WorldWideScience

Sample records for auger electron spectroscopy

  1. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF/sub 2/ as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states. (GHT)

  2. Coincidence Auger spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Penent, F. [LCPMR, Universite Pierre et Marie Curie, 75231 Paris 5 (France) and DIAM, Universite Pierre et Marie Curie, 75252 Paris 5 (France)]. E-mail: penent@ccr.jussieu.fr; Lablanquie, P. [LURE, Universite Paris Sud, 91898 Orsay (France); Hall, R.I. [DIAM, Universite Pierre et Marie Curie, 75252 Paris 5 (France); Palaudoux, J. [LCPMR, Universite Pierre et Marie Curie, 75231 Paris 5 (France); Ito, K. [Photon Factory, IMSS, KEK, Tsukuba 305-0801 (Japan); Hikosaka, Y. [Photon Factory, IMSS, KEK, Tsukuba 305-0801 (Japan); IMS, Okazaki 444-8585 (Japan); Aoto, T. [Photon Factory, IMSS, KEK, Tsukuba 305-0801 (Japan); Eland, J.H.D. [Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3DW (United Kingdom)

    2005-06-15

    Auger electron spectroscopy (AES) and photoelectron spectroscopy (PES) are (with X-ray emission spectroscopy, XES) powerful analytical tools for material science and gas phase studies. However, the interpretation of Auger spectra can be very difficult due to the number and complexity of the involved processes. A deeper analysis, that allows a better understanding of relaxation processes following inner shell ionization, is possible with coincidence Auger spectroscopy. This method gives a new insight into electron correlation and allows disentangling of complex Auger electron spectra. In this paper, we present some examples related to gas phase coincidence Auger electron spectroscopy using synchrotron radiation. The detection in coincidence of an Auger electron with a threshold photoelectron presents two main advantages which are good energy resolution and high coincidence count rates. This technique has also provided new results on double Auger decay processes. A further qualitative breakthrough has been made with the development of a new experimental set-up based on a magnetic bottle time-of-flight electron spectrometer. This opens up the field of multi-electron coincidence spectroscopy and allows a most detailed analysis with characterization of all possible decay pathways following inner shell ionization.

  3. Monte-Carlo simulation of backscattered electrons in Auger electron spectroscopy. Part 1: Backscattering factor calculation

    Energy Technology Data Exchange (ETDEWEB)

    Tholomier, M.; Vicario, E.; Doghmane, N.

    1987-10-01

    The contribution of backscattered electrons to Auger electrons yield was studied with a multiple scattering Monte-Carlo simulation. The Auger backscattering factor has been calculated in the 5 keV-60 keV energy range. The dependence of the Auger backscattering factor on the primary energy and the beam incidence angle were determined. Spatial distributions of backscattered electrons and Auger electrons are presented for a point incident beam. Correlations between these distributions are briefly investigated.

  4. New approach for correction of distortions in spectral line profiles in Auger electron spectroscopy

    NARCIS (Netherlands)

    Sasse, A.G.B.M.; Wormeester, H.; Silfhout, van A.

    1988-01-01

    A new deconvolution method for Auger electron spectroscopy is presented. This method is based on a non-linear least squares minimizing routine (Levenberg-Marquardt) and global approximation using splines, solving many of the drawbacks inherent to the Van Cittert and Fourier transform based deconvolu

  5. Positron Annihilation Induced Auger Electron Spectroscopy of Inner Shell Transitions Using Time-Of Technique

    Science.gov (United States)

    Xie, Shuping; Jiang, Neng; Weiss, A. H.

    2003-03-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been shown to have unique advantages over conventional electron collision induced Auger techniques, including the ability to eliminate the secondary electron background and selectively probe the top-most atomic layer on the sample surface. Here we report on the development of a new time-of-flight (TOF) spectrometer which combines features high efficiency magnetic transport and parrallel energy measurment with high resolution by using an innovative timing method. The new TOF-PAES system, was used to make the first quantitative comparative measurements of the Auger intensities associated with the annihilation of positrons with the deep core levels (1s) of S KLL (180eV), C KLL (270eV), N KLL (360eV), and O KLL (510eV). Experimental results of Auger probabilities at outer core level (3s, 3P) of Cu M2,3VV (60eV), M1VV (105eV) are compared with the theoretical value of Jensen and Weiss. Quantitatively study the surface adsorbate process on Cu is performed and concentration changes of surface components are obtained. These results demonstrate that TOF-PAES can be used to obtain quantitative,top-layer specific, information from chemically important elements including those with relatively deep core levels (e.g. C and O).

  6. Sliding of poly(vinyl chloride) on metals studied by Auger electron spectroscopy

    Science.gov (United States)

    Pepper, S. V.

    1974-01-01

    The sliding of polyvinyl chloride on nickel, iron and S-Monel has been studied by Auger electron spectroscopy. Polymer was not transferred to the metals, rather shear appeared to take place at the interface. The metal was progressively chlorinated as the polymer made multiple passes on the surface. The thickness of this chlorine film was the order of one atomic layer. Electron-induced desorption studies indicate that the chlorine is chemisorbed to the metal. These results are interpreted as evidence for mechanically induced and/or thermal degradation of the polymer during sliding. Degradation products of HCl and Cl2 which chemisorb to the metal are evolved near the interface.

  7. Quantum-beat Auger spectroscopy

    CERN Document Server

    Zhang, Song Bin

    2015-01-01

    The concept of nonlinear quantum-beat pump-probe Auger spectroscopy is introduced by discussing a relatively simple four-level model system. We consider a coherent wave packet involving two low-lying states that was prepared by an appropriate pump pulse. This wave packet is subsequently probed by a weak, time-delayed probe pulse with nearly resonant coupling to a core-excited state of the atomic or molecular system. The resonant Auger spectra are then studied as a function of the duration of the probe pulse and the time delay. With a bandwidth of the probe pulse approaching the energy spread of the wave packet, the Auger yields and spectra show quantum beats as a function of pump-probe delay. An analytic theory for the quantum-beat Auger spectroscopy will be presented, which allows for the reconstruction of the wave packet by analyzing the delaydependent Auger spectra. The possibility of extending this method to a more complex manifold of electronic and vibrational energy levels is also discussed.

  8. Theory of Auger-electron and appearance-potential spectroscopy for interacting valence-band electrons

    Science.gov (United States)

    Nolting, W.; Geipel, G.; Ertl, K.

    1991-12-01

    A theory of Auger-electron spectroscopy (AES) and appearance-potential spectroscopy (APS) is presented for interacting electrons in a nondegenerate energy band, described within the framework of the Hubbard model. Both types of spectroscopy are based on the same two-particle spectral density. A diagrammatic vertex-correction method (Matsubara formalism) is used to express this function in terms of the one-particle spectral density. The latter is approximately determined for arbitrary temperature T, arbitrary coupling strength U/W (U, the intra-atomic Coulomb matrix element; W, the width of the ``free'' Bloch band), and arbitrary band occupations n (0QDOS) in relation to the Bloch density of states (BDOS), where, however, spontaneous magnetic order is excluded, irrespective of the band filling n. The AE (AP) spectra consist of only one structure a few eV wide (``bandlike'') which is strongly n dependent, but only slightly T dependent, being rather well approximated by a simple self-convolution of the occupied (unoccupied) QDOS. For strongly correlated electrons the Bloch band splits into two quasiparticle subbands. This leads for n1. For sufficiently strong correlations U/W additional satellites appear that refer to situations where the two excited quasiparticles (quasiholes) propagate as tightly bound pairs through the lattice without being scattered by other charge carriers. As soon as the satellite splits off from the bandlike part of the spectrum, it takes almost the full spectral weight, conveying the impression of an ``atomiclike'' AE (AP) line shape. The satellite has almost exactly the structure of the free BDOS. If the particle density n as well as the hole density 2-n exceed certain critical values determined by U/W and the BDOS ρ0(E), spontaneous ferromagnetism becomes possible in the strongly correlated electron band. The magnetic phase transition gives rise to a distinctive T dependence for the QDOS and hence also for the AE and AP line shapes

  9. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope. Specifications / Capabilities: Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  10. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  11. Electron stimulated carbon adsorption in ultra high vacuum monitored by Auger Electron Spectroscopy (AES)

    CERN Document Server

    Scheuerlein, C

    2001-01-01

    Electron stimulated carbon adsorption at room temperature (RT) has been studied in the context of radiation induced surface modifications in the vacuum system of particle accelerators. The stimulated carbon adsorption was monitored by AES during continuous irradiation by 2.5 keV electrons and simultaneous exposure of the sample surface to CO, CO2 or CH4. The amount of adsorbed carbon was estimated by measuring the carbon Auger peak intensity as a function of the electron irradiation time. Investigated substrate materials are technical OFE copper and TiZrV non-evaporable getter (NEG) thin film coatings, which are saturated either in air or by CO exposure inside the Auger electron spectrometer. On the copper substrate electron induced carbon adsorption from gas phase CO and CO2 is below the detection limit of AES. During electron irradiation of the non-activated TiZrV getter thin films, electron stimulated carbon adsorption from gas phase molecules is detected when either CO or CO2 is injected, whereas the CH4 ...

  12. The characterisation of non-evaporable getters by Auger electron spectroscopy Analytical potential and artefacts

    CERN Document Server

    Scheuerlein, C; Taborelli, M

    2002-01-01

    The surfaces of getter materials are particularly difficult to analyse because of their high chemical reactivity. The results obtained can be strongly influenced by the experimental set-up and procedures. In this paper the experimental influence on the Auger electron spectroscopy results is discussed, based on the measurements of more than 100 different non-evaporable getter (NEG) materials. There are four typical changes in the Auger electron spectra when a NEG becomes activated. The oxygen peak intensity decreases, the shape of the metal peaks changes, the carbon peak shape changes shape and intensity and a chlorine peak occurs. All these changes are affected by instrumental artefacts. The Zr-MNV peak shape changes occurring during the reduction of ZrO2 are well suited to determine the onset of NEG activation, while the slope with which the O-KLL peak intensity decreases in a certain temperature range is a better criterion for the determination of the temperature at which activation is complete. The O-KLL i...

  13. Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Stephen H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

  14. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    Science.gov (United States)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  15. Positron annihilation induced Auger and gamma spectroscopies of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.H. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States)]. E-mail: weiss@uta.edu; Fazleev, N.G. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Nadesalingam, M.P. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Mukherjee, S. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Xie, S. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Zhu, J. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Davis, B.R. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2007-02-15

    The annihilation of positrons with core electrons results in an element specific signature in the spectra of Auger-electron and annihilation gamma rays. Because a large fraction of positrons implanted at low energies become trapped just outside the surface, annihilation induced Auger and Gamma signals probe the surfaces of solids with single atomic layer depth resolution. Recent applications of positron annihilation-induced Auger electron spectroscopy (PAES) and Auger-gamma coincidence spectroscopy (AGCS) and future applications of Auger-gamma and gamma-gamma coincidence spectroscopy are discussed.

  16. Positron annihilation induced Auger and gamma spectroscopies of surfaces

    Science.gov (United States)

    Weiss, A. H.; Fazleev, N. G.; Nadesalingam, M. P.; Mukherjee, S.; Xie, S.; Zhu, J.; Davis, B. R.

    2007-02-01

    The annihilation of positrons with core electrons results in an element specific signature in the spectra of Auger-electron and annihilation gamma rays. Because a large fraction of positrons implanted at low energies become trapped just outside the surface, annihilation induced Auger and Gamma signals probe the surfaces of solids with single atomic layer depth resolution. Recent applications of positron annihilation-induced Auger electron spectroscopy (PAES) and Auger-gamma coincidence spectroscopy (AGCS) and future applications of Auger-gamma and gamma-gamma coincidence spectroscopy are discussed.

  17. Studies of films and heterostructures on Pbsub(1-x)Snsub(x)Te base by Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gas' kov, A.M.; Alenberg, V.B.; Lisina, N.G.; Drozd, I.A.; Zlomanov, V.P.; Novoselova, A.V. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-01-01

    The Auger electron spectroscopy method has been used to determine the composition of films and heterostructures on the base of Pbsub(1-x)Snsub(x)Te grown by the molecular-radiation epitaxy method on BaF/sub 2/ substrates. The excess tin concentration in a near-surface layer is revealed, the fact which is associated with oxidation of the film surface in the process of conservation. The transitional layer in PbTe-Pbsub(0.8)Snsub(0.2)Te heterostructures constitutes 300 A and it is characterized by excess tellurium concentration, which is connected with high dislocation density on the interface.

  18. Channel-resolved photo- and Auger-electron spectroscopy of halogenated hydrocarbons

    Science.gov (United States)

    Ablikim, Utuq; Kaderiya, B.; Kumarapan, V.; Kushawaha, R.; Rudenko, A.; Rolles, D.; Xiong, H.; Berrah, N.; Bomme, C.; Savelyev, E.; Kilcoyne, D.

    2016-05-01

    Inner-shell photoelectron and Auger electron spectra of polyatomic molecules such as halogenated hydrocarbons are typically hard to interpret and assign due to many overlapping states that form broad bands even in high-resolution measurements. With the help of electron-ion-ion coincidence measurements performed using the velocity map imaging technique, we are able to detect high-energy (assigning individual components of the electron spectra to specific potential surfaces and final states. In this work, we present measurements on CH3 I, CH2 IBr, and CH2 ICl molecules in the gas-phase using soft x-ray light provided by the Advanced Light Source at LBNL. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological and Biological Sciences under Award Number DE-FG02-86ER13491 (U.A., B.K., V.K., A.R., D.R.) and Award Number DE-SC0012376 (H.X., N.B.).

  19. Auger line shape and electron energy loss spectroscopy analysis of amorphous, microcrystalline, and. beta. -SiC

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J.; Mason, A.R.; Swartzlander, A.B.; Kazmerski, L.L. (Solar Energy Research Institute, Golden, CO (USA)); Saxena, N.; Fortmann, C.M.; Russell, T.W.F. (Institute of Energy Conversion, University of Delaware, Newark, DE (USA))

    1990-05-01

    Auger electron spectroscopy (AES) line shape analysis of the Si-{ital L}{sub 23}{ital VV} and C-{ital KLL} peaks has been performed in conjunction with electron energy loss spectroscopy (EELS) on Hg-sensitized photodeposited amorphous and microcyrstalline SiC films. Mixtures of SiH{sub 4}/CH{sub 3}SiH{sub 3} and SiH{sub 4}/(CH{sub 3}){sub 2}SiH{sub 2} with helium or hydrogen dilution were used for the depositions. AES line shape and EELS analyses were also performed on {beta}-SiC for comparison. Quantitative bulk compositional analysis to determine the Si and C concentrations in these films was performed with an electron microprobe (EMPA) using x-ray wavelength dispersive spectroscopy (WDS). AES and EELS results reveal the predominant Si--C bonding and relative crystallinity in the films as a function of deposition parameters, which includes the gas mixture, pressure, and H{sub 2}/He dilution. These parameters determine the H radical flux during growth, which leads to changes in the film structure.

  20. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  1. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  2. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    Science.gov (United States)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  3. Silicidation in Ni/Si thin film system investigated by X-ray diffraction and Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Amarendra, G. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: amar@igcar.gov.in; Kalavathi, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gopalan, Padma [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kamruddin, M. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Tyagi, A.K. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sastry, V.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sundar, C.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-02-15

    Silicide formation induced by thermal annealing in Ni/Si thin film system has been investigated using glancing incidence X-ray diffraction (GIXRD) and Auger electron spectroscopy (AES). Silicide formation takes place at 870 K with Ni{sub 2}Si, NiSi and NiSi{sub 2} phases co-existing with Ni. Complete conversion of intermediate silicide phases to the final NiSi{sub 2} phase takes place at 1170 K. Atomic force microscopy measurements have revealed the coalescence of pillar-like structures to ridge-like structures upon silicidation. A comparison of the experimental results in terms of the evolution of various silicide phases is presented.

  4. AES (auger electron spectroscopy) and EELS (electron energy loss spectroscopy) analysis of TlBaCaCuO/sub x/ thin films at 300 K and at 100 K

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J.; Swartzlander, A.; Kazmerski, L.L.; Kang, J.H.; Kampwirth, R.T.; Gray, K.E.

    1988-10-01

    Auger electron spectroscopy line-shape analysis of the Tl(NOO), Ba(MNN), Ca(LMM), Cu(LMM) and O(KLL) peaks has been performed in conjunction with electron energy loss spectroscopy (EELS) on magnetron sputter deposited TlBaCaCuO/sub x/ thin films exhibiting a superconducting onset at 110K with zero resistance at 96K. AES and EELS analyses were performed at 300K and at 100K. Changes in the Auger line shapes and in the EELS spectra as the temperature is lowered below the critical point are related to changes in the electronic structure of states in the valence band (VB). Bulk and surface plasmon peaks are identified in the EELS spectra along with features due to core level transitions. Electron beam and ion beam induced effects are also addressed. 13 refs., 3 figs., 1 tab.

  5. Segregation Study of the β phase on the Al-Li Alloy Surface using Auger Electron Spectroscopy

    Science.gov (United States)

    Belkhiat, S.; Keraghel, F.

    2009-11-01

    Auger Electron spectroscopy (AES) has been used to study lithium segregation on Al-3.49wt%-Li alloy surface. In this work, the surface atomic composition as a function of temperature was followed. In our previous works, the activation energy of Li segregation has been determined experimentally being in agreement with the resulted theoretical value. In this paper, one showed that the segregation energy of Li on the surface depends of the crystalline structure and of the Li content in the Al-Li alloy matrix. β-AlLi phase on the alloy surface, used in the power sources for the propulsion of electrical vehicles and for stocking energy, is obtained by progressive heating. We showed that the segregated lithium on the alloy surface is reversible as a function of decreasing temperature and consequently β-AlLi phase is converted in α-AlLi phase. On the other hand, the brutal heating of the sample drives to the conversion of the α-AlLi phase to β-AlLi phase and stabilizes the surface towards other segregation; therefore the conversion of β-AlLi phase to α-AlLi phase is irreversible.

  6. Determination of the surface composition of binary alloys by Auger electron spectroscopy: the gold--silver and gold--tin systems

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, S.H.

    1976-11-01

    Auger electron spectroscopy was exploited as a means of determining the surface phase diagram of Au--Ag and Au--Sn alloys. Polycrystalline Au--Ag alloy foils of a wide range of composition (atom fractions of 0.15 to 0.97) were cleaned. The intensities of the Auger emission from transitions at several energies were measured and normalized to those of pure Au and Ag. The surface monolayer compositions of the alloys were determined. The Auger data was consistent with enrichment of Ag in the surface monolayer. Ingots of Au--Sn with bulk composition between 50 and 99 at % Au were prepared. The bulk structure and composition of these complex alloys were characterized by electron microprobe, x-ray diffraction, x-ray fluorescence and optical microscopy. The samples were cleaned and equilibrated in ultra high vacuum and the intensities of the Auger emission from transitions at several energies were measured and normalized to those of pure Au and pure Sn. Using the intensity model, the normalized Auger intensity ratios were used to determine the surface monolayer composition. Enrichment of Sn was found in the surface monolayer for disordered zeta and ..cap alpha.. phase alloys. The highly ordered delta (50.0 at % Au) phase alloy was found to exhibit no surface segregation. The surfaces of two phase alloys (delta and zeta) were found to be describable by the lever rule. The results were interpreted in terms of the bulk structures, ordering properties, and driving force for segregation of the alloys. The effects of ion sputtering upon the surface of Au--Ag and Au--Sn alloys were also investigated.

  7. Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Takahiro; Suda, Yoshiyuki [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Hirose, Nobumitsu; Kasamatsu, Akifumi; Mimura, Takashi; Matsui, Toshiaki [National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan)

    2015-02-02

    The mechanism of Sn surface segregation during the epitaxial growth of GeSn on Si (001) substrates was investigated by Auger electron spectroscopy and energy dispersive X-ray spectroscopy. Sn surface segregation depends on the growth temperature and Sn content of GeSn layers. During Sn surface segregation, Sn-rich nanoparticles form and move on the surface during the deposition, which results in a rough surface owing to facet formation. The Sn-rich nanoparticles moving on the surface during the deposition absorb Sn from the periphery and yield a lower Sn content, not on the surface but within the layer, because the Sn surface segregation and the GeSn deposition occur simultaneously. Sn surface segregation can occur at a lower temperature during the deposition compared with that during postannealing. This suggests that the Sn surface segregation during the deposition is strongly promoted by the migration of deposited Ge and Sn adatoms on the surface originating from the thermal effect of substrate temperature, which also suggests that limiting the migration of deposited Ge and Sn adatoms can reduce the Sn surface segregation and improve the crystallinity of GeSn layers.

  8. X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses of the initial growth mechanism of CdTe layers on (100) GaAs by metalorganic vapor phase epitaxy

    OpenAIRE

    1990-01-01

    X‐ray photoelectron spectroscopy and Auger electron spectroscopy measurements were performed to investigate the initial growth mechanism and the selection of growth orientations of CdTe layers grown on (100) GaAs by metalorganic vapor phase epitaxy (MOVPE). The surface stoichiometry of the GaAs substrate was found to recover when annealed in a H2 flow atmosphere (500°C, 5 min), although the surface was initially in an As‐rich condition after chemical etching by H2SO4@B:H2O2@B:H2O=5@B:1@B:1. N...

  9. DESORPTION OF Te CAPPING LAYER FROM ZnTe (100: AUGER SPECTROSCOPY, LOW-ENERGY ELECTRON DIFFRACTION AND SCANNING TUNNELING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    K. K. Sossoe

    2016-01-01

    Full Text Available The influence of the annealing temperature to desorb a protective Te capping layer of the zinc telluride (ZnTe (100 surface was investigated. The surface reconstruction of the ZnTe (100 upon the removal of a Te capping layer grown by the molecular beam epitaxy was characterized by different methods. Auger spectroscopy brought out the chemical composition of the surface before and after annealing; the Low-energy electron diffraction (LEED gave information about the crystallographic structure. The surface crystallographic configurations of tellurium Te (c (2x2 and Te (c (2x1 are confirmed by scanning tunneling microscopy (STM. Such a study reveals a phase transition from a rich-Te to a poor-Te surface as the annealing temperature increases. 

  10. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: Total reflection, standing-wave excitation, and resonant effects

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.-H. [IBM Almaden Research Center, San Jose, California 95120 (United States); Gray, A. X. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kaiser, A. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Peter Grunberg Institute, PGI-6, Forschungszentrum Juelich, 52425 Juelich (Germany); Mun, B. S. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Applied Physics, Hanyang University, Ansan, Gyeonggi 426-791 (Korea, Republic of); Sell, B. C. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Department of Physics, Otterbein College, Westerville, Ohio 43081 (United States); Kortright, J. B. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Fadley, C. S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States)

    2013-02-21

    We present a general theoretical methodology and related open-access computer program for carrying out the calculation of photoelectron, Auger electron, and x-ray emission intensities in the presence of several x-ray optical effects, including total reflection at grazing incidence, excitation with standing-waves produced by reflection from synthetic multilayers and at core-level resonance conditions, and the use of variable polarization to produce magnetic circular dichroism. Calculations illustrating all of these effects are presented, including in some cases comparisons to experimental results. Sample types include both semi-infinite flat surfaces and arbitrary multilayer configurations, with interdiffusion/roughness at their interfaces. These x-ray optical effects can significantly alter observed photoelectron, Auger, and x-ray intensities, and in fact lead to several generally useful techniques for enhancing surface and buried-layer sensitivity, including layer-resolved densities of states and depth profiles of element-specific magnetization. The computer program used in this study should thus be useful for a broad range of studies in which x-ray optical effects are involved or are to be exploited in next-generation surface and interface studies of nanoscale systems.

  11. Photoelectron-Auger electron coincidence study for condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, G. [Department of Physics and Unita' INFM, University Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)]. E-mail: stefani@fis.uniroma3.it; Gotter, R. [National Laboratory TASC-INFM, Area Science Park, SS 14 Km 163.5, Basovizza, I-34012 Trieste (Italy); Ruocco, A. [Department of Physics and Unita INFM, University Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Offi, F. [Department of Physics and Unita INFM, University Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Pieve, F. Da [Department of Physics and Unita INFM, University Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Iacobucci, S. [IMIP-CNR Area della Ricerca di Roma, via Salaria Km 29, 3 Montelibretti (Italy); Morgante, A. [National Laboratory TASC-INFM, Area Science Park, SS 14 Km 163.5, Basovizza, I-34012 Trieste (Italy); Verdini, A. [National Laboratory TASC-INFM, Area Science Park, SS 14 Km 163.5, Basovizza, I-34012 Trieste (Italy); Liscio, A. [IMIP-CNR Area della Ricerca di Roma, via Salaria Km 29, 3 Montelibretti (Italy); Yao, H. [Department of Physics and Astronomy and Laboratory of Surface Modification, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08855 (United States); Bartynski, R.A. [Department of Physics and Astronomy and Laboratory of Surface Modification, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08855 (United States)

    2004-12-01

    Advances in materials science have produced a wide array of new solid-state systems with tunable properties and previously unattainable combinations of phenomena that hold the promise of entirely new approaches to technological applications. Invariably, these new materials are increasingly complex and include a large number of constituents in a variety of chemical states. Entirely new theoretical and experimental approaches are needed to gain the insights necessary for intelligent engineering of these materials. In the past 20 years, a steadily increasing number of electron-electron coincidence experiments on atoms and molecules have demonstrated the capability of investigating complicated systems with sensitivity and specificity well beyond the limits imposed by conventional electron spectroscopies. Over the past decade or so, Auger-photoelectron coincidence spectroscopy (APECS) has emerged as a powerful technique for obtaining detailed information about complex materials systems. Moreover, the recent advent of angle-resolved (AR)-APECS has introduced a new level of discrimination in studying the distribution of electrons photoemitted from complex systems. In this review, we describe the basic ideas behind APECS and discuss a study of the SiO{sub 2} system as an example of the unique information this technique can provide. We then introduce the concept of AR-APECS, explain its novel state and angular momentum selectivity that can be used to disentangle information about complex systems that is hidden to conventional spectroscopies. Examples of AR-APECS measurements from Cu, Ge, and graphite that exemplify the capabilities of this technique are presented.

  12. Studies of liquid metal surfaces using Auger spectroscopy

    Science.gov (United States)

    Hardy, S.; Fine, J.

    1982-01-01

    The surface composition of liquid gallium-tin alloys is studied in an Auger electron spectrometer as a function of bulk composition and temperature. The sessile drop samples are cleaned by argon ion bombardment sputtering of the liquid. This technique produces surfaces that are entirely free of impurities within the sensitivity of the spectrometer and remain so for many days. Tin is found to be strongly adsorbed at the liquid-vacuum interface. Surface concentrations based on Auger measurements are found to be in reasonably good agreement with values calculated from surface tension measurements interpreted in terms of a monolayer depth distribution model for the adsorbed tin.

  13. Experimental evidence for extreme surface sensitivity in Auger-Photoelectron Coincidence Spectroscopy (APECS) from solids

    Energy Technology Data Exchange (ETDEWEB)

    Liscio, A.; Gotter, R.; Ruocco, A.; Iacobucci, S.; Danese, A.G.; Bartynski, R.A.; Stefani, G

    2004-07-01

    Core hole creation and subsequent Auger decay processes are studied with unprecedented discrimination by Auger-Photoelectron Coincidence Spectroscopy (APECS). Early works in this field have already pointed out the intrinsic surface sensitivity of these experiments. However, it was not until recently that a model calculation was developed to quantitatively evaluate it. Here we present the first attempt to experimentally establish an effective target thickness for such experiments. The angular distribution of 3p{sub 3/2} photoelectron with kinetic energy of 160 eV is measured in coincidence with the M{sub 3}VV Auger electron with kinetic energy of 55 eV on a Cu (1 1 1) surface. Coincidence and non-coincidence photoelectron angular distributions display differences that, to large extent, are explained by confining the source of the coincident signal within the first two layers of Cu target, thus establishing an experimental upper limit for the effective target thickness of the APECS experiment.

  14. Mg diffusion in K(Ta{sub 0.65}Nb{sub 0.35})O{sub 3} thin films grown on MgO evidenced by Auger electron spectroscopy investigation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Q.; Bouquet, V.; Demange, V.; Deputier, S. [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Universite Europeenne de Bretagne (France); Wyczisk, F.; Garry, G.; Ziaie, A. [Thales Research and Technology, rd. 128, 91767 Palaiseau Cedex (France); Guilloux-Viry, M., E-mail: maryline.guilloux-viry@univ-rennes1.fr [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Universite Europeenne de Bretagne (France)

    2011-09-01

    The diffusion of Mg in pulsed laser deposited K(Ta{sub 0.65}Nb{sub 0.35})O{sub 3} thin films epitaxially grown on (1 0 0) MgO single crystal substrate were investigated by Auger electron spectroscopy (AES). A diffusion of Mg from the substrate into the whole thickness (400 nm) of the as-deposited K(Ta{sub 0.65}Nb{sub 0.35})O{sub 3} films was observed with an accumulation of Mg at the surface. Ex situ post-annealing (750 deg. C/2 h) has led to a homogeneous distribution of Mg in all the ferroelectric coating. This strong reaction between film and substrate promotes a doping effect, responsible for the reduction of K(Ta{sub 0.65}Nb{sub 0.35})O{sub 3} dielectric losses in comparison with films grown on other substrates.

  15. Electron Spectroscopy

    Science.gov (United States)

    Siegbahn, Kai

    Wilhelm Conrad Röntgen's discovery of X radiation in 1895 in Wörzburg resulted in an immediate break-through not only in physics but also in Society, the latter mainly because of its sensational radiological applications. Within a short time it furthermore indirectly led to the discovery of radioactivity by Henri Becquerel. The discovery of X radiation opened the gate to modern atomic physics, and radioactivity to nuclear physics. Later on, the discovery of X-ray diffraction by Laue, Friedrich and Knipping in 1912 initiated the field of X-ray spectroscopy with its fundamental contributions to atomic and crystal structures. Secondary electrons were early observed in the scattered radiation when X-rays were hitting a sample. The development of the corresponding electron spectroscopy had to wait a much longer time for its maturity. A survey of electron spectroscopy is presented.

  16. Surface and subsurface oxidation of Mo2C/Mo(100): low-energy ion-scattering, auger electron, angle-resolved X-ray photoelectron, and mass spectroscopy studies.

    Science.gov (United States)

    Ovári, László; Kiss, János; Farkas, Arnold P; Solymosi, Frigyes

    2005-03-17

    The interaction of oxygen with a carburized Mo(100) surface was investigated at different temperatures (300-1000 K). The different information depths of low-energy ion-scattering (LEIS) spectroscopy, with topmost layer sensitivity, Auger electron spectroscopy (AES), and angle-resolved X-ray photoelectron spectroscopy (ARXPS) allowed us to discriminate between reactions on the topmost layer and subsurface transformations. According to ARXPS measurements, a carbide overlayer was prepared by the high-temperature decomposition of C(2)H(4) on Mo(100), and the carbon distribution proved to be homogeneous with a Mo(2)C stoichiometry down to the information depth of XPS. O(2) adsorbs dissociatively on the carbide layer at room temperature. One part of the chemisorbed oxygen is bound to both C and Mo sites, indicated by LEIS. Another fraction of oxygen atoms probably resides in the hollow sites not occupied by C. The removal of C from the outermost layer by O(2), in the form of CO, detected by mass spectroscopy (MS), was observed at 500-600 K. The carbon-depleted first layer is able to adsorb more oxygen compared to the Mo(2)C/Mo(100) surface. Applying higher doses of O(2) at 800 K results in the inward diffusion of O and the partial oxidation of Mo atoms. This process, however, is not accompanied by the removal of C from subsurface sites. The depletion of C from the bulk starts only at 900 K (as shown by MS, AES, and XPS), very probably by the diffusion of C to the surface followed by its reaction with oxygen. At T(ads) = 1000 K, the carbon content of the sample, down to the information depth of XPS, decreased further, accompanied by the attenuation of the C concentration gradient and a substantially decreased amount of oxygen.

  17. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  18. Chemical-state imaging of Li using scanning Auger electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Nobuyuki, E-mail: ISHIDA.Nobuyuki@nims.go.jp [Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Fujita, Daisuke [Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Advanced Nanocharacterization Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-02-15

    Highlights: •Scanning Auger electron microscopy is used to image chemical states of Li. •The combined use of AES and EELS signals for the elemental mapping is powerful. •Distribution corresponding to metallic and oxidized states of Li can be imaged. -- Abstract: The demand for measurement tools to detect Li with high spatial resolution and precise chemical sensitivity is increasing with the spread of lithium-ion batteries (LIBs) for use in a wide range of applications. In this work, scanning Auger electron microscopy (SAM) is used to image chemical states of a partially oxidized Li surface on the basis of the Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS) data obtained during an oxidation process of a metal Li. We show that distribution of metallic and oxidized states of Li is clearly imaged by mapping the intensity of the corresponding AES and EELS peaks. Furthermore, a tiny difference in the extent of oxidation can be distinguished by comparing the elemental map of an AES peak with that of an EELS peak owing to the different behaviors of those signals to the chemical states of Li.

  19. Some strategies for quantitative scanning Auger electron microscopy

    Science.gov (United States)

    Browning, R.; Peacock, D. C.; Prutton, M.

    1985-01-01

    The general applicability of power law forms of the background in electron spectra is pointed out and exploited for background removal from under Auger peaks. This form of B(E) is found to be extremely sensitive to instrumental alignment and to fault-free construction - an observation which can be used to set up analyser configurations in an accurate way. Also, differences between N(E) and B(E) can be used to derive a spectrometer transmission function T(E). The questions of information density in an energy-analysing spatially-resolving instrument are addressed after reliable instrumental characterization has been established. Strategies involving ratio histograms, showing the population distribution of the ratio of a pair of Auger peak heights, composition scatter diagrams and windowed imaging are discussed and illustrated.

  20. Auger electron spectroscopic study of CO{sub 2} adsorption on Zircaloy-4 surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stojilovic, N.; Farkas, N. [Institute for Teaching and Learning and Departments of Physics and Chemistry, University of Akron, Akron, OH 44325-6236 (United States); Ramsier, R.D. [Institute for Teaching and Learning and Departments of Physics and Chemistry, University of Akron, Akron, OH 44325-6236 (United States)], E-mail: rex@uakron.edu

    2008-02-28

    We investigate the adsorption of CO{sub 2} onto Zircaloy-4 (Zry-4) surfaces at 150, 300 and 600 K using Auger electron spectroscopy (AES). Following CO{sub 2} adsorption at 150 K the graphitic form of carbon is detected, whereas upon chemisorption at 300 and 600 K we detect the carbidic phase. As the adsorption temperature is increased, the carbon Auger signal increases, whereas the oxygen signal decreases. Adsorption at all three temperatures results in a shift of the Zr Auger features, indicating surface oxidation. The effect of adsorbed CO{sub 2} on the Zr(MVV) and Zr(MNV) transitions depends on adsorption temperature and is less pronounced at higher temperatures. On the other hand, changes in the Zr(MNN) feature are similar for all three adsorption temperatures. The changes in the Zr Auger peak shapes and positions are attributed to oxygen from dissociated CO{sub 2}, with the differences observed at various temperatures indicative of the diffusion of oxygen into the subsurface region.

  1. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  2. Ultrafast Molecular Three-Electron Collective Auger Decay

    Science.gov (United States)

    Feifel, Raimund

    2016-06-01

    A new class of many-electron Auger transitions in atoms was initially proposed over 40 years ago, but the first tentative evidence for its real existence was only adduced by Lee et al. in 1993, on the basis of the resonant Auger spectrum of Kr. Using a multi-electron coincidence technique with synchrotron radiation, we unambiguously showed very recently that the transition suggested by Lee et al. in Kr really does take place, but with a rather small branching ratio. Related inter-atomic three-electron transitions in rare gas clusters were recently predicted by Averbukh and Kolorenc and demonstrated by Ouchi et al.. From consideration of the energy levels involved it seems that the basic three-electron process could occur in molecules too, wherever a double inner-valence shell vacancy lies at a higher energy than the molecular triple ionisation onset. Experiments on CH_3F reveal for the first time the existence of this new decay pathway there, and calculations show that despite its three-electron nature, its effective oscillator strength is orders of magnitudes higher than in atoms, allowing an efficient competition with both molecular dissociation and two-electron decay channels on the ultrafast time scale. The dramatic enhancement of the molecular three-electron Auger transition can be explained in terms of a partial breakdown of the molecular orbital picture of ionisation. We predict that the collective decay pathway will be significant in a wide variety of heteroatomic molecules ionised by extreme UV and soft X-rays, particularly at Free-Electron-Lasers where double inner-shell vacancies can be created efficiently by two-photon transitions. G.N. Ogurtsov et al., Sov. Phys. Tech. Phys. 15, 1656 (1971) and V.V. Afrosimov et al., JETP Lett. 21, 249 (1975). I. Lee, R. Wehlitz, U. Becker and M. Ya. Amusia, J. Phys. B: At. Mol. Opt. Phys. 26, L41 (1993). J.H.D. Eland, R.J. Squibb, M. Mucke, S. Zagorodskikh, P. Linusson, and R. Feifel, New J. Phys. 17, 122001 (2015). V

  3. Digital Electronics for the Pierre Auger Observatory AMIGA Muon Counters

    CERN Document Server

    Wainberg, O; Platino, M; Sanchez, F; Suarez, F; Lucero, A; Videla, M; Wundheiler, B; Melo, D; Hampel, M; Etchegoyen, A

    2013-01-01

    The "Auger Muons and Infill for the Ground Array" (AMIGA) project provides direct muon counting capacity to the Pierre Auger Observatory and extends its energy detection range down to 0.3 EeV. It currently consists of 61 detector pairs (a Cherenkov surface detector and a buried muon counter) distributed over a 23.5 km2 area on a 750 m triangular grid. Each counter relies on segmented scintillator modules storing a logical train of '0's and '1's on each scintillator segment at a given time slot. Muon counter data is sampled and stored at 320 MHz allowing both the detection of single photoelectrons and the implementation of an offline trigger designed to mitigate multi-pixel PMT crosstalk and dark rate undesired effects. Acquisition is carried out by the digital electronics built around a low power Cyclone III FPGA. This paper presents the digital electronics design, internal and external synchronization schemes, hardware tests, and first results from the Observatory.

  4. Investigation of inhomogeneities in Ga, Cd and Zn - doped Pbsub(1-x)Snsub(x)Te (x=0,00 and 0,20) crystals by the method of Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gas' kov, A.M.; Lisina, N.G.; Zlomanov, V.P.; NovoseloVa, A.V. (Moskovskij Gosudarstvennyj Univ. (USSR))

    An Auger electron microanalysis of doped crystal Pbsub(1-x)Snsub(x)Te is made using the Jamp-10 Jeol device with an analyser of cycindric mirror type. The crystals have been doped with Ga, Cd and Zn both in the process of growing from vapour and by means of diffusion annealing. Auger electron spectra have been studied in high vacuum (10/sup -9/ - 10/sup -10/ mm Hg) in the range of 70-1200 eV under the following conditions: the energy of electron beam is 5 keV, the current across the sample is 10/sup -8/ - 10/sup -9/ A. A conclusion is made that PbTe and Pbsub(0,8)Snsub(0,2)Te crystals doped by Ga, Cd and Zn both in the process of growing and by means of the diffusion annealing are characterized by inhomogeneous distribution of impurities. Gallium segregations in the vicinity of low-angle boundaries and dislocations in PbTe (Ga) tin- and lead-enriched inclusions in Pbsub(0,8)Snsub(0,2)Te (Cd), and ZnTe inclusions in Pbsub(0,8)Snsub(0,2)Te (Zn) samples are found.

  5. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide

    Science.gov (United States)

    Jolley, John G.; Geesey, Gill G.; Hankins, Michael R.; Wright, Randy B.; Wichlacz, Paul L.

    1989-08-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 2% alginic acid polysaccharide aqueous solution. Pre- and post-exposure characterization were done by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that some of the copper was oxidized by the alginic acid solution. Some of the copper was removed from the Cu/Ge interface and incorporated into the polymer matrix. Thus, biocorrosion of copper was exhibited by the alginic acid polysaccharide.

  6. Angle-Resolved Auger Spectroscopy as a Sensitive Access to Vibronic Coupling

    Science.gov (United States)

    Knie, A.; Patanen, M.; Hans, A.; Petrov, I. D.; Bozek, J. D.; Ehresmann, A.; Demekhin, Ph. V.

    2016-05-01

    In the angle-averaged excitation and decay spectra of molecules, vibronic coupling may induce the usually weak dipole-forbidden transitions by the excitation intensity borrowing mechanism. The present complementary theoretical and experimental study of the resonant Auger decay of core-to-Rydberg excited CH4 and Ne demonstrates that vibronic coupling plays a decisive role in the formation of the angle-resolved spectra by additionally involving the decay rate borrowing mechanism. Thereby, we propose that the angle-resolved Auger spectroscopy can in general provide very insightful information on the strength of the vibronic coupling.

  7. Inner-shell ionization of rotating linear molecules in the presence of spin-dependent interactions: Entanglement between a photoelectron and an auger electron

    Science.gov (United States)

    Ghosh, R.; Chandra, N.; Parida, S.

    2009-03-01

    This paper reports results of a theoretical study of angle- and spin-resolved photo-Auger electron coincident spectroscopy in the form of entanglement between these two particles emitted from a linear molecule. First, we develop an expression for a density matrix needed for studying spin-entanglement between a photoelectron and an Auger electron. In order to properly represent the molecular symmetries, nuclear rotation, and the spin-dependent interactions (SDIs), we have used symmetry adapted wavefunctions in Hund’s coupling scheme (a) for all the species participating in this two-step process. This expression shows that spin-entanglement in a photo-Auger electron pair in the presence of SDIs very strongly depends upon, among other things, polarization of the ionizing radia- tion, directions of motion and of spin polarization of two ejected electrons, and the dynamics of photoionization and of Auger decay. We have applied this expression, as an example, to a generic linear molecule in its J0, M0 = 0 state. This model calculation clearly brings out the salient features of the spin-entanglement of a photo-Auger electron pair in the presence of the SDIs.

  8. Inner-shell ionization of rotating linear molecules in the presence of spin-dependent interactions: Entanglement between a photoelectron and an Auger electron

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, R.; Chandra, N.; Parida, S. [Indian Institute of Technology, Dept. of Physics and Meteorology, Kharagpur (India)

    2009-03-15

    This paper reports results of a theoretical study of angle- and spin-resolved photo-Auger electron coincident spectroscopy in the form of entanglement between these two particles emitted from a linear molecule. First, we develop an expression for a density matrix needed for studying spin-entanglement between a photoelectron and an Auger electron. In order to properly represent the molecular symmetries, nuclear rotation, and the spin-dependent interactions (SDIs), we have used symmetry adapted wavefunctions in Hund's coupling scheme (a) for all the species participating in this two-step process. This expression shows that spin-entanglement in a photo-Auger electron pair in the presence of SDIs very strongly depends upon, among other things, polarization of the ionizing radiation, directions of motion and of spin polarization of two ejected electrons, and the dynamics of photoionization and of Auger decay. We have applied this expression, as an example, to a generic linear molecule in its J{sub 0}, M{sub 0} = 0 state. This model calculation clearly brings out the salient features of the spin-entanglement of a photo-Auger electron pair in the presence of the SDIs. (authors)

  9. High-resolution Surface Analysis by Microarea Auger Spectroscopy: Computerization and Characterization

    Science.gov (United States)

    Browning, R.

    1986-01-01

    A custom scanning Auger electron microscope (SAM) capable of introducing a 3-5 keV electron beam of several nA into a 30 nm diameter sample area was fitted with a sample introduction system and was fully computerized to be used for materials science research. The method of multispectral Auger imaging was devised and implemented. The instrument was applied to various problems in materials science, including the study of the fiber/matrix interface in a SiC reinforced titanium alloy, the study of SiC whiskers in Al alloy 2124 (in cooperation with NASA-Langley), the study of NiCrAl superalloys (in collaboration with NASA-Lewis), the study of zircalloy specimens (in collaboration with Stanford University), and the microstructure of sintered SiC specimens (in collaboration with NASA-Lewis). The report contains a number of manuscripts submitted for publication on these subjects.

  10. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission

    Science.gov (United States)

    McMillan, Dayton D.; Maeda, Junko; Bell, Justin J.; Genet, Matthew D.; Phoonswadi, Garrett; Mann, Kelly A.; Kraft, Susan L.; Kitamura, Hisashi; Fujimori, Akira; Yoshii, Yukie; Furukawa, Takako; Fujibayashi, Yasuhisa; Kato, Takamitsu A.

    2015-01-01

    Radioactive copper (II) (diacetyl-bis N4-methylthiosemicarbazone) (Cu-ATSM) isotopes were originally developed for the imaging of hypoxia in tumors. Because the decay of a 64Cu atom is emitting not only positrons but also Auger electrons, this radionuclide has great potential as a theranostic agent. However, the success of 64Cu-ATSM internal radiation therapy would depend on the contribution of Auger electrons to tumor cell killing. Therefore, we designed a cell culture system to define the contributions to cell death from Auger electrons to support or refute our hypothesis that the majority of cell death from 64Cu-ATSM is a result of high-LET Auger electrons and not positrons or other low-LET radiation. Chinese hamster ovary (CHO) wild type and DNA repair–deficient xrs5 cells were exposed to 64Cu-ATSM during hypoxic conditions. Surviving fractions were compared with those surviving gamma-radiation, low-LET hadron radiation, and high-LET heavy ion exposure. The ratio of the D10 values (doses required to achieve 10% cell survival) between CHO wild type and xrs5 cells suggested that 64Cu-ATSM toxicity is similar to that of high-LET Carbon ion radiation (70 keV/μm). γH2AX foci assays confirmed DNA double-strand breaks and cluster damage by high-LET Auger electrons from 64Cu decay, and complex types of chromosomal aberrations typical of high-LET radiation were observed after 64Cu-ATSM exposure. The majority of cell death was caused by high-LET radiation. This work provides strong evidence that 64Cu-ATSM damages DNA via high-LET Auger electrons, supporting further study and consideration of 64Cu-ATSM as a cancer treatment modality for hypoxic tumors. PMID:26251463

  11. Chirped Auger electron emission due to field-assisted post-collision interaction

    Directory of Open Access Journals (Sweden)

    Bonitz M.

    2013-03-01

    Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.

  12. Simulation of molecular Auger spectra using a two-electron Dyson propagator

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y.; Nishida, M.; Lim, F.H.; Ida, T., E-mail: ida@se.kanazawa-u.ac.jp; Mizuno, M.

    2016-02-15

    Highlights: • Auger electron spectra (AES) simulation using a new two-electron Dyson propagator. • Double ionization potentials can be accurately and efficiently computed. • The proposal method is useful for belonging peaks in AES of molecule. - Abstract: In order to simulate Auger electron spectra (AES), we propose the use of the two-electron Dyson propagator with the shifted denominator approximation (SD2). The double ionization potentials (DIPs) of molecules calculated using the SD2 method have shown good agreement with experimental data. This method can be used to calculate each DIP separately, and reducing the matrix dimensionality into that of only a two-hole configurations. We carried out AES simulations of water (H{sub 2}O), ethylene (C{sub 2}H{sub 4}), and formaldehyde (H{sub 2}CO) molecules and compared with the observed spectra. Furthermore Auger line shapes of glycine and hydrated glycine molecules were simulated, it found out that the peaks of nitrogen K-LL Auger were broadened due to hydration. From these results, we conclude that the SD2 method is very useful for the calculation of DIPs to investigate the properties of a double ionized molecule.

  13. Surface sensitivity effects with local probe scanning Auger-scanning electron microscopy

    NARCIS (Netherlands)

    Van Agterveld, DTL; Palasantzas, G; De Hosson, JTM; Bentley, J; Allen, C; Dahmen, U; Petrov,

    2001-01-01

    Ultra-high-vacuum segregation studies on in-situ fractured Cu-Sb alloys were performed in terms of nanometer scale scanning Auger/Electron microscopy. S contamination leads to the formation Of Cu2S precipitates which, upon removal due to fracture, expose pits with morphology that depends on the prec

  14. Electron energy-loss spectroscopy study of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, N.A.; Fisher, R.F.; Asher, S.E.; Kazmerski, L.L.

    1987-07-01

    Electron energy-loss spectroscopy is used to study hydrogenated amorphous silicon (a-Si:H). Core-level and plasma excitations were examined as a function of hydrogen content. This technique and its interpretation reveals a consistent picture of the electron excitations within this important material. The a-Si:H thin films were fabricated by rf sputtering. Their hydrogen concentrations ranged from 0% to 15%. Hydrogen content was determined by infrared spectroscopy and secondary ion mass spectroscopy. X-ray photoelectron spectroscopy and inspection of the silicon Auger-KLL peak confirmed the silicon core levels.

  15. Calculations of energies and absolute intensities of Auger electrons and X-rays arising from electron capture decay

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chun-Mei; WU Zhen-Dong; HUANG Xiao-Long

    2005-01-01

    Calculations of energies and absolute intensities of Auger electron and X-ray arising from electron capture are introduced briefly. The calculation codes and main process are also presented. The application is also given by taking 55Fe ε decay as an example.

  16. Electronic Spectroscopy & Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mark Maroncelli, Nancy Ryan Gray

    2010-06-08

    The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

  17. Site-selective resonant Auger spectroscopy of iso-dichloroethylene at the carbon K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, D.; Travnikova, O. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Synchrotron SOLEIL, l' Orme des Merisiers, Saint-Aubin, FR-91192 Gif-sur-Yvette Cedex (France); Bao, Z. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Guimaraes, F.F.; Costa, M.S. da [Institute of Chemistry, Federal University of Goias, CP 131 CEP 74001-970 Goiania, GO (Brazil); Velkov, Y. [Theoretische Chemie, PCI, Universitaet Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany); Sisourat, N.; Carniato, S.; Simon, M. [Universite Pierre et Marie Curie, Laboratoire de Chimie Physique, Matiere et Rayonnement (UMR7614), FR-75231 Paris Cedex 05 (France); Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique, Matiere et Rayonnement (UMR7614), FR-75231 Paris Cedex 05 (France); Piancastelli, M.N., E-mail: Maria-Novella.Piancastelli@fysik.uu.se [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Universite Pierre et Marie Curie, Laboratoire de Chimie Physique, Matiere et Rayonnement (UMR7614), FR-75231 Paris Cedex 05 (France); Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique, Matiere et Rayonnement (UMR7614), FR-75231 Paris Cedex 05 (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We provide detailed results on electron decay following core excitations to two carbon atoms to the LUMO in different chemical environments to the LUMO in CH{sub 2}=CCl{sub 2}. Black-Right-Pointing-Pointer The experimental results are compared with high-quality theoretical calculations. Black-Right-Pointing-Pointer We report calculated valence spectra in the ground-state, C (CH{sub 2}) and C (CCl{sub 2}) core-excited states. -- Abstract: This study focuses on the two C1s-to-LUMO (lowest unoccupied molecular orbital) excitations of the iso-dichloroethylene (H{sub 2}C=CCl{sub 2}) and the subsequent Auger decay. We investigate the effect of the two different carbon core excitations on the population of the cation produced after electronic relaxation. The resonant Auger spectra are interpreted by comparison to the valence shells photoionization spectrum and with the help of theoretical calculations. Several consequences of the core-hole localization on the electronic decay are observed. In particular, the resonant excitation of the C1s(CH{sub 2}) to the LUMO leads to a large intensity increase in the region of the first satellite state, whereas no dramatic changes are observed for the C1s(CCl{sub 2}) excitation.

  18. Doppler effect in fluorine K-Auger line produced in electron-induced core ionization of SF6.

    Science.gov (United States)

    Mondal, S; Singh, R K; Shanker, R

    2006-01-21

    An experimental evidence is reported on the observation of the Doppler effect in fluorine K-Auger line emitted from a core-ionized SF6 molecule under an impact of 16 keV electrons. The emitting source of the Auger line is found to acquire a kinetic energy of 4.7+/-0.3 keV. We propose that such large energy is released from the Coulomb repulsion taking place between F+ and SF5+ fragment ions under influence of an intense focusing field of the incident electrons. In the presence of the Coulomb field of these ions, the Auger line obtains a polarization P = 76%+/-7%.

  19. Techniques for the correction of topographical effects in scanning Auger electron microscopy

    Science.gov (United States)

    Prutton, M.; Larson, L. A.; Poppa, H.

    1983-01-01

    A number of ratioing methods for correcting Auger images and linescans for topographical contrast are tested using anisotropically etched silicon substrates covered with Au or Ag. Thirteen well-defined angles of incidence are present on each polyhedron produced on the Si by this etching. If N1 electrons are counted at the energy of an Auger peak and N2 are counted in the background above the peak, then N1, N1 - N2, (N1 - N2)/(N1 + N2) are measured and compared as methods of eliminating topographical contrast. The latter method gives the best compensation but can be further improved by using a measurement of the sample absorption current. Various other improvements are discussed.

  20. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)

    2014-08-15

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.

  1. New electronics for the surface detectors of the Pierre Auger Observatory

    Science.gov (United States)

    Kleifges, M.

    2016-07-01

    The Pierre Auger Observatory is the largest installation worldwide for the investigation of ultra-high energy cosmic rays. Air showers are detected using a hybrid technique with 27 fluorescence telescopes and 1660 water-Cherenkov detectors (WCD) distributed over about 3000 km2. The Auger Collaboration has decided to upgrade the electronics of the WCD and complement the surface detector with scintillators (SSD). The objective is to improve the separation between the muonic and the electron/photon shower component for better mass composition determination during an extended operation period of 8-10 years. The surface detector electronics records data locally and generates time stamps based on the GPS timing. The performance of the detectors is significantly improved with a higher sampling rate, an increased dynamic range, new generation of GPS receivers, and FPGA integrated CPU power. The number of analog channels will be increased to integrate the new SSD, but the power consumption needs to stay below 10 W to be able to use the existing photovoltaic system. In this paper, the concept of the additional SSD is presented with a focus on the design and performance of the new surface detector electronics.

  2. New electronics for the surface detectors of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Kleifges, M., E-mail: Matthias.Kleifges@kit.edu [Karlsruhe Institute of Technology – Institute for Data Processing and Electronics, Karlsruhe (Germany)

    2016-07-11

    The Pierre Auger Observatory is the largest installation worldwide for the investigation of ultra-high energy cosmic rays. Air showers are detected using a hybrid technique with 27 fluorescence telescopes and 1660 water-Cherenkov detectors (WCD) distributed over about 3000 km{sup 2}. The Auger Collaboration has decided to upgrade the electronics of the WCD and complement the surface detector with scintillators (SSD). The objective is to improve the separation between the muonic and the electron/photon shower component for better mass composition determination during an extended operation period of 8–10 years. The surface detector electronics records data locally and generates time stamps based on the GPS timing. The performance of the detectors is significantly improved with a higher sampling rate, an increased dynamic range, new generation of GPS receivers, and FPGA integrated CPU power. The number of analog channels will be increased to integrate the new SSD, but the power consumption needs to stay below 10 W to be able to use the existing photovoltaic system. In this paper, the concept of the additional SSD is presented with a focus on the design and performance of the new surface detector electronics.

  3. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  4. Radiotoxicity induced by Auger electron emitters in human osteosarcoma cell line using comet assay

    Institute of Scientific and Technical Information of China (English)

    XU Yu-Jie; LI Qing-Nuan; ZHU Ran; ZHU Ben-Xing; ZHANG Yong-Ping; ZHANG Xiao-Dong; FAN Wo; HONG Cheng-Jiao; LI Wen-Xin

    2003-01-01

    The comet assay (single cell gel electrophoresis assay) was used to evaluate the radiotoxicity of Augerelectron emitters in the human osteosarcoma cell line (HOS-8603). After internal exposure to 67Ga-EDTMP, the sar-coma cell has been injured severely. The comet length was longer along with the increase of dose, the appearance ofcomet tail was different from that with respect to the 60Co γ-ray irradiation. DNA damage of cell was mainly due tothe radiation effect of Auger electrons. The 67Ga may be a therapeutic radionuclide with good prospect for tumortreatment and palliation of bone pain induced by metastasis.

  5. Kinetic energies to analyze the experimental auger electron spectra by density functional theory calculations

    Science.gov (United States)

    Endo, Kazunaka

    2016-02-01

    In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.

  6. Production of no carrier added 80mBr for investigation of Auger electron toxicity.

    Science.gov (United States)

    Mease, R C; DeJesus, O T; Gatley, S J; Harper, P V; Desombre, E R; Friedman, A M

    1991-01-01

    80mBr (half-life = 4.43 h) is an Auger electron emitting nuclide with convenient properties for investigating Auger electron cytotoxicity and with potential for labeling in vivo radiotherapeutic agents. We have investigated three cyclotron target systems capable of generating 80mBr of sufficiently high specific radioactivity (no carrier added) for biomedical experiments. A 83Kr gas target irradiated with 21.5 MeV deuterons made 80mBr at a production yield of 1.6 +/- 0.2 mCi/muAh at saturation. A five-fold increase in 80mBr yield was obtained from 15 MeV proton irradiation of thin elemental Se enriched in 80Se targets although technical improvements are expected to further raise this production yield. This route is therefore superior for current medical cyclotrons. Irradiation of a reusable 80Se copper selenide target also yielded multi-millicurie amounts of 80mBr, and recovery of radiobromine by dry distillation is faster and more convenient than in the elemental Se target, but an optimum copper selenide target for 80mBr production has not yet been built.

  7. The effects of vacuum annealing on the top-most layer of 6H-SiC measured by Positron annihilation induced Auger Spectroscopy

    Science.gov (United States)

    Mukherjee, S.; Nadesalingam, M.; Davis, B.; Brauer, G.; Weiss, A. H.

    2007-03-01

    Silicon Carbide (SiC) in monocrystalline, hexagonal polytype form is a very interesting material for a wide class of novel application in electronics. The wide range of the band gap offered by different polytype with very little lattice mismatch can be utilized to grow smooth heterojunctions. Till now it has not been achieved and hence the surface characterization of such crystals is critical. Positron Annihilation induced Auger Electron Spectroscopy (PAES) is an established tool to characterize the top most atomic surface layer of solids. Here, PAES has been used to study the surface of 6H- SiC after annealing under different thermal and ambient conditions. The PAES measurements indicate that top-most atomic layer becomes C rich after vacuum annealing at 800 C. In additional a large chemical shift in the Si peak of approximately -12 eV was observed with PAES.

  8. Investigation of low-Z Coster-Kronig transitions by means of Auger and photoelectron spectroscopy

    Science.gov (United States)

    Yin, L. I.; Tsang, T.; Adler, I.

    1972-01-01

    Experimental intensity ratios of Auger transitions for Co, Ni, Cu, and Zn as well as the relative L sub 2 and L sub 3 level widths of Cu and Zn, derived from their photoelectron spectra, are presented. Evidence is presented that a great deal of vacancy reorganization took place following photoionization and prior to Auger emission. These reorganizations are assumed to be due to Coster-Kronig transitions f sub 23. These results are compared with theoretical calculations and agree with predicted discontinuity at Z = 30 where f sub 23 transitions become energetically impossible.

  9. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  10. Auger electron spectroscopic study of mechanism of sulfide-accelerated corrosion of copper-nickel alloy in seawater

    Science.gov (United States)

    Schrader, Malcolm E.

    The mechanism of sulfide-induced accelerated corrosion of 90-10 copper-nickel(iron) alloy is investigated. Samples of the alloy are exposed to flowing (2.4 m/s) seawater, with and without 0 01 mg/l sulfide, for various periods of time. The resulting surfaces are examined by means of Auger electron spectroscopy coupled with inert-ion-homoardment. A detailed depth profile is thereby obtained of concentrations in the surface region of a total of nine elements. The results are consistent with the hypothesis that iron hydroxide segregates at the surface to form a protective gelatinous layer against the normal chloride-induced corrosion process. Trace sulfide interferes with formation of a good protective layer and leaves the iron hydroxide vulnerable to ultimate partial or complete debonding. When the alloy is first exposed to "pure" seawater for a prolonged period of time, however, subsequent exposure to sulfide is no longer deleterious. This is apparently due to a layer of copper-nickel salt that slowly forms over the iron hydroxide.

  11. New trigger algorithm of the Auger fluorescence telescopes and validation of their single electron resolution; Neuer Triggeralgorithmus der Auger-Fluoreszenzteleskope und Validierung ihrer Ein-Elektron-Aufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Asch, T.

    2005-12-15

    The Pierre Auger Observatory analyses air shower events of ultra high energy cosmic rays. For the first time the two detector techniques to measure Cherenkov and fluorescence light have been combined to detect primary particle with energies >10{sup 19}eV. The raw data rate, as measured by the telescope's electronics, is in the order of 9 Gigabyte per second. A multi level trigger system, which reduces the data systematically in several levels and complexities without rejecting important shower events, is necessary. The different trigger levels are realised in hardware as well as in software. A new ansatz for the first software trigger and its functionality is developed and discussed. The trigger is based on the so far not used information of the readout electronics. The resulting trigger level is more efficient and rejects sheet lightning better compared with present trigger level. Thus, the trigger rate to the next trigger level is decreased and the DAQ system is released. Different calibration methods, which are made regularly, are essential for an experiment. The results of different calibration methods have to be consistent to each other. The single electron resolution of the photomultiplier tubes play an important role in this context. The single electron resolution is a geometry and material dependent factor and up to now only known from Monte Carlo simulations. The experimental validation through direct measurement and the importance of the single electron resolution are discussed. The measurement was possible with small modifications of the configuration. The result of the single electron resolution is within its error in good agreement with the one known from Monte Carlo simulations. The low statistical error of 4% shows a low manufacturing tolerance, so that we can assume the resolution to be constant for the type of photomultiplier tubes used. (orig.)

  12. ET-22CONVECTION-ENHANCED DELIVERY OF THE AUGER-ELECTRON-EMITTER 125I-UdR: A HIGHLY EFFICIENT THERAPY IN AN ORTHOTOPIC GLIOBLASTOMA XENOGRAFT MODEL

    OpenAIRE

    Halle, Bo; Thisgaard, Helge; Aaberg-Jessen, Charlotte; Olsen, Birgitte; Dam, Johan; Langkjær, Niels; Munthe, Sune; Någren, Kjell; Høilund-Carlsen, Poul Flemming; Kristensen, Bjarne

    2014-01-01

    BACKGROUND: Glioblastomas (GBMs), the most common and malignant primary brain tumors, always recur after standard treatment. In order to develop more efficient therapies, we tested a novel therapeutic approach using the radioactive Auger-electron-emitter (AEE) [125I]5-Iodo-2'-deoxyuridine (125I-UdR). This drug incorporates into DNA of dividing cells and upon decay emission of Auger-electrons causes clusters of double strand breaks leading to cell death. METHODS: In vitro, cells from two GBM s...

  13. Block copolymer micelles target Auger electron radiotherapy to the nucleus of HER2-positive breast cancer cells.

    Science.gov (United States)

    Hoang, Bryan; Reilly, Raymond M; Allen, Christine

    2012-02-13

    Intracellular trafficking of Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. In the present study, block copolymer micelles (BCMs) were labeled with the Auger electron emitter indium-111 ((111)In) and loaded with the radiosensitizer methotrexate. HER2 specific antibodies (trastuzumab fab) and nuclear localization signal (NLS; CGYGPKKKRKVGG) peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake and intracellular distribution of the multifunctional BCMs were evaluated in a panel of breast cancer cell lines with different levels of HER2 expression. Indeed cell uptake was found to be HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS peptides to the surface of BCMs was found to result in a significant increase in nuclear uptake of the radionuclide (111)In. Successful nuclear targeting was shown to improve the antipoliferative effect of the Auger electrons as measured by clonogenic assays. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and (111)In in all breast cancer cell lines evaluated.

  14. Electron spectroscopy of crystals

    CERN Document Server

    Nemoshkalenko, V V

    1979-01-01

    This book is conceived as a monograph, and represents an up-to-date collection of information concerning the use of the method of X-ray photoelectron spec­ troscopy in the study of the electron structure of crystals, as well as a personal interpretation of the subject by the authors. In a natural way, the book starts in Chapter 1 with a recapitulation of the fundamentals of the method, basic relations, principles of operation, and a com­ parative presentation of the characteristics and performances of the most com­ monly used ESCA instruments (from the classical ones-Varian, McPherson, Hewlett Packard, and IEEE-up to the latest model developed by Professor Siegbahn in Uppsala), and continues with a discussion of some of the difficult problems the experimentalist must face such as calibration of spectra, prepara­ tion of samples, and evaluation of the escape depth of electrons. The second chapter is devoted to the theory of photoemission from crystal­ line solids. A discussion of the methods of Hartree-Fo...

  15. Correlation effects in Auger spectra of Ni and Cu nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Troyan, V.I.; Borisyuk, P.V.; Kashurnikov, V.A. [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation); Krasavin, A.V., E-mail: avkrasavin@gmail.com [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation); Borman, V.D.; Tronin, V.I. [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation)

    2013-01-17

    Results of experimental research of exciton-like two-hole states in nanoclusters of narrow-band metals (Ni, Cu) on surface of high-oriented pyrolitic graphite by X-ray photoelectron and Auger electron spectroscopy are presented. It was found that the evolution of the electronic structure in Ni nanoclusters with the decreasing of their sizes can lead to appearance of long-living two-hole states in the valence band. One-particle and two-particle density of states are analyzed, and the Auger-electron spectra confirming the presence of the bound and localized states are obtained.

  16. Investigation of production routes for the 161Ho Auger-electron emitting radiolanthanide, a candidate for therapy

    CERN Document Server

    Tárkányi, F; Hermanne, A; Takács, S; Ignatyuk, A V

    2013-01-01

    The radiolanthanide 161Ho (2.48 h) is a promising Auger-electron emitter for internal radiotherapy that can be produced with particle accelerators. The excitation functions of the natDy(p,xn)161Ho and natDy(d,x)161Ho reactions were measured up to 40 and 50 MeV respectively by using the stacked foil activation method and gamma-ray spectrometry. The experimental data were compared with results of the TALYS code available in the TENDL 2011 library [1]. The main parameters of different production routes are discussed.

  17. Ultra high vacuum scanning Auger/electron microscopy studies of oxidation and B surface segregation of in situ fractured B- doped Ni3Al alloys

    NARCIS (Netherlands)

    Agterveld, D.T.L. van; Koch, S.A.; Palasantzas, G.; Hosson, J.Th.M. De

    2001-01-01

    This paper focuses on local probe Auger spectroscopy studies of segregation and oxidation of in situ fractured Ni3Al specimens, both with and without B-doping. Although immediately after in situ fracture small amounts of segregated B at grain boundaries were observed occasionally in the B-doped spec

  18. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  19. Accelerator based Production of Auger-Electron-emitting Isotopes for Radionuclide Therapy

    DEFF Research Database (Denmark)

    Thisgaard, Helge

    Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron...... isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able...

  20. Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects

    Science.gov (United States)

    Paillas, Salomé; Ladjohounlou, Riad; Lozza, Catherine; Pichard, Alexandre; Boudousq, Vincent; Jarlier, Marta; Sevestre, Samuel; Le Blay, Marion; Deshayes, Emmanuel; Sosabowski, Jane; Chardès, Thierry; Navarro-Teulon, Isabelle; Mairs, Robert J.

    2016-01-01

    Abstract Aims: We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with 125I [125I-mAbs]). Results: We showed that the cytotoxicity of 125I-mAbs targeting the cell membrane of p53+/+ HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-β-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. 125I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca2+ fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2′-deoxyuridine to the nucleus was comparable to that of 125I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by 125I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. Innovation: Low-energy Auger electrons, such as those emitted by 125I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with 125I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. Conclusion: Our findings describe the mechanisms involved in the efficacy of 125I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467–484. PMID:27224059

  1. Auger-electron spectra of F{sub 3}SiCH{sub 2}CH{sub 2}Si(CH{sub 3}){sub 3} obtained by using monochromatized synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shin-ichi, E-mail: nagaoka@ehimegw.dpc.ehime-u.ac.j [Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577 (Japan); Nitta, Akiko [Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577 (Japan); Tamenori, Yusuke [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198 (Japan); Fukuzawa, Hironobu; Ueda, Kiyoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Takahashi, Osamu [Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Kakiuchi, Takuhiro [Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577 (Japan); Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Kitajima, Yoshinori; Mase, Kazuhiko; Suzuki, Isao H. [Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2009-12-15

    A study on Auger-electron spectra of F{sub 3}SiCH{sub 2}CH{sub 2}Si(CH{sub 3}){sub 3} was performed by using monochromatized synchrotron radiation. The normal Si:L{sub 23}VV Auger-electron spectrum was measured in the vapor phase and characterized through the ab initio molecular orbital calculation. The cascade Si:L{sub 23}VV Auger-electron spectra were also obtained by L{sub 23}-holes creation through Si:KL{sub 23}L{sub 23} Auger transitions after Si:1s photoexcitation in the vapor phase or its photoelectron emission in the condensed phase. Further the C:KVV and F:KVV Auger-electron spectra were measured and discussed in comparison with those of some related molecules.

  2. Electrostatic Binding of Electroactive and Non-Electroactive Anions in a Surface-Confined, Electroactive Polymer: Selectivity of Binding Measured by Auger Spectroscopy and Cyclic Voltammetry.

    Science.gov (United States)

    1981-09-15

    few scans at 100 mW/s, whereas the tightly bound metal complexes give rise to persistent cyclic voltametry signals. The cyclic voltametry (t0 mV/s) for...The cyclic voltametry of these electrodes is shown in Figure 1. The scale on the left hand side refers to the ratio of the integrated areas of the...Auger Spectroscopy and Cyclic Voltamn tr__v_ __ _ _ J ames A./ruce aLMark S./Wrighton /NA014-75-C-OS 27; 9. PERFORMING ORGANIZATION NAMEAND ADDRESS 10

  3. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    Science.gov (United States)

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  4. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  5. AMIGA at the Pierre Auger Observatory: The interface and control electronics of the first prototype muon counters

    Science.gov (United States)

    Videla, M.; Platino, M.; García, B.; Almela, A.; de la Vega, G.; Lucero, A.; Suarez, F.; Wainberg, O.; Sanchez, F.; Yelos, D.

    2015-08-01

    AMIGA is an enhancement of the Pierre Auger Observatory. The main goals of AMIGA are to extend the full efficiency range to lower energies of the Observatory and to measure the muon content of extensive air showers. Currently, it consists of 61 detector pairs, each one composed of a surface water-Cherenkov detector and a buried muon counter. Prototypes of the muon counter - buried at a depth of 2.25 m - were installed at each vertex of a hexagon and at its center with 750 m spacing. Each prototype has a detection area of 10 m2 segmented in 64 scintillation strips and coupled to a multi-anode PMT through optical fibers. The electronic systems of these prototypes are accessible via a service tube. An electronics interface and control board were designed to extract the data from the counter and to provide a remote control of the system. This article presents the design of the interface and control board and the results and performance during the first AMIGA acquisition period in 2012.

  6. AMIGA at the Pierre Auger Observatory: The interface and control electronics of the first prototype muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Videla, M., E-mail: mariela.videla@iteda.cnea.gov.ar [Instituto de Tecnologías en Detección de Astropartículas (CNEA, CONICET, UNSAM) Centro Atómico Constituyentes, Avda. Gral. Paz 1499 (1650) San Martin, Pcia. de Buenos Aires (Argentina); Platino, M., E-mail: manuel.platino@iteda.cnea.gov.ar [Instituto de Tecnologías en Detección de Astropartículas (CNEA, CONICET, UNSAM) Centro Atómico Constituyentes, Avda. Gral. Paz 1499 (1650) San Martin, Pcia. de Buenos Aires (Argentina); García, B. [Instituto de Tecnologías en Detección y Astropartículas, (CNEA, CONICET, UNSAM) Regional Cuyo, Azopardo 313 (5501) Godoy Cruz, Pcia. de Mendoza (Argentina); Universidad Tecnológica Nacional, Facultad Regional Mendoza Rodriguez 273, Ciudad Mendoza, CP (M5502AJE) (Argentina); Almela, A. [Instituto de Tecnologías en Detección de Astropartículas (CNEA, CONICET, UNSAM) Centro Atómico Constituyentes, Avda. Gral. Paz 1499 (1650) San Martin, Pcia. de Buenos Aires (Argentina); Vega, G. de la [Instituto de Tecnologías en Detección y Astropartículas, (CNEA, CONICET, UNSAM) Regional Cuyo, Azopardo 313 (5501) Godoy Cruz, Pcia. de Mendoza (Argentina); and others

    2015-08-11

    AMIGA is an enhancement of the Pierre Auger Observatory. The main goals of AMIGA are to extend the full efficiency range to lower energies of the Observatory and to measure the muon content of extensive air showers. Currently, it consists of 61 detector pairs, each one composed of a surface water-Cherenkov detector and a buried muon counter. Prototypes of the muon counter – buried at a depth of 2.25 m – were installed at each vertex of a hexagon and at its center with 750 m spacing. Each prototype has a detection area of 10 m{sup 2} segmented in 64 scintillation strips and coupled to a multi-anode PMT through optical fibers. The electronic systems of these prototypes are accessible via a service tube. An electronics interface and control board were designed to extract the data from the counter and to provide a remote control of the system. This article presents the design of the interface and control board and the results and performance during the first AMIGA acquisition period in 2012.

  7. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kaciulis, S., E-mail: saulius.kaciulis@ismn.cnr.it [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Mezzi, A.; Balijepalli, S.K. [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Lavorgna, M. [Institute of Polymers, Composites and Biomaterials, IPCB-CNR, P.le Fermi, 80055 Napoli (Italy); Xia, H.S. [State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 Sichuan (China)

    2015-04-30

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D{sub x} parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter.

  8. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using 125I, an Auger electron emitter.

    Science.gov (United States)

    Gardette, Maryline; Papon, Janine; Bonnet, Mathilde; Desbois, Nicolas; Labarre, Pierre; Wu, Ting-Dee; Miot-Noirault, Elisabeth; Madelmont, Jean-Claude; Guerquin-Kern, Jean-Luc; Chezal, Jean-Michel; Moins, Nicole

    2011-12-01

    The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodobenzamides or analogs are known to possess specific affinity for melanoma tissue. New heteroaromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using (125)I, which emits Auger electrons and gives high-energy, localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with (125)I, the two compounds induced in vitro a significant radiotoxicity to B16F0 melanoma cells. Nevertheless, the acridine compound appeared more radiotoxic than the acridone compound. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with acridone derivative, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. In conclusion, the acridine derivative with a higher nuclear localization appeared a better candidate for application in targeted radionuclide therapy using (125)I.

  9. In-trap conversion electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, L. E-mail: weissman@nscl.msu.edu; Ames, F.; Aeysto, J.; Forstner, O.; Reisinger, K.; Rinta-Antila, S

    2002-10-21

    The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future.

  10. In-trap conversion electron spectroscopy

    CERN Document Server

    Weissman, L; Äystö, J; Forstner, O; Reisinger, K; Rinta-Antila, S

    2002-01-01

    The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line and tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future.

  11. Dynamical effects in electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianqiang Sky, E-mail: jianqiang.zhou@polytechnique.edu; Reshetnyak, Igor; Giorgetti, Christine; Sottile, Francesco; Reining, Lucia [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS, Université Paris-Saclay, F-91128 Palaiseau (France); Kas, J. J.; Rehr, J. J. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Sponza, Lorenzo [Department of Physics, King’s College London, London WC2R 2LS (United Kingdom); Guzzo, Matteo [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, D-12489 Berlin (Germany); Gatti, Matteo [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS, Université Paris-Saclay, F-91128 Palaiseau (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette (France)

    2015-11-14

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green’s function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that occur in that case.

  12. Proximity Scanning Transmission Electron Microscopy/Spectroscopy

    CERN Document Server

    Hwang, Ing-Shouh

    2016-01-01

    Here a new microscopic method is proposed to image and characterize very thin samples like few-layer materials, organic molecules, and nanostructures with nanometer or sub-nanometer resolution using electron beams of energies lower than 20 eV. The microscopic technique achieves high resolution through the proximity (or near-field) effect, as in scanning tunneling microscopy (STM), while it also allows detection of transmitted electrons for imaging and spectroscopy, as in scanning transmission electron microscopy (STEM). This proximity transmission electron microscopy (PSTEM) does not require any lens to focus the electron beam. It also allows detailed characterization of the interaction of low-energy electron with materials. PSTEM can operate in a way very similar to scanning tunneling microscopy, which provides high-resolution imaging of geometric and electronic structures of the sample surface. In addition, it allows imaging and characterization of the interior structures of the sample based on the detected...

  13. Chiral specific electron vortex beam spectroscopy

    CERN Document Server

    Yuan, J; Babiker, M

    2013-01-01

    Electron vortex beams carry well-defined orbital angular momentum (OAM) about the propagation axis. Such beams are thus characterised by chirality features which make them potentially useful as probes of magnetic and other chiral materials. An analysis of the inelastic processes in which electron vortex beams interact with atoms and which involve OAM exchange is outlined, leading to the multipolar selection rules governing this chiral specific electron vortex beam spectroscopy. Our results show clearly that the selection rules are dependent on the dynamical state and location of the atoms involved. In the most favorable scenario, this form of electron spectroscopy can induce magnetic sublevel transitions which are commonly probed using circularly polarized photon beams.

  14. Study of Auger decay process following multielectron excitation accompanying F 1s photoionization of CF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Machida, M. [Department of Material Science, Himeji Institute of Technology, Kamigori, Hyogo 678-1297 (Japan); RIKEN/SPring-8, Harima Institute, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan); Tamenori, Y. [JASRI/SPring-8, 1-1-1, Kouto, Mikazuki, Sayo, Hyogo 679-5198 (Japan); Oura, M. [RIKEN/SPring-8, Harima Institute, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan)]. E-mail: oura@spring8.or.jp; Mukoyama, T. [Kansai Gaidai University, 16-1 Nakamiya-Higashino-cho, Hirakata, Osaka 573-1001 (Japan)

    2005-06-15

    Auger decay process following multielectron excitation accompanying F 1s photoionization of CF{sub 4} molecule has been studied in the excitation energy range between 700 and 750-bar eV using angle-resolved Auger electron spectroscopy. The observed spectra have shown an enhancement in the specific band, at an electron kinetic energy of {approx} 644-bar eV, only in the spectrum recorded at 710-bar eV excitation energy of horizontally polarized light. This feature is discussed in terms of the resonant Auger emission originated from the doubly excited state. The evolution of spectral shape has also exhibited the excitation energy dependence above the threshold of multiple excitation. The origin of the spectral variation is considered due to gradual growth of the satellite Auger lines originated from the multielectron excitation.

  15. Theoretical and experimental study of the double ionization by electron impact involving the Auger effect: processes and exchanges interferences; Etude theorique et experimentale de la double ionisation par impact electronique incluant l'effet auger: interferences d'echanges et de processus

    Energy Technology Data Exchange (ETDEWEB)

    Catoire, F

    2006-09-15

    In this work, double ionisation mechanisms of argon by electron impact in which the Auger effect is included have been studied as a function of the incident electron energy. Five and six fold differential cross sections in angle and in energy have been measured and analysed in a coplanar geometry. The efficiency of the apparatus has been improved by the use of a new toroidal analyser. For the first time, the six fold differential cross section in which the Auger electron and the ejected electron with identical kinetic energies (205 eV) are involved, was measured at an incident energy of 956 eV in the case of argon. In the theoretical models developed during this work, the triple continuum is represented by a manifold of coulomb waves describing the interaction of all electrons with the residual ion. Exchange effects between electrons were also included in the models. Comparison between experimental and theoretical results allows to study the relative contribution of the Auger process and the direct double ionisation on the angular dependence five fold differential cross section. In particular, the Auger process contribution seems to become increasingly important as the incident energy is increased.

  16. Bond breaking, electron pushing, and proton pulling: active and passive roles in the interaction between aqueous ions and water as manifested in the O 1s Auger decay.

    Science.gov (United States)

    Pokapanich, W; Ottosson, N; Svensson, S; Ohrwall, G; Winter, B; Björneholm, O

    2012-01-12

    A core-ionized H(2)O molecule in liquid water primarily relaxes through normal Auger decay, leading to a two-hole final state in which both valence holes are localized on the same water molecule. Electronic coupling to the environment, however, allows for alternative decays resembling Intermolecular Coulombic Decay (ICD), producing final states with one of the holes delocalized on a neighboring water molecule. Here we present an experimental study of such minority processes, which adds to our understanding of dynamic interactions of electronically excited H(2)O molecules with their local surrounding in liquid water and aqueous solution. We show that the solvation of metal-halide salts considerably influences these minority decay channels from the water O 1s(-1) state. By breaking water-water bonds, both the metal cations and halide anions are found to reduce the decay into water-water delocalized states, thus having a ″passive″ effect on the Auger spectrum. The halide anions also play an ″active″ role by opening a new ICD-like decay pathway into water-halide delocalized states. The importance of this contribution increases from F(-) to I(-), which we suggest to be caused by a directional polarization of the halide anion toward the core-ionized H(2)O(+) cation in the intermediate state of the Auger process. This increases the electronic overlap between the two centers and makes delocalized decays more probable. We furthermore show that F(-), the smallest and most strongly hydrated of the halides, plays an additional role as proton puller during the core-hole lifetime, resulting in proton dynamics on the low femtosecond time scale. Our results represent a step forward toward a better understanding of how aqueous solutions, when exposed to soft X-rays, channel excess energy. This has implications for several aspects of physical and radiation chemistry, as well as biology.

  17. Effects of electronic coherence in ultrafast spectroscopy

    Science.gov (United States)

    Bennett, Kochise

    Electronic dynamics takes place at the attosecond timescale. Recent technological advancements permit the creation of light pulses with durations in the attosecond regime, opening up the possibility of monitoring this ultrafast dynamics in real time. In particular, it becomes possible to observe the time-dependent interference between material electronic states, thus tracking the electronic energies temporally. This information, originating in the coherence terms in the electronic density matrix, can provide spectral information in the time-domain. Such an approach is particularly useful when the desired information is transient. In this thesis, we examine how electronic coherences contribute to photoelectron and a variety of x-ray Raman signals. We then utilize photoelectron spectroscopy and linear off-resonant Raman (TRUECARS) to track the dynamics of a model system by way of example.

  18. New insight into the Auger decay process in O{sub 2}: The coincidence perspective

    Energy Technology Data Exchange (ETDEWEB)

    Arion, Tiberiu, E-mail: tiberiu.arion@cfel.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Puettner, Ralph [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Lupulescu, Cosmin [Technische Universitaet Berlin, Institut fuer Optik und atomare Physik, Hardenbergstr. 36, 10623 Berlin (Germany); Ovsyannikov, Ruslan [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Foerstel, Marko [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Oehrwall, Gunnar [MAX-lab, Lund University, P.O. Box 118, SE-22100 Lund (Sweden); Lindblad, Andreas [Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala (Sweden); Ueda, Kiyoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Svensson, Svante [Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala (Sweden); Bradshaw, Alex M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Eberhardt, Wolfgang [Technische Universitaet Berlin, Institut fuer Optik und atomare Physik, Hardenbergstr. 36, 10623 Berlin (Germany); Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg (Germany); and others

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We developed a new experimental set-up for e,e-coincidence experiments. Black-Right-Pointing-Pointer New information on the potential curves of the final states in O{sub 2} has been extracted. Black-Right-Pointing-Pointer We observed new features, assigned to autoionization of neutral doubly excited states. -- Abstract: Photoelectron-Auger electron coincidence spectroscopy is a powerful tool for the investigation of Auger decay processes with different core-ionized intermediate states. In this paper we describe an investigation into the Auger decay of the O{sub 2} molecule, with the purpose of bringing new insight into the dynamics of the core hole decay mechanism. Using a novel experimental approach to measuring such coincidence spectra we report the highest resolution Auger spectrum of O{sub 2} recorded hitherto. In our approach, we have combined the advantages of these coincidence spectra with the high resolution and excellent signal-to-noise ratios of non-coincident Auger spectra and a state-of-the-art fit analysis. In this way we have derived information about the potential energy curves of the final states W {sup 3}{Delta}{sub u}, B {sup 3}{Pi}{sub g}, and B Prime {sup 3}{Sigma}{sub u}{sup -} and concluded that the corresponding Auger transitions are formed to a large part by strongly overlapping vibrational progressions. The present findings are compared to earlier results reported in the literature confirming some theoretical predictions.

  19. Pulsed electron-nuclear-electron triple resonance spectroscopy

    Science.gov (United States)

    Thomann, Hans; Bernardo, Marcelino

    1990-05-01

    A new experimental technique, pulsed electron-nuclear-electron triple resonance spectroscopy, is demonstrated. It is based on a modification of the pulse sequence for electron-nuclear double resonance (ENDOR) in which two EPR and one NMR transition are irradiated. The irradiation of one EPR transition is detected via a second EPR transition. The nuclear hyperfine coupling, which separates these EPR transition frequencies, is the irradiated NMR transition. The major advantages of triple resonance spectroscopy include the ability to resolve overlapping nuclear resonances in the ENDOR spectrum and a more direct quantitative assignment of nuclear hyperfine and quadrupole couplings. The triple resonance experiment is an alternative to the recently proposed method of employing rapid magnetic field jumps between microwave pulses for generating hyperfine selective ENDOR spectra.

  20. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  1. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  2. Auger Physicists visit CMS

    CERN Multimedia

    Hoch, Michael

    2012-01-01

    Visit at CERN P5 CMS in the experimental cavern Alan Watson, Auger Spokesperson Emeritus, University of Leeds; Jim Cronin, Nobel Laureate, Auger Spokesperson Emeritus, University of Chicago; Jim Virdee, CMS Former Spokesperson, Imperial College; Jim Matthews, Auger Co-Spokesperson, Louisiana State University

  3. Positron lifetime measurements and positron-annihilation induced auger electron spectroscpy using slow positron beams; Teisoku yodenshi bimu wo mochiita yodenshi jumyo sokutei oyobi yodenshi shometsu reiki oje denshi bunko

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. [Electrotechnical Lab., Tsukuba (Japan)

    1996-02-20

    Slow positron beam with less than several eV can be controlled freely such as accelerating, throttling the beam size, shortening the pulse or making pulse with short time width and so forth. These low positron beams are applied to various measurements like Doppler broadening measurement of annihilation {gamma} rays or lifetime measurement of positron, and secondary particle measurements using positron microscope, positron electron ray diffraction, flight time method and so forth. In particular, these recent years, high intensity slow positron beams were possible using accelerators like electron linac and its application is increasing. In this report, pulse shortening method for high intensity slow positron beam, and incidence energy variable positron lifetime measurement method using this slow pulsed beam and flight time type positron-annihilation-induced auger electron spectroscopy are outlined. In future, these measurements can be possible to carry out with high resolution and also with high counting rate if higher intensity monochromatic excellent positron beam than present one is produced. 31 refs., 5 figs.

  4. Inelastic Electron Tunneling Spectroscopy for Topological Insulators

    Science.gov (United States)

    She, Jian-Huang; Fransson, Jonas; Bishop, A. R.; Balatsky, Alexander V.

    2013-01-01

    Inelastic electron tunneling spectroscopy is a powerful spectroscopy that allows one to investigate the nature of local excitations and energy transfer in the system of interest. We study inelastic electron tunneling spectroscopy for topological insulators and investigate the role of inelastic scattering on the Dirac node states on the surface of topological insulators. Local inelastic scattering is shown to significantly modify the Dirac node spectrum. In the weak coupling limit, peaks and steps are induced in second derivative d2I/dV2. In the strong coupling limit, the local negative-U centers are formed at impurity sites, and the Dirac cone structure is fully destroyed locally. At intermediate coupling, resonance peaks emerge. We map out the evolution of the resonance peaks from weak to strong coupling, which interpolate nicely between the two limits. There is a sudden qualitative change of behavior at intermediate coupling, indicating the possible existence of a local quantum phase transition. We also find that, even for a simple local phonon mode, the inherent coupling of spin and orbital degrees in topological insulators leads to the spin-polarized texture in inelastic Friedel oscillations induced by the local mode.

  5. Stimulated excitation electron microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Howie, A.

    2015-04-15

    Recent advances in instrumentation for electron optics and spectroscopy have prompted exploration of ultra-low excitations such as phonons, bond vibrations and Johnson noise. These can be excited not just with fast electrons but also thermally or by other external sources of radiation. The near-field theory of electron energy loss and gain provides a convenient platform for analysing these processes. Possibilities for selected phonon mapping and imaging are discussed. Effects should certainly be observable in atomic resolution structure imaging but diffraction contrast imaging could perhaps be more informative. Additional exciting prospects to be explored include the transition from phonon excitation to single atom recoil and the boosting of energy loss and gain signals with tuned laser illumination. - Highlights: • Electron energy gains and losses measure thermal or laser boosting of excitations. • Electron energy gains and losses are conveniently analysed by near field theory. • Diffraction contrast theory is relevant for phonon imaging by electrons. • The transition from phonon excitation to single atom recoil deserves study.

  6. Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit

    Science.gov (United States)

    Incerti, S.; Suerfu, B.; Xu, J.; Ivantchenko, V.; Mantero, A.; Brown, J. M. C.; Bernal, M. A.; Francis, Z.; Karamitros, M.; Tran, H. N.

    2016-04-01

    A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.

  7. X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of CuInSe2 photoelectrodes

    Science.gov (United States)

    Cahen, David; Ireland, P. J.; Kazmerski, L. L.; Thiel, F. A.

    1985-05-01

    CuInSe2 photoanodes can be optimized for use in electrochemical photovoltaic cells, containing aqueous polyiodide as the electrolyte, by wet chemical etching in Br2MeOH and subsequent thermal treatment (air oxidation). Surface analyses show the formation of a rather clean, Cu-depleted surface with some adsorbed oxygen after Br2/MeOH etch, and the formation of indium-oxygen bonds after thermal treatment, in accordance with previous studies that show indium oxides to be the native ones on this semiconductor. Samples that underwent photoanodic decomposition in the iodide electrolyte and those that were purposely decomposed in acetonitrile showed severe to near-total Cu depletion near their surface and the presence of lower valent Se. These data complement those from solution analyses and from electrochemical studies, to characterize the preferred decomposition path of CuInSe2 sufficiently to stabilize this type of photoelectrochemical cell. Our conclusions are based on the use of Auger parameters and, to a lesser extent, on empirical comparison of x-ray induced Auger electron line shapes, because of the difficulty in extracting unambiguous conclusions from x-ray photoelectron binding energies only.

  8. Imaging molecular geometry with electron momentum spectroscopy

    Science.gov (United States)

    Wang, Enliang; Shan, Xu; Tian, Qiguo; Yang, Jing; Gong, Maomao; Tang, Yaguo; Niu, Shanshan; Chen, Xiangjun

    2016-12-01

    Electron momentum spectroscopy is a unique tool for imaging orbital-specific electron density of molecule in momentum space. However, the molecular geometry information is usually veiled due to the single-centered character of momentum space wavefunction of molecular orbital (MO). Here we demonstrate the retrieval of interatomic distances from the multicenter interference effect revealed in the ratios of electron momentum profiles between two MOs with symmetric and anti-symmetric characters. A very sensitive dependence of the oscillation period on interatomic distance is observed, which is used to determine F-F distance in CF4 and O-O distance in CO2 with sub-Ångström precision. Thus, using one spectrometer, and in one measurement, the electron density distributions of MOs and the molecular geometry information can be obtained simultaneously. Our approach provides a new robust tool for imaging molecules with high precision and has potential to apply to ultrafast imaging of molecular dynamics if combined with ultrashort electron pulses in the future.

  9. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    Science.gov (United States)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  10. Auger recombination via defects in tellurium. [Te

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Yu.I.; Rubo, Yu.G.; Snitko, O.V.; Strikha, M.V. (Inst. of Semiconductors, Academy of Sciences of the Ukrainian SSR, Kiev (Ukrainian SSR))

    1990-12-01

    Auger process including a bound electron and two free holes proved to be the dominant recombination path in tellurium at low temperatures (T < 50 K). The experimental value of the Auger constant is C = 1.6x10{sup -28} cm{sup 6} s{sup -1}. The theoretical model considering the tellurium band structure explains the experimental data qualitatively and gives an order of magnitude value for the lifetimes of excess carriers. (orig.).

  11. Electron structure of excited configurations in Ca2V2O7 studied by electron-induced core-ionization loss spectroscopy, appearance-potential spectroscopy, and x-ray-photoelectron spectroscopy

    Science.gov (United States)

    Curelaru, I. M.; Strid, K.-G.; Suoninen, E.; Minni, E.; Rönnhult, T.

    1981-04-01

    We have measured the electron-induced core-ionization loss (CILS) spectra, the appearance-potential (APS) spectra, and the x-ray-photoelectron (XPS) spectra of Ca2V2O7, that is a prototype for a series of luminescent materials with general formula M2V2O7(M=Mg, Ca, Sr, Ba, Zn, Cd, Hg). From the analysis of the data provided by the edge spectroscopies (CILS and APS) and their comparison with the XPS binding energies, we deduced the electronic structure of the outer orbitals (occupied and empty) involved in these processes. Our data illustrate the strong many-body effects that occur in the excitation and decay of localized atomiclike configurations within the big ionic cluster V2O4-7. Excitation of core levels in calcium, outside the V2O4-7 ion, seems to involve more extended orbitals, since the screening is more efficient. Usefulness of complementary studies by x-ray emission and Auger electron spectroscopy is anticipated.

  12. Surface photovoltage and Auger electron spectromicroscopy studies of HfO{sub 2}/SiO{sub 2}/4H-SiC and HfO{sub 2}/Al{sub 2}O{sub 3}/4H-SiC structures

    Energy Technology Data Exchange (ETDEWEB)

    Domanowska, A., E-mail: Alina.Domanowska@polsl.pl [Department of Surface Physics and Nanostructures, Institute of Physics - Centre for Science and Education, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice (Poland); Miczek, M.; Ucka, R.; Matys, M.; Adamowicz, B. [Department of Surface Physics and Nanostructures, Institute of Physics - Centre for Science and Education, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice (Poland); Zywicki, J. [High-Tech International Services, Rome (Italy); Taube, A. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Korwin-Mikke, K. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Gieraltowska, S. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Sochacki, M. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland)

    2012-08-15

    The electronic and chemical properties of the interface region in the structures obtained by the passivation of epitaxial n-type 4H-SiC layers with bilayers consisting of a 5 nm-thick SiO{sub 2} or Al{sub 2}O{sub 3} buffer film and high-{kappa} HfO{sub 2} layer were investigated. The main aim was to estimate the influence of the passivation approach on the interface effective charge density (Q{sub eff}) from the surface photovoltage (SPV) method and, in addition to determine the in-depth element distribution in the interface region from the Auger electron spectroscopy (AES) combined with Ar{sup +} ion profiling. The structure HfO{sub 2}/SiO{sub 2}/4H-SiC exhibited slightly superior electronic properties in terms of Q{sub eff} (in the range of -10{sup 11} q cm{sup -2}).

  13. Feasibility of In-Trap Conversion Electron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, L.; Ames, F.; Aysto, J.; Forstner, O. [CERN, EP-Division (Switzerland); Rinta-Antila, S. [University of Jyvaeskyla, Department of Physics (Finland); Schmidt, P. [J. Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)

    2001-01-15

    We have used REXTRAP at ISOLDE to test the feasibility of in-trap electron spectroscopy. The results of calculations, experiments with various electron sources as well as a first test with trapped radioactive ions are presented.

  14. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    Science.gov (United States)

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  15. Front-End Board with Cyclone V as a Test High-Resolution Platform for the Auger-Beyond-2015 Front End Electronics

    CERN Document Server

    Szadkowski, Zbigniew

    2014-01-01

    The surface detector (SD) array of the Pierre Auger Observatory containing at present 1680 water Cherenkov detectors spread over an area of 3000 km^2 started to operate since 2004. The currently used Front-End Boards are equipped with no-more produced ACEX and obsolete Cyclone FPGA (40 MSps/15-bit of dynamic range). Huge progress in electronics and new challenges from physics impose a significant upgrade of the SD electronics either to improve a quality of measurements (much higher sampling and much wider dynamic range) or pick-up from a background extremely rare events (new FPGA algorithms based on sophisticated approaches like e.g. spectral triggers or neural networks). Much higher SD sensitivity is necessary to confirm or reject hypotheses critical for a modern astrophysics. The paper presents the Front-End Board (FEB) with the biggest Cyclone V E FPGA 5CEFA9F31I7N, supporting 8 channels sampled with max. 250 MSps @ 14-bit resolution. Considered sampling for the SD is 120 MSps, however, the FEB has been de...

  16. Therapy of estrogen receptor-positive micrometastases in the peritoneal cavity with Auger electron-emitting estrogens--Theoretical and practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    DeSombre, E.R.; Hughes, A.; Hanson, R.N.; Kearney, T. [Univ. of Chicago, IL (United States). Ben May Inst. for Cancer Research

    2000-11-01

    Previous studies have demonstrated that Auger electron-emitting estrogens, when associated with the estrogen receptor (ER), can effect breaks in DNA and ER-dependent radiotoxicity. To evaluate the potential of {sup 123}I-iodoestrogens, ({sup 123}I-IE) to treat ER-positive human cancer cells, we have studied the effect of incubation of {sup 123}I-IE with ER-positive MCF-7 breast cancer cells on cell survival in vitro and found that subnanomolar concentrations of {sup 123}I-IE effectively reduce survival, with a mean lethal dose of about 800 decays per cell. MCF-7 cells incubated 30 min with 2 nM {sup 123}I-IE (13 MBq/ml) showed a 2 log reduction in the ability to form tumors in immunodeficient mice. Evaluation of a mathematical model for {sup 123}I-IE therapy for intraperitoneal micrometastases in vivo in the mouse, based on variables related to the (a) specific activity of {sup 123}I-IE; (b) its affinity for ER; (c) the characteristics of the uptake and retention of {sup 123}I-IE by the target cells; (d) the concentration of ER in the tumor cells and (e) the tumor weight suggest that such therapy may be feasible.

  17. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    CERN Document Server

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2012-01-01

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  18. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  19. WE-E-BRE-08: Impact of IUdR in Rat 9L Glioma Cell Survival for 25–35 KeV Photo-Activated Auger Electron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, D; Hogstrom, K [Louisiana State University, Baton Rouge, LA (United States); Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Brown, T; Dugas, J; Varnes, M [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Matthews, K [Louisiana State University, Baton Rouge, LA (United States)

    2014-06-15

    Purpose: To determine the biological effect from Auger electrons with 9% and 18% iododeoxyuridine (IUdR) incorporated into the DNA of rat 9L glioma cells at photon energies above and below the K-edge of iodine (33.2 keV). Methods: Rat 9L glioma cell survival versus dose curves with 0%, 9%, and 18% thymidine replacement with IUdR were measured using four irradiation energies (4 MV x-rays; monochromatic 35, 30, and 25 keV synchrotron photons). For each of 11 conditions (Energy, %IUdR) survival curves were fit to the data (826 cell cultures) using the linear-quadratic model. The ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear-energy transfer (LET), radiosensitization (RS), and Auger effect (AE) were extracted. Results: At 35, 30, and 25 keV, SER10,LET values were 1.08±0.03, 1.22±0.02, and 1.37±0.02, respectively. At 4 MV SER10,RS values for 9% and 18% IUdR were 1.28±0.02 and 1.40±0.02, respectively. Assuming LET effects are independent of %IUdR and radiosensitization effects are independent of energy, SER10,AE values for 18% IUdR at 35, 30, and 25 keV were 1.35±0.05, 1.06±0.03, and 0.98±0.03, respectively; values for 9% IUdR at 35 and 25 keV were 1.01±0.04 and 0.82±0.02, respectively. Conclusion: For 18% IUdR the radiosensitization effect of 1.40 and the Auger effect of 1.35 at 35 keV are equally important to the combined effect of 1.90. No measureable Auger effect was observed for energies below the K-edge at 20 and 25 keV, as expected. The insignificant Auger effect at 9% IUdR was not expected. Additional data (40–70 keV) and radiobiological modeling are being acquired to better understand the energy dependence of Auger electron therapy with IUdR. Funding support in part by the National Science Foundation Graduate Research Fellowship Program and in part by Contract No. W81XWH-10-1-0005 awarded by the U.S. Army Research Acquisition Activity. This paper does not necessarily

  20. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  1. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  2. Surface and interface analysis of a Roman lead pipe ``fistula'': microchemistry of the soldering at the join, as seen by scanning Auger microscopy and X-ray photoelectron spectroscopy

    Science.gov (United States)

    Paparazzo, Ernesto

    1994-01-01

    Scanning Auger microscopy (SAM) and X-ray photoelectron spectroscopy (XPS) are used to study the surface and interface chemical composition of a Roman lead pipe (fistula). Experimental evidence is provided that the Romans used tin for soldering the join, and the chemical nature of the single elements, e.g. whether in metallic or combined form, is identified. SAM discloses the segregation of the chemical elements with a sub-micron spatial resolution, and large deviations in the quantitative results are found relative to the large-area averaged XPS results. Elemental depth profiles are obtained from all over the body of the pipe: we find that the lead is less oxidized at the join, and this region contains many more hydrocarbon species, which we interpret as deriving from the use of oil for anti-oxidizing purposes. Our experimental findings are consistent with Plinius' report on the lead-tin soldering techniques used in the Roman world.

  3. Electron beam induced oxidation of Ni3Al surfaces : electron flux effects

    NARCIS (Netherlands)

    Koch, S.A.; Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam irradiation of polycrystalline boron doped Ni3Al (at 300 K and under ultrahigh vacuum conditions) induces fast oxidation. The rate and depth of oxidation initially increase with increasing electron flux as indicated by results from Auger electron spectroscopy. Curves of oxygen developm

  4. Electron Momentum Spectroscopy of Ethanethiol Complete Valence Shell

    Institute of Scientific and Technical Information of China (English)

    Xin-xia Xue; Mi Yan; Fang Wu; Xu Shan; Ke-zun Xu; Xiang-jun Chen

    2008-01-01

    The binding energy spectra and electron momentum distributions for the complete valence orbitals of ethanethiol were measured for the first time by binary (e, 2e) electron momentum spectroscopy employing non-coplanar symmetric kinematics at an impact energy of 1200 eV plus binding energy. The experimental results are generally consistent with the theoretical calculations using density functional theory and Hartree-Fock methods with various basis sets. A possible satellite line at 17.8 eV in binding energy spectrum was observed and studied by electron momentum spectroscopy.

  5. Experimentally accessible signatures of Auger scattering in graphene

    Science.gov (United States)

    Winzer, Torben; Jago, Roland; Malic, Ermin

    2016-12-01

    The gapless and linear electronic band structure of graphene opens up Auger scattering channels bridging the valence and the conduction band and changing the charge carrier density. Here, we reveal experimentally accessible signatures of Auger scattering in optically excited graphene. To be able to focus on signatures of Auger scattering, we apply a low excitation energy, weak pump fluences, and a cryostatic temperature, so that all relevant processes lie energetically below the optical phonon threshold. In this regime, carrier-phonon scattering is strongly suppressed and Coulomb processes govern the carrier dynamics. Depending on the excitation regime, we find an accumulation or depletion of the carrier occupation close to the Dirac point. This reflects well the behavior predicted from Auger-dominated carrier dynamics. Based on this observation, we propose a multicolor pump-probe experiment to uncover the extreme importance of Auger channels for the nonequilibrium dynamics in graphene.

  6. Spectral lineshapes in nonlinear electronic spectroscopy.

    Science.gov (United States)

    Nenov, Artur; Giussani, Angelo; Fingerhut, Benjamin P; Rivalta, Ivan; Dumont, Elise; Mukamel, Shaul; Garavelli, Marco

    2015-12-14

    We outline a computational approach for nonlinear electronic spectra, which accounts for the electronic energy fluctuations due to nuclear degrees of freedom and explicitly incorporates the fluctuations of higher excited states, induced by the dynamics in the photoactive state(s). This approach is based on mixed quantum-classical dynamics simulations. Tedious averaging over multiple trajectories is avoided by employing the linearly displaced Brownian harmonic oscillator to model the correlation functions. The present strategy couples accurate computations of the high-lying excited state manifold with dynamics simulations. The application is made to the two-dimensional electronic spectra of pyrene, a polycyclic aromatic hydrocarbon characterized by an ultrafast (few tens of femtoseconds) decay from the bright S2 state to the dark S1 state. The spectra for waiting times t2 = 0 and t2 = 1 ps demonstrate the ability of this approach to model electronic state fluctuations and realistic lineshapes. Comparison with experimental spectra [Krebs et al., New Journal of Physics, 2013, 15, 085016] shows excellent agreement and allows us to unambiguously assign the excited state absorption features.

  7. Valence space electron momentum spectroscopy of diborane

    Energy Technology Data Exchange (ETDEWEB)

    Wang Feng [Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Melbourne, Vic. 3122 (Australia)]. E-mail: fwang@swin.edu.au; Pang Wenning [Department of Physics, Polarization Physics Laboratory, Tsinghua University, Beijing 100084 (China); Huang Ming [Department of Physics, Polarization Physics Laboratory, Tsinghua University, Beijing 100084 (China)

    2006-05-15

    A non-classical mechanism of binding in diborane (B{sub 2} H{sub 6}) is derived quantum-mechanically (B3LYP/6-311++G**) using a dual-space analysis. High-resolution binding-energy spectra of diborane, generated using an outer-valence Green's-function and density-functional theory with a statistical average of model orbital potentials (SAOP), agree satisfactorily with experiment. Electron-correlation energies of diborane produce orbital-based variations in ionization energy in the valence space, but with negligible impact on the shape of only a{sub g} symmetry orbitals as indicated in momentum space. The present work indicates quantitatively that (a) the pair of three-centre banana-shaped B-H{sub b}-B bonds are more accurately described as one diamond-shaped bond with B-H{sub b}-B-H{sub b}, (b) all bonds in diborane are electron-deficient including the four equivalent B-H{sub t} bonds, (c) there is no pure B?B bond but contributions from all valence orbitals form an unconventional electron-deficient B-B bond, and (d) only two innermost valence orbitals - 2a{sub g} and 2b{sub 1u} - are sp{sup 2}-hybridized and no evidence indicates other valence orbitals of diborane to be hybridized.

  8. Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picher, Matthieu; Mazzucco, Stefano [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 (United States); Blankenship, Steve [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Sharma, Renu, E-mail: renu.sharma@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States)

    2015-03-15

    Here, we present a measurement platform for collecting multiple types of spectroscopy data during high-resolution environmental transmission electron microscopy observations of dynamic processes. Such coupled measurements are made possible by a broadband, high-efficiency, free-space optical system. The critical element of the system is a parabolic mirror, inserted using an independent hollow rod and placed below the sample holder which can focus a light on the sample and/or collect the optical response. We demonstrate the versatility of this optical setup by using it to combine in situ atomic-scale electron microscopy observations with Raman spectroscopy. The Raman data is also used to measure the local temperature of the observed sample area. Other applications include, but are not limited to: cathodo- and photoluminescence spectroscopy, and use of the laser as a local, high-rate heating source. - Highlights: • Broadband, high-efficiency design adaptable to other electron microscopes. • Raman spectroscopy integrated with environmental transmission electron microscopy. • Raman spectra peak frequency shifts enable measurement of local sample temperature. • Multiple types of optical spectroscopy enabled, e.g. cathodoluminescence.

  9. Spectroscopy of nonequilibrium electrons and phonons

    CERN Document Server

    Shank, CV

    1992-01-01

    The physics of nonequilibrium electrons and phonons in semiconductors is an important branch of fundamental physics that has many practical applications, especially in the development of ultrafast and ultrasmall semiconductor devices. This volume is devoted to different trends in the field which are presently at the forefront of research. Special attention is paid to the ultrafast relaxation processes in bulk semiconductors and two-dimensional semiconductor structures, and to their study by different spectroscopic methods, both pulsed and steady-state. The evolution of energy and space distrib

  10. Modulation scheme for electron-electron double resonance spectroscopy

    Science.gov (United States)

    Mehlkopf, A. F.; Kuiper, F. G.; Smidt, J.; Tiggelman, T. A.

    1983-06-01

    A modulation scheme for electron-electron double resonance (ELDOR) spectrometers is presented. With this scheme an optimum stabilization signal for locking the pump microwave generator to the pumped electron paramagnetic resonance (EPR) line is generated. A separate pump power level and a separate magnetic field modulation amplitude are used for the purpose of locking. In general, such a modulation scheme introduces false ELDOR lines. These false lines disturb the real ELDOR signals, or introduce an ELDOR signal in the absence of any communication between the observed EPR line and the pumped EPR line. With the described modulation scheme the frequencies of the false ELDOR signals are limited to even multiples of the frequency of the wanted ELDOR signals. This makes a suppression of the false ELDOR lines easy.

  11. Rotationally resolved electronic spectroscopy of 5-methoxyindole.

    Science.gov (United States)

    Brand, Christian; Oeltermann, Olivia; Pratt, David; Weinkauf, Rainer; Meerts, W Leo; van der Zande, Wim; Kleinermanns, Karl; Schmitt, Michael

    2010-07-14

    Rotationally resolved electronic spectra of the vibrationless origin and of eight vibronic bands of 5-methoxyindole (5MOI) have been measured and analyzed using an evolutionary strategy approach. The experimental results are compared to the results of ab initio calculations. All vibronic bands can be explained by absorption of a single conformer, which unambiguously has been shown to be the anti-conformer from its rotational constants and excitation energy. For both anti- and syn-conformers, a (1)L(a)/(1)L(b) gap larger than 4000 cm(-1) is calculated, making the vibronic coupling between both states very small, thereby explaining why the spectrum of 5MOI is very different from that of the parent molecule, indole.

  12. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  13. X-ray photoelectron spectroscopy and transmission electron microscopy analysis of silver-coated gold nanorods designed for bionanotechnology applications

    Science.gov (United States)

    Watanabe, Fumiya; Nima, Zeid A.; Honda, Takumi; Mitsuhara, Masatoshi; Nishida, Minoru; Biris, Alexandru S.

    2017-01-01

    Multicomponent nano-agents were designed and built via a core-shell approach to enhance their surface enhanced Raman scattering (SERS) signals. These nano-agents had 36 nm × 12 nm gold nanorod cores coated by 4 nm thick silver shell films and a subsequent thin bifunctional thiolated polyethylene glycol (HS-PEG-COOH) layer. Ambient time-lapsed SERS signal measurements of these functionalized nanorods taken over a two-week period indicated no signal degradation, suggesting that large portions of the silver shells remained in pure metallic form. The morphology of the nanorods was characterized by transmission electron microscopy (TEM) and ultra-high resolution scanning TEM. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were utilized to assess the oxidation states of the silver shells covered by HS-PEG-COOH. The binding energies of Ag 3d XPS spectra yielded very small chemical shifts with oxidation; however, the AES peak shapes gave meaningful information about the extent of oxidation undergone by the nano-agent. While the silver shells without HS-PEG-COOH coatings oxidized significantly, the silver shells with HS-PEG-COOH remained predominantly metallic. In fact, six month-old samples still retained mostly metallic silver shells. These findings further demonstrate the stability and longevity of the nanostructures, indicating their significant potential as plasmonically active agents for highly sensitive detection in various biological systems, including cancer cells, tissues, or even organisms.

  14. Electron Spectroscopy: Ultraviolet and X-Ray Excitation.

    Science.gov (United States)

    Baker, A. D.; And Others

    1980-01-01

    Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);…

  15. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl;

    2006-01-01

    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...... on the weathering history or mechanical properties of samples. The possible application of CEMS on Mars is discussed....

  16. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  17. Probing Plasmonic Nanostructures with Electron Energy - Loss Spectroscopy

    DEFF Research Database (Denmark)

    Raza, Søren

    for nonlocal response. The experimental work comprises the use of electron energy-loss spectroscopy (EELS) to excite and study both localized and propagating surface plasmons in metal structures. Following a short introduction, we present the theoretical foundation to describe nonlocal response in Maxwell...

  18. The Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10{sup 19} eV and with equal exposures for the northern and southern skies.

  19. Normal Auger processes with ultrashort x-ray pulses in neon

    Science.gov (United States)

    Sullivan, Raymond; Jia, Junteng; Vázquez-Mayagoitia, Álvaro; Picón, Antonio

    2016-10-01

    Modern x-ray sources enable the production of coherent x-ray pulses with a pulse duration in the same order as the characteristic lifetimes of core-hole states of atoms and molecules. These pulses enable the manipulation of the core-hole population during Auger-decay processes, modifying the line shape of the electron spectra. In this work, we present a theoretical model to study those effects in neon. We identify effects in the Auger-electron-photoelectron coincidence spectrum due to the duration and intensity of the pulses. The normal Auger line shape is recovered in Auger-electron spectra integrated over all photoelectron energies.

  20. High-Resolution Conversion Electron Spectroscopy of Valence Electron Configurations (CESVEC) in Solids

    CERN Multimedia

    2002-01-01

    First measurements with the Zurich $\\beta$-spectrometer on sources from ISOLDE have demonstrated that high resolution spectroscopy of conversion electrons from valence shells is feasible.\\\\ \\\\ This makes possible a novel type of electron spectroscopy (CESVEC) on valence-electron configurations of tracer elements in solids. Thus the density of occupied electron states of impurities in solids has been measured for the first time. Such data constitute a stringent test of state-of-the-art calculations of impurity properties. Based on these results, we are conducting a systematic investigation of impurities in group IV and III-V semiconductors.

  1. Terahertz electromodulation spectroscopy of electron transport in GaN

    Science.gov (United States)

    Engelbrecht, S. G.; Arend, T. R.; Zhu, T.; Kappers, M. J.; Kersting, R.

    2015-03-01

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  2. Terahertz electromodulation spectroscopy of electron transport in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, S. G.; Arend, T. R.; Kersting, R., E-mail: roland.kersting@lmu.de [Photonics and Optoelectronics Group, Physics Department and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Amalienstr. 54, 80799 München (Germany); Zhu, T.; Kappers, M. J. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2015-03-02

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  3. Binary collision model for neon Auger spectra from neon ion bombardment of the aluminum surface

    Science.gov (United States)

    Pepper, S. V.

    1986-01-01

    A model is developed to account for the angle-resolved Auger spectra from neon ion bombardment of the aluminum surface recently obtained by Pepper and Aron. The neon is assumed to be excited in a single asymmetric neon-aluminum-collision and scattered back into the vacuum where it emits an Auger electron. The velocity of the Auger electron acquires a Doppler shift by virtue of the emission from a moving source. The dependence of the Auger peak shape and energy on the incident ion energy, angle of incidence and on the angle of Auger electron emission with respect to the surface is presented. Satisfactory agreement with the angle resolved experimental observations is obtained. The dependence of the angle-integrated Auger yield on the incident ion energy and angle of incidence is also obtained and shown to be in satisfactory agreement with available experimental evidence.

  4. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  5. Neutrinos from Auger Sources

    CERN Document Server

    Halzen, Francis

    2008-01-01

    The Pierre Auger observatory has presented evidence that the arrival directions of cosmic rays with energies in excess of 6x10^7 TeV may be correlated with nearby active galactic nuclei (AGN). In this context we revisit a suggestion based on gamma ray observations that nearby Fanaroff-Riley I galaxies such as Cen A and M87 are the sources of the local cosmic rays. We compute the accompanying neutrino flux and find a flux within reach of second-generation kilometer-scale neutrino telescopes.

  6. Terahertz electromodulation spectroscopy of electron transport in GaN

    OpenAIRE

    Engelbrecht, S. G.; Arend, T. R.; Zhu, T.; M. J. Kappers; Kersting, R.

    2015-01-01

    This is the accepted manuscript. The final version is available at http://scitation.aip.org/content/aip/journal/apl/106/9/10.1063/1.4914326. Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamenta...

  7. Studying the Stereochemistry of Naproxen Using Rotationally Resolved Electronic Spectroscopy.

    Science.gov (United States)

    Young, Justin W.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2009-06-01

    Many biochemical processes are stereospecific. An example is the physiological response to a drug that depends on its enantiomeric form. Naproxen is a drug which shows this stereo-specific physiological response. To better understand the stereo specificity of chiral substances, we observed the S_1←S_0 transitions of R- and S-naproxen in the gas phase using rotationally resolved electronic spectroscopy. The results will be discussed.

  8. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  9. Molecular shock response of explosives: electronic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrne, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory; Eakins, Daniel E [Los Alamos National Laboratory

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  10. In Situ Electron Energy Loss Spectroscopy in Liquids

    CERN Document Server

    Holtz, Megan E; Gao, Jie; Abruña, Héctor D; Muller, David A

    2012-01-01

    In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the holder shadows the detector, and electron energy loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS for studying chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap and thickness of the liquid layer by valence EELS is demonstrated for liquids. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio as demonstrated for LiFePO4 in aqueous solution. The potential for using...

  11. Ultrabroadband two-quantum two-dimensional electronic spectroscopy

    Science.gov (United States)

    Gellen, Tobias A.; Bizimana, Laurie A.; Carbery, William P.; Breen, Ilana; Turner, Daniel B.

    2016-08-01

    A recent theoretical study proposed that two-quantum (2Q) two-dimensional (2D) electronic spectroscopy should be a background-free probe of post-Hartree-Fock electronic correlations. Testing this theoretical prediction requires an instrument capable of not only detecting multiple transitions among molecular excited states but also distinguishing molecular 2Q signals from nonresonant response. Herein we describe a 2Q 2D spectrometer with a spectral range of 300 nm that is passively phase stable and uses only beamsplitters and mirrors. We developed and implemented a dual-chopping balanced-detection method to resolve the weak molecular 2Q signals. Experiments performed on cresyl violet perchlorate and rhodamine 6G revealed distinct 2Q signals convolved with nonresonant response. Density functional theory computations helped reveal the molecular origin of these signals. The experimental and computational results demonstrate that 2Q electronic spectra can provide a singular probe of highly excited electronic states.

  12. Chemical changes of titanium and titanium dioxide under electron bombardment

    OpenAIRE

    Romins Brasca; Luciana Ines Vergara; Mario César Guillermo Passeggi; Julio Ferrón

    2007-01-01

    The electron induced effect on the first stages of the titanium (Ti0) oxidation and titanium dioxide (Ti4+) chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+).

  13. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  14. ¹¹¹In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer.

    Science.gov (United States)

    Fasih, Aisha; Fonge, Humphrey; Cai, Zhongli; Leyton, Jeffrey V; Tikhomirov, Ilia; Done, Susan J; Reilly, Raymond M

    2012-08-01

    Increased expression of epidermal growth factor receptors (EGFR) in breast cancer (BC) is often associated with trastuzumab (Herceptin)-resistant forms of the disease and represents an attractive target for novel therapies. Nimotuzumab is a humanized IgG(1) monoclonal antibody that is in clinical trials for treatment of EGFR-overexpressing malignancies. We show here that nimotuzumab derivatized with benzylisothiocyanate diethylenetriaminepentaacetic acid for labelling with the subcellular range Auger electron-emitter, (111)In and modified with nuclear translocation sequence (NLS) peptides ((111)In-NLS-Bn-DTPA-nimotuzumab) was bound, internalized and transported to the nucleus of EGFR-positive BC cells. Emission of Auger electrons in close proximity to the nucleus caused multiple DNA double-strand breaks which diminished the clonogenic survival (CS) of MDA-MB-468 cells that have high EGFR density (2.4 × 10(6) receptors/cell) to less than 3 %. (111)In-Bn-DTPA-nimotuzumab without NLS peptide modification was sevenfold less effective for killing MDA-MB-468 cells. (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification were equivalently cytotoxic to MDA-MB-231 and TrR1 BC cells that have moderate EGFR density (5.4 × 10(5) or 4.2 × 10(5) receptors/cell, respectively) reducing their CS by twofold. MDA-MB-231 cells have intrinsic trastuzumab resistance due to low HER2 density, whereas TrR1 cells have acquired resistance despite HER2 overexpression. Biodistribution and microSPECT/CT imaging revealed that (111)In-NLS-Bn-DTPA-nimotuzumab exhibited more rapid elimination from the blood and lower tumour uptake than (111)In-Bn-DTPA-nimotuzumab. Tumour uptake of the radioimmunoconjugates in mice with MDA-MB-468 xenografts was high (8-16 % injected dose/g) and was blocked by administration of an excess of unlabelled nimotuzumab, demonstrating EGFR specificity. We conclude that (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification are promising Auger

  15. Double core hole production in N2: Beating the Auger clock

    CERN Document Server

    Fang, L; Gessner, O; Tarantelli, F; Pratt, S T; Kornilov, O; Buth, C; Güehr, M; Kanter, E P; Bostedt, C; Bozek, J D; Bucksbaum, P H; Chen, M; Coffee, R; Cryan, J; Glownia, M; Kukk, E; Leone, S R; Berrah, N

    2013-01-01

    We investigate the creation of double K-shell holes in N2 molecules via sequential absorption of two photons on a timescale shorter than the core-hole lifetime by using intense x-ray pulses from the Linac Coherent Light Source free electron laser. The production and decay of these states is characterized by photoelectron spectroscopy and Auger electron spectroscopy. In molecules, two types of double core holes are expected, the ?rst with two core holes on the same N atom, and the second with one core hole on each N atom. We report the ?rst direct observations of the former type of core hole in a molecule, in good agreement with theory, and provide an experimental upper bound for the relative contribution of the latter type.

  16. Simulating electron energy loss spectroscopy with the MNPBEM toolbox

    Science.gov (United States)

    Hohenester, Ulrich

    2014-03-01

    Within the MNPBEM toolbox, we show how to simulate electron energy loss spectroscopy (EELS) of plasmonic nanoparticles using a boundary element method approach. The methodology underlying our approach closely follows the concepts developed by García de Abajo and coworkers (Garcia de Abajo, 2010). We introduce two classes eelsret and eelsstat that allow in combination with our recently developed MNPBEM toolbox for a simple, robust, and efficient computation of EEL spectra and maps. The classes are accompanied by a number of demo programs for EELS simulation of metallic nanospheres, nanodisks, and nanotriangles, and for electron trajectories passing by or penetrating through the metallic nanoparticles. We also discuss how to compute electric fields induced by the electron beam and cathodoluminescence. Catalogue identifier: AEKJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKJ_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 38886 No. of bytes in distributed program, including test data, etc.: 1222650 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b). Computer: Any which supports Matlab 7.11.0 (R2010b). Operating system: Any which supports Matlab 7.11.0 (R2010b). RAM:≥1 GB Classification: 18. Catalogue identifier of previous version: AEKJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 370 External routines: MESH2D available at www.mathworks.com Does the new version supersede the previous version?: Yes Nature of problem: Simulation of electron energy loss spectroscopy (EELS) for plasmonic nanoparticles. Solution method: Boundary element method using electromagnetic potentials. Reasons for new version: The new version of the toolbox includes two additional classes for the simulation of electron energy

  17. Auger North: The Pierre Auger Observatory in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Mantsch, Paul M.; /Fermilab

    2009-01-01

    Results from Auger South have settled some fundamental issues about ultra-high energy (UHE) cosmic rays and made clear what is needed now to identify the sources of these particles, to uncover the acceleration process, to establish the particle types, and to test hadronic interaction properties at extreme energies. The cosmic rays above 55 EeV are key. Auger North targets this high energy frontier by increasing the collecting power of the Auger Observatory by a factor of eight for those high energy air showers. Particles above about 40 EeV have been shown to be subject to propagation energy loss, as predicted by Greisen, Zatsepin and Kuzmin (GZK) in 1966. Moreover, it is now evident that there is a detectable flux of particles from extragalactic sources within the GZK sphere. The inhomogeneous distribution of matter in the local universe imprints its anisotropy on the arrival directions of cosmic rays above 55 EeV. The challenge is to collect enough of those arrival directions to identify the class of astrophysical accelerators and measure directly the brightest sources. Auger North will increase the event rate from 25 per year to 200 per year and give the Auger Observatory full sky exposure. The Auger Observatory also has the capability to detect UHE photons and neutrinos from discrete sources or from the decays of GZK pions. With the expanded aperture of Auger North, the detection of GZK photons and neutrinos will provide a complementary perspective of the highest energy phenomena in the contemporary universe. Besides being an observatory for UHE cosmic rays, photons, and neutrinos, the Auger Observatory will serve as a laboratory for the study of hadronic interactions with good statistics over a wide range of center-of-mass energies above what can be reached at the LHC. Auger North will provide statistical power at center-of-mass energies above 250 TeV where the alternative extrapolations of hadronic cross sections diverge. Auger North is ready to go. The

  18. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    This thesis is concerned with fundamental research into electronic and magnetic interaction on the nanoscale. From small metallic and magnetic islands and layers to single atoms. The research revolves around magnetic interaction probed through the spectroscopic capabilities of the scanning....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...... coverage the silver preferably nucleates on top of the bilayer high cobalt islands compared to directly on the Cu(111) substrate. Furthermore, the silver forms a combination of a reconstruction and a Moire pattern which is investigated with low-energy electron diraction and spectroscopic STM mapping at 6...

  19. Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    Science.gov (United States)

    Wagner, A.; Anwand, W.; Attallah, A. G.; Dornberg, G.; Elsayed, M.; Enke, D.; Hussein, A. E. M.; Krause-Rehberg, R.; Liedke, M. O.; Potzger, K.; Trinh, T. T.

    2017-01-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films.

  20. Electron energy-loss spectroscopy of branched gap plasmon resonators

    Science.gov (United States)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  1. Auger electron emitter against multiple myeloma - targeted endo-radio-therapy with {sup 125}I-labeled thymidine analogue 5-iodo-4'-thio-2'-deoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Morgenroth, Agnieszka, E-mail: amorgenroth@ukaachen.de [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Nuclear Medicine Clinic, University Aachen, RWTH, Pauwelsstrasse 30, D-52074 Aachen (Germany); Dinger, Cornelia; Zlatopolskiy, Boris D.; Al-Momani, Ehab; Glatting, Gerhard [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Mottaghy, Felix M. [Nuclear Medicine Clinic, University Aachen, RWTH, Pauwelsstrasse 30, D-52074 Aachen (Germany); Reske, Sven N. [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany)

    2011-10-15

    Introduction: Multiple myeloma (MM) is a plasma cell malignancy characterized by accumulation of malignant, terminally differentiated B cells in the bone marrow. Despite advances in therapy, MM remains an incurable disease. Novel therapeutic approaches are, therefore, urgently needed. Auger electron-emitting radiopharmaceuticals are attractive for targeted nano-irradiation therapy, given that DNA of malignant cells is selectively addressed. Here we evaluated the antimyeloma potential of the Auger electron-emitting thymidine analogue {sup 125}I-labeled 5-iodo-4'-thio-2'-deoxyuridine ([{sup 125}I]ITdU). Methods: Cellular uptake and DNA incorporation of [{sup 125}I]ITdU were determined in fluorodeoxyuridine-pretreated KMS12BM, U266, dexamethasone-sensitive MM1.S and -resistant MM1.R cell lines. The effect of stimulation with interleukin 6 (IL6) or insulin-like growth factor 1 (IGF1) on the intracellular incorporation of [{sup 125}I]ITdU was investigated in cytokine-sensitive MM1.S and MM1.R cell lines. Apoptotic cells were identified using Annexin V. Cleavage of caspase 3 and PARP was visualized by Western blot. DNA fragmentation was investigated using laddering assay. Therapeutic efficiency of [{sup 125}I]ITdU was proven by clonogenic assay. Results: [{sup 125}I]ITdU was shown to be efficiently incorporated into DNA of malignant cells, providing a promising mechanism for delivering highly toxic Auger radiation emitters into tumor DNA. [{sup 125}I]ITdU had a potent antimyeloma effect in cell lines representing distinct disease stages and, importantly, in cell lines sensitive or resistant to the conventional therapeutic agent, but was not toxic for normal plasma and bone marrow stromal cells. Furthermore, [{sup 125}I]ITdU abrogated the protective actions of IL6 and IGF1 on MM cells. [{sup 125}I]ITdU induced massive damage in the DNA of malignant plasma cells, which resulted in efficient inhibition of clonogenic growth. Conclusion: These studies may provide a

  2. Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy.

    Science.gov (United States)

    Oliver, Thomas A A; Lewis, Nicholas H C; Fleming, Graham R

    2014-07-15

    Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics.

  3. L-shell Auger and Coster-Kronig spectra from relativistic theory

    Science.gov (United States)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1979-01-01

    The intensities of L-shell Auger and Coster-Kronig transitions in heavy atoms have been calculated relativistically. A detailed comparison is made with measured Auger spectra of Pt and U. The pertinent transition energies were computed from relativistic wave functions with inclusion of the Breit interaction, self-energy, a vacuum-polarization correction, and complete atomic relaxation. Multiplet splitting is found to distribute Auger electrons from certain transitions among several lines. The analysis leads to reassignment of a number of lines in the measured spectra. Lines originally identified as L2-L3Ni in the U spectrum are shown to arise from M4,5 Auger transitions instead.

  4. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  5. Electron spectroscopy of selected atmospheric molecules and hydrocarbons

    Science.gov (United States)

    Davies, Julia Ann

    The thesis presents experimental results obtained by electron impact energy-loss spectroscopy. Differential oscillator strengths (DOS) of selected atmospheric molecules and hydrocarbons and vibrational excitation cross sections of ozone are measured. A critical comparison with earlier experiments and theory (where it exists) is made. The thesis is arranged in seven chapters. The first discusses molecular structure, spectroscopy and electron-molecule scattering as is relevant to the scope of this thesis. The next two chapters describe the experimental apparatus used. A high resolution electron spectrometer produces an electron beam (˜10 nA) incident upon the molecular target. Scattered electrons of selected energy-loss and scattering angle are detected by the spectrometer providing a total apparatus resolution of ˜50 meV. The vacuum system, gas inlet system and power supplies are also discussed. Chapters 4, 5 and 6 contain the main results obtained during postgraduate studies. DOS of selected atmospheric molecules (O2, N2, N2O, CO and CO2) are presented and critically compared with previous optical and synchrotron studies. Good agreement between results validates the experimental apparatus and techniques used in this work. A detailed study of the DOS of small alkanes (CH4, C2H6, C3H8 and C4H10) and small alkenes (C2H4, C3H6 and C4H8) shows similarities and trends in these series. DOS of ozone, O3, are also measured and the vibrational excitation of ozone is investigated as a function of scattering angle (40° ≤ theta ≤ 120°) and inccident energy (3 eV

  6. 8th international conference on electronic spectroscopy and structure

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  7. Conversion electron spectroscopy of isobarically purified trapped radioactive ions

    Energy Technology Data Exchange (ETDEWEB)

    Rissanen, J.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Rahaman, S.; Rinta-Antila, S.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, P.O.B. 35 (Finland)

    2007-11-15

    The feasibility of the JYFLTRAP for in-trap spectroscopy has been studied. Several internally converted transitions have been measured for isomers of fission products with good accuracy. High-resolution spectroscopic data free of source effects have been obtained proving that trapped radioactive ions can provide excellent conversion electron sources. The shortest-lived isomer studied in this work was {sup 117m} Pd with a half-life of 19.1 ms, for which a superior peak-to-total ratio and an excellent line shape at the 9.9 keV conversion electron line have been observed. Detection efficiencies and related phenomena of the present setup are analyzed. (orig.)

  8. Inexpensive electronics and software for photon statistics and correlation spectroscopy

    Science.gov (United States)

    Gamari, Benjamin D.; Zhang, Dianwen; Buckman, Richard E.; Milas, Peker; Denker, John S.; Chen, Hui; Li, Hongmin; Goldner, Lori S.

    2016-01-01

    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors. PMID:26924846

  9. ELECTRONIC-STRUCTURE OF LA2-XSRXNIO4 STUDIED BY PHOTOEMISSION AND INVERSE-PHOTOEMISSION SPECTROSCOPY

    NARCIS (Netherlands)

    EISAKI, H; UCHIDA, S; MIZOKAWA, T; NAMATAME, H; FUJIMORI, A; VANELP, J; KUIPER, P; SAWATZKY, GA; HOSOYA, S; KATAYAMAYOSHIDA, H

    1992-01-01

    The electronic structure of La2-xSrxNiO4 is studied by use of photoemission spectroscopy, bremsstrahlung-isochromat spectroscopy (BIS), and electron-energy-loss spectroscopy. Quantitative analyses are made on the valence-band and Ni 2p core-level photoemission spectra through configuration-interacti

  10. First test results from the Front-End Board with Cyclone V as a test high-resolution platform for the Auger-Beyond-2015 Front End Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew [University of Lodz, Department of Physics and Applied Informatics, Faculty of High-Energy Astrophysics, 90-236 Lodz, Pomorska 149, (Poland)

    2015-07-01

    The paper presents the first results from the Front- End Board (FEB) with the biggest Cyclone{sup R} V E FPGA 5CEFA9F31I7N, supporting 8 channels sampled up to 250 MSps at 14-bit resolution. Considered sampling for the SD is 120 MSps, however, the FEB has been developed with external anti-aliasing filters to keep a maximal flexibility. Six channels are targeted to the SD, two the rest for other experiments like: Auger Engineering Radio Array and additional muon counters. More channels and higher sampling generate larger size of registered events. We used the standard radio channel for a radio transmission from the detectors to the Central Data Acquisition Station (CDAS) to avoid at present a significant modification of a software in both sides: the detector and the CDAS (planned in a future for a final design). Seven FEBs have been deployed in the test detectors on a dedicated Engineering Array in a hexagon. Several variants of the FPGA code were tested for 120, 160, 200 and even 240 MSps DAQ. Tests confirmed a stability and reliability of the FEB design in real pampas conditions with more than 40 deg. C daily temperature variation and a strong sun exposition with a limited power budget only from a single solar panel. (authors)

  11. Comment on mesic-atom Auger-rate calculation

    Science.gov (United States)

    Altman, A.; Fried, Z.

    1983-07-01

    Auger rates for a mesic atom consisting of a lithium nucleus and two electrons are presented. It is shown that the results are sensitive to the screening of the initial and final state of the ejected electron by the spectator electron. These results are compared to transition rates one would obtain by following the procedure used by Burbridge and de Borde, which neglect screening of one electron by the others. Our results show a 40% reduction in transition rates.

  12. Stochastic stimulated electronic x-ray Raman spectroscopy

    CERN Document Server

    Kimberg, Victor

    2015-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear and collective dynamics of excited atoms, molecules and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator set up to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, that uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, that serves as seed in the stimulated scattering process. The limit...

  13. Electronic structure of EuN: Growth, spectroscopy, and theory

    DEFF Research Database (Denmark)

    Richter, J. H.; Ruck, B.J.; Simpson, M.

    2011-01-01

    We present a detailed study of the electronic structure of europium nitride (EuN), comparing spectroscopic data to the results of advanced electronic structure calculations. We demonstrate the epitaxial growth of EuN films, and show that in contrast to other rare-earth nitrides successful growth...... and the lowest-lying 8S multiplet. The Hubbard-I model is also in good agreement with purely atomic multiplet calculations for the Eu M-edge XAS. LSDA+U and DMFT calculations find a metallic ground state, while QSGW results predict a direct band gap at X for EuN of about 0.9 eV that matches closely an absorption...... edge seen in optical transmittance at 0.9 eV, and a smaller indirect gap. Overall, the combination of theoretical methods and spectroscopies provides insights into the complex nature of the electronic structure of this material. The results imply that EuN is a narrow-band-gap semiconductor that lies...

  14. Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite

    Science.gov (United States)

    Brown, Christopher L.; Oliver, Frederick W.; Hammond, Ernest C., Jr.

    1989-01-01

    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions.

  15. Optimizing sparse sampling for 2D electronic spectroscopy

    Science.gov (United States)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  16. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  17. El proyecto AUGER

    Science.gov (United States)

    Etchegoyen, A.

    Hace ya más de 30 años en Volcano Ranch, EE.UU., un extenso chubasco cósmico (ECC) fue detectado con energía en exceso de 1020 eV. Desde entonces, observatorios ubicados en Haverah Park del Reino Unido, Yakutsk de Rusia, AGASA de Japón y Dugway de EE.UU. también han observado ECC con energías mayores que 1020 eV. Poco se sabe de dichos rayos, y en particular cuál es la naturaleza del primario, de dónde provienen, y cómo son acelerados, pero su naturaleza ultrarelativista excluye la mayoría de las respuestas dejando sólo algunas plausibles de ser investigadas experimentalmente. Grupos de científicos de 20 países están trabajando con el fin de construir dos arreglos de detectores gigantes, uno en cada hemisferio a lo largo de 3000 km2 c/u. Dichas dimensiones son necesarias debido al flujo estimado de 1 rayo cósmico/centuria/km2/sr. La sede del Observatorio del Sur es la Argentina. El proyecto fue nombrado Pierre Auger en conmemoración del célebre físico francés que detectó por primera vez chubascos cósmicos en 1938. El proyecto focaliza su interés en rayos cósmicos con energías mayores que 1020 eV.

  18. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    Science.gov (United States)

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  19. Attosecond photoelectron spectroscopy of electron transport in solids

    Energy Technology Data Exchange (ETDEWEB)

    Magerl, Elisabeth

    2011-03-31

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  20. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    Science.gov (United States)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  1. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    CERN Document Server

    Aab, A; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Awal, N; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bridgeman, A; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Freire, M M; Fuchs, B; Fujii, T; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Hemery, N; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kuempel, D; Mezek, G Kukec; Kunka, N; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Louedec, K; Lu, L; Lucero, A; Malacari, M; Maldera, S; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Meyhandan, R; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zhu, Y; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-01-01

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m$^2$ plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  2. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  3. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies...... of the hole in this manner. In a second example, a hole is created in an inner shell by the first pulse, and the second probe pulse couples an even more tightly bound state to that hole. The hole decays in this example by Auger electron emission, and the absorption spectroscopy follows the decay of the hole...

  4. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  5. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance

    Science.gov (United States)

    Reissig, Falco; Mamat, Constantin; Steinbach, Joerg; Pietzsch, Hans-Juergen; Freudenberg, Robert; Navarro-Retamal, Carlos; Caballero, Julio; Kotzerke, Joerg; Wunderlich, Gerd

    2016-01-01

    It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4–, since nearly all DNA damage caused by 99mTcO4– was prevented by incubating with DMSO. PMID:27583677

  6. Suborbital Soft X-Ray Spectroscopy with Gaseous Electron Multipliers

    Science.gov (United States)

    Rogers, Thomas D.

    This thesis consists of the design, fabrication, and launch of a sounding rocket payload to observe the spectrum of the soft X-ray emission (0.1-1 keV) from the Cygnus Loop supernova remnant. This instrument, designated the Off-plane Grating Rocket for Extended Source Spectroscopy (OGRESS), was launched from White Sands Missile Range on May 2nd, 2015. The X-ray spectrograph incorporated a wire-grid focuser feeding an array of gratings in the extreme off-plane mount which dispersed the spectrum onto Gaseous Electron Multiplier (GEM) detectors. The gain characteristics of OGRESS's GEM detectors were fully characterized with respect to applied voltage and internal gas pressure, allowing operational settings to be optimized. The GEMs were optimized to operate below laboratory atmospheric pressure, allowing lower applied voltages, thus reducing the risk of both electrical arcing and tearing of the thin detector windows. The instrument recorded 388 seconds of data and found highly uniform count distributions over both detector faces, in sharp contrast to the expected thermal line spectrum. This signal is attributed to X-ray fluorescence lines generated inside the spectrograph. The radiation is produced when thermal ionospheric particles are accelerated into the interior walls of the spectrograph by the high voltages of the detector windows. A fluorescence model was found to fit the flight data better than modeled supernova spectra. Post-flight testing and analysis revealed that electrons produce distinct signal on the detectors which can also be successfully modeled as fluorescence emission.

  7. Tetrachloridocuprates(II—Synthesis and Electron Paramagnetic Resonance (EPR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Peter Strauch

    2012-02-01

    Full Text Available Ionic liquids (ILs on the basis of metal containing anions and/or cations are of interest for a variety of technical applications e.g., synthesis of particles, magnetic or thermochromic materials. We present the synthesis and the results of electron paramagnetic resonance (EPR spectroscopic analyses of a series of some new potential ionic liquids based on tetrachloridocuprates(II, [CuCl4]2−, with different sterically demanding cations: hexadecyltrimethylammonium 1, tetradecyltrimethylammonium 2, tetrabutylammonium 3 and benzyltriethylammonium 4. The cations in the new compounds were used to achieve a reasonable separation of the paramagnetic Cu(II ions for EPR spectroscopy. The EPR hyperfine structure was not resolved. This is due to the exchange broadening, resulting from still incomplete separation of the paramagnetic Cu(II centers. Nevertheless, the principal values of the electron Zeemann tensor (g║ and g┴ of the complexes could be determined. Even though the solid substances show slightly different colors, the UV/Vis spectra are nearly identical, indicating structural changes of the tetrachloridocuprate moieties between solid state and solution. The complexes have a promising potential e.g., as high temperature ionic liquids, as precursors for the formation of copper chloride particles or as catalytic paramagnetic ionic liquids.

  8. Electron Momentum Spectroscopy of the Frontier Orbitals of Chlorodifiuoromethane

    Institute of Scientific and Technical Information of China (English)

    徐春凯; 陈向军; 贾昌春; 张虚怀; 尹晓峰; 单旭; 魏征; 徐克尊

    2002-01-01

    We report on the first measurement of the electron momentum distributions of the three outermost valence orbitals for chlorodifluoromethane (CHF2 Cl) by binary (e, 2e) electron momentum spectroscopy. The experimen-tal data are compared with Hartree Fock and density functional theory (DFT) calculations employing 6-31 G,6-311++G** and A UG-cc-p VQZ basis sets. For the summed momentum distribution of 8a' + 5a" + 7a' orbitals,the DFT/AUG-cc-pVQZ calculation gives the best fit. A very large and diffuse basis set, AUG-cc-pVQZ, isemployed in the calculations to approach the Hartree Fock limit of the basis set, but the improvement of the calculation quality is little in comparison with that calculated with the 6-311++G** basis set. This indicates that the 6-311++G** basis set is nearly saturated for the calculations of these three orbitals of CHF2Cl, and it is unnecessary to employ a larger basis set in the calculations.

  9. Two-Dimensional Electronic Spectroscopies for Probing Electronic Structure and Charge Transfer: Applications to Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Ogilvie, Jennifer P. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics

    2016-11-22

    Photosystem II (PSII) is the only known natural enzyme that uses solar energy to split water, making the elucidation of its design principles critical for our fundamental understanding of photosynthesis and for our ability to mimic PSII’s remarkable properties. This report discusses progress towards addressing key open questions about the PSII RC. It describes new spectroscopic methods that were developed to answer these questions, and summarizes the outcomes of applying these methods to study the PSII RC. Using 2D electronic spectroscopy and 2D electronic Stark spectroscopy, models for the PSII RC were tested and refined. Work is ongoing to use the collected data to elucidate the charge separation mechanism in the PSII RC. Coherent dynamics were also observed in the PSII RC for the first time. Through extensive characterization and modeling we have assigned these coherences as vibronic in nature, and believe that they reflect resonances between key vibrational pigment modes and electronic energy gaps that may facilitate charge separation. Work is ongoing to definitively test the functional relevance of electronic-vibrational resonances.

  10. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    Science.gov (United States)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  11. Electrode surface studies by LEED-Auger

    Science.gov (United States)

    Ogrady, W. E.; Woo, M. Y. C.; Hagans, P. L.; Yeager, E.

    1977-01-01

    The role the electronic and geometric structures of the metal surface play in electrochemical surface reactions remains as yet an unknown factor. In order to investigate these surface contributions to electrochemical reactions, a low-energy-electron diffraction (LEED) and an Auger electron spectrometer (AES) have been combined with an electrochemical thin-layer cell. The surface to be studied electrochemically is first characterized by LEED-AES and then transferred into a second chamber where it becomes part of the electrochemical thin-layer cell. Electrochemical reactions are then run on this surface. The sample may then be transferred back to the LEED-AES chamber for further characterization. Data on Pt (111) will be presented.

  12. From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy.

    Science.gov (United States)

    Colliex, Christian

    2011-01-01

    This review intends to illustrate how electron energy-loss spectroscopy (EELS) techniques in the electron microscope column have evolved over the past 60 years. Beginning as a physicist tool to measure basic excitations in solid thin foils, EELS techniques have gradually become essential for analytical purposes, nowadays pushed to the identification of individual atoms and their bonding states. The intimate combination of highly performing techniques with quite efficient computational tools for data processing and ab initio modeling has opened the way to a broad range of novel imaging modes with potential impact on many different fields. The combination of Angström-level spatial resolution with an energy resolution down to a few tenths of an electron volt in the core-loss spectral domain has paved the way to atomic-resolved elemental and bonding maps across interfaces and nanostructures. In the low-energy range, improved energy resolution has been quite efficient in recording surface plasmon maps and from them electromagnetic maps across the visible electron microscopy (EM) domain, thus bringing a new view to nanophotonics studies. Recently, spectrum imaging of the emitted photons under the primary electron beam and the spectacular introduction of time-resolved techniques down to the femtosecond time domain, have become innovative keys for the development and use of a brand new multi-dimensional and multi-signal electron microscopy.

  13. First-Principles Simulations of Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Devices

    Science.gov (United States)

    Jiang, Jun; Kula, Mathias; Lu, Wei; Luo, Yi

    2005-08-01

    A generalized Green's function theory is developed to simulate the inelastic electron tunneling spectroscopy (IETS) of molecular junctions. It has been applied to a realistic molecular junction with an octanedithiolate embedded between two gold contacts in combination with the hybrid density functional theory calculations. The calculated spectra are in excellent agreement with recent experimental results. Strong temperature dependence of the experimental IETS spectra is also reproduced. It is shown that the IETS is extremely sensitive to the intra-molecular conformation and to the molecule-metal contact geometry.

  14. Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective

    Science.gov (United States)

    Bernasconi, G. D.; Flauraud, V.; Alexander, D. T. L.; Brugger, J.; Martin, O. J. F.; Butet, J.

    2016-09-01

    Electron energy-loss spectroscopy (EELS) has become an experimental method of choice for the investigation of localized surface plasmon resonances, allowing the simultaneous mapping of the associated field distributions and their resonant energies with a nanoscale spatial resolution. The experimental observations have been well-supported by numerical models based on the computation of the Lorentz force acting on the impinging electrons by the scattered field. However, in this framework, the influence of the intrinsic properties of the plasmonic nanostructures studied with the electron energy-loss (EEL) measurements is somehow hidden in the global response. To overcome this limitation, we propose to go beyond this standard, and well-established, electron perspective and instead to interpret the EELS data using directly the intrinsic properties of the nanostructures, without regard to the force acting on the electron. The proposed method is particularly well-suited for the description of coupled plasmonic systems, because the role played by each individual nanoparticle in the observed EEL spectrum can be clearly disentangled, enabling a more subtle understanding of the underlying physical processes. As examples, we consider different plasmonic geometries in order to emphasize the benefits of this new conceptual approach for interpreting experimental EELS data. In particular, we use it to describe results from samples made by traditional thin film patterning and by arranging colloidal nanostructures.

  15. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au

    Science.gov (United States)

    Groeneveld, Rogier H. M.; Sprik, Rudolf; Lagendijk, Ad

    1995-05-01

    We show experimentally that the electron distribution of a laser-heated metal is a nonthermal distribution on the time scale of the electron-phonon (e-ph) energy relaxation time τE. We measured τE in 45-nm Ag and 30-nm Au thin films as a function of lattice temperature (Ti=10-300 K) and laser-energy density (Ul=0.3-1.3 J cm-3), combining femtosecond optical transient-reflection techniques with the surface-plasmon polariton resonance. The experimental effective e-ph energy relaxation time decreased from 710-530 fs and 830-530 fs for Ag and Au, respectively, when temperature is lowered from 300 to 10 K. At various temperatures we varied Ul between 0.3-1.3 J cm-3 and observed that τE is independent from Ul within the given range. The results were first compared to theoretical predictions of the two-temperature model (TTM). The TTM is the generally accepted model for e-ph energy relaxation and is based on the assumption that electrons and lattice can be described by two different time-dependent temperatures Te and Ti, implying that the two subsystems each have a thermal distribution. The TTM predicts a quasiproportional relation between τE and Ti in the perturbative regime where τE is not affected by Ul. Hence, it is shown that the measured dependencies of τE on lattice temperature and energy density are incompatible with the TTM. It is proven that the TTM assumption of a thermal electron distribution does not hold especially under our experimental conditions of low laser power and lattice temperature. The electron distribution is a nonthermal distribution on the picosecond time scale of e-ph energy relaxation. We developed a new model, the nonthermal electron model (NEM), in which we account for the (finite) electron-electron (e-e) and electron-phonon dynamics simultaneously. It is demonstrated that incomplete electron thermalization yields a slower e-ph energy relaxation in comparison to the thermalized limit. With the NEM we are able to give a consistent

  16. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies.

    Science.gov (United States)

    Ledeuil, J B; Uhart, A; Soulé, S; Allouche, J; Dupin, J C; Martinez, H

    2014-10-01

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (≈12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.

  17. Spectroscopy of hexafluorides with an odd number of electrons; Spectroscopie des hexafluorures a nombre impair d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Boudon, V

    1995-05-01

    From a theoretical point of view, a tensorial formalism adapted to the study of molecules or octahedral ions with a half-integer angular momentum has been developed for the first time. We have used here the method of projective representations, more consistent than that of double groups. A complete set of coupling coefficients and formulas, as well as the corresponding computing programs have been elaborated. This has firstly allowed us to write a simple model describing the vibronic structure of colored hexafluorides. Then, some applications of this formalism to the study of ro-vibronic couplings of XY{sub 6} molecules in a fourfold degenerate electronic state have been considered, especially concerning operators associated to dynamic Jahn-Teller effect. From an experimental point of view, we have considered IrF{sub 6}, for which we have mastered the synthesis, purification and conservation processes. A first study at low resolution (absorption and Raman scattering) has been performed for this molecule. We have then set up two high resolution spectroscopic devices in the visible region (saturated absorption - tested with an iodine cell- and simple absorption with multiple pass). These especially use a dye laser. They should now allow the spectroscopy of the visible band of IrF{sub 6} in order to resolve for the first time its fine rotational structure. (author)

  18. Auger recombination of dark excitons in WS2 and WSe2 monolayers

    Science.gov (United States)

    Danovich, Mark; Zólyomi, Viktor; Fal'ko, Vladimir I.; Aleiner, Igor L.

    2016-09-01

    We propose a novel phonon assisted Auger process unique to the electronic band structure of monolayer transition metal dichalcogenides (TMDCs), which dominates the radiative recombination of ground state excitons in tungsten based TMDCs. Using experimental and density functional theory computed values for the exciton energies, spin-orbit splittings, optical matrix element, and the Auger matrix elements, we find that the Auger process begins to dominate at carrier densities as low as {10}9-10 {{cm}}-2, thus providing a plausible explanation for the low quantum efficiencies reported for these materials.

  19. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  20. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Kraaer, Jens; Tougaard, Sven [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-06-28

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  1. THE AUGER ENGINEERING RADIO ARRAY

    Directory of Open Access Journals (Sweden)

    Klaus Weidenhaupt

    2013-12-01

    Full Text Available The Auger Engineering Radio Array currently measures MHz radio emission from extensive air showers induced by high energy cosmic rays with 24 self-triggered radio detector stations. Its unique site, embedded into the baseline detectors and extensions of the Pierre Auger Observatory, allows to study air showers in great detail and to calibrate the radio emission. In its final stage AERA will expand to an area of approximately 20km2 to explore the feasibility of the radio-detection technique for future cosmic-ray detectors. The concept and hardware design of AERA as well as strategies to enable self-triggered radio detection are presented. Radio emission mechanisms are discussed based on polarization analysis of the first AERA data.

  2. Electronic structure of layered titanate Nd2Ti2O7

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Gavrilova, T.A.; Grivel, Jean-Claude

    2008-01-01

    The electronic structure of the binary titanate Nd2Ti2O7 has been studied by X-ray photoelectron spectroscopy (XPS). Spectral features of the valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Nd2Ti2O7 are determined as alpha...

  3. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    Science.gov (United States)

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.

  4. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  5. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Science.gov (United States)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  6. Suppression of auger recombination in ""giant"" core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Santamaria, Florencio [Los Alamos National Laboratory; Vela, Javier [Los Alamos National Laboratory; Schaller, Richard D [Los Alamos National Laboratory; Hollingsworth, Jennifer A [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Chen, Yongfen [NON LANL

    2009-01-01

    Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ('blinking') of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has been a longstanding goal in colloidal nanocrystal research. Here, we demonstrate that such suppression is possible using so-called 'giant' nanocrystals that consist of a small CdSe core and a thick CdS shell. These nanostructures exhibit a very long biexciton lifetime ({approx}10 ns) that is likely dominated by radiative decay instead of non-radiative Auger recombination. As a result of suppressed Auger recombination, even high-order multiexcitons exhibit high emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 me V) and record low excitation thresholds.

  7. Electronic spectroscopy and electronic structure of the smallest metal clusters: the diatomic 3D transition metal aluminides

    Science.gov (United States)

    Behm, Jane M.; Morse, Michael D.

    1994-06-01

    A systematic study of the electronic spectroscopy, electronic structure, and chemical bonding has been initiated for the 3d series of diatomic transition metal aluminides. This report provides a review of the progress to date, with specific emphasis on AlCa, AlV, AlCr, AlMn, AlCo, AlNi, AlCu, and AlZn.

  8. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  9. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.

  10. Bandgap determination of P(VDF–TrFE) copolymer film by electron energy loss spectroscopy

    Indian Academy of Sciences (India)

    Dipankar Mandal; K Henkel; K Müller; D Schmeißer

    2010-08-01

    The ferroelectric of poly(vinylidene fluoride trifluoroethylene), P(VDF–TrFE) is confirmed for 100 nm thickness spin coated copolymer film. The homogeneous coverage of the copolymer film is investigated by the help of X-ray photoelectron spectroscopy (XPS). Most importantly, the existing bandgap in the crystalline phase of the copolymer is determined directly from the electron energy loss spectroscopy (EELS).

  11. The applications of in situ electron energy loss spectroscopy to the study of electron beam nanofabrication.

    Science.gov (United States)

    Chen, Shiahn J; Howitt, David G; Gierhart, Brian C; Smith, Rosemary L; Collins, Scott D

    2009-06-01

    An in situ electron energy loss spectroscopy (EELS) technique has been developed to investigate the dynamic processes associated with electron-beam nanofabrication on thin membranes. In this article, practical applications germane to e-beam nanofabrication are illustrated with a case study of the drilling of nanometer-sized pores in silicon nitride membranes. This technique involves successive acquisitions of the plasmon-loss and the core-level ionization-loss spectra in real time, both of which provide the information regarding the hole-drilling kinetics, including two respective rates for total mass loss, individual nitrogen and silicon element depletion, and the change of the atomic bonding environment. In addition, the in situ EELS also provides an alternative method for endpoint detection with a potentially higher time resolution than by imaging. On the basis of the time evolution of in situ EELS spectra, a qualitative working model combining knock-on sputtering, irradiation-induced mass transport, and phase separation can be proposed.

  12. Ejected-electron spectroscopy of autoionizing resonances of helium excited by fast-electron impact

    Science.gov (United States)

    Zhang, Zhe; Shan, Xu; Wang, Enliang; Chen, Xiangjun

    2012-06-01

    The autoionizing resonances (2s2)1S, (2p2)1D, and (2s2p)1P of helium have been investigated employing ejected-electron spectroscopy by fast-electron impact at incident energies of 250-2000 eV and ejected angles of 26°-116°. Shore parameters of the line shapes for these three resonances have been obtained in such high incident energy regime except at 250 eV. Distinct discrepancies between the present results at 250 eV and those of McDonald and Crowe at 200 eV [D. G. McDonald and A. Crowe, J. Phys. BJPAMA40953-407510.1088/0953-4075/25/9/018 25, 2129 (1992); D. G. McDonald and A. Crowe, J. Phys. BJPAMA40953-407510.1088/0953-4075/25/20/024 25, 4313 (1992)] and Sise at 250 eV [O. Sise, M. Dogan, I. Okur, and A. Crowe, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.022705 84, 022705 (2011)], especially for 1D and 1P states, are also observed.

  13. Coupling Nuclear Induced Phonon Propagation with Conversion Electron Moessbauer Spectroscopy

    Science.gov (United States)

    2015-06-18

    neodymium ( Nd2Fe14B ) bar was considered before the SS310 bar due to the magnetic properties of the material. The idea behind the consideration was...material to use would be Neodymium ( Nd2Fe14B ). This material contains a majority of iron for Mössbauer spectroscopy. Also, the material has boron

  14. Study of KLL Auger processes for light elements above Z = 10. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, T.A.; Dress, W.B.; Nyberg, G.L.

    1977-01-01

    A comprehensive review is given of the KLL Auger spectrum for members of the third row of the periodic table. This group contains the lightest elements wherein an Auger process can occur without the direct participation of the valence shell. Recent Auger spectra induced by x-ray photoionization on Mg, Al, and Si metals and their oxides are given as well as preliminary results on salts of Na and K, and for comparison, the LMM spectra of RbCl. Results were combined with previous experimental data and theory in order to obtain an overview. Four topics concerned with Auger processes are discussed: Energies, relative intensities, chemical shifts, and satellite structure. Interlaced throughout is a discussion of the role played by the chemical environment and electron correlation.

  15. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    Science.gov (United States)

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  16. Electron spectrometer for “in-beam” spectroscopy

    Science.gov (United States)

    Andrzejewski, J.; Król, A.; Perkowski, J.; Sobczak, K.; Wojtkiewicz, R.; Kisieliński, M.; Kowalczyk, M.; Kownacki, J.; Korman, A.

    2008-02-01

    A spectrometer that uses a set of silicon detectors and a combination of two magnetic fields for separation and for transportation of electrons from the target position to the silicon detectors has been constructed at the University of Lodz for "in-beam" studies of internal conversion electrons. The separation of electrons from positrons is achieved in a simplified mini-orange set-up. The transportation field is produced by a set of permanent magnets arranged in a form of coaxial rings. The background from delta electrons and gamma rays is highly reduced. The spectrometer was designed to be coupled to OSIRIS-II, the array of gamma-ray detectors at the Warsaw Heavy Ion Laboratory. The performance of the spectrometer is illustrated by examples of spectra obtained from the conversion electron spectrometer and also the OSIRIS-II array, which were recorded in- and off- beam.

  17. Direct observation of electron-to-hole energy transfer in CdSe quantum dots.

    Science.gov (United States)

    Hendry, E; Koeberg, M; Wang, F; Zhang, H; de Mello Donegá, C; Vanmaekelbergh, D; Bonn, M

    2006-02-10

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This constitutes the first direct, quantitative measurement of electron-to-hole energy transfer, the hypothesis behind the Auger cooling mechanism proposed in quantum dots, which is found to occur on a 1 +/- 0.15 ps time scale.

  18. Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy

    Science.gov (United States)

    Zhan, W.; Granerød, C. S.; Venkatachalapathy, V.; Johansen, K. M. H.; Jensen, I. J. T.; Kuznetsov, A. Yu; Prytz, Ø.

    2017-03-01

    Using monochromated electron energy loss spectroscopy in a probe-corrected scanning transmission electron microscope we demonstrate band gap mapping in ZnO/ZnCdO thin films with a spatial resolution below 10 nm and spectral precision of 20 meV.

  19. Practical guide to surface science and spectroscopy

    CERN Document Server

    Chung, Yip-Wah

    2001-01-01

    Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-...

  20. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Lynch

    2004-09-30

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals.

  1. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  2. Universal size dependence of auger constants in direct- and indirect-gap semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Robel, Istvan [Los Alamos National Laboratory; Schaller, Richard D [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Gresback, Ryan [U OF MINNESOTA; Kortshagen, Uwe [U OF MINNESOTA

    2008-01-01

    Three-dimensional (3D) spatial confinement of electronic wave functions in semiconductor nanocrystals (NCs) results in a significant enhancement of multi-electron phenomena including non radiative Auger recombination. In this process, a conduction-band electron recombines with a valence-band hole by transferring the recombination energy to a third carrier. Significant interest in Auger recombination in NCs has been stimulated by recent studies ofNC lasing, and generation-III photovoltaics enabled by carrier multiplication because in both of these prospective applications Auger recombination represents a dominant carrier-loss mechanism. Here, we perform a side-by-side comparison of Auger recombination rates in NCs of several different compositions including Ge, PbSe, InAs, and CdSe. We observe that the only factor, which has a significant effect on the measured recombination rates, is the size of the NCs but not the details of the material's electronic structure. Most surprisingly, comparable rates are measured for nanocrystals of directand indirect-gap semiconductor NCs despite a dramatic four-to-five orders of magnitude difference in respective bulk-semiconductor Auger constants. This unusual observation can be explained by confinement-induced relaxation of momentum conservation, which smears out the difference between direct- and indirect-gap materials.

  3. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  4. Cavity ring down spectroscopy with a free-electron laser

    NARCIS (Netherlands)

    Engeln, R.; van den Berg, E.; Meijer, G.; Lin, L.; Knippels, G.M.H.; van der Meer, A. F. G.

    1997-01-01

    A cavity ring down (CRD) absorption experiment is performed with a free-electron laser (FEL) operating in the 10-11 mu m region. A short infrared pulse of approximately 20 ns, sliced from the much longer FEL pulse, is used to measure CRD spectra of ethylene in two different ways. First, ''

  5. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  6. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide r

  7. 30 CFR 77.1503 - Augering equipment; overhead protection.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND COAL MINES Auger Mining § 77.1503 Augering equipment; overhead protection. (a) Auger machines which are exposed to highwall hazards, together with all those parts of any coal elevating conveyors... connecting or disconnecting auger sections under a highwall, at least one person shall be assigned to...

  8. Theoretical studies on electronic structure and x-ray spectroscopies of 2D materials

    OpenAIRE

    2016-01-01

    Extraordinary chemical and physical properties have been discovered from the studies of two-dimensional (2D) materials, ever since the successful exfoliation of graphene, the first 2D material. Theoretical investigations of electronic structure and spectroscopies of these materials play a fundamental role in deep understanding the various properties. In particular, the band structure and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy can provide critical information near the ...

  9. Working marginal reserves using Auger technology

    Energy Technology Data Exchange (ETDEWEB)

    Celada Tamames, B.

    1988-03-01

    Following up an idea put forward at a meeting of the PEN (National Energy Plan) R and D working party held in Ponferrada in the province of Leon, Ocicarbon contracted Geocontrol SA to carry out a study on the possible use of Auger technology for working marginal coal reserves. This article summarises the most important points in the final report on this project: current state of Auger technology, inventory of marginal coal reserves in Spain and the use of Auger technology in Spain. 6 figs., 2 tabs.

  10. Analysis of KLL Auger spectra excited by X-rays from Ni and Cu metal surfaces

    Science.gov (United States)

    Egri, S.; Kövér, L.; Cserny, I.; Novák, M.; Drube, W.

    2016-02-01

    Ni and Cu KLL Auger spectra excited by X-rays from polycrystalline metal foils were measured with good energy resolution and intensity earlier. Auger spectra of 3d transition metals contain satellite peaks due to the atomic excitation processes. Because of the complexity of the measured spectral shape a complete explanation of the spectra was not given in the previous works. A new analysis of the measured spectra is presented here, with improved description of effects of inelastic electron scattering of the electrons in the solid sample and using complex peak shapes to model the satellite structure that follows each diagram line. The energy loss part of measured spectra due to the bulk plasmon excitations, surface plasmon excitations and intrinsic loss processes was removed using the Partial Intensity Analysis method based on energy loss distributions obtained from experimental reflection electron energy loss spectra of the same Cu and Ni metal foils. Relative Auger-transition energies derived from measured spectra of copper are in good agreement with previous experimental works and the results of cluster molecular orbital multielectron (DV-ME) calculations. The intensity ratio I(3P2/3P0) shows better agreement with the result of relativistic calculations than in previous works. In the case of nickel the relative Auger-transition energies are in good agreement with the previous results. According to the new evaluation four satellite peaks were identified on the low energy side of each diagram line in the Auger spectra of Ni.

  11. Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.

    Science.gov (United States)

    Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E

    2011-05-12

    We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.

  12. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  13. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, K.S.

    2000-05-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  14. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Science.gov (United States)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20-55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for 241Am.

  15. 48-Channel electron detector for photoemission spectroscopy and microscopy

    Science.gov (United States)

    Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mähl, S.; Heichler, W.

    2004-01-01

    We show that it is possible to use a multichannel electron detector in a zone plate based photoemission spectromicroscopy in a snap shot mode to reduce the total acquisition time for a given counting time by 50% relative to the standard scanning mode while preserving the feature of the spectra. We describe the result of tests performed at Elettra using its microbeam (150 nm) together with a 48-channel detector designed for the PHOIBOS 100 analyzer optimized for extremely small x-ray sources. We also give a short summary of the technical features of the detector and describe one possible calibration procedure for its use in the snap shot mode. We show initial results from using this device to perform chemical maps of surfaces at a resolution of 150 nm.

  16. Trastuzumab Labeled to High Specific Activity with (111)In by Site-Specific Conjugation to a Metal-Chelating Polymer Exhibits Amplified Auger Electron-Mediated Cytotoxicity on HER2-Positive Breast Cancer Cells.

    Science.gov (United States)

    Ngo Ndjock Mbong, Ghislaine; Lu, Yijie; Chan, Conrad; Cai, Zhongli; Liu, Peng; Boyle, Amanda J; Winnik, Mitchell A; Reilly, Raymond M

    2015-06-01

    Our objective was to evaluate the cytotoxicity toward HER2-positive human breast cancer (BC) cells of trastuzumab modified site-specifically with a metal-chelating polymer (MCP) that presents multiple DTPA chelators for complexing (111)In. (111)In emits subcellular range Auger electrons that induce multiple lethal DNA double-strand breaks (DSBs) in cells. MCPs were synthesized with a polyglutamide backbone with 24 or 29 pendant DTPA groups, with or without nuclear translocation sequence (NLS) peptide modification and a terminal hydrazide group for reaction with aldehydes generated by sodium periodate (NaIO4)-oxidation of glycans on the Fc-domain of trastuzumab. Trastuzumab was site-specifically modified with two DTPA and labeled with (111)In for comparison (trastuzumab-NH-Bn-DTPA-(111)In). The maximum specific activity (SA) for labeling trastuzumab-Hy-MCP with (111)In was 90-fold greater than for trastuzumab-NH-Bn-DTPA-(111)In [8.9 MBq/μg (1.5 × 10(6) MBq/μmol) vs 0.1 MBq/μg (1.2 × 10(4) MBq/μmol)]. Trastuzumab-Hy-MCP-(111)In was bound, internalized, and imported into the nucleus of SK-BR-3 cells. NLS peptide modification of MCPs did not increase nuclear importation. A greater density of DNA DSBs was found for BC cells exposed to high SA (5.5 MBq/μg) than low SA (0.37 MBq/μg) radioimmunoconjugates. At 20 nmol/L, high SA trastuzumab-Hy-MCP-(111)In was 6-fold more effective at reducing the clonogenic survival (CS) of HER2 overexpressed and HER2 gene-amplified SK-BR-3 cells (1.3 × 10(6) receptors/cell) than low SA MCP-radioimmunoconjugates (CS = 1.8 ± 1.3 vs 10.9 ± 0.7%; P = 0.001). Low SA trastuzumab-NH-Bn-DTPA-(111)In (20 nmol/L) reduced the CS of SK-BR-3 cells to 15.8 ± 2.1%. The CS of ZR-75-1 cells with intermediate HER2 density (4 × 10(5) receptors/cell) but without HER2 gene amplification was reduced to 20.5 ± 4.3% by high SA trastuzumab-Hy-MCP-(111)In (20 nmol/L). The CS of HER2-overexpressed (5 × 10(5) HER2/cell) but trastuzumab-resistant TrR1

  17. Using Electron Paramagnetic Resonance Spectroscopy To Facilitate Problem Solving in Pharmaceutical Research and Development.

    Science.gov (United States)

    Mangion, Ian; Liu, Yizhou; Reibarkh, Mikhail; Williamson, R Thomas; Welch, Christopher J

    2016-08-19

    As new chemical methodologies driven by single-electron chemistry emerge, process and analytical chemists must develop approaches to rapidly solve problems in this nontraditional arena. Electron paramagnetic resonance spectroscopy has been long known as a preferred technique for the study of paramagnetic species. However, it is only recently finding application in contemporary pharmaceutical development, both to study reactions and to track the presence of undesired impurities. Several case studies are presented here to illustrate its utility in modern pharmaceutical development efforts.

  18. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations

    Science.gov (United States)

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-01

    Myricetin (3,3‧,4‧,5,5‧,7‧-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000 cm- 1 were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31 + G(d,p).

  19. Growth and electronic structure of Cu on Cr sub 2 O sub 3 (0001)

    CERN Document Server

    Xiao Wen De; Guo Qi; Wang, E G

    2003-01-01

    The deposition of Cu at room temperature on a Cr sub 2 O sub 3 (0001) substrate is studied by x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and low-energy-electron diffraction. The results indicate that at RT Cu is highly dispersed on the substrate at initial deposition. X-ray induced Auger spectra, Auger parameter and ultraviolet photoelectron spectroscopy show that at the initial coverage the deposited Cu is in the Cu(I) state due to the interaction of Cu with the Cr sub 2 O sub 3 substrate; Cu becomes metallic at Cu coverages of > 4 monolayer equivalent. The formation of Cu two-dimensional or quasi-2D patches is followed by the formation of Cu three-dimensional clusters. Cu grows epitaxially on the Cr sub 2 O sub 3 (0001) films as Cu(111)R 30 deg. as observed by low-energy-electron diffraction.

  20. The role of X-ray spectroscopy in understanding the geometric and electronic structure of nitrogenase.

    Science.gov (United States)

    Kowalska, Joanna; DeBeer, Serena

    2015-06-01

    X-ray absorption (XAS) and X-ray emission spectroscopy (XES) provide element specific probes of the geometric and electronic structures of metalloprotein active sites. As such, these methods have played an integral role in nitrogenase research beginning with the first EXAFS studies on nitrogenase in the late 1970s. Herein, we briefly explain the information that can be extracted from XAS and XES. We then highlight the recent applications of these methods in nitrogenase research. The influence of X-ray spectroscopy on our current understanding of the atomic structure and electronic structure of iron molybdenum cofactor (FeMoco) is emphasized. Contributions of X-ray spectroscopy to understanding substrate interactions and cluster biosynthesis are also discussed. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  1. Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Sanyal, Bhaskar; Sajilata, M G; Chatterjee, Suchandra; Singhal, Rekha S; Variyar, Prasad S; Kamat, M Y; Sharma, Arun

    2008-10-01

    Cashew nut samples were irradiated at gamma-radiation doses of 0.25, 0.5, 0.75, and 1 kGy, the permissible dose range for insect disinfestation of food commodities. A weak and short-lived triplet (g = 2.004 and hfcc = 30 G) along with an anisotropic signal (g perpendicular = 2.0069 and g parallel = 2.000) were produced immediately after irradiation. These signals were assigned to that of cellulose and CO 2 (-) radicals. However, the irradiated samples showed a dose-dependent increase of the central line (g = 2.0045 +/- 0.0002). The nature of the free radicals formed during conventional processing such as thermal treatment was investigated and showed an increase in intensity of the central line (g = 2.0045) similar to that of irradiation. Characteristics of the free radicals were studied by their relaxation and thermal behaviors. The present work explores the possibility to identify irradiated cashew nuts from nonirradiated ones by the thermal behaviors of the radicals beyond the period, when the characteristic electron paramagnetic resonance spectral lines of the cellulose free radicals have essentially disappeared. In addition, this study for the first time reports that relaxation behavior of the radicals could be a useful tool to distinguish between roasted and irradiated cashew nuts.

  2. Is localized infrared spectroscopy now possible in the electron microscope?

    Science.gov (United States)

    Rez, Peter

    2014-06-01

    The recently developed in-column monochromators make it possible to record energy-c spectra with resolutions better than 30 meV from nanometer-sized regions. It should therefore in principle be possible to detect localized vibrational excitations. The scattering geometry in the electron microscope means that bond stretching in the specimen plane or longitudinal optic phonons dominate the scattering. Most promising for initial studies are vibrations with energies between 300 and 400 meV from hydrogen bonded to other atoms. Estimates of the scattering cross-sections on the basis of a simple model show that they are about the same as inner shell scattering cross-sections. Cross-sections also increase with charge transfer between the atoms, and theory incorporating realistic charge distributions shows that signal/noise is the only limitation to high-resolution imaging. Given the magnitude of the scattering cross-sections, minimizing the tail of the zero-loss peak is just as important as achieving a small-width at half-maximum. Improvements in both resolution and controlling the zero-loss tail will be necessary before it is practical to detect optic phonons in solids between 40 and 60 meV.

  3. The radiation defect accumulation in scintillative crystals of caesium halides under intense electron beam irradiation

    CERN Document Server

    Galiy, P V

    1999-01-01

    The characteristics of defect accumulation and radiolysis at CsI crystals under mean energies of electron irradiation at wide dose rates and ranges of doses have been investigated by such methods: thermostimulated exoelectron emission (TSEE), Auger electron spectroscopy (AES) and optical absorption spectroscopy (OAS). The limit dose rates and absorbed doses of electron irradiation that lead to defects accumulation at room temperature in crystals volume and also surface stoichiometry violation have been evaluated. The doses of electron irradiation that lead to CsI radiolysis, with caesium coagulation in metallic phase have been determined. Some quasi periodic connection of such process with irradiation dose was observed.

  4. The Auger Engineering Radio Array and multi-hybrid cosmic ray detection

    Science.gov (United States)

    Holt, E. M.; Pierre Auger Collaboration

    2016-05-01

    The Auger Engineering Radio Array (AERA) aims at the detection of air showers induced by high-energy cosmic rays. As an extension of the Pierre Auger Observatory, it measures complementary information to the particle detectors, fluorescence telescopes and to the muon scintillators of the Auger Muons and Infill for the Ground Array (AMIGA). AERA is sensitive to all fundamental parameters of an extensive air shower such as the arrival direction, energy and depth of shower maximum. Since the radio emission is induced purely by the electromagnetic component of the shower, in combination with the AMIGA muon counters, AERA is perfect for separate measurements of the electrons and muons in the shower, if combined with a muon counting detector like AMIGA. In addition to the depth of the shower maximum, the ratio of the electron and muon number serves as a measure of the primary particle mass.

  5. Spectral analysis of the low energy Auger emission from a (0 0 0 1) ruthenium surface

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, Jerzy J.; Krajniak, Janusz

    2003-04-30

    The low energy Auger emission from a Ru(0 0 0 1) surface have been analysed by means of a cylindrical mirror analyser (CMA) within the range of the electron energy (E) from 27 to 37 eV as a function of the primary electron energy (E{sub p}), which was set from 170 to 450 eV in 20 eV steps. Three Auger transitions at following energies: 31.7, 33.8 and 36.4 eV, have been found due to application of the backscattering generation factor idea. Obtained results for the Auger transitions were verified by means of XPS results published by Fuggle et al. [Surf. Sci. 52 (1975) 521].

  6. Continuum probe two-dimensional electronic spectroscopy of the photosystem II reaction center

    Directory of Open Access Journals (Sweden)

    Ogilvie J. P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy of the photosystem II reaction center, collected in the pump-probe geometry employing a continuum probe. This enables observation of ion bands that report on intermediates in the charge separation process.

  7. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J. H.; Krasovskii, Eugene E.; Balgley, Jesse; Dean, Cory R.; Tromp, Rudolf M.; van der Molen, Sense Jan

    2016-11-01

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the `chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  8. Detailed theoretical and experimental description of normal Auger decay in O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bao Zhuo; Travnikova, Oksana; Svensson, Svante; Piancastelli, Maria Novella [Physics Department, Uppsala University, SE-75121 Uppsala (Sweden); Fink, Reinhold F [Institute of Physical Chemistry, Am Hubland, University of Wuerzburg, D-97074 Wuerzburg (Germany); Ceolin, Denis [Department of Synchrotron Radiation Research, Lund University, SE-22100 Lund (Sweden)], E-mail: Maria-Novella.Piancastelli@fysik.uu.se

    2008-06-28

    The normal Auger electron spectrum of the O{sub 2} molecule is assigned in detail on the basis of ab initio valence configuration interaction (CI) wavefunctions. Potential energy curves of the ground state, the core-ionized states and the doubly charged final states are calculated and Auger decay rates are obtained with the one-centre approximation. Using the lifetime vibrational interference method, band shapes are obtained for all contributions to the Auger spectrum. The calculated Auger electron spectrum allows us to identify all features observed experimentally. Significant differences to previous assignments are reported. A quantitative simulation of the spectrum is given on the basis of a curve-fitting procedure, in which the energetic positions and intensities of the theoretical bands were optimized. Besides providing a basis for a refined analysis of the spectrum, the fit allows us to assess the accuracy of the calculation. As expected for this level of theory, the absolute accuracy of the valence CI energies is found to be about 0.3 eV. The inherent error of the one-centre transition rates is less than 5% of the most intense transition in the spectrum. The frequently questioned one-centre Auger transition rates are shown to be rather appropriate if applied with reasonable wavefunctions and if the vibrational band structure of the molecular spectrum is properly taken into account.

  9. In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Peter A., E-mail: crozier@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University Tempe, AZ 85287-6106 (United States); Chenna, Santhosh [School for Engineering of Matter, Transport and Energy, Arizona State University Tempe, AZ 85287-6106 (United States)

    2011-02-15

    We have developed methods for using in situ electron energy-loss spectroscopy (EELS) to perform quantitative analysis of gas in an environmental transmission electron microscope. Inner-shell EELS was able to successfully determine the composition of gas mixtures with an accuracy of about 15% or better provided that some precautions are taken during the acquisition to account for the extended gas path lengths associated with the reaction cell. The unique valence-loss spectrum associated with many gases allowed simple methodologies to be developed to determine gas composition from the low-loss region of the spectrum from a gas mixture. The advantage of the valence loss approach is that it allows hydrogen to be detected and quantified. EELS allows real-time analysis of the volume of gas inside the reaction cell and can be performed rapidly with typical acquisition times of a few seconds or less. This in situ gas analysis can also be useful for revealing mass transport issues associated with the differential gas diffusion through the system. -- Research Highlights: {yields} In situ electron energy-loss spectroscopy for gas analysis in ETEM. {yields} Compositional accuracy of about 15% or better. {yields} Can use core-loss or valence loss spectroscopy. {yields} Can detect mass transport property of gas handling system.

  10. Operations of and Future Plans for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  11. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, S., E-mail: susanna.buratti@unimi.it [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Ballabio, D. [Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Giovanelli, G. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Dominguez, C.M. Zuluanga [Instituto de Ciencia y Tecnologia de Alimentos, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia); Moles, A.; Benedetti, S.; Sinelli, N. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2011-07-04

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: > We monitored time-related changes in red wine fermentation process. > NIR and MIR spectroscopies, electronic nose and tongue were applied. > Data were kinetically modelled to identify critical points during fermentation. > NIR, MIR electronic nose and tongue were able to follow the fermentation process. > The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that NIR and MIR

  12. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    Science.gov (United States)

    Farasat, M.; Shojaei, S. H. R.; Morini, F.; Golzan, M. M.; Deleuze, M. S.

    2016-04-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born-Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ˜10.0 and ˜12.0 eV (band C) and between ˜16.5 and ˜20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion.

  13. Auger Prime the new stage of the Pierre Auger Observatory, using Universality

    Science.gov (United States)

    Parra, Alejandra; Martínez, Oscar; Salazar, Humberto

    2016-10-01

    The Pierre Auger Observatory is currently in an update stage denominated AugerPrime. The Observatory will have scintillator detectors on top of each of the surface stations (WCD). The main goal of AugerPrime is to improve the studies on mass composition for ultra high energy cosmic rays, for this purpose AugerPrime will use Universality. The model will parameterize the signal in four principal components, the objective is an adequate discrimination of the muonic and electromagnetic components. We are interested in the discrimination of these two components using simulations. To do that, we are working with OfflineTrunk (the official software of the Collaboration). Our work is focused on the development of some modules for analysis and study of the signal from AugerPrime.

  14. Photoelectron and electron momentum spectroscopy of tetrahydrofuran from a molecular dynamical perspective.

    Science.gov (United States)

    Shojaei, S H Reza; Morini, Filippo; Deleuze, Michael S

    2013-03-07

    The results of experimental studies of the valence electronic structure of tetrahydrofuran employing He I photoelectron spectroscopy as well as Electron Momentum Spectroscopy (EMS) have been reinterpreted on the basis of Molecular Dynamical simulations employing the classical MM3 force field and large-scale quantum mechanical simulations employing Born-Oppenheimer Molecular Dynamics in conjunction with the dispersion corrected ωB97XD exchange-correlation functional. Analysis of the produced atomic trajectories demonstrates the importance of thermal deviations from the lowest energy path for pseudorotation, in the form of considerable variations of the ring-puckering amplitude. These deviations are found to have a significant influence on several outer-valence electron momentum distributions, as well as on the He I photoelectron spectrum.

  15. High-harmonic transient grating spectroscopy of NO2 electronic relaxation

    CERN Document Server

    Ruf, H; Ferré, A; Thiré, N; Bertrand, J B; Bonnet, L; Cireasa, R; Constant, E; Corkum, P B; Descamps, D; Fabre, B; Larregaray, P; Mével, E; Petit, S; Pons, B; Staedter, D; Wörner, H J; Villeneuve, D M; Mairesse, Y; Halvick, P; Blanchet, V

    2012-01-01

    We study theoretically and experimentally the electronic relaxation of NO2 molecules excited by absorption of one ~400 nm pump photon. Semi-classical simulations based on trajectory surface hopping calculations are performed. They predict fast oscillations of the electronic character around the intersection of the ground and first excited diabatic states. An experiment based on high-order harmonic transient grating spectroscopy reveals dynamics occuring on the same timescale. A systematic study of the detected transient is conducted to investigate the possible influence of the pump intensity, pump wavelength, and rotational temperature of the molecules. The quantitative agreement between measured and predicted dynamics shows that, in NO2, high harmonic transient grating spectroscopy encodes vibrational dynamics underlying the electronic relaxation.

  16. Auger neutralization rates of multiply charged ions near metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, N.N.; Janev, R.K.; Lazur, V.Y.

    1988-08-15

    Transition rates for the Auger neutralization processes of multiply charged ions on metal surfaces are calculated in closed analytical form. The core potential of a multiply charged ion is represented by a pseudopotential, which accounts for the electron screening effects and allows transition to the pure Coulomb case (fully stripped ions). The relative importance of various neutralization channels in slow-ion--surface collisions is discussed for the examples of He/sup 2+/+Mo(100) and C/sup 3+/+Mo(100) collisional systems.

  17. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.

    Science.gov (United States)

    Kurzmann, Annika; Ludwig, Arne; Wieck, Andreas D; Lorke, Axel; Geller, Martin

    2016-05-11

    In quantum dots (QDs), the Auger recombination is a nonradiative process in which the electron-hole recombination energy is transferred to an additional carrier. It has been studied mostly in colloidal QDs, where the Auger recombination time is in the picosecond range and efficiently quenches the light emission. In self-assembled QDs, on the other hand, the influence of Auger recombination on the optical properties is in general neglected, assuming that it is masked by other processes such as spin and charge fluctuations. Here, we use time-resolved resonance fluorescence to analyze the Auger recombination and its influence on the optical properties of a single self-assembled QD. From excitation-power-dependent measurements, we find a long Auger recombination time of about 500 ns and a quenching of the trion transition by about 80%. Furthermore, we observe a broadening of the trion transition line width by up to a factor of 2. With a model based on rate equations, we are able to identify the interplay between tunneling and Auger rate as the underlying mechanism for the reduced intensity and the broadening of the line width. This demonstrates that self-assembled QDs can serve as an ideal model system to study how the charge recapture process, given by the band-structure surrounding the confined carriers, influences the Auger process. Our findings are not only relevant for improving the emission properties of colloidal QD-based emitters and dyes, which have recently entered the consumer market, but also of interest for more visionary applications, such as quantum information technologies, based on self-assembled quantum dots.

  18. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  19. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.Sporothrix schenckii foi estudado em microscopia eletrônica. Foram observados caracteres das hífas e dos esporos, vários elementos da classificação periódica foram postos em evidência graças à micro-análise a raios X.

  20. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy

    Science.gov (United States)

    Ramasesha, Krupa; Leone, Stephen R.; Neumark, Daniel M.

    2016-05-01

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.

  1. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  2. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Science.gov (United States)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-01-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs. PMID:26373989

  3. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S., E-mail: gsengel@uchicago.edu [Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-09-14

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850{sup ∗} states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.

  4. Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Schlau-Cohen, Gabriela S.; Ishizaki, Akihito [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-28

    Graphical abstract: 2D electronic spectroscopy, when combined with theoretical approaches, can investigate structure-function relationships in photosynthetic complexes by probing electronic energy transfer and excited state orientations. Display Omitted Highlights: {yields} We review theoretical principles and experimental implementation of 2D spectroscopy. {yields} 2DES monitors energy transfer, observes coherence, determines excited state geometry, and compares to homology models. {yields} 2DES reveals structure-function relationships in the Photosystem II supercomplex. - Abstract: In natural light harvesting systems, pigment-protein complexes are able to harvest sunlight with near unity quantum efficiency. These complexes exhibit emergent properties that cannot be simply extrapolated from knowledge of their component parts. In this perspective, we focus on how two-dimensional electronic spectroscopy (2DES) can provide an incisive tool to probe the electronic, energetic, and spatial landscapes that must be understood to describe photosynthetic light-harvesting. We review the theoretical and experimental principles of 2DES, and demonstrate its application to the study of the Photosystem II supercomplex of green plants. We illustrate several capabilities of 2DES, including monitoring energy transfer pathways, observing excitonic coherence, determining excitonic geometry, and informing on the atomic structure.

  5. A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu.

    Science.gov (United States)

    Ewels, Philip; Sikora, Thierry; Serin, Virginie; Ewels, Chris P; Lajaunie, Luc

    2016-06-01

    The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors' original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra.

  6. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    Science.gov (United States)

    Akiel, R D; Stepanov, V; Takahashi, S

    2016-06-21

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  7. Molecular Frame Photoelectron Angular Distributions as a Probe of Geometry and Auger Dissociation Dynamics

    Science.gov (United States)

    Trevisan, Cynthia S.; Rescigno, Thomas N.; McCurdy, C. William

    2012-06-01

    Compex Kohn variational calculations of the molecular frame photoelectron distributions (MFPADs) for 1s core ionization of CH4, NH3, and H2O are presented for ejected electron energies below 25 eV. Surprisingly, in these three cases there are energy ranges in which the photoelectron MFPADs effectively form ``images'' of the molecular geometry. Comparison with recent momentum imaging experiments on methane at the Advanced Light Source verify this effect. Simultaneous double Auger decay in these molecules can produce dissociation into three charged fragments, e.g., CH2^+ + 2 H^+, allowing the complete orientation of the molecule and therefore the measurement of 3D MFPADs that test these predictions. In other Auger decay channels the measurement of 3D MFPADs verifies axial recoil (prompt dissociation) or probes its absence in the Auger dissociation dynamics of small molecules.

  8. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  9. The Pierre Auger Cosmic Ray Observatory

    CERN Document Server

    ,

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  10. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    Science.gov (United States)

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  11. Signatures of Herzberg-Teller coupling in three-dimensional electronic spectroscopy

    Science.gov (United States)

    Bizimana, Laurie A.; Carbery, William P.; Gellen, Tobias A.; Turner, Daniel B.

    2017-02-01

    The coupling between electronic and nuclear variables is a key consideration in molecular dynamics and spectroscopy. However, simulations that include detailed vibronic coupling terms are challenging to perform, and thus a variety of approximations can be used to model and interpret experimental results. Recent work shows that these simplified models can be inadequate. It is therefore important to understand spectroscopic signals that can identify failures of those approximations. Here we use an extended response-function method to simulate coherent three-dimensional electronic spectroscopy (3D ES) and study the sensitivity of this method to the breakdown of the Franck-Condon approximation. The simulations include a coordinate-dependent transition dipole operator that produces nodes, phase shifts, and peak patterns in 3D ES that can be used to identify Herzberg-Teller coupling. Guided by the simulation results, we interpret measurements on a molecular aggregate.

  12. Application of electron paramagnetic resonance (EPR) spectroscopy and imaging in drug delivery research - chances and challenges.

    Science.gov (United States)

    Kempe, Sabine; Metz, Hendrik; Mäder, Karsten

    2010-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful technique to study chemical species with unpaired electrons. Since its discovery in 1944, it has been widely used in a number of research fields such as physics, chemistry, biology and material and food science. This review is focused on its application in drug delivery research. EPR permits the direct measurement of microviscosity and micropolarity inside drug delivery systems (DDS), the detection of microacidity, phase transitions and the characterization of colloidal drug carriers. Additional information about the spatial distribution can be obtained by EPR imaging. The chances and also the challenges of in vitro and in vivo EPR spectroscopy and imaging in the field of drug delivery are discussed.

  13. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy.

    Science.gov (United States)

    Mohsen, Al-Walid A; Rigby, Stephen E J; Jensen, Kaj Frank; Munro, Andrew W; Scrutton, Nigel S

    2004-06-01

    Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD(+). The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have been used to determine the reduction potentials of the flavins and the 2Fe-2S center and to characterize radicals and their interactions. Reductive titration using dithionite indicates a five-electron capacity for DHODB. The midpoint reduction potential of the 2Fe-2S center (-212 +/- 3 mV) was determined from analysis of absorption data at 540 nm, where absorption contributions from the two flavins are small. The midpoint reduction potentials of the oxidized/semiquinone (E(1)) and semiquinone/hydroquinone (E(2)) couples for the FMN (E(1) = -301 +/- 6 mV; E(2) = -252 +/- 8 mV) and FAD (E(1) = -312 +/- 6 mV; E(2) = -297 +/- 5 mV) were determined from analysis of spectral changes at 630 nm. Corresponding values for the midpoint reduction potentials for FMN (E(1) = -298 +/- 4 mV; E(2) = -259 +/- 5 mV) in the isolated catalytic subunit (subunit D, which lacks the 2Fe-2S center and FAD) are consistent with the values determined for the FMN couples in DHODB. During reductive titration of DHODB, small amounts of the neutral blue semiquinone are observed at approximately 630 nm, consistent with the measured midpoint reduction potentials of the flavins. An ENDOR spectrum of substrate-reduced DHODB identifies hyperfine couplings to proton nuclei similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible spectroscopy and further identify an unusual EPR signal with very small rhombic anisotropy and g values of 2.02, 1.99, and 1.96. This unusual

  14. Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopy: Nano-metalized polymer as case study

    Energy Technology Data Exchange (ETDEWEB)

    Deris, Jamileh [Department of Physics, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Hajati, Shaaker, E-mail: Hajati@mail.yu.ac.ir [Department of Physics, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Tougaard, Sven [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M (Denmark); Zaporojtchenko, Vladimir [Lehrstuhl fur Materialverbunde, Technische Fakultat der CAU, Kaiserstr 2, D-24143 Kiel (Germany)

    2016-07-30

    Highlights: • Application of reflection electron energy loss spectroscopy. • Determination of electron inelastic cross section of Nano-metalized Polymer. • Determination of energy loss function of Nano-metalized Polymer. • Determination of electron inelastic mean free path of Nano-metalized Polymer. • Determination of surface excitation parameters of Nano-metalized Polymer. - Abstract: In this work, Au was deposited with nominal effective thickness of 0.8 nm on polystyrene (PS) at room temperature. According to previous study, using XPS peak shape analysis [S. Hajati, V. Zaporojtchenko, F. Faupel, S. Tougaard, Surf. Sci. 601 (2007) 3261–3267], Au nanoparticles (Au-NPs) of sizes 5.5 nm were formed corresponding to such effective thickness (0.8 nm). Then the sample was annealed to 200 °C, which is far above the glass transition of PS. At this temperature, the Au-NPs were diffused within the depth 0.5 nm–6.5 nm as found using nondestructive XPS peak shape analysis. Electrons with primary energy 500 eV were used because the electronic properties will then be probed in utmost surface (∼1 IMFP range of depths that is 1.8 nm for PS). By using QUEELS software, theoretical and experimental electron inelastic cross section, energy loss function, electron inelastic mean free path and surface excitation parameters were obtained for the sample. The information obtained here, does not rely on any previously known information on the sample. This means that the method, applied here, is suitable for the determination of the electronic properties of new and unknown composite nanostructures.

  15. On the linear and non-linear electronic spectroscopy of chlorophylls: a computational study.

    Science.gov (United States)

    Graczyk, Alicja; Żurek, Justyna M; Paterson, Martin J

    2014-01-01

    A theoretical analysis of linear and non-linear (two-photon absorption) electronic spectroscopy of all known porphyrinic pigments has been performed using linear and quadratic density functional response theory, with the long-range corrected CAM-B3LYP functional. We found that higher Soret transitions often contain non-Gouterman contributions and that each chlorophyll has the possibility for resonance enhanced TPA in the Soret region, although there is also significant TPA in the Q region.

  16. Nonlinear spectroscopy of photon-dressed Dirac electrons in a quantum dot

    Science.gov (United States)

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2013-01-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short-lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross-peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional photon-echo spectra are discussed.

  17. Principles of ESCA and applications to metal corrosion, coating and lubrication. [Electron Spectroscopy for Chemical Analysis

    Science.gov (United States)

    Wheeler, D. R.

    1978-01-01

    The principles of ESCA (electron spectroscopy for chemical analysis) are described by comparison with other spectroscopic techniques. The advantages and disadvantages of ESCA as compared to other surface sensitive analytical techniques are evaluated. The use of ESCA is illustrated by actual applications to oxidation of steel and Rene 41, the chemistry of lubricant additives on steel, and the composition of sputter deposited hard coatings. Finally, a bibliography of material that is useful for further study of ESCA is presented and commented upon.

  18. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    Imaging of free radicals by electron paramagnetic resonance (EPR) spectroscopy using time domain acquisition as in nuclear magnetic resonance (NMR) has not been attempted because of the short spin-spin relaxation times, typically under 1 μs, of most biologically relevant paramagnetic species...... to minimize motional artifacts from cardiac and lung motion that cause significant problems in frequency-domain spectral acquisition, such as in continuous wave (cw) EPR techniques...

  19. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  20. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    DEFF Research Database (Denmark)

    Cheng, Shaodong; Yang, Guang; Zhao, Yanqi;

    2015-01-01

    developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which...... fraction in glasses. In addition, the boron speciation of a CeO2 doped potassium borosilicate glass has been analyzed by using the time-resolved EELS spectra. The results clearly demonstrate that the BO4 to BO3 transformation induced by the electron beamirradiation can be efficiently suppressed by doping...

  1. Transformation optics: a time- and frequency-domain analysis of electron-energy loss spectroscopy

    CERN Document Server

    Kraft, Matthias; Pendry, J B

    2016-01-01

    Electron energy loss spectroscopy (EELS) and Cathodoluminescence (CL) play a pivotal role in many of the cutting edge experiments in plasmonics. EELS and CL experiments are usually supported by numerical simulations, which, whilst accurate, may not provide as much physical insight as analytical calculations do. Fully analytical solutions to EELS and CL systems in plasmonics are rare and difficult to obtain. This paper aims to narrow this gap by introducing a new method based on Transformation optics that allows to calculate the quasi-static frequency and time-domain response of plasmonic particles under electron beam excitation.

  2. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    Mingsen Deng

    2015-01-01

    Full Text Available The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS. Based on a model molecule of Bis-(4-mercaptophenyl-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices.

  3. Employing NMR Spectroscopy To Evaluate Transmission of Electronic Effects in 4-Substituted Chalcones

    Science.gov (United States)

    Wachter-Jurcsak, Nanette; Zamani, Hossein

    1999-05-01

    Described is an organic synthesis experiment that demonstrates the electronic transmission by substituents. The effect of substitution at the para-position of the styryl ring of 1,3-diphenyl-2-propenones (chalcones) by typical electron-donating or -accepting groups can be observed by proton and carbon-13 NMR spectroscopy. A linear correlation is observed when the differences in chemical shift measurements for H are plotted against the corresponding Hammett substituent constant values. Good correlation between carbon-13 chemical shifts of the alpha carbon are also observed. The syntheses of the 4-substituted chalcones is presented as well as a brief discussion of the theory.

  4. Latest results from the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Lhenry-Yvon Isabelle

    2016-01-01

    Full Text Available The Pierre Auger Observatory has been designed to investigate the origin and nature of Ultra High Energy Cosmic Rays (UHECR with energies from 1017 to 1020 eV. In this paper we will review some of the most recent results obtained from data of the Pierre Auger Observatory, namely the spectrum of cosmic rays, the anisotropies in arrival directions and the studies related to mass composition and to the number of muons measured at the ground. We will also discuss the implication of these results for assembling a consistent description of the composition, origin and propagation of cosmic rays.

  5. Latest results from the Pierre Auger Observatory

    Science.gov (United States)

    Lhenry-Yvon, Isabelle

    2016-07-01

    The Pierre Auger Observatory has been designed to investigate the origin and nature of Ultra High Energy Cosmic Rays (UHECR) with energies from 1017 to 1020 eV. In this paper we will review some of the most recent results obtained from data of the Pierre Auger Observatory, namely the spectrum of cosmic rays, the anisotropies in arrival directions and the studies related to mass composition and to the number of muons measured at the ground. We will also discuss the implication of these results for assembling a consistent description of the composition, origin and propagation of cosmic rays.

  6. Ambient-Pressure X-ray Photoelectron Spectroscopy through Electron Transparent Graphene Membranes

    CERN Document Server

    Kraus, Jurgen; Gunther, Sebastian; Gregoratti, Luca; Amati, Matteo; Kiskinova, Maya; Yulaev, Alexander; Vlassiouk, Ivan; Kolmakov, Andrei

    2014-01-01

    Photoelectron spectroscopy (PES) and microscopy are highly demanded for exploring morphologically complex solid-gas and solid-liquid interfaces under realistic conditions, but the very small electron mean free path inside the dense media imposes serious experimental challenges. Currently, near ambient pressure PES is conducted using sophisticated and expensive electron energy analyzers coupled with differentially pumped electron lenses. An alternative economical approach proposed in this report uses ultrathin graphene membranes to isolate the ambient sample environment from the PES detection system. We demonstrate that the graphene membrane separating windows are both mechanically robust and sufficiently transparent for electrons in a wide energy range to allow PES of liquid and gaseous water. The reported proof-of-principle experiments also open a principal possibility to probe vacuum-incompatible toxic or reactive samples enclosed inside the hermetic environmental cells.

  7. Fine-structure-resolved laser-photodetachment electron spectroscopy of In{sup {minus}}

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.W.; Carpenter, D.L.; Covington, A.M.; Thompson, J.S. [Department of Physics and Chemical Physics Program, University of Nevada, Reno, Nevada, 89557-0058 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, 43606-3390 (United States); Seely, D.G. [Department of Physics, Albion College, Albion, Michigan, 49224 (United States)

    1998-11-01

    The electron affinity of indium has been measured using the laser-photodetachment electron spectroscopy technique. Fine-structure-resolved photoelectron kinetic energy spectra of In{sup {minus}} were analyzed and the electron affinity of In({sup 2}P{sub 1/2}) was determined to be 0.404{plus_minus}0.009 eV. The fine-structure splittings in the ground state of In{sup {minus}}({sup 3}P{sub 0,1,2}) were determined to be 0.076{plus_minus}0.009 eV (J=0{r_arrow}J=1) and 0.175{plus_minus}0.009 eV (J=0{r_arrow}J=2). This measurement is compared to several recent calculations of the electron affinity of indium. {copyright} {ital 1998} {ital The American Physical Society}

  8. High resolution electron energy loss spectroscopy of narrow gap III-V semiconductor surfaces and interfaces

    CERN Document Server

    Veal, T D

    2002-01-01

    The electronic properties of n-type narrow gap III-V semiconductor surfaces and interfaces are investigated using high-resolution electron-energy-loss spectroscopy (HREELS). Changing the incident electron energy, alters the wave-vector transfer parallel to the surface, allowing the probing depth to be varied over typical space-charge layer widths (100 - 2000 A). Semi-classical dielectric theory simulations of the HREEL spectra are performed to extract quantitative information from the probing energy-dependence of the surface plasmon and phonon peaks. The plasma frequency used in the simulations is related to the electron concentration and effective mass using the Kane model of the non-parabolic conduction band. Space-charge layer parameters are obtained by comparing calculated smooth charge profiles with the histogram profiles that are used in the simulations. Complementary experimental techniques are employed to correlate the reconstruction, chemical composition and morphology of the surface with the electro...

  9. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    Science.gov (United States)

    Aquilanti, G.; Trapananti, A.; Minicucci, M.; Liscio, F.; Twaróg, A.; Principi, E.; Pascarelli, S.

    2007-10-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used.

  10. Pulsed electron-electron double resonance (PELDOR) as EPR spectroscopy in nanometre range

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Yu D; Milov, A D; Maryasov, A G [Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2008-06-30

    The results of development of pulsed electron-electron double resonance (PELDOR) method and its applications in structural studies are generalised and described systematically. The foundations of the theory of the method are outlined, some methodological features and applications are considered, in particular, determination of the distances between spin labels in the nanometre range for iminoxyl biradicals, spin-labelled biomacromolecules, radical ion pairs and peptide-membrane complexes. The attention is focussed on radical systems that form upon self-assembly of nanosized complexes (in particular, peptide complexes), spatial effects, and radical pairs in photolysis and photosynthesis. The position of PELDOR among other structural EPR techniques is analysed.

  11. Development of holmium-163 electron-capture spectroscopy with transition-edge sensors

    CERN Document Server

    Croce, M P; Mocko, V; Kunde, G J; Birnbaum, E R; Bond, E M; Engle, J W; Hoover, A S; Nortier, F M; Pollington, A D; Taylor, W A; Weisse-Bernstein, N R; Wolfsberg, L E; Hays-Wehle, J P; Schmidt, D R; Swetz, D S; Ullom, J N; Barnhart, T E; Nickles, R J

    2015-01-01

    Calorimetric decay energy spectroscopy of electron-capture-decaying isotopes is a promising method to achieve the sensitivity required for electron neutrino mass measurement. The very low total nuclear decay energy (QEC < 3 keV) and short half-life (4570 y) of 163Ho make it attractive for high-precision electron capture spectroscopy (ECS) near the kinematic endpoint, where the neutrino momentum goes to zero. In the ECS approach, an electron-capture-decaying isotope is embedded inside a microcalorimeter designed to capture and measure the energy of all the decay radiation except that of the escaping neutrino. We have developed a complete process for proton-irradiation-based isotope production, isolation, and purification of 163Ho. We have developed transition-edge sensors for this measurement and methods for incorporating 163Ho into high-resolution microcalorimeters, and have measured the electron-capture spectrum of 163Ho. We present our work in these areas and discuss the measured spectrum and its compari...

  12. 30 CFR 77.1500 - Auger mining; planning.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger mining; planning. 77.1500 Section 77.1500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1500 Auger mining; planning. Auger mining shall be planned and conducted by the operator to...

  13. 30 CFR 819.15 - Auger mining: Hydrologic balance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Hydrologic balance. 819.15... MINING § 819.15 Auger mining: Hydrologic balance. (a) Auger mining shall be planned and conducted to minimize disturbances of the prevailing hydrologic balance in accordance with the requirements of §§...

  14. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    Science.gov (United States)

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices.

  15. Electronic states of neutral and ionized tetrahydrofuran studied by VUV spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A. [Synchrotron Soleil, DISCO beamline, L' Orme des Merisiers, 91 - Gif-sur-Yvette (France); Giuliani, A. [Cepia, Institut National de la Recherche Agronomique (INRA), 44 - Nantes (France); Limiao-Vieira, P. [Lisboa Univ. Nova, Lab. de Colisoes Atomicas e Moleculares, CEFITEC, Dept. de Fysica, Caparica (Portugal); Limao-Vieira, P.; Mason, N. [Open Univ., Centre of Molecular and Optical Sciences, Dept. of Physics and Astronomy, Milton Keynes, MK (United Kingdom); Duflot, D. [Lille Univ. des Sciences et Technologies, Lab. de Physique des Lasers, Atomes et Molecules (PhLAM), UMR CNRS 8523, Centre d' Etudes et de Recherches Lasers et Applications, CERLA, FR CNRS 2416, 59 - Villeneuve d' Ascq (France); Milosavljevic, A.R.; Marinkovic, B.P. [Laboratory for atomic collision processes, Institute of Physics, Belgrade, Serbia (Yugoslavia); Hoffmann, S.V. [Aarhus Univ., Institute for Storage Ring Facilities (Denmark); Delwiche, J.; Hubin-Franskin, M.J. [Liege Univ., Laboratoire de Spectroscopie d' Electrons Diffuses, Institut de Chimie (Belgium)

    2009-01-15

    The electronic spectroscopy of isolated tetrahydrofuran (THF) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 5.8 - 10.6 eV with absolute cross-section measurements derived. In addition, an electron energy loss spectrum was recorded at 100 eV and 10 degrees over the 5 - 11.4 eV range. The He(I) photoelectron spectrum was also collected to quantify ionisation energies in the 9 - 16.1 eV spectral region. These experiments are supported by the first high-level ab initio calculations performed on the excited states of the neutral molecule and on the ground state of the positive ion. The excellent agreement between the theoretical results and the measurements allows us to solve several discrepancies concerning the electronic state spectroscopy of THF. The present work reconsiders the question of the lowest energy conformers of the molecule and its population distribution at room temperature. (authors)

  16. Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy.

    Science.gov (United States)

    Knoesel, Ernst; Bonn, Mischa; Shan, Jie; Wang, Feng; Heinz, Tony F

    2004-07-01

    We present investigations of the transient photoconductivity and recombination dynamics of quasifree electrons in liquid n-hexane and cyclohexane performed using terahertz time-domain spectroscopy (THz-TDS). Quasifree electrons are generated by two-photon photoionization of the liquid using a femtosecond ultraviolet pulse, and the resulting changes in the complex conductivity are probed by a THz electromagnetic pulse at a variable delay. The detection of time-domain wave forms of the THz electric field permits the direct determination of both the real and the imaginary part of the conductivity of the electrons over a wide frequency range. The change in conductivity can be described by the Drude model, thus yielding the quasifree electron density and scattering time. The electron density is found to decay on a time scale of a few hundred picoseconds, which becomes shorter with increasing excitation density. The dynamics can be described by a model that assumes nongeminate recombination between electrons and positive ions. In addition, a strong dependence of the quasifree electron density on temperature is observed, in agreement with a two-state model in which the electron may exist in either a quasifree or a bound state.

  17. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  18. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    Science.gov (United States)

    Obukhov, A. E.

    2016-12-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  19. Recent progress of probing correlated electron states by point contact spectroscopy

    Science.gov (United States)

    Lee, Wei-Cheng; Greene, Laura H.

    2016-09-01

    We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals, where signatures (e.g. phonons) are usually less than 1% of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. It has been well-recognized that the corresponding conductance can be accurately fitted by the Blonder-Tinkham-Klapwijk (BTK) theory in which the AR occurring near the point contact junction is modeled by three parameters; the superconducting gap, the quasiparticle scattering rate, and a dimensionless parameter, Z, describing the strength of the potential barrier at the junction. AR can be as large as 100% of the background conductance, and only arises in the case of superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. To correctly interpret these new features, it is crucial to re-examine the modeling of the point contact junctions, the formalism used to describe the single electron dynamics particularly in point contact spectroscopy, and the physical quantity that should be computed to understand the conductance. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger-Kadanoff-Baym-Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly distributed

  20. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts.

    Science.gov (United States)

    Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W

    2010-01-19

    Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.

  1. Highlights from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Letessier-Selvon, Antoine; for the Pierre Auger Collaboration, [No Value; :, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antivcic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blumer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Frohlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp d, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Muller, G.; Munchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novzka, L.; Oehlschlager, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruhle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tacscuau, O.; Tcaciuc, R.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a n

  2. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    CERN Document Server

    Goldmann, Maximilian; West, Adam H C; Yoder, Bruce L; Signorell, Ruth

    2015-01-01

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  3. Probing electronic properties of molecular engineered zinc oxide nanowires with photoelectron spectroscopy.

    Science.gov (United States)

    Aguilar, Carlos A; Haight, Richard; Mavrokefalos, Anastassios; Korgel, Brian A; Chen, Shaochen

    2009-10-27

    ZnO nanowires (NWs) are emerging as key elements for new lasing, photovoltaic and sensing applications but elucidation of their fundamental electronic properties has been hampered by a dearth of characterization tools capable of probing single nanowires. Herein, ZnO NWs were synthesized in solution and integrated into a low energy photoelectron spectroscopy system, where quantitative optical measurements of the NW work function and Fermi level location within the band gap were collected. Next, the NWs were decorated with several dipolar self-assembled monolayers (SAMs) and control over the electronic properties is demonstrated, yielding a completely tunable hybrid electronic material. Using this new metrology approach, a host of other extraordinary interfacial phenomena could be explored on nanowires such as spatial dopant profiling or heterostructures.

  4. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  5. Bremsstrahlung and Line Spectroscopy of Warm Dense Aluminum Plasma Generated by EUV Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zastrau, U; Fortmann, C; Faustlin, R; Bornath, T; Cao, L F; Doppner, T; Dusterer, S; Forster, E; Glenzer, S H; Gregori, G; Holl, A; Laarmann, T; Lee, H; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Tiggesbaumker, J; Thiele, R; Truong, N X; Uschmann, I; Toleikis, S; Tschentscher, T; Wierling, A

    2008-03-07

    We report on the novel creation of a solid density aluminum plasma using free electron laser radiation at 13.5 nm wavelength. Ultrashort pulses of 30 fs duration and 47 {micro}J pulse energy were focused on a spot of 25 {micro}m diameter, yielding an intensity of 3 x 10{sup 14} W/cm{sup 2} on the bulk Al-target. The radiation emitted from the plasma was measured using a high resolution, high throughput EUV spectrometer. The analysis of both bremsstrahlung and line spectra results in an estimated electron temperature of (30 {+-} 10) eV, which is in very good agreement with radiation hydrodynamics simulations of the laser-target-interaction. This demonstrates the feasibility of exciting plasmas at warm dense matter conditions using EUV free electron lasers and their accurate characterization by EUV spectroscopy.

  6. Angular dependence, blackness and polarization effects in integral conversion electron Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sajti, Sz., E-mail: sajti.szilard@wigner.mta.hu; Tanczikó, F.; Deák, L.; Nagy, D.L.; Bottyán, L.

    2015-01-01

    General expressions of the electron yield in {sup 57}Fe integral conversion electron Mössbauer spectroscopy were derived depending on the glancing angle of the γ photons, on the source polarization and on the isotopic abundance of the source and the absorber (blackness effects) using an exponential escape function of the electrons originating from all Mössbauer-resonance-related processes. The present approach provides a firm theoretical basis to determine the alignment and direction of magnetization in the absorber. The intensity formulae were justified by least squares fits of α-{sup 57}Fe spectral intensities measured in linearly and elliptically polarized source and absorber geometries. The fits reproduce the experimentally set angles with high accuracy. Limits of the current approach and its relation to other, less complete treatments in the literature are discussed.

  7. Inelastic electron tunneling spectroscopy: A route to the identification of the tip-apex structure

    Science.gov (United States)

    Vitali, Lucia; Borisova, Svetlana D.; Rusina, Galina G.; Chulkov, Evgueni V.; Kern, Klaus

    2010-04-01

    The vibrational spectrum of a tunneling junction on a clean Cu(111) surface has been characterized by vibrational density of states calculations and inelastic electron tunneling spectroscopy technique. We demonstrate that the achieved spectrum consists not only of vibrational modes excited by the tunneling electrons on the clean surface but also of modes characteristic of the structure of the tip apex. This allows to identify unequivocally the atomic structure of the tip, which is still the largest unknown parameter in a scanning tunneling microscope. This opens a new perspective in the interpretation of the measurements of vibrational modes with a scanning tunneling microscope. Additionally, it might have implications in the measurements of electron conductance through single atom or molecules contacted by the tip of scanning tunneling microscope.

  8. Density measurement of thin layers by electron energy loss spectroscopy (EELS).

    Science.gov (United States)

    Thomas, Jürgen; Ramm, Jürgen; Gemming, Thomas

    2013-07-01

    A method to measure the density of thin layers is presented which utilizes electron energy loss spectroscopy (EELS) techniques within a transmission electron microscope. The method is based on the acquisition of energy filtered images in the low loss region as well as of an element distribution map using core loss edges. After correction of multiple inelastic scattering effects, the intensity of the element distribution map is proportional to density and thickness. The dependence of the intensities of images with low energy loss electrons on the density is different from that. This difference allows the calculation of the relative density pixel by pixel and to determine lateral density gradients or fluctuations in thin films without relying on a constant specimen thickness. The method is demonstrated at thin carbon layers produced with density gradients.

  9. Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy

    Indian Academy of Sciences (India)

    Donghua Liu; Ingrid Kottke

    2003-06-01

    The ultrastructural investigation of the root cells of Allium sativum L. exposed to three different concentrations of Cd (100 M, 1 mM and 10 mM) for 9 days was carried out. The results showed that Cd induced several significant ultrastructural changes – high vacuolization in cytoplasm, deposition of electron-dense material in vacuoles and nucleoli and increment of disintegrated organelles. Data from electron energy loss spectroscopy (EELS) revealed that Cd was localized in the electron-dense precipitates in the root cells treated with 10 mM Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiating and mature root tissues. The mechanisms of detoxification and tolerance of Cd are briefly explained.

  10. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    Energy Technology Data Exchange (ETDEWEB)

    Morini, Filippo; Deleuze, Michael Simon, E-mail: michael.deleuze@uhasselt.be [Center of Molecular and Materials Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  11. Development of wavelength-dispersive soft X-ray emission spectrometers for transmission electron microscopes--an introduction of valence electron spectroscopy for transmission electron microscopy.

    Science.gov (United States)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu(1-x)Zn(x) alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Malpha-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of pi- and sigma-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM.

  12. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  13. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    Science.gov (United States)

    Jayaraman, Rajeswari

    Future information technology requires an increased magnetically encoded data density and novel electromagnetic modes of data transfer. While to date magnetic properties are observed and characterized mostly statically, the need emerges to monitor and capture their fast dynamics. In this talk, I will focus on the spin dynamics i.e. spin wave excitations and the dynamics of a new topological distribution of spins termed ``skyrmions''. Wave packets of spin waves offer the unique capability to transport a quantum bit, the spin, without the transport of charge or mass. Here, large wave-vector spin waves are of particular interest as they admit spin localization within a few nanometers. By using our recently developed electron energy loss spectrometer, we could study such spin waves in ultrathin films with an unprecedented energy resolution of 4 meV. By virtue of the finite penetration depth of low energy electrons, spin waves localized at interfaces between a substrate and a thin capping layer can be been studied yielding information about the exchange coupling between atoms at the interface. The quantization of spin waves with wave vectors perpendicular to the film gives rise to standing modes to which EELS has likewise access. Such studies when carried out as function of the film thickness again yield information on the layer dependence of the exchange coupling. Magnetic skyrmions are promising candidates as information carriers in logic or storage devices. Currently, little is known about the influence of disorder, defects, or external stimuli on the spatial distribution and temporal evolution of the skyrmion lattice. In this talk, I will describe the dynamical role of disorder in a large and flat thin film of Cu2OSeO3, exhibiting a skyrmion phase in an insulating material. We image up to 70,000 skyrmions by means of cryo-Lorentz Transmission Electron Microscopy as a function of the applied magnetic field. In the skyrmion phase, dislocations are shown to cause the

  14. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V

    2015-02-25

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed.

  15. Evaluation of the microscopic dose enhancement for nanoparticle-enhanced Auger therapy

    Science.gov (United States)

    Sung, Wonmo; Jung, Seongmoon; Ye, Sung-Joon

    2016-11-01

    The aim of this study is to investigate the dosimetric characteristics of nanoparticle-enhanced Auger therapy. Monte Carlo (MC) simulations were performed to assess electron energy spectra and dose enhancement distributions around a nanoparticle. In the simulations, two types of nanoparticle structures were considered: nanoshell and nanosphere, both of which were assumed to be made of one of five elements (Fe, Ag, Gd, Au, and Pt) in various sizes (2-100 nm). Auger-electron emitting radionuclides (I-125, In-111, and Tc-99m) were simulated within a nanoshell or on the surface of a nanosphere. For the most promising combination of Au and I-125, the maximum dose enhancement was up to 1.3 and 3.6 for the nanoshell and the nanosphere, respectively. The dose enhancement regions were restricted within 20-100 nm and 0-30 nm distances from the surface of Au nanoshell and nanosphere, respectively. The dose enhancement distributions varied with sizes of nanoparticles, nano-elements, and radionuclides and thus should be carefully taken into account for biological modeling. If the nanoparticles are accumulated in close proximity to the biological target, this new type of treatment can deliver an enhanced microscopic dose to the target (e.g. DNA). Therefore, we conclude that Auger therapy combined with nanoparticles could have the potential to provide a better therapeutic effect than conventional Auger therapy alone.

  16. Investigation of the molecular conformations of ethanol using electron momentum spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ning, C G; Luo, Z H; Huang, Y R; Liu, K; Zhang, S F; Deng, J K [Department of Physics and Key Laboratory of Atomic and Molecular NanoSciences of MOE, Tsinghua University, Beijing 100084 (China); Hajgato, B; Morini, F; Deleuze, M S [Research Group of Theoretical Chemistry, Department SBG, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium)], E-mail: ningcg@tsinghua.edu.cn, E-mail: djk-dmp@tsinghua.edu.cn, E-mail: michael.deleuze@uhasselt.be

    2008-09-14

    The valence electronic structure and momentum-space electron density distributions of ethanol have been investigated with our newly constructed high-resolution electron momentum spectrometer. The measurements are compared to thermally averaged simulations based on Kohn-Sham (B3LYP) orbital densities as well as one-particle Green's function calculations of ionization spectra and Dyson orbital densities, assuming Boltzmann's statistical distribution of the molecular structure over the two energy minima defining the anti and gauche conformers. One-electron ionization energies and momentum distributions in the outer-valence region were found to be highly dependent upon the molecular conformation. Calculated momentum distributions indeed very sensitively reflect the distortions and topological changes that molecular orbitals undergo due to the internal rotation of the hydroxyl group, and thereby exhibit variations which can be traced experimentally. The B3LYP model Kohn-Sham orbital densities are overall in good agreement with the experimental distributions, and closely resemble benchmark ADC(3) Dyson orbital densities. Both approaches fail to quantitatively reproduce the experimental momentum distributions characterizing the highest occupied molecular orbital. Since electron momentum spectroscopy measurements at various electron impact energies indicate that the plane wave impulse approximation is valid, this discrepancy between theory and experiment is tentatively ascribed to thermal disorder, i.e. large-amplitude and thermally induced dynamical distortions of the molecular structure in the gas phase.

  17. Energy loss spectroscopy of Buckminster C60 with twisted electrons: Influence of orbital angular momentum transfer on plasmon generation

    CERN Document Server

    Schüler, M

    2016-01-01

    Recent experimental progress in creating and controlling singular electron beams that carry orbital angular momentum allows for new types of local spectroscopies. We theoretically investigate the twisted-electron energy loss spectroscopy (EELS) from the C60 fullerene. Of particular interest are the strong multipolar collective excitations and their selective response to the orbital angular momentum of the impinging electron beam. Based on ab-initio calculations for the collective response we compute EELS signals with twisted electron beams and uncover the interplay between the plasmon polarity and the amount of angular momentum transfer.

  18. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Weiwei He

    2014-03-01

    Full Text Available Many of the biological applications and effects of nanomaterials are attributed to their ability to facilitate the generation of reactive oxygen species (ROS. Electron spin resonance (ESR spectroscopy is a direct and reliable method to identify and quantify free radicals in both chemical and biological environments. In this review, we discuss the use of ESR spectroscopy to study ROS generation mediated by nanomaterials, which have various applications in biological, chemical, and materials science. In addition to introducing the theory of ESR, we present some modifications of the method such as spin trapping and spin labeling, which ultimately aid in the detection of short-lived free radicals. The capability of metal nanoparticles in mediating ROS generation and the related mechanisms are also presented.

  19. Elucidation of population and coherence dynamics using cross-peaks in two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.-C.; Engel, Gregory S. [Department of Chemistry and QB3 Institute, University of California, Berkeley (United States) and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fleming, Graham R. [Department of Chemistry and QB3 Institute, University of California, Berkeley (United States) and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: GRFleming@lbl.gov

    2007-11-15

    In this work, we perform a theoretical study on the dynamics and two-dimensional electronic spectroscopy of a model trimer system and compare the results to experimental data on the Fenna-Matthews-Olson protein. We combine a time-nonlocal quantum master equation formalism and the recently developed method for the efficient calculation of third-order photon echo polarization [M.F. Gelin, D. Egorova, W.J. Domcke, J. Chem. Phys. 123 (2005) 164112] to simulate the 2D electronic spectra of the model system, and compare the time-evolution of the amplitude of cross-peaks to the coherent relaxation dynamics of the system following the excitation by a laser pulse. We show that beats of the upper diagonal peaks in the absolute value 2D spectra provide a direct probe for the coherence dynamics in the system, and the time-evolution of the amplitude of the lower diagonal cross-peaks in the real value 2D spectra can be used to reveal the population transfer among exciton states. Our results verify the intuitive description provided by response functions and demonstrate that the full coherent dynamics in a multichromophoric system can be elucidated using two-dimensional electronic spectroscopy.

  20. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    Science.gov (United States)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  1. Electroreflectance spectroscopy as a probe of the electronic structure at the metal-electronic interface

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.M.; Liu, S.H.

    1984-01-01

    The electromagnetic response of a surface is influenced by the surface electronic structure. In particular, the existence of surface states in band gaps can lead to optical absorption below the bulk interband threshold. However, such effects are usually too small to be observed because while surface states are localized within several atomic layers near the surface, light waves can penetrate at least hundreds of layers into the metal. One way to enhance the surface effect for a metallic surface is to make use of electromodulation techniques. When a metal is placed in an electrolyte, an intense electric field (approx. 10/sup 7/ volts/cm) can be induced at the metal-electrolyte boundary with the application of a bias voltage of less than a volt. Electroreflectance (ER) experiments modulate the bias voltage and measure the resultant modulations in the optical reflectivity. Since the static electric field is highly localized at the interface (the Fermi-Thomas screening length for typical metals is of the order of Angstroms) we expect the ER effect to be highly surface sensitive. Sensitivities in ..delta..R/R up to 10/sup -6/ can be achieved in such experiments. 12 references.

  2. Auger and carrier-surface phonon interaction processes in graphene on a substrate made of polar materials

    Science.gov (United States)

    Mahdouani, M.; Bourguiga, R.

    2017-02-01

    We present a theoretical study of two specific dynamical optical properties, namely Auger and surface electron-phonon interaction processes in monolayer graphene on polar substrates such as SiO2 , HfO2 , SiC and hexagonal BN. Thus the eigenenergies have been derived from the tight-binding Hamiltonian in monolayer graphene. Our results indicate that both Auger and electron-surface phonon interaction processes depend on the polar substrate. Such polar substrates allow for the presence of polar optical phonons localized near the graphene-substrate interface which could be a significant scattering source for graphene carriers across the long-range Fröhlich coupling. Furthermore, the linear, gapless band structure of graphene provides ideal conditions for Auger processes which are Auger recombination (AR) and impact ionization (IMI). These processes are of fundamental interest because they strongly influence the relaxation dynamics of carriers. Likewise, we have investigated the effect of various dielectrics on both Auger and electron-surface phonon scattering rates in single layer graphene by varying the temperature, the charge carrier density and the physical separation between the interface of the dielectric substrate and graphene.

  3. Broadband velocity modulation spectroscopy of HfF^+: towards a measurement of the electron electric dipole moment

    CERN Document Server

    Cossel, Kevin C; Sinclair, Laura C; Coffey, Tyler; Skripnikov, Leonid V; Petrov, Alexander N; Mosyagin, Nikolai S; Titov, Anatoly V; Field, Robert W; Meyer, Edmund R; Cornell, Eric A; Ye, Jun

    2012-01-01

    Precision spectroscopy of trapped HfF^+ will be used in a search for the permanent electric dipole moment of the electron (eEDM). While this dipole moment has yet to be observed, various extensions to the standard model of particle physics (such as supersymmetry) predict values that are close to the current limit. We present extensive survey spectroscopy of 19 bands covering nearly 5000 cm^(-1) using both frequency-comb and single-frequency laser velocity-modulation spectroscopy. We obtain high-precision rovibrational constants for eight electronic states including those that will be necessary for state preparation and readout in an actual eEDM experiment.

  4. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    Science.gov (United States)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  5. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau

    2009-11-01

    Full Text Available A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  6. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria.

    Science.gov (United States)

    Ostroumov, Evgeny E; Mulvaney, Rachel M; Cogdell, Richard J; Scholes, Gregory D

    2013-04-01

    Although the energy transfer processes in natural light-harvesting systems have been intensively studied for the past 60 years, certain details of the underlying mechanisms remain controversial. We performed broadband two-dimensional (2D) electronic spectroscopy measurements on light-harvesting proteins from purple bacteria and isolated carotenoids in order to characterize in more detail the excited-state manifold of carotenoids, which channel energy to bacteriochlorophyll molecules. The data revealed a well-resolved signal consistent with a previously postulated carotenoid dark state, the presence of which was confirmed by global kinetic analysis. The results point to this state's role in mediating energy flow from carotenoid to bacteriochlorophyll.

  7. Ordering of PCDTBT revealed by time-resolved electron paramagnetic resonance spectroscopy of its triplet excitons.

    Science.gov (United States)

    Biskup, Till; Sommer, Michael; Rein, Stephan; Meyer, Deborah L; Kohlstädt, Markus; Würfel, Uli; Weber, Stefan

    2015-06-22

    Time-resolved electron paramagnetic resonance (TREPR) spectroscopy is shown to be a powerful tool to characterize triplet excitons of conjugated polymers. The resulting spectra are highly sensitive to the orientation of the molecule. In thin films cast on PET film, the molecules' orientation with respect to the surface plane can be determined, providing access to sample morphology on a microscopic scale. Surprisingly, the conjugated polymer investigated here, a promising material for organic photovoltaics, exhibits ordering even in bulk samples. Orientation effects may significantly influence the efficiency of solar cells, thus rendering proper control of sample morphology highly important.

  8. Experimental and Theoretical Investigation of Valence Orbitals in 1,4-Dioxane by Electron momentum Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-Cheng; NING Chuan-Gang; SU Guo-Lin; DENG Jing-Kang; ZHANG Shu-Feng; REN Xue-Guang; HUANG Yan-Ru

    2006-01-01

    @@ The binding energy spectrum of all valence orbitals and the momentum distributions of highest occupied molecular orbital (HOMO: 8ag), 7bu + 7ag, 4bu, 2bg + 4ag and 2au in 1, 4-dioxane are investigated by electron momentum spectroscopy (EMS) with 600 e V impact energy. The experimental results are consistent with theoretical calculations of C2h chair conformation using the Hartree-Fock method and density functional theory with 6-311++G**and A UG-CC-PVTZ basis sets.

  9. Mapping boron in silicon solar cells using electron energy-loss spectroscopy

    DEFF Research Database (Denmark)

    Duchamp, Martial; Boothroyd, Chris; Kovács, András

    2011-01-01

    Electron energy-loss spectroscopy (EELS) is used to study the B distribution in a p-i-n layered solar cell structure. The boron concentration in the p-doped Si layer is expected to be ~1021 cm−3 and should not exceed 1017 cm−3 in the neighbouring intrinsic layer. We show that B concentrations...... as low as 3×l020 cm−3 (0.6 at. %) can be measured using EELS. Our measurements are in close agreement with real space ab-initio multiple scattering calculations and secondary ion mass spectrometry measurements....

  10. Application of Electron Energy Loss Spectroscopy for Single Wall Carbon Nanotubes (Review)

    Science.gov (United States)

    Mittal, N.; Jain, S.; Mittal, J.

    2015-03-01

    Electron energy loss spectroscopy (EELS) is among the few techniques that are available for the characterization of modified single wall carbon nanotubes (SWCNTs) having nanometer dimensions (~1-3 nm). CNTs can be modified either by surface functionalization or coating, between bundles of nanotubes by doping, intercalation and fully or partially filling the central core. EELS is an exclusive technique for the identification, composition analysis, and crystallization studies of the chemicals and materials used for the modification of SWCNTs. The present paper serves as a compendium of research work on the application of EELS for the characterization of modified SWCNTs.

  11. Characterization methodology for pseudomorphic high electron mobility transistors using surface photovoltage spectroscopy

    Science.gov (United States)

    Solodky, S.; Leibovitch, M.; Ashkenasy, N.; Hallakoun, I.; Rosenwaks, Y.; Shapira, Yoram

    2000-12-01

    Pseudomorphic high electron mobility transistor structures have been characterized using surface photovoltage spectroscopy and numerical simulations. According to the effect of the electric fields in different regions of the device on the surface photovoltage spectra, a simple empirical model that correlates the spectral parameters and electrical parameters of the structure has been developed. The spectra and their analysis are shown to provide values for the electrical parameters of the structure. The sensitivity of the technique to the device electrical parameters is shown by three different examples. In these examples, the differences in doping level and surface charge have been monitored as well as the nonuniformity of doping level across the wafer.

  12. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities

    Directory of Open Access Journals (Sweden)

    W. Verhoeven

    2016-09-01

    Full Text Available We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers.

  13. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities.

    Science.gov (United States)

    Verhoeven, W; van Rens, J F M; van Ninhuijs, M A W; Toonen, W F; Kieft, E R; Mutsaers, P H A; Luiten, O J

    2016-09-01

    We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers.

  14. Electron momentum spectroscopy of norbornadiene at the benchmark ADC(3) level.

    Science.gov (United States)

    Morini, Filippo; Hajgató, Balázs; Deleuze, Michael S

    2010-09-02

    An extensive study, throughout the valence region, of the electronic structure, ionization spectrum, and electron momentum distributions of norbornadiene is presented, on the ground of accurate calculations of valence one-electron and shake-up ionization energies and of the related Dyson orbitals, using one-particle Green's function (1p-GF) theory in conjunction with the so-called third-order algebraic diagrammatic construction scheme [ADC(3)]. Comparison is made with results obtained from standard (B3LYP) Kohn-Sham orbitals and measurements employing electron momentum spectroscopy, taking into account the contamination of inner- and outer-valence spectral bands by numerous shake-up states. Four relatively intense shake-up lines at 12.1, 16.4, 17.6, and 17.8 eV are found to yield recognizable spectral fingerprints in the EMS experiments. Valence bands at electron binding energies larger than 20 eV are subject to a complete breakdown of the orbital picture of ionization.

  15. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole.

    Science.gov (United States)

    Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  16. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities

    Science.gov (United States)

    Verhoeven, W.; van Rens, J. F. M.; van Ninhuijs, M. A. W.; Toonen, W. F.; Kieft, E. R.; Mutsaers, P. H. A.; Luiten, O. J.

    2016-01-01

    We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers. PMID:27704035

  17. Observation of UV-induced Auger features in catechol adsorbed on anatase TiO{sub 2} (101) single crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Andrew G. [School of Physics and Astronomy and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Syres, Karen L. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2012-04-23

    We have investigated the electronic structure of catechol adsorbed on the anatase TiO{sub 2} (101) surface under illumination with ultraviolet (UV) light (4.75 eV) using resonant photoemission spectroscopy. UV illumination results in the appearance of a strong Ti MVV (M refers to photoionization of 3p level and VV the Auger decay process via the valence levels) feature at a kinetic energy of 26.2 eV. This is attributed to the creation of localised states following catechol to Ti-3d excitation by the UV source. A sharp resonance attributed to excitation from Ti 3p states into these localised states is observed in constant final state spectra.

  18. Electron Energy-Loss Spectroscopy Theory and Simulation Applied to Nanoparticle Plasmonics

    Science.gov (United States)

    Bigelow, Nicholas Walker

    In this dissertation, the capacity of electron energy-loss spectroscopy (EELS) to probe plasmons is examined in detail. EELS is shown to be able to detect both electric hot spots and Fano resonances in contrast to the prevailing knowledge prior to this work. The most detailed examination of magnetoplasmonic resonances in multi-ring structures to date and the utility of electron tomography to computational plasmonics is explored, and a new tomographic method for the reconstruction of a target is introduced. Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. A computational analysis of the electron- and photon-driven surface-plasmon resonances of monomer and dimer metal nanorods is presented to elucidate the differences and similarities between the two excitation mechanisms in a system with well understood optical properties. By correlating the nanostructure's simulated electron energy loss spectrum and loss-probability maps with its induced polarization and scattered electric field we discern how certain plasmon modes are selectively excited and how they funnel energy from the excitation source into the near- and far-field. Using a fully retarded electron-scattering theory capable of describing arbitrary three-dimensional nanoparticle geometries, aggregation schemes, and material compositions, we find that electron energy-loss spectroscopy (EELS) is able to indirectly probe the same electromagnetic hot spots that are generated by an optical excitation source. EELS is then employed in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. The origins of this observation are explored

  19. Influence on electron energy loss spectroscopy of the niobium-substituted uranium atom: A density functional theory study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS forfand d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.

  20. Valence Electronic Structure of Oxygen-Modified α-Mo2C(0001) Surface:. Angle-Resolved Photoemission Study

    Science.gov (United States)

    Kato, M.; Ozawa, K.; Sato, T.; Edamoto, K.

    Adsorption of oxygen on α-Mo2C(0001) is investigated with Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES) utilizing synchrotron radiation. It is found that C KLL Auger peak intensity does not change during O2 exposure, indicating that the depletion of C atoms does not proceed. It is deduced from ARPES and LEED results that adsorbed oxygen atoms from a well-ordered (1 × 1) lattice on the α-Mo2C(0001) surface. The ARPES study shows that oxygen adsorption induces a peculiar state around Fermi level (EF). Off-normal-emission measurements prove that the state is a half-filled metallic state.

  1. Electronic structure of MgB2 from angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Uchiyama, H; Shen, K M; Lee, S; Damascelli, A; Lu, D H; Feng, D L; Shen, Z-X; Tajima, S

    2002-04-15

    The first angle-resolved photoemission spectroscopy results from MgB2 single crystals are reported. Along the GammaK and GammaM directions, we observed three distinct dispersive features approaching the Fermi energy. These can be assigned to the theoretically predicted sigma (B 2p(x,y)) and pi (B 2p(z)) bands. In addition, a small parabolic-like band is detected around the Gamma point, which can be attributed to a surface-derived state. The overall agreement between our results and the band calculations suggests that the electronic structure of MgB2 is of a conventional nature, thus implying that electron correlations are weak and may be of little importance to superconductivity in this system.

  2. Probing the Spin-Polarized Electronic Band Structure in Monolayer Transition Metal Dichalcogenides by Optical Spectroscopy

    Science.gov (United States)

    Wang, Zefang; Zhao, Liang; Mak, Kin Fai; Shan, Jie

    2017-02-01

    We study the electronic band structure in the K/K' valleys of the Brillouin zone of monolayer WSe2 and MoSe2 by optical reflection and photoluminescence spectroscopy on dual-gated field-effect devices. Our experiment reveals the distinct spin polarization in the conduction bands of these compounds by a systematic study of the doping dependence of the A and B excitonic resonances. Electrons in the highest-energy valence band and the lowest-energy conduction band have antiparallel spins in monolayer WSe2, and parallel spins in monolayer MoSe2. The spin splitting is determined to be hundreds of meV for the valence bands and tens of meV for the conduction bands, which are in good agreement with first principles calculations. These values also suggest that both n- and p-type WSe2 and MoSe2 can be relevant for spin- and valley-based applications

  3. Electron energy loss spectroscopy of excitons in two-dimensional-semiconductors as a function of temperature

    KAUST Repository

    Tizei, Luiz H. G.

    2016-04-21

    We have explored the benefits of performing monochromated Electron Energy Loss Spectroscopy(EELS) in samples at cryogenic temperatures. As an example, we have observed the excitonic absorption peaks in single layer Transition Metal Dichalcogenides. These peaks appear separated by small energies due to spin orbit coupling. We have been able to distinguish the split for MoS2 below 300 K and for MoSe2 below 220 K. However, the distinction between peaks is only clear at 150 K. We have measured the change in absorption threshold between 150 K and 770 K for MoS2 and MoSe2. We discuss the effect of carbon and ice contamination in EELSspectra. The increased spectral resolution available made possible with modern monochromators in electron microscopes will require the development of stable sample holders which reaches temperatures far below that of liquid nitrogen.

  4. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction

    Science.gov (United States)

    Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne

    2002-01-01

    Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.

  5. Characterization of interfacially electronic structures of gold-magnetite heterostructures using X-ray absorption spectroscopy.

    Science.gov (United States)

    Lin, Fang-hsin; Doong, Ruey-an

    2014-03-01

    Gold-magnetite heterostructures are novel nanomaterials which can rapidly catalyze the reduction reaction of nitroaromatics. In this study, the interfacially structural and electronic properties of various morphologies of Au-Fe3O4 heterostructures were systematically investigated using X-ray absorbance spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). The effect of change in electronic structure and charge transfer on electrochemically catalytic activity of Au-Fe3O4 heterostructures was further evaluated by oxygen reduction reaction (ORR). The shifts in binding energy of Au4f and Fe2p peaks in XPS spectra indicate the charge transfer between the Au and Fe3O4 nanoparticles. The increase in d-hole population of Au seeds after the conjugation with iron oxides follows the order flower-like Au-Fe3O4 (FLNPs)>dumbbell-like Au-Fe3O4 (DBNPs)>Au seeds. In addition, the Fe(2+) valence state increases in Au-Fe3O4 heterostructures, which provides evidence to support the hypothesis of charge transfer between Au and Fe3O4 nanoparticles. The theoretical simulation of Au L3-edge XAS further confirms the production of Au-Fe and Au-O bonds at the interface of Au/Fe3O4 and the epitaxial linkage relationship between Au and Fe3O4 nanoparticles. In addition, the electron deficient of Au seeds increases upon increasing Fe3O4 nanoparticles on a single Au seed, and subsequently decreases the catalytic activity of Au in the Au-Fe3O4 heterostructures. The catalytic activity of Au-Fe3O4 toward ORR follows the order Au seeds>Au-Fe3O4 DBNPs>Au-Fe3O4 FLNPs, which is positively correlated to the extent of electronic deficiency of Au in Au-Fe3O4 heterostructures.

  6. The Pierre Auger Cosmic Ray Observatory

    Science.gov (United States)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  7. High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches.

    Science.gov (United States)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert F

    2014-06-04

    Atomic and electronic structures of hydrated ferritin are characterized using electron microscopy and spectroscopy through encapsulation in single layer graphene in a biocompatible manner. Graphene's ability to reduce radiation damage levels to hydrogen bond breakage is demonstrated. A reduction of iron valence from 3+ to 2+ is measured at nanometer-resolution in ferritin, showing initial stages of iron release by ferritin.

  8. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nádaždy, V., E-mail: nadazdy@savba.sk; Gmucová, K. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Schauer, F. [Faculty of Education, Trnava University in Trnava, 918 43 Trnava (Slovakia); Faculty of Applied Informatics, Tomas Bata University in Zlin, 760 05 Zlin (Czech Republic)

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  9. Gamma and electron spectroscopy of transfermium isotopes at Dubna: Results and plans

    Indian Academy of Sciences (India)

    A Yeremin; O Malyshev; A Popeko; A Lopez-Martens; K Hauschild; O Dorvaux; S Saro; D Pantelica; S Mullin

    2010-07-01

    Detailed spectroscopic information of excited nuclear states in deformed transfermium nuclei is scarce. Most of the information available today has been obtained from investigations of fine-structure -decay. Although decay gives access to hindrance factors and lifetimes which are strongly correlated to shell/subshell closures and the presence of isomers, only the combined use of and conversion electron spectroscopy allows the precise determination of excitation energy, spin and parity of nuclear levels. In the years 2004–2009 using the GABRIELA set-up [Hauschild et al, Nucl. Instrum. Methods A560, 388 (2006)] at the focal plane of VASSILISSA separator [Malyshev et al, Nucl. Instrum. Methods A440, 86 (2000); A516, 529 (2004)] experiments with the aim of and electron spectroscopy of the isotopes from Fm to Lr, formed by complete fusion reactions with accelerated heavy ions were performed. In the following, the pre- liminary results of decay studies using - and - coincidences at the focal plane of the VASSILISSA recoil separator are presented. Accumulated experience allowed us to perform ion optical calculations and to design the new experimental set-up, which will collect the base and best parameters of the existing separators and complex detector systems used at the focal planes of these installations. In the near future it is planned to study neutron-rich isotopes of the Rf–Sg in the `hot’ fusion reactions with 22Ne incident projectiles and 242Pu, 243Am and 248Cm targets.

  10. Studies of thin films and surfaces with optical harmonic generation and electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, Dieter Emre [Univ. of California, Berkeley, CA (United States)

    1996-01-01

    Optical second harmonic generation (SHG) and sum frequency generation (SFG) were used to study C60 thin solid films (low energy ED forbidden electronic excitations), and electron spectroscopy was used to study organic overlayers (xylenes) on Pt(111). Theory of SHG from a thin film is described in terms of surface and bulk contributions as well as local and nonlocal contributions to the optical nonlinearities. (1)In situ SHG data on C60 films during UHV film growth can be described in terms of only nonlocal contributions to both surface and bulk nonlinear susceptibilities. Microscopic origin of SHG response is discussed in terms of electric quadrupole and ED transitions of C60. (2)Adsorption and thermal decomposition of ortho- and para-xylene on Pt(111) is studied using HREELS, LEED, AES, and thermal desorption spectroscopy. We have observed preferential decomposition of the methyl groups which leads to distinct decomposition pathways for ortho- and para-xylene on Pt(111).

  11. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    Science.gov (United States)

    Nádaždy, V.; Schauer, F.; Gmucová, K.

    2014-10-01

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  12. Postcollision interactions in the Auger decay of the Ar L-shell

    Energy Technology Data Exchange (ETDEWEB)

    Samson, J.A.R.; Stolte, W.C.; He, Z.X. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The photoionization cross sections for Ar{sup +} through Ar{sup 4+}, produced by the Auger decay of an inner shell 2p hole, have been measured between 242 eV and 253 eV on beamline 9.0.1 and 6.3.2. In this study the authors are interested in near threshold phenomenon involving postcollision interactions (PCI), which are related to the Auger decay of a vacancy in the Ar L-shell. During an Auger decay a postcollision interaction can occur causing the out-going photoelectron to be retarded thus losing a certain amount of energy. If the retardation is sufficiently large the photoelectron will not escape. This result produces a singly charged ion, which normally would not be present. Such evidence of electron capture by the PCI effect was first shown clearly by Eberhardt et al. and, with higher resolution, in the present work. However, capture of the photoelectron is expected to be 100% exactly at the L{sub 2,3} thresholds. Thus, from the authors results they would have expected the Ar{sup 2+} signal to be zero at threshold, but it was not? The authors can explain this anomoly on the basis that during the Auger decay the photoelectrons are captured into high lying excited states of Ar{sup +}, which subsequently decay through autoionization yielding Ar{sup 2+}. Future work in this area will seek experimental evidence to verify this prediction.

  13. Distributed Computing for the Pierre Auger Observatory

    Science.gov (United States)

    Chudoba, J.

    2015-12-01

    Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system.

  14. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  15. Electron transport properties of bis[2-(2-hydroxyphenyl)-pyridine]beryllium investigated by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanping; Chen, Jiangshan; Huang, Jinying; Ma, Dongge, E-mail: mdg1014@ciac.jl.cn, E-mail: dongls@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China); Dong, Lisong, E-mail: mdg1014@ciac.jl.cn, E-mail: dongls@ciac.jl.cn [Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China); Chen, Hui [Department of Science, Shenyang University of Chemical Technology, Shenyang 110142 (China)

    2014-06-14

    The electron transport properties of bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp{sub 2}) are investigated by impedance spectroscopy over a frequency range of 10 Hz to 13 MHz. The Cole-Cole plots demonstrate that the Bepp{sub 2}-based device can be represented by a single parallel resistance R{sub p} and capacitance C{sub p} network with a series resistance R{sub s}. The current-voltage characteristics and the variation of R{sub p} with applied bias voltage indicate the electron conduction of space-charge-limited current with exponential trap distributions in Bepp{sub 2}. It can be seen that the electron mobility exhibits strong field-dependence in low electric field region and almost saturate in high electric field region. It is experimentally found that Bepp{sub 2} shows dispersion transport and becomes weak as the electric field increases. The activation energy is determined to be 0.043 eV by temperature-dependent conductivity, which is consistent with the result obtained from the temperature-dependent current density characteristics. The electron mobility reaches the orders of 10{sup −6}–10{sup −5} cm{sup 2} V{sup −1} s{sup −1}, depending on the electric field.

  16. The fluorescence detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. [Universidad Tecnologica Nacional, Facultad Regional Mendoza, (UTN-FRM), Mendoza (Argentina); Abreu, P. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Aguirre, C. [Universidad Catolica de Bolivia, La Paz (Bolivia, Plurinational State of); Ahn, E.J. [Fermilab, Batavia, IL (United States); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Ambrosio, M. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Andringa, S. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Anzalone, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo (Italy); Sezione INFN, Catania (Italy); Aramo, C. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Arganda, E. [Universidad Complutense de Madrid, Madrid (Spain); Argiro, S. [Universita di Torino and Sezione INFN, Torino (Italy); Arisaka, K. [University of California, Los Angeles, CA (United States); Arneodo, F. [INFN, Laboratori Nazionali del Gran Sasso, Assergi , L' Aquila (Italy); Arqueros, F. [Universidad Complutense de Madrid, Madrid (Spain)

    2010-08-21

    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

  17. The Fluorescence Detector of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bacher, A; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barbosa, H J M; Barenthien, N; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Bollmann, E; Bolz, H; Bonifazi, C; Bonino, R; Borodai, N; Bracci, F; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, D CaminL; Caruso, R; Carvalho, W; Castellina, A; Castro, J; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordero, A; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J W; Cuautle, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daudo, F; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; Di Giulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dornic, D; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fonte, R; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Gibbs, K; Giller, M; Gitto, J; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gomez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Grashorn, E; Grassi, V; Grebe, S; Grigat, M; Grillo, A F; Grygar, J; Guardincerri, Y; Guardone, N; Guerard, C; Guarino, F; Gumbsheimer, R; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Hartmann, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hofman, G; Hörandel, J R; Horneffer, A; Horvat, M; Hrabovský, M; Hucker, H; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kern, H; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Kopmann, A; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Malek, M; Mandat, D; Mantsch, P; Marchetto, F; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Martineau, O; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mucchi, M; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nerling, F; Newman-Holmes, C; Newton, D; Nhung, P T; Nicotra, D; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Ortolani, F; Oßwald, B; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Pichel, A; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Pouryamout, J; Prado, L; Privitera, P; Prouza, M; Quel, E J; Rautenberg, G Raia J; Ravel, O; Ravignani, D; Redondo, A; Reis, H C; Reucroft, S; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Roberts, M D; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; b, H Salazar; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, G Schleif A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Sequieros, G; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Smiałkowski, A; Šmída, R; Smith, A G K; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Trapani, P; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tuci, V; Tueros, M; Tusi, E; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vitali, G; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Westerhoff, S; Whelan, B J; Wild, N; Wiebusch, C; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wörner, G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; b, A Zepeda; Ziolkowski, M

    2009-01-01

    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

  18. Education and Outreach for the Pierre Auger Observatory

    CERN Document Server

    Snow, Gregory R

    2007-01-01

    The scale and scope of the physics studied at the Auger Observatory offer significant opportunities for original outreach work. Education, outreach, and public relations of the Auger collaboration are coordinated in a task of its own whose goals are to encourage and support a wide range of efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on the impact of the collaboration in Mendoza Province, Argentina, as: the Auger Visitor Center in Malargue that has hosted over 29,000 visitors since 2001, the Auger Celebration and a collaboration-sponsored science fair held on the Observatory campus in November 2005, the opening of the James Cronin School in Malargue in November 2006, public lectures, school visits, and courses for science teachers. As the collaboration prepares the proposal for the northern Auger site foreseen to be in southeast Colorado, plans for a comprehensive outreach program are being...

  19. Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.

    Science.gov (United States)

    1982-12-01

    Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or

  20. Surface structure and electronic properties of materials

    Science.gov (United States)

    Siekhaus, W. J.; Somorjai, G. A.

    1975-01-01

    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  1. Calibration and Monitoring of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; DiGiulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; GarcíaGámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kühn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; LaRosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmiałkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; vandenBerg, A M; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2009-01-01

    Reports on the atmospheric monitoring, calibration, and other operating systems of the Pierre Auger Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.

  2. Experimental and theoretical study of 3p photoionization and subsequent Auger decay in atomic chromium

    Science.gov (United States)

    Keskinen, J.; Huttula, S.-M.; Mäkinen, A.; Patanen, M.; Huttula, M.

    2015-12-01

    3p photoionization and subsequent low kinetic energy Coster-Kronig and super Coster-Kronig Auger decay have been studied in atomic chromium. The binding energies, line widths, and relative intensities for the transitions seen in the synchrotron radiation excited 3p photoelectron spectrum are determined. The high resolution M2,3 M4,5 M4,5 and M2,3 M4,5 N1 Auger electron spectra following the electron impact excited 3p ionization are presented and the kinetic energies, relative intensities, and identifications are given for the main lines. The experimental findings are compared with the theoretical predictions obtained from Hartree-Fock and multiconfiguration Dirac-Fock approaches.

  3. The amorphous Zn biomineralization at Naracauli stream, Sardinia: electron microscopy and X-ray absorption spectroscopy.

    Science.gov (United States)

    Medas, D; Lattanzi, P; Podda, F; Meneghini, C; Trapananti, A; Sprocati, A; Casu, M A; Musu, E; De Giudici, G

    2014-01-01

    An amorphous Zn biomineralization ("white mud"), occurring at Naracauli stream, Sardinia, in association with cyanobacteria Leptolyngbya frigida and diatoms, was investigated by electron microscopy and X-ray absorption spectroscopy. Preliminary diffraction analysis shows that the precipitate sampled on Naracauli stream bed is mainly amorphous, with some peaks ascribable to quartz and phyllosilicates, plus few minor unattributed peaks. Scanning electron microscopy analysis shows that the white mud, precipitated in association with a seasonal biofilm, is made of sheaths rich in Zn, Si, and O, plus filaments likely made of organic matter. Transmission electron microscopy analysis shows that the sheaths are made of smaller units having a size in the range between 100 and 200 nm. X-ray absorption near-edge structure and extended X-ray absorption fine structure data collected at the Zn K-edge indicate that the biomineral has a local structure similar to hemimorphite, a zinc sorosilicate. The differences of this biomineral with respect to the hydrozincite biomineralization documented about 3 km upstream in the same Naracauli stream may be related to either variations in the physicochemical parameters and/or different metabolic behavior of the involved biota.

  4. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.

    Science.gov (United States)

    Bellido, Edson P; Rossouw, David; Botton, Gianluigi A

    2014-06-01

    Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson-Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson-Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.

  5. Transmission electron microscopy and time resolved optical spectroscopy study of the electronic and structural interactions of ZnO nanorods with bovine serum albumin.

    Science.gov (United States)

    Klaumünzer, M; Weichsel, U; Mačković, M; Spiecker, E; Peukert, W; Kryschi, C

    2013-08-22

    The adsorption behavior and electronic interactions of bovine serum albumin (BSA) with ZnO nanorod surfaces were investigated using high-resolution transmission electron microscopy as well as stationary and time-resolved optical spectroscopy techniques. Transmission electron microscopy shows that ZnO nanorod surfaces are surrounded by a homogeneous amorphous BSA film with thicknesses between ~2.5 and 5.0 nm. The electronic structure and adsorption geometry of BSA were examined using high-angle annular dark field scanning transmission electron microscopy combined with electron energy loss spectroscopy. The adsorption process was observed to result into an unfolded conformation of BSA becoming predominantly bound in the side-on orientation at the ZnO surface. This adsorption mode of the BSA molecules allows for a strong interaction with surface states of the ZnO nanorods. This is obvious from its efficient quenching of the defect-center photoluminescence of ZnO. Complementary information of electronic interactions across the ZnO nanorod interface was obtained from femtosecond transient absorption spectroscopy experiments. The rise dynamics of the measured transients revealed altered hole trapping dynamics and, thus, indicated to heterogeneous charge transfer as emerging from adsorbed BSA molecules to defect centers of the ZnO interface.

  6. Quantum Dynamics and Spectroscopy of Ab Initio Liquid Water: The Interplay of Nuclear and Electronic Quantum Effects.

    Science.gov (United States)

    Marsalek, Ondrej; Markland, Thomas E

    2017-03-22

    Understanding the reactivity and spectroscopy of aqueous solutions at the atomistic level is crucial for the elucidation and design of chemical processes. However, the simulation of these systems requires addressing the formidable challenges of treating the quantum nature of both the electrons and nuclei. Exploiting our recently developed methods that provide acceleration by up to 2 orders of magnitude, we combine path integral simulations with on-the-fly evaluation of the electronic structure at the hybrid density functional theory level to capture the interplay between nuclear quantum effects and the electronic surface. Here we show that this combination provides accurate structure and dynamics, including the full infrared and Raman spectra of liquid water. This allows us to demonstrate and explain the failings of lower-level density functionals for dynamics and vibrational spectroscopy when the nuclei are treated quantum mechanically. These insights thus provide a foundation for the reliable investigation of spectroscopy and reactivity in aqueous environments.

  7. Raman Spectroscopy of InAs Based Nanowires & Electronic Characterization of Heterostructure InAs/GaInAs Nanowires

    DEFF Research Database (Denmark)

    Tanta, Rawa

    spectroscopy measurements on InAs based nanowires include several topics. Firstly, we use polarized Raman spectroscopy for determining the crystal orientation of the nanowires based on conventional Raman selection rules. We studied the effect of the high power laser irradiation on the nanowire, and its......The work presented in this thesis represents two main topics. The first one, which covers a bigger volume of the thesis, is mainly about Raman spectroscopy on individual InAs based nanowires. The second part presents electronic characterization of heterostructure InAs/GaInAs nanowires. Raman...

  8. Addressing the electronic properties of III-V nanowires by photoluminescence excitation spectroscopy

    Science.gov (United States)

    De Luca, M.

    2017-02-01

    Semiconductor nanowires (NWs) have been attracting an increasing interest in the scientific community. This is due to their peculiar filamentary shape and nanoscale diameter, which renders them versatile and cost-effective components of novel technological devices and also makes them an ideal platform for the investigation of a variety of fascinating physical effects. Absorption spectroscopy is a powerful and non-destructive technique able to provide information on the physical properties of the NWs. However, standard absorption spectroscopy is hard to perform in NWs, because of their small volume and the presence of opaque substrates. Here, we demonstrate that absorption can be successfully replaced by photoluminescence excitation (PLE). First, the use of polarization-resolved PLE to address the complex and highly-debated electronic band structure of wurtzite GaAs and InP NWs is shown. Then, PLE is used as a statistically-relevant method to localize the presence of separate wurtzite and zincblende NWs in the same InP sample. Finally, a variety of resonant exotic effects in the density of states of In x Ga1-x As/GaAs core/shell NWs are highlighted by high-resolution PLE. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics’ series 50th anniversary celebrations in 2017. Marta De Luca was selected by the Editorial Board of J. Phys. D as a Leader.

  9. Investigation of radiosterilization of Benzydamine Hydrochloride by electron spin resonance spectroscopy

    Science.gov (United States)

    Çolak, Şeyda

    2016-10-01

    The use of ionizing radiation for sterilization of pharmaceuticals is an attractive and growing technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma irradiated solid Benzydamine Hydrochloride (BH) sample is investigated in the dose range of 3-34 kGy at different temperatures using Electron Spin Resonance (ESR) spectroscopy. Gamma irradiated BH indicated eight resonance peaks centered at g=2.0029 originating from two different radical species. Decay activation energy of the radical mostly responsible from central intense resonance line was calculated to be 25.6±1.5 kJ/mol by using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to describe best the experimental dose-response data. However, the discrimination of irradiated BH from unirradiated one was possible even 3 months after storage at normal conditions. Basing on these findings it was concluded that BH and BH containing drugs could be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilizations.

  10. Valence orbitals of W(CO)6 using electron momentum spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Shi Le-Lei; Liu Kun; Luo Zhi-Hong; Ning Chuan-Gang; Deng Jing-Kang

    2011-01-01

    The binding energy spectra and the momentum distributions of the outer valence orbitals of W(CO)6 have been studied by using electron momentum spectroscopy as well as non-relativistic,scalar relativistic and spin-orbital relativistic DFT-B3LYP calculations.The experimental momentum profiles of the outer valence orbitals obtained with the impact energies of 1200 eV and 2400 eV were compared with various theoretical calculation results.The relativistic calculations could provide better descriptions for the experimental momentum distributions than the non-relativistic ones.Moreover,a new ordering of orbitals 10t1u,3t2g,and 7eg,i.e.,10t1u < 3t2g <7eg <10a1g,is established in this work.

  11. Electron energy loss spectroscopy study of Sr2-xGdxTiMnO6

    Science.gov (United States)

    Biskup, Nevenko; Alvarez-Serrano, Inmaculada; Veiga, Maria Luisa; Garcia-Hernandez, Mar; Lopez, Maria Luisa; Varela, Maria

    2012-02-01

    The newly synthesized double perovskite family Sr2-xGdxTiMnO6 (0electron energy loss spectroscopy. We find that, is spite of some precipitations of Mn and Ti rich regions that exist in 0.25<=x<=0.75, the manganese and titanium ions are generally well intermixed in both interior of the grains and on the grain boundaries. We discuss these results in the frame of highly non-linear electrical conductivity found in these materials.

  12. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Godiksen, Anita; Vennestrøm, Peter N. R.; Rasmussen, Søren Birk

    2016-01-01

    Recent quantitative electron paramagnetic resonance spectroscopy (EPR) data on different copper species present in copper exchanged CHA zeolites are presented and put into context with the literature on other copper zeolites. Results presented herein were obtained using ex situ and in situ EPR...... on copper ion exchanged into a CHA zeolite with Si/Al = 14 ± 1 to obtain Cu/Al = 0.46 ± 0.02. The results shed light on the identity of different copper species present after activation in air. Since the EPR signal is quantifiable, the content of the different EPR active species has been elucidated and Cu2...... information about the reactivity and the quantity of some of the otherwise EPR silent species. In this way the [Cu–OH]+ species in copper substituted low-Al zeolites has been indirectly observed and quantified. EPR active Cu2+ species have been followed under reduction and oxidation with gas mixtures relevant...

  13. Free radical scavenging activity of erdosteine metabolite I investigated by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Braga, Pier Carlo; Culici, Maria; Dal Sasso, Monica; Falchi, Mario; Spallino, Alessandra

    2010-01-01

    The aim of this study was to explore the antiradical activity of Met I (an active metabolite of erdosteine) containing a pharmacologically active sulphydryl group, by means of electron paramagnetic resonance (EPR) spectroscopy which has not previously been used to characterize the antiradical activity of Met I. The effects of concentrations of 20, 10, 5, 2.5, 1.25 and 0.625 microg/ml of Met I were tested against: (a) the Fenton reaction model system with EPR detection of HO.; (b) the KO2-crown ether system with EPR detection of O2-.; (c) the EPR assay based on the reduction of the Tempol radical, and (d) the EPR assay based on the reduction of Fremy's salt radical. Our findings show that the intensity of 4 different free radicals was significantly reduced in the presence of Met I, thus indicating the presence of a termination reaction between the free radicals and Met I.

  14. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  15. CHARACTERIZATION OF REFINED HEMP FIBERS USING NIR FT RAMAN MICRO SPECTROSCOPY AND ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Siva Kumar Kovur

    2008-11-01

    Full Text Available The research was focused on the separation of single hemp (Cannabis sativa L. fibre cells with low fineness from mechanically extracted fibre bundles of high fineness. The fiber bundles were treated with enzymes, namely panzym, pectinase, hemicellulase, and cellulase, along with a combination of panzym and ultrasonic treatments. Changes in the fiber structure were followed at molecular and microscopic levels by means of NIR FT Raman spectroscopy and Environmental Scanning Electron Microscopy (ESEM. Buffer-panzym treatments of hemp fibers had a prominent effect in loosening of the fiber cells. The best of refining was achieved when the fiber bundles were treated with buffer-panzym solution in combination with ultrasonic treatment.

  16. White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods.

    Science.gov (United States)

    Zijlstra, Peter; Chon, James W M; Gu, Min

    2009-07-28

    We present the first measurements of laser induced melting and reshaping of single gold nanorods. Using a combination of white light scattering spectroscopy and electron microscopy we find a melting energy of 260 fJ for nanorods with an average size of 92 x 30 nm. Contrary to previous reports on ensembles of nanorods, this melting energy corresponds well to the theoretical prediction of 225 fJ. We observe a gradual shape change from a long and thin rod to a shorter and wider rod, which eventually collapses into a sphere when enough laser energy is deposited. We also observe that higher aspect ratio particles are thermodynamically less stable, leading to a greater reduction of the aspect ratio at lower laser pulse energy densities.

  17. Note: High sensitivity pulsed electron spin resonance spectroscopy with induction detection.

    Science.gov (United States)

    Twig, Ygal; Dikarov, Ekaterina; Hutchison, Wayne D; Blank, Aharon

    2011-07-01

    Commercial electron spin resonance spectroscopy and imaging systems make use of the so-called "induction" or "Faraday" detection, which is based on a radio frequency coil or a microwave resonator. The sensitivity of induction detection does not exceed ~3 × 10(8) spins/√Hz. Here we show that through the use of a new type of surface loop-gap microresonators (inner size of 20 μm), operating at cryogenic temperatures at a field of 0.5 T, one can improve upon this sensitivity barrier by more than 2 orders of magnitude and reach spin sensitivities of ~1.5 × 10(6) spins/√Hz or ~2.5 × 10(4) spins for 1 h.

  18. Strong Asymmetric Charge Carrier Dependence in Inelastic Electron Tunneling Spectroscopy of Graphene Phonons.

    Science.gov (United States)

    Natterer, Fabian D; Zhao, Yue; Wyrick, Jonathan; Chan, Yang-Hao; Ruan, Wen-Ying; Chou, Mei-Yin; Watanabe, Kenji; Taniguchi, Takashi; Zhitenev, Nikolai B; Stroscio, Joseph A

    2015-06-19

    The observation of phonons in graphene by inelastic electron tunneling spectroscopy has been met with limited success in previous measurements arising from weak signals and other spectral features which inhibit a clear distinction between phonons and miscellaneous excitations. Utilizing a back-gated graphene device that allows adjusting the global charge carrier density, we introduce an averaging method where individual tunneling spectra at varying charge carrier density are combined into one representative spectrum. This method improves the signal for inelastic transitions while it suppresses dispersive spectral features. We thereby map the total graphene phonon density of states, in good agreement with density functional calculations. Unexpectedly, an abrupt change in the phonon intensity is observed when the graphene charge carrier type is switched through a variation of the back-gate electrode potential. This sudden variation in phonon intensity is asymmetric in the carrier type, depending on the sign of the tunneling bias.

  19. Correction of non-linearity effects in detectors for electron spectroscopy

    CERN Document Server

    Mannella, N; Kay, A W; Nambu, A; Gresch, T; Yang, S H; Mun, B S; Bussat, J M; Rosenhahn, A; Fadley, C S

    2004-01-01

    Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at di...

  20. Resonant core spectroscopies of the charge transfer interactions between C60 and the surfaces of Au(111), Ag(111), Cu(111) and Pt(111)

    Science.gov (United States)

    Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten; O'Shea, James N.

    2017-03-01

    Charge transfer interactions between C60 and the metal surfaces of Ag(111), Cu(111), Au(111) and Pt(111) have been studied using synchrotron-based photoemission, resonant photoemission and X-ray absorption spectroscopies. By placing the X-ray absorption and valence band spectra on a common binding energy scale, the energetic overlap of the unoccupied molecular orbitals with the density of states of the underlying metal surface have been assessed in the context of possible charge transfer pathways. Resonant photoemission and resonant Auger data, measuring the valence region as a function of photon energy for C60 adsorbed on Au(111) reveals three constant high kinetic energy features associated with Auger-like core-hole decay involving an electron transferred from the surface to the LUMO of the molecule and electrons from the three highest occupied molecular orbitals, respectively and in the presence of ultra-fast charge transfer of the originally photoexcited molecule to the surface. Data for the C60/Ag(111) surface reveals an additional Auger-like feature arising from a core-hole decay process involving more than one electron transferred from the surface into the LUMO. An analysis of the relative abundance of these core-hole decay channels estimates that on average 2.4 ± 0.3 electrons are transferred from the Ag(111) surface into the LUMO. A core-hole clock analysis has also been applied to assess the charge transfer coupling in the other direction, from the molecule to the Au(111) and Ag(111) surfaces. Resonant photoemission and resonant Auger data for C60 molecules adsorbed on the Pt(111) and Cu(111) surfaces are shown to exhibit no super-Auger features, which is attributed to the strong modification of the unoccupied molecular orbitals arising from stronger chemical coupling of the molecule to the surface.

  1. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2015-08-14

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru{sup 0}) and its oxide (RuO{sub 2}) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru{sup 0} and RuO{sub 2} films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO{sub 2} and 0.04 Å/cycle for Ru.{sup 0} An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO{sub 2}/OH compound whose surface is saturated with hydroxyl groups.

  2. Electronic and vibrational spectroscopy of intermediates in methane-to-methanol conversion by CoO+

    Science.gov (United States)

    Altinay, Gokhan; Kocak, Abdulkadir; Silva Daluz, Jennifer; Metz, Ricardo B.

    2011-08-01

    At room temperature, cobalt oxide cations directly convert methane to methanol with high selectivity but very low efficiency. Two potential intermediates of this reaction, the [HO-Co-CH3]+ insertion intermediate and [H2O-Co=CH2]+ aquo-carbene complex are produced in a laser ablation source and characterized by electronic and vibrational spectroscopy. Reaction of laser-ablated cobalt cations with different organic precursors seeded in a carrier gas produces the intermediates, which subsequently expand into vacuum and cool. Ions are extracted into a time-of-flight mass spectrometer and spectra are measured via photofragment spectroscopy. Photodissociation of [HO-Co-CH3]+ in the visible and via infrared multiple photon dissociation (IRMPD) makes only Co+ + CH3OH, while photodissociation of [H2O-Co=CH2]+ produces CoCH2+ + H2O. The electronic spectrum of [HO-Co-CH3]+ shows progressions in the excited state Co-C stretch (335 cm-1) and O-Co-C bend (90 cm-1); the IRMPD spectrum gives νOH = 3630 cm-1. The [HO-Co-CH3]+(Ar) complex has been synthesized and its vibrational spectrum measured in the O-H stretching region. The resulting spectrum is sharper than that obtained via IRMPD and gives νOH = 3642 cm-1. Also, an improved potential energy surface for the reaction of CoO+ with methane has been developed using single point energies calculated by the CBS-QB3 method for reactants, intermediates, transition states and products.

  3. Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jinghua

    2008-09-22

    The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

  4. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Billoir, Pierre, E-mail: billoir@lpnhe.in2p3.fr [LPNHE, CNRS/IN2P3 and Univ. P. and M. Curie and Univ. D. Diderot, 4 place Jussieu 75272 Paris Cedex 05 (France); Observatorio Pierre Auger, av. San Martín Norte, 304 5613, Malargüe (Argentina)

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km{sup 2}), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense “infill” subarray. - Highlights: • The water Cherenkov technique is used in the Surface Detector of the Pierre Auger Observatory. • Cross-calibrated with the Fluorescence Detector, it provides a measurement of the primary energy. • The spectrum of the UHE cosmic rays exhibits clearly an “ankle” and a cutoff. • The muon observed muon content of the atmospheric showers is larger than expected from the models. • Stringent limits on the flux of UHE neutrinos and photons are obtained.

  5. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  6. Energies and radiative and Auger rates of doubly-excited states of multiply charged Be-like ions

    Institute of Scientific and Technical Information of China (English)

    苟秉聪; 陈信义

    1995-01-01

    The energy levels, radiative and Auger rates of Be-iike ions are calculated using the conventional configuration-interaction method. The Be-like ions are different from He-like ions because the excited electrons in the former deviate from O(4) symmetry.

  7. Biophysical Characterisation of Globins and Multi-Heme Cytochromes Using Electron Paramagnetic Resonance and Optical Spectroscopy

    Science.gov (United States)

    Desmet, Filip

    Heme proteins of different families were investigated in this work, using a combination of pulsed and continuous-wave electron paramagnetic resonance (EPR) spectroscopy, optical absorption spectroscopy, resonance Raman spectroscopy and laser flash photolysis. The first class of proteins that were investigated, were the globins. The globin-domain of the globin-coupled sensor of the bacterium Geobacter sulfurreducens was studied in detail using different pulsed EPR techniques (HYSCORE and Mims ENDOR). The results of this pulsed EPR study are compared with the results of the optical investigation and the crystal structure of the protein. The second globin, which was studied, is the Protoglobin of Methanosarcina acetivorans, various mutants of this protein were studied using laser flash photolysis and Raman spectroscopy to unravel the link between this protein's unusual structure and its ligand-binding kinetics. In addition to this, the CN -bound form of this protein was investigated using EPR and the influence of the strong deformation of the heme on the unusual low gz values is discussed. Finally, the neuroglobins of three species of fishes, Danio rerio, Dissostichus mawsoni and Chaenocephalus aceratus are studied. The influence of the presence or absence of two cysteine residues in the C-D and D-region of the protein on the EPR spectrum, and the possible formation of a disulfide bond is studied. The second group of proteins that were studied in this thesis belong to the family of the cytochromes. First the Mouse tumor suppressor cytochrome b561 was studied, the results of a Raman and EPR investigation are compared to the Human orthologue of the protein. Secondly, the tonoplast cytochrome b561 of Arabidopsis was investigated in its natural form and in two double-mutant forms, in which the heme at the extravesicular side was removed. The results of this investigation are then compared with two models in literature that predict the localisation of the hemes in this

  8. Data Processing at the Pierre Auger Observatory

    CERN Document Server

    Vicha, J

    2015-01-01

    Cosmic-ray particles with ultra-high energies (above $10^{18}$ eV) are studied through the properties of extensive air showers which they initiate in the atmosphere. The Pierre Auger Observatory detects these showers with unprecedented exposure and precision and the collected data are processed via dedicated software codes. Monte Carlo simulations of extensive air showers are very computationally expensive, especially at the highest energies and calculations are performed on the GRID for this purpose. The processing of measured and simulated data is described, together with a brief list of physics results which have been achieved.

  9. Absolute calibration of the Auger fluorescence detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; /Buenos Aires, IAFE; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  10. Characterization of Inx Ga1-x As-GaAs heterostructures via electron beam techniques

    Science.gov (United States)

    Gomez-Barojas, Estela; Silva-Gonzalez, Rutilo; Serrano-Rojas, Rosa Maria; Vidal-Borbolla, Miguel Angel

    2005-03-01

    In the case of strained superlattices abrupt heterointerfaces are required because compositional fluctuations at heterointerfaces results in uncertainty in both composition and lattice constant. The aim of this work is to study exsitu the surface morphology, the periodicity and elemental composition of a set of 3 InGaAs-GaAs heterostructures grown on GaAs (100) substrates by a molecular beam epitaxy system. The heterostructures are formed by 10 periods of InGaAs-GaAs epitaxially grown on GaAs substrates with nominal thickness of 500 and 1000 å, respectively. The techniques used for this purpose are the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). The In content in the heterostructures is determined from corresponding Auger depth profiles. This work has been supported by VIEP-BUAP, Project No. II53G02.

  11. Education and public outreach of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B.; /Natl. Tech. U., San Rafael; Snow, G.

    2005-08-01

    The Auger collaboration's broad mission in education, outreach and public relations is coordinated in a separate task. Its goals are to encourage and support a wide range of outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on recent activities and future initiatives.

  12. Molecular potentials and wave function mapping by high-resolution electron spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kimberg, Victor, E-mail: victor.kimberg@pks.mpi.de [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden (Germany); Miron, Catalin, E-mail: miron@synchrotron-soleil.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)

    2014-08-15

    Highlights: • Some studies related to the vibrational wave functions mapping phenomenon are reviewed. • The core-excited vibrational wave functions were mapped using dissociative and bound final states. • High-resolution experimental data is accompanied by ab initio calculations. • The mapping phenomenon allows one to extract constants of the molecular potentials. • The mapping techniques are general and can be applied for the study of many systems. - Abstract: The recent development of high brightness 3{sup rd} generation soft X-ray sources and high energy resolution electron spectrometers made it possible to accurately trace quantum phenomena associated to the vibrational dynamics in core-excited molecules. The present paper reviews the recent results on mapping of vibrational wave functions and molecular potentials based on electron spectroscopy. We discuss and compare the mapping phenomena in various systems, stressing the advantages of the resonant X-ray scattering for studying of the nuclear dynamics and spectroscopic constants of small molecules. The experimental results discussed in the paper are most often accompanied by state-of-the-art ab initio calculations allowing for a deeper understanding of the quantum effects. Besides its fundamental interest, the vibrational wave function mapping is shown to be useful for the analysis of core- and valence-excited molecular states based on the reflection principle.

  13. Adsorption on metal oxides Studies with the metastable impact electron spectroscopy

    CERN Document Server

    Krischok, S; Kempter, V

    2002-01-01

    An overview is given on the application of metastable impact electron spectroscopy, in combination with UPS, to the study of clean magnesia and titania surfaces and their interaction with metal atoms and small molecules. The mechanisms for metal adsorption on reducible (titania) and non-reducible (magnesia) substrates are different: while on titania the metal atom often bonds by electron transfer to Ti3d states, it is hybridization of the adsorbate and anion wavefunctions which accounts for the bonding on MgO. In the case of H sub 2 O, molecular adsorption takes place both on MgO and TiO sub 2; on the other hand, water-alkali coadsorption leads to hydroxide formation. In the case of CO sub 2 , chemisorption takes place in form of carbonate (CO sub 3) species. These originate from the CO sub 2 interaction with O sup 2 sup - surface anions. While for CaO chemisorption takes place at regular oxygen sites, for MgO this occurs at low-coordinated oxygen ions only; for TiO sub 2 chemisorption requires alkali coadsor...

  14. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface.

    Science.gov (United States)

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4pz atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  15. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges

    Science.gov (United States)

    Fujita, N.; Hasnip, P. J.; Probert, M. I. J.; Yuan, J.

    2015-08-01

    A systematic study of simulated atomic-resolution electronic energy-loss spectroscopy (EELS) for different graphene nanoribbons (GNRs) is presented. The results of ab initio studies of carbon 1s core-loss EELS on GNRs with different ribbon edge structures and different hydrogen terminations show that theoretical core-loss EELS can distinguish key structural features at the atomic scale. In addition, the combination of polarized core-loss EELS with symmetry resolved electronic partial density of states calculations can be used to identify the origins of all the primary features in the spectra. For example, the nature of the GNR edge structure (armchair, zigzag, etc) can be identified, along with the degree of hydrogenation. Hence it is possible to use the combination of ab initio calculations with high resolution, high energy transmission core-loss EELS experiments to determine the local atomic arrangement and chemical bonding states (i.e. a structural fingerprint) in GNRs, which is essential for future practical applications of graphene.

  16. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.

    Science.gov (United States)

    Fujita, N; Hasnip, P J; Probert, M I J; Yuan, J

    2015-08-01

    A systematic study of simulated atomic-resolution electronic energy-loss spectroscopy (EELS) for different graphene nanoribbons (GNRs) is presented. The results of ab initio studies of carbon [Formula: see text] core-loss EELS on GNRs with different ribbon edge structures and different hydrogen terminations show that theoretical core-loss EELS can distinguish key structural features at the atomic scale. In addition, the combination of polarized core-loss EELS with symmetry resolved electronic partial density of states calculations can be used to identify the origins of all the primary features in the spectra. For example, the nature of the GNR edge structure (armchair, zigzag, etc) can be identified, along with the degree of hydrogenation. Hence it is possible to use the combination of ab initio calculations with high resolution, high energy transmission core-loss EELS experiments to determine the local atomic arrangement and chemical bonding states (i.e. a structural fingerprint) in GNRs, which is essential for future practical applications of graphene.

  17. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhuoling; Wang, Hao [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2 (Ireland); Hou, Shimin, E-mail: smhou@pku.edu.cn [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Beida Information Research (BIR), Tianjin 300457 (China)

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p{sub z} atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  18. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    Science.gov (United States)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  19. Prospects of GPGPU in the Auger Offline Software Framework

    CERN Document Server

    Winchen, Tobias

    2015-01-01

    The Pierre Auger Observatory is the currently largest experiment dedicated to unveil the nature and origin of the highest energetic cosmic rays. The software framework 'Offline' has been developed by the Pierre Auger Collaboration for joint analysis of data from different independent detector systems used in one observatory. While reconstruction modules are specific to the Pierre Auger Observatory components of the Offline framework are also used by other experiments. The software framework has recently been extended to incorporate data from the Auger Engineering Radio Array (AERA), the radio extension of the Pierre Auger Observatory. The reconstruction of the data of such radio detectors requires the repeated evaluation of complex antenna gain patterns which significantly increases the required computing resources in the joint analysis. In this contribution we explore the usability of massive parallelization of parts of the Offline code on the GPU. We present the result of a systematic profiling of the joint...

  20. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  1. Electronic structure of fluorinated multiwalled carbon nanotubes studied using x-ray absorption and photoelectron spectroscopy

    Science.gov (United States)

    Brzhezinskaya, M. M.; Muradyan, V. E.; Vinogradov, N. A.; Preobrajenski, A. B.; Gudat, W.; Vinogradov, A. S.

    2009-04-01

    This paper presents the results of combined investigation of the chemical bond formation in fluorinated multiwalled carbon nanotubes (MWCNTs) with different fluorine contents (10-55wt%) and reference compounds (highly oriented pyrolytic graphite crystals and “white” graphite fluoride) using x-ray absorption and photoelectron spectroscopy at C1s and F1s thresholds. Measurements were performed at BESSY II (Berlin, Germany) and MAX-laboratory (Lund, Sweden). The analysis of the soft x-ray absorption and photoelectron spectra points to the formation of covalent chemical bonding between fluorine and carbon atoms in the fluorinated nanotubes. It was established that within the probing depth (˜15nm) of carbon nanotubes, the process of fluorination runs uniformly and does not depend on the fluorine concentration. In this case, fluorine atoms interact with MWCNTs through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton (phase 1) and this bonding is accompanied by a change in the hybridization of the 2s and 2p valence electron states of the carbon atom from the trigonal (sp2) to tetrahedral (sp3) hybridization and by a large electron transfer between carbon an fluorine atoms. In the MWCNT near-surface region the second fluorine-carbon phase with weak electron transfer is formed; it is located mainly within two or three upper graphene monolayers, and its contribution becomes much poorer as the probing depth of fluorinated multiwalled carbon nanotubes (F-MWCNTs) increases. The defluorination process of F-MWCNTs on thermal annealing has been investigated. The conclusion has been made that F-MWCNT defluorination without destruction of graphene layers is possible.

  2. Energetics, molecular electronic structure, and spectroscopy of forming Group IIA dihalide complexes

    Science.gov (United States)

    Devore, T. C.; Gole, J. L.

    1999-02-01

    Multiple-collision relaxed (helium) chemiluminescence and laser-induced fluorescent spectroscopy have been used to demonstrate the highly efficient collisional stabilization of electronically excited Group IIA dihalide collision complexes formed in M (Ca,Sr)+X 2 (XY) (Cl 2, Br 2, ICl, IBr, I 2) reactive encounters. The first discrete emission spectra for the CaCl 2, CaBr 2, SrCl 2, SrBr 2, and SrICl dihalides are observed and evaluated; however, the low-pressure `continuous' chemiluminescent emission observed for forming barium dihalide (BaX 2) complexes is quenched under these experimental conditions. The reactions of the Group IIA metals with molecular fluorine do not readily produce the corresponding dihalide. While the lowest-lying observed dihalide visible transition is, as predicted, found to result in an extended progression in a dihalide complex bending mode (SrCl 2), the observed progression suggests the presence of a residual halogen (Cl-Cl) bond. Two higher-lying transitions are dominated by a vibrational mode structure corresponding to progressions in the symmetric stretching mode or, for nominally forbidden electronic transitions, odd quanta of the asymmetric stretching mode. Some evidence for sequence structure associated with the dihalide bending mode is also obtained. These observations are consistent with complex formation as it is coupled with a modified valence electron structure (correlation diagram) associated with the highly ionic nature of the dihalides. The bonding in the Group IIA dihalides (and their complexes), whose atomization energies are more than twice the metal monohalide bond energy, strongly influences the evaluation of energetics and the determination of monohalide bond energies from chemiluminescent processes. Discrepancies between those bond strengths determined by mass spectrometry and chemiluminescence are discussed with a focus on energy partitioning in dihalide complex formation and its influence on chemical vapor

  3. Particle physics at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Ebr Jan

    2014-01-01

    Full Text Available The Pierre Auger Observatory is the largest detector of ultra-high energy cosmic rays (UHECR in the world. These particles, presumably protons or heavier nuclei of energies up to 1020 eV, initiate extensive air showers which can be detected by sampling the particles that arrive at ground level or observing the fluorescence light generated during the passage of showers through the atmosphere – the Pierre Auger Observatory employs both these techniques. As the center-of-mass energies of the first interactions in the showers can be several orders of magnitude beyond the reach of the LHC, the UHECR provide an unique opportunity to study hadronic interactions. While the uncertainty in modeling these interactions is somewhat degenerate with the unknown composition of the primary beam, interaction models can be tested using data such as the depths of the maxima of the longitudinal development of the showers or their muon content. Particular sensitivity to interaction models is achieved when several observables are combined. Moreover, using careful data selection, proton-air cross section at the c.m.s. energy of 57 TeV per nucleon-nucleon pair can be obtained.

  4. Recent results from the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Gouffon, Philippe [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-07-01

    Full text. The Pierre Auger Observatory has been designed to observe cosmic rays with energies above 1018 eV . The southern site, located in Malargue, Argentina, is now fully operational (since mid 2008) and has been collecting data continuously while being deployed. The northern site, which will give a full sky coverage, is under development in Lamar, Colorado, USA. The PAO uses two complementary techniques to measure the direction of arrival and the energy of the comic rays. In the southern site, its 1600 water Cerenkov tanks, spread over 3000 km{sup 2}, sample the extended air shower front when it hits the ground, measuring time and energy deposited, while the 4 fluorescence detectors stations, each with 6 telescopes, collect the UV light emitted by the shower core, registering the time, intensity and angle of reception. Though the Pierre Auger collaboration will be taking data for the next two decades, several results have already been published based on data collected until 2009 and will be discussed briefly: the energy spectrum and its implications on the GZK cut off controversy, limits on photon and neutrino fluxes, anisotropy, point sources and mass composition. (author)

  5. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  6. Development of a single-shot CCD-based data acquisition system for time-resolved X-ray photoelectron spectroscopy at an X-ray free-electron laser facility.

    Science.gov (United States)

    Oura, Masaki; Wagai, Tatsuya; Chainani, Ashish; Miyawaki, Jun; Sato, Hiromi; Matsunami, Masaharu; Eguchi, Ritsuko; Kiss, Takayuki; Yamaguchi, Takashi; Nakatani, Yasuhiro; Togashi, Tadashi; Katayama, Tetsuo; Ogawa, Kanade; Yabashi, Makina; Tanaka, Yoshihito; Kohmura, Yoshiki; Tamasaku, Kenji; Shin, Shik; Ishikawa, Tetsuya

    2014-01-01

    In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system's design enables it to be controlled by an external trigger signal for single-shot pump-probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in 'single-shot image', 'shot-to-shot image (image-to-image storage or block storage)' and `shot-to-shot sweep' modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4f photoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in `ordinary sweep' mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1s core-level spectrum of La-doped SrTiO3 is reported as a function of incident power density. The Ti 1s core-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1s core-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL.

  7. Transmission electron microscopy, photoluminescence, and capacitance spectroscopy on GaAs/Si grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Bremond, Georges E.; Said, Hicham; Guillot, Gerard; Meddeb, Jaafar; Pitaval, M.; Draidia, Nasser; Azoulay, Rozette

    1991-03-01

    We present a complete characterization study of GaAs/Si heteroepitaxial layers grown by metalorganic chemical vapor deposition (MOCVD) at 750C using the two-step method. High resolution transmission electron microscopy secondary ion mass spectroscopy deep level transient spectroscopy (DLTS) and photoluminescence (PL) spectroscopy have been performed to study the initial stage of growth misfit and threading dislocations Si diffusion and the deep levels in the GaAs layer. We describe the influence of GaAs/AlAs superlattices in the buffer layer on the decrease of dislocation density and on Si diffusion from the substrate and the existence of deep electron traps induced by the heteroepitaxy. DLTS reveals hole traps attributed to Si incorporation on the basis of PL measurements which could contribute to the reduction of the minority carrier lifetime. We also show an improvement of the layer quality by the use of selective epitaxy.

  8. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    CERN Document Server

    ,

    2016-01-01

    Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muon counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The...

  9. Numerical evaluation of Auger recombination coefficients in relaxed and strained germanium

    Science.gov (United States)

    Dominici, Stefano; Wen, Hanqing; Bertazzi, Francesco; Goano, Michele; Bellotti, Enrico

    2016-05-01

    The potential applications of germanium and its alloys in infrared silicon-based photonics have led to a renewed interest in their optical properties. In this letter, we report on the numerical determination of Auger coefficients at T = 300 K for relaxed and biaxially strained germanium. We use a Green's function based model that takes into account all relevant direct and phonon-assisted processes and perform calculations up to a strain level corresponding to the transition from indirect to direct energy gap. We have considered excess carrier concentrations ranging from 1016 cm-3 to 5 × 1019 cm-3. For use in device level simulations, we also provide fitting formulas for the calculated electron and hole Auger coefficients as functions of carrier density.

  10. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  11. Broadband 2D Electronic Spectroscopy Reveals Coupling Between Dark 1Bu- State of Carotenoid and Qx State of Bacteriochlorophyll

    Directory of Open Access Journals (Sweden)

    Scholes Gregory D.

    2013-03-01

    Full Text Available The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.

  12. Mechanism of initiation of oxidation in mayonnaise enriched with fish oil as studied by electron spin resonance spectroscopy

    DEFF Research Database (Denmark)

    Thomsen, M.K.; Jacobsen, Charlotte; Skibsted, L.H.

    2000-01-01

    Electron spin resonance spectroscopy (spin trapping technique) has been used to identify the most important single factor for initiation of lipid oxidation in mayonnaise enriched with fish oil. Low pH increases the formation of radicals during incubation under mildly accelerated conditions at 37 ...

  13. Antiproton–to–electron mass ratio determined by two-photon laser spectroscopy of antiprotonic helium atoms

    Directory of Open Access Journals (Sweden)

    Sótér A.

    2014-03-01

    Full Text Available The ASACUSA collaboration of CERN has recently carried out two-photon laser spectroscopy of antiprotonic helium atoms. Three transition frequencies were determined with fractional precisions of 2.3–5 parts in 109. By comparing the results with three-body QED calculations, the antiproton-to-electron mass ratio was determined as 1836.1526736(23.

  14. Characterization of Al2O3-Supported Manganese Oxides by Electron Spin Resonance and Diffuse Reflectance Spectroscopy

    NARCIS (Netherlands)

    Kijlstra, W.S.; Poels, E.K.; Bliek, A.; Weckhuysen, B.M.; Schoonheydt, R.A.

    2001-01-01

    Alumina-supported manganese oxides, used as catalysts for the selective catalytic reduction of NO, were characterized by combined electron spin resonance and diffuse reflectance spectroscopies. Upon impregnation of the acetate precursor solution, the [Mn(H2O)6]^2+ complex interacts strongly with sur

  15. Comparing the photophysics of the two forms of the Orange Carotenoid Protein using 2D electronic spectroscopy

    Directory of Open Access Journals (Sweden)

    Mathies R.A.

    2013-03-01

    Full Text Available Broadband two-dimensional electronic spectroscopy is applied to investigate the photophysics of the photoactive orange carotenoid protein, which is involved in nonphotochemical quenching in cyanobacteria. Differences in dynamics between the light and dark forms arise from the different structure of the carotenoid in the protein pocket, with consequences for the biological role of the two forms.

  16. Electronic structure of aromatic amino acids studied by soft x-ray spectroscopy

    Science.gov (United States)

    Zhang, Wenhua; Carravetta, Vincenzo; Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-07-01

    The electronic structure of phenylalanine, tyrosine, tryptophan, and 3-methylindole in the gas phase was investigated by x-ray photoemission spectroscopy (XPS) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the C, N, and O K-edges. The XPS spectra have been calculated for the four principal conformers of each amino acid, and the spectra weighted by the Boltzmann population ratios calculated from published free energies. Instead of the single peaks expected from the stoichiometry of the compounds, the N 1s core level spectra of phenylalanine and tryptophan show features indicating that more than one conformer is present. The calculations reproduce the experimental features. The C and O 1s spectra do not show evident effects due to conformational isomerism. The calculations predict that such effects are small for carbon, and for oxygen it appears that only broadening occurs. The carbon K-edge NEXAFS spectra of these aromatic amino acids are similar to the published data of the corresponding molecules in the solid state, but show more structure due to the higher resolution in the present study. The N K-edge spectra of tryptophan and 3-methylindole differ from phenylalanine and tyrosine, as the first two both contain a nitrogen atom located in a pyrrole ring. The nitrogen K-edge NEXAFS spectra of aromatic amino acids do not show any measurable effects due to conformational isomerism, in contrast to the photoemission results. Calculations support this result and show that variations of the vertical excitation energies of different conformers are small, and cannot be resolved in the present experiment. The O NEXAFS spectra of these three aromatic compounds are very similar to other, simpler amino acids, which have been studied previously.

  17. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    Science.gov (United States)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  18. Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Benjamin; Katz, Jordan E.; Denlinger, Jonathan D.; Yin, Yadong; Falcone, Roger; Waychunas, Glenn A.

    2010-10-24

    The crystal structure of magnetite nanoparticles may be transformed to maghemite by complete oxidation, but under many relevant conditions the oxidation is partial, creating a mixed-valence material with structural and electronic properties that are poorly characterized. We used X-ray diffraction, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, and soft X-ray absorption and emission spectroscopy to characterize the products of oxidizing uncoated and oleic acid-coated magnetite nanoparticles in air. The oxidization of uncoated magnetite nanoparticles creates a material that is structurally and electronically indistinguishable from maghemite. By contrast, while oxidized oleic acid-coated nanoparticles are also structurally indistinguishable from maghemite, Fe L-edge spectroscopy revealed the presence of interior reduced iron sites even after a 2-year period. We used X-ray emission spectroscopy at the O K-edge to study the valence bands (VB) of the iron oxide nanoparticles, using resonant excitation to remove the contributions from oxygen atoms in the ligands and from low-energy excitations that obscured the VB edge. The bonding in all nanoparticles was typical of maghemite, with no detectable VB states introduced by the long-lived, reduced-iron sites in the oleic acid-coated sample. However, O K-edge absorption spectroscopy observed a 0.2 eV shift in the position of the lowest unoccupied states in the coated sample, indicating an increase in the semiconductor band gap relative to bulk stoichiometric maghemite that was also observed by optical absorption spectroscopy. The results show that the ferrous iron sites within ferric iron oxide nanoparticles coated by an organic ligand can persist under ambient conditions with no evidence of a distinct interior phase and can exert an effect on the global electronic and optical properties of the material. This phenomenon resembles the band gap enlargement caused by electron accumulation in the

  19. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates additiona

  20. Spectroscopie du Furanne et du Thiophene Par Diffusion Inelastique D'electrons

    Science.gov (United States)

    Lotfi, Said

    Nous avons etudie les molecules de furanne ( rm C_4H_4O) et de thiophene (rm C_4H_4O) au moyen de la spectroscopie de diffusion inelastique d'electrons. Pour (rm C_4H_4O), les spectres realises dans differentes conditions d'energie d'impact et d'angle de diffusion contiennent des singularites ou des families de pics correspondant a: (1) des vibrations de l'etat fondamental dans le domaine 0-0.5 eV, (2) des etats triplets ^3 B_1 et ^3 A_1 qui dominent la region 3-5.5 eV, (3) des etats de valences, entre 5 et 10 eV, dont certains son accompagnes de progressions vibrationnelles, soit ~ A _1B_2, ~ B ^1A_1 et ~ C ^1A_1, (4) toujours entre 5 et 10 eV, deux series de Ryhdberg (rm 1a_2to nda_2 et rm 1a_2to npb_2) qui convergent vers la premiere limite d'ionisation de la molecule, avec une progression vibrationnelle associee au mdoe nu_4 pour la seconde, et une troisieme serie (rm 2b_1to nsa_1 ) convergent vers la seconde limite d'ionisation accompagnee de la progression de mode nu _1. Pour rm C_4H_4S, nos spectres presentent les memes etats de vibration et les memes etats triplets que pour rm C_4H _4O. Nous avons releve egalement, dans la region de 5 a 10 eV, des etats de valence ~ A ^1A_1 (ou ~ A ^1B_2), ~ B ^1A_1 (ou ~ B ^1B _2) et ~ C ^1A_1 (ou ~ C ^1B_2). Pour la premiere fois, par la spectroscopie de diffusion inelastique d'electrons, de nombreux pics ont ete identifies et attribues, dans le cadre de ce travail. Il s'agit, notamment, des etats de vibration de l'etat electronique fondamental de ces molecules et egalement de certains etats de Rydberg dans le cas du furanne.

  1. Secondary electron emission in nanostructured porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G D; Ferron, J; Koropecki, R R, E-mail: gdruano@ceride.gov.a [INTEC-UNL-CONICET, Gueemes 3450 - 3000 Santa Fe (Argentina)

    2009-05-01

    We studied the reversible reduction induced by ion bombardment of the secondary electron emission (SEE) yield. This effect has been modelled as due to changes in dynamically sustained dipoles related with ions and electrons penetration ranges. Such charge configuration precludes the escape of electrons from the nanoporous silicon, making the SEE dependent on the flux of impinging ions. Since this dipolar momentum depends on the electric conduction of the porous medium, by controlled oxidation of the nanoporous structure we change the conduction features of the sample, studying the impact on the SEE reduction effect. Li ion bombardment was also used with the intention of changing the parameters determining the effect. FT-IR and Auger electron spectroscopy were used to characterize the oxidation degree of the samples at different depth scales

  2. Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.

    Science.gov (United States)

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2015-10-14

    Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and its significance for the understanding of coupled electronic and vibrational motions in molecules has been conjectured. Previously, we considered the entanglement developed in a spatially localized diabatic basis representation of the electronic states, considering design rules for qubits in a low-temperature chemical quantum computer. We extend this to consider the entanglement developed during high-energy processes. We also consider the entanglement developed using adiabatic electronic basis, providing a novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation. We consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, (ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction processes, and (iv) BO entanglement developed during reactive wavepacket dynamics. A two-state single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose. The entanglement developed by BO breakdown correlates simply with the diameter of the cusp introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown correction terms, with the first-derivative correction being more important than the second-derivative correction which is more important than the diagonal correction. This simplicity is in contrast to the complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties. Further, processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic approximation are found to have properties that can only be described using a non-adiabatic description. For the entanglement developed between diabatic electronic states and the nuclear motion

  3. Discretization of Electronic States in Large InAsP/InP Multilevel Quantum Dots Probed by Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Fain, B.; Robert-Philip, I.; Beveratos, A.; David, C.; Wang, Z. Z.; Sagnes, I.; Girard, J. C.

    2012-03-01

    The topography and the electronic structure of InAsP/InP quantum dots are probed by cross-sectional scanning tunneling microscopy and spectroscopy. The study of the local density of states in such large quantum dots confirms the discrete nature of the electronic levels whose wave functions are measured by differential conductivity mapping. Because of their large dimensions, the energy separation between the discrete electronic levels is low, allowing for quantization in both the lateral and growth directions as well as the observation of the harmonicity of the dot lateral potential.

  4. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    Science.gov (United States)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  5. Molecular orbital imaging of the acetone S2 excited state using time-resolved (e, 2e) electron momentum spectroscopy.

    Science.gov (United States)

    Yamazaki, Masakazu; Oishi, Keiya; Nakazawa, Hiroyuki; Zhu, Chaoyuan; Takahashi, Masahiko

    2015-03-13

    We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35  ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.

  6. Efficiency of different spectroscopies and the Electronic Nose techniques for the characterization of milk

    Directory of Open Access Journals (Sweden)

    B. M. Moioli

    2010-04-01

    Full Text Available Four rapid methods, which are complementary to the usual MIR-based analyses, were compared in order to characterize local milk products. A set of 278 fresh samples from four separately reared Jersey, Piemontese and Valdostana cattle and Saanen goat herds was analyzed by: Fluorescence Spectroscopy, Electronic Nose, UV-Vis- NIRS and FT-NIRS (total 5851 digits by record. The Gross Composition and Fatty Acid composition were determined at the same time. Chemometric analysis of the digital measurements and of the milk composition was performed by discriminant PLS regression over the four herds. The average R2 cross-validated values of the six discriminant contrasts were lower for the Gross Composition (0.47, very high for the FT-NIRS scans (0.97, for the Fatty Acids (0.96, and also high for the Fluorescence (0.90 and the UV-Vis-NIRS evaluation (0.89, while the Electronic Nose gave lower distinction between the groups (0.64. The patterns based on the distance matrix showed a remarkable complementarity between the Gross Composition evaluation and the rapid methods, which were close to the Fatty Acids evaluation. The FT-NIRS and Fluorescence analyses converged together, clustering the Jersey & Piemontese, the Valdostana and then the Goat milk. The Jersey-Piemontese cluster was also confirmed by EN. The UV-Vis-NIRS appraisal, distinguished the Piemontese milk more clearly, while it paired the Jersey and Valdostana milk. These rapid methods could be of great interest in the milk research.

  7. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    Science.gov (United States)

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

  8. Discrimination of Apple Liqueurs (Nalewka Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Magdalena Śliwińska

    2016-10-01

    Full Text Available The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin–Ciocalteu method (R2 of 0.97 in calibration and R2 of 0.93 in validation and also with the density, a marker of the alcoholic content method (R2 of 0.93 in calibration and R2 of 0.88 in validation. UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R2 of 0.99 in calibration and R2 of 0.99 in validation but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R2 of 0.96 in calibration and R2 of 0.85 in validation. In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content—the most important parameters to be measured in this type of liqueurs.

  9. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy.

    Science.gov (United States)

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-10-09

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.

  10. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    Science.gov (United States)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  11. Digital filters in radio detectors of the Pierre Auger Observatory

    Science.gov (United States)

    Szadkowski, Zbigniew; Głas, Dariusz

    2016-09-01

    Ultra-high energy cosmic rays (UHECR) are the most energetic observable particles in Universe. The main challenge in detecting such energetic particles is very small flux. Most experiments focus on detecting Extensive Air Showers (EAS), initiated by primary UHECR particle in interaction with particles of the atmosphere. One of the observation method is detecting the radio emission from the EAS. This emission was theoretically suggested in 1960's, but technological development allow successful detection only in the last several years. This detection technique is used by Auger Engineering Radio Array (AERA). Most of the emission can be observed in frequency band 30 - 80 MHz, however this range is contaminated by radio frequency interferences (RFI). These contaminations must be reduced to decrease false trigger rate. Currently, there are two kind of digital filters used in AERA. One of them is median filter, based on Fast Fourier Transform. Second one is the notch filter, which is a composition of four infinite impulse response filters. Those filters have properly work in AERA radio detectors for many years. Dynamic progress in electronics allows to use more sophisticated algorithms of RFI reduction. Planned modernization of the AERA radio detectors' electronic allows to use finte impulse response (FIR) filters, which can fast adapt to environment conditions. These filters are: Least Mean Squares (LMS) filter and filter based on linear prediction (LP). Tests of new kind of filters are promising and show that FIR filters can be used in next generation radio detectors in AERA experiment.

  12. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: analysis of basic electronic effects.

    Science.gov (United States)

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-22

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. (1)J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas (2)J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of (1)J(C,H) and (2)J(H,H), respectively, for hydrocarbons.

  13. Alpha and conversion electron spectroscopy of {sup 238,239}Pu and {sup 241}Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P., E-mail: michael.dion@pnnl.gov; Miller, Brian W.; Warren, Glen A.

    2016-09-11

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of {sup 241}Am, {sup 238}Pu and {sup 239}Pu using a dual-stage peltier-cooled 25 mm{sup 2} silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for {sup 241}Am.

  14. Applications of Optical Spectroscopy in Studies on Energy & Electron Transfer and Solvation Effects in Nanoscale and Molecular Systems

    Science.gov (United States)

    Oh, Megan H. J.

    This thesis describes three investigations, ranging in subject matters, all of which relating to systems capable of photoinduced reactions involving energy or electron transfer. The phenomenon and the effects of environment in the various systems are explored using different methodologies of optical spectroscopy. As the chapters progress, different investigations introduce and build on fundamental concepts encountered and in complexity of the methodologies used to explore the systems. The first chapter introduces the preparation of water-soluble CdSe nanocrystal clusters. The clusters, created using a protein, are 3-D close-packed self-assemblies of nanocrystals. Due to this close-packed nature, electronic interactions between the nanocrystals allow for energy migration within the cluster. The structural and optical properties of the clusters were described. Then using steady-state spectroscopy, properties of the original nanocrystals were compared to that of the cluster to determine the consequence of nanocrystal coupling interactions and their potential use toward the development of artificial light-harvesting systems. In the second chapter, CdSe nanocrystals are functionalized with a unique electro-active polymer, and the electron transfer between the nanocrystal and the electro-active polymer adsorbate is investigated. Using fluorescence decay measurements, the electron transfer reaction inherent to the system with respect to a comprehensive range of dielectric solvents was explored. The study illustrates the high complexity of seemingly typical nanocrystal-based systems and provides general awareness of what factors need to be considered when dealing with such systems. The final chapter starts with an informal review of ultrafast nonlinear spectroscopy, focusing on two methods, three-pulse photon echo peak shift (3PEPS) and two-dimensional photon echo (2DPE) electronic spectroscopy, and how they are related. A straightforward approach for extracting 3PEPS data

  15. Electron paramagnetic resonance (EPR) spectroscopy characterization of wheat grains from plants of different water stress tolerance.

    Science.gov (United States)

    Łabanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, Elżbieta; Dłubacz, Aleksandra; Hartikainen, Helina

    2012-09-01

    Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants.

  16. Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy.

    Science.gov (United States)

    Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J; Novoderezhkin, Vladimir I; Scholes, Gregory D; van Grondelle, Rienk

    2016-02-09

    Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.

  17. Photoelectron Spectroscopy of YbInCu{sub 4}: Direct Testing of Correlated Electron Models

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J.; Arko, A.J.; Sarrao, J.L.; Fisk, Z.

    1997-12-31

    The electronic properties of single crystal YbInCu{sub 4} have been investigated by means of high resolution photoelectron spectroscopy. A first order, isostructural phase transition for YbInCu{sub 4} at T{sub v}=42 K leads to changes in the Kondo temperature of more than an order of magnitude (27 K vs. 400 K). This phase transition and accompanying Kondo temperature change provide the most direct test of the single impurity model (SIM) to date. Particle hole symmetry allows the SIM to be used for Yb compounds as well as Ce heavy fermions with the great advantage that the predicted Kondo resonance is found on the occupied side of the spectral weight function for Yb materials and is thus directly observable in photoemission. The photoemission results are incongruous with the single impurity model predictions for temperature dependence, binding energy and 4f occupancy, encouraging a reevaluation of the single impurity model. The experiments were conducted using the PGM undulator and 4 meter NIM beamlines at SRC. The spectra were taken at photon energies of 40 eV and 90 eV and the combined energy resolution of the analyzer and monochromator was 45- 85 meV.

  18. Electron-energy-loss spectroscopy on group-III nitrides and transition- metal oxides

    CERN Document Server

    Niessner, W

    2000-01-01

    A main topic represent electron-energy-loss spectroscopy (EELS) studies of the group-III nitrides AlN, GaN, InN, as well as their mixing systems Al sub x Ga sub 1 sub - sub x N, In sub x Ga sub 1 sub - sub x N. In EELS measurements with excitation energies above 1 keV clear collective excitations in AlN at 21 eV and in GaN at 15 eV were observed. In the mixing system Al sub x Ga sub 1 sub - sub x M a 2-mode behaviour is observed. Up to x=0.2 a GaN-like excitation remains preserved, while from x=0.44 the eigenfrequency of a AlN-like resonance shifts continuously. With vanadium dioxide a d sup 1 transition metal oxide was studied, which passes at 68 C a semiconductor-metal transition. In the EELS valence band spectra beside band transitions from the O2p subsigma and O2p subpi band an intense signal with a loss energy of 1 eV occurs. EELS studies on W- and F-doped VO sub 2 show, that it deals with a band transition from the V3d into the pd subpi band. EELS studies were for the first time also performed at lead t...

  19. Anthocyanin composition of wild Colombian fruits and antioxidant capacity measurement by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Santacruz, Liliana; Carriazo, José G; Almanza, Ovidio; Osorio, Coralia

    2012-02-15

    The qualitative and quantitative anthocyanin composition of four wild tropical fruits from Colombia was studied. Compounds of "mora pequeña" ( Rubus megalococcus Focke.), "uva de árbol" ( Myrciaria aff. cauliflora O. Berg), coral, and motilón ( Hyeronima macrocarpa Mull. Arg.) fruits were separately extracted with methanol-acetic acid (95:5, v/v). The anthocyanin-rich extracts (AREs) were obtained by selective adsorption on Amberlite XAD-7. Each extract was analyzed by HPLC-PDA and HPLC-HRESI-MS(n) with LCMS-IT-TOF equipment in order to characterize the anthocyanin pigments and the coinjection in HPLC using standards allowed identifying the major constituents in each extract. The antioxidant activity was measured by electron paramagnetic resonance (EPR) and UV-vis spectroscopy, using ABTS and DPPH free radicals. The ARE of motilón ( H. macrocarpa Müll. Arg) exhibited the highest radical scavenging activity in comparison to the other extracts. A second-order kinetic model was followed in all of the cases. These results suggested that the studied fruits are promising not only as source of natural pigments but also as antioxidant materials for food industry.

  20. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas.

    Science.gov (United States)

    Křápek, V; Koh, A L; Břínek, L; Hrtoň, M; Tomanec, O; Kalousek, R; Maier, S A; Šikola, T

    2015-05-01

    We present a study of the optical properties of gold crescent-shaped antennas by means of electron energy loss spectroscopy. These structures exhibit particularly large field enhancement near their sharp features, support two non-degenerate dipolar (i.e., optically active) localised surface plasmon resonances, and are widely tunable by a choice of their shape and dimensions. Depending on the volume and shape, we resolved up to four plasmon resonances in metallic structures under study in the energy range of 0.8 - 2.4 eV: two dipolar and quadrupolar mode and a multimodal assembly. The boundary-element-method calculations reproduced the observed spectra and helped to identify the character of the resonances. The two lowest modes are of particular importance owing to their dipolar nature. Remarkably, they are both concentrated near the tips of the crescent, spectrally well resolved and their energies can be tuned between 0.8 - 1.5 eV and 1.2 - 2.0 eV, respectively. As the lower spectral range covers the telecommunication wavelengths 1.30 and 1.55 μm, we envisage the possible use of such nanostructures in infrared communication technology.

  1. Quasinormal mode theory and modelling of electron energy loss spectroscopy for plasmonic nanostructures

    Science.gov (United States)

    Ge, Rong-Chun; Hughes, Stephen

    2016-05-01

    Understanding light-matter interactions using localized surface plasmons (LSPs) is of fundamental interest in classical and quantum plasmonics and has a wide range of applications. In order to understand the spatial properties of LSPs, electron energy loss spectroscopy (EELS) is a common and powerful method of spatially resolving the extreme localized fields that can be obtained with metal resonators. However, modelling EELS for general shaped resonators presents a major challenge in computational electrodynamics, requiring the full photon Green function as a function of two space points and frequency. Here we present an intuitive and computationally simple method for computing EELS maps of plasmonic resonators using a quasinormal mode (QNM) expansion technique. By separating the contribution of the QNM and the bulk material, we give closed-form analytical formulas for the plasmonic QNM contribution to the EELS maps. We exemplify our technique for a split ring resonator, a gold nanorod, and a nanorod dimer structure. The method is accurate, intuitive, and gives orders of magnitude improvements over direct dipole simulations that numerically solve the full 3D Maxwell equations. We also show how the same QNM Green function can be used to obtain the Purcell factor (and projected local density of optical states) from quantum dipole emitters or two level atoms, and we demonstrate how the spectral features differ in general to the EELS spectrum.

  2. Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy

    Science.gov (United States)

    Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J.; Novoderezhkin, Vladimir I.; Scholes, Gregory D.; van Grondelle, Rienk

    2016-02-01

    Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.

  3. Biomedical and agricultural applications of energy dispersive X-ray spectroscopy in electron microscopy.

    Science.gov (United States)

    Wyroba, Elżbieta; Suski, Szymon; Miller, Karolina; Bartosiewicz, Rafał

    2015-09-01

    Energy dispersive X-ray spectroscopy (EDS) in electron microscopy has been widely used in many research areas since it provides precise information on the chemical composition of subcellular structures that may be correlated with their high resolution images. In EDS the characteristic X-rays typical of each element are analyzed and the new detectors - an example of which we describe - allow for setting precisely the area of measurements and acquiring signals as a point analysis, as a linescan or in the image format of the desired area. Mapping of the elements requires stringent methods of sample preparation to prevent redistribution/loss of the elements as well as elimination of the risk of overlapping spectra. Both qualitative and quantitative analyses may be performed at a low probe current suitable for thin biological samples. Descriptions of preparation techniques, drawbacks and precautions necessary to obtain reliable results are provided, including data on standards, effects of specimen roughness and quantification. Data on EPMA application in different fields of biomedical and agricultural studies are reviewed. In this review we refer to recent EDS/EPMA applications in medical diagnostics, studies on air pollution and agrochemicals as well as on plant models used to monitor the environment.

  4. Chasing Nonexistent Compounds with Lasers: Electronic Spectroscopy of Main Group Transient Molecules, Free Radicals, and Ions

    Science.gov (United States)

    Clouthier, Dennis J.

    2011-06-01

    One of the important contributions of the science of high resolution molecular spectroscopy has been the identification and characterization of new molecules in the gas phase, whether they exist in the laboratory, in extreme terrestrial environments, or in outer space. Despite the innovative efforts of many dedicated spectroscopists, one can still easily visualize a large number of novel small molecules that remain to be discovered and investigated. In this talk I will review the efforts of our group in recent years to study the electronic spectra of some new, and some not so new but still challenging species, concentrating primarily on those that are made up of main group elements. The target molecules have been produced in a pulsed electric discharge at the exit of a supersonic jet, often using novel precursors which we have had to synthesize in the laboratory. Conventional laser-induced fluorescence as well as wavelength resolved emission, stimulated emission pumping, fluorescence depletion and LIF sync-scan techniques have been used to detect the species of interest. Examples of diatomic and polyatomic transient molecules, free radicals, and ions that we have recently explored will be discussed.

  5. Two-Dimensional Fourier Transform Electronic Spectroscopy of Peridinin and Peridinin Analogs

    Science.gov (United States)

    Khosravi, Soroush; Bishop, Michael; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll- a protein (PCP) is a light harvesting complex in dinoflagellates that exhibits a carotenoid-to-chlorophyll (Chl) a excitation energy transfer (EET) efficiency of 85-95%. Unlike most light harvesting complexes, where the number of carotenoids is less than Chl, each subunit of PCP contains eight tightly-packed peridinins surrounding two Chl a molecules. The unusual solvent polarity dependence of the lowest excited S1 state of peridinin suggests the presence of an intramolecular charge-transfer (ICT) state. The nature of the ICT state, its coupling to the S1 of peridinin, and whether it enables the high EET efficiency is still unclear. Two-dimensional electronic Fourier transform spectroscopy (2DES) is a powerful method capable of examining these issues. The present work examines the ICT state of peridinin and peridinin analogs that have diminished ICT character. 2DES data adding new insight into the spectral signatures and nature of the ICT state in peridinin will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  6. From Auger to AugerPrime: Understanding Ultrahigh-Energy Cosmic Rays

    Science.gov (United States)

    Montanet, F.; Pierre Auger Collaboration

    2016-12-01

    Ultrahigh-energy cosmic rays (UHECRs), whose origin is still mysterious, provide a unique probe of the most extreme environments in the universe, of the intergalactic space and of particle physics beyond the reach of terrestrial accelerators. The Pierre Auger Observatory started operating more than a decade ago. Outperforming preceding experiments both in size and in precision, it has boosted forward the field of UHECRs as witnessed by a wealth of results. These include the study of the energy spectrum beyond 1 EeV with its spectral suppression around 40 EeV, of the large-scale anisotropy, of the mass composition, as well as stringent limits on photon and neutrino fluxes. But any harvest of new results also calls for new questions: what is the true nature of the spectral suppression: a propagation effect (so-called Greisen, Zatsepin and Kuz'min or GZK cutoff) or cosmic accelerators running out of steam? What is the composition of UHECRs at the highest energies? In order to answer these questions, the Auger Collaboration is undertaking a major upgrade program of its detectors, the AugerPrime project. The science case and motivations, the technical strategy and the scientific prospects are presented.

  7. Signatures of distinct impurity configurations in atomic-resolution valence electron-energy-loss spectroscopy: Application to graphene

    Science.gov (United States)

    Kapetanakis, Myron D.; Oxley, Mark P.; Zhou, Wu; Pennycook, Stephen J.; Idrobo, Juan-Carlos; Pantelides, Sokrates T.

    2016-10-01

    The detection and identification of impurities and other point defects in materials is a challenging task. Signatures for point defects are typically obtained using spectroscopies without spatial resolution. Here we demonstrate the power of valence electron-energy-loss spectroscopy (VEELS) in an aberration-corrected scanning transmission-electron microscope (STEM) to provide energy-resolved and atomically resolved maps of electronic excitations of individual impurities which, combined with theoretical simulations, yield unique signatures of distinct bonding configurations of impurities. We report VEELS maps for isolated Si impurities in graphene, which are known to exist in two distinct configurations. We also report simulations of the maps, based on density functional theory and dynamical scattering theory, which agree with and provide direct interpretation of observed features. We show that theoretical VEELS maps exhibit distinct and unambiguous signatures for the threefold- and fourfold-coordinated configurations of Si impurities in different energy-loss windows, corresponding to impurity-induced bound states, resonances, and antiresonances. With the advent of new monochromators and detectors with high energy resolution and low signal-to-noise ratio, the present work ushers an atomically resolved STEM-based spectroscopy of individual impurities as an alternative to conventional spectroscopies for probing impurities and defects.

  8. Latest results from the Pierre Auger Observatory

    Science.gov (United States)

    Dembinski, Hans P.; Pierre Auger Collaboration

    2012-02-01

    The Pierre Auger Observatory, located in the Province of Mendoza, Argentina, is the World's largest detector for cosmic rays at ultra-high energies. In its seven years of operation it has collected an exposure of more than 20000 km2 sr yr, larger than all previous experiments combined. Its original design, optimized for the energy range 1018 eV to 1020 eV, is currently enhanced to cover energies down to almost 1017 eV. We give an overview of the latest results with a focus on the prospect to study nuclear interactions with cosmic rays and conclude with a brief outlook on developments and extensions of the observatory. Full author list

  9. The Pierre Auger Observatory: Status and results

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Hans [III. Physikalisches Institut A, RWTH Aachen (Germany)

    2008-07-01

    The Pierre Auger Observatory in Malarguee, Argentina, is a hybrid detector for ultra-high energy cosmic rays. It consists of a 3000 km{sup 2} surface array and 24 fluorescence detector telescopes. The observatory will be fully completed in early 2008, but is already taking data since 2004 and has already accumulated five times of the statistics of the largest former experiments (AGASA, HiRes). The talk gives an update on the status of the experiment and its enhancements. The latest physical results concerning the energy spectrum, anisotropy and cosmic ray composition will be presented. The talk closes with an outlook on the future physics potential of currently developed enhanced detection techniques.

  10. Highlights from the Pierre Auger Observatory

    CERN Document Server

    Kampert, Karl-Heinz

    2012-01-01

    This paper summarizes some highlights from the Pierre Auger Observatory that were presented at the ICRC 2011 in Beijing. The cumulative exposure has grown by more than 60% since the previous ICRC to above 21000 km^2 sr yr. Besides giving important updates on the energy spectrum, mass composition, arrival directions, and photon- and neutrino upper limits, we present first measurements of the energy spectrum down to 3 x 10^{17} eV, first distributions of the shower maximum, X_max, together with new surface detector related observables sensitive to X_max, and we present first measurements of the p-air cross section at ~ 10^{18} eV. Serendipity observations such as of atmospheric phenomena showing time evolutions of elves extend the breadth of the astrophysics research program.

  11. Highlights from the Pierre Auger Observatory

    CERN Document Server

    Aab, A; Aglietta, M; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muniz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antivcic, T; Aramo, C; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Barber, K B; Bardenet, R; Baeuml, J; Baus, C; Beatty, J J; Becker, K H; Belletoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blumer, H; Bohacova, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Burton, R E; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Cheng, S H; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Collica, L; Coluccia, M R; Conceicao, R; Contreras, F; Cook, H; Cooper, M J; Coutu, S; Covault, C E; Criss, A; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Diaz, J C; Castro, M L Diaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipcic, A; Foerster, N; Fox, B D; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Frohlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; Garcia, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glaser, C; Glass, H; Albarracin, F Gomez; Berisso, M Gomez; Vitale, P F Gomez; Goncalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Homola, P; Hoerandel, J R; Horvath, P; Hrabovsky, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jansen, S; Jarne, C; Josebachuili, M; Kadija, K; Kambeitz, O; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kegl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; d, J Knapp; Krause, R; Krohm, N; Kroemer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; La Rosa, G; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leao, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopez, R; Aguera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Malacari, M; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martinez; Martraire, D; Meza, J J Masias; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Messina, S; Meyhandan, R; Micanovic, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Mostafa, M; Moura, C A; Muller, M A; Muller, G; Munchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novzka, L; Oehlschlager, J; Olinto, A; Oliveira, M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parra, A; Pastor, S; Paul, T; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Pontz, M; Porcelli, A; Preda, T; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Cabo, I Rodriguez; Fernandez, G Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Frias, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouille-d'Orfeuil, B; Roulet, E; Rovero, A C; Ruhle, C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sanchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovanek, P; Schroeder, F G; Schulz, A; Schulz, J; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Smialkowski, A; Smida, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Straub, M; Stutz, A; Suarez, F; Suomijarvi, T; Supanitsky, A D; Susa, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Tacscuau, O; Tcaciuc, R; Thao, N T; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tome, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Tridapalli, D B; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Galicia, J F Valdes; Valino, I; Valore, L; van Aar, G; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cardenas, B Vargas; Varner, G; Vazquez, J R; Vazquez, R A; Veberic, D; Verzi, V; Vicha, J; Videla, M; Villasenor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczynska, B; Wilczynski, H; Will, M; Williams, C; Winchen, T; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2013-01-01

    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our X$_{max}$ data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.

  12. Auger relative sensitivivity factors for CdTe oxide

    OpenAIRE

    P. Bartolo-Pérez; J. L. Peña; M.H. Farías

    1999-01-01

    The Auger lineshape of Te MNN in measurements of Auger spectra of CdTe oxide films with various degrees of oxidation was analyzed. By using standards from stoichiometric compounds, Auger relative sensitivity factors (RSF´s) of Cd, Te and O for CdTe oxide thin films were obtained. The value of the RFS of oxygen is about constant, 0.27-0.28, for the standard compound, CdO, TeO2 and CdTeO3 (considering the RSF of Cd as 1). However, the obtained RSF of Te changes from 0.69 in CdTe up to 0.87 in C...

  13. Current Status of the Pierre Auger Project

    Science.gov (United States)

    Etchegoyen, A.

    The Pierre Auger Project aims at building two Observatories in order to study ultra high energy cosmic rays, situated in both northern and southern hemispheres. In 2000 started the construction of the austral observatory. Prior to this, in 1995, the international collaboration was formed encompassing 200 scientists and technicians from institutions in 16 countries. The Auger Project is a basic science enterprise which studies the highest energies known in nature ( 1020 eV) , which are cosmic rays coming from the outer space arriving to the earth surface with at a very reduced flow. This is the reason for constructing a giant observatory spanning an area of 3000 km2 in the department of Malargüe and San Rafael, in the Province of Mendoza. Other distinctive feature, besides the exceptional size of the Observatory, is its hybrid nature: it is constituted by 24 fluorescence detector telescopes .and 1600 surface detectors. As such, it will provide a large number of events with less systematic detection uncertainties. The construction of the Observatory is quite advanced and the buildings at the Central Station in Malargüe city are already operational. So are the telescope buildings at Cerros Los Leones and Coihueco, two telescopes, 32 surface detectors, the telecommunication and data adquisión systems. From the scientific point of view the most important issue was the first detection of an hybrid event (a cosmic ray detected by both telescope and the surface detectors), on January 2002. It confirmed the equipment operates with the design parameters. Twenty hybrid events/month were detected with energies typically below 1019 eV.

  14. Free-Electron Laser Wavelength-Selective Materials Alteration and Photoexcitation Spectroscopy

    Science.gov (United States)

    Tolk, Norman.

    1996-10-01

    The Vanderbilt Free-Electron Laser's (FEL) tunability (2-10um), high intensity (15 MW) and short pulse structure (1 ps) make it ideal for studying (a) the electronic and vibrational structure of small and wide band gap semiconductors, and (b) non-thermal wavelength-selective materials alteration. Spectroscopic studies footnote Work performed with R.G. Albridge, A.V. Barnes, J. Gilligan, G. Margaritondo, and J. T. McKinley of semiconductor electronic and nonlinear optical properties will be discussed. Recent two-photon absorption measurements in Ge were the first verification of a two-decades old prediction by Bassani and Hassan that the indirect two-photon absorption in Ge would be an LO-phonon assisted process. They also provided valuable insight into the effect of inversion symmetry on two-photon absorption. The strength of germanium's indirect gap two-photon absorption was found to be 1000 times weaker than the direct absorption. The FEL has greatly facilitated internal photoemission (IPE) heterojunction band discontinuity measurements. This technique is a photocurrent excitation spectroscopy that provides a direct measurement of the discontinuity without resorting to complex modeling. A photocurrent threshold is observed as the photon energy exceeds the discontinuity energy. IPE has long been used in the field of Schottky barriers but has largely been ignored in the case of semiconductor heterojunctions because of insufficiently intense light sources. We will discuss IPE measurements of InP/GaInAs and a-Ge/GaAs. Our low-temperature IPE discontinuity measurements reach accuracies better than #5 meV. Another important area of materials research at the FEL concerns identification of wavelength-selective mechanisms for materials alteration. Vibrational modes associated with defects and impurities provide a means of introducing a non thermal distribution of energy into a solid. We have used the FEL to demonstrate strongly wavelength-selective ablation near the C

  15. Electron spectroscopy in the fundamental process of electron-nucleus bremsstrahlung; Elektronenspektroskopie im Fundamentalprozess der Elektron-Kern-Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, Pierre-Michel

    2013-07-15

    Within the scope of this thesis the fundamental process of electron-nucleus bremsstrahlung was studied in inverse kinematics at the Experimental Storage Ring ESR at GSI. For the system U{sup 88+} + N{sub 2} at 90 MeV/u it was shown, that by using inverse kinematics coincidence measurements between the scattered electron and the emitted photon can be performed for the case, in which the incoming electron transfers almost all of its kinetic energy onto the emitted photon. The sensitivity to the fundamental process could be achieved by measuring triple differential cross sections as a function of the emission angle of the photon and the scattered electron as well as the energy of the scattered electron. The optics of the magnetic electron spectrometer used were thoroughly revised and optimized to the experimental requirements. Analyzing different coincidences in this collision system, it was possible to determine the contributions to the electron distribution arising from radiative electron capture to the projectile continuum, nonradiative electron capture to the projectile continuum, and electron loss to the projectile continuum. The experimental results of each of these processes were compared to theoretical calculations. The electron spectra for the radiative and the nonradiative electron capture to continuum clearly reproduce the opposite asymmetry predicted by theory. Furthermore electron spectra for collisions of U{sup 28+} with different gases were measured.

  16. Molecular Choreography of Isomerization and Electron Transfer Using One and Two Dimensional Femtosecond Stimulated Raman Spectroscopy

    Science.gov (United States)

    Hoffman, David Paul

    Chemical reactions are defined by the change in the relative positions and bonding of nuclei in molecules. I have used femtosecond stimulated Raman spectroscopy (FSRS) to probe these transformations with structural specificity and high time precision revealing the mechanisms of two important classes of reactions; isomerization about an N=N bond and interfacial/intermolecular electron transfer. Isomerization about a double bond is one of the simplest, yet most important, photochemical reactions. In contrast to carbon double bonds, nitrogen double bonds can react via two possible mechanisms; rotation or inversion. To determine which pathway is predominant, I studied an azobenzene derivative using both FSRS and impulsive stimulated Raman spectroscopy (ISRS). The FSRS experiments demonstrated that the photochemical reaction occurs concomitantly with the 700 fs non-radiative decay of the excited state; because no major change in N=N stretching frequency was measured, I surmised that the reaction proceeds through an inversion pathway. My subsequent ISRS experiments confirmed this hypothesis; I observed a highly displaced, low frequency, inversion-like mode, indicating that initial movement out of the Franck-Condon region proceeds along an inversion coordinate. To probe which nuclear motions facilitate electron transfer and charge recombination, I used FSRS and the newly developed 2D-FSRS techniques to study two model systems, triphenylamine dyes bound to TiO2 nanoparticles and a molecular charge transfer (CT) dimer. In the dye-nanoparticle system I discovered that charge separation persists much longer (> 100 ps) than previously thought by using the juxtaposition of the FSRS and transient absorption data to separate the dynamics of the dye from that of the injected electron. Additionally, I discovered that dye constructs with an added vinyl group were susceptible to quenching via isomerization. The CT dimer offered an opportunity to study a system in which charge

  17. Rapid Electron Transport Phenomenon in the Bis(terpyridine) Metal Complex Wire: Marcus Theory and Electrochemical Impedance Spectroscopy Study.

    Science.gov (United States)

    Maeda, Hiroaki; Sakamoto, Ryota; Nishihara, Hiroshi

    2015-10-01

    The authors reported previously that bis(terpyiridne)iron(II) complex oligomer wires possess outstanding long-range intrawire electron transport ability. Here, molecular arrays of gold-electrode-bis(terpyridine)iron(II)-ferrocene are constructed by stepwise coordination as simple models of the oligomer wire system. The fast electron transfer between the terminal ferrocene and the gold electrode through the bis(terpyiridne)iron(II) complex unit is studied by potential step chronoamperometry (PSCA) and electrochemical impedance spectroscopy (EIS). Tafel plots derived from PSCA are analyzed based on Marcus theory. The plots reveal greater first-order electron transfer rate constant, weaker electronic coupling between the terminal ferrocene and the gold electrode, and smaller reorganization energy than shown by a conventional ferrocenylalkanethiol self-assembled monolayer. The electron transfer rate constants estimated by EIS agree with the PSCA results.

  18. Nuclear dynamical correlation effects in X-ray spectroscopy from a time-domain perspective

    CERN Document Server

    Karsten, Sven; Aziz, Saadullah G; Bokarev, Sergey I; Kühn, Oliver

    2016-01-01

    To date X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we focus on nuclear dynamical effects in X-ray spectra and develop a rigorous time-correlation method employing ground state molecular dynamics simulations. The importance of nuclear correlation phenomena is demonstrated by comparison against the results from the conventional sampling approach for gas phase water. In contrast to the first-order absorption, second-order resonant inelastic scattering spectra exhibit pronounced fingerprints of nuclear motions. The developed methodology does not depend on the accompanying electronic structure method in principle as well as on the spectral range and, thus, can be applied to, e.g., UV and X-ray photo-electron and Auger spectroscopies