Gran Sasso Science Institute (INFN), L' Aquila (Italy); Anchordoqui, L., E-mail: auger_spokespersons@fnal.gov [Department of Physics and Astronomy, Lehman College, City University of New York (United States); and others

    2017-04-01

    We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 ⋅ 10{sup 18} eV, i.e. the region of the all-particle spectrum above the so-called 'ankle' feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.

  6. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  7. Auger electron spectroscopy of the surface of a pipe-like solid C60+18n

    International Nuclear Information System (INIS)

    Khvostov, V.V.; Chernozatonskij, L.A.; Kosakovskaya, Z.Ya.; Babaev, V.V.; Guseva, M.B.

    1992-01-01

    Auger and electron energy loss spectra obtained when probing the surface of nanofiber carbon material by an electron beam point out to C 60 football-type of covers with the outlet to the surface of nanopipe carbon molecules

  8. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Noritake, E-mail: isomura@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Soejima, Narumasa; Iwasaki, Shiro [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Nomoto, Toyokazu; Murai, Takaaki [Aichi Synchrotron Radiation Center (AichiSR), 250-3 Minamiyamaguchi-cho, Seto, Aichi 489-0965 (Japan); Kimoto, Yasuji [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si{sub 3}N{sub 4}/SiO{sub 2}/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si{sub 3}N{sub 4}/SiO{sub 2}/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  9. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    International Nuclear Information System (INIS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-01-01

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si_3N_4/SiO_2/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si_3N_4/SiO_2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  10. Auger measurements on the two-dimensional adsorption of krypton on graphite

    International Nuclear Information System (INIS)

    Kramer, H.M.; Suzanne, J.

    1975-01-01

    The adsorption of krypton on a (0001) plane of graphite was studied by means of Auger Electron Spectroscopy. The spectrum of krypton in the energy range from 5eV to 11eV and from 30eV to 70eV is reported. By means of LEED a √3x√3 superstructure is found for the adsorbed monolayer of Kr [fr

  11. Core-valence coupling in the Ru 4p photoexcitation/Auger decay process: Auger-photoelectron coincidence spectroscopy study

    International Nuclear Information System (INIS)

    Gotter, R.; Siu, W.-K.; Bartynski, R. A.; Hulbert, S. L.; Wu, Xilin; Zitnik, M.; Nozoye, H.

    2000-01-01

    The N 23 VV Auger spectrum of Ru has been measured in coincidence with 4p 1/2 and with 4p 3/2 photoelectrons. Unlike other metals that exhibit bandlike Auger decays, we find that the two Auger spectra are not shifted by the difference in core level binding energies. A consistent description of these transitions and the core level line shape requires consideration of the relativistic multiplet splitting in the intermediate core hole state and two-valence-hole Auger final state. The results suggest that the large linewidth of the 4p levels is primarily due to multiplet splitting, and that an N 2 (N 3 N 45 )N 45 N 45 super-Coster-Kronig transition is only a minor decay channel. (c) 2000 The American Physical Society

  12. Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy.

    NARCIS (Netherlands)

    Terry, S.Y.A.; Vallis, K.A.

    2012-01-01

    PURPOSE: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. METHODS AND MATERIALS: Chromatin structure was

  13. Theory of K-MM radiative-Auger transitions

    International Nuclear Information System (INIS)

    Baptista, G.B.

    1975-01-01

    Presently available calculations of transition probabilities for radiative-Auger and double-Auger processes are based on shake-off theory. In this theory, such processes are thought of as being due to electron core rearrangement associated with de-excitation of an inner shell vacancy. It is suggested that radiative-Auger processes result from the interaction of two electrons with one another and the radiation field in the presence of an inner shell vacancy, while double-Auger processes result from the interaction of an electron with two electrons in the presence of a similar vacancy. Expressions for the transition probabilities of these processes are derived in second order time dependent perturbation theory. The interaction is taken as the sum of the Coulomb interaction and electron-field interaction of the electrons involved. This approach allows calculation of the detailed photon or electron energy distribution resulting from such processes, as well as the relative and absolute transition rates involved. As a specific example of this approach the transition probability for the K-MM radiative-Auger effect in argon is calculated and compared with available experimental data. Scaled Thomas-Fermi wavefunctions are used to calculate the total transition probability which is found to be 2.68 x 10 -4 eV/h-bar In addition, the spectral distribution of emitted photons is obtained, and agreement both in magnitude and with the general features of the experimental data is excellent

  14. Microprocessor system for data acquisition processing and display for Auger electrons spectrometer

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Cudny, W.; Hildebrandt, S.; Marzec, J.; Walentek, J.; Zaremba, K.

    1984-01-01

    Data acquisition system for Auger electron spectrometry is developed. The system is used for chemical and structural analysis of materials and consists of a cylindrical mirror analyzer being a measuring spectrometer device, CAMAC unit and control unit. The control unit comprises a microcomputer based on INTEL 8080 microprocessor and display

  15. Molecular effects in carbon K-shell Auger-electron production by 0.6-2.0 MeV protons and extraction of an atomic cross section

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Lapicki, G.

    1987-01-01

    Carbon K-shell Auger-electron production cross sections are reported for 0.6-2.0 MeV protons incident on CH 4 (methane), C 2 H 2 (acetylene), C 2 H 4 (ethylene), C 2 H 6 (ethane), n-C 4 H 10 (normal butane), i-C 4 H 10 (isobutane), C 6 H 6 (benzene), CO (carbon monoxide), and CO 2 (carbon dioxide). A constant-energy mode 45 0 parallel-plate electrostatic analyzer was used for detection of Auger electrons. The carbon KLL Auger-electron cross sections for all molecules were found to be lower than that found for CH 4 by 9-23%. All carbon KLL Auger-electron data could be brought into agreement when corrected for the chemical shift of the carbon K-shell binding energy in molecules and for intramolecular scattering. KLL Auger-electron production cross sections are compared to first Born and ECPSSR theories and show good agreement with both after the chemical shift of the carbon K-shell binding energy in molecules and the effects of intramolecular scattering are considered. (orig.)

  16. Measurement of the energy spectrum of cosmic rays from the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Roth, M.

    2009-01-01

    The large sample of data collected by the Pierre Auger Observatory has led to a significant improvement over previous measurements on the energy spectrum of cosmic rays. We observe a suppression of the flux at the highest energy with a significance of more than 6 standard deviations. The spectral index γ of the flux, J∝E -γ , at energies between 4x10 18 eV and 4x10 19 eV is 2.69±0.02 (stat) ±0.06 (syst), steepening to 4.2±0.4 (stat) ±0.06 (syst) at higher energies, consistent with the prediction by Greisen and by Zatsepin and Kuz'min. Observations of cosmic rays by the fluorescence detector allowed the extension of the energy spectrum to lower energies, where the efficiency of the surface detector is less then 100% and a change in the spectral index is expected.

  17. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  18. Auger radiation targeted into DNA: a therapy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Buchegger, Franz [University Hospital of Lausanne CHUV, Service of Nuclear Medicine, Lausanne (Switzerland); University Hospital of Lausanne, Service of Nuclear Medicine, Lausanne (Switzerland); Perillo-Adamer, Florence; Bischof Delaloye, Angelika [University Hospital of Lausanne CHUV, Service of Nuclear Medicine, Lausanne (Switzerland); Dupertuis, Yves M. [University Hospital of Geneva, Service of Nutrition, Geneva (Switzerland)

    2006-11-15

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of {alpha} particles. In contrast to {alpha} radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided {alpha} and {beta} radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  19. Auger radiation targeted into DNA: a therapy perspective

    International Nuclear Information System (INIS)

    Buchegger, Franz; Perillo-Adamer, Florence; Bischof Delaloye, Angelika; Dupertuis, Yves M.

    2006-01-01

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of α particles. In contrast to α radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided α and β radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  20. Methods for Determining Metal Uptake in Cellular DNA for Auger Electron Therapy

    International Nuclear Information System (INIS)

    Seror, V.; Novick, S.; Weiner, E.; Laster, B.; Hambright, P.

    2004-01-01

    Stable indium-labeled tetra(4-N-methylpyridyl)porphyrin [InTMPyP(4)] was evaluated as a carrier of a high Z atom, indium (In), into tumor cell DNA for its subsequent activation by radiation in a proposed radiotherapeutic technique, Auger Electron Therapy (AET). Porphyrins with metals can bind to DNA and are useful vehicles for transporting the indium to the DNA of the tumor. AET combines the use of a metalloporphyrin with a stable high Z atom, such as indium, and photons emitted from radioactive brachytherapy seeds, such as iodine-125, to increase the radiation dose in the DNA of the tumor by generating a photoelectric effect in the K absorption edge of the indium (In) atom. This results in the emission of cascading Auger electrons that act as high LET radiation and thus impart significant non-reparable damage to the tumor compared to the radiation alone. The K absorption edge of In is 27.9 keV and the average photon energy of the iodine-125 seeds is ∼ 28 keV

  1. Study of solute segregation at interfaces using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    White, C.L.

    1984-01-01

    Interfacial segregation, often confined to within a few atomic distances of the interface, can strongly influence the processing and properties of metals and ceramics. The thinness of such solute-enriched regions can cause them to be particularly suitable for study using surface sensitive microanalytical techniques such as Auger electron spectroscopy (AES). The application of AES to studies of interfacial segregation in metals and ceramics is briefly reviewed, and several examples are presented. 43 references, 14 figures

  2. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  3. Determination of local absolute detection efficiency of a ceratron with 55Fe Auger electrons

    International Nuclear Information System (INIS)

    Mori, C.; Sugiyama, T.; Watanabe, T.

    1983-01-01

    The local absolute detection efficiency of a Ceratron (channel electron multiplier made of ceramics) was determined with collimated Mn K Auger electrons ( 5 keV) emitted from 55 Fe as a function of electron incident position and applied voltage. The local efficiency at the channel inlet did not depend so much on the applied voltage. The efficiency at the funnel increased with the applied voltage, while it was always lower than that at the channel inlet. (orig.)

  4. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    Science.gov (United States)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  5. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    International Nuclear Information System (INIS)

    Thisgaard, H.

    2008-08-01

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  6. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  7. The effect of Coster-Kronig transition on the Auger-photoelectron coincidence spectroscopy spectra of early 3d-transition metals

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2004-01-01

    The singles L23-M45M45 Auger-electron spectroscopy (AES) spectrum of early 3d-transition metal can be fitted by a weighted sum of the density of the single-hole states and that of the two-hole states, broadened by the initial L23-hole lifetime width, respectively (in the present paper we denote the atomic shells Lx, My, and Nz by LX, MY and NZ, respectively). With increasing occupancy of the 3d band the probability of creating the two-hole states by the L23-M45M45 Auger transition and the L2-L3M45 Coster-Kronig (CK) transition increases. However, the M45 hole created by the CK transition is delocalized and becomes decoupled (screened out) from the L3-hole decay so that the L3M45 two-hole state 'decays' to the single L3-hole state before the L3-hole decays. Thus the singles AES spectrum by the L2-L3-M45(M45) CK-transition preceded Auger transition and the singles one by the L3-M45(M45) Auger-transition overlap. We can study the M45-hole dynamics by Auger-photoelectron coincidence spectroscopy because the coincidence spectral lineshape depends on the dynamics of the M45 hole created by the CK transition

  8. Production of Mg and Al Auger electrons by noble gas ion bombardment of Mg and Al surfaces. [3 KeV, electron promotion

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, J; Pepper, S V [National Aeronautics and Space Administration, Cleveland, Ohio (USA). Lewis Research Center

    1976-08-01

    In this letter the relative production efficiency of Mg and Al Auger electrons by He, Ne, Ar, Kr and Xe ion bombardment as a function of ion energy (<=3 keV) is reported. Some comments on the interpretation of the results in terms of electron promotion are also given.

  9. The characterisation of non-evaporable getters by Auger electron spectroscopy Analytical potential and artefacts

    CERN Document Server

    Scheuerlein, C; Taborelli, M

    2002-01-01

    The surfaces of getter materials are particularly difficult to analyse because of their high chemical reactivity. The results obtained can be strongly influenced by the experimental set-up and procedures. In this paper the experimental influence on the Auger electron spectroscopy results is discussed, based on the measurements of more than 100 different non-evaporable getter (NEG) materials. There are four typical changes in the Auger electron spectra when a NEG becomes activated. The oxygen peak intensity decreases, the shape of the metal peaks changes, the carbon peak shape changes shape and intensity and a chlorine peak occurs. All these changes are affected by instrumental artefacts. The Zr-MNV peak shape changes occurring during the reduction of ZrO2 are well suited to determine the onset of NEG activation, while the slope with which the O-KLL peak intensity decreases in a certain temperature range is a better criterion for the determination of the temperature at which activation is complete. The O-KLL i...

  10. Comments on Auger electron production by Ne/sup +/ bombardment of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S V; Ferrante, J [National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center

    1979-09-01

    In this letter, the authors first report rather conclusive experimental evidence showing that the Ne Auger signal is due to asymmetric Ne-metal collisions and not symmetric Ne-Ne collisions. Next it is shown that the Ne Auger signal is in fact observable by Ne/sup +/ bombardment of Si and with signal strength comparable to that of the Si Auger signal for 3 keV incident ion energy. Finally, they comment on some trends in the relative amplitudes of the 21.9 and 25.1 eV Ne Auger signals as a function of incident ion energy and target species.

  11. Effects of electron correlation, exchange, and relaxation on x-ray, Auger, and Coster-Kronig transitions

    International Nuclear Information System (INIS)

    Karim, K.R.

    1983-01-01

    The first topic deals with Auger and radiative deexcitation of highly stripped phosphorus atoms. X-ray wavelengths, Auger energies, and decay rates have been calculated for various states of the P 4+ ion, with configurations (1s 2 2s 2 2p 5 )3s3p, 3s3d, 3s 2 , 3p 2 , and 3d 2 . Intermediate coupling and configuration interaction have been taken into account. The energies and decay rates are found to be strongly affected by configuration interaction. The theoretical results are compared with recent observations in ion-atom collision experiments. Good agreement with measured spectra is found, and the calculations characterize a number of lines that had not previously been identified. The second topic relates to the effects of exchange, relaxation, and electron correlation on the L 1 -L 23 M 1 Coster-Kronig spectrum of argon. The present calculation leads to good agreement with experimental transition energies and removes some of the discrepancies in transition rates. The total calculated transition rates are still about a factor of two higher than the measured rates. Relaxation tends to minimize the differences between individual L 1 -L 23 M 1 ( 1 P) and L 1 -L 23 M 1 ( 3 P) transition rates. The initial- and final-ionic-configuration interaction reduces the total decay rate by approx.35%. Inclusion of complete relaxation increases the total rate, however, by approx.1.5% rather than reducing it, with respect to calculations without relaxation. The exchange interaction also increases this rate by approx.9%

  12. Theoretical and experimental study of the double ionization by electron impact involving the Auger effect: processes and exchanges interferences; Etude theorique et experimentale de la double ionisation par impact electronique incluant l'effet auger: interferences d'echanges et de processus

    Energy Technology Data Exchange (ETDEWEB)

    Catoire, F

    2006-09-15

    In this work, double ionisation mechanisms of argon by electron impact in which the Auger effect is included have been studied as a function of the incident electron energy. Five and six fold differential cross sections in angle and in energy have been measured and analysed in a coplanar geometry. The efficiency of the apparatus has been improved by the use of a new toroidal analyser. For the first time, the six fold differential cross section in which the Auger electron and the ejected electron with identical kinetic energies (205 eV) are involved, was measured at an incident energy of 956 eV in the case of argon. In the theoretical models developed during this work, the triple continuum is represented by a manifold of coulomb waves describing the interaction of all electrons with the residual ion. Exchange effects between electrons were also included in the models. Comparison between experimental and theoretical results allows to study the relative contribution of the Auger process and the direct double ionisation on the angular dependence five fold differential cross section. In particular, the Auger process contribution seems to become increasingly important as the incident energy is increased.

  13. Can We Reconcile the TA Excess and Hotspot with Auger Observations?

    Energy Technology Data Exchange (ETDEWEB)

    Globus, Noemie; Piran, Tsvi [Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Allard, Denis; Parizot, Etienne; Lachaud, Cyril [Laboratoire Astroparticule et Cosmologie, Université Paris Diderot/CNRS, 10 rue A. Domon et L. Duquet, F-75205 Paris Cedex 13 (France)

    2017-02-20

    The Telescope Array (TA) shows a 20° hotspot as well as an excess of ultra-high-energy cosmic-rays (UHECRs) above 50 EeV when compared with the Auger spectrum. We consider the possibility that both the TA excess and hotspot are due to a dominant source in the northern sky. We carry out detailed simulations of UHECR propagation in both the intergalactic medium and the Galaxy, using different values for the intergalactic magnetic field. We consider two general classes of sources: transients and steady, adopting a mixed UHECR composition that is consistent with the one found by Auger. The spatial location of the sources is drawn randomly. We generate Auger-like and TA-like data sets from which we determine the spectrum, the sky maps, and the level of anisotropy. We find that, while steady sources are favored over transients, it is unlikely to account for all the currently available observational data. While we reproduce fairly well the Auger spectrum for the vast majority of the simulated data sets, most of the simulated data sets with a spectrum compatible with that of TA (at most a few percent depending on density model tested) show a much stronger anisotropy than the one observed. We find that the rare cases in which both the spectrum and the anisotropy are consistent require a steady source within ∼10 Mpc, to account for the flux excess, and a strong extragalactic magnetic field ∼10 nG, to reduce the excessive anisotropy.

  14. Auger emission from solid surfaces bombarded with ions

    International Nuclear Information System (INIS)

    Grizzi, Oscar.

    1986-01-01

    The Auger electron emission from Be, Na, Mg, Al and Si bombarded with 0,5-20 KeV noble gas ions is studied. Sharp structures of the Auger electron spectra of Na and Be were identified. A Monte Carlo program was adapted to simulate the colision cascade in the solid, inner shell excitations and Auger decays. From the comparision of experimental and simulated Auger intensities, the relative role of symmetric and asymmetric collisions in Be K- and Al L-shell excitation were evaluated. In the case of Be, the discussion of the exciting processes to higher projectile energies was extended. To this end, the simulation to early measurements of Be K X-ray yields was applied. From this analysis, information about the variations of the fluorescence yield and outer-shell occupation numbers of Be with projectile energy was obtained. The study of the shape of the sharp Auger structures and their dependence with the energy and incidence projectile angle gives information about the collisional processes, inner hole lifetimes and Auger decays. From the evaluation of the energy and angular distribution of the excited sputtered atoms and the interaction between them and the metallic-surface, the energy shift distributions in the Auger energies were obtained. From the comparison of these distributions with the experimental atomic peaks, the main causes of the broadening of these peaks were determined. (M.E.L.) [es

  15. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    Science.gov (United States)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  16. Electron beam interactions with CO on W[100] studied by Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Housley, M.; King, D.A.

    1977-01-01

    The interaction of 2500 eV electrons with carbon monoxide chemisorbed on tungsten [100] was investigated by rapid-scan Auger electron spectroscopy. When no α state was present the O and C signals from the β state of CO were invariant during electron bombardment, giving an upper limit estimate for the electron stimulated desorption cross section, Qsub(β), of 2 x 10 -21 cm 2 . With the crystal at room temperature and saturated with CO, however, electron-beam induced accumulation of carbon was observed and characterised, the rate of the process being independent of CO pressure at pressures above 2 x 10 -8 Torr. At 450 K the rate was found to be pressure dependent up to at least 6 x 10 -7 Torr. A model is proposed for the accumulation process, which is based on electron beam dissociation of α 2 -CO to form adsorbed carbon and gaseous O and the creation of new sites for further α 2 -CO adsorption; it is in quantitative agreement with the results and yields a cross section for ESD of α 2 -CO (Qsub(α 2 )=1.55 X 10 -18 cm 2 ) in clo 2 e agreement with direct measurements. (Auth.)

  17. The energy spectrum of cosmic rays measured with the HEAT extension at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Scharf, Nils Sven Sebastian

    2013-01-01

    This thesis describes the calculation of the energy spectrum of cosmic rays, that is the absolute flux of cosmic rays as a function of energy, from data of air showers observed with the HEAT (High Elevation Auger Telescopes) extension and the fluorescence detector of the Pierre Auger Observatory. The Pierre Auger Observatory is the largest observatory for the study of cosmic rays. The Pierre Auger Observatory observes air showers, that are cascades of particles that were instigated by cosmic rays hitting the Earth's atmosphere, with two different detection concepts. The surface detector samples the secondary particles of air showers that hit the ground with an array of surface detector stations, whereas the fluorescence detector measures the energy loss profile of air showers by detecting fluorescence light, produced by the air showers when they travel through the atmosphere, with optical telescopes. The properties of the cosmic rays are not directly measurable but have to be reconstructed from the observed air shower parameters. Properties of particular interest are the type of the primary cosmic ray particle, its energy and its arrival direction. HEAT is an extension to the fluorescence detector of the Pierre Auger Observatory. It is designed to lower the energy threshold by one order of magnitude down to 10 17 eV or lower. HEAT is taking data since 2010. The calculation of the absolute flux of cosmic rays needs two ingredients: the number of detected air showers as a function of shower energy and the exposure of the detector as a function of energy. The studied air shower class are hybrid events, which are events that have been detected by a fluorescence detector and at least one surface detector station. The used air showers were observed in a time period of fifteen month starting from June 2010. A first step of the analysis is the reconstruction of air showers and cosmic ray parameters from raw data. To calculate the exposure, the uptime, that is the integral

  18. Auger spectra of alkanes

    International Nuclear Information System (INIS)

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  19. Auger electron spectroscopy study on interaction between aluminum thin layers and uranium substrate

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Kezhao; Yang Jiangrong; Xiao Hong; Jiang Chunli; Lu Lei

    2005-01-01

    Aluminum thin layers on uranium were prepared by sputter deposition at room temperature in ultra high vacuum analysis chamber. Interaction between U and Al, and growth mode were investigated by Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS). It is shown that Al thin film growth follows the volmer-weber (VW) mode. At room temperature, Al and U interact with each other, resulting in interdiffusion action and formation of U-Al alloys at U/Al interface. Annealing promotes interaction and interdiffusion between U and Al, and UAl x maybe formed at interface. (authors)

  20. Line optical and Auger data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wall, W E; Stevenson, J R [Georgia Inst. of Tech., Atlanta (USA). School of Physics

    1978-06-01

    A software/hardware package has been developed for use with an 8K DEC PDP-8/L or /I minicomputer, providing real time acquisition and manipulation of optical reflectivity, Auger, and photoemission data. Optical data and Auger or photoemission data may be acquired simultaneously. Provisions have been included for the addition of a scanning rotating ellipsometer. Synchrotron radiation from an electron storage ring has been the primary optical source. Optical reflectivity is measured using single photon counting with a ratio technique that samples a portion of the incident light with one detector and the reflected light with a second detector. Differential Auger or photoemission data is acquired using a cylindrical mirror electron energy analyzer under computer control in a signal averaging mode of operation. Direct electron distribution curves may be displayed using a numerical integration routine. Software was written in assembly language to conserve available memory; however, a modular approach was used to allow easy additions and modifications to experiments. Data arrays may be manipulated and stored as single variables.

  1. DEPTH MEASUREMENT OF DISRUPTED LAYER ON SILICON WAFER SURFACE USING AUGER SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    V. A. Solodukha

    2016-01-01

    Full Text Available The paper proposes a method for depth measurement of a disrupted layer on silicon wafer surface which is based on application of Auger spectroscopy with the precision sputtering of surface silicon layers and registration of the Auger electron yield intensity. In order to measure the disrupted layer with the help of Auger spectroscopy it is necessary to determine dependence of the released Auger electron amount on sputtering time (profile and then the dependence is analyzed. Silicon amount in the disrupted layer is less than in the volume. While going deeper the disruptive layer is decreasing that corresponds to an increase of atom density in a single layer. The essence of the method lies in the fact the disruptive layer is removed by ion beam sputtering and detection of interface region is carried out with the help of registration of the Auger electron yield intensity from the sputtered surface up to the moment when it reaches the value which is equal to the Auger electron yield intensity for single-crystal silicon. While removing surface silicon layers the registration of the Auger electron yield intensity from silicon surface makes it possible to control efficiently a presence of the disrupted layer on the silicon wafer surface. In this case depth control locality is about 1.0 nm due to some peculiarities of Auger spectroscopy method. The Auger electron yield intensity is determined automatically while using Auger spectrometer and while removing the disrupted layer the intensity is gradually increasing. Depth of the disrupted layer is determined by measuring height of the step which has been formed as a result of removal of the disrupted layer from the silicon wafer surface. Auger spectroscopy methods ensures an efficient depth control surface disruptions at the manufacturing stages of silicon wafers and integrated circuits. The depth measurement range of disruptions constitutes 0.001–1.000 um.

  2. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    Science.gov (United States)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  3. Effect of interface roughness on Auger recombination in semiconductor quantum wells

    Science.gov (United States)

    Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson

    2017-03-01

    Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.

  4. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Southworth, S.H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H 2 and D 2 , and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  5. Auger recombination in Dirac materials: A tangle of many-body effects

    Science.gov (United States)

    Alymov, Georgy; Vyurkov, Vladimir; Ryzhii, Victor; Satou, Akira; Svintsov, Dmitry

    2018-05-01

    The peculiar electron dispersion in Dirac materials makes lowest-order Auger processes prohibited or marginally prohibited by energy and momentum conservation laws. Thus, Auger recombination (AR) in these materials is very sensitive to many-body effects. We incorporate them at the level of the G W approximation into the nonequilibrium Green's functions approach to AR and study the role of dynamic screening, spectrum broadening, and renormalization in the case of weakly pumped undoped graphene. We find that incorrect treatment of many-body effects can lead to an order-of-magnitude error in the recombination rate. We show that the AR time depends weakly (sublinearly) on the background dielectric constant, which limits the possibility to control recombination by the choice of substrate. However, the AR time can be considerably prolonged by placing graphene under a metal gate or by introducing a band gap. With carrier cooling taken into account, our results comply with experiments on photoexcited graphene.

  6. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    Science.gov (United States)

    Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.

    2018-05-01

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.

  7. Characterization of a Fe inclusion in beryllium-matrix using auger electron spectroscopy

    International Nuclear Information System (INIS)

    Arkusk, R.; Moreno, D.; Simca, F.; Yeheskel, O.; Utzmoni, U.

    1991-04-01

    The auger electron spectroscopy techniques was employed to investigate the nature of an inclusion that had been revealed by radiography in a beryllium body produced by the hot isostatic press technique. The investigation's are that the inclusion is composed of several different iron-beryllium intermetallic compounds (BeFe 3 , BeFe 5 , Be 7 Fe). The conclusion drawn is that iron metal impurity was imbedded in the Be powder and that interdiffusion under the process's conditions gave rise to the enlarged inclusion. (author)

  8. Oxygen adsorption on Cu-9 at. %Al(111) studied by low energy electron diffraction and Auger electron spectroscopy

    Science.gov (United States)

    Yoshitake, Michiko; Bera, Santanu; Yamauchi, Yasuhiro; Song, Weijie

    2003-07-01

    Cu-based alloys have been used for electric cables for long time. In the field of microelectronics, Al had been used for electrical wiring. However, it became clear that electromigration occurs in Al that causes breaking of wires in minute wirings. Due to this problem, Cu wiring is used in most advanced microprocessors. Cu metal is more corrosive than Al and Cu-based alloys with a small amount of Al is expected to solve problems both on electromigration and corrosion. The initial stage of corrosion is oxygen adsorption. We studied surface segregation of Al on Cu-9% Al(111) and oxygen adsorption on the surface with/without Al segregation in ultrahigh vacuum by low energy electron diffraction (LEED) and Auger electron spectroscopy. It was found that Al segregates on the surface to form (√3×√3)R30° structure and the structure vanishes above 595 K to give (1×1) structure while Al still segregates. The specimen was exposed to oxygen at different temperatures. The amount of oxygen uptake was not structure dependent but temperature dependent. Below 595 K, only a small amount of oxygen adsorbed. Between 595 and 870 K, oxygen adsorbed surface showed amorphous LEED pattern. The specimen was annealed at 1070 K after oxygen exposure. When the specimen was exposed oxygen below 870 K, the oxygen Auger intensity decreased significantly by annealing and the annealed surface showed (√3×√3)R30° structure at room temperature. When the specimen was exposed to oxygen at 870 K, diffused spots developed newly in LEED pattern but the pattern disappeared after 1070 K annealing while oxygen Auger intensity remained almost constant. Exposing the specimen to oxygen at 995 K resulted in clear spots in the LEED pattern, which were attributed to the (7/√3×7√3)R30° structure.

  9. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  10. Surface analysis of WC--Co composite materials (2) Quantitative Auger electron spectrometry

    International Nuclear Information System (INIS)

    Tongson, L.L.; Biggers, J.V.; Dayton, G.O.; Bind, J.M.; Knox, B.E.

    1978-01-01

    The unique sensitivity of Auger electron spectrometry (AES) to combined carbon has been exploited in measuring the surface compositions of hot-pressed, conventionally sintered and mixed powders of WC--Co composite materials. AES sensitivity factors for tungsten and carbon (in WC) relative to cobalt were determined. The concentrations of the major elements in hot-pressed samples measured with AES using the relative sensitivity method were compared to those obtained independently by electron microprobe (EMP) and x-ray fluorescence (XRF) techniques. Corollary studies using ion scattering spectrometry (ISS) showed the absence of (1) matrix effects in the AES measurements, (2) preferential sputtering during ion bombardment, and (3) deposition of the easier-to-sputter component (cobalt) onto WC

  11. Auger-electron cascades, charge potential and microdosimetry of iodine-125

    Energy Technology Data Exchange (ETDEWEB)

    Booz, J.; Pomplun, E.; Olko, P.; Paretzke, H.G.

    1987-06-01

    This paper is a contribution to the microdosimetry of I-125. It shows microdosimetric spectra of individual and average disintegrations of I-125 for various target sizes and gives evidence for the relative contributions of energy-depositon events of low and high LET. It further presents information on the relative efficiencies of Auger-electrons and multiple charges in terms of local energy deposition, e.g. to model targets of DNA, and discusses their radiobiological implications, e.g. the microdosimetric understanding of the different efficiencies of specific and random incorporations of I-125. When I-125 is specifically incorporated into DNA, most of the energy deposition events are very large, e.g. above 40 keV/..mu..m for a simulated target volume of 20 nm diameter, regardless of the number and energy of Auger electrons emitted. Therefore it is not necessary, for the discussion of the radiobiological implications, to distinguish between different classes of disintegrations. For unspecific, homogeneous incorporation of I-125 somewhere into tissue, about 20% of the dose to critical targets of 25 nm diameter is made up by disintegrations that happen to occur within these targets. When assuming that other critical targets and target structures can be neglected, this part of the dose will be equally effective as in the case of specific incorporation of I-125 into such target models. In addition, there are the normal, low-LET radiation effects from the other, 80% large fraction of the dose. With this information, for the biological systems and end points for which a short section of the elemental chromatine fiber can be taken as the relevant critical target, it is shown that the expected D/sub 37/ value for homogeneous unspecific incorporation of I-125 can be estimated when the D/sub 37/ for specific incorporation in DNA is known.

  12. L-MM Auger electron production in 0.3-1.6 MeV Kr-Kr collisions

    International Nuclear Information System (INIS)

    DeGroot, P.; Zarcone, M.J.; Kessel, Q.C.; Connecticut Univ., Storrs

    1987-01-01

    Relative total cross sections for Kr L-Auger electron emission are presented and compared with the corresponding X-ray data of Woerlee and Shanker and coworkers. These data sets all show the same incident ion energy dependence, indicating a constant fluorescence yield for the collision conditions under consideration. These data are also in agreement with a rotational coupling calculation by shanker and coworkers that was carried out within the framework of the one-electron molecular orbital model of Fano and Lichten. (orig.)

  13. Quantitative Auger analysis of Nb-Ge superconducting alloys

    International Nuclear Information System (INIS)

    Buitrago, R.H.

    1980-01-01

    The feasibility of using Auger electron analysis for quantitative analysis was investigated by studying Nb 3 Ge thin-film Auger data with different approaches. A method base on elemental standards gave consistent quantitative values with reported Nb-Ge data. Alloy sputter yields were also calculated and results were consistent with those for pure elements

  14. Many-body effect in the partial singles N2,3 photoelectron spectroscopy spectrum of atomic Cd

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    We can extract out the photoelectron kinetic energy (KE) dependent imaginary part of the core-hole self-energy by employing Auger-photoelectron coincidence spectroscopy (APECS). The variation with photoelectron KE in the Auger electron spectroscopy (AES) spectral peak intensity of a selected decay channel measured in coincidence with photoelectrons of a selected KE is the partial singles (non-coincidence) photoelectron spectroscopy (PES) spectrum, i.e., the product of the singles PES one and the branching ratio of the partial Auger decay width of a selected decay channel to the imaginary part of the core-hole self-energy. When a decay channel the partial Auger decay width of which is photoelectron KE independent is selected, we can extract out spectroscopically the imaginary part of the core-hole self-energy because the variation with photoelectron KE in the relative spectral intensity of the partial singles PES spectrum to the singles one is that in the branching ratio of the partial Auger decay width of a selected decay channel. As an example we discussed the N 2,3 -hole self-energy of atomic Cd

  15. X-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide

    International Nuclear Information System (INIS)

    Dillard, J.G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H.J.

    1984-01-01

    The adsorption of molecular iodine on uranium metal and on uranium dioxide has been investigated at 25 0 C. Clean surfaces were prepared in an ultrahigh vacuum apparatus and were characterized by X-ray photoelectron (XPS) and X-ray and electron-induced Auger electron spectroscopies (AES). Adsorption of I 2 was studied for exposures up to 100 langmuirs (1 langmuir = 10 -6 torr s) on uranium metal and to 75 langmuirs on uranium dioxide. Above about 2-langmuir I 2 exposure on uranium, spectroscopic evidence is obtained to indicate the beginning of UI 3 formation. Saturation coverage for I 2 adsorption on uranium dioxide occurs at approximately 10-15 langmuirs. Analysis of the XPS and AES results as well as studies of spectra as a function of temperature lead to the conclusions that a dissociative chemisorption/reaction process occurs on uranium metal while nondissociative adsorption occurs on uranium dioxide. Variations in the iodine Auger kinetic energy and in the Auger parameter are interpreted in light of extra-atomic relaxation processes. 42 references, 10 figures, 1 table

  16. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part I - an absolute traceable energy calibration for electron spectrometers

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.; Anthony, M.T.

    1991-01-01

    Experiments have been made to provide calibrated kinetic energy values for AES peaks in order to calibrate Auger electron spectrometers of various resolving powers. The kinetic energies are measured using a VG Scientific ESCALAB 2 which has power supplies appropriate for AES measurements in both the constant ΔE and constant ΔE/E modes. The absolute calibration of the energy scale is obtained by the development of a new measurement chain which, in turn, is calibrated in terms of the post-1990 representation of electron volts using XPS peaks with a traceable kinetic energy accuracy of 0.02 eV. The effects of instrumental and operating parameters, including the spectrometer dispersion and stray magnetic fields, are all assessed and contribute errors for three peaks not exceeding 0.06 eV and for two peaks not exceeding 0.03 eV. Calibrated positions in the direct spectrum are given for the Cu M 2,3 VV, Au N 6,7 VV, Ag M 4 NN, Cu L 3 VV and Au M 5 N 6,7 N 6,7 transitions at 0.2 eV resolution, referred to both the Standard Vacuum Level and the Fermi level. For the derivative spectrum the positions of the negative excursions are derived numerically by computer from this data and are established with the same accuracy. Data are tabulated for the above peaks in both the direct and differentiated modes for the popular resolutions of 0.15%, 0.3% and 0.6% produced by Gaussian broadening of the high resolution spectra. Differentiations are effected by both sinusoidal modulation and Savitzky-Golay functions of 2 eV and 5 eV peak-to-peak

  17. Surface-site-selective study of valence electronic states of a clean Si(111)-7x7 surface using Si L23VV Auger electron and Si 2p photoelectron coincidence measurements

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Tahara, Masashi; Nagaoka, Shin-ichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2011-01-01

    Valence electronic states of a clean Si(111)-7x7 surface are investigated in a surface-site-selective way using high-resolution coincidence measurements of Si pVV Auger electrons and Si 2p photoelectrons. The Si L 23 VV Auger electron spectra measured in coincidence with energy-selected Si 2p photoelectrons show that the valence band at the highest density of states in the vicinity of the rest atoms is shifted by ∼0.95 eV toward the Fermi level (E F ) relative to that in the vicinity of the pedestal atoms (atoms directly bonded to the adatoms). The valence-band maximum in the vicinity of the rest atoms, on the other hand, is shown to be shifted by ∼0.53 eV toward E F relative to that in the vicinity of the pedestal atoms. The Si 2p photoelectron spectra of Si(111)-7x7 measured in coincidence with energy-selected Si L 23 VV Auger electrons identify the topmost surface components, and suggest that the dimers and the rest atoms are negatively charged while the pedestal atoms are positively charged. Furthermore, the Si 2p-Si L 23 VV photoelectron Auger coincidence spectroscopy directly verifies that the adatom Si 2p component (usually denoted by C 3 ) is correlated with the surface state just below E F (usually denoted by S 1 ), as has been observed in previous angle-resolved photoelectron spectroscopy studies.

  18. Contribution of Auger electron spectroscopy to study of mechanism of adhesive wear of valves

    International Nuclear Information System (INIS)

    Smrkovsky, E.; Koutnik, M.; Potmesilova, A.

    1987-01-01

    Briefly characterized are hypotheses describing the process of intensive adhesive wear (jamming) of materials on functional friction surfaces of valves. Two types of alloys were studied, 1Cr18Ni8Mo5Mn5Si5Nb and NiCrSiB. Auger electron spectroscopy was used in the study of the chemical composition of surface layers. The following conclusions can be made from the results of the adhesive wear measurement and the Auger spectroscopy measurement: There are oxide layers on the surfaces of the specimens which, however, can only to a certain extent affect the process of adhesive wear. Adhesive wear resistance tests using low hardness specimens show that in spite of the existence of oxide layers, friction pairs showing low surface hardness also feature low adhesive wear resistance. Following heat treatment, the surface oxide layers have practically the same chemical composition as the specimens without heat treatment. However, there adhesive wear resistance is significantly higher. (Z.M.). 3 tabs., 7 refs

  19. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  20. Measurement of the energy spectrum of cosmic rays above 10.sup.18./sup. eV using the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abraham, J.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr

    2010-01-01

    Roč. 685, 4-5 (2010), s. 239-246 ISSN 0370-2693 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA AV ČR KJB100100904; GA AV ČR KJB300100801; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : cosmic rays * energy spectrum * Pierre Auger Observatory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.255, year: 2010

  1. Study of surface segregation of Si on palladium silicide using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Abhaya, S; Amarendra, G; Gopalan, Padma; Reddy, G L N; Saroja, S

    2004-01-01

    The transformation of Pd/Si to Pd 2 Si/Si is studied using Auger electron spectroscopy over a wide temperature range of 370-1020 K. The Pd film gets totally converted to Pd 2 Si upon annealing at 520 K, and beyond 570 K, Si starts segregating on the surface of silicide. It is found that the presence of surface oxygen influences the segregation of Si. The time evolution study of Si segregation reveals that segregation kinetics is very fast and the segregated Si concentration increases as the temperature is increased. Scanning electron microscopy measurements show that Pd 2 Si is formed in the form of islands, which grow as the annealing temperature is increased

  2. MCDF calculations of Auger cascade processes

    Science.gov (United States)

    Beerwerth, Randolf; Fritzsche, Stephan

    2017-10-01

    We model the multiple ionization of near-neutral core-excited atoms where a cascade of Auger processes leads to the emission of several electrons. We utilize the multiconfiguration Dirac-Fock (MCDF) method to generate approximate wave functions for all fine-structure levels and to account for all decays between them. This approach allows to compute electron spectra, the population of final-states and ion yields, that are accessible in many experiments. Furthermore, our approach is based on the configuration interaction method. A careful treatment of correlation between electronic configurations enables one to model three-electron processes such as an Auger decay that is accompanied by an additional shake-up transition. Here, this model is applied to the triple ionization of atomic cadmium, where we show that the decay of inner-shell 4p holes to triply-charged final states is purely due to the shake-up transition of valence 5s electrons. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  3. Electron detector

    International Nuclear Information System (INIS)

    Hashimoto, H.; Mogami, A.

    1975-01-01

    A device for measuring electron densities at a given energy level in an electron beam or the like having strong background noise, for example, in the detection of Auger electric energy spectrums is described. An electron analyzer passes electrons at the given energy level and at the same time electrons of at least one adjacent energy level. Detecting means associated therewith produce signals indicative of the densities of the electrons at each energy level and combine these signals to produce a signal indicative of the density of the electrons of the given energy level absent background noise

  4. Atomic electron spectrometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Sorensen, S.L.

    1989-01-01

    Techniques of atomic electron spectrometry were applied to atoms in the gaseous and solid states to derive information about fundamental atomic properties. A new method was developed to measure Coster-Kronig yields in metals by photoionization with synchrotron radiation. Photon-energy sensitive Si L-VV Auger satellites were investigated via electron spectrometry. The krypton 1s photoionization spectrum was measured in an experiment which was motivated by the need to understand the krypton 1s satellite spectrum for calibration of an experiment to measure the mass of the electron antineutrino

  5. IMPURITY SEGREGATION OF STAINLESS STEEL STUDIED BY ATOM-PROBE AND AUGER ELECTRON SPECTROSCOPY

    OpenAIRE

    Koguchi , Y.; Takahashi , K.; Ishikawa , Y.

    1987-01-01

    The surface compositions of type 304 stainless steel heated in vacuum at 600-900°C were determined by an atom-probe and Auger electron spectroscopic analysis. In addition to enrichment and depletion of alloying elements in the surface of the stainless steel, segregation of impurity elements such as carbon, nitrogen, phosphorus and sulfur is known to occur. In this paper the atom-probe was used to measure the impurity segregation in the grains as well as in the grain boundary while the AES was...

  6. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    Science.gov (United States)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  7. Modelling of radiation risk induced by radon and sources of Auger electrons

    International Nuclear Information System (INIS)

    Boem, R.

    2003-01-01

    This thesis follows the national and worldwide radon research and application Auger radionuclides in nuclear medicine. Results of this thesis can be summarised into several points: (1) For the prediction of cancer risk following the exposure, it is also necessary to consider the mean cycle time of target cells. From our analyses it can be concluded that the mean cycle time of target cells should exceed 100 days. (2) The value of excess relative risk is for smokers ERR/WLM = (2.4-4.1)x10 -3 WLM -1 and that of the nonsmokers ERR/WLM=(4.2-10.7)x10 -3 WLM -1 , considering the underground medium. Excess relative risk for the nonsmokers ERR/(Bq m -3 ) = (1.0-3.5) Bq -1 m 3 and for smokers ERR/(Bq m -3 ) = (0.3-1.2) 10 -3 Bq -1 m 3 is supposed in dwellings. (3) Microdosimetric models are very helpful and suitable for prediction of the radon risk for underground conditions, as well as for indoor radon risk evaluation and they are also able to take into account the influence of the smoking habit. (4) The spatial distribution of energy deposition events and their magnitude is an essential input to evaluate the effects of radiation on biological systems. Therefore, for the calculation of deposited energy from the DNA incorporated Auger emitters, it is necessary at the DNA level to employ the MC calculation. In an effort to save computer time and memory it is possible to use the fitted function for monoenergetic electrons for estimation of at least relative radiotoxicity. The value of energy deposited in a small volume (sphere of diameter 2 nm) can be considered as the first estimation of an Auger emitter's radiotoxicity. (author)

  8. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    Science.gov (United States)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  9. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    International Nuclear Information System (INIS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ∼550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M 2,3 VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  10. Utilization of the statistics techniques for the analysis of the XPS (X-ray photoelectron spectroscopy) and Auger electronic spectra's deconvolutions

    International Nuclear Information System (INIS)

    Puentes, M.B.

    1987-01-01

    For the analysis of the XPS (X-ray photoelectron spectroscopy) and Auger spectra, it is important to performe the peaks' separation and estimate its intensity. For this purpose, a methodology was implemented, including: a spectrum's filter; b) substraction of the base line (or inelastic background); c) deconvolution (separation of the distribution that integrates the spectrum) and d) error of calculation of the mean estimation, comprising adjustment quality tests. A software (FORTRAN IV plus) that permits to use the methodology proposed from the experimental spectra was implemented. The quality of the methodology was tested with simulated spectra. (Author) [es

  11. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  12. Triggers for the Pierre Auger Observatory, the current status and plans for the future

    CERN Document Server

    Szadkowski, Z

    2009-01-01

    The Pierre Auger Observatory is a multi-national organization for research on ultra-high energy cosmic rays. The Southern Auger Observatory (Auger-South) in the province of Mendoza, Argentina, has been completed in 2008. First results on the energy spectrum, mass composition and distribution of arrival directions on the southern sky are really impressive. The planned Northern Auger Observatory in Colorado, USA, (Auger-North) will open a new window into the universe and establish charged particle astronomy to determine the origin and nature of ultra-high energy cosmic rays. These cosmic particles carry information complementary to neutrinos and photons and to gravitational waves. They also provide an extremely energetic beam for the study of particle interactions at energies that thirty times higher than those reached in terrestrial accelerators. The Auger Observatory is a hybrid detector consisting of a Surface Detector (SD) and an atmospheric Fluorescence Detector (FD). The hybrid data set obtained when both...

  13. Spurious effects of electron emission from the grids of a retarding field analyser on secondary electron emission measurements. Results on a (111) copper single crystal

    International Nuclear Information System (INIS)

    Pillon, J.; Roptin, D.; Cailler, M.

    1976-01-01

    Spurious effects of a four grid retarding field analyzer were studied for low energy secondary electron measurements. Their behavior was investigated and two peaks in the energy spectrum were interpreted as resulting from tertiary electrons from the grids. It was shown that the true secondary electron peak has to be separated from these spurious peaks. The spectrum and the yields sigma and eta obtained for a Cu(111) crystal after a surface cleanness control by Auger spectroscopy are given

  14. Angular dependence of Auger signals from a GaAs (111) surface

    International Nuclear Information System (INIS)

    Barnard, W.O.

    1984-03-01

    This dissertation is concerned with the angular dependence of the L 3 M 4 M 4 1067 eV Ga and L 3 M 4 M 4 1228 eV As Auger electron signals from a (111) GaAs surface, using a system which is equipped with a cylindrical mirror analyser. Following a detailed discussion of the Auger process, a review is given of angular effects in the emission excitation and detection of Auger signals. Present theories are discussed and an empirical theory is developed to test the experimental results obtained in this study. The experimental procedures and equipment used are presented. It was found that the Auger signals show a strong variation with the angle of rotation about the normal of a GaAs surface. Furthermore, the nature of the angular spectra of the Ga and As signals are interchanged when the electron beam incident surface is changed from (111) to (111). The main features of the angular variation of the quasi-elastic backscattered signal is reflected in the corresponding Ga and As Auger angular spectra. The angular dependence of the quasi-elastic backscattered signal can be explained semi-quantitatively in terms of the empirical theory. Theoretical arguments are presented which suggest that the Auger signals should show an angular dependence similar to the quasi-elastic backscattered signal. Evidence was found that geometric screening-off of underlying atoms by surface and near surface atoms influence the Auger yield

  15. Production of the Ne Auger electrons by Ne/sup +/ bombardment of Mg and Al surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, J; Pepper, S V [National Aeronautics and Space Administration, Cleveland, Ohio (USA). Lewis Research Center

    1976-07-01

    The authors have bombarded Mg and Al surfaces with Ne/sup +/ ions and in this letter present evidence for the production of an inner shell vacancy in the Ne by the asymmetric Ne-Mg and Ne-Al collision. In addition, autoionization states of neutral Ne have been observed. These states are to be distinguished from the more usual case in Auger electron spectroscopy of de-excitation of an ion with a core vacancy.

  16. Auger North: The Pierre Auger Observatory in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Mantsch, Paul M.; /Fermilab

    2009-01-01

    Results from Auger South have settled some fundamental issues about ultra-high energy (UHE) cosmic rays and made clear what is needed now to identify the sources of these particles, to uncover the acceleration process, to establish the particle types, and to test hadronic interaction properties at extreme energies. The cosmic rays above 55 EeV are key. Auger North targets this high energy frontier by increasing the collecting power of the Auger Observatory by a factor of eight for those high energy air showers. Particles above about 40 EeV have been shown to be subject to propagation energy loss, as predicted by Greisen, Zatsepin and Kuzmin (GZK) in 1966. Moreover, it is now evident that there is a detectable flux of particles from extragalactic sources within the GZK sphere. The inhomogeneous distribution of matter in the local universe imprints its anisotropy on the arrival directions of cosmic rays above 55 EeV. The challenge is to collect enough of those arrival directions to identify the class of astrophysical accelerators and measure directly the brightest sources. Auger North will increase the event rate from 25 per year to 200 per year and give the Auger Observatory full sky exposure. The Auger Observatory also has the capability to detect UHE photons and neutrinos from discrete sources or from the decays of GZK pions. With the expanded aperture of Auger North, the detection of GZK photons and neutrinos will provide a complementary perspective of the highest energy phenomena in the contemporary universe. Besides being an observatory for UHE cosmic rays, photons, and neutrinos, the Auger Observatory will serve as a laboratory for the study of hadronic interactions with good statistics over a wide range of center-of-mass energies above what can be reached at the LHC. Auger North will provide statistical power at center-of-mass energies above 250 TeV where the alternative extrapolations of hadronic cross sections diverge. Auger North is ready to go. The

  17. Auger North: The Pierre Auger Observatory in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Mantsch, Paul M.

    2009-01-01

    Results from Auger South have settled some fundamental issues about ultra-high energy (UHE) cosmic rays and made clear what is needed now to identify the sources of these particles, to uncover the acceleration process, to establish the particle types, and to test hadronic interaction properties at extreme energies. The cosmic rays above 55 EeV are key. Auger North targets this high energy frontier by increasing the collecting power of the Auger Observatory by a factor of eight for those high energy air showers. Particles above about 40 EeV have been shown to be subject to propagation energy loss, as predicted by Greisen, Zatsepin and Kuzmin (GZK) in 1966. Moreover, it is now evident that there is a detectable flux of particles from extragalactic sources within the GZK sphere. The inhomogeneous distribution of matter in the local universe imprints its anisotropy on the arrival directions of cosmic rays above 55 EeV. The challenge is to collect enough of those arrival directions to identify the class of astrophysical accelerators and measure directly the brightest sources. Auger North will increase the event rate from 25 per year to 200 per year and give the Auger Observatory full sky exposure. The Auger Observatory also has the capability to detect UHE photons and neutrinos from discrete sources or from the decays of GZK pions. With the expanded aperture of Auger North, the detection of GZK photons and neutrinos will provide a complementary perspective of the highest energy phenomena in the contemporary universe. Besides being an observatory for UHE cosmic rays, photons, and neutrinos, the Auger Observatory will serve as a laboratory for the study of hadronic interactions with good statistics over a wide range of center-of-mass energies above what can be reached at the LHC. Auger North will provide statistical power at center-of-mass energies above 250 TeV where the alternative extrapolations of hadronic cross sections diverge. Auger North is ready to go. The

  18. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values.

    Science.gov (United States)

    Falzone, Nadia; Lee, Boon Q; Fernández-Varea, José M; Kartsonaki, Christiana; Stuchbery, Andrew E; Kibédi, Tibor; Vallis, Katherine A

    2017-03-21

    The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67 Ga, 80m Br, 89 Zr, 90 Nb, 99m Tc, 111 In, 117m Sn, 119 Sb, 123 I, 124 I, 125 I, 135 La, 195m Pt and 201 Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKs using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKs in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.

  19. Surface-site-selective study of valence electronic structures of clean Si(100)-2x1 using Si-L23VV Auger electron-Si-2p photoelectron coincidence spectroscopy

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Nagaoka, Shinichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2010-01-01

    Valence electronic structures of a clean Si(100)-2x1 surface are investigated in a surface-site-selective way using Si-L 23 VV Auger electron-Si-2p photoelectron coincidence spectroscopy. The Si-L 23 VV Auger electron spectra measured in coincidence with Si-2p photoelectrons emitted from the Si up-atoms or Si 2nd-layer of Si(100)-2x1 suggest that the position where the highest density of valence electronic states located in the vicinity of the Si up-atoms is shifted by 0.8 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. Furthermore, the valence band maximum in the vicinity of the Si up-atoms is indicated to be shifted by 0.1 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. These results are direct evidence of the transfer of negative charge from the Si 2nd-layer to the Si up-atoms. (author)

  20. Experimental verification of the line-shape distortion in resonance Auger spectra

    International Nuclear Information System (INIS)

    Aksela, S.; Kukk, E.; Aksela, H.; Svensson, S.

    1995-01-01

    When the mean excitation energy and the width of a broad photon band are varied the Kr 3d 5/2 -1 5p→4p -2 5p resonance Auger electron lines show strong asymmetry and their average kinetic energies shift. Even extra peaks appear. Our results demonstrate experimentally, for the first time, that the incident photon energy distribution has very crucial importance on the resonance Auger line shape and thus on the reliable data analysis of complicated Auger spectra

  1. Electron impact excitation and ionization of laser-excited sodium atoms Na*(7d)

    International Nuclear Information System (INIS)

    Nienhaus, J.; Dorn, A.; Mehlhorn, W.; Zatsarinny, O.I.

    1997-01-01

    We have investigated the ejected-electron spectrum following impact excitation and ionization of laser-excited Na * (nl) atoms by 1.5 keV electrons. By means of two-laser excitation 3s → 3p 3/2 → 7d and subsequent cascading transitions about 8% (4%) of the target atoms were in excited states with n > 3 (7d). The experimental ejected-electron spectrum due to the decay of Auger and autoionization states of laser-excited atoms Na * (nl) with n = 4-7 has been fully interpreted by comprehensive calculations of the energies, cross sections and decay probabilities of the corresponding states. The various processes contributing to the ejected-electron spectrum are with decreasing magnitude: 2s ionization leading to 2s2p 6 nl Auger states, 2p → 3s excitation leading to 2p 5 3s( 1 P)nl autoionization states and 2s → 3l' excitation leading to 2s2p 6 3l'( 1 L)nl autoionization states. (Author)

  2. Relationship Between Chromatin Structure and Sensitivity to Molecularly Targeted Auger Electron Radiation Therapy

    International Nuclear Information System (INIS)

    Terry, Samantha Y.A.; Vallis, Katherine A.

    2012-01-01

    Purpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage (γH2AX assay) and clonogenic survival were evaluated after exposure to 111 In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of 111 In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. Results: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of γH2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 μM) compared with IR alone (16 ± 0.6 and 14 ± 0.3 vs. 12 ± 0.4 and 11 ± 0.2, respectively). More γH2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to 111 In-DTPA-hEGF (6 MBq/μg) plus SAHA vs. 111 In-DTPA-hEGF alone (11 ± 0.3 and 12 ± 0.7 vs. 9 ± 0.4 and 7 ± 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and 111 In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 μM) vs. IR alone (0.6% ± 0.01 and 0.3% ± 0.2 vs. 5.8% ± 0.2 and 2% ± 0.1, respectively) and after 111 In-DTPA-hEGF plus SAHA compared to 111 In-DTPA-hEGF alone (21% ± 0.4% and 19% ± 4.6 vs. 33% ± 2.3 and 32% ± 3.7). SAHA did not affect 111 In-DTPA-hEGF nuclear localization. Hypertonic treatment resulted in fewer γH2AX foci per cell after IR and 111 In-DTPA-hEGF compared to controls but did not significantly alter clonogenic

  3. Auger spectrometry of atoms and molecules

    International Nuclear Information System (INIS)

    Krause, M.O.

    1994-01-01

    The author discusses the importance of Auger spectrometry at synchrotron radiation centers. First, he explains how a high energy photon source such as the APS (Advanced Photon Source) could be used to help provide missing spectral information about the shell structure of some elements. The missing data occurs mainly at higher energies in the 1--10 keV ranges as for the K-shells of Z = 30 to 60 elements and the L-shells for Z = 30 to 100 elements. He explains how even though Auger electron spectrometry does not depend on synchrotron radiation it can greatly benefit from this variable photon source as it allows one to select the Auger line group that is most suitable for a specific purpose. Most significantly, a continuous photon source becomes indispensable when one is interested in threshold effects. Lastly, he discusses coherence effects between different inner-shell vacancy states by way of some recent work done at Daresbury

  4. Ion-induced Auger electron spectroscopy: a new detection method for compositional homogeneities of alloyed atoms in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A [Osaka Univ., Japan; Imura, T; Iwami, M; Kim, S C; Ushita, K; Okamoto, H; Hamakawa, Y

    1979-09-01

    Auger spectra of Si LMM transitions induced by keV Ar/sup +/ ion bombardment of Si alloy systems have been studied. The spectra observed are composed of two well-defined peaks termed elsewhere the atomic-like and bulk-like peaks, repsectively. A clear correlation has been found between the intensity of the atomic-like peak lying at 88 eV and the content of the foreign atoms alloyed with Si. Experiments were carried out on metallic silicides, or Si alloys with Au, Cu, Pd and Ni, and covalently bonded non-metallic Si alloys of C and H. From these studies, we propose that ion-induced Auger electron spectroscopy might be a useful tool for the determination of alloyed foreign atoms as well as for the study of their compositional homogeneity in binary alloy systems of silicon.

  5. From The Pierre Auger Observatory to AugerPrime

    Science.gov (United States)

    Parra, Alejandra; Martínez Bravo, Oscar; Pierre Auger Collaboration

    2017-06-01

    In the present work we report the principal motivation and reasons for the new stage of the Pierre Auger Observatory, AugerPrime. This upgrade has as its principal goal to clarify the origin of the highest energy cosmic rays through improvement in studies of the mass composition. To accomplished this goal, AugerPrime will use air shower universality, which states that extensive air showers can be completely described by three parameters: the primary energy E 0, the atmospheric shower depth of maximum X max, and the number of muons, Nμ . The Auger Collaboration has planned to complement its surface array (SD), based on water-Cherenkov detectors (WCD) with scintillator detectors, calls SSD (Scintillator Surface Detector). These will be placed at the top of each WCD station. The SSD will allow a shower to shower analysis, instead of the statistical analysis that the Observatory has previously done, to determine the mass composition of the primary particle by the electromagnetic to muonic ratio.

  6. Photoelectron and Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} obtained by using monochromatized synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shin-ichi, E-mail: nagaoka@ehime-u.ac.jp [Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Endo, Hikaru; Nagai, Kanae [Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Takahashi, Osamu [Institute for Sustainable Sciences and Development, Hiroshima University, Higashi-Hiroshima 739-8511 (Japan); Tamenori, Yusuke [Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198 (Japan); Suzuki, Isao H. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Advanced Institute of Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-08-15

    Highlights: • Various photo- and Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} vapor were measured. • The measured spectra were interpreted with the aid of some calculations. • The spectra showed profiles close to those expected from SiCl{sub 4} and Si(CH{sub 3}){sub 4}. • These results were discussed in conjunction with site-specific fragmentation. - Abstract: A variety of photoelectron and Auger-electron spectra of 1,1,1-trimethyltrichlorodisilane vapor (Cl{sub 3}SiSi(CH{sub 3}){sub 3}) were measured by using monochromatized synchrotron radiation and a hemispherical electron energy analyzer. The measured spectra were interpreted with the aid of some calculations by means of the outer valence Green's function (OVGF) method or the density-functional-theory (DFT) method. Since Cl{sub 3}SiSi(CH{sub 3}){sub 3} consists of -SiCl{sub 3} and -Si(CH{sub 3}){sub 3} moieties, the experimental core-electron binding-energies were compared with those of tetrachlorosilane and tetramethylsilane (SiCl{sub 4} and Si(CH{sub 3}){sub 4}, respectively). This comparison showed that electronic properties of Cl{sub 3}SiSi(CH{sub 3}){sub 3} hold a close correlation with those of SiCl{sub 4} and Si(CH{sub 3}){sub 4}. Si:L{sub 23}VV, Cl:L{sub 23}VV and C:KVV Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} also showed profiles close to those expected from the spectra of SiCl{sub 4} and Si(CH{sub 3}){sub 4}. The results obtained here were discussed in conjunction with electronic relaxation leading to site-specific fragmentation.

  7. Auger processes in tracks of fast multicharged ions

    International Nuclear Information System (INIS)

    Katin, V.V.; Martynenko, Yu.V.; Yavlinskij, Yu.N.

    1992-01-01

    The fast multicharged ion spends about 40% of energy losses on vacancy creation in the inner electron shells. This energy is transferred to the kinetic energy of electrons due to the cascade of Auger processes during ∼ 10 -14 s whereas the primary excited electrons receive the energy in ∼10 -16 s. (author)

  8. KLL resonant Auger transitions in metallic Cu and Ni

    International Nuclear Information System (INIS)

    Koever, L.; Berenyi, Z.; Cserny, I.

    2004-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metals contain important information on the effects of the solid environment on deep core Auger transitions. Following the changes in the spectra when fine tuning the exciting photon energy across the K-shell ionization threshold with high energy resolution is informative concerning the possible resonant processes, expected to indicate the single-step nature of threshold Auger emission. The satellite structures in these spectra are strongly related to the unoccupied local electronic states above the Fermi level, as well as to the excitation, relaxation and screening processes associated with core hole ionization. In spite of the fundamental significance of the phenomena mentioned above, even non resonant high energy resolution studies of KLL Auger spectra of 3d transition metals (using laboratory X-ray sources) are very scarce due to the demanding experimental conditions requested. A very efficient tool for studying these phenomena is the Tunable High Energy XPS developed at HASYLAB which provides unique conditions, photon x and energy resolution for deep core Auger spectroscopy. Using the THE-XPS instrument at the BW2 beamline the high energy resolution (ΔE = 0.2 eV) KL 2,3 L 2,3 Auger spectra of polycrystalline Cu and Ni foils were measured with the Scienta SES-200 hemispherical analyzer. In the high energy range Cu 2p photo-electron peaks appearing in the Cu KLL Auger spectra due to the excitation by internal Cu K X-rays and trusted value for the Cu 2p3/2 binding energy were used for energy calibration. The exciting photon energy range was tuned up to about 50 eV above the K absorption edge and for the resonant energy region to 5 eV (Cu KLL) and 4 eV (Ni KLL) below threshold ensuring a photon beam with an energy width of about 1.1 eV. The evolution of the satellite structure as a function of excitation energy above threshold indicates di rent behaviour for particular satellites, making

  9. Surface analysis of Al alloys with X-ray photoelectron and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Sakairi, Masatoshi; Suzuki, Keita; Sasaki, Ryo

    2015-01-01

    In this paper, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were applied to investigate passive films formed on aluminum alloy in 0.5 kmol m -3 H 3 BO 3 /0.05 kmol m -3 Na 2 B 4 O 7 with different metal cations. The metal cation is classified by metal cation hardness, X, which are calculated based on the concept of hard and soft acids and bases (HSAB) of the acid and base in Lewis's rule. From XPS analysis, the metal cations with X > 4 were incorporated in passive films. The area-selected surface analysis of AES was also introduced. (author)

  10. Auger Prime the new stage of the Pierre Auger Observatory, using Universality

    International Nuclear Information System (INIS)

    Parra, Alejandra; Martínez, Oscar; Salazar, Humberto

    2016-01-01

    The Pierre Auger Observatory is currently in an update stage denominated AugerPrime. The Observatory will have scintillator detectors on top of each of the surface stations (WCD). The main goal of AugerPrime is to improve the studies on mass composition for ultra high energy cosmic rays, for this purpose AugerPrime will use Universality. The model will parameterize the signal in four principal components, the objective is an adequate discrimination of the muonic and electromagnetic components. We are interested in the discrimination of these two components using simulations. To do that, we are working with OfflineTrunk (the official software of the Collaboration). Our work is focused on the development of some modules for analysis and study of the signal from AugerPrime. (paper)

  11. Growth and trends in Auger-electron spectroscopy and x-ray photoelectron spectroscopy for surface analysis

    International Nuclear Information System (INIS)

    Powell, C.J.

    2003-01-01

    A perspective is given of the development and use of surface analysis, primarily by Auger-electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS), for solving scientific and technological problems. Information is presented on growth and trends in instrumental capabilities, instrumental measurements with reduced uncertainties, knowledge of surface sensitivity, and knowledge and effects of sample morphology. Available analytical resources are described for AES, XPS, and secondary-ion mass spectrometry. Finally, the role of the American Vacuum Society in stimulating improved surface analyses is discussed

  12. TU-H-CAMPUS-TeP3-05: Evaluation of the Microscopic Dose Enhancement in the Nanoparticle-Enhanced Auger Therapy

    International Nuclear Information System (INIS)

    Sung, W; Jung, S; Ye, S

    2016-01-01

    Purpose: The aim of this study is to apply Monte Carlo simulations to investigate the nanoparticle dose enhancement for Auger therapy. Methods: Two nanoparticle fabrications were considered: nanoshell and nanosphere. In the first step, a single nanoparticle was irradiated with Auger emitters. The electrons were scored in a phase space at the outer surface of the nanoparticle with Geant4-Penelope. In the second step, the previously recorded phase space was used as a source and placed at the center of a cell-size water phantom. The nanoscale dose was evaluated in water around the nanoparticle with Geant4-DNA. The dose enhancement factor (DEF) is defined as the ratio of doses with and without nanoparticles. The nanoparticles were replaced by corresponding water nanoparticle with the same size and volume source which represents typical situation of Auger emitters without nanoparticle. Various sizes/materials of nanoparticles and isotopes were considered. Results: Nanoshell - Microscopic dose was increased up to 130% at 20 – 100 nm distances from the surface of Au- 125 I nanoshell. However, dose at less than 20 nm distance was reduced due to absorbed low energy electrons in gold nanoshell. The amounts and regions of the dose enhancement were dependent on nanoshell size, materials, and isotopes. Nanosphere - The increased amounts of electrons up to 300% and reduced average energy with nanosphere were observed compared with water nanoparticle. We observed localized dose enhancement (up to a factor 3.6) in the immediate vicinity (< 50 nm) of Au- 125 I nanosphere. The dose enhancement patterns vary according to nanosphere sizes and isotopes. Conclusion: We conclude that Auger therapy with nanoparticles can lead to change of electron energy spectrum and dose enhancements at certain range. The dose enhancement patterns vary according to nanoparticle sizes, materials, and isotopes. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the

  13. Chemical effects in materials studies using Auger analysis

    International Nuclear Information System (INIS)

    Rye, R.R.

    1985-01-01

    Core-valence-valence Auger spectra (AES) afford a unique local view of valence electron structure. The direct involvement in the Auger process of both core and valence states means that the transition matrix element will have a large value only for that portion of the valence electron density which covers the same spatial extent as the core wave function. Thus, the information content of AES is local to the atomic site containing the initial core hole. Our approach in understanding the local information content of AES has been mainly experimental through the intercomparison of model systems, both molecular and solid. The use of molecules in this regard is particularly useful since the vast array of molecular species of known geometric and electronic structures allows one to both vary these properties in a systematic fashion to observe trends and to choose a molecule to probe a specific chemical question

  14. Auger Physicists visit CMS

    CERN Multimedia

    Hoch, Michael

    2012-01-01

    Visit at CERN P5 CMS in the experimental cavern Alan Watson, Auger Spokesperson Emeritus, University of Leeds; Jim Cronin, Nobel Laureate, Auger Spokesperson Emeritus, University of Chicago; Jim Virdee, CMS Former Spokesperson, Imperial College; Jim Matthews, Auger Co-Spokesperson, Louisiana State University

  15. Quantitative Auger depth profiling of LPCVD and PECVD silicon nitride films

    International Nuclear Information System (INIS)

    Keim, E.G.; Aite, K.

    1989-01-01

    Thin silicon nitride films (100-210 nm) with refractive indices varying from 1.90 to 2.10 were deposited on silicon substrates by low pressure chemical vapour deposition (LPCVD) and plasma enhanced chemical vapour deposition (PECVD). Rutherford backscattering spectrometry (RBS), ellipsometry, surface profiling measurements and Auger electron spectroscopy (AES) in combination with Ar + sputtering were used to characterize these films. We have found that the use of (p-p)heights of the Si LVV and N KLL Auger transitions in the first derivative of the energy distribution (dN(E)/dE) leads to an accurate determination of the silicon nitride composition in Auger depth profiles over a wide range of atomic Si/N ratios. Moreover, we have shown that the Si KLL Auger transition, generally considered to be a better probe than the low energy Si LVV Auger transition in determining the chemical composition of silicon nitride layers, leads to deviating results. (orig.)

  16. Scanning Auger microscopy study of lanthanum partitioning in sphene-based glass-ceramics

    International Nuclear Information System (INIS)

    Hocking, W.H.; Hayward, P.J.; Watson, D.G.; Allen, G.C.

    1984-01-01

    Glass-ceramics are being investigated as possible hosts for the radioactive wastes that would result from recycling irradiated nuclear fuels. The partitioning of lanthanum in sphene-based glass-ceramics has been studied by scanning Auger electron microscopy for lanthanum concentrations from 0.2 to 2.0 mol.%. Sphene crystals (CaTiSiO 5 ) were located in the silica-rich glass matrix by recording digital Auger images of the calcium and titanium distributions. The sphene crystals were typically 0.5 to 5 μm in size and occupied approximately 40% of the total specimen volume. Auger spot analyses revealed that lanthanum was strongly partitioned into the sphene phase of phosphorus-free glass-ceramics; however, when a small amount of phosphorus was included in the glass-ceramic composition as a crystal nucleating agent, the lanthanum was concentrated in a third minor phase which also contained calcium, phosphorus and oxygen. Chemical shift effects in the Auger spectra of silicon, titanium and phosphorus showed evidence for electron-stimulated desorption of oxygen. (author)

  17. The determination of carbon, nitrogen and oxygen in TiCsub(x)Nsub(y)Osub(z) with the Auger electron spectroscopy (AES)

    International Nuclear Information System (INIS)

    Schneider, H.; Nold, E.; Miller, H.T.

    1980-01-01

    The possibility of determining the carbon, nitrogen and oxygen contents in TiCsub(x)Nsub(y)Osub(z) with the Auger-electron-spectroscopy (AES) is discussed. As an example the concentration dependence over the cross section of 1 μm thick TiN-layers is presented. (orig.)

  18. 3D Auger quantitative depth profiling of individual nanoscaled III–V heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hourani, W. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Gorbenko, V. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Univ. Grenoble Alpes, LTM, CNRS, F-38000 Grenoble (France); Barnes, J.-P.; Guedj, C. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Cipro, R.; Moeyaert, J.; David, S.; Bassani, F.; Baron, T. [Univ. Grenoble Alpes, LTM, CNRS, F-38000 Grenoble (France); Martinez, E., E-mail: eugenie.martinez@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2016-11-15

    Highlights: • The nanoscale chemical characterization of III–V heterostructures is performed using Auger depth profiling below decananometric spatial resolution. • Reliable indium quantification is achieved on planar structures for thicknesses down to 9 nm. • Quantitative 3D compositional depth profiles are obtained on patterned structures, with sufficient lateral resolution to analyze one single trench. • The Auger intrinsic spatial resolution is estimated around 150–200 nm using a comparison with HAADF-STEM. • Auger and SIMS provide reliable in-depth chemical analysis of such complex 3D heterostructures, in particular regarding indium quantification. - Abstract: The nanoscale chemical characterization of III–V heterostructures is performed using Auger depth profiling below decananometric spatial resolution. This technique is successfully applied to quantify the elemental composition of planar and patterned III–V heterostructures containing InGaAs quantum wells. Reliable indium quantification is achieved on planar structures for thicknesses down to 9 nm. Quantitative 3D compositional depth profiles are obtained on patterned structures, for trench widths down to 200 nm. The elemental distributions obtained in averaged and pointed mode are compared. For this last case, we show that Zalar rotation during sputtering is crucial for a reliable indium quantification. Results are confirmed by comparisons with secondary ion mass spectrometry, photoluminescence spectroscopy, transmission electron microscopy and electron dispersive X-ray spectroscopy. The Auger intrinsic spatial resolution is quantitatively measured using an original methodology based on the comparison with high angle annular dark field scanning transmission electron microscopy measurements at the nanometric scale.

  19. The AMIGA enhancement of the Pierre Auger Observatory

    Science.gov (United States)

    Maldera, S.

    2014-06-01

    The AMIGA (Auger Muons and Infill for the Ground Array) enhancement of the Auger Surface Detector consists of a 23.5 km2 infill area instrumented with water-Cherenkov detector stations accompanied by 30 m2 of scintillator counters, buried 2.3 m underground. The spacing of 750 m between the surface detectors extends the energy range as low as 3 × 1017 eV, thus allowing the study of the energy region where the transition between galactic and extra-galactic cosmic rays is expected to take place. We describe the reconstruction of the events observed with the infill water-Cherenkov detector array and the derived energy spectrum. We also discuss the basic properties of the muon detector modules obtained from measurements and tests during the construction phase and from the first data in the field.

  20. Many-body effect in the resonant Ti L23-M23V Auger-electron spectroscopy spectra and Auger-photoelectron coincidence spectroscopy spectra of Ti oxides

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    Recently Danger et al. [J. Danger, H. Magnan, D. Chandesris, P. Le Fevre, S. Bourgeois, J. Jupille, A. Verdini, R. Gotter, A. Morgante, Phys. Rev. B 64 (2001) 045110] and Le Fevre et al. [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B 69 (2004) 155421] showed the absence of resonant Raman scattering feature in the Ti L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectra of Ti oxides measured across the Ti 2p edges. They attributed the absence to the covalent character of the Ti-O bond which allows an effective delocalization of 3d electrons. It is shown by a many-body theory that when the time scale of relaxation of the resonantly excited core-hole state to the fully relaxed core-hole state is much shorter than that of core-hole decay, any sizeable Raman scattering is absent in the RAES spectra measured across the Ti 2p edges. The relaxation width depends on the hybridization strength and the charge transfer (CT) energy between the two states. The L 2 -L 3 V Coster-Kronig (CK) decay widths of TiO 2 and TiO 2-x are determined from the L 23 -M 23 V Auger-photoelectron coincidence spectroscopy (APECS) spectra reported in the aforementioned papers. They are about 0.18 and 0.35 eV, respectively. The CK-decay width in the reduced Ti oxide increases compared to that of TiO 2 in rutile because of filling of the 3d states just below the Fermi level in the former

  1. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  2. Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies

    International Nuclear Information System (INIS)

    Lo, W.J.; Somorjai, G.A.

    1978-01-01

    Low-energy-electron diffraction, Auger-electron spectroscopy, electron-energy-loss, and ultraviolet-photoelectron spectroscopies were used to study the structure, composition, and electron energy distribution of a clean single-crystal (111) face of strontium titanate (perovskite). The dependence of the surface chemical composition on the temperature has been observed along with corresponding changes in the surface electronic properties. High-temperature Ar-ion bombardment causes an irreversible change in the surface structure, stoichiometry, and electron energy distribution. In contrast to the TiO 2 surface, there are always significant concentrations of Ti 3+ in an annealed ordered SrTiO 3 (111) surface. This stable active Ti 3+ monolayer on top of a substrate with large surface dipole potential makes SrTiO 3 superior to TiO 2 when used as a photoanode in the photoelectrochemical cell

  3. Results from and prospects for the Auger Engineering Radio Array

    Directory of Open Access Journals (Sweden)

    van den Berg A.M.

    2013-06-01

    Full Text Available The Auger Engineering Radio Array (AERA is one of the low-energy enhancements of the Pierre Auger Observatory. AERA is based on experience obtained with the LOPES and CODALEMA experiments in Europe and aims to study in the MHz region the details of the emission mechanism of radio signals from extensive air showers. The data from AERA will be used to assess the sensitivity of MHz radiation to the mass composition of cosmic rays. Because of its energy threshold at 2 × 1017 eV the dip region in the cosmic-ray flux spectrum can be studied in detail. We present first results of AERA and of its prototypes and we provide an outlook towards the future.

  4. Characteristic electron energy losses in monoatomic antimony films on (110) and (112) tungsten faces

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Gorchinskij, A.D.; Shevlyakov, S.A.

    1981-01-01

    Complex investigations of antimony condensation on a monoatomical clean surface of tungsten monocrystals are carried out. The completion of a physical antimony monolayer has been controlled by the methods of Auger-electron spectroscopy and slow electron diffraction. It is shown that at submonolayer coatings a collectivization of valent electrons occurs leading to appearance of peaks of surface and volumetric plasmons in the energy losses spectrum. The anomalous cencentrational dependence of antimony ionization peak intensity has been found. The origin of previously unexplored peaks in the energy losses spectrum is discussed [ru

  5. Secondary electron emission anisotropy in oblique incidence of electrons on the (100) Mo

    International Nuclear Information System (INIS)

    Gomoyunova, M.V.; Zaslavskij, S.L.; Pronin, I.I.

    1978-01-01

    Studied was the influence of azimuthal plane of incidence of primary particles with energies of 0.5-1.5 keV on the secondary electron emission of the (100) Mo face at the constant polar angle of 45 deg. The measurements were carried out in vacuum of (2-4)x10 -10 torr by modulation technique. It is shown that anisotropy is peculiar to the secondary electron emission of all energies. The anisotropy of emission has two maxima; the high-energy maximum connected with reflected primary electrons and situated near the elastically reflected electrons and weaker pronounced the low-energy one which is found at energies of 100-200 eV and is conditioned by truly secondary electrons. It is shown that the anisotropy, characterizing secondary electrons responsible for the appearance of structure in spectrum, particularly the Auger electrons and the electrons suffering ionizing energy losses, exceeds the anisotropy of continuous spectrum electrons possessing the same energy. The electron diffraction dynamic theory, based on the conception of the united wave field of electrons, has been used to explain the regularities stated

  6. Inactivation of bacteriophage T1 by the Auger effect following phosphorus resonance absorption of monoenergetic synchrotron radiation

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya; Maezawa, Hiroshi; Suzuki, Kenshi; Kobayashi, Katsumi; Suzuki, Masao; Hieda, Kotaro

    1992-01-01

    Killing effect on bacteriophage T1 by the Auger cascade of phosphorus in DNA following K shell photoabsorption was studied with monoenergetic X rays obtained from synchrotron radiations. Phages embedded in nutrient broth were irradiated under vacuum with X rays at the resonance peak (2,153 eV), and below (2,147 eV) and above (2,159 eV) the peak. The corresponding mean lethal exposures (D 0 ) were 554, 332 and 434 kR, respectively. The Auger enhancements, as an energy dependent fractional increment of phase sensitivity, were 0.67 at 2,153 eV and 0.28 at 2,159 eV. Using the DNA absorption spectrum measured in this experiment, photoionization cross sections of Scofield (17), and the Auger yield after creation of a K shell vacancy, the number of phosphorus Auger cascades in one phage DNA at D 0 were calculated to be 0.00, 0.98 and 0.25 at 2,147, 2,153 and 2,159 eV, respectively. Comparison between the Auger enhancement of phage killing and the number of Auger cascades indicated that one phosphorus Auger cascade in phage DNA caused about 0.41 (at 2,153 eV) or 0.84 (at 2,159 eV) lethal events

  7. Swift heavy ion induced electron emission from solids

    International Nuclear Information System (INIS)

    Rothard, Hermann; Gervais, Benoit; Lanzanò, Gaetano; De Filippo, Enrico; Caron, Michel; Beuve, Michael

    2015-01-01

    We briefly summarize the results of numerous experiments performed at GANIL aimed at measuring electron yields and doubly differential yields (energy or velocity spectra at different ejection angles, angular distributions). These studies, supported by theoretical investigations and numerical simulations, contributed decisively to our understanding of the very first step in energy deposition in matter, i.e. ionization and subsequent electron transport through condensed matter. The emitted electron spectrum contains a rich variety of features including binary encounter electrons (BEE), convoy electrons (CE), Auger electrons (AE) and the low-energy peak of “secondary” electrons (SE). (paper)

  8. Electron emission relevant to inner-shell photoionization of condensed water studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hikosaka, Y., E-mail: hikosaka@las.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Mashiko, R.; Konosu, Y.; Soejima, K. [Department of Environmental Science, Niigata University, Niigata 950-2181 (Japan); Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); SOKENDAI, Okazaki 444-8585 (Japan)

    2016-11-15

    Highlights: • Multi-electron coincidence spectroscopy is applied to the study of electron emissions from condensed H2O molecules. • Coincidence Auger spectra are obtained for different photoelectron energies. • The energy distribution of the slow electrons ejected in the Auger decay is deduced from three-fold coincidences. - Abstract: Multi-electron coincidence spectroscopy using a magnetic-bottle electron spectrometer has been applied to the study of the Auger decay following O1s photoionization of condensed H{sub 2}O molecules. Coincidence Auger spectra are obtained for three different photoelectron energy ranges. In addition, the energy distribution of the slow electrons ejected in the Auger decay of the O1s core hole is deduced from three-fold coincidences.

  9. Auger ACCESS—Remote Controlling and Monitoring the Pierre Auger Observatory

    Science.gov (United States)

    Jejkal, Thomas

    2013-10-01

    Ultra high energy cosmic rays are the most energetic particles in the universe. They are measured to have energies of up to 1020 eV and occur at a rate of about once per square kilometer per century. To increase the probability of detecting one of these events, a huge detector covering a large area is needed. The Pierre Auger Collaboration build up an observatory covering 3000 square kilometers of the Pampa Amarilla close to Malargüe for this purpose. Until now, the Auger Observatory has been controlled exclusively via the local network for security and performance reasons. As local operation is associated with high travel costs, the Auger ACCESS project, started in 2005, has constructed a secure, operable and sustainable solution for remote control and monitoring. The implemented solution includes Grid technologies for secured access and infrastructure virtualization for building up a fully featured testing environment for the Auger Observatory. Measurements showed only a negligible delay for communicating with the observatory in Argentina, which allows the establishment of remote control rooms in the near future for full remote operation and remarkable cost reduction.

  10. Gold removal rate by ion sputtering as a function of ion-beam voltage and raster size using Auger electron spectroscopy. Final report

    International Nuclear Information System (INIS)

    Boehning, C.W.

    1983-01-01

    Gold removal rate was measured as a function of ion beam voltage and raster size using Auger electron spectroscopy (AES). Three different gold thicknesses were developed as standards. Two sputter rate calibration curves were generated by which gold sputter rate could be determined for variations in ion beam voltage or raster size

  11. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    Science.gov (United States)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our

  12. An Auger electron spectroscopy study on the anodization process of high-quality thin-film capacitors made of hafnium

    International Nuclear Information System (INIS)

    Noya, Atsushi; Sasaki, Katsutaka; Umezawa, Toshiji

    1989-01-01

    Formation process of the anodic oxide film of hafnium for use as a thin-film capacitor has been examined by the current-voltage characteristics of the anodization and the in-depth analysis of formed oxide using Auger electron spectroscopy. It is found that the oxide growth obeys three different rate laws such as the linear rate law at first and next the parabolic rate law during the constant current anodization, and then the reciprocal logarithmic rate law during the constant voltage anodization following after the constant current process. From the Auger electron spectroscopy analysis, it is found that the shape of the compositional depth profile of the grown oxide film varies associating with the rate law of oxidation obeyed. The variation of depth profile correlating with the rate law is discussed with respect to each elementary process such as the transport and/or the reaction of chemical species interpreted from the over-all behavior of anodization process. It is revealed that the stoichiometric film having an interface with sharp transition, which is favorable for obtaining excellent electrical properties of the capacitor, can be obtained under the condition that the phase-boundary reaction is the rate-determining step of the anodization. The constant voltage anodization process also satisfies such circumstances and therefore can be favorable method for preparing highquality thin-film capacitors. (author)

  13. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Science.gov (United States)

    Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  14. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    2014-01-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory

  15. Auger recombination in sodium iodide

    Science.gov (United States)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  16. Auger generation as an intrinsic limit to tunneling field-effect transistor performance

    International Nuclear Information System (INIS)

    Teherani, James T.; Agarwal, Sapan; Chern, Winston; Antoniadis, Dimitri A.; Solomon, Paul M.; Yablonovitch, Eli

    2016-01-01

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society's best hope for achieving a >10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly underperformed simulations and conventional MOSFETs. To explain the discrepancy between TFET experiments and simulations, we investigate the parasitic leakage current due to Auger generation, an intrinsic mechanism that cannot be mitigated with improved material quality or better device processing. We expose the intrinsic link between the Auger and band-to-band tunneling rates, highlighting the difficulty of increasing one without the other. From this link, we show that Auger generation imposes a fundamental limit on ultimate TFET performance.

  17. Auger generation as an intrinsic limit to tunneling field-effect transistor performance

    Energy Technology Data Exchange (ETDEWEB)

    Teherani, James T., E-mail: j.teherani@columbia.edu [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Agarwal, Sapan [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Chern, Winston; Antoniadis, Dimitri A. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Solomon, Paul M. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yablonovitch, Eli [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2016-08-28

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society's best hope for achieving a >10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly underperformed simulations and conventional MOSFETs. To explain the discrepancy between TFET experiments and simulations, we investigate the parasitic leakage current due to Auger generation, an intrinsic mechanism that cannot be mitigated with improved material quality or better device processing. We expose the intrinsic link between the Auger and band-to-band tunneling rates, highlighting the difficulty of increasing one without the other. From this link, we show that Auger generation imposes a fundamental limit on ultimate TFET performance.

  18. Radiative Auger effect in ion-atom collisions

    International Nuclear Information System (INIS)

    Richard, P.; Oltjen, J.; Jamison, K.A.; Kauffman, R.L.; Woods, C.W.; Hall, J.M.

    1975-01-01

    The radiative Auger effect, RAE, is observed for Al and Si bombarded by 1-2MeV H + . This is the first observation of the RAE X-ray edge using ion excitation. The K-L 23 L 23 RAE edge energy and the relative intensity are in agreement with the previously reported electron and photon induced spectra. (Auth.)

  19. Recent Results from the Pierre Auger observatory

    International Nuclear Information System (INIS)

    Kampert, Karl-Heinz

    2010-01-01

    The Pierre Auger observatory is a hybrid air shower experiment which uses multiple detection techniques to investigate the origin, spectrum, and composition of ultrahigh energy cosmic rays. We present recent results on these topics and discuss their implications to the understanding the origin of the most energetic particles in nature as well as for physics beyond the Standard Model, such as violation of Lorentz invariance and 'top-down' models of cosmic ray production. Future plans, including enhancements underway at the southern site in Argentina will be presented. (author)

  20. Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA)

    Science.gov (United States)

    SRD 100 Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA) (PC database for purchase)   This database has been designed to facilitate quantitative interpretation of Auger-electron and X-ray photoelectron spectra and to improve the accuracy of quantitation in routine analysis. The database contains all physical data needed to perform quantitative interpretation of an electron spectrum for a thin-film specimen of given composition. A simulation module provides an estimate of peak intensities as well as the energy and angular distributions of the emitted electron flux.

  1. Periodic variations of Auger energy maximum distribution following He2+ + H2 collisions: A complete analogy with photon interferences

    International Nuclear Information System (INIS)

    Cholet, M.; Minerbe, F.; Oliviero, G.; Pestel, V.; Frémont, F.

    2014-01-01

    Highlights: • Young type interferences with electrons are revisited. • Oscillations in the angular distribution of the energy maximum of Auger spectra are evidenced. • Model calculations are in good agreement with the experimental result. • The position of the Auger spectra oscillates in counterphase with the total intensity. - Abstract: In this article, we present experimental evidence of a particular electron-interference phenomenon. The electrons are provided by autoionization of 2l2l′ doubly excited He atoms following the capture of H 2 electrons by a slow He 2+ incoming ion. We observe that the position of the energy maximum of the Auger structures oscillates with the detection angle. Calculation based on a simple model that includes interferences clearly shows that the present oscillations are due to Young-type interferences caused by electrons scattering on both H + centers

  2. Vertical-Screw-Auger Conveyer Feeder

    Science.gov (United States)

    Walton, Otis (Inventor); Vollmer, Hubert J. (Inventor)

    2016-01-01

    A conical feeder is attached to a vertically conveying screw auger. The feeder is equipped with scoops and rotated from the surface to force-feed regolith the auger. Additional scoops are possible by adding a cylindrical section above the conical funnel section. Such then allows the unit to collect material from swaths larger in diameter than the enclosing casing pipe of the screw auger. A third element includes a flexible screw auger. All three can be used in combination in microgravity and zero atmosphere environments to drill and recover a wide area of subsurface regolith and entrained volatiles through a single access point on the surface.

  3. Auger decay of 1σg and 1σu hole states of the N2 molecule: Disentangling decay routes from coincidence measurements

    International Nuclear Information System (INIS)

    Semenov, S. K.; Schoeffler, M. S.; Titze, J.; Petridis, N.; Jahnke, T.; Cole, K.; Schmidt, L. Ph. H.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Akoury, D.; Williams, J. B.; Landers, A. L.; Osipov, T.; Lee, S.; Prior, M. H.; Belkacem, A.; Weber, Th.; Cherepkov, N. A.

    2010-01-01

    Results of the most sophisticated measurements in coincidence with the angular-resolved K-shell photoelectrons and Auger electrons and with two atomic ions produced by dissociation of N 2 molecule are analyzed. Detection of photoelectrons at certain angles makes it possible to separate the Auger decay processes of the 1σ g and 1σ u core-hole states. The Auger electron angular distributions for each of these hole states are measured as a function of the kinetic-energy release of two atomic ions and are compared with the corresponding theoretical angular distributions. From that comparison one can disentangle the contributions of different repulsive doubly charged molecular ion states to the Auger decay. Different kinetic-energy-release values are directly related to the different internuclear distances. In this way one can trace experimentally the behavior of the potential energy curves of dicationic final states inside the Frank-Condon region. Presentation of the Auger-electron angular distributions as a function of kinetic-energy release of two atomic ions opens a new dimension in the study of Auger decay.

  4. Ultra-high energy cosmic rays. Results and status of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Christine [III. Physikalisches Institut A, RWTH Aachen University (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The Pierre Auger Observatory is the world's largest experiment detecting extensive air showers initiated by cosmic rays at the highest energies. An area of 3000 km{sup 2} is instrumented by 1660 water Cherenkov detector stations, and 27 fluorescence telescopes overlook the atmosphere above the surface detector array. A hybrid detection principle is achieved by utilizing information of both detectors. A major upgrade of the experiment (AugerPrime) has been decided adding a third detector type, scintillator detector stations located on the water Cherenkov tanks. Thereby, the composition sensitivity of the Pierre Auger Observatory is extended by an improved determination of the muonic shower component. Additionally, underground muon detectors (AMIGA) are deployed. The experiment has been further extended by antennas measuring the emission of radio signals from air showers (AERA). An overview about recent results and the current status of the experiment are given in this talk. Highlights are updated results, e.g. on the energy spectrum, chemical composition or proton-air cross section.

  5. Auger electron spectroscopy investigation of metallic fusible links in programmable read-only memories

    International Nuclear Information System (INIS)

    Morgan, A.E.; Quackenbush, T.R.; Lim, S.C.P.

    1983-01-01

    The composition of Ni-Cr, Ti-W and Ti-W-N thin film fuses as used in bipolar programmable read-only memories was studied using Auger electron spectroscopy. Measurements were performed on both intact and blown fuses in actual devices, and also on thin film samples processed so as to duplicate device fabrication. Topics of interest were (a) selection of film deposition technique, (b) minimization of contact resistance to aluminum, (c) promotion of good adhesion to SiO 2 , (d) avoidance of chemical attack during device production, (e) fuse corrosion in the finished product and (f) the fusing mechanism during device programming. The results are used to compare and contrast the behavior of the different types of fuses. From these studies, it appears that Ni-Cr could be beneficially replaced as the fuse material by Ti-W or Ti-W-N. (Auth.)

  6. Radio detection of extensive air showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Berat, C.

    2013-01-01

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km 2 . Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported

  7. Radio detection of extensive air showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Berat, C., E-mail: berat@lpsc.in2p3.fr [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38000 Grenoble (France)

    2013-08-01

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km{sup 2}. Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported.

  8. Auger vs resonance neutralization in low energy He+ ion scattering

    International Nuclear Information System (INIS)

    Woodruff, D.P.

    1983-01-01

    He + ions incident on a metal surface can neutralize either by an Auger or resonant charge exchange. While the Auger process has always been thought to be dominant, recent theoretical interest in the simpler one-electron resonance process has led to suggestions that this alone can account for the neutralization seen in low energy He + ion scattering. In this paper this assertion is analysed by looking at the wider information available on charge exchange processes for He + ion scattering through comparison with Li + ion scattering, the importance of multiple scattering in both these scattering experiments and the results of ion neutralization spectroscopy. These lead to the conclusion that while resonance neutralization to produce metastable He* may well occur at a substantial rate in He + ion scattering, the dominant process leading to loss of ions from the final scattered signal is Auger neutralization as originally proposed. (author)

  9. Quasiclassical treatment of the Auger effect in slow ion-atom collisions

    Science.gov (United States)

    Frémont, F.

    2017-09-01

    A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He collisions. Electron-electron interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.

  10. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Jablonski, A.; Powell, C.J.

    2017-01-01

    Highlights: • Effective attenuation lengths (EALs) for determination of surface composition by XPS. • Considerable difference from EALs used for overlayer thickness measurements. • New analytical algorithms for calculating the effective attenuation length. - Abstract: The effective attenuation length (EAL) is normally used in place of the inelastic mean free path (IMFP) to account for elastic-scattering effects when describing the attenuation of Auger electrons and photoelectrons from a planar substrate by an overlayer film. An EAL for quantitative determination of surface composition by Auger-electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) is similarly useful to account for elastic-scattering effects on the signal intensities. We calculated these EALs for four elemental solids (Si, Cu, Ag, and Au) and for energies between 160 eV and 1.4 keV. The XPS calculations were made for two instrumental configurations while the AES calculations were made from the XPS formalism after “switching off” the XPS anisotropy. The EALs for quantitative determination of surface composition by AES and XPS were weak functions of emission angle for emission angles between 0 and 50°. The ratios of the average values of these EALs to the corresponding IMFPs could be fitted to a second-order function of the single-scattering albedo, a convenient measure of the strength of elastic-scattering effects. EALs for quantitative determination of surface composition by AES and XPS for other materials can be simply found from this relationship.

  11. Detection of ultra-high-energy cosmic radiation at the Pierre Auger Observatory, theoretical study of its propagation through extragalactic space

    International Nuclear Information System (INIS)

    Allard, D.

    2004-10-01

    The Pierre Auger observatory's main aim is to observe the ultra-energetic cosmic ray spectrum with high statistics. Indeed, the spectrum around 10 20 eV is so far only poorly known, due to low statistics and the expected GZK (Gneisen-Zatsepin-Kuzmin) cut-off is for the time being not clearly observed. The first part will deal with propagation of charged (protons and nuclei) ultra-energetic cosmic rays in the extragalactic medium. We will investigate the influence of physical parameters, such as the composition of cosmic ray fluxes, on the highest energy spectrum shape. The influence of the turbulent extragalactic magnetic fields on the spectrum of the clusters will also be studied. We will also investigate the possibility to observe gamma ray bursts with the Pierre Auger Observatory by using the single particle technique. We will show how galactic gamma ray bursts could become a persistent and quasi-isotropic source due to the 'Compton trail' induced by Compton scattering of the primary photon beam in the interstellar medium. In the section devoted to simulations, we will develop methods to reconstruct air showers and identify primary cosmic rays. We will also study the aperture of the Surface Detector of the Pierre Auger observatory. Finally, we will use the methods developed in the previous chapters to analyze the data of the year 2004 and will give preliminary results. (author)

  12. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide

    Science.gov (United States)

    Jolley, John G.; Geesey, Gill G.; Hankins, Michael R.; Wright, Randy B.; Wichlacz, Paul L.

    1989-08-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 2% alginic acid polysaccharide aqueous solution. Pre- and post-exposure characterization were done by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that some of the copper was oxidized by the alginic acid solution. Some of the copper was removed from the Cu/Ge interface and incorporated into the polymer matrix. Thus, biocorrosion of copper was exhibited by the alginic acid polysaccharide.

  13. Detection of ultra-high-energy cosmic radiation at the Pierre Auger Observatory, theoretical study of its propagation through extragalactic space; Detection des rayons cosmiques ultra-energetiques avec l'observatoire Pierre Auger et etude theorique de leur propagation dans le milieu extragalactique

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D

    2004-10-01

    The Pierre Auger observatory's main aim is to observe the ultra-energetic cosmic ray spectrum with high statistics. Indeed, the spectrum around 10{sup 20} eV is so far only poorly known, due to low statistics and the expected GZK (Gneisen-Zatsepin-Kuzmin) cut-off is for the time being not clearly observed. The first part will deal with propagation of charged (protons and nuclei) ultra-energetic cosmic rays in the extragalactic medium. We will investigate the influence of physical parameters, such as the composition of cosmic ray fluxes, on the highest energy spectrum shape. The influence of the turbulent extragalactic magnetic fields on the spectrum of the clusters will also be studied. We will also investigate the possibility to observe gamma ray bursts with the Pierre Auger Observatory by using the single particle technique. We will show how galactic gamma ray bursts could become a persistent and quasi-isotropic source due to the 'Compton trail' induced by Compton scattering of the primary photon beam in the interstellar medium. In the section devoted to simulations, we will develop methods to reconstruct air showers and identify primary cosmic rays. We will also study the aperture of the Surface Detector of the Pierre Auger observatory. Finally, we will use the methods developed in the previous chapters to analyze the data of the year 2004 and will give preliminary results. (author)

  14. Electron bremsstrahlung spectrum, 1--500 keV

    International Nuclear Information System (INIS)

    Lee, C.M.; Kissel, L.; Pratt, R.H.; Tseng, H.K.

    1976-01-01

    Numerical data are obtained for the electron bremsstrahlung energy spectrum resulting from incident electrons of kinetic energy 1--500 keV, under the assumption that the process is described as a single-electron transition in a relativistic self-consistent screened potential, using partial-wave expansions. Comparisons with simpler analytical approximations show that these are at best of qualitative validity in this energy range. Our data are used to construct more complete tables of the spectrum by interpolation

  15. Recent results from the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Gouffon, Philippe

    2010-01-01

    Full text. The Pierre Auger Observatory has been designed to observe cosmic rays with energies above 1018 eV . The southern site, located in Malargue, Argentina, is now fully operational (since mid 2008) and has been collecting data continuously while being deployed. The northern site, which will give a full sky coverage, is under development in Lamar, Colorado, USA. The PAO uses two complementary techniques to measure the direction of arrival and the energy of the comic rays. In the southern site, its 1600 water Cerenkov tanks, spread over 3000 km 2 , sample the extended air shower front when it hits the ground, measuring time and energy deposited, while the 4 fluorescence detectors stations, each with 6 telescopes, collect the UV light emitted by the shower core, registering the time, intensity and angle of reception. Though the Pierre Auger collaboration will be taking data for the next two decades, several results have already been published based on data collected until 2009 and will be discussed briefly: the energy spectrum and its implications on the GZK cut off controversy, limits on photon and neutrino fluxes, anisotropy, point sources and mass composition. (author)

  16. Recent results from the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Gouffon, Philippe [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-07-01

    Full text. The Pierre Auger Observatory has been designed to observe cosmic rays with energies above 1018 eV . The southern site, located in Malargue, Argentina, is now fully operational (since mid 2008) and has been collecting data continuously while being deployed. The northern site, which will give a full sky coverage, is under development in Lamar, Colorado, USA. The PAO uses two complementary techniques to measure the direction of arrival and the energy of the comic rays. In the southern site, its 1600 water Cerenkov tanks, spread over 3000 km{sup 2}, sample the extended air shower front when it hits the ground, measuring time and energy deposited, while the 4 fluorescence detectors stations, each with 6 telescopes, collect the UV light emitted by the shower core, registering the time, intensity and angle of reception. Though the Pierre Auger collaboration will be taking data for the next two decades, several results have already been published based on data collected until 2009 and will be discussed briefly: the energy spectrum and its implications on the GZK cut off controversy, limits on photon and neutrino fluxes, anisotropy, point sources and mass composition. (author)

  17. Periodic variations of Auger energy maximum distribution following He{sup 2+} + H{sub 2} collisions: A complete analogy with photon interferences

    Energy Technology Data Exchange (ETDEWEB)

    Cholet, M.; Minerbe, F.; Oliviero, G.; Pestel, V. [Université de Caen, 6 bd du Mal Juin, 14050 Caen Cedex (France); Frémont, F., E-mail: francois.fremont@ensicaen.fr [Centre de Recherche sur les Ions, les Matériaux et la Photonique, Unité Mixte Université de Caen-CEA-CNRS-EnsiCaen, 6 bd du Mal Juin, 14050 Caen Cedex 4 (France)

    2014-08-15

    Highlights: • Young type interferences with electrons are revisited. • Oscillations in the angular distribution of the energy maximum of Auger spectra are evidenced. • Model calculations are in good agreement with the experimental result. • The position of the Auger spectra oscillates in counterphase with the total intensity. - Abstract: In this article, we present experimental evidence of a particular electron-interference phenomenon. The electrons are provided by autoionization of 2l2l′ doubly excited He atoms following the capture of H{sub 2} electrons by a slow He{sup 2+} incoming ion. We observe that the position of the energy maximum of the Auger structures oscillates with the detection angle. Calculation based on a simple model that includes interferences clearly shows that the present oscillations are due to Young-type interferences caused by electrons scattering on both H{sup +} centers.

  18. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.

    Science.gov (United States)

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I

    2017-08-22

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states

  19. WE-E-BRE-08: Impact of IUdR in Rat 9L Glioma Cell Survival for 25–35 KeV Photo-Activated Auger Electron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, D; Hogstrom, K [Louisiana State University, Baton Rouge, LA (United States); Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Brown, T; Dugas, J; Varnes, M [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Matthews, K [Louisiana State University, Baton Rouge, LA (United States)

    2014-06-15

    Purpose: To determine the biological effect from Auger electrons with 9% and 18% iododeoxyuridine (IUdR) incorporated into the DNA of rat 9L glioma cells at photon energies above and below the K-edge of iodine (33.2 keV). Methods: Rat 9L glioma cell survival versus dose curves with 0%, 9%, and 18% thymidine replacement with IUdR were measured using four irradiation energies (4 MV x-rays; monochromatic 35, 30, and 25 keV synchrotron photons). For each of 11 conditions (Energy, %IUdR) survival curves were fit to the data (826 cell cultures) using the linear-quadratic model. The ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear-energy transfer (LET), radiosensitization (RS), and Auger effect (AE) were extracted. Results: At 35, 30, and 25 keV, SER10,LET values were 1.08±0.03, 1.22±0.02, and 1.37±0.02, respectively. At 4 MV SER10,RS values for 9% and 18% IUdR were 1.28±0.02 and 1.40±0.02, respectively. Assuming LET effects are independent of %IUdR and radiosensitization effects are independent of energy, SER10,AE values for 18% IUdR at 35, 30, and 25 keV were 1.35±0.05, 1.06±0.03, and 0.98±0.03, respectively; values for 9% IUdR at 35 and 25 keV were 1.01±0.04 and 0.82±0.02, respectively. Conclusion: For 18% IUdR the radiosensitization effect of 1.40 and the Auger effect of 1.35 at 35 keV are equally important to the combined effect of 1.90. No measureable Auger effect was observed for energies below the K-edge at 20 and 25 keV, as expected. The insignificant Auger effect at 9% IUdR was not expected. Additional data (40–70 keV) and radiobiological modeling are being acquired to better understand the energy dependence of Auger electron therapy with IUdR. Funding support in part by the National Science Foundation Graduate Research Fellowship Program and in part by Contract No. W81XWH-10-1-0005 awarded by the U.S. Army Research Acquisition Activity. This paper does not necessarily

  20. Interatomic Coulombic decay following the Auger decay: Experimental evidence in rare-gas dimers

    International Nuclear Information System (INIS)

    Ueda, K.; Fukuzawa, H.; Liu, X.-J.; Sakai, K.; Pruemper, G.; Morishita, Y.; Saito, N.; Suzuki, I.H.; Nagaya, K.; Iwayama, H.; Yao, M.; Kreidi, K.; Schoeffler, M.; Jahnke, T.; Schoessler, S.; Doerner, R.; Weber, Th.; Harries, J.; Tamenori, Y.

    2008-01-01

    Interatomic Coulombic decay (ICD) in Ar 2 , ArKr and Kr 2 following Ar 2p or Kr 3d Auger decay has been investigated by means of momentum-resolved electron-ion-ion coincidence spectroscopy. This sequential decay leads to Coulombic dissociation into dication and monocation. Simultaneously determining the kinetic energy of the ICD electron and the kinetic energy release between the two atomic ions, we have been able to unambiguously identify the ICD channels. We find that, in general, spin-conserved ICD, in which the singlet (triplet) dicationic state produced via the atomic Auger decay preferentially decays to the singlet (triplet) state, transferring the energy to the other atom, is faster than spin-flip ICD, in which the Auger final singlet (triplet) dicationic state decays to the triplet (singlet) state. However, spin-flip ICD may take place when spin-conserved ICD becomes energetically forbidden. Dipole-forbidden ICDs from Kr 2+ (4s -21 S)-B (B = Ar or Kr) to Kr 2+ (4p -21 D, 3 P)-B + are also observed

  1. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodskikh, S. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Zhaunerchyk, V. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Mucke, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Eland, J.H.D. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Squibb, R.J. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Karlsson, L. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, P. [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Feifel, R., E-mail: raimund.feifel@gu.se [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-12-16

    Highlights: • The first ever valence double ionization spectrum of acetaldehyde is reported. • The first ever site-selectively extracted Auger spectra of acetaldehyde are reported. • The first ever Auger spectra of acetaldehyde involving shake-up states are reported. • The first ever triple ionization spectra of acetaldehyde are reported. • The first ever energy sharing of electron pairs emitted by acetaldehyde is presented. - Abstract: Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  2. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  3. 30 CFR 819.13 - Auger mining: Coal recovery.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  4. X-ray-excited Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Weightman, P.

    1982-01-01

    This article reviews developments in the understanding of x-ray-excited Auger and photoelectron spectra in the light of theoretical developments in atomic, molecular and solid-state physics. After reviewing progress in XPS and AES separately emphasis is placed on the inter-relationship between the two fields: Auger rates, for example, are the dominant contribution to core-level XPS linewidths and by combining XPS and AES it is possible to deduce information about Coster-Kronig processes which are difficult to study directly. An account is given of how the combination of measurements of environmentally dependent shifts in XPS and AES energies allows one to isolate initial- and final-state contributions which can then be related to the results of other experimental techniques. There is a brief discussion of many-electron effects and a discussion of how the combination of XPS and AES spectra involving valence levels enables the effects of hole-state localisation to be studied. (author)

  5. A SiPM-based scintillator prototype for the upgrade of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Johannes; Bretz, Thomas; Hebbeker, Thomas; Kemp, Julian; Meissner, Rebecca; Middendorf, Lukas; Niggemann, Tim; Peters, Christine [III. Physikalisches Institut A, RWTH Aachen University (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    Plastic scintillator-based detectors are simple and yet powerful instruments, commonly used in particle physics experiments. These detectors are also planned to be installed at the Pierre Auger Observatory as part of the upgrade called AugerPrime. Here, a single detector module will consist of several large-sized scintillator bars. Embedded wavelength shifting fibres read out the scintillation light and are coupled to a single photo-sensitive device. We investigate the application of silicon photomultipliers (SiPMs) in this scope, which benefits from high photon detection efficiency and stability. We show the performance of a SiPM-based prototype device installed in the 2 m{sup 2} detector ASCII - an early prototype of the scintillating detector planned for AugerPrime. We focus on the electronics, the optical coupling and the in situ calibration. As ASCII has been operating with SiPMs for several months now, we also highlight first high-energy events seen in coincidence with the Surface Detector of the Pierre Auger Observatory.

  6. 30 CFR 77.1505 - Auger holes; blocking.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  7. Measurement of the cosmic ray spectrum above 4 × 10{sup 18} eV using inclined events detected with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pierre Augur Collaboration

    2015-08-01

    A measurement of the cosmic-ray spectrum for energies exceeding 4×10{sup 18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10{sup 18} eV, the ''ankle'', the flux can be described by a power law E{sup −γ} with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (E{sub s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find E{sub s}=(5.12±0.25 (stat){sup +1.0}{sub −1.2} (sys))×10{sup 19} eV.

  8. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Billoir, Pierre, E-mail: billoir@lpnhe.in2p3.fr [LPNHE, CNRS/IN2P3 and Univ. P. and M. Curie and Univ. D. Diderot, 4 place Jussieu 75272 Paris Cedex 05 (France); Observatorio Pierre Auger, av. San Martín Norte, 304 5613, Malargüe (Argentina)

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km{sup 2}), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense “infill” subarray. - Highlights: • The water Cherenkov technique is used in the Surface Detector of the Pierre Auger Observatory. • Cross-calibrated with the Fluorescence Detector, it provides a measurement of the primary energy. • The spectrum of the UHE cosmic rays exhibits clearly an “ankle” and a cutoff. • The muon observed muon content of the atmospheric showers is larger than expected from the models. • Stringent limits on the flux of UHE neutrinos and photons are obtained.

  9. 30 CFR 77.1500 - Auger mining; planning.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger mining; planning. 77.1500 Section 77.1500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1500 Auger mining; planning. Auger mining shall be planned and conducted by the operator to insure...

  10. Growth and structure of rapid thermal silicon oxides and nitroxides studied by spectroellipsometry and Auger electron spectroscopy

    Science.gov (United States)

    Gonon, N.; Gagnaire, A.; Barbier, D.; Glachant, A.

    1994-11-01

    Rapid thermal oxidation of Czochralski-grown silicon in either O2 or N2O atmospheres have been studied using spectroellipsometry and Auger electron spectroscopy. Multiwavelength ellipsometric data were processed in order to separately derive the thickness and refractive indexes of rapid thermal dielectrics. Results revealed a significant increase of the mean refractive index as the film thickness falls below 20 nm for both O2 or N2O oxidant species. A multilayer structure including an about 0.3-nm-thick interfacial region of either SiO(x) or nitroxide in the case of O2 and N2O growth, respectively, followed by a densified SiO2 layer, was found to accurately fit the experimental data. The interfacial region together with the densified state of SiO2 close to the interface suggest a dielectric structure in agreement with the continuous random network model proposed for classical thermal oxides. Auger electron spectroscopy analysis confirmed the presence of noncrystalline Si-Si bonds in the interfacial region, mostly in the case of thin oxides grown in O2. It was speculated that the initial fast growth regime was due to a transient oxygen supersaturation in the interfacial region. Besides, the self-limiting growth in N2O was confirmed and explained in agreement with several recently published data, by the early formation of a very thin nitride or oxynitride membrane in the highly densified oxide beneath the interface. The beneficial effect of direct nitrogen incorporation by rapid thermal oxidation in N2O instead of O2 for the electrical behavior of metal-oxide-semiconductor capacitors is likely a better SiO2/Si lattice accommodation through the reduction of stresses and Si-Si bonds in the interfacial region of the dielectric.

  11. Radioactive gold nanoparticles with beta energy and auger electron cascades in nanomedicine: green nanotechnology and radiochemical approaches

    International Nuclear Information System (INIS)

    Katti, Kattesh V.

    2016-01-01

    In our continued efforts to apply Green Nanotechnology for the development of therapeutic radioactive gold nanoparticles, we have developed a new generation of 198 Au theranostic probes. Laminin receptors are overexpressed in a large number of human tumors and the high in vivo affinity of EGCG toward Laminin receptors has allowed us to develop Laminin receptor specific radioactive gold nanoparticles to achieve tumor specificity. This lecture will provide: (a) Oncological aspects of Auger electrons through nanomedicine; (b) details on the intervention of nuclear activation analysis and various radioanalytical approaches for the production of tumor specific radioactive gold-198 nanoparticles; and (c) full in vivo investigations on therapeutic properties of EGCG-198-AuNP agent in treating prostate tumors

  12. 30 CFR 77.1502 - Auger holes; restriction against entering.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger holes; restriction against entering. 77... UNDERGROUND COAL MINES Auger Mining § 77.1502 Auger holes; restriction against entering. No person shall be permitted to enter an auger hole except with the approval of the MSHA Coal Mine Safety and Health District...

  13. Operations of and Future Plans for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  14. Investigation of triply excited states of Li-like ions in fast ion-atom collisions by zero-degree Auger projectile electron spectroscopy

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Benis, E.P.; Zamkov, M.; Lin, C.D.; Lee, T.G.; Richard, P.; Gorczyca, T.W.; Morishita, T.

    2005-01-01

    The production of triply excited states of Li-like systems has recently been extended beyond the lithium atom using two different ion-atom collisional techniques: (a) Triple-electron capture into 2s2p 2 and 2p 3 states of F 6+ formed in fast collisions of bare F 9+ ions with Ar and Kr atoms and (b) 180 deg. resonant scattering of quasi-free electrons of H 2 from the 1s2s 3 S metastable state of He-like B, C, N, O and F ions via the 2s2p 2 2 D resonance. Autoionization energies, decay branching ratios and production cross sections for these states were measured using zero-degree Auger projectile electron spectroscopy and compared to theoretical calculations using hyperspherical close coupling (HSCC) and R-matrix methods

  15. Positron probes of the Ge(1 0 0) surface: The effects of surface reconstructions and electron-positron correlations on positron trapping and annihilation characteristics

    International Nuclear Information System (INIS)

    Fazleev, N.G.; Jung, E.; Weiss, A.H.

    2007-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(1 0 0) surface. The high-resolution PAES spectrum from the Ge(1 0 0) surface displays several strong Auger peaks corresponding to M 4,5 N 1 N 2,3 , M 2,3 M 4,5 M 4,5 , M 2,3 M 4,5 V and M 1 M 4,5 M 4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the non-reconstructed and reconstructed Ge(1 0 0)-p(2 x 1), Ge(1 0 0)-p(2 x 2) and Ge(1 0 0)-c(4 x 2) surfaces. It is found that the positron surface state wave function extends into the Ge lattice in the regions where atoms are displaced from their ideal terminated positions due to reconstructions. Estimates of the positron binding energy and the positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Ge(1 0 0). A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered

  16. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.

    1996-01-01

    The purpose of our studies is to elucidate the kinetics of DNA strand breaks caused by low-energy Auger electron emitters in close proximity to DNA. Previously we have studied the DNA break yields in plasmids after the decay of indium-111 bound to DNA or free in solution. In this work, we compare the DNA break yields in supercoiled DNA of iodine-125 decaying close to DNA following DNA intercalation, minor-groove binding, or surface binding, and at a distance form DNA. Supercoiled DNA, stored at 4 C to accumulate radiation dose from the decay of 125 I, was then resolved by gel electrophoresis into supercoiled, nicked circular, and linear forms, representing undamaged DNA, single-strand breaks, and double-strand breaks respectively. DNA-intercalated or groove-bound 125 I is more effective than surface-bound radionuclide or 125 I free in solution. The hydroxyl radical scavenger DMSO protects against damage by 125 I free in solution but has minimal effect on damage by groove-bound 125 I. (orig.)

  17. Perspective on the Cosmic-ray Electron Spectrum above TeV

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Kun; Wang, Bing-Bing; Bi, Xiao-Jun; Lin, Su-Jie; Yin, Peng-Fei [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-20

    The AMS-02 has measured the cosmic-ray electron (plus positron) spectrum up to ∼TeV with unprecedented precision. The spectrum can be well described by a power law without any obvious features above 10 GeV. The satellite instrument Dark Matter Particle Explorer (DAMPE), which was launched a year ago, will measure the electron spectrum up to 10 TeV with high-energy resolution. The cosmic electrons beyond TeV may be attributed to few local cosmic-ray sources, such as supernova remnants. Therefore, spectral features, such as cut-off and bumps, can be expected at high energies. In this work, we provide a careful study on the perspective of the electron spectrum beyond TeV. We first examine our astrophysical source models on the latest leptonic data of AMS-02 to give a self-consistent picture. Then we focus on the discussion about the candidate sources, which could be electron contributors above TeV. Depending on the properties of the local sources (especially on the nature of Vela), DAMPE may detect interesting features in the electron spectrum above TeV in the future.

  18. Study by Auger spectrometry and mass spectrometry of the chemisorption of carbon monoxide on polycrystalline molybdenum

    International Nuclear Information System (INIS)

    Gillet, E.; Chiarena, J.C.; Gillet, M.

    1976-01-01

    A combination of Auger spectrometry and mass spectrometry was employed to study CO chemisorption on polycrystalline Mo surfaces at room temperature. Five adsorption states were observed and the binding parameters (E,n 0 ,tau 0 ) were calculated for the three important states. The results obtained by the two methods are in accord but the occurence of electronic desorption in Auger experiments was pointed out. Contamination effects by C atoms in such studies were investigated by repeated cycles of adsorption-desorption and a characteristic evolution of flash desorption was observed. The results are discussed in this point of view enhancing the importance of a control of the adsorption surface cleanness by a method of great sensibility like Auger spectrometry. (Auth.)

  19. Effect of heating on the behaviors of hydrogen in C-TiC films with auger electron spectroscopy and secondary ion mass spectroscopy analyses

    International Nuclear Information System (INIS)

    Zou, Y.; Wang, L.W.; Huang, N.K.

    2007-01-01

    C-TiC films with a content of 75% TiC were prepared with magnetron sputtering deposition followed by Ar + ion bombardment. Effect of heating on the behaviors of hydrogen in C-TiC films before and after heating was studied with Auger Electron Spectroscopy and Secondary Ion Mass Spectroscopy (SIMS) analyses. SIMS depth profiles of hydrogen after H + ion implantation and thermal treatment show different hydrogen concentrations in C-TiC coatings and stainless steel. SIMS measurements show the existence of TiH, TiH 2 , CH 3 , CH 4 , C 2 H 2 bonds in the films after H + ion irradiation and the changes in the Ti LMM, Ti LMV and C KLL Auger line shape reveal that they have a good hydrogen retention ability after heating up to the temperature 393 K. All the results show that C-TiC coatings can be used as a hydrogen retainer or hydrogen permeable barrier on stainless steel to protect it from hydrogen brittleness

  20. Calculations of Auger-cascade-induced reactions with DNA in aqueous solution

    International Nuclear Information System (INIS)

    Hamm, R.N.; Wright, H.A.; Turner, J.E.; Howell, R.W.; Rao, D.V.; Sastry, K.S.R.

    1989-01-01

    The biological effects of radionuclides incorporated into mammalian cells are of considerable interest for radiation biology and radiation protection. Simulation of the nuclear and atomic events associated with the decay of several Auger-electron-emitting radionuclides was accomplished using Monte Carlo calculational techniques. Calculations of the energies of Auger electrons produced from a number of decays have been performed for the radionuclides Pt-195m, Pt-193m, I-125, In-111, and Fe-55. The Monte Carlo radiation transport code OREC (8, 11-13) has been used to transport the electrons produced during the Auger cascades through liquid water surrounding the decay site and to calculate the physical and chemical interactions produced. In order to estimate the interactions that might be produced with a DNA molecule, a very simple model has been assumed. A segment of double-stranded DNA is represented as a right circular cylinder of radius 1 nm with ''sugar'' and ''base'' reactive sites alternating along two helical strands on the surface. For the purposes of this paper two types of interactions with the DNA are considered. During the charged-particle transport the DNA cylinder is treated as though it were water, and if an inelastic energy loss event occurs within the cylinder it is considered to represent a ''direct'' physical event. An ''indirect'' chemical event is considered to result when a reactive chemical species interacts with a ''sugar'' or ''base'' site on the DNA. Although no attempt is made to identify the consequences of these direct or indirect events, it is interesting to compare the relative numbers of such events for various types of radiation. 13 refs., 4 figs

  1. The Pierre Auger project

    International Nuclear Information System (INIS)

    Mantsch, P.M.

    1996-01-01

    The Pierre Auger project is a broadly based international effort to make a detailed study of cosmic rays at the highest energies. Two air shower detectors are proposed, one to be placed in the Northern Hemisphere and one in the Southern Hemisphere. Each installation will consist of an array of 1600 particle detectors spread over 3000 km 2 with a solid angle acceptance of 2 sr for cosmic ray air showers. Eah installation will also have an atmospheric fluorescence detector viewing the volume above the surface array. These two air shower detector techniques working together form a powerful instrument for the proposed research. The objectives of the Pierre Auger project are to measure the arrival direction, energy, and mass composition of 60 events per year above an energy of 10 20 eV and 6000 events per year above 10 19 eV. A collaboration is now being formed with the goal of having the Pierre Auger observatory in operation by 2001

  2. 30 CFR 819.15 - Auger mining: Hydrologic balance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Hydrologic balance. 819.15... MINING § 819.15 Auger mining: Hydrologic balance. (a) Auger mining shall be planned and conducted to minimize disturbances of the prevailing hydrologic balance in accordance with the requirements of §§ 816.41...

  3. Large scale anisotropy studies with the Auger Observatory

    International Nuclear Information System (INIS)

    Santos, E.M.; Letessier-Selvon, A.

    2006-01-01

    With the increasing Auger surface array data sample of the highest energy cosmic rays, large scale anisotropy studies at this part of the spectrum become a promising path towards the understanding of the origin of ultra-high energy cosmic particles. We describe the methods underlying the search for distortions in the cosmic rays arrival directions over large angular scales, that is, bigger than those commonly employed in the search for correlations with point-like sources. The widely used tools, known as coverage maps, are described and some of the issues involved in their calculations are presented through Monte Carlo based studies. Coverage computation requires a deep knowledge on the local detection efficiency, including the influence of weather parameters like temperature and pressure. Particular attention is devoted to a new proposed method to extract the coverage, based upon the assumption of time factorization of an extensive air shower detector acceptance. We use Auger monitoring data to test the goodness of such a hypothesis. We finally show the necessity of using more than one coverage to extract any possible anisotropic pattern on the sky, by pointing to some of the biases present in commonly used methods based, for example, on the scrambling of the UTC arrival times for each event. (author)

  4. Auger electron emitter against multiple myeloma - targeted endo-radio-therapy with 125I-labeled thymidine analogue 5-iodo-4'-thio-2'-deoxyuridine

    International Nuclear Information System (INIS)

    Morgenroth, Agnieszka; Dinger, Cornelia; Zlatopolskiy, Boris D.; Al-Momani, Ehab; Glatting, Gerhard; Mottaghy, Felix M.; Reske, Sven N.

    2011-01-01

    Introduction: Multiple myeloma (MM) is a plasma cell malignancy characterized by accumulation of malignant, terminally differentiated B cells in the bone marrow. Despite advances in therapy, MM remains an incurable disease. Novel therapeutic approaches are, therefore, urgently needed. Auger electron-emitting radiopharmaceuticals are attractive for targeted nano-irradiation therapy, given that DNA of malignant cells is selectively addressed. Here we evaluated the antimyeloma potential of the Auger electron-emitting thymidine analogue 125 I-labeled 5-iodo-4'-thio-2'-deoxyuridine ([ 125 I]ITdU). Methods: Cellular uptake and DNA incorporation of [ 125 I]ITdU were determined in fluorodeoxyuridine-pretreated KMS12BM, U266, dexamethasone-sensitive MM1.S and -resistant MM1.R cell lines. The effect of stimulation with interleukin 6 (IL6) or insulin-like growth factor 1 (IGF1) on the intracellular incorporation of [ 125 I]ITdU was investigated in cytokine-sensitive MM1.S and MM1.R cell lines. Apoptotic cells were identified using Annexin V. Cleavage of caspase 3 and PARP was visualized by Western blot. DNA fragmentation was investigated using laddering assay. Therapeutic efficiency of [ 125 I]ITdU was proven by clonogenic assay. Results: [ 125 I]ITdU was shown to be efficiently incorporated into DNA of malignant cells, providing a promising mechanism for delivering highly toxic Auger radiation emitters into tumor DNA. [ 125 I]ITdU had a potent antimyeloma effect in cell lines representing distinct disease stages and, importantly, in cell lines sensitive or resistant to the conventional therapeutic agent, but was not toxic for normal plasma and bone marrow stromal cells. Furthermore, [ 125 I]ITdU abrogated the protective actions of IL6 and IGF1 on MM cells. [ 125 I]ITdU induced massive damage in the DNA of malignant plasma cells, which resulted in efficient inhibition of clonogenic growth. Conclusion: These studies may provide a novel treatment strategy for overcoming

  5. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  6. Therapy with high LET Radioisotopes: Can sufficient levels of attractive Auger and alpha emitters be produced to make their use practical?

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Mirzadeh, S.; Stabin, M.; Brill, A.B.

    2005-01-01

    Because of localized energy deposition within a very small volume, cellular targeted therapy with high linear energy transfer (LET) Auger-electron and alpha-particle emitting radioisotopes is of great interest. While the energy deposition from alpha particles usually encompasses several cell diameters, the dose from Auger electrons is confined to a single cell. Two major challenges for broader use of Alpha and Auger emitters are the efficient and cost effective routine production of sufficient levels of these radioisotopes, and the availability of targeting molecules to which the radioisotopes can be attached for cellular delivery of sufficient levels of activity for effective therapy. Examples of several Alpha-and Auger-emitting radioisotopes of current interest are presented. Alpha- and Auger electron-emitting radioisotopes can be produced in accelerators (A) and nuclear reactors (R), and several alpha emitter congeners (i.e. thorium-229) can be obtained from uranium decay products. The challenge for reactor production, is the availability and exploitation of methods - other then the usual radiative (n,γ) production route which will provide no-carrier-added (nca) or the high specific activity radioisotopes of interest. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes High LET radioisotopes of current interest which are in the initial stages of development and/or which demonstrate practical use in clinical trials include several alpha-emitters, in particular bismuth-213 - and also the actinium-225 parent - astatine-211 and bismuth-212. Extensive experimental studies have been reported with Auger iododeoxyuridine (IdUR) radiolabeled with the iodine-125 emitter-labeled. However, development of production

  7. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not extend...

  8. Interdiffusion in epitaxial, single-crystalline Au/Ag thin films studied by Auger electron spectroscopy sputter-depth profiling and positron annihilation

    International Nuclear Information System (INIS)

    Noah, Martin A.; Flötotto, David; Wang, Zumin; Reiner, Markus; Hugenschmidt, Christoph; Mittemeijer, Eric J.

    2016-01-01

    Interdiffusion in epitaxial, single-crystalline Au/Ag bilayered thin films on Si (001) substrates was investigated by Auger electron spectroscopy (AES) sputter-depth profiling and by in-situ positron annihilation Doppler broadening spectroscopy (DBS). By the combination of these techniques identification of the role of vacancy sources and sinks on interdiffusion in the Au/Ag films was possible. It was found that with precise knowledge of the concentration-dependent self-diffusion and impurity diffusion coefficients a distinction between the Darken-Manning treatment and Nernst-Planck treatment can be made, which is not possible on the basis of the determined concentration-depth profiles alone.

  9. Postcollision interactions in the Auger decay of the Ar L-shell

    Energy Technology Data Exchange (ETDEWEB)

    Samson, J.A.R.; Stolte, W.C.; He, Z.X. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The photoionization cross sections for Ar{sup +} through Ar{sup 4+}, produced by the Auger decay of an inner shell 2p hole, have been measured between 242 eV and 253 eV on beamline 9.0.1 and 6.3.2. In this study the authors are interested in near threshold phenomenon involving postcollision interactions (PCI), which are related to the Auger decay of a vacancy in the Ar L-shell. During an Auger decay a postcollision interaction can occur causing the out-going photoelectron to be retarded thus losing a certain amount of energy. If the retardation is sufficiently large the photoelectron will not escape. This result produces a singly charged ion, which normally would not be present. Such evidence of electron capture by the PCI effect was first shown clearly by Eberhardt et al. and, with higher resolution, in the present work. However, capture of the photoelectron is expected to be 100% exactly at the L{sub 2,3} thresholds. Thus, from the authors results they would have expected the Ar{sup 2+} signal to be zero at threshold, but it was not? The authors can explain this anomoly on the basis that during the Auger decay the photoelectrons are captured into high lying excited states of Ar{sup +}, which subsequently decay through autoionization yielding Ar{sup 2+}. Future work in this area will seek experimental evidence to verify this prediction.

  10. High-effective position time spectrometer in actual measurements of low intensity region of electron spectra

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.

    2002-01-01

    simultaneous measurements of spectrum of final states of daughter helium ion on beta source backing. Spectral investigations of three electron Auger transition are also interesting; they allow receiving quality experimental information, which is necessary for adequate understanding of electron-electron correlation in atom. Intensity of these transitions is one orders less than intensity of ordinary two electrons Auger transitions. A high effectiveness of measurements, excellent relation of effect/background at effect tendency to zero and acceptable resolution make position-time spectrometer indispensable in special measurements of three-electrons Auger transitions, for example LL MMM

  11. Investigation of influence of electronic irradiation on photoluminescence spectrum and ir-spectrum of porous silicon

    International Nuclear Information System (INIS)

    Daineko, E.A.; Dihanbayev, K.K.; Akhtar, P.; Hussain, A.

    2007-01-01

    In this article we study the influence of 2-Mev electron irradiation on porous silicon (PS). Photoluminescence (PL) spectrum and IR-spectrum have been done on both newly-prepared PS samples and samples prepared a year ago after the irradiation. We analyzed PL spectrum for both types of PS samples. The experimental results suggest that the peak position in PL spectrum decreases for newly-prepared PS samples. The size of the nanocrystals calculated by the method of singling out of spectrum components was equal to 3.0-3.2 nm. Porosity of the samples was 60-75%. From IR-spectrum of newly-prepared PS samples wide absorption band was observed at 1100 cm/sup -1/ (Si-O-Si bond). Another peak of Si-O-Si group was observed at 850 cm/sub -1/. Also hydrogen absorption bands were appearing from 2000 to 2200 cm/sup -1/, corresponding to vibration modes SiH, SiH/sub 2/, SiH/sub 3/. As a result of electron irradiation the PL intensity of newly-prepared PS samples decreases abruptly by a factor of 30 without peak shifting. As for the samples prepared a year ago we observed a decrease in the PL intensity by 25-30%. From IR-spectrum of PS samples prepared a year ago it was shown that the intensity of bridge bonds corresponding to absorption band 850 cm/sup -1/, decreases gradually. Our experimental data shows that PS samples stored for longer time have better radiation resistant properties than the newly-prepared PS samples due to the replacement of Si-H bonds with more resistant Si-O bonds. Porous silicon, electrochemical anodizing, photoluminescence spectrum, IR-spectrum, electronic irradiation. (author)

  12. Positron probes of the Ge(1 0 0) surface: The effects of surface reconstructions and electron-positron correlations on positron trapping and annihilation characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fazleev, N.G. [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019-0059 (United States) and Department of Physics, Kazan State University, Kazan 420008 (Russian Federation)]. E-mail: Fazleev@uta.edu; Jung, E. [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019-0059 (United States); Weiss, A.H. [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019-0059 (United States)

    2007-08-15

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(1 0 0) surface. The high-resolution PAES spectrum from the Ge(1 0 0) surface displays several strong Auger peaks corresponding to M{sub 4,5}N{sub 1}N{sub 2,3}, M{sub 2,3}M{sub 4,5}M{sub 4,5}, M{sub 2,3}M{sub 4,5}V and M{sub 1}M{sub 4,5}M{sub 4,5} Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the non-reconstructed and reconstructed Ge(1 0 0)-p(2 x 1), Ge(1 0 0)-p(2 x 2) and Ge(1 0 0)-c(4 x 2) surfaces. It is found that the positron surface state wave function extends into the Ge lattice in the regions where atoms are displaced from their ideal terminated positions due to reconstructions. Estimates of the positron binding energy and the positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Ge(1 0 0). A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  13. Auger transitions in singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    1978-01-01

    Some recent progress in Auger and autoionizing electron spectrometry of free metal atoms and of multiply ionized atoms is reviewed. The differences which arise between the spectra of atoms in the gaseous and the solid state are due to solid state effects. This will be shown for Cd as an example. The super Coster-Kronig transitions 3p-3d 2 (hole notation) and Coster-Kronig transitions 3p-3d 4s have been measured and compared with free-atom calculations for free Zn atoms. The experimental width GAMMA(3p)=(2.1+-0.2)eV found for the free atom agrees with the value obtained for solid Zn but is considerably smaller than the theoretical value for the free atom. Autoionizing spectra of Na following an L-shell excitation or ionization by different particles are compared and discussed. The nonisotropic angular distribution of electrons from the transition 2p 5 3s 2 2 Psub(3/2)→2p 6 +e - is compared with theoretical calculations. Two examples for Auger spectrometry of multiply ionized atoms are given: (1) excitation of neon target atoms by light and heavy ions, and (2) excitation of projectile ions Be + and B + in single gas collisions with CH 4 . A strong alignment of the excited atoms has also been found here

  14. Cytotoxicity of Auger effect and radiosensitization of iododeoxyuridine

    International Nuclear Information System (INIS)

    Shinohara, Kunio

    1989-01-01

    The cytotoxicity of Auger effect will have advantages for cancer treatment over x-rays in many points such as; (1) higher killing efficiency, (2) lower oxygen enhancement ratio, (3) no difference in the lethality under the temperature between +4degC and -196degC, (4) highly localized effect (mainly within 1.5-2.0 nm), and (5) less difference in the sensitivities of the cells in different stages of cell cycle. These advantages are those of high LET radiations. The use of Auger effect in cancer treatment has been studied in two ways: the use of radioisotopes of Auger emitters and the induction of Auger effect following to the photoelectric effect by external x-rays of proper energy. The latter method is called photon activation therapy by Fairchild et al. The experimental evidences for the induction of Auger effect were obtained with the use of radioprotectors in HeLa cells labeled with iododeoxyuridine irradiated with low energy x-rays. The cytotoxicity of Auger effect was characterized as that it is more difficult to be protected by cysteamine or DMSO and is protectable by DMSO but not protectable in part by cysteamine. The experimental data in HeLa cells labeled with iododeoxyuridine irradiated with synchrotron radiation were not in accord with the quantitative estimate by Fairchild et al. We corrected their equation and found that the contribution of Auger effect was small in the sensitization effect of iododeoxyuridine. It is concluded that the induction of Auger effect by the irradiation with monochromatic x-rays (via photoelectric effect) is not an effective method for cancer therapy. Rather the use of conventional sensitization effect of iododeoxyuridine is worth to be considered again in combination with other methods such as brachytherapy with a small source or hyperthermia. It should be noted that the new mode for the use of Auger effect in cancer therapy has been proposed recently. (author)

  15. Auger electron spectroscopy and Rutherford backscattering studies of copper in 2024-T3 aluminum following electrochemical anodization in phosphoric acid

    Science.gov (United States)

    Solomon, J. S.

    1981-05-01

    The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.

  16. Shake-off processes at the electron transitions in atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.; Parilis, Eh.S.

    1982-01-01

    Elementary processes in multielectron atoms - radiative and Auger transitions, photoionization and ionization by an electron impact etc. are usually followed by the relaxation of electron shells. The conditions under which such multielectron problem could be solved in the shake-off approximation are considered. The shake-off processes occurring. as a result of the electron transitions are described from the general point of view. The common characteristics and peculiar features of this type of excitation in comparison with the electron shake-off under nuclear transformations are pointed out. Several electron shake-off processes are considered, namely: radiative Auger effect, the transition ''two electrons-one photon'', dipole ionization, spectral line broadening, post collision interaction, Auger decay stimulated by collision with fast electrons, three-electron Auger transitions: double and half Auger effect. Their classification is given according to the type of the electron transition causing the shake-off process. The experimental data are presented and the methods of theoretical description are reviewed. Other similar effects, which could follow the transitions in electron shells are pointed out. The deduction of shake-off approximation is presented, and it is pointed out that this approach is analogous to the distorted waves approximation in the theory of scattering. It was shown that in atoms the shake-off approximation is a very effective method, which allows to obtain the probability of different electronic effects

  17. 30 CFR 819.11 - Auger mining: General.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: General. 819.11 Section 819.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-AUGER MINING § 819...

  18. Formation of a superhigh energy electron spectrum in the Galaxy

    International Nuclear Information System (INIS)

    Agaronyan, F.A.; Ambartsumyan, A.S.

    1985-01-01

    The formation of superhigh energy electron spectrum in the disk of the galaxy and halo is considered. A different behaviour of the electron spectrum within the framework of capture models in disk or halo, in the energy region E> or approximately 10 5 GeV is revealed due to the account of relativistic corrections ir the energy losses of electrons during the inverse Compton scattering. A comparison with the existing experimental data is carried out

  19. Distorted wave approach to calculate Auger transition rates of ions in metals

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Stefan A. E-mail: sad@utk.edu; Diez Muino, R.; Arnau, A.; Salin, A.; Zaremba, E

    2001-08-01

    We evaluate the role of target distortion in the determination of Auger transition rates for multicharged ions in metals. The required two electron matrix elements are calculated using numerical solutions of the Kohn-Sham equations for both the bound and continuum states. Comparisons with calculations performed using plane waves and hydrogenic orbitals are presented.

  20. Accelerator based Production of Auger-Electron-emitting Isotopes for Radionuclide Therapy

    DEFF Research Database (Denmark)

    Thisgaard, Helge

    Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron...... isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able...

  1. Numerical evaluation of Auger recombination coefficients in relaxed and strained germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Stefano [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Wen, Hanqing; Bellotti, Enrico [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Bertazzi, Francesco; Goano, Michele [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); IEIIT-CNR, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-05-23

    The potential applications of germanium and its alloys in infrared silicon-based photonics have led to a renewed interest in their optical properties. In this letter, we report on the numerical determination of Auger coefficients at T = 300 K for relaxed and biaxially strained germanium. We use a Green's function based model that takes into account all relevant direct and phonon-assisted processes and perform calculations up to a strain level corresponding to the transition from indirect to direct energy gap. We have considered excess carrier concentrations ranging from 10{sup 16} cm{sup −3} to 5 × 10{sup 19} cm{sup −3}. For use in device level simulations, we also provide fitting formulas for the calculated electron and hole Auger coefficients as functions of carrier density.

  2. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites

    International Nuclear Information System (INIS)

    Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2010-01-01

    The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study. This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.

  3. The annihilation spectrum of relatiVistic electron-positron plasma

    International Nuclear Information System (INIS)

    Aragonyan, F.A.; Atoyan, A.M.; Syunyaev, R.A.

    1980-01-01

    The annihilation spectrum of isotropically distributed monoenergetic electrons and positrons is obtained. The spectrum of the (e + e - ) plasma is analyzed in a large range of plasma temperatures. The comparison of transitions peratures. The comparison of transitions intensities of annihilation radiation and bremsstrahlung shows that for temperatures kT 2 (e + e - ) plasma is cooled mainly due to annihilation. The case of the fast positron annihilation on the rest electrons also considered. The possible astrophysical applications are discussed [ru

  4. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using {sup 125}I, an Auger electron emitter

    Energy Technology Data Exchange (ETDEWEB)

    Gardette, M.; Papon, J.; Bonnet, M.; Labarre, P.; Miot-Noirault, E.; Madelmont, J. C.; Chezal, J. M.; Moins, N. [UMR 990, INSERM, Universite d' Auvergne, Clermont-Ferrand (France); Desbois, N. [EA 3660, Universite de Bourgogne, Dijon (France); Wu, T. D.; Guerquin-Kern, J. L. [U 759 INSERM, Institute Curie, Orsay (France)

    2013-06-01

    The full text of the publication follows. The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodo-benzamides or analogs are known to possess specific affinity for melanoma tissue. New hetero-aromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using {sup 125}I, Auger electrons emitter which gives high-energetic localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with {sup 125}I, the two compounds induced in vitro a significant radiotoxicity on B16F0 melanoma cells. The acridine compound, ICF01040, appeared more radio toxic than the acridone compound, ICF01035. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with ICF01035, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. Nevertheless, an important radiotoxicity was measured for the two compounds while the nuclear accumulation was low. Indeed, even if nuclear localization remains the main target sensitive to Auger electrons, the cell membrane remains sensitive to {sup 125}I decays. So, these compounds may induce secondary toxic effects of irradiation, such as membrane lipid damage. Conducted to current experiments are evaluate such hypothesis. Taken together, these results suggest that ICF01040 is a better candidate for application in targeted radionuclide therapy using {sup 125}I. The next step will be in vivo evaluation, where high tumoral vectorization gives

  5. Satellite structure in Auger and (e,2e) spectra of germanium

    International Nuclear Information System (INIS)

    Went, M.R.; Vos, M.; Kheifets, A.S.

    2006-01-01

    The interpretation of electron spectroscopy data is often complicated by the presence of satellites. These satellites are either due to different final states reached after the excitation (intrinsic satellites) or due to energy loss experienced by the escaping electron on its way out the target (extrinsic satellites). Unravelling these two contributions in an unambiguous way is difficult. In this paper we compare the intrinsic satellite structures obtained for germanium by two different high-energy spectroscopies: Auger spectroscopy of deep core levels and valence band electron momentum spectroscopy. Despite the different nature of the two probes we find a similar shape of the intrinsic satellites and comparable intensity

  6. Auger electron emitter against multiple myeloma - targeted endo-radio-therapy with {sup 125}I-labeled thymidine analogue 5-iodo-4'-thio-2'-deoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Morgenroth, Agnieszka, E-mail: amorgenroth@ukaachen.de [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Nuclear Medicine Clinic, University Aachen, RWTH, Pauwelsstrasse 30, D-52074 Aachen (Germany); Dinger, Cornelia; Zlatopolskiy, Boris D.; Al-Momani, Ehab; Glatting, Gerhard [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Mottaghy, Felix M. [Nuclear Medicine Clinic, University Aachen, RWTH, Pauwelsstrasse 30, D-52074 Aachen (Germany); Reske, Sven N. [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany)

    2011-10-15

    Introduction: Multiple myeloma (MM) is a plasma cell malignancy characterized by accumulation of malignant, terminally differentiated B cells in the bone marrow. Despite advances in therapy, MM remains an incurable disease. Novel therapeutic approaches are, therefore, urgently needed. Auger electron-emitting radiopharmaceuticals are attractive for targeted nano-irradiation therapy, given that DNA of malignant cells is selectively addressed. Here we evaluated the antimyeloma potential of the Auger electron-emitting thymidine analogue {sup 125}I-labeled 5-iodo-4'-thio-2'-deoxyuridine ([{sup 125}I]ITdU). Methods: Cellular uptake and DNA incorporation of [{sup 125}I]ITdU were determined in fluorodeoxyuridine-pretreated KMS12BM, U266, dexamethasone-sensitive MM1.S and -resistant MM1.R cell lines. The effect of stimulation with interleukin 6 (IL6) or insulin-like growth factor 1 (IGF1) on the intracellular incorporation of [{sup 125}I]ITdU was investigated in cytokine-sensitive MM1.S and MM1.R cell lines. Apoptotic cells were identified using Annexin V. Cleavage of caspase 3 and PARP was visualized by Western blot. DNA fragmentation was investigated using laddering assay. Therapeutic efficiency of [{sup 125}I]ITdU was proven by clonogenic assay. Results: [{sup 125}I]ITdU was shown to be efficiently incorporated into DNA of malignant cells, providing a promising mechanism for delivering highly toxic Auger radiation emitters into tumor DNA. [{sup 125}I]ITdU had a potent antimyeloma effect in cell lines representing distinct disease stages and, importantly, in cell lines sensitive or resistant to the conventional therapeutic agent, but was not toxic for normal plasma and bone marrow stromal cells. Furthermore, [{sup 125}I]ITdU abrogated the protective actions of IL6 and IGF1 on MM cells. [{sup 125}I]ITdU induced massive damage in the DNA of malignant plasma cells, which resulted in efficient inhibition of clonogenic growth. Conclusion: These studies may provide a

  7. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  8. The nature of the cosmic-ray electron spectrum, and supernova remnant contributions

    International Nuclear Information System (INIS)

    Boulares, A.

    1989-01-01

    The observed cosmic-ray (CR) electron spectrum and position fraction e+/(e- + e+) spectrum above 1 GeV are examined, and it is found that a deconvolution of the total spectrum into three components is necessary because of the increase of e+/(e- + e+) above 5 GeV: (1) secondary electrons e+ or e- from the interaction of the CR protons with the interstellar gas provide the total e+ for energies less than 3 GeV, but for energies above 3 GeV these electrons cannot account for the observed positron flux; (2) Electrons (e-) generally thought to derive from supernova remnants (SNRs), probably via shock acceleration, dominate the total spectrum for E of 10 GeV or less but definitely decline relative to total at higher energies; (3) Another (e- + e+) source dominates the total spectrum at E of 40 GeV or greater. The derived spectrum of (2) is consistent in its energy cutoff (though gradual) with that deduced from the observed synchrotron emission of some old SNRs and follows naturally from shock acceleration with synchrotron and inverse Compton scattering losses taken into account. As for (3), nearby pulsars may be important contributors. 66 refs

  9. Calculating the electron temperature in the lightning channel by continuous spectrum

    Science.gov (United States)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  10. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  11. Internal Auger emitters: effects on spermatogenesis and oogenesis in mice

    International Nuclear Information System (INIS)

    Rao, D.V.; Mylavarapu, V.B.; Sastry, K.S.R.; Howell, R.W.

    1988-01-01

    The in vivo biological effects of Auger emitters are investigated using [A] spermatogenesis in mouse testis, and [B] oogenesis in mouse ovary as experimental models. Spermhead survival and induction of abnormal sperm, following intratesticular administration of radiopharmaceuticals, were the end points in Model A. Of interest in Model B is primary oocyte survival after intraperitoneal injection of the radiochemicals. The effectiveness of the Auger emitter is determined relative to its beta emitting companion or external X-rays in the absence of such an analogue. Results reveal pronounced effects of Auger emitters on all end points, not dependent on mode of administration. The efficacy of the Auger emitter is related intimately to its subcellular distribution, which, is governed by the chemical form of the carrier molecule. Conventional dosimetry is inadequate and biophysically meaningful dosimetric approaches are needed to understand in vivo effects of Auger emitters. (author)

  12. Thickness periodicity in the auger line shape from epitaxial (111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Y; Vook, R W; Chao, S S

    1981-01-01

    The 61 eV MMM Cu Auger line doublet was recorded in the derivative mode as a function of thickness for epitaxial (111)Cu films approximately 1500 angstrom thick. The overlap of the doublet lines makes it possible to define a measure of the doublet profile called the ''R-factor'' as a ratio of the peak-to-peak heights of the small overlap oscillation to that of the major oscillation. To within the experimental error, it was found that the R-factor varies with a periodicity of approximately one monoatomic layer as the film thickens. Since these films grow by a layer growth mechaniism, the surface topography varies periodically with the number of monolayers deposited, going from a smooth to a rough to a smooth, etc. surface. It is believed that the occurrence of such a periodicity implies that there is a difference in the electronic structure at the surface of the flat areas of the film from that at the edges of monolayer high, flat islands. The amplitude of the oscillation in R is interpreted to be a measure of the relative amounts of edge area compared to flat area. These results show that it is possible to use Auger electron spectroscopy to monitor surface topography and the electronic structure changes that accompany the topographical changes occurring when epitaxial films grow by a layer growth mechanism.

  13. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  14. Enhanced radiative Auger emission from lithiumlike 20Ca17+

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.; Morgan, T.J.; Stoeckli, M.P.; Berkner, K.H.; Schlachter, A.S.; Stearns, J.W.

    1991-01-01

    Radiative Auger emission (RAE) from lithiumlike 20 Ca 17+ projectiles excited in collisions with He has been measured. The intensity of RAE photons relative to K α X-ray emission is enhanced by a factor of 10-17 compared with theoretical calculations for ions with few electron vacancies. The enhancement of RAE for Ca 17+ is consistent with the results reported previously for lithiumlike 16 S 13+ and 23 V 20+ and indicates a systematic dependence on Z. Both the enhancement and the relative RAE transition rate increase with Z. (orig.)

  15. Electronic spectrum of 9-methylanthracenium radical cation

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Gerard D.; Schmidt, Timothy W., E-mail: timothy.schmidt@unsw.edu.au [School of Chemistry, UNSW Sydney, New South Wales 2052 (Australia); Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)

    2016-04-21

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm{sup −1} to 44 500 cm{sup −1}. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D{sub 1}←D{sub 0} transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH{sub 2} or CH{sub 3}. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  16. Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.

    Science.gov (United States)

    1982-12-01

    Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or

  17. Valence photoelectron spectrum of KBr: Effects of electron correlation

    International Nuclear Information System (INIS)

    Calo, A.; Huttula, M.; Patanen, M.; Aksela, H.; Aksela, S.

    2008-01-01

    The valence photoelectron spectrum has been measured for molecular KBr. Experimental energies of the main and satellite structures have been compared with the results of ab initio calculations based on molecular orbital theory including configuration and multiconfiguration interaction approaches. Comparison between the experimental KBr spectrum and previously reported Kr valence photoelectron spectrum has also been performed in order to find out if electron correlation is of the same importance in the valence ionized state of KBr as in the corresponding state of Kr

  18. Evidence for correlated double-electron capture in slow O6+ + He collisions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Meyer, F.W.; Havener, C.C.; Stolterfoht, N.; Swenson, J.K.; Shafroth, S.M.

    1987-01-01

    Double electron capture by few-electron multicharged ions during slow collisions with He may result in Auger-decaying product states of the projectile, provided the initial projectile charge exceeds +4. These autoionizing states can be characterized by either (nearly) equivalent electron configurations, in which the two captured electrons occupy essentially the same or adjacent shells, or by non-equivalent configurations, in which one of the electrons is in a Rydberg state. Using the method of zero-degree Auger spectroscopy, the authors have verified population of both types of autoionizing states by double electron capture during slow collisions of O 6+ with He: for these systems, both LMM Auger electrons, attributed to the (nearly) equivalent electron configuration (1s 2 ) 3iota3iota' or (1s 2 )3iota4iota', and L 1 L 23 M-Coster Kronig electrons, attributed to the non-equivalent electron configurations (1s 2 )2pniota, were observed. Comparison of the LMM Auger electron and Coster Kronig electron production cross sections suggests that the correlated double capture process is of comparable importance to the sequential single capture mechanism

  19. Study of ultra-energetic cosmic rays at the Pierre Auger Observatory from particle detection to anisotropy measurement

    International Nuclear Information System (INIS)

    Aublin, J.

    2006-09-01

    The Pierre Auger Observatory, still under construction in Argentina, is designed to study the cosmic rays with energies above a few EeV. The experiment combines two complementary techniques: the fluorescence light detection and the sampling of the shower with an array of detectors at ground, covering a surface of 3000 square kilometers. The calculation of the acceptance of the detector, which is of utmost importance to establish the energy spectrum, has been achieved. The method of computation of the acceptance is simple and reliable. The detection efficiency depends on the nature of primary cosmic rays, allowing to study the cosmic rays composition with the surface detector. The calculation of the cosmic rays energy spectrum has been performed, using different methods to estimate the energy of the events. A cross calibration between the fluorescence and the surface detector provides an estimation of the energy almost independent of hadronic interaction models. The study of large scale anisotropies in the cosmic rays angular distribution provides useful informations about the cosmic rays sources and the conditions of propagation. A new analysis method is presented, allowing to estimate the parameters of an underlying dipolar and quadrupolar anisotropy in the data. The method is applied to a preliminary Auger data set. (author)

  20. Energy spectrum of Compton scattering of laser photons on relativistic electrons

    International Nuclear Information System (INIS)

    Ando, Hiroaki; Yoneda, Yasuharu

    1976-01-01

    The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)

  1. Electron-Electron and Electron-Phonon interactions effects on the tunnel electronic spectrum of PbS quantum dots

    Science.gov (United States)

    Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Mottaghizadeh, Alireza; Ulysse, Christian; Zimmers, Alexandre; Dubertret, Benoit; Aubin, Herve

    2015-03-01

    We present a tunnel spectroscopy study of the electronic spectrum of single PbS Quantum Dots (QDs) trapped between nanometer-spaced electrodes, measured at low temperature T=5 K. The carrier filling of the QD can be controlled either by the drain voltage in the shell filling regime or by a gate voltage. In the empty QD, the tunnel spectrum presents the expected signature of the 8x degenerated excited levels. In the drain controlled shell filling regime, the levels degeneracies are lifted by the global electrostatic Coulomb energy of the QD; in the gate controlled shell filling regime, the levels degeneracies are lifted by the intra-Coulomb interactions. In the charged quantum dot, electron-phonons interactions lead to the apparition of Franck-Condon side bands on the single excited levels and possibly Franck Condon blockade at low energy. The sharpening of excited levels at higher gate voltage suggests that the magnitude of electron-phonon interactions is decreased upon increasing the electron filling in the quantum dot. This work was supported by the French ANR Grants 10-BLAN-0409-01, 09-BLAN-0388-01, by the Region Ile-de-France in the framework of DIM Nano-K and by China Scholarship Council.

  2. Electron correlation in the 4d-16p→5s-26p and 5s-15p-16p resonance Auger transitions of Xe

    International Nuclear Information System (INIS)

    Osmekhin, S.; Nikkinen, J.; Sankari, R.; Maeaettae, M.; Kukk, E.; Huttula, M.; Heinaesmaeki, S.; Aksela, H.; Aksela, S.

    2007-01-01

    The Xe 4d -1 6p→5s 0 5p 6 6p and 5s 1 5p 5 6p resonant Auger transitions have been studied both theoretically and experimentally. High resolution resonant Auger spectra have been recoded with different photon bandwidths which have enabled to separate the first step Auger transition from the overlapping second step transitions. Theoretical calculations using multi-configuration Dirac-Fock approach with different configuration expansions were carried out, compared to each other and to the experiment. The calculations with the largest basis set were found to reproduce the distribution of the intensity to the main and satellite lines in both the 5s 0 5p 6 6p and 5s 1 5p 5 6p Auger groups reasonably well, and to predict the structure of the 4d -1 6p→5s 0 5p 6 6p main lines very well

  3. Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades

    International Nuclear Information System (INIS)

    Wright, H.A.; Hamm, R.N.; Turner, J.E.; Howell, R.W.; Rao, D.V.; Sastry, K.S.R.

    1989-01-01

    Monte Carlo calculations are performed of the physical and chemical interactions in liquid water by electrons produced during Auger cascades resulting from the decay of various radionuclides. Estimates are also made of the number of direct physical and indirect chemical interactions that would be produced on DNA located near the decay site. 13 refs., 8 figs

  4. Ab initio calculation of the electronic absorption spectrum of liquid water

    International Nuclear Information System (INIS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-01-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase

  5. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  6. Electron emission during multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Meyer, F.W.; Zehner, D.M.

    1990-01-01

    Recent measurements of electron spectra for slow multicharged N ion-surface collisions are presented. The emphasis is on potential emission, i.e. the electron emission related to the neutralization of the ions. When using N ions that carry a K shell vacancy into the collision, characteristic K Auger electron emission from the projectiles is observed, as well as, for specific surfaces, target atom Auger transitions (resulting from vacancy transfer). Measurements of the intensity of these Auger transitions as a function of the time the ions spend above the surface can serve as a useful probe of the timescales characterizing the relevant neutralization processes. This technique is elucidated with the help of some computer simulations. It is shown that neutralization timescales required in the atomic ladder picture, in which neutralization takes place by resonant capture followed by purely intra-atomic Auger transitions, are too long to explain our experimental results. The introduction of additional neutralization/de-excitation mechanisms in the simulations leads to much better agreement with the experiments

  7. Microprocessor monitored Auger spectrometer

    International Nuclear Information System (INIS)

    Sapin, Michel; Ghaleb, Dominique; Pernot, Bernard.

    1982-05-01

    The operation of an Auger spectrometer, used for studying surface impurity diffusion, has been fully automatized with the help of a microprocessor. The characteristics, performance and practical use of the system are described together with the main advantage for the experimentator [fr

  8. Studies of fluorescence and Auger decay following inner-shell photoionization

    International Nuclear Information System (INIS)

    Levin, J.C.; Armen, G.B.

    2004-01-01

    Near inner-shell absorption edges, Auger and fluorescence spectra which characterize the first step of a complex cascade process exhibit properties which are well described by radiationless and radiative resonant Raman scattering theory. We present comparisons of our recent data and theory for Auger decay of argon K vacancies, xenon L vacancies, and of fluorescence decay of xenon L vacancies. A theoretical unification of Auger decay and fluorescence decay is presented which clarifies the similarities and differences between the two processes

  9. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  10. Electron transfer and decay processes of highly charged iodine ions

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Danjo, Atsunori; Hosaka, Kazumoto

    2005-01-01

    In the present experimental work we have investigated multi-electron transfer processes in I q+ (q=10, 15, 20 and 25) + Ne, Ar, Kr and Xe collisions at 1.5q keV energy. The branching ratios between Auger and radiative decay channels have been measured in decay processes of multiply excited states formed by multi-electron transfer collisions. It has been shown that, in all the multi-electron transfer processes investigated, the Auger decays are far dominant over the radiative decay processes and the branching ratios are clearly characterized by the average principal quantum number of the initial excited states of projectile ions. We could express the branching ratios in high Rydberg states formed in multi-electron transfer processes by using the decay probability of one Auger electron emission. (author)

  11. Summary of Auger-Related Entanglement Incidents Occurring Inside Agricultural Confined Spaces.

    Science.gov (United States)

    Cheng, Y H; Field, W E

    2016-04-01

    Entanglements in energized equipment, including augers found in agricultural workplaces, have historically been a significant cause of traumatic injury. Incidents involving augers located inside agricultural confined spaces (primarily grain storage structures and forage silos), although relatively rare events, are a widely recognized problem due to the relative severity of the resulting injuries and the complexities of victim extrication. However, this problem is neither well documented nor elucidated in the research literature, other than anecdotal observations relating to medical treatment of auger-related injuries and citations for non-compliance with federal and state workplace safety regulations. A review of nearly 1,650 cases documented in the Purdue Agricultural Confined Spaces Incident Database from 1964 to 2013 identified 167 incidents involving entanglement in an energized auger that occurred while the victim was working inside an agricultural confined space. These incidents primarily included in-floor unloading augers, sweep augers, stirring augers, and auger components found on silo unloaders. Cases involving portable tube augers used to handle grain outside grain storage structures were not included. Based on analysis of the data, approximately 98% of known victims were male, with the 21-45 age group reporting the largest number of incidents. Nearly one-third (32.3%) of incidents were fatal, and lower limb amputation was the most frequently reported injury type. (It is believed that non-fatal incidents are grossly under-reported in the data set due to a lack of comprehensive reporting requirements, especially for most farms, feedlots, and seed processing operations, which are generally exempt from compliance with OSHA machine guarding, confined-space, and grain-handling standards.) The type of auger identified most frequently as the agent of injury was the exposed in-floor auger (48), which frequently resulted in amputation of one or more lower limbs

  12. Enhanced radiative Auger emission from lithiumlike 16S13+

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Clark, M.W.; Oglesby, C.S.; Tanis, J.A.; Graham, W.G.; McFarland, R.H.; Morgan, T.J.; Johnson, B.M.; Jones, K.W.

    1990-01-01

    The radiative Auger emission (RAE) from 0.94--6.25-MeV/u 16 S 13+ (lithiumlike) projectiles excited in collisions with He target atoms has been measured. For these highly stripped ions the intensity of RAE photons relative to Kα x-ray emission is enhanced by about a factor of five compared with theoretical calculations and an earlier experimental measurement for S ions with few electron vacancies. The enhancement of RAE for S 13+ is qualitatively similar to results reported previously for lithiumlike 23 V 20+ ; however, some differences between S and V are evident

  13. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  14. Two-electron excitation in slow ion-atom collisions: Excitation mechanisms and interferences among autoionizing states

    International Nuclear Information System (INIS)

    Kimura, M.; Rice Univ., Houston, TX

    1990-01-01

    The two-electron capture or excitation process resulting from collisions of H + and O 6+ ions with He atoms in the energy range from 0.5 keV/amu to 5 keV/amu is studied within a molecular representation. The collision dynamics for formation of doubly excited O 4+ ions and He** atoms and their (n ell, n'ell ') populations are analyzed in conjunction with electron correlations. Autoionizing states thus formed decay through the Auger process. An experimental study of an ejected electron energy spectrum shows ample structures in addition to two characteristic peaks that are identified by atomic and molecular autoionizations. These structures are attributable to various interferences among electronic states and trajectories. We examine the dominant sources of the interferences. 12 refs., 5 figs

  15. ¹¹¹In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer.

    Science.gov (United States)

    Fasih, Aisha; Fonge, Humphrey; Cai, Zhongli; Leyton, Jeffrey V; Tikhomirov, Ilia; Done, Susan J; Reilly, Raymond M

    2012-08-01

    Increased expression of epidermal growth factor receptors (EGFR) in breast cancer (BC) is often associated with trastuzumab (Herceptin)-resistant forms of the disease and represents an attractive target for novel therapies. Nimotuzumab is a humanized IgG(1) monoclonal antibody that is in clinical trials for treatment of EGFR-overexpressing malignancies. We show here that nimotuzumab derivatized with benzylisothiocyanate diethylenetriaminepentaacetic acid for labelling with the subcellular range Auger electron-emitter, (111)In and modified with nuclear translocation sequence (NLS) peptides ((111)In-NLS-Bn-DTPA-nimotuzumab) was bound, internalized and transported to the nucleus of EGFR-positive BC cells. Emission of Auger electrons in close proximity to the nucleus caused multiple DNA double-strand breaks which diminished the clonogenic survival (CS) of MDA-MB-468 cells that have high EGFR density (2.4 × 10(6) receptors/cell) to less than 3 %. (111)In-Bn-DTPA-nimotuzumab without NLS peptide modification was sevenfold less effective for killing MDA-MB-468 cells. (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification were equivalently cytotoxic to MDA-MB-231 and TrR1 BC cells that have moderate EGFR density (5.4 × 10(5) or 4.2 × 10(5) receptors/cell, respectively) reducing their CS by twofold. MDA-MB-231 cells have intrinsic trastuzumab resistance due to low HER2 density, whereas TrR1 cells have acquired resistance despite HER2 overexpression. Biodistribution and microSPECT/CT imaging revealed that (111)In-NLS-Bn-DTPA-nimotuzumab exhibited more rapid elimination from the blood and lower tumour uptake than (111)In-Bn-DTPA-nimotuzumab. Tumour uptake of the radioimmunoconjugates in mice with MDA-MB-468 xenografts was high (8-16 % injected dose/g) and was blocked by administration of an excess of unlabelled nimotuzumab, demonstrating EGFR specificity. We conclude that (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification are promising Auger

  16. Theory of the Auger effect in an intense acoustic noise field

    International Nuclear Information System (INIS)

    Doan Nhat Quang.

    1995-10-01

    A study is given of the effect on Auger processes produced by an intense acoustic noise flux affecting charge carriers via deformation-potential interaction. The calculation of Auger coefficients is carried out within a semiclassical approach to the acoustic noise field and non-degenerate carrier statistics. Simple analytic expressions are then obtained, which expose an exponential dependence of the Auger coefficients on flux intensity. The Auger recombination is found, in analogy with the case of piezoelectric noise field, to be strongly enhanced as compared to that in no-noise conditions by up to several orders of magnitude at high flux intensity, short acoustic wavelength, small carrier concentration and low temperature. (author). 29 refs, 4 figs, 1 tab

  17. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  18. Operation of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Rodriguez Martino, Julio

    2011-01-01

    While the work to make data acquisition fully automatic continues, both the Fluorescence Detectors and the Surface Detectors of the Pierre Auger Observatory need some kind of attention from the local staff. In the first case, the telescopes are operated and monitored during the moonless periods. The ground array only needs monitoring, but the larger number of stations implies more variables to consider. AugerAccess (a high speed internet connection) will give the possibility of operating and monitoring the observatory from any place in the world. This arises questions about secure access, better control software and alarms. Solutions are already being tested and improved.

  19. Investigation of the chemistry of the dielectric/FeCoTb interface by x-ray photoelectron spectroscopy and Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Stickle, W.F.; Coulman, D.

    1987-01-01

    The interfacial chemistry of magneto-optic structures of sputter deposited SiO, SiO 2 , Si 3 N 4 /FeCoTb/SiO, SiO 2 , and Si 3 N 4 was studied in detail by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). XPS and AES depth profiles have revealed a substantial amount of redox chemistry at the dielectric/rare-earth transition metal interfaces. The chemical reactions occur preferentially with the terbium as revealed in the XPS portion of the study by the formation of terbium oxide and terbium silicide. In the case of Si 3 N 4 evidence of TbN/sub x/ has also been observed. ''As deposited'' and annealed samples of the magneto-optic structures are compared and contrasted. It is concluded that Si 3 N 4 is a superior dielectric for magneto-optic media

  20. Electron microscopy and auger spectroscopy study of the wetting of the grain boundaries in the systems Mo-Pb, Mo-Sn, Mo-Ni and Ni-Pb

    International Nuclear Information System (INIS)

    Charai, A.; Kutcherinenko, I.; Priester, L.; Penisson, J.M.; Pontikis, V.; Wolski, K.; Vystavel, T.

    2002-01-01

    Understanding the mechanism of the intergranular penetration of a liquid phase into a metallic solid is an important problem. The structural and chemical characterization of nano-metric films at grain boundaries is now possible by using high resolution electron microscopy associated with X-ray micro-analysis, electron energy loss spectroscopy and Auger spectroscopy. In order to study this problem, two different classes of model materials were selected according to their crystallographic structure: a bcc metal (molybdenum) and an fcc one (nickel). The wetting element was either lead or tin or nickel. In a first approach, the metallic matrix was polycrystalline. The conditions in which the liquid phase penetrates into the grain boundaries were studied by using special preparation and observation techniques. In particular, the use of a Focused Ion Beam microscope (FIB) allowed the preparation of thin foils located very precisely inside the matrix as well as multi-scale observations. These specimens were further observed in electron microscopy with a very high resolution. (authors)

  1. Thermal integrity profiling for augered cast-in-place piles – implementation plan : summary.

    Science.gov (United States)

    2017-09-01

    Auger-cast-in-place (ACIP) piles are created when an auger the diameter and length of the desired pile is drilled into the ground. Concrete is pumped through the central axis of the auger as it is withdrawn, pulling up excavated soil as concrete fill...

  2. Inelastic interactions of swift electrons in solids

    International Nuclear Information System (INIS)

    Tung, C.J.; Ritchie, R.H.; Ashley, J.C.; Anderson, V.E.

    1976-01-01

    Theoretical calculations of electron mean free paths and electron slowing-down spectra in solids are described. These calculations involve (a) the use of an electron gas model to approximate the response of conduction band electrons in metals, (b) the application of a statistical model for the calculation of electron mean free paths in metals, (c) the development of an insulator model to describe valence band electrons in insulators and semiconductors, and (d) the use of data on atomic generalized oscillator strengths to describe the excitation of the ion cores. Exchange effects are included in the calculations through a semi-empirical procedure. Detailed results are presented for electron mean free paths in Ag, Au, Al, and Al 2 O 3 , and on the stopping power of Al and Al 2 O 3 , for electrons with energies at a few eV to 10 keV. The agreement of these calculations with experimental measurements is quite reasonable over a wide range of electron energies. A detailed description of the calculation of electron slowing-down spectra in solids is presented. Low energy electron slowing-down spectra of monoenergetic electron sources in Al and Al 2 O 3 are calculated. Calculations of electron slowing-down spectra in Al 2 O 3 are made using differential cross sections obtained employing an insulator model and from GOS functions for ion core electrons. Auger electron contributions to the slowing-down spectrum are discussed. Results for the slowing-down spectrum are compared with the experimental data measured by Birkhoff and coworkers. Generally good agreement is found over a wide range of electron energies

  3. Firmware, detector performance and first data of the AMIGA muon counters for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Uwe

    2013-10-30

    With the Pierre Auger Observatory, being the largest air shower detector setup in the world, ultra-high-energy cosmic rays are studied with full trigger efficiency above E=3 x 10{sup 18} eV. In order to achieve a more detailed understanding of cosmic ray physics at lower energies down to E∼10{sup 17} eV, e.g. the transition from galactic to extragalactic sources and a possible change in the composition of the primary cosmic rays, the observatory is currently upgraded by the AMIGA enhancement (Auger Muons and Infill for the Ground Array). The muon counters of AMIGA, buried underground, will allow for dedicated measurements of the number of muons in air showers, thus increasing the precision in determining the type of the primary particle. Until middle of 2012, eight prototype muon counters of the AMIGA enhancement were installed at the experimental site of the Pierre Auger Observatory at Malargue, Argentina, forming one detector hexagon referred to as the pre-unitary cell (PUC). Each muon counter comprises a highly modular electronics readout system. Following the production of these systems, tests of single components as well as of the full readout electronics were carried out. In the framework of this thesis dedicated firmware, allowing for the commissioning and first data taking with the PUC, has been developed and tested. Among other features, this firmware includes a self-trigger of the muon counters as well as algorithms for the synchronization of the muon detector (MD) with the existing surface detector (SD) array. The functionality and performance of the electronics readout system with regard to this firmware has been investigated. In addition, first analyses of combined MD and SD data have been performed.

  4. Firmware, detector performance and first data of the AMIGA muon counters for the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Froehlich, Uwe

    2013-01-01

    With the Pierre Auger Observatory, being the largest air shower detector setup in the world, ultra-high-energy cosmic rays are studied with full trigger efficiency above E=3 x 10 18 eV. In order to achieve a more detailed understanding of cosmic ray physics at lower energies down to E∼10 17 eV, e.g. the transition from galactic to extragalactic sources and a possible change in the composition of the primary cosmic rays, the observatory is currently upgraded by the AMIGA enhancement (Auger Muons and Infill for the Ground Array). The muon counters of AMIGA, buried underground, will allow for dedicated measurements of the number of muons in air showers, thus increasing the precision in determining the type of the primary particle. Until middle of 2012, eight prototype muon counters of the AMIGA enhancement were installed at the experimental site of the Pierre Auger Observatory at Malargue, Argentina, forming one detector hexagon referred to as the pre-unitary cell (PUC). Each muon counter comprises a highly modular electronics readout system. Following the production of these systems, tests of single components as well as of the full readout electronics were carried out. In the framework of this thesis dedicated firmware, allowing for the commissioning and first data taking with the PUC, has been developed and tested. Among other features, this firmware includes a self-trigger of the muon counters as well as algorithms for the synchronization of the muon detector (MD) with the existing surface detector (SD) array. The functionality and performance of the electronics readout system with regard to this firmware has been investigated. In addition, first analyses of combined MD and SD data have been performed.

  5. System tests, initial operation and first data of the AMIGA muon detector for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Pontz, Michael

    2013-07-01

    Investigating the energy region between 10{sup 17} eV and 4 x 10{sup 18} eV for primary cosmic particles will lead to a deeper understanding of the origin of cosmic rays. Effects of the transition from galactic to extragalactic origin are expected to be visible in this region. The knowledge of the composition of cosmic rays strongly depends on the hadronic interaction models, which are applied in the air shower reconstruction. Directly determining the number of muons from an air shower on ground level will improve the precision of the composition measurements by reducing the dependence on the models. The Pierre Auger Observatory is facing these challenges with an upgrade of the original detector setup. A denser sub-array of water Cherenkov detectors and a dedicated muon detector (MD) array constitute the AMIGA enhancement (Auger Muon and Infill for the Ground Array). Additional fluorescence telescopes constitute HEAT (High Elevation Auger Telescopes). Seven MD modules have been installed until mid 2012 in a first hexagon at the site of the Pierre Auger Observatory in Malarguee, Argentina. The corresponding readout electronics, and 19 more of these setups, were assembled and tested in Siegen to assure correct functionality. The detectors were incorporated in the trigger structure of the original surface detector (SD) array of the Pierre Auger Observatory and are now taking data synchronously. In the framework of this thesis, system tests have been developed, a pre-unitary cell (PUC) of seven modules has been successfully operated and their trigger has been synchronised with the SD trigger. First data from the MD have been analysed and have been combined with data from the SD.

  6. Mass spectroscopy of recoiled ions, secondary ion mass spectroscopy, and Auger electron spectroscopy investigation of Y2O3-stabilized ZrO2(100) and (110)

    International Nuclear Information System (INIS)

    Herman, G.S.; Henderson, M.A.; Starkweather, K.A.; McDaniel, E.P.

    1999-01-01

    We have studied the (100) and (110) surfaces of yttria-stabilized cubic ZrO 2 using Auger electron spectroscopy, low energy electron diffraction (LEED), direct recoil spectroscopy, mass spectroscopy of recoiled ions (MSRI), and secondary ion mass spectroscopy (SIMS). The concentration of yttrium at the surface was weakly influenced by the surface structure under the experimental conditions investigated. Both MSRI and SIMS indicated a more enhanced yttrium signal than zirconium signal at the surface compared to the respective bulk concentrations. The surfaces were not very well ordered as indicated by LEED. The yttria-stabilized cubic ZrO 2 single crystal surfaces may not be a suitable model material for pure phase ZrO 2 surfaces due to significant yttria concentrations at the surface. copyright 1999 American Vacuum Society

  7. Magnetooptic effects and Auger electron spectroscopy of two-layer NiFe-Dy and Fe-Dy films with nonuniform layers

    International Nuclear Information System (INIS)

    Ehdel'man, I.S.; Markov, V.V.; Khudyakov, A.E.; Ivantsov, R.D.; Bondarenko, G.V.; Ovchinnikov, S.G.; Kesler, V.G.; Parshin, A.S.; Ronzhin, I.P.

    2001-01-01

    Magneto-optical effects (magnetic circular dichroism and meridional Kerr effect) and element distribution with layer thickness in two-layer NiFe-Dy and Fe-Dy films, prepared by thermal sputtering of component in ultrahigh vacuum, are investigated. It is shown, that Dy in a two-layer film in the temperature range of 80-300 K makes constant contributions to both effects investigated which are approximately equal to the values of the effects observed in an isolated Dy film only at temperatures below the temperature T c of Dy transition into a ferromagnetic state (T c ∼ 100 K for the films under study). This behaviour of magneto-optical effects is assumed to be due to the influence of a NiFe layer spin system on magnetic state of a Dy layer, this influence is enhanced by the deep penetration of Ni and Fe ions into Dy layer as it follows from the data obtained using Auger electron spectroscopy [ru

  8. Education and public outreach of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B.; /Natl. Tech. U., San Rafael; Snow, G.

    2005-08-01

    The Auger collaboration's broad mission in education, outreach and public relations is coordinated in a separate task. Its goals are to encourage and support a wide range of outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on recent activities and future initiatives.

  9. Slow Auger Relaxation in HgTe Colloidal Quantum Dots.

    Science.gov (United States)

    Melnychuk, Christopher; Guyot-Sionnest, Philippe

    2018-05-03

    The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.

  10. Study of ultra-energetic cosmic rays at the Pierre Auger Observatory from particle detection to anisotropy measurement; Etude des rayons cosmiques ultra-energetiques avec l'Observatoire de Pierre Auger: de l'acceptance du detecteur a la nature des particules primaires et aux mesures d'anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Aublin, J

    2006-09-15

    The Pierre Auger Observatory, still under construction in Argentina, is designed to study the cosmic rays with energies above a few EeV. The experiment combines two complementary techniques: the fluorescence light detection and the sampling of the shower with an array of detectors at ground, covering a surface of 3000 square kilometers. The calculation of the acceptance of the detector, which is of utmost importance to establish the energy spectrum, has been achieved. The method of computation of the acceptance is simple and reliable. The detection efficiency depends on the nature of primary cosmic rays, allowing to study the cosmic rays composition with the surface detector. The calculation of the cosmic rays energy spectrum has been performed, using different methods to estimate the energy of the events. A cross calibration between the fluorescence and the surface detector provides an estimation of the energy almost independent of hadronic interaction models. The study of large scale anisotropies in the cosmic rays angular distribution provides useful informations about the cosmic rays sources and the conditions of propagation. A new analysis method is presented, allowing to estimate the parameters of an underlying dipolar and quadrupolar anisotropy in the data. The method is applied to a preliminary Auger data set. (author)

  11. Micro-area Auger analysis of a SiC/Ti fibre composite

    Science.gov (United States)

    Zironi, E. P.; Poppa, H.

    1981-01-01

    Micro-area Auger electron spectroscopy with a spatial resolution of less than 50 nm has been used to study the concentration of elements across the reaction zone of a W-reinforced SiC fiber in a titanium matrix. Although the elemental concentrations obtained by this technique are affected by the reaction zone morphology to a greater extent than in the case of X-ray microprobe analysis, the proposed technique has the advantage of a much higher spatial resolution and avoids the problems of bulk averaging that characterize the X-ray technique.

  12. Oxidation kinetics and auger microprobe analysis of some oxidized zirconium alloys

    International Nuclear Information System (INIS)

    Ploc, R.A.

    1989-01-01

    Oxidation kinetics at 300 o C in dry oxygen of 0.5 wt% binary alloys of iron, nickel, and chromium in zirconium were determined for several surface preparations. Further, chemical profiles of the oxides as they existed on the matrix and on the precipitates were obtained by sputtering and Auger electron analysis. The appearance of 'breakaway' oxidation was controlled by the surface finish of the alloy, a variable that could be used to eliminate the phenomenon for all alloys except the Zr/Ni binary, which required β-quenching to accomplish the same purpose. (author)

  13. Auger coefficient in GaInN-based laser structures

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, Alexander Daniel; Netzel, Carsten; Brendel, Moritz; Joenen, Holger; Rossow, Uwe; Hangleiter, Andreas [Institut fuer Angewandte Physik, TU Braunschweig (Germany)

    2010-07-01

    Todays GaInN-based light emitting devices such as LEDs and laser diodes show excellent properties in terms of quantum efficiency or threshold current in the violet-blue spectral region. With increasing wavelength towards the green this performance decreases strongly. In particular at longer wavelengths, the quantum efficiency decreases for higher current densities, called the efficiency droop. This phenomenon is still subject to intensive research and different mechanisms such as Auger recombination, losses due to dislocations and carrier escape have been named as possible explanations. We combine optical gain measurements using the variable stripe length technique with model calculations of the optical gain spectra to derive the carrier lifetime. From the dependence of the inverse effective lifetime on carrier density we determine the recombination coefficients for radiative, nonradiative and Auger recombination. The Auger coefficients we obtained are about 1-2 x 10{sup -31} cm{sup 6}/s for GaInN quantum wells with 2.5eVAuger recombination seems to contribute to laser threshold.

  14. Calibrating the Auger Engineering Radio Array at the Pierre Auger Observatory using an Octocopter

    Energy Technology Data Exchange (ETDEWEB)

    Briechle, Florian; Erdmann, Martin; Krause, Raphael [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    With the Auger Engineering Radio Array (AERA) at the Pierre Auger Observatory radio emission of extensive air showers induced by ultra high energy cosmic rays is observed. Characteristics of the primary cosmic ray, e.g., arrival direction, mass or energy, can be measured this way. To produce high quality data, the detector needs to be well understood and calibrated. A useful tool for calibration campaigns is an octocopter. With it, a calibration source can be placed above the array, which makes this a very flexible method useful for different types of calibrations. Special focus is put on the position reconstruction and the position accuracy of the octocopter during the calibration flights. A new optical method using two cameras for these position reconstructions is presented. Results of a measurement campaign in spring 2015 are presented. In this campaign, the sensitivity of the AERA stations as well as timing characteristics were measured. The results of the sensitivity measurement are compared to simulations.

  15. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies

    Science.gov (United States)

    Ledeuil, J. B.; Uhart, A.; Soulé, S.; Allouche, J.; Dupin, J. C.; Martinez, H.

    2014-09-01

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming

  16. Evidence for correlated double-electron capture in slow collisions of multicharged ions with He and H2

    International Nuclear Information System (INIS)

    Meyer, F.W.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Stolterfoht, N.

    1986-01-01

    High resolution measurements of the production of L 1 L 23 M Coster-Kronig and LMM-Auger electrons in slow collisions of C 4+ , N 5+ , O 6+ , and 0 7+ with He and H 2 have been performed, using the method of 0 0 Auger spectroscopy. For the latter three projectiles, strong Coster Kronig lines are observed, which are attributed to the configurations (core)2pnl, produced by double-electron capture. It is argued that production of these nonequivalent electron configurations must involve electron-electron correlation. From a comparison of the production cross sections for these Coster-Kronig electrons and the LMM-Auger electrons, it is further argued the correlation plays a significant role in two-electron transfer processes. 7 refs., 5 figs

  17. Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Yokoya, Kaoru; Chen, Pisin

    1989-03-01

    The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also estimated. The results are then applied to the TLC and the CLIC parameters. 6 refs., 1 fig., 1 tab.

  18. Investigation of valence inter-multiplet Auger transitions in Ne following 1s photoelectron recapture

    International Nuclear Information System (INIS)

    De Fanis, A; Pruemper, G; Hergenhahn, U; Kukk, E; Tanaka, T; Kitajima, M; Tanaka, H; Fritzsche, S; Kabachnik, N M; Ueda, K

    2005-01-01

    We employ a novel technique in which highly excited Rydberg states of Ne + 2p 4n p are populated via PCI-induced recapture of the near-threshold 1s photoelectron (De Fanis et al 2004 Phys. Rev. A 70 040702) to investigate valence inter-multiplet Auger transitions. The following series of the transitions have been observed: Ne + 2p 4 ( 1 D)np 2 L → Ne 2+ 2p 4 3 P J , Ne + 2p 4 ( 1 S)np 2 P →Ne 2+ 2p 4 3 P J and Ne + 2p 4 ( 1 S)np 2 P →Ne 2+ 2p 4 1 D. Their energy positions, quantum defects and the anisotropy parameters of the Auger electron emission have been determined. Experimental results are in good agreement with multi-configuration Dirac-Fock calculations carried out as a part of this study. The importance of interference effects for decays via naturally overlapping fine-structure components of the intermediate state is discussed

  19. Distributed Computing for the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Chudoba, J.

    2015-01-01

    Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system. (paper)

  20. Distributed Computing for the Pierre Auger Observatory

    Science.gov (United States)

    Chudoba, J.

    2015-12-01

    Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system.

  1. Interference shake-up effects in the resonant Auger decay of krypton

    International Nuclear Information System (INIS)

    Lagutin, B.M.; Sukhorukov, V.L.; Petrov, I.D.; Demekhin, Ph.V.; Schartner, K.-H.; Ehresmann, A.; Schmoranzer, H.

    2005-01-01

    Parameters of the resonant 4p 4p -3dε-bar Auger effect (RA) following the 3d-n p (n=5,6) excitation in Kr were calculated with taking into account the interference between several resonant and direct non-resonant transition amplitudes. For the first time all individual lines of the extended RA spectrum which comprises both the 4p 4 ( 1 D) 5p and the 4p 4 ( 1 D) 6p groups of final ionic states were considered. It was revealed that each group contains individual lines where the interference contributions have different signs thus providing a weak interference effect on the average over the whole group. Interference effects are found to be more pronounced in the angular distribution of the RA products

  2. Experimental (e, 2e) study of exchange interferences in the resonant Auger decay of Ar induced by electron impact

    International Nuclear Information System (INIS)

    Paripás, Béla; Palásthy, Béla; Žitnik, Matjaz

    2013-01-01

    Highlights: •The interference of autoionizing resonances with a common final ionic state is measured. •We have developed a method to experimentally verify for the exchange interference effect. •The sum of kinetic energies of the two detected electrons is kept constant. •Mainly the interference effects of [2p 3/2 ]4p and [2p 1/2 ]4p resonances in argon are studied. •The results possibly indicate small exchange interference effects. -- Abstract: Any two autoionizing resonances with a common final ionic state can be made to interfere by an appropriate selection of electron impact energy. To reveal the exchange interference effects a selective detection of electron pairs related to the selected final state is desired. We have performed a constant ionic state (e, 2e) experiment (CIS) isolating the final state by keeping the sum of transmission energies of two independent electron spectrometers constant. In the focus of this work are the exchange interference effects of 2p 3/2 −1 4p and 2p 1/2 −1 4p resonances in argon decaying to the 3p −2 ( 1 D)4p 2 P, 2 D final ionic state with energy E F = 37.3 ± 0.2 eV. We have developed a method to experimentally verify for the exchange interference effect. It is based on a comparison of the CIS spectrum recorded at the critical primary electron energy that activates the interferences, and the constructed, interference-free CIS spectrum that is build up from the CIS spectrum measured at primary electron energy away from the critical value. The results possibly indicate small exchange interference effects that may have been considerably smeared out at present experimental energy resolution

  3. Development and featuring of hemispherical photomultipliers for cosmic ray detection - calibration of surface detectors and analysis of horizontal showers at the Pierre Auger Observatory; Developpement et caracterisation de photomultiplicateurs hemispheriques pour les experiences d'astroparticules - etalonnage des detecteurs de surface et analyse des gerbes horizontales de l'Observatoire Pierre Auger

    Energy Technology Data Exchange (ETDEWEB)

    Dornic, D

    2006-09-15

    The large photomultipliers (PMT) are currently used in astro-particle and neutrino experiments where they have to detect low levels of light. We have studied and characterised large PMTs developed by the PHOTONIS Group Company. The first part of this thesis is dedicated to the full characterization of two types of multipliers currently used in large PMTs. Then, we present results of a new photocathode process, applied on the XPI805 (PMT used in the Pierre Auger Observatory) in order to improve the quantum efficiency. Finally, we study the PMT diameter influence on main parameters (5, 8 and 10 inches). The second part is devoted to the study of the water Cerenkov tank (WCD) response to the shower particles and the horizontal air showers analysis with the Pierre Auger Observatory. The main parameters of a WCD simulation developed in the Auger IPN group were calibrated with several measurements on vertical and inclined muons, performed on dedicated test tanks. The kind of detector used in the surface detector allows detecting very inclined events with a good sensitivity (zenith angle superior to 70 degrees). We have established specific methods to analyze these events (selection and reconstruction). These methods were applied to the Auger data in order to obtain the energy spectrum of the horizontal events. Finally, we detailed two methods to test directly the hadronic models predictions by studying the air showers muonic component. (author)

  4. Low-energy electron microdosimetry of CS-137

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.

    1980-09-01

    The mass of tissue irradiated by an internal emitter depends upon the distribution of the radionuclide within the organism and the type of radiation emitted. The range (95% absorption) of low-energy electron effectively defines the sensitive volume in which the energy of the emitted electron is deposited. Accordingly, in the case of Auger electron microdosimetry of internal emitters the correct definition of the sensitive volume is of paramount importance. The amount of energy delivered by the monoenergetic electrons emitted by the decay system 137 Cs → sup(137m)Ba to spherical volumes of water-like tissue media of radii equivalent to the estimated ranges of those electrons in water is calculated and discussed as far as the variations of the estimated ranges of electrons as a function of the initial energy of emission are concerned. Although there are still many uncertainties on the actual ranges of low-energy electrons, one can state confidently that the ranges of the Auger electrons of the decay system 137 Cs → 137 sup(m) Ba → 137 Ba can be considered to be in the same order of magnitude of the diameter of a cell. The energy deposition in spherical volumes of water-like tissue media, considered equivalent to the sensitive volumes for the Auger electrons of the decay system 137 Cs → 137 sub(m) Ba → 137 Ba, range for several orders of magnitude from 10 2 to about 10 10 times higher than the energy deposition in similar media by the internal conversion electrons of this decay system. If equivalent variations of energy deposition per unit mass occur when the masses considered are cellular, and subcellular structures, then the effects into the sensitive volume should be taken into biological consideration as far as the microdosimetry of low-energy electrons (approximately equal to 10 keV) is considered, whenever there is internal localization of Auger emitters. (Author) [pt

  5. Simulation of electron, positron and Bremsstrahlung spectrum generated due to electromagnetic cascade by 2.5 GeV electron hitting lead target using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Haridas, G.; Thakkar, K.K.; Singh, Gurnam; Sarkar, P.K.; Sharma, D.N.

    2009-01-01

    INDUS-2 is a high energy electron accelerator facility where electrons are accelerated in circular ring up to maximum energy 2.5 GeV, to generate synchrotron radiation. During normal operation of the machine a fraction of these electrons is lost, which interact with the accelerator structures and components like vacuum chamber and residual gases in the cavity and hence generates significant amount of Bremsstrahlung radiation. The Bremsstrahlung radiation is highly dependent on the incident electron energy, target material and its thickness. The Bremsstrahlung radiation dominates the radiation environment in such electron storage rings. Because of its broad spectrum extending up to incident electron energy and pulsed nature, it is very difficult to segregate the Bremsstrahlung component from the mixed field environment in accelerators. With the help of FLUKA Monte Carlo code, Bremsstrahlung spectrum generated from 2.5 GeV electron on bombardment of high Z lead target is simulated. To study the variation in Bremsstrahlung spectrum on target thickness, lead targets of 3, 6, 9, 12, 15, 18 mm thickness was used. The energy spectrum of emerging electron and positron is also simulated. The study suggests that as the target thickness increases, the emergent Bremsstrahlung photon fluence increases. With increase in the target thickness Bremsstrahlung photons in the spectrum dominate the low energy part and degrade in high energy part. The electron and positron spectra also extend up to incident electron energy. (author)

  6. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  7. Ultrafast and band-selective Auger recombination in InGaN quantum wells

    International Nuclear Information System (INIS)

    Williams, Kristopher W.; Monahan, Nicholas R.; Zhu, X.-Y.; Koleske, Daniel D.; Crawford, Mary H.

    2016-01-01

    In InGaN quantum well based light-emitting diodes, Auger recombination is believed to limit the quantum efficiency at high injection currents. Here, we report the direct observation of carrier loss from Auger recombination on a sub-picosecond timescale in a single InGaN quantum well using time-resolved photoemission. Selective excitations of different valence sub-bands reveal that the Auger rate constant decreases by two orders of magnitude as the effective hole mass decreases, confirming the critical role of momentum conservation.

  8. The Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10 19 eV and with equal exposures for the northern and southern skies

  9. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  10. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  11. Study of ultra-energetic cosmic rays at the Pierre Auger Observatory from particle detection to anisotropy measurement; Etude des rayons cosmiques ultra-energetiques avec l'Observatoire de Pierre Auger: de l'acceptance du detecteur a la nature des particules primaires et aux mesures d'anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Aublin, J

    2006-09-15

    The Pierre Auger Observatory, still under construction in Argentina, is designed to study the cosmic rays with energies above a few EeV. The experiment combines two complementary techniques: the fluorescence light detection and the sampling of the shower with an array of detectors at ground, covering a surface of 3000 square kilometers. The calculation of the acceptance of the detector, which is of utmost importance to establish the energy spectrum, has been achieved. The method of computation of the acceptance is simple and reliable. The detection efficiency depends on the nature of primary cosmic rays, allowing to study the cosmic rays composition with the surface detector. The calculation of the cosmic rays energy spectrum has been performed, using different methods to estimate the energy of the events. A cross calibration between the fluorescence and the surface detector provides an estimation of the energy almost independent of hadronic interaction models. The study of large scale anisotropies in the cosmic rays angular distribution provides useful informations about the cosmic rays sources and the conditions of propagation. A new analysis method is presented, allowing to estimate the parameters of an underlying dipolar and quadrupolar anisotropy in the data. The method is applied to a preliminary Auger data set. (author)

  12. Calculations of the Auger deexcitation rate of dtμ within the muonic quasimolecule (dtμ)dee

    Science.gov (United States)

    Armour, E. A. G.; Lewis, D. M.; Hara, S.

    1992-12-01

    A key process in muon-catalyzed fusion is the deexcitation of dtμ within the resonant muonic quasimolecule (dtμ)dee, by emission of an Auger electron. The dtμ in the quasimolecule is initially in a weakly bound excited state with J=1 and v=1. Calculations are carried out of the rate of the dominant transition to the state with J=0 and v=1. Use is made of the dipole matrix element obtained for this transition by Scrinzi and Szalewicz [Phys. Rev. A 39, 2855 (1989)]. Full account is taken of the molecular nature of the quasimolecule. The continuum electronic wave functions for the Auger electron for all four contributing symmetries, i.e., Σ+g, Σ+u, Πu, and Πg, are first obtained by a two-center Coulomb calculation and a static-exchange calculation, extended to include dipole polarization. Comparison is then made with the results of a calculation in which the Σ+μ and Πu wave functions are obtained as in a previous paper by Armour and Lewis [J. Phys. B 23, L25 (1990)] and the Σ+g and Πg wave functions are obtained by the Kohn method. There are significant differences between the contributions from the individual symmetries, but the overall values for the deexcitation rate are all of the same order of magnitude as the results of earlier calculations.

  13. Extraction panel guidelines for high production underground auger mining in Australian conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Buddery; David Hill [Strata Engineering (Australia)

    2004-09-15

    The project involved monitoring ground behaviour during augering, with the intention of monitoring several sites with varying geotechnical environments and developing guidelines from these to assist in future layout design. This approach is appropriate where the mining layout involves the complex interaction of several components that cannot be readily simplified to the extent necessary for numerical or physical models to play the primary role. Only one site was secured within the project time frame. Consequently, the project has utilised the results from a Southern Colliery augering trial, coupled to the outcomes of numerical and physical modelling tests. The auger mining operations themselves were carried out by a Joint Venture (Coal Recovery Australia Pty Ltd) between Cutting Edge Technology Pty Ltd and SBD Services Pty Ltd. The underground trial indicated that empirical design methodologies involving pillar strength equations coupled to abutment angle models can be used to design stable augering layouts. Although the designed hole configuration was not fully achieved, there is, a suggestion that a layout so determined will be conservative, holding out the possibility of future optimisation on the basis of actual performance. Monitoring and re-appraisal in the context of a formal strata management process are critical to the success of any such approach, particularly in terms of optimisation. The two-dimensional UDEC numerical modelling code was used to model augering webs, but seemed to underestimate the stability of an auger mining panel, while over -estimating the strength of individual auger webs. Physical tests appeared to give a realistic quantification of the size effect. The tests suggest that determining the strength of an hourglass web by increasing the strength of an equivalent rectangular web by 25% would be a justifiable step at this stage.

  14. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  15. Uptake and dosimetry of Auger emitting diagnostic radionuclides (in particular indium-111) in human male germ cells

    International Nuclear Information System (INIS)

    Nettleton, J.S.; Lawson, R.S.; Prescott, M.C.; Hoyes, K.P.; Morris, I.D.

    2000-01-01

    This paper concerns the uptake and dosimetry of Auger electron emitting radionuclides which are used during routine diagnostic nuclear medicine procedures, in human testes and spermatozoa (sperm). A computer model was developed to calculate the doses to sperm heads from cellular localisation of the Auger electron emitting radionuclides 99m Tc, 111 In, 123 I and 201 Tl. An assumption of ellipsoidal geometry was made to approximate the sperm head. S Factors were determined for differing sub-cellular localisations of radionuclide. The S-Factors determined were then combined with in-vitro data for quantification of radionuclide uptake for 99m Tc pertechnetate, 111 In chloride and 201 Tl chloride, to estimate in-vivo doses to sperm heads following intravenous administration of radionuclide in typical diagnostic quantities. The uptake and resulting cellular radiation dose of 111 In (from the chloride) was significantly larger than the other radionuclides in the chemical forms investigated. Further investigations were carried out to determine localisation of 111 In on sperm. The results of these experiments indicate that the radiation dose to mature sperm following administration of 111 In pharmaceuticals for diagnostic purposes might be large enough to result in DNA damage which is not expressed until after fertilisation of an oocyte. Consideration should therefore be given to providing some contraceptive advice following diagnostic administrations of this radionuclide. In order to consider the possible effects of these radionuclides on other spermatogenic cells, further studies were undertaken to obtain in-vivo data for quantification of 111 In chloride and 201 Tl chloride uptake into the human testis following intravenous administration. Conventional dosimetry was then used to estimate testicular radiation dose using our values of percentage uptake. The results obtained indicate that the values of testicular radiation doses quoted by ICRP for 111 In might be too low by

  16. Electron beam induced Hg desorption and the electronic structure of the Hg depleted surface of Hg1/sub -//sub x/Cd/sub x/Te

    International Nuclear Information System (INIS)

    Shih, C.K.; Friedman, D.J.; Bertness, K.A.; Lindau, I.; Spicer, W.E.; Wilson, J.A.

    1986-01-01

    Auger electron spectroscopy (AES), x-ray photoemission spectroscopy (XPS), low energy electron diffraction (LEED), and angle-resolved ultraviolet photoemission spectroscopy (ARPES) were used to study the electron beam induced Hg desorption from a cleaved (110)Hg/sub 1-//sub x/Cd/sub x/Te surface and the electronic structure of the Hg depleted surface. Solid state recrystallized Hg/sub 1-//sub x/Cd/sub x/Te single crystals were used. It was found that the electron beam heating dominated the electron beam induced Hg desorption on Hg/sub 1-//sub x/Cd/sub x/Te. At the electron beam energy used, the electron beam heating extended several thousand angstroms deep. However, the Hg depletion saturated after a few monolayers were depleted of Hg atoms. At the initial stage of Hg loss (only 3%), the surface band bends upward (more p type). The ARPES spectrum showed the loss of some E vs k dispersion after 22% Hg atoms were removed from the surface region, and no dispersion was observed after 43% Hg atoms were removed. These results have important implications on the electronic structure of the surfaces and interfaces of which the stoichiometry is altered

  17. Many-electron theory of x-ray photoelectron spectra: N-shell linewidths in the 46Pd to 92U range

    International Nuclear Information System (INIS)

    Ohno, M.; Wendin, G.

    1985-01-01

    The linewidths and energies of 4d holes (main lines in x-ray photoelectron spectra) are calculated for a number of elements in the range 70 Yb to 92 U, with use of nonrelativistic atomic many-body theory. The nonrelativistic Hartree-Fock frozen-core approximation for one-electron wave functions and Auger energies gives very good agreement with experiment. In the case of 4s and 4p holes, the Auger (in particular, super-Coster-Kronig) energies have to be calculated with inclusion of relaxation and relativistic effects. Combined with frozen-core, nonrelativistic one-electron wave functions, this gives good agreement with experimental energies and widths for 4s and 4p holes in 80 Hg. In conclusion, it is very important to include the effects of two final-state holes on the Auger electron, as well as the polarization response which screens the Auger emission matrix element. This latter effect is largely equivalent to the so-called exchange interaction between the Auger electron and the final-state holes

  18. Development and featuring of hemispherical photomultipliers for cosmic ray detection - calibration of surface detectors and analysis of horizontal showers at the Pierre Auger Observatory; Developpement et caracterisation de photomultiplicateurs hemispheriques pour les experiences d'astroparticules - etalonnage des detecteurs de surface et analyse des gerbes horizontales de l'Observatoire Pierre Auger

    Energy Technology Data Exchange (ETDEWEB)

    Dornic, D

    2006-09-15

    The large photomultipliers (PMT) are currently used in astro-particle and neutrino experiments where they have to detect low levels of light. We have studied and characterised large PMTs developed by the PHOTONIS Group Company. The first part of this thesis is dedicated to the full characterization of two types of multipliers currently used in large PMTs. Then, we present results of a new photocathode process, applied on the XPI805 (PMT used in the Pierre Auger Observatory) in order to improve the quantum efficiency. Finally, we study the PMT diameter influence on main parameters (5, 8 and 10 inches). The second part is devoted to the study of the water Cerenkov tank (WCD) response to the shower particles and the horizontal air showers analysis with the Pierre Auger Observatory. The main parameters of a WCD simulation developed in the Auger IPN group were calibrated with several measurements on vertical and inclined muons, performed on dedicated test tanks. The kind of detector used in the surface detector allows detecting very inclined events with a good sensitivity (zenith angle superior to 70 degrees). We have established specific methods to analyze these events (selection and reconstruction). These methods were applied to the Auger data in order to obtain the energy spectrum of the horizontal events. Finally, we detailed two methods to test directly the hadronic models predictions by studying the air showers muonic component. (author)

  19. Lineshape of Ne 1s photoionization satellite [1s2s]({sup 3}S)3s and its valence Auger decay spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Yarzhemsky, V.G.; Amusia, M.Ya.; Chernysheva, L.V

    2002-12-15

    Lineshape of Ne1s photoionization satellite [1s2s]({sup 3}S)3s({sup 2}S) and lineshapes of corresponding low-energy Auger spectra are calculated using the Many-Body Perturbation Theory. The results obtained reproduce the experimentally observed asymmetrical lineshape of photoelectron satellite and its intensity.

  20. Band electron spectrum and thermodynamic properties of the pseudospin-electron model with tunneling splitting of levels

    Directory of Open Access Journals (Sweden)

    O.Ya.Farenyuk

    2006-01-01

    Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.

  1. Electron-nuclear. gamma. transition spectrum of a nucleus in a multicharged atomic ion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, L N; Letokhov, V S

    1987-08-01

    The nuclear emission of absorption spectrum of an atom possesses a set of electron satelites which are due to an alternation of the state of the electron shell. It is shown that the mechanism of formation of the satellites might be different for neutral atoms and high-charge ions. In the first case (loose electron shell) a ''shaking'' of the shell resulting from the interaction between the nucleus and ..gamma.. quantum is predominant. In the second case (rigid electron shell) the mechanism involves a direct interaction between the ..gamma.. quantum and electrons. The second mechanism is important in the case of dipole nuclear transitions and dominates at ..gamma.. quantum energies electron transition multiplicity do not pertain to the second mechanism. Consequently, the satellite spectrum is much enriched and transitions between the fine and hyperfine structure components, transitions and transitions which do not involve a change in the electron configuration can be considered. The relative intensities of the satellites are determined by the smallest parameter ..mu../sub p//sup 2lambda/ (lambda is the nuclear transition multipole order, ..mu../sub p/ approx. 12 ..pi.. is the relative proton mass and z the core mass). In the spectrum of the plasma source the electron satellites corresponding to the ..gamma.. quantum emission and absorption lines are not overlapped by the Doppler contour of the ..gamma.. line.

  2. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  3. Photoionization cross sections and Auger rates calculated by many-body perturbation theory

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1976-01-01

    Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates

  4. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    International Nuclear Information System (INIS)

    Kaciulis, S.; Mezzi, A.; Balijepalli, S.K.; Lavorgna, M.; Xia, H.S.

    2015-01-01

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D x parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter

  5. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kaciulis, S., E-mail: saulius.kaciulis@ismn.cnr.it [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Mezzi, A.; Balijepalli, S.K. [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Lavorgna, M. [Institute of Polymers, Composites and Biomaterials, IPCB-CNR, P.le Fermi, 80055 Napoli (Italy); Xia, H.S. [State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 Sichuan (China)

    2015-04-30

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D{sub x} parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter.

  6. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy

    International Nuclear Information System (INIS)

    Panyutin, I.G.; Winters, T.A.; Feinendegen, L.E.; Neumann, R.D.

    2000-01-01

    Targeting of radiation damage to specific DNA sequences is the essence of antigene radiotherapy. This technique also provides a tool to study molecular mechanisms of DNA repair on a defined, single radio damaged site. It was achieved such sequence-specific radio damage by combining the highly localized DNA damage produced by the decay of Auger-electron-emitters such as 125 I with the sequence-specific action of triplex-forming oligonucleotides (TFO). TFO complementary to polypurine-polypyrimidine regions of human genes were synthesized and labeled with 125 I-dCTP by the primer extension method. 125 I-TFO were delivered into cells with several delivery systems. In addition, human enzymes capable of supporting DNA single-strand-break repair were isolated and assessed for their role in the repair of this lesion. Also, the mutagenicity and repairability of 125 I-TFO-induced double strand breaks (DSB) were assessed by repair of plasmid possessing a site-specific DSB lesion. Using plasmids containing target polypurine-polypyrimidine tracts, it was obtained the fine structure of sequence-specific DNA breaks produced by decay of 125 I with single-nucleotide resolution. It was showed that the designed 125 I-TFO in nanomolar concentrations could bind to and introduce double-strand breaks into the target sequences in situ, i.e., within isolated nuclei and intact digitonin-permeabilized cells. It was also showed 125 I-TFO-induced DSB to be highly mutagenic lesions resulting in a mutation frequency of nearly 80%, with deletions comprising the majority of mutations. The results obtained demonstrate the ability of 125 I-TFO to target specific sequences in their natural environment - within eukaryotic nucleus. Repair of 125 I-TFO-induced DNA damage should typically result in mutagenic gene inactivation

  7. Measurement of horizontal air showers with the Auger Engineering Radio Array

    Science.gov (United States)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  8. Process and device of elementary and chemical analysis of a sample through a spectral analysis of the secondary electron energies

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene.

    1975-01-01

    The present invention relates to a method of chemical and elementary analysis of samples through a spectral analysis of secondary electrons (Auger electrons) emitted from said sample under a primary monokinetic electron beam concentrated on its surface. Said method is characterized in that the intensity of the primary monokinetic electron beam emitted from an electron gun is modulated at a frequency ω; and in that the secondary electrons of energy E emitted from the sample are then collected. A reference voltage corresponding to the modulation in intensity of the primary electron beam is applied at the input of a phase sensitive detector together with a voltage proportional to the intensity of the flux of said collected secondary electrons to obtain at the output of said detector a voltage proportional to the number of the secondary electrons of energy E. The secondary emission energy spectrum of the sample is then plotted [fr

  9. Electronic spectrum of a deterministic single-donor device in silicon

    International Nuclear Information System (INIS)

    Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2013-01-01

    We report the fabrication of a single-electron transistor (SET) based on an individual phosphorus dopant that is deterministically positioned between the dopant-based electrodes of a transport device in silicon. Electronic characterization at mK-temperatures reveals a charging energy that is very similar to the value expected for isolated P donors in a bulk Si environment. Furthermore, we find indications for bulk-like one-electron excited states in the co-tunneling spectrum of the device, in sharp contrast to previous reports on transport through single dopants

  10. Electron spectroscopy of nanodiamond surface states

    Energy Technology Data Exchange (ETDEWEB)

    Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P

    2003-06-15

    Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp{sup 3} hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of {sigma}{sub p} up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms {sigma}{sub s}{sup 1}{sigma}{sub p}{sup 2}{pi}{sup 1} surface states without overlapping of {pi}-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface.

  11. The Pierre Auger fluorescence detector. Cross-checking the absolute calibration using a drone

    Energy Technology Data Exchange (ETDEWEB)

    Tomankova, Lenka [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The Pierre Auger Observatory combines the air shower fluorescence and surface array methods to study ultra-high energy cosmic rays. As the energy scale of the experiment is derived from calorimetric measurements by the fluorescence telescopes, their accurate calibration is of primary importance to all Auger data. We discuss a novel calibration method based on a remotely flown drone equipped with a specially designed light source that mimics a snapshot of an air shower traversing the atmosphere. Several drone measurement campaigns have been performed to study the properties of the Auger fluorescence telescopes and to derive an end-to-end calibration. We give an overview of the measurements and present the basic analysis chain as well as the first results of an independent cross-check of the Auger energy scale.

  12. Electron-nuclear γ transition spectrum of a nucleus in a multicharged atomic ion

    International Nuclear Information System (INIS)

    Ivanov, L.N.; Letokhov, V.S.

    1987-01-01

    The nuclear emission of absorption spectrum of an atom possesses a set of electron satelites which are due to an alternation of the state of the electron shell. It is shown that the mechanism of formation of the satellites might be different for neutral atoms and high-charge ions. In the first case (loose electron shell) a ''shaking'' of the shell resulting from the interaction between the nucleus and γ quantum is predominant. In the second case (rigid electron shell) the mechanism involves a direct interaction between the γ quantum and electrons. The second mechanism is important in the case of dipole nuclear transitions and dominates at γ quantum energies p 2λ (λ is the nuclear transition multipole order, μ p ∼ 1/2 π is the relative proton mass and z the core mass). In the spectrum of the plasma source the electron satellites corresponding to the γ quantum emission and absorption lines are not overlapped by the Doppler contour of the γ line

  13. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  14. Reflection of the energy structure of a tungsten monocrystal nearsurface area in the secondary electron spectrum

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Smirnov, O.M.; Terekhov, A.N.

    1982-01-01

    Formation of secondary electron energy spectrum during emission from the crystal layer near the surface has been considered, at that layer energy structure can be different from volumetric energy structure. Its thickness depends on the predominant mechanism of electron scattering and is determined by corresponding phenomenological parameters. It is shown that the structure in the secondary electron spectrum appears in the case when energy structure of emitting monocrystal layer can not be described in the approximation of almost free electron gas and, as experimental investigations show, approaches energy zone structure of its volume. It is also show that in the case when the energy structure of the emitting layer is satisfactorily described with the model of almost free electron gas, the SE spectrum is characterized with traditional cascade minimum. Experimental investigation of SE energy distribution was carried out for the W monocrystalline face (110). It was established that distinct structure in the SE spectrum appears only after electrochemical polishing of the specimen surface. It is related to the appearance of ''far'' order in the monocrystal emission layer on initially disturbed tungsten surface during such treatment. Disturbance of tungsten monocrystal surface structure on its oxidation in O 2 atmosphere results in the appearance of the cascade maximum and disappearance of distinct peculiarities in the SE spectrum

  15. Mass sensitive observables of the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Unger M.

    2013-06-01

    Full Text Available In this article we will discuss measurements of the longitudinal development of air showers at the Pierre Auger Observatory. The longitudinal development of the electromagnetic component can be directly observed by the fluorescence telescopes of the Auger Observatory and we will present the results on the evolution of the average shower maximum and its fluctuations as a function of energy. Moreover, two observables from the surface detector, the asymmetry of the rise time of the station signals and the muon production depth, will be discussed and the measurements will be compared to predictions from air shower simulations for different primary particle types.

  16. The Pierre Auger Research and Development Array (RDA in southeastern Colorado – R&D for a giant ground array

    Directory of Open Access Journals (Sweden)

    Thompson J.

    2013-06-01

    Full Text Available The Pierre Auger Research and Development Array (RDA was originally designed to be the precursor of the northern Auger observatory, a hybrid array of 4400 surface detector stations and 39 fluorescence telescopes deployed over 20,000 square kilometers. It is conceived as a test bed aiming at validating an improved and more cost-effective 1-PMT surface detector design and a new peer-to-peer communication system. The array of ten surface detector stations and ten communication-only stations is currently being deployed in southeastern Colorado and will be operated at least until late 2013. It is configured in such a way that it allows testing of a new peer-to-peer communication protocol, as well as a new surface detector electronics design with a larger dynamic range aiming at reducing the distance from the shower core where saturation is observed. All these developments are expected in the short term to improve the performance of the Pierre Auger Observatory and enable future enhancements. In the longer term, it is hoped that some of these new developments may contribute to the design of a next-generation giant ground array.

  17. Enhancement of radiative Auger emission in lithium-like 23V20+ ions

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Clark, M.W.

    1988-01-01

    Measurements have been made of projectile X-ray spectra coincident with single electron losss in collisions of 3.5-9.0 MeV amu -1 23 V q+ (q = 19, 20, 21) ions with He targets under single collision conditions. Non-monoenergetic X-rays observed in the coincidence spectra for V 20+ (lithium-like) projectiles are attributed to the radiative Auger effect (RAE). The intensity of RAE photons relative to the characteristic K x-ray yield is more than an order of magnitude larger than expected from theoretical calculations and from earlier measurements for atomic targets. (author)

  18. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  19. High-resolution Auger spectroscopy on 79 MeV Ar5+, 89 MeV Ar6+, and 136 MeV Ar7+ ions after excitation by helium

    International Nuclear Information System (INIS)

    Schneider, T.

    1988-01-01

    In this thesis the atomic structure of highly excited Ar 6+ and Ar 7+ ions was studied. For this 79 MeV Ar 5+ , 89 MeV Ar 6+ , and 136 MeV Ar 7+ ions of a heavy ion accelerator were excited by a He gas target to autoionizing states and the Auger electrons emitted in the decay were measured in highly-resolving state. The spectra were taken under an observational angle of zero degree relative to the beam axis in order to minimize the kinematical broadening of the Auger lines. (orig./HSI) [de

  20. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature

    Science.gov (United States)

    Lv, Meizhe; Xu, Bin; Cai, Lichao; Guo, Xiaofei; Yuan, Xingdong

    2018-05-01

    After rapid cooling, cubic boron nitride (c-BN) single crystals synthesized under high pressure and high temperature (HPHT) are wrapped in the white film powders which are defined as growth interface. In order to make clear that the transition mechanism of c-BN single crystals, the variation of B and N atomic hybrid states in the growth interface is analyzed with the help of auger electron spectroscopy in the Li-based system. It is found that the sp2 fractions of B and N atoms decreases, and their sp3 fractions increases from the outer to the inner in the growth interface. In addition, Lithium nitride (Li3N) are not found in the growth interface by X-ray diffraction (XRD) experiment. It is suggested that lithium boron nitride (Li3BN2) is produced by the reaction of hexagonal boron nitride (h-BN) and Li3N at the first step, and then B and N atoms transform from sp2 into sp3 state with the catalysis of Li3BN2 in c-BN single crystals synthesis process.

  1. Positron lifetime measurements and positron-annihilation induced auger electron spectroscpy using slow positron beams; Teisoku yodenshi bimu wo mochiita yodenshi jumyo sokutei oyobi yodenshi shometsu reiki oje denshi bunko

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. [Electrotechnical Lab., Tsukuba (Japan)

    1996-02-20

    Slow positron beam with less than several eV can be controlled freely such as accelerating, throttling the beam size, shortening the pulse or making pulse with short time width and so forth. These low positron beams are applied to various measurements like Doppler broadening measurement of annihilation {gamma} rays or lifetime measurement of positron, and secondary particle measurements using positron microscope, positron electron ray diffraction, flight time method and so forth. In particular, these recent years, high intensity slow positron beams were possible using accelerators like electron linac and its application is increasing. In this report, pulse shortening method for high intensity slow positron beam, and incidence energy variable positron lifetime measurement method using this slow pulsed beam and flight time type positron-annihilation-induced auger electron spectroscopy are outlined. In future, these measurements can be possible to carry out with high resolution and also with high counting rate if higher intensity monochromatic excellent positron beam than present one is produced. 31 refs., 5 figs.

  2. Electron microscopy and auger spectroscopy study of the wetting of the grain boundaries in the systems Mo-Pb, Mo-Sn, Mo-Ni and Ni-Pb; Etude par microscopie electronique et spectroscopie auger du mouillage des joints de grains dans les systemes Mo-Pb, Mo-Sn, Mo-Ni et Ni-Pb

    Energy Technology Data Exchange (ETDEWEB)

    Charai, A. [Faculte des Sciences et Techniques de Saint Jerome, Lab. TECSEN, UMR 6122 du CNRS, 13 - Marseille (France); Kutcherinenko, I.; Priester, L. [Paris-11 Univ., ISMA, 91 - Orsay (France); Penisson, J.M. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, DRFMC-SP2M, 38 (France); Pontikis, V. [Centre National de la Recherche Scientifique (CNRS), Centre d' Etudes de Chimie Metallurgique, 94 - Vitry-sur-Seine (France); Wolski, K. [Ecole NationaleSuperieure des Mines de Saint Etienne, Centre SMS/MPI, URA 1884 du CNRS, 42 - Saint Etienne (France); Vystavel, T. [Academy of Sciences of Czech Republic, Institute of Physics, Praha (Czech Republic)

    2002-09-01

    Understanding the mechanism of the intergranular penetration of a liquid phase into a metallic solid is an important problem. The structural and chemical characterization of nano-metric films at grain boundaries is now possible by using high resolution electron microscopy associated with X-ray micro-analysis, electron energy loss spectroscopy and Auger spectroscopy. In order to study this problem, two different classes of model materials were selected according to their crystallographic structure: a bcc metal (molybdenum) and an fcc one (nickel). The wetting element was either lead or tin or nickel. In a first approach, the metallic matrix was polycrystalline. The conditions in which the liquid phase penetrates into the grain boundaries were studied by using special preparation and observation techniques. In particular, the use of a Focused Ion Beam microscope (FIB) allowed the preparation of thin foils located very precisely inside the matrix as well as multi-scale observations. These specimens were further observed in electron microscopy with a very high resolution. (authors)

  3. First Calorimetric Measurement of OI-line in the Electron Capture Spectrum of $^{163}$Ho

    CERN Document Server

    Ranitzsch, P. C. -O.; Wegner, M.; Kempf, S.; Fleischmann, A.; Enss, C.; Gastaldo, L.; Herlert, A.; Johnston, K.

    2014-01-01

    The isotope $^{163}$Ho undergoes an electron capture process with a recommended value for the energy available to the decay, $Q_{\\rm EC}$, of about 2.5 keV. According to the present knowledge, this is the lowest $Q_{\\rm EC}$ value for electron capture processes. Because of that, $^{163}$Ho is the best candidate to perform experiments to investigate the value of the electron neutrino mass based on the analysis of the calorimetrically measured spectrum. We present for the first time the calorimetric measurement of the atomic de-excitation of the $^{163}$Dy daughter atom upon the capture of an electron from the 5s shell in $^{163}$Ho, OI-line. The measured peak energy is 48 eV. This measurement was performed using low temperature metallic magnetic calorimeters with the $^{163}$Ho ion implanted in the absorber. We demonstrate that the calorimetric spectrum of $^{163}$Ho can be measured with high precision and that the parameters describing the spectrum can be learned from the analysis of the data. Finally, we dis...

  4. Mean values of the LMM Auger transition in a KLM model

    Energy Technology Data Exchange (ETDEWEB)

    Malonda, A. Grau [Departamento Proyectos Estrategicos, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: agustin.grau@ciemat.es; Carles, A. Grau [Instituto de Matematicas y Fisica Fundamental (CSIC), Dcho. 211, C/Serrano, 113b, 28006 Madrid (Spain); Garcia, G. [Instituto de Matematicas y Fisica Fundamental (CSIC), Dcho. 211, C/Serrano, 113b, 28006 Madrid (Spain)

    2006-10-15

    The standardization of radionuclides decaying by electron capture can be carried out in LS counters by the CIEMAT/NIST method. The KLM model considers a simplified atomic rearrangement model in which all L- and M-subshells have been averaged. In this paper, instead of considering the 22 rearrangement pathways of the KLM model, we concentrate our analysis on the pathways corresponding to L-Auger electron transition. It is proved that the counting efficiency depends strongly on the energy E(LMM). Therefore, it is important to know the optimum value for E(LMM) and how to obtain it. To this end, the equations of the probabilities and the reduced energies for 3816 atomic rearrangement pathways have been derived. To average the equations, a computer program called MOYEN has been developed. The energy E(LMM) has been computed for {sup 55}Fe and {sup 125}I from different mean value definitions.

  5. Mean values of the LMM Auger transition in a KLM model

    International Nuclear Information System (INIS)

    Malonda, A. Grau; Carles, A. Grau; Garcia, G.

    2006-01-01

    The standardization of radionuclides decaying by electron capture can be carried out in LS counters by the CIEMAT/NIST method. The KLM model considers a simplified atomic rearrangement model in which all L- and M-subshells have been averaged. In this paper, instead of considering the 22 rearrangement pathways of the KLM model, we concentrate our analysis on the pathways corresponding to L-Auger electron transition. It is proved that the counting efficiency depends strongly on the energy E(LMM). Therefore, it is important to know the optimum value for E(LMM) and how to obtain it. To this end, the equations of the probabilities and the reduced energies for 3816 atomic rearrangement pathways have been derived. To average the equations, a computer program called MOYEN has been developed. The energy E(LMM) has been computed for 55 Fe and 125 I from different mean value definitions

  6. Fluorescence and Auger Decay Properties of the Core-Excited F-Like Ions from Ne to Kr

    International Nuclear Information System (INIS)

    Wang Xiang-Li; Dong Chen-Zhong; Su Mao-Gen; Koike Fumihiro

    2012-01-01

    We systematically study the decay properties of the K-shell excited F-like ions with 10≤Z≤36 based on the multiconfiguration Dirac—Fock method. The Breit interaction, the QED corrections and the nuclear finite mass effects are also considered as perturbation. Auger transition rates, radiative, Auger and natural widths, as well as fluorescence and Auger yields for K-shell excited F-like ions are presented. It is shown by means of concrete figures that the decay properties change significantly with the increase of the atomic number Z; the Auger rate is overtaken at Z = 30 by the radiative decay rate. Several fitting formulae for the radiative and Auger widths and the fluorescence yields have been evaluated which is expected to be useful in plasma analysis and plasma modeling. (atomic and molecular physics)

  7. Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales

    Science.gov (United States)

    Roberts, Owen Wyn; Alexandrova, O.; Kajdič, P.; Turc, L.; Perrone, D.; Escoubet, C. P.; Walsh, A.

    2017-12-01

    At electron scales, the power spectrum of solar-wind magnetic fluctuations can be highly variable and the dissipation mechanisms of the magnetic energy into the various particle species is under debate. In this paper, we investigate data from the Cluster mission’s STAFF Search Coil magnetometer when the level of turbulence is sufficiently high that the morphology of the power spectrum at electron scales can be investigated. The Cluster spacecraft sample a disturbed interval of plasma where two streams of solar wind interact. Meanwhile, several discontinuities (coherent structures) are seen in the large-scale magnetic field, while at small scales several intermittent bursts of wave activity (whistler waves) are present. Several different morphologies of the power spectrum can be identified: (1) two power laws separated by a break, (2) an exponential cutoff near the Taylor shifted electron scales, and (3) strong spectral knees at the Taylor shifted electron scales. These different morphologies are investigated by using wavelet coherence, showing that, in this interval, a clear break and strong spectral knees are features that are associated with sporadic quasi parallel propagating whistler waves, even for short times. On the other hand, when no signatures of whistler waves at ∼ 0.1{--}0.2{f}{ce} are present, a clear break is difficult to find and the spectrum is often more characteristic of a power law with an exponential cutoff.

  8. CELLDOSE: A Monte Carlo code to assess electron dose distribution - S values for 131I in spheres of various sizes

    International Nuclear Information System (INIS)

    Champion, C.; Zanotti-Fregonara, P.; Hindie, E; Hindie, E.

    2008-01-01

    Monte Carlo simulation can be particularly suitable for modeling the microscopic distribution of energy received by normal tissues or cancer cells and for evaluating the relative merits of different radiopharmaceuticals. We used a new code, CELLDOSE, to assess electron dose for isolated spheres with radii varying from 2,500 μm down to 0.05 μm, in which 131 I is homogeneously distributed. Methods: All electron emissions of 131 I were considered,including the whole β - 131 I spectrum, 108 internal conversion electrons, and 21 Auger electrons. The Monte Carlo track-structure code used follows all electrons down to an energy threshold E-cutoff 7.4 eV. Results: Calculated S values were in good agreement with published analytic methods, lying in between reported results for all experimental points. Our S values were also close to other published data using a Monte Carlo code. Contrary to the latter published results, our results show that dose distribution inside spheres is not homogeneous, with the dose at the outmost layer being approximately half that at the center. The fraction of electron energy retained within the spheres decreased with decreasing radius (r): 87.1 % for r 2,500 μm, 8.73% for r 50 μm, and 1.18% for r 5 μm. Thus, a radioiodine concentration that delivers a dose of 100 Gy to a micro-metastasis of 2,500 μm radius would deliver 10 Gy in a cluster of 50 μm and only 1.4 Gy in an isolated cell. The specific contribution from Auger electrons varied from 0.25% for the largest sphere up to 76.8% for the smallest sphere. Conclusion: The dose to a tumor cell will depend on its position in a metastasis. For the treatment of very small metastases, 131 I may not be the isotope of choice. When trying to kill isolated cells or a small cluster of cells with 131 I, it is important to get the iodine as close as possible to the nucleus to get the enhancement factor from Auger electrons. The Monte Carlo code CELLDOSE can be used to assess the electron map deposit

  9. Electrons from fixed in space molecules and clusters

    International Nuclear Information System (INIS)

    Doerner, R.; Jahnke, T.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking; Kreidi, K.; Knapp, A.; Schmidt, L.; Schoeffler, M.; Foucar, L.; Cocke, C.L.; Osipov, T.; Alnaser, A.

    2004-01-01

    Full text: We use modern multi particle momentum imaging techniques (COLTRIMS) to measure the vector momenta of all charged fragments, ions, photoelectrons and Auger electrons for small molecules excited by synchrotron radiation. These complete images of the fragmentation give an umprecedented detailed insight in the molecular photoionization and Auger process. Also latest results on molecular double ionisation and on cluster fragmentation unveiling interatomic coulomb decay will be presented

  10. Determination of diffusion coefficients in Au/Ni thin films by Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Lettif, Ahmed M. [Physics Department, College of Science, Babylon University, Hilla (Iraq)

    2004-07-01

    Interdiffusion in vacuum-deposited Au/Ni thin films at temperatures in the range 200-500 C has been investigated using the Auger depth profiling technique and X-ray diffraction analysis. A modified Wipple model was used to determine the diffusion coefficients of Ni in Au to be 5.3 x 10{sup -16} cm{sup 2}/s at 500 C, 4.0 x 10{sup -17} cm{sup 2}/s at 400 C, 2.5 x 10{sup -18} cm{sup 2}/s at 300 C, and 1.2 x 10{sup -19} cm{sup 2}/s at 200 C. An activation energy of 0.87 eV was calculated. The present diffusion data differ significantly from the corresponding values extracted by some other investigators and the reasons for this disagreement were discussed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Ellog Auger Drilling -"3-in-one" method for hydrogeological data collection

    DEFF Research Database (Denmark)

    Sørensen, Kurt; Larsen, Flemming

    1999-01-01

    The Ellog auger drilling method is an integrated approach for hydrogeological data collection during auger drilling in unconsolidated sediments. The drill stem is a continuous flight, hollow-stem auger with integrated electrical and gamma logging tools. The geophysical logging is performed...... continuously while drilling. Data processing is carried out in the field, and recorded log features are displayed as drilling advances. A slotted section in the stem, above the cutting head, allows anaerobic water and soil-gas samples to be taken at depth intervals of approximately 0.2 m. The logging, water......, and gas sampling instrumentation in the drill stem is removable; therefore, when the drill stem is pulled back, piezometers can be installed through the hollow stem. Cores of sediments can subsequently be taken continuously using a technique in which the drill bit can be reinserted after each coring...

  12. Evidence of interatomic Coulombic decay in ArKr after Ar 2p Auger decay

    International Nuclear Information System (INIS)

    Morishita, Y; Saito, N; Suzuki, I H; Fukuzawa, H; Liu, X-J; Sakai, K; Pruemper, G; Ueda, K; Iwayama, H; Nagaya, K; Yao, M; Kreidi, K; Schoeffler, M; Jahnke, T; Schoessler, S; Doerner, R; Weber, T; Harries, J; Tamenori, Y

    2008-01-01

    We have identified interatomic Coulombic decay (ICD) processes in the ArKr dimer following Ar 2p Auger decay, using momentum-resolved electron-ion-ion coincidence spectroscopy and simultaneously determining the kinetic energy of the ICD electron and the KER between Ar 2+ and Kr + . We find that the spin-conserved ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 1 D and 3 P, respectively, ionizing the Kr atom, are significantly stronger than the spin-flip ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 3 P and 1 D, respectively

  13. The electron spectrum of UF6 recorded in the gas phase

    Science.gov (United States)

    Mârtensson, N.; Malmquist, P.-Å.; Svensson, S.; Johansson, B.

    1984-06-01

    Gas phase core and valence electron spectra from UF6, excited by AlKα monochromatized x rays, in the binding energy range 0-1000 eV are presented. It is shown that the AlKα excited valence electron spectrum can be used to reassign the highest occupied molecular orbital (HOMO) in UF6. Many-body effects on the core levels are discussed and core level lifetimes are determined. The shift between solid phase and gas phase electron binding energies for core lines is used to discuss the U5 f population in UF6.

  14. Application of Macro Response Monte Carlo method for electron spectrum simulation

    International Nuclear Information System (INIS)

    Perles, L.A.; Almeida, A. de

    2007-01-01

    During the past years several variance reduction techniques for Monte Carlo electron transport have been developed in order to reduce the electron computation time transport for absorbed dose distribution. We have implemented the Macro Response Monte Carlo (MRMC) method to evaluate the electron spectrum which can be used as a phase space input for others simulation programs. Such technique uses probability distributions for electron histories previously simulated in spheres (called kugels). These probabilities are used to sample the primary electron final state, as well as the creation secondary electrons and photons. We have compared the MRMC electron spectra simulated in homogeneous phantom against the Geant4 spectra. The results showed an agreement better than 6% in the spectra peak energies and that MRMC code is up to 12 time faster than Geant4 simulations

  15. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices

    International Nuclear Information System (INIS)

    Kioupakis, Emmanouil; Yan, Qimin; Steiauf, Daniel; Van de Walle, Chris G

    2013-01-01

    Nitride light-emitting diodes are a promising solution for efficient solid-state lighting, but their performance at high power is affected by the efficiency-droop problem. Previous experimental and theoretical work has identified Auger recombination, a three-particle nonradiative carrier recombination mechanism, as the likely cause of the droop. In this work, we use first-principles calculations to elucidate the dependence of the radiative and Auger recombination rates on temperature, carrier density and quantum-well confinement. Our calculated data for the temperature dependence of the recombination coefficients are in good agreement with experiment and provide further validation on the role of Auger recombination in the efficiency reduction. Polarization fields and phase-space filling negatively impact device efficiency because they increase the operating carrier density at a given current density and increase the fraction of carriers lost to Auger recombination. (paper)

  16. Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123"+/CD131"− phenotype of leukemia stem cells

    International Nuclear Information System (INIS)

    Gao, Catherine; Leyton, Jeffrey V.; Schimmer, Aaron D.; Minden, Mark; Reilly, Raymond M.

    2016-01-01

    Chimeric IgG_1 monoclonal antibody CSL360 recognizes the CD123"+/CD131"− phenotype expressed by leukemic stem cells (LSC). Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates incorporating nuclear translocation sequence (NLS) peptides bound specifically to Raji cells transfected with CD123 and exhibited a K_D of 11 nmols/L in a competition receptor-binding assay using CD123-transfected CHO cells. "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and transported to the nucleus of human AML-5 myeloid leukemia cells. The clonogenic survival of AML-5 cells was reduced by "1"1"1In-DTPA-NLS-CSL360 up to 3.7-fold. Isotype control "1"1"1In-DTPA-chIgG_1 was 2-fold less cytotoxic, and unlabeled CSL360, DTPA-NLS-CSL360 or free "1"1"1In acetate did not decrease cell survival. These results are promising for further evaluation of "1"1"1In-DTPA-NLS-CSL360 for Auger electron radioimmunotherapy of AML targeting the critical LSC subpopulation. - Highlights: • "1"1"1In-DTPA-NLS-CSL360 the CD123"+/CD131"− phenotype of leukemic stem cells (LSC). • "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and imported into the nucleus of AML-5 leukemia cells. • "1"1"1In-DTPA-NLS-CSL360 reduced the clonogenic survival of AML-5 leukemia cells by 4-fold.

  17. Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-03-01

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m2 detection area per module. In this paper, a new generation of detectors, replacing the current multi-pixel photomultiplier tube (PMT) with silicon photo sensors (aka. SiPMs), is proposed. The selection of the new device and its front-end electronics is explained. A method to calibrate the counting system that ensures the performance of the detector is detailed. This method has the advantage of being able to be carried out in a remote place such as the one where the detectors are deployed. High efficiency results, i.e. 98% efficiency for the highest tested overvoltage, combined with a low probability of accidental counting (~2%), show a promising performance for this new system.

  18. An energy resolved electron-ion coincidence study near the S 2p thresholds of the SF6 molecule

    International Nuclear Information System (INIS)

    Kivimaeki, A; Ruiz, J Alvarez; Erman, P; Hatherly, P; Garcia, E Melero; Rachlew, E; Rius i Riu, J; Stankiewicz, M

    2003-01-01

    The fragmentation dynamics of the SF 6 molecule following the excitations of S 2p electrons into unoccupied molecular orbitals has been studied using the energy-resolved electron-ion coincidence technique. Fragmentation patterns were found to depend on the particular excitation and on the electronic state of the molecular ion. The spectator resonant Auger decay at the 2p → 6a 1g resonance induces changes in the ion distributions as compared to direct photoionization. Furthermore, coincidence spectra related to the same Auger structure display different ion abundances at the 2t 2g and 4e g shape resonances. Differences were also found in the Auger decay spectra. These findings give further support for the previously suggested many-electron character of the 4e g shape resonance

  19. XPS and Auger investigation of mechanisms affecting corrosion inhibition of metals

    International Nuclear Information System (INIS)

    Holmes, R.M.; Surman, D.J.

    1989-01-01

    Atmospheric corrosion of metal surfaces need not be extremely obvious to cause extensive damage to many products. Very small corrosion pits and spots can cause defects in critical copper sources, often resulting in the catastrophic failure of complete electronic assemblies. Microscopic corrosion in steel can lead to the complete failure of subsequently added coatings or furnishings, the automotive industry has become aware. In addition, corrosion at its earliest stages can initiate other corrosion at a later date, resulting in inferior finishings or coatings. A major interest in atmospheric corrosion is in the mechanism by which the initial corrosion initiated and propagated. The initial phase involves the attack of the very other surface layers, hence it is difficult to observe with conventional techniques such as SEM/EDX. This paper presents some of the results obtained by both Auger electron spectroscopy and x- ray photoelectron spectroscopy, of steel and copper samples exposed to corrosive materials under controlled conditions

  20. Auger line shape changes in epitaxial (111)Pd/(111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Chao, S S; Knabbe, E A; Vook, R W

    1980-01-01

    Epitaxial Pd films ranging in thickness from a few tenths of a monolayer up to many monolayers were formed on (111)Cu substrate films at room temperature under uhv conditions. The growth of these Pd films was monitored in situ by Auger electron spectroscopy. The line profiles of the Cu MMM (61 eV) and Pd MVV (329 eV) AES doublets varied significantly with the amount of Pd deposited. A new measure of the AES doublet line profile, called the R-factor, was defined. A graph of R/sub Pd/ versus Pd film thickness shows a sharp decline with increasing thickness. Superimposed on the major trends is a cyclical variation. A corresponding periodicity in R/sub Cu/ was observed for the Cu MMM (61 eV) AES doublet. The results suggest that the R-factor provides a direct measure of changes in the electronic structures of the overgrowth and substrate films as the former thickens by a layer-growth mechanism.

  1. Radio detection of cosmic ray induced air showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Fliescher, Stefan, E-mail: fliescher@physik.rwth-aachen.de [3. Physikalisches Institut A, RWTH Aachen, University (Germany)

    2012-01-11

    AERA - the Auger Engineering Radio Array - is currently being set up at the southern site of the Pierre Auger Observatory. AERA will explore the potential of the radio-detection technique to cosmic ray induced air showers with respect to the next generation of large-scale surface detectors. As AERA is co-located with the low-energy enhancements of the Pierre Auger Observatory, the observation of air showers in coincidence with the Auger surface and fluorescence detector will allow to study the radio emission processes in detail and to calibrate the radio signal. Finally, the combined reconstruction of shower parameters with three independent techniques promises new insights into the nature of cosmic rays in the transition region from 10{sup 17} to 10{sup 19} eV. Besides the detection of coherent radiation in the MHz frequency range, the setups AMBER - Air-shower Microwave Bremsstrahlung Experimental Radiometer - and MIDAS - MIcrowave Detection of Air Showers - prepare to check the possibility to detect air showers due the emission of molecular bremsstrahlung in the GHz range at the Auger site. This article presents the status of the radio-detection setups and discusses their physics potential as well as experimental challenges. Special focus is laid on the first stage of AERA which is the startup to the construction of a 20 km{sup 2} radio array.

  2. 45-Day safety screening for Tank 241-B-102 auger samples, riser 1

    International Nuclear Information System (INIS)

    Bell, K.E.

    1994-01-01

    This is the 45-Day report for the fiscal year 1994 Tank 241-B-102 auger sampling characterization effort. Only one of the two planned auger samples was received by the 222-S Laboratory, however it was decided to begin the 45-day clock and issue a report based on receipt of the first auger sample. Included are copies of the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) scans as requested. Also included is a copy of any immediate notification documentation, chain of custody forms, the hot cell work plan, extruded segment [auger] description sheets, and total alpha data. The TGA percent moisture results are below the safety criteria limit of 17% in a subsample taken approximately five minutes after extrusion and a second subsample taken from the lower half of the auger. Verbal and written notifications were made as prescribed. The DSC analysis of all subsamples indicates the presence of fraction exotherms, however the results are a factor of two or more below the notification limit of 523 Joules/gram (J/g). Total alpha results are all below the detection limit. In some cases, the tank characterization plan (TCP) accuracy and precision criteria are not met. If a re-run was not performed when a TCP quality control limit was not met, then reasons for not performing the re-run are provided

  3. The Pierre Auger Observatory status and the AugerPrime upgrade program

    Directory of Open Access Journals (Sweden)

    Martello Daniele

    2017-01-01

    Full Text Available The nature and the origin of ultra-high energy cosmic rays (UHECRs, above 1017 eV, are still unknown. The Pierre Auger Observatory with its huge exposure provides us with a large set of high quality data. The analysis of these data has led to major breakthroughs in the last decade, but a coherent interpretation is still missing. To answer the open questions the Observatory has started a major upgrade, with an emphasis on improved mass composition determination using the surface detectors. The latest results and the planned detector upgrade will be presented. The expected performance and the improved physics sensitivity of the Observatory will be discussed.

  4. Plugged In: Electronics Use in Youth and Young Adults with Autism Spectrum Disorder

    Science.gov (United States)

    MacMullin, Jennifer A.; Lunsky, Yona; Weiss, Jonathan A.

    2016-01-01

    Although electronic technology currently plays an integral role for most youth, there are growing concerns of its excessive and compulsive use. This study documents patterns and impact of electronics use in individuals with autism spectrum disorder compared to typically developing peers. Participants included 172 parents of typically developing…

  5. Composition profiles of several contaminated and cleaned surfaces of gold thick films on copper plates by Auger electron and secondary ion mass spectroscopies

    International Nuclear Information System (INIS)

    Komiya, S.; Mizuno, M.; Narusawa, T.; Maeda, H.; Yoshikawa, M.

    1974-01-01

    Preparation and evaluation of a clean Au film are investigated. Development of a preparation method for obtaining clean surface on a copper shell in the JFT-2a (DIVA) TOKAMAK toroidal vacuum chamber is the aim of the present work. Au films prepared by ion plating and vacuum evaporation have been analysed by a cylindrical mirror Auger electron analyser in combination with a quadrupole mass spectrometer during 2 keV Xe ion bombardment from a sputter ion gun over the whole range of thickness of several microns. Contaminants are found to segregate on the top surface and at the interface. To expose a clean Au surface by the ion bombardment, surface layers within 1000 A had to be removed from the surfaces contaminated by touching with either a naked hand or a nylon glove or covered by a small amount of Ti. Mutual diffusions across the interfaces are also analyzed as a function of the substrate temperature. A Nb sandwich layer inhibites effectively the mutual diffusion. (auth.)

  6. Time-resolved energy spectrum of a pseudospark-produced high-brightness electron beam

    International Nuclear Information System (INIS)

    Myers, T.J.; Ding, B.N.; Rhee, M.J.

    1992-01-01

    The pseudospark, a fast low-pressure gas discharge between a hollow cathode and a planar anode, is found to be an interesting high-brightness electron beam source. Typically, all electron beam produced in the pseudospark has the peak current of ∼1 kA, pulse duration of ∼50 ns, and effective emittance of ∼100 mm-mrad. The energy information of this electron beam, however, is least understood due to the difficulty of measuring a high-current-density beam that is partially space-charge neutralized by the background ions produced in the gas. In this paper, an experimental study of the time-resolved energy spectrum is presented. The pseudospark produced electron beam is injected into a vacuum through a small pinhole so that the electrons without background ions follow single particle motion; the beam is sent through a negative biased electrode and the only portion of beam whose energy is greater than the bias voltage can pass through the electrode and the current is measured by a Faraday cup. The Faraday cup signals with various bias voltage are recorded in a digital oscilloscope. The recorded waveforms are then numerically analyzed to construct a time-resolved energy spectrum. Preliminary results are presented

  7. Study on detection of electron beam irradiated food by ESR spectroscopy and comparison of the ESR spectrum of electron beams and γ-rays

    International Nuclear Information System (INIS)

    Li Weiming; Ha Yiming; Wang Feng

    2012-01-01

    The study was conducted to detect electron beam irradiated food by ESR spectroscopy. The white pepper powder, paprika powder, cumin powder and pistachios were used as test materials to study the feature changes of ESR spectrum and the relationship between ESR intensity and irradiation dose in different doses, the shape variation of ESR spectrum in γ-rays and electron beams in the same sample was also compared. The results showed that the ESR spectrum of 4 kinds of irradiated samples was obviously different before and after irradiation, the intensity of ESR signal increased with the increasing of the absorbed dose. The dose above 432 Gy could be detected in white pepper powder and pistachios, the dose above 875 Gy could be detected in paprika powder and cumin powder. The ESR intensity of all samples decreased during the storage time (200 d), even after 200 days the ESR method could also be used to detect whether or not the samples have been irradiated. The same dosage of y-rays and electron beams has no significant influence on the shape of ESR spectrum, however, the difference of irradiation mechanism caused slight impact on ESR intensity. The results could provide the technical basis for the application of ESR method in detecting electron beam irradiated food. (authors)

  8. Study on detection of electron beam irradiated food by ESR spectroscopy and comparison of the ESR spectrum of electron beams and γ-rays

    International Nuclear Information System (INIS)

    Li Weiming; Ha Yiming; Wang Feng

    2011-01-01

    The study was conducted to detect electron beam irradiated food by ESR spectroscopy. The white pepper powder, paprika powder, cumin powder and pistachios were used as test materials to study the feature changes of ESR spectrum and the relationship between ESR intensity and irradiation dose in different doses, the shape variation of ESR spectrum in γ-rays and electron beams in the same sample was also compared. The results showed that the ESR spectrum of 4 kinds of irradiated samples was obviously different before and after irradiation, the intensity of ESR signal increased with the increasing of the absorbed dose. The dose above 432 Gy could be detected in white pepper powder and pistachios, the dose above 875 Gy could be detected in paprika powder and cumin powder. The ESR intensity of all samples decreased during the storage time (200 d), even after 200 days the ESR method could also be used to detect whether or not the samples have been irradiated. The same dosage of γ-rays and electron beams has no significant influence on the shape of ESR spectrum, however, the difference of irradiation mechanism caused slight impact on ESR intensity. The results could provide the technical basis for the application of ESR method in detecting electron beam irradiated food. (authors)

  9. A practical trial to increase the coal recovery in highwall auger mining in Australia

    Energy Technology Data Exchange (ETDEWEB)

    K. Matsui; A. Yabuki; H. Shimada; T. Sasaoka; T. Ueda; T. Yuasa

    2003-07-01

    The basic concept of auger mining is to extract coal beyond the economic limits of surface mining technology by drilling holes of an appropriate diameter size into the exposed seam of the highwall as deep as is technically, economically and operationally feasible. This method of mining is used at the final highwall of typical surface mining operations. This paper describes the auger mining systems and discusses the methods to increase the coal recovery in auger mining from a field trial at Muswell Brook mine in Hunter Valley, NSW in Australia. 1 ref., 6 figs., 2 tabs.

  10. Efficiency calibration of electron spectrometers by the help of standard spectrum

    International Nuclear Information System (INIS)

    Toth, J.; Cserny, I.; Varga, D.; Koever, I.; Toekesi, K.

    2004-01-01

    Complete text of publication follows. For studying thin films and surface nanostructures quantitative analytical applications of electron spectroscopic techniques have a great importance. The most frequently used techniques are XPS, XAES and AES in quantitative surface electron spectroscopy. Applying these techniques changes in the detection efficiency vs. electron kinetic energy change the measured electron peak intensity ratios and in this way the neglect of the energy dependence of the spectrometer efficiency can influence surface atomic concentrations derived. The importance of the precise determination of the atomic concentrations is very crucial, especially in the determination of non-destructive depth profiles by the help of AR-XPS in which small changes in the relative concentrations can change dramatically the concentration depth profiles of a few nanometer depth ranges. In the present study the REELS technique was used to determine the relative detection efficiency by the help of a standard spectrum measured on the surface of fine microcrystalline Cu specimen. The experimental relative efficiency curves vs. electron kinetic energy were compared to the calculated efficiency curve. The efficiency calibration is discussed from the point of view of quantitative XPS, AR- XPS, AES and from the point of view of IMFP determination by XPS. The work was supported by the Hungarian National Science Foundation, OTKAT038016. For the Cu specimen and the standard spectrum the authors are indebted to the Sur- face Analysis Society of Japan, to Dr. Shigeo Tanuma and Professor Keisuke Goto (NIT). (author)

  11. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  12. Electron Effective-Attenuation-Length Database

    Science.gov (United States)

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  13. Anisotropy analysis of the data measured by the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Golup, Geraldina

    2006-01-01

    This thesis is focused in the development of analysis methods of data measured by the Pierre Auger Observatory's surface array.The Auger Observatory is being built in Malargue, Mendoza and its objective is to detect ultra high energy cosmic rays (E > 10 1 8eV) in order to understand their origin, propagation and to be able to identify their sources.Chapter 1 is a summary of current cosmic rays' theory.It includes details about the energy spectrum of cosmic rays, acceleration sites, forms of acceleration, chemical composition of cosmic rays, the GZK cutoff, magnetic lensing and experiments.Following in Chapter 2 deflection as a function of energy, using the equation of small deflections to first or second order, is analyzed, and the energy range where is approximation is valid is determined.Then, the case of multiple images, which appear when a caustic crosses the position of a source, is studied.Two simulations of cosmic rays from point sources and propagating through a realistic model of the galactic magnetic field were used.Principal and secondary images were analyzed in order to extract information concerning their sources and the magnetic fields they passed through.In Chapter 3 the Minimal Spanning Tree method (MST) used for the detection of filamentary structures is studied.This method was adapted to the analysis of cosmic rays' arrival directions, considering that the detector only observes a part of the sky, with a non uniform exposure and that the density of events depends on exposure.Moreover, the correlation between energy and position is analyzed including now experimental errors in the simulations. Correlated events with experimental errors plus background are simulated and methods of extracting the correlated structure, identifying its source and deducing information about the magnetic field are determined.Finally, conclusions are made, highlighting the most relevant results [es

  14. Spectral calibration of the fluorescence telescopes of the Pierre Auger observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Juryšek, Jakub; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2017-01-01

    Roč. 95, Oct (2017), s. 44-56 ISSN 0927-6505 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA MŠk EF16_013/0001402 Grant - others:OP VVV - AUGER-CZ(XE) CZ.02.1.01/0.0/0.0/16_013/0001402 Institutional support: RVO:68378271 Keywords : Auger observatory * nitrogen fluorescence * extensive air shower * calibration Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 3.257, year: 2016

  15. Asian conference on x-rays and related techniques in research and industry. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    This proceedings compile the paper presented at the conference. The papers for presentation are from wide spectrum stressing the interdisciplinary nature of the conference i.e. x-ray fluorescence spectrometry (XRF), x-ray diffraction (XRD), TEM, scanning electron microscope (SEM), energy dispersive x-ray (EDX), auger electron microscopy, electron back scatter diffraction (EBSD)

  16. Double differential distributions of electron emission in ion-atom and electron-atom collisions using an electron spectrometer

    International Nuclear Information System (INIS)

    Misra, Deepankar; Thulasiram, K.V.; Fernandes, W.; Kelkar, Aditya H.; Kadhane, U.; Kumar, Ajay; Singh, Yeshpal; Gulyas, L.; Tribedi, Lokesh C.

    2009-01-01

    We study electron emission from atoms and molecules in collisions with fast electrons and heavy ions (C 6+ ). The soft collision electrons (SE), two center electron emission (TCEE), the binary encounter (BE) events and the KLL Auger lines along with the elastically scattered peaks (in electron collisions) are studied using a hemispherical electrostatic electron analyzer. The details of the measurements along with description of the spectrometer and data acquisition system are given. The angular distributions of the low energy (few eV) electrons in soft collisions and the binary encounter electrons at keV energies are compared with quantum mechanical models based on the first Born (B1) and the continuum distorted wave-Eikonal initial state approximation (CDW-EIS).

  17. The energy spectrum of cosmic-ray electrons measured with H.E.S.S

    International Nuclear Information System (INIS)

    Egberts, Kathrin

    2009-01-01

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse γ rays from the Galactic plane. (orig.)

  18. The energy spectrum of cosmic-ray electrons measured with H.E.S.S.

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Kathrin

    2009-03-30

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse {gamma} rays from the Galactic plane. (orig.)

  19. X-ray photoelectron spectroscopy and Auger electron spectroscopy studies on the passivation behavior of plasma-nitrided low alloy steel in nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Chyou, S.D.; Shih, H.C. (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1991-12-14

    Nitrided SAE 4140 steel has been passivated by concentrated nitric acid. The resulting film was characterized using a combination of surface-analytical techniques, such as X-ray photoelectron spectroscopy (XPS) to evaluate the chemical composition of the passive film. Auger electron spectroscopy (AES) combined with ion etching was used to determine the composition depth profiles of nitrided surface. It was found that preferential dissolution of iron leads to enhanced nitrogen and chromium concentrations within the oxynitrided layer. A dense protective oxynitrided layer was found to be formed on the nitrided surface when the concentration of nitric acid was as high as 8 M. The results of X-ray diffraction, XPS and AES analyses conclude that the protective nitride layer is composed of (Fe,Cr){sub 4}N, (Fe,Cr){sub 2-3}N and CrN in the inner layer, Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} and remnant nitrides in the middle layer and nitrides accompanying Cr(OH){sub 3}.H{sub 2}O and {gamma}'-FeOOH in the outermost layer. (orig.).

  20. Galactic x-ray and gamma-ray emission and the nature of the interstellar electron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Protheroe, R J; Wolfendale, A W [Durham Univ. (UK). Dept. of Physics

    1980-12-01

    An analysis is made of all available data, both direct and indirect, on the energy spectrum of cosmic ray electrons. It is shown that the data are consistent with an injection spectrum having a constant exponent, ..gamma.. = 2.1 +- 0.1, over a wide range of energy: 10-10sup(g) MeV. Attention is drawn to the role of a possible deficit of sources in reducing the intensity of local electrons both above 10 GeV and below a few hundred MeV.

  1. Galactic X-ray and gamma-ray emission and the nature of the interstellar electron spectrum

    International Nuclear Information System (INIS)

    Protheroe, R.J.; Wolfendale, A.W.

    1980-01-01

    An analysis is made of all available data, both direct and indirect, on the energy spectrum of cosmic ray electrons. It is shown that the data are consistent with an injection spectrum having a constant exponent, γ = 2.1 +- 0.1, over a wide range of energy: 10-10sup(g) MeV. Attention is drawn to the role of a possible deficit of sources in reducing the intensity of local electrons both above 10 GeV and below a few hundred MeV. (orig.)

  2. Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Garcia, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Glass, H.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafa, M.; Mueller, G.; Muller, M. A.; Mueller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyenu, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, H.; Nunez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Pena-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenue, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanabria Gomez, J. D.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Smiaikowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanic, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Duran, M.; Sudholz, T.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Villasenor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczynski, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; collaboration, Pierre Auger

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov

  3. Measurements of electron attachment by oxygen molecule in proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, M., E-mail: tosaki.mitsuo.3v@kyoto-u.ac.jp [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan); Kawano, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki 509-5292 (Japan); Isozumi, Y. [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan)

    2013-11-15

    We present pulse height measurements for 5-keV Auger electrons from a radioactive {sup 55}Fe source mounted at the inner cathode surface of cylindrical proportional counter, which is operated with CH{sub 4} admixed dry air or N{sub 2}. A clear shift of the pulse height has been observed by varying the amount of the admixtures; the number of electrons, created in the primary ionization by Auger electrons, is decreased by the electron attachment of the admixtures during their drift from the place near the source to the anode wire. The large gas amplification (typically 10{sup 4}) in the secondary ionization of proportional counter makes it possible to investigate a small change in the number of primary electrons. The electron attenuation cross-section of O{sub 2} has been evaluated by analyzing the shifts of the pulse height caused by the electron attachment to dry air and N{sub 2}.

  4. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  5. Quantification of Radiation-induced DNA Damage following intracellular Auger-Cascades

    DEFF Research Database (Denmark)

    Fredericia, Nina Pil Møntegaard

    2017-01-01

    Purpose: The aim my PhD study and the topic of this thesis is to investigate the radiotoxicity and the Relative Biological effectiveness (RBE) of intracellular Auger cascades. A special focus is kept on obtaining reliable absorbed dose calculations and using matched dose rate profiles for the Auger......-values (SC-values). The work can be divided into three steps; Examination of the bio-kinetics of the Auger emitter 131Cs used in the study, calculations of the SC-values and finally the measurement of the RBE of intracellular 131Cs decays, through ƴH2AX and clonogenic cell survival assay. Methods: A series....../(Bq*Sec)/pL for HeLa nuclei and from 7.45*10-4 to 7.63 *10-4 Gy/(Bq*Sec)/pL for V79 nuclei. The SC-values were shown to be were very robust and almost independent of cellular and nuclear size. A RBE value of 1 was obtained for HeLa cells using ƴH2AX assays. RBE values of 4.5 ± 0.5 and 3.8 ± 0.8 were obtained for He...

  6. Is the thermal-spike model consistent with experimentally determined electron temperature?

    International Nuclear Information System (INIS)

    Ajryan, Eh.A.; Fedorov, A.V.; Kostenko, B.F.

    2000-01-01

    Carbon K-Auger electron spectra from amorphous carbon foils induced by fast heavy ions are theoretically investigated. The high-energy tail of the Auger structure showing a clear projectile charge dependence is analyzed within the thermal-spike model framework as well as in the frame of another model taking into account some kinetic features of the process. A poor comparison results between theoretically and experimentally determined temperatures are suggested to be due to an improper account of double electron excitations or due to shake-up processes which leave the system in a more energetic initial state than a statically screened core hole

  7. Search for ultra high energy primary photons at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Colalillo Roberta

    2016-01-01

    Full Text Available The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture in the search for primary photons with energy above 1017 eV over a large portion of the southern sky. Such photons can be detected in principle via the air showers they initiate at such energies, using the complement of Auger Observatory detectors. We discuss the results obtained in diffuse and directional searches for primary photons in the EeV energy range.

  8. Electron and hole spectrum in InAs quantum dot renormalized by InAs/GaAs heterostructure deformation

    International Nuclear Information System (INIS)

    Dan'kiv, O.O.; Peleshchak, R.M.

    2005-01-01

    Analytical expressions describing the energy spectrum of electrons and holes are obtained for a quantum dot occurring in a self-consistent strain field created by an array of coherently stressed quantum dots. A method of taking into account the lattice mismatch at the quantum dot-matrix interface is proposed that allows for the dependence of the mismatch parameter on the quantum dot size and the matrix layer thickness. It is shown that the internal elastic strain arising at the quantum dot-matrix interface influences the energy spectrum of electrons more significantly than the spectrum of holes [ru

  9. Many-body calculation of the coincidence L3 photoelectron spectroscopy main line of Ni metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    The partial singles L 3 photoelectron spectroscopy (PES) main line of Ni metal correlated with Auger electrons emitted by the localized L 3 -VV Auger decay is calculated by a many-body theory. The partial singles L 3 PES main line of Ni metal almost coincides in both line shape and peak kinetic energy (KE) with the singles one. The former main line peak shows a KE shift of only 0.01 eV toward the lower KE and a very small asymmetric line shape change compared to the singles one. The asymmetric line shape change and the peak KE shift of the partial singles L 3 main line are very small. However, they are due to the variation with photoelectron KE in the branching ratio of the partial Auger decay width in the partial singles L 3 PES main line by the photoelectron KE dependent imaginary part of the shakeup self-energy. The L 3 PES main line of Ni metal measured in coincidence with the L 3 -VV ( 1 G) Auger electron spectroscopy (AES) main line peak is the partial singles one modulated by a spectral function R a of a fixed energy Auger electron analyzer so that it should show only a symmetric line narrowing by R a compared to the singles one. The L 3 PES main line peak of Ni metal measured in coincidence with the delocalized band-like L 3 -VV AES peak or not completely split-off (or not completely localized) L 3 -VV ( 3 F) AES peak, will show an asymmetric line narrowing and a KE shift compared to the singles one. Thus, the L 3 PES main line of Ni metal in coincidence with various parts of the L 3 -VV AES spectrum depends on which part of the L 3 -VV AES spectrum a fixed energy Auger electron analyzer is set. The experimental verification is in need

  10. Program controlled system for measuring and monitoring the electron coherent radiation spectrum of Yerevan synchrotron

    International Nuclear Information System (INIS)

    Adamyan, F.V.; Vartapetyan, G.A.; Galumyan, P.I.

    1980-01-01

    An automatic system for measurement, processing and control of energy spectrum of polarized photons realized at the Yerevan electron synchrotron is described. For measuring energy spectra of intensive high energy photon beams a pair spectrometer is used which comprises an aluminium target-converter, an analizing magnet and 2 telescopes of scintillation counters for electron-positron pairs registration. the procedure of spectra measurement by the pair spectrometer is reduced to determining the converted e + e - pairs yield at certain values of the H field intensity of the analizing magnet. An algorithm of the data express-processing for operative monitoring of peak energy stability of electron coherent radiation spectrum is given. The spectra measurement results obtained under real experimental conditions are presented

  11. The energy spectrum of the 'runaway' electrons from a high voltage pulsed discharge

    International Nuclear Information System (INIS)

    Ruset, C.

    1985-01-01

    Some experimental results are presented on the influence of the pressure upon the energy spectrum of the runaway electrons generated into a pulsed high voltage argon discharge. These electrons enter a state of continuous acceleration between two collisions with rapidly increasing free path. The applied discharge current varies from 10 to 300 A, the pulse time is about 800 ns. Relativistic effects are taken into consideration. Theoretical explanation is based on the pnenomenon of electron spreading on plasma oscillations. (D.Gy.)

  12. Biexciton Auger Recombination Differs in Hybrid and Inorganic Halide Perovskite Quantum Dots.

    Science.gov (United States)

    Eperon, Giles E; Jedlicka, Erin; Ginger, David S

    2018-01-04

    We use time-resolved photoluminescence measurements to determine the biexciton Auger recombination rate in both hybrid organic-inorganic and fully inorganic halide perovskite nanocrystals as a function of nanocrystal volume. We find that the volume scaling of the biexciton Auger rate in the hybrid perovskites, containing a polar organic A-site cation, is significantly shallower than in the fully inorganic Cs-based nanocrystals. As the nanocrystals become smaller, the Auger rate in the hybrid nanocrystals increases even less than expected, compared to the fully inorganic nanocrystals, which already show a shallower volume dependence than other material systems such as chalcogenide quantum dots. This finding suggests there may be differences in the strength of Coulombic interactions between the fully inorganic and hybrid perovskites, which may prove to be crucial in selecting materials to obtain the highest performing devices in the future, and hints that there could be something "special" about the hybrid materials.

  13. AugerNext: innovative research studies for the next generation ground-based ultra-high energy cosmic ray experiment

    Directory of Open Access Journals (Sweden)

    Haungs Andreas

    2013-06-01

    Full Text Available The findings so far of the Pierre Auger Observatory and also of the Telescope Array define the requirements for a possible next generation experiment: it needs to be considerably increased in size, it needs a better sensitivity to composition, and it should cover the full sky. AugerNext aims to perform innovative research studies in order to prepare a proposal fulfilling these demands. Such R&D studies are primarily focused in the following areas iconsolidation of the detection of cosmic rays using MHz radio antennas; iiproof-of-principle of cosmic-ray microwave detection; iiitest of the large-scale application of a new generation photo-sensors; ivgeneralization of data communication techniques; vdevelopment of new ways of muon detection with surface arrays. These AugerNext studies on new innovative detection methods for a next generation cosmic-ray experiment are performed at the Pierre Auger Observatory. The AugerNext consortium consists presently of fourteen partner institutions from nine European countries supported by a network of European funding agencies and it is a principal element of the ASPERA/ApPEC strategic roadmaps.

  14. Propagation and sky distribution of ultra-high energy cosmic rays; Propagation et distribution sur le ciel des rayons cosmiques d'ultra-haute energie dans le cadre de l'Observatoire Pierre Auger

    Energy Technology Data Exchange (ETDEWEB)

    Armengaud, E

    2006-05-15

    The origin of ultra-high energy cosmic rays remains an enigma of modern physics, which the Pierre Auger Observatory, a detector with a hybrid detection mode and an unprecedented size, will try to solve. The direct observation of the sources of those particles, or of large-scale structures in the sky associated to the sources, is one of the main goals of the observatory. Such observations should also allow to constrain cosmic ray propagation between their sources and the Earth, which is complicated by interactions with low-energy photon backgrounds and deflections in astrophysical magnetic fields. This thesis is made of two parts, in order to observe and simulate the sources of cosmic rays within the Auger Observatory. We begin with an extensive description of the Pierre Auger Observatory, and study the acceptance of its surface detector in order to build accurate sky exposure maps, an essential tool in order to study anisotropies. Then we present methods to search for anisotropies in the sky, and analyze the first two years of Auger data. After a description of the phenomena that can influence the propagation and observation of ultrahigh energy cosmic ray sources, we present numerical simulations aiming at predicting observables such as the spectrum, anisotropies and composition measurable by Auger as a function of various astrophysical models. We show that extragalactic magnetic fields can play a crucial role in particular if cosmic rays are partly heavy nuclei. Finally, we show that the propagation of these particles from a nearby source generates secondary fluxes of gamma-rays that could be detected by TeV gamma-ray telescopes. (author)

  15. Impulse approximation treatment of electron-electron excitation and ionization in energetic ion-atom collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Lee, D.H.; Sanders, J.M.; Richard, P.

    1993-01-01

    The effect of electron-electron interactions between projectile and target electrons observed in recent measurements of projectile K-shell excitation and ionization using 0 projectile Auger electron spectroscopy are analysed within the framework of the impulse approximation (IA). The IA formulation is seen to give a good account of the threshold behavior of both ionization and excitation, while providing a remarkably simple intuitive picture of such electron-electron interactions in ion-atom collisions in general. Thus, the applicability of the IA treatment is extended to cover most known processes involving such interactions including resonance transfer excitation, binary encounter electron production, electron-electron excitation and ionization. (orig.)

  16. Study of the Pierre Auger Observatory ground detectors: tests, simulation and calibration; Etude des detecteurs de surface de l'observatoire Pierre Auger: tests, simulation et etalonnage

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, A

    2004-10-01

    The Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of these showers requires a comprehensive understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare these results with those of the Observatory detectors in the fifth chapter. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition has begun this year. The construction will be finished by end of 2005. From this moment, The Pierre Auger Observatory will allow us to contribute to solving the cosmic rays puzzle. (author)

  17. Triple focussing electron spectrum selector (TESS-II) with a pair of sector magnets

    International Nuclear Information System (INIS)

    Nagai, Y.; Ejiri, H.; Shibata, T.; Okada, K.; Nakayama, S.; Suzuki, H.; Ohsumi, H.; Adachi, Y.; Osaka Univ., Toyonaka; Sakai, H.

    1982-01-01

    An achromatic geminate nuclear electron selector (AGNES) has been constructed for in-beam electron spectroscopy. It is essentially a pair of triple-focussing electron spectrum selectors (TESS). It consists of a pair of sector magnets with a field index n = 0. Conversion electrons emitted at 90 0 and 180 0 with respect to the beam axis are transported achromatically through the pair of sector magnets to two focussing points. Electrons are triply focussed in radial, vertical and momentum axes, and their energies are analyzed by cooled Si(Li) detectors. It has a large solid angle of 50 msr x 2 and a large momentum range of 57%. It is quite useful not only for measuring conversion coefficients and electron anisotropy but also for nuclear electron pairs. (orig.)

  18. Young Investigator Program: Quasi-Liquid Grain Boundary Films in Refractory Metals

    Science.gov (United States)

    2010-01-15

    Bi2O3 based varistors [29, 44, 85] ( Ba , Sr )TiO3-based sensors and actuators [86-91] Thermal conductivity in AlN [92, 93] High-Tc...varistors [29, 85], functions of ( Sr , Ba )TiO3 based sensors and actuators [86-91], thermal conductivity of AlN substrates [92, 93], and critical currents...independent ion beam to sputter the specimen surface while collecting the Auger electron spectrum. The Auger experiments were conducted at Oak Ridge National

  19. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  20. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  1. Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory.

    Science.gov (United States)

    Abraham, J; Abreu, P; Aglietta, M; Aguirre, C; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Argirò, S; Arisaka, K; Armengaud, E; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Atulugama, B S; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barbosa, A F; Barnhill, D; Barroso, S L C; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellido, J A; BenZvi, S; Berat, C; Bergmann, T; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blasi, P; Bleve, C; Blümer, H; Bohácová, M; Bonifazi, C; Bonino, R; Boratav, M; Brack, J; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Cai, B; Camin, D V; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Donato, C; de Jong, S J; De La Vega, G; de Mello Junior, W J M; de Mello Neto, J R T; DeMitri, I; de Souza, V; del Peral, L; Deligny, O; Della Selva, A; Delle Fratte, C; Dembinski, H; Di Giulio, C; Diaz, J C; Dobrigkeit, C; D'Olivo, J C; Dornic, D; Dorofeev, A; dos Anjos, J C; Dova, M T; D'Urso, D; Dutan, I; DuVernois, M A; Engel, R; Epele, L; Erdmann, M; Escobar, C O; Etchegoyen, A; Facal San Luis, P; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferry, S; Fick, B; Filevich, A; Filipcic, A; Fleck, I; Fonte, R; Fracchiolla, C E; Fulgione, W; García, B; García Gámez, D; Garcia-Pinto, D; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Ghia, P L; Giller, M; Glass, H; Gold, M S; Golup, G; Gomez Albarracin, F; Gómez Berisso, M; Gómez Herrero, R; Gonçalves, P; Gonçalves do Amaral, M; Gonzalez, D; Gonzalez, J G; González, M; Góra, D; Gorgi, A; Gouffon, P; Grassi, V; Grillo, A F; Grunfeld, C; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Hamilton, J C; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hauschildt, T; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J; Horneffer, A; Horvat, M; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Kaducak, M; Kampert, K H; Karova, T; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D-H; Krieger, A; Krömer, O; Kuempel, D; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lebrun, D; Lebrun, P; Lee, J; Leigui de Oliveira, M A; Letessier-Selvon, A; Leuthold, M; Lhenry-Yvon, I; López, R; Lopez Agüera, A; Lozano Bahilo, J; Luna García, R; Maccarone, M C; Macolino, C; Maldera, S; Mancarella, G; Manceñido, M E; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Marquez Falcon, H R; Martello, D; Martínez, J; Martínez Bravo, O; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McCauley, T; McEwen, M; McNeil, R R; Medina, M C; Medina-Tanco, G; Meli, A; Melo, D; Menichetti, E; Menschikov, A; Meurer, Chr; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Mollerach, S; Monasor, M; Monnier Ragaigne, D; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nguyen Thi, T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nozka, L; Oehlschläger, J; Ohnuki, T; Olinto, A; Olmos-Gilbaja, V M; Ortiz, M; Ortolani, F; Ostapchenko, S; Otero, L; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Petrera, S; Petrinca, P; Petrov, Y; Pham Ngoc, Diep; Pham Ngoc, Dong; Pham Thi, T N; Pichel, A; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Redondo, A; Reucroft, S; Revenu, B; Rezende, F A S; Ridky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Roberts, M; Robledo, C; Rodriguez, G; Rodríguez Frías, D; Rodriguez Martino, J; Rodriguez Rojo, J; Rodriguez-Cabo, I; Ros, G; Rosado, J; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scherini, V; Schieler, H; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schovánek, P; Schüssler, F; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Smetniansky De Grande, N; Smiałkowski, A; Smída, R; Smith, A G K; Smith, B E; Snow, G R; Sokolsky, P; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Takahashi, J; Tamashiro, A; Tamburro, A; Taşcău, O; Tcaciuc, R; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Todero Peixoto, C J; Tomé, B; Tonachini, A; Torres, I; Torresi, D; Travnicek, P; Tripathi, A; Tristram, G; Tscherniakhovski, D; Tueros, M; Tunnicliffe, V; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van den Berg, A M; van Elewyck, V; Vázquez, R A; Veberic, D; Veiga, A; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wainberg, O; Walker, P; Warner, D; Watson, A A; Westerhoff, S; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Zas, E; Zavrtanik, D; Zavrtanik, M; Zech, A; Zepeda, A; Ziolkowski, M

    2008-05-30

    The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth's crust. Tau leptons from nu(tau) charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of nu(tau) at EeV energies. Assuming an E(nu)(-2) differential energy spectrum the limit set at 90% C.L. is E(nu)(2)dN(nu)(tau)/dE(nu)<1.3 x 10(-7) GeV cm(-2) s(-1) sr(-1) in the energy range 2 x 10(17) eV< E(nu)< 2 x 10(19) eV.

  2. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part II - the determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.

    1991-01-01

    For the use of published general or theoretical sensitivity factors in quantitative AES and XPS the energy dependence of both the spectrometer transmission function and the detector sensitivity must be known. Here we develop simple procedures which allow these dependencies to be determined experimentally. Detailed measurements for a modified VG Scientific ESCALAB II, the metrology spectrometer, operated in both the constant ΔE/E and constant ΔE modes, are presented and compared with theoretical estimates. It is shown that an exceptionally detailed electron-optical calculation, involving proprietary information, would be required to match the accuracy of the experimental procedures developed. Removal of the spectrometer transmission function and the detector sensitivity terms allows the measured spectrum to be converted to the true electron emission spectrum irrespective of the mode of operation. This provides the first step to the provision of reference samples to calibrate the transmission functions and detector sensitivities of all instruments so that they, in turn, may produce true electron emission spectra. This is vital if (i) all instruments are to give consistent results, (ii) theoretical terms are to be used in quantifying either AES or XPS and (iii) reference data banks are to be established for AES or XPS

  3. The Pierre Auger Cosmic Ray Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Grygar, Jiří; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2015-01-01

    Roč. 798, Oct (2015), s. 172-213 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * high energy cosmic rays * hybrid observatory * water Cherenkov detectors * air fluorescence detectors Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.200, year: 2015

  4. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Buitink, S.; Docters, W.; Dorosti Hasankiadeh, Q.; Ferguson, A P.; Lu, L.; Messina, S.; Scholten, O.; van den Berg, A. M.

    2015-01-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the

  5. Measurement of the Auger lifetime in GaInAsSb/GaSb heterostructures using the photoacoustic technique

    International Nuclear Information System (INIS)

    Riech, I.; Gomez-Herrera, M. L.; Diaz, P.; Mendoza-Alvarez, J. G.; Herrera-Perez, J. L.; Marin, E.

    2001-01-01

    We have studied Ga x In 1-x As y Sb 1-y /GaSb heterostructures for x=0.84 and y=0.14 using the photoacoustic technique with the heat transmission configuration. A theoretical model, which includes all the possible nonradiative recombination mechanisms that contribute to heat generation, was developed to calculate the photoacoustic signal for this type of heterostructure. The Auger recombination lifetime τ Auger was determined by fitting our experimental results to the calculated frequency dependence of the theoretical photoacoustic signal. The obtained value for τ Auger is compatible with those reported in the literature for semiconductors with band-gap energies below and above 0.5 eV, the energy region where there is a lack of experimental τ Auger values. Copyright 2001 American Institute of Physics

  6. Backward ejected electrons from collisions of 1 MeV/u Oq+ projectiles with argon gas

    International Nuclear Information System (INIS)

    Berryman, J.W.; Breinig, M.; Segner, F.; Desai, D.

    1993-01-01

    We will be presenting results from a series of experiments measuring the yields and energy distributions of electrons emitted at 1800 with respect to the 1 MeV/u O q+ [q=3-8] ion beam. We have systematically studied the yield per incident ion and the energy distribution of electrons as a function of the incident projectile charge state. The energy distributions show two prominent structures: a narrow peak due to target LMM Auger electrons and a broad hump due to projectile binary-encounter electrons. The shapes and yields of the Auger electron peaks are nearly independent of the incident charge state. The shapes and yields of the binary-encounter electron peaks are sensitive functions of the number of projectile electrons carried into the collision. A well defined binary-encounter electron peak appears only for charge states q=3, 4, and 5

  7. Mass composition studies using the surface detector of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Wahlberg, Hernan

    2009-01-01

    The mass composition of ultra-high energy cosmic rays is a critical issue to understand their origin and nature. The Pierre Auger Observatory is a hybrid instrument which provides a powerful environment for the determination of the primary mass. The Surface Detector of the Pierre Auger Observatory alone allows the study of several shower parameters with high discriminating power between primary elements. Novel analysis techniques using different features of signals in the Cherenkov stations are discussed. These are the signal risetime, the azimuthal time asymmetry and the muon density of the showers.

  8. Oxidation under electron bombardment. A tool for studying the initial states of silicon oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, B.; Deville, J.P.; El Maachi, A.

    1987-06-01

    The exciting beam of an Auger electron spectrometer has been used to monitor the oxidation of silicon single crystals at room temperature and very low pressures of oxygen (approx. 10/sup -7/ Torr). This process allows us to build ultra-thin layers of silica on silicon (down to 30 A) but it is mostly used to investigate the mechanisms of the initial stages of oxidation. Auger spectra recorded continuously during the oxidation process provide information on (1) the nature of the silicon-oxygen chemical bonds which are interpreted through fine structure in the Auger peak, and (2) the kinetics of oxide formation which are deduced from curves of Auger signal versus time. An account is given of the contribution of these Auger studies to the description of the intermediate oxide layer during the reaction between silicon and oxygen and the influence of surface structural disorder, induced mainly by argon-ion bombardment, is discussed in terms of reactivity and oxide coverage.

  9. Role of shake processes and inter-multiplet Auger transitions in production of multiply-charged ions upon cascade decay of resonantly excited 1s-14p state of the argon atom

    International Nuclear Information System (INIS)

    Kochur, A.G.; Dudenko, A.I.; Petrov, I.D.; Demekhin, V.F.

    2007-01-01

    The Ar i+ ion yields upon the decay of the Ar1s -1 4p state are calculated in one-electron configuration-average approximation considering shake up, shake down and shake off processes as well as the ejection of electrons in inter-multiplet Auger transitions. Our calculation underestimates the production of the higher-charged ions which may indicate limitations of the one-electron approximation, and of the step-by-step cascade model

  10. Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Oh, G.Y.; Lee, M.H.

    1996-01-01

    The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society

  11. Calculations of the Auger deexcitation rate of the dtμ within the muonic quasi-molecule, [(dtμ)dee

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Lewis, D.M.; Hara, S.

    1993-01-01

    A key process in muon catalysed fusion is the deexcitation of the dtμ within the resonant muonic quasi-molecule [(dtμ)dee], by emission of an Auger electron. The dtμ in the quasi-molecule is initially in a weakly bound excited state with J = 1 and v = 1. In this paper, calculations taking full account of the molecular nature of the quasi-molecule are carried out of the rate of the dominant deexcitation to the state with J = 0 and v = 1. (orig.)

  12. Study of the Pierre Auger Observatory ground detectors: tests, simulation and calibration; Etude des detecteurs de surface de l'observatoire Pierre Auger: tests, simulation et etalonnage

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, A

    2004-10-01

    The Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of these showers requires a comprehensive understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare these results with those of the Observatory detectors in the fifth chapter. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition has begun this year. The construction will be finished by end of 2005. From this moment, The Pierre Auger Observatory will allow us to contribute to solving the cosmic rays puzzle. (author)

  13. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Luz, R. J. Barreira; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D' Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Giulio, C. Di; Matteo, A. Di; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; D' Olivo, J. C.; Anjos, R. C. dos; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Lauscher, M.; Legumina, R.; de Oliveira, M. A. Leigui; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; de Carvalho, W. Rodrigues; Fernandez, G. Rodriguez; Rojo, J. Rodriguez; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Durán, M. Suarez; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Peixoto, C. J. Todero; Tomankova, L.; Tomé, B.; Elipe, G. Torralba; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Quispe, I. D. Vergara; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 1018 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10-5 in the case of the angular power spectrum, and 2.5 × 10-3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.

  14. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A. [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen (Netherlands); Abreu, P.; Andringa, S. [Laboratório de Instrumentação e Física Experimental de Partículas—LIP and Instituto Superior Técnico—IST, Universidade de Lisboa—UL (Portugal); Aglietta, M. [Osservatorio Astrofisico di Torino (INAF), Torino (Italy); Samarai, I. Al [Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3 (France); Albuquerque, I.F.M. [Universidade de São Paulo, Inst. de Física, São Paulo (Brazil); Allekotte, I. [Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET) (Argentina); Almela, A.; Andrada, B. [Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (Argentina); Castillo, J. Alvarez [Universidad Nacional Autónoma de México, México (Mexico); Alvarez-Muñiz, J. [Universidad de Santiago de Compostela (Spain); Anastasi, G.A. [Gran Sasso Science Institute (INFN), L' Aquila (Italy); Anchordoqui, L., E-mail: auger_spokespersons@fnal.gov [Department of Physics and Astronomy, Lehman College, City University of New York (United States); and others

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80{sup o} and energies in excess of 4 EeV (4 × 10{sup 18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p -values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10{sup −5} in the case of the angular power spectrum, and 2.5 × 10{sup −3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.

  15. Atomic-layer-resolved analysis of surface magnetism by diffraction spectroscopy

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2010-01-01

    X-ray absorption near edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) measurements by Auger-electron-yield detection are powerful analysis tools for the electronic and magnetic structures of surfaces, but all the information from atoms within the electron mean-free-path range is summed into the obtained spectrum. In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, diffraction spectroscopy, which is the combination of X-ray absorption spectroscopy and Auger electron diffraction (AED). From a series of measured thickness dependent AED patterns, we deduced a set of atomic-layer-specific AED patterns arithmetically. Based on these AED patterns, we succeeded in disentangling obtained XANES and XMCD spectra into those from different atomic layers.

  16. Photon energy dependent intensity variations observed in Auger spectra of free argon clusters

    International Nuclear Information System (INIS)

    Lundwall, M; Lindblad, A; Bergersen, H; Rander, T; Oehrwall, G; Tchaplyguine, M; Peredkov, S; Svensson, S; Bjoerneholm, O

    2006-01-01

    Photon energy dependent intensity variations are experimentally observed in the L 2,3 M 2,3 M 2,3 Auger spectra of argon clusters. Two cluster sizes are examined in the present study. Extrinsic scattering effects, both elastic and inelastic, involving the photoelectron are discussed and suggested as the explanation of the variations in the Auger signal. The atoms in the first few coordination shells surrounding the core-ionized atom are proposed to be the main targets for the scattering processes

  17. Proceedings of the 5. seminar on electron spetroscopy of socialist countries

    International Nuclear Information System (INIS)

    1984-01-01

    Instrumental, experimental, and theoretical aspects of electron spectroscopy as well as their applications to solve problems arising in surface physics and surface chemistry have been discussed. 94 synopses on photoelectron spectroscopy (XPS and UPS), Auger electron spectroscopy, electron energy loss spectroscopy, appearance potential spectroscopy, low-energy electron diffraction, reflection of high-energy electron diffraction, and secondary ion mass spectroscopy are included

  18. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  19. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  20. Utility of γH2AX as a molecular marker of DNA double-strand breaks in nuclear medicine: applications to radionuclide therapy employing auger electron-emitting isotopes.

    Science.gov (United States)

    Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-01-01

    There is an intense interest in the development of radiopharmaceuticals for cancer therapy. In particular, radiopharmaceuticals which involve targeting radionuclides specifically to cancer cells with the use of monoclonal antibodies (radioimmunotherapy) or peptides (targeted radiotherapy) are being widely investigated. For example, the ultra-short range Auger electron-emitting isotopes, which are discussed in this review, are being considered in the context of DNAtargeted radiotherapy. The efficient quantitative evaluation of the levels of damage caused by such potential radiopharmaceuticals is required for assessment of therapeutic efficacy and determination of relevant doses for successful treatment. The DNA double-strand break surrogate marker, γH2AX, has emerged as a useful biomonitor of damage and thus effectiveness of treatment, offering a highly specific and sensitive means of assessment. This review will cover the potential applications of γH2AX in nuclear medicine, in particular radionuclide therapy.

  1. Nonadiabatic electron wavepacket dynamics behind molecular autoionization

    Science.gov (United States)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2018-01-01

    A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.

  2. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    P. Abreu

    2013-01-01

    Full Text Available The observation of ultrahigh energy neutrinos (UHEνs has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν or in the Earth crust (Earth-skimming ν, producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere. In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.

  3. James Cronin, CP Violation, and the Pierre Auger Observatory

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis James Cronin, CP Violation and the Pierre Auger Observatory matter over antimatter."1 "The experiment uncovered the CP [charge-parity] violation, or a with Additional Information Additional information about James Cronin and the charge-parity (CP

  4. Contribution of scanning Auger microscopy to electron beam damage study

    International Nuclear Information System (INIS)

    Fontaine, J.M.

    1983-04-01

    Electron bombardment can produce surface modifications of the analysed sample. The electron beam effects on solid surfaces which have been discussed in the published literature can be classified into the following four categories: (1) heating and its consequent effects, (2) charge accumulation in insulators and its consequent effects, (3) electron stimulated adsorption (ESA), and (4) electron stimulated desorption and/or decomposition (ESD). In order to understand the physico-chemical processes which take place under electron irradiation in an Al-O system, we have carried out experiments in which, effects, such as heating, charging and gas contamination, were absent. Our results point out the role of an enhanced surface diffusion of oxygen during electron bombardment of an Al (111) sample. The importance of this phenomenon and the contribution of near-elastic scattering of the primary electrons (5 keV) to the increase of the oxidation degree observed on Al (111) are discussed, compared to the generally studied effects

  5. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    International Nuclear Information System (INIS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-01-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M 4,5 N 1 N 2,3 , M 2,3 M 4,5 M 4,5 , M 2,3 M 4,5 V, and M 1 M 4,5 M 4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.

  6. Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S., E-mail: sebastien.incerti@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Suerfu, B.; Xu, J. [Department of Physics, Princeton University, Princeton, NJ (United States); Ivantchenko, V. [Ecoanalytica, Moscow (Russian Federation); Geant4 Associates International Ltd, Hebden Bridge (United Kingdom); Mantero, A. [SWHARD srl, via Greto di Cornigliano 6r, 16152 Genova (Italy); Brown, J.M.C. [School of Mathematics and Physics, Queen’s University Belfast, Belfast, Northern Ireland (United Kingdom); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Francis, Z. [Université Saint Joseph, Faculty of Sciences, Department of Physics, Beirut (Lebanon); Karamitros, M. [Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN (United States); Tran, H.N. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-04-01

    A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.

  7. Implications of the cosmic ray electron spectrum and anisotropy measured with Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Di Bernardo, Giuseppe [Gothenburg Univ. (Sweden). Dept. of Physics; Evoli, Carmelo [SISSA, Trieste (Italy); Gaggero, Daniele; Grasso, Dario [Pisa Univ. (Italy). Dipt. die Fisica; INFN, Pisa (Italy); Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mazziotta, Mario Nicola [Istituto Nazionale di Fisica Nucleare, Bari (Italy)

    2010-11-15

    The Fermi Large Area Telescope (LAT) collaboration recently released the updated results of the measurement of the cosmic ray electron (CRE) spectrum and published its first constraints on the CRE anisotropy. With respect to the previous Fermi-LAT results, the CRE spectrum measurement was extended down from 20 to 7 GeV, thus providing a better lever arm to discriminate theoretical models. Here we show that the new data strengthen the evidence for the presence of two distinct electron and positron spectral components. Furthermore, we show that under such hypothesis most relevant CRE and positron data sets are remarkably well reproduced. Consistent fits of cosmic-ray nuclei and antiproton data, which are crucial to validate the adopted propagation setup(s) and to fix the solar modulation potential, are obtained for the Kraichnan and plain-diffusion propagation setups, while the Kolmogorov one is disfavored. We then confirm that nearby pulsars are viable source candidates of the required e{sup {+-}} extra-component. In that case, we show that the predicted CRE anisotropy is compatible with Fermi-LAT constraints and that a positive detection should be at hand of that observatory. Models assuming that only nearby supernova remnants contribute to the high energy tail of the observed CRE spectrum are in contrast with anisotropy limits. (orig.)

  8. Application of the Auger and X-ray photoelectron electronic spectroscopies to the study of superficial segregation in the system Pt-Rh

    International Nuclear Information System (INIS)

    Volpe, M.A.; Castellani, N.J.; Leroy, D.B.

    1987-01-01

    The Auger and X-ray photoelectron spectroscopies are applied to the study of the superficial segregation in the system of the binary alloy Pt-Rh. The methodology for the cleaning of the samples, which is essential for the obtainment of reproducible results, has been established. The spectra qualitative analysis allows to identify the element segregated. The application of the Gallon model permits to develop a quantitative study of the phenomenon. (S.M.) [es

  9. Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors

    International Nuclear Information System (INIS)

    Nam, Hyungseok; Capareda, Sergio C.; Ashwath, Nanjappa; Kongkasawan, Jinjuta

    2015-01-01

    Energy conversion efficiencies of three pyrolysis reactors (bench-scale auger, batch, and fluidized bed) were investigated using rice straw as the feedstock at a temperature of 500 °C. The highest bio-oil yield of 43% was obtained from the fluidized bed reactor, while the maximum bio-char yield of 48% was obtained from the batch reactor. Similar bio-oil yields were obtained from the auger and batch type reactors. The GCMS and FTIR were used to evaluate the liquid products from all reactors. The best quality bio-oil and bio-char from the batch reactor was determined to have a heating value of 31 MJ/kg and 19 MJ/kg, respectively. The highest alkali mineral was found in the bio-char produced from the auger reactor. The energy conversion efficiencies of the three reactors indicated that the majority of the energy (50–64%) was in the bio-char products from the auger and batch reactors, while the bio-oil from the fluidized bed reactor contained the highest energy (47%). A Sankey diagram has been produced to show the flows of product energy from each pyrolysis process. The result will help determine which conversion process would be optimal for producing specific products of bio-char, bio-oil, and gas depending on the needs. - Highlights: • Pyrolysis products from auger, batch, and fluidized bed reactor were examined. • O/C ratios of bio-oils stayed in specific ranges depending on the process reactors. • The largest quantity of bio-oil from fluidized, while the best quality from batch. • The highest alkali concentration of 37 g/kg included in the auger based bio-char. • Sankey diagram was used to understand the energy distribution from reactors.

  10. Study of the secondary electron energy spectrum of clean aluminium modification during oxygen adsorption, hydrogen adsorption or carbon segregation

    International Nuclear Information System (INIS)

    Pellerin, Francois

    1981-01-01

    The first part of this work is a review of both theoretical and experimental aspects of the fine structure appearing in the Secondary Electron Spectrum (SES) and in the electron energy loss spectrum. In the second part, we report the results of a study of the SES and ELS spectra of clean and gas covered aluminium. The use of very low primary electron energies (E p ≤ 30 eV) enables the detection of previously unobserved peaks in the ELS spectra of clean and oxygen covered aluminium. They are attributed to single electron excitations. Furthermore, a very large peak appears in the SES spectrum during oxygen or carbon adsorption on aluminium. It is interpreted in terms of interaction of the background electrons with the valence electrons of the surface. Molecular hydrogen adsorption is observed on Ta, Pt, Al 2 O 3 , Si. It is responsible for an ELS peak located 13 eV below the elastic peak. Furthermore, on silicon, the chemisorbed hydrogen form can be distinguished from the molecular form with the help of ELS. Finally, some examples are given of the application of these results to surface imaging. (author) [fr

  11. Electron spectroscopy studies of argon K-shell excitation and vacancy cascades

    International Nuclear Information System (INIS)

    Southworth, S.H.; MacDonald, M.A.; LeBrun, T.; Azuma, Y.; Cooper, J.W.

    1995-01-01

    Electron spectroscopy combined with tunable synchrotron radiation has been used for studies of Ar K-shell excitation and vacancy decay processes. In addition, electrons and fluorescent X-rays have been recorded in coincidence to select subsets of the ejected electron spectra. Examples are presented for Ar 1s photoelectrons and KLL and LMM Auger spectra

  12. 30 CFR 941.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 941.819 Section 941.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA...

  13. 30 CFR 921.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 921.819 Section 921.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MASSACHUSETTS...

  14. 30 CFR 922.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 922.819 Section 922.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN...

  15. 30 CFR 942.819 - Special performance standards-Auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-Auger mining. 942.819 Section 942.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE TENNESSEE...

  16. 30 CFR 905.819 - Special performance standards-Auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-Auger mining. 905.819 Section 905.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA...

  17. 30 CFR 933.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 933.819 Section 933.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NORTH...

  18. 30 CFR 939.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 939.819 Section 939.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE RHODE ISLAND...

  19. 30 CFR 947.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 947.819 Section 947.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON...

  20. Growth of fullerene on Ag and hydrogen-passivated Si substrates: Effect of electron beam exposure on growth modes

    International Nuclear Information System (INIS)

    Rundhe, M.V.; Dev, B.N.

    2008-01-01

    We have used Auger electron spectroscopy (AES) to investigate the effect of electron beam exposure on growth modes of fullerene (C 60 ) on substrates like Ag and hydrogen-passivated Si(1 1 1). The electron beam comprises of 3.4 keV electrons, which are used in the AES study. To investigate the effect, Auger signal (AS) vs. deposition time (t) measurements were conducted in a sequential mode, i.e., alternating deposition of C 60 and analysis using the electron beam. Duration of AES data collection after each deposition was the duration of exposure to electron beam in this experiment. For the growth study of C 60 on Ag, three AS-t plots were recorded for three different durations of exposure to electron beam. Changes in the AS-t plot, depending on the duration of exposure to the electron beam, reflect the electron beam-induced damage. Electron beam-induced damages of C 60 produce carbon materials of different densities and consequently transmission coefficient (α) of Auger electron through this material changes. In order to fit the AES (AS vs. t) data a model has been used which simultaneously provides the growth mode and the transmission coefficient. Observation of an increasing transmission coefficient with the increasing duration of exposure to the electron beam from α=0.34 to 0.60 indicates the change of the nature of the carbon material due to the partial damage of C 60

  1. Dual structure in the charge excitation spectrum of electron-doped cuprates

    Science.gov (United States)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  2. Diffuse galactic continuum emission measured by COMPTEL and the cosmic-ray electron spectrum

    Science.gov (United States)

    Strong, A. W.; Diehl, R.; Schoenfelder, V.; Varendorff, M.; Youssefi, G.; Bloemen, H.; Hermsen, W.; De Vries, C.; Morris, D.; Stacy, J. G.

    1994-01-01

    Diffuse galactic continuum gamma-ray emission in the 0.75-30 MeV range from the inner Galaxy has been studied using data from COMPTEL on the Compton Gamma-Ray Observatory. Observations of the inner Galaxy from the Sky Survey have been used. The imaging properties of COMPTEL enable spatial analysis of the gamma-ray distribution using model fitting. A model based on atomic and molecular gas distributions in the Galaxy has been used to derive the emissivity spectrum of the gamma-ray emission and this spectrum is compared with theoretical estimates of bremsstrahlung emission from cosmic-ray electrons.

  3. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: k.grzelakowski@opticon-nanotechnology.com

    2016-05-15

    Since its introduction the importance of complementary k{sub ||}-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800 eV electron beam from an “in-lens” electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered k{sub ǁ}-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. - Highlights: • A novel concept of the electron sample illumination with “in-lens” e- gun is realized. • Quasi-simultaneous energy selective observation of the real- and k-space in EELS mode. • Observation of the energy filtered Auger electron diffraction at Cs atoms on Mo(110). • Energy-loss, Auger and secondary electron momentum microscopy is realized.

  4. GROWTH AND ELECTRONIC-STRUCTURE OF SOME MONOVALENT METALS ON TIS2(001)

    NARCIS (Netherlands)

    WEITERING, HH; HIBMA, T

    1991-01-01

    The epitaxial growth of Ag on TiS2(001) is characterized using reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Ag grows in the (111) orientation epitaxially on TiS2(001) with Ag[110BAR]parallel-toTiS2[100]. The growth

  5. Correlation effects on double electron capture in highly-charged, low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Meyer, F.W.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Stolterfoht, N.

    1987-01-01

    The method of zero-degree Auger electron spectroscopy has been used to study two-electron excited states populated in slow double capture collisions of highly charged ions with He and H 2 . The focus of this study is on production of autoionization electrons originating from the non-equivalent 1s 2 2pnl electron configurations in comparison with electron production resulting from the Auger decay of (near) equivalent 1s 2 nln'l' (with n∼n') configurations. It is shown that production of non-equivalent electron configurations is significant and involves electron-electron correlation effects whose analysis leads beyond the independent-particle model. Recent results that include a measurement at non-zero angles are presented to illustrate the angular dependence of electron emission from non-equivalent electron configurations, as well as the dependence on projectile charge state and target species. Comparison of high resolution scans over two lines of the 1s 2 2pnl sequence for the O 6+ + He system with accurate transition energy calculations shows preferential population of high angular momentum substation

  6. 30 CFR 903.819 - Special performance standards-Auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-Auger mining. 903.819 Section 903.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE ARIZONA § 903...

  7. 30 CFR 937.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 937.819 Section 937.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937...

  8. 30 CFR 910.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 910.819 Section 910.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA § 910...

  9. 30 CFR 912.819 - Special performance standards-auger mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 912.819 Section 912.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912...

  10. Electron Emission by N6+ Ions Scattered at a Magnetized Iron Surface

    International Nuclear Information System (INIS)

    Solleder, B.; Lemell, C.; Burgdoerfer, J.; Tokesi, K.

    2006-01-01

    Complete text of publication follows. Magnetized materials are of considerable interest in the electronics industry (hard discs, spintronics, etc.). A detailed understanding of the properties of magnetized surfaces is therefore important to optimize technical applications. In the last decades, different experimental techniques have been developed to probe spin effects in magnetized materials. In this work the spin polarization of electrons emitted during the impact of N 6+ ions on a magnetized Fe surface is investigated. We study potential emission (PE) of electrons as well as secondary electron (SE) production and transport in the target with the help of Monte Carlo (MC) simulations. Spin dependence of electron transfer processes and of transport in the solid are included. Fig. 1 shows the results of our simulation for the energy distribution and spin polarization of emitted electrons in comparison with experimental data of Pfandzelter et al. [1] for the interaction of N 6+ ions with magnetized Fe. Electrons with energies higher than 200 eV are predominantly PE electrons, emitted close to the surface via autoionization (AI), Auger capture (AC) and Auger deexcitation (AD) channels. Low energy electrons are dominated by promoted, autoionized, and secondary electrons. The polarization of above surface electrons is determined by the high of the potential barrier separating projectile and target. At large distances, the barrier drops only slightly below the Fermi edge and enables transitions of electrons from this part of the band structure which has about 50% polarization. These electrons are transferred to high n states feeding promotion and AI processes between high lying states. Electrons emitted by these processes therefore reflect the polarization near the Fermi edge. Close to the surface, the barrier is low enough to allow for electron capture from the entire conduction band. K-Auger electrons are emitted in immediate vicinity of the surface and therefore mirror

  11. Structures in the K-shell delta electron spectrum near threshold for ionization by fast charged particles

    International Nuclear Information System (INIS)

    Amundsen, P.A.; Aashamar, K.

    Results of calculations of the delta electron spectrum for K-shell ionization of atoms by fast charged particles for target charges in the range 6 2 <=40 are presented. Appreciable structure is found in the spectrum near the ionization threshold, in particular for fast projectiles and heavy target elements. The structure can be quite sensitive to the details of the effective atomic potentials. (Auth.)

  12. Improvements in or relating to spectroscopy

    International Nuclear Information System (INIS)

    Neave, J.H.; Boudry, M.R.

    1975-01-01

    Reference is made to methods of performing electron spectroscopic surface analysis of a solid material, and the disadvantages of conventional methods are described. The improved method described aims to overcome these disadvantages. An electron beam is directed from a gun at the surface of the material in a vacuum chamber. An a.c. signal modulated variable retard potential is applied to the target material. A detector circuit connected to the target measures a current one separable component of which is proportional to the instantaneous net emitted flux of secondary electrons that leave the target as a function of the retard potential. The measured current is used to produce an energy spectrum of the secondary electrons characteristic of the target surface. The primary electron beam may be of energy suitable for the production of Auger electron emission from the target surface, the detector circuit being tuned to measure the second harmonic of the a.c. modulation signal. The detector output is then plotted as a function of the retard potential to produce a spectrum of the first derivative of the secondary electron energy with respect to the retard potential. This enhances the display of Auger transitions. Circuit arrangements are described. An oscillator is adapted to produce the a.c. modulation signal. (U.K.)

  13. Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon

    Science.gov (United States)

    Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey

    2018-04-01

    Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the

  14. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  15. Hot electron effects on the satellite spectrum of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM (United States); Faenov, A.Y.; Pikuz, T.A. [MISDC, NPO ' VNIIFTRI' , Mendeleevo, Moscow Region, 141570 (Russian Federation); Wilke, M.D.; Kyrala, G.A.; Clark, R.E.H. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM (United States)

    1999-05-01

    In laser-produced plasmas, the interaction of the intense laser light with plasma electrons can produce high-energy superthermal electrons with energies in the keV range. These hot electrons can influence the level populations which determine spectral line structure. In the present paper, the effect of hot electrons on the X-ray satellite spectrum of laser-produced plasmas is studied. Calculated spectra are compared with experimental observations. Magnesium targets irradiated by three different types of laser pulses are considered. These include, a high-intensity 600 fs Nd-glass laser, a 1 ns Nd-glass laser, and a 2ns CO{sub 2} laser. The Nd-glass laser experiments were conducted recently at the Los Alamos Trident Facility and the CO{sub 2} data were recorded by MISDC. High-resolution spectra were measured near the He-like resonance line of magnesium. The calculations employ an electron energy distribution which includes a thermal and a hot electron component, as part of a detailed collisional-radiative model. Plasma parameters including electron temperature, density, and hot electron fraction are estimated by choosing best fits to the experimental measurements. The calculations show that hot electrons can cause several anomalous effects. The Li-like jkl, abcd, and qr satellites can show intensities which are generally attributed to electron densities in excess of 10{sup 23} cm{sup -3}. In addition, the relative amplitude of the intercombination line can be unusually large even at high electron densities due to enhanced collisional excitation of the 1s2p{sup 3}P state by hot electrons. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Measurement of the Auger decay after resonance excitation of Xe 4d and Kr 3d resonance lines

    International Nuclear Information System (INIS)

    Eberhardt, W.; Kalkoffen, G.; Kunz, C.

    1978-03-01

    The Nsub(4,5) 0sub(2,3) 0sub(2,3) Auger spectra from Xe and the Msub(4,5) Nsub(2,3) Nsub(2,3) Auger spectra from Kr are investigated for different photon energies around threshold of ionization. When exciting at the resonance line (4d 9 5s 2 5p 6 6p for Xe and 3d 9 4s 2 4p 6 5p for Kr) we observe the usual Auger multiplet structure to be shifted to higher kinetic energies. Additionally, new lines appear which can be assigned to shake-up processes int he Xe + and Kr + ions. (orig.) [de

  17. Electron beam spectrum monitor using synchrotron light

    International Nuclear Information System (INIS)

    Reagan, D.; Hostetler, T.E.

    1979-03-01

    This instrument shows the positions, widths, and shapes of momentum spectra of SLAC beams. It uses synchrotron light produced when the beam is deflected by a magnet. Some of the light is focused on the face of an image splitter consisting of acrylic light pipes. The light pipes illuminate twelve photomultiplier tubes. Pulses from the PM tubes are integrated, multiplexed, and displayed on an oscilloscope. The resolution of the instrument is usually better than 0.2%. It has some advantages over the secondary emitter foil spectrum monitors (SEM's) currently in use at SLAC. It need never be put out of service to avoid disturbing the beam. It is as sensitive as the most sensitive SLAC SEM. (Its performance has been optimized for high-current beams; it can easily be made much more sensitive.) It provides information on a pulse-to-pulse basis and, with better cables, could indicate electron beam pulse shapes

  18. Recombination kinetics of photogenerated electrons in InGaAs/InP quantum wells

    Science.gov (United States)

    Tito, M. A.; Pusep, Yu. A.; Gold, A.; Teodoro, M. D.; Marques, G. E.; LaPierre, R. R.

    2016-03-01

    The electron transport and recombination processes of photoexcited electron-hole pairs were studied in InGaAs/InP single quantum wells. Comprehensive transport data analysis reveals a asymmetric shape of the quantum well potential where the electron mobility was found to be dominated by interface-roughness scattering. The low-temperature time-resolved photoluminescence was employed to investigate recombination kinetics of photogenerated electrons. Remarkable modification of Auger recombination was observed with variation of the electron mobility. In high mobility quantum wells, the increasing pump power resulted in a new and unexpected phenomenon: a considerably enhanced Auger non-radiative recombination time. We propose that the distribution of the photoexcited electrons over different conduction band valleys might account for this effect. In low mobility quantum wells, disorder-induced relaxation of the momentum conservation rule causes inter-valley transitions to be insignificant; as a consequence, the non-radiative recombination time is reduced with the increase in pump power. Thus, interface-roughness scattering was found responsible for both transport properties and dynamic optical response in InGaAs/InP quantum wells.

  19. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  20. Z1 dependence of ion-induced electron emission from aluminum

    International Nuclear Information System (INIS)

    Alonso, E.V.; Baragiola, R.A.; Ferron, J.; Jakas, M.M.; Oliva-Florio, A.

    1980-01-01

    We have measured the electron emission yields γ of clean aluminum under bombardment with H + , H 2 + , D + , D 2 + , He + , B + , C + , N + , N 2 + , O + , O 2 + , F + , Ne + , S + , Cl + , Ar + , Kr + , and Xe + in the energy range 1.2--50 keV. The clean surfaces were prepared by in situ evaporation of high-purity Al under ultra-high-vacuum conditions. It is found that kinetic electron emission yields γ/sub k/, obtained after subtracting from the measured γ a contribution due to potential emission, are roughly proportional to the electronic stopping powers, for projectiles lighter than Al. For heavier projectiles there is a sizable contribution to electron emission from collisions involving rapidly recoiling target atoms, which increases with the mass of the projectile, and which dominates the threshold and near-threshold behavior of kinetic emission. The results, together with recently reported data on Auger electron emission from ion-bombarded Al show that the mechanism proposed by Parilis and Kishinevskii of inner-shell excitation and subsequent Auger decay is negligible for light ions and probably small for heavy ions on Al and in our energy range. We thus conclude that kinetic electron emission under bombardment by low-energy ions results mainly from the escape of excited valence electrons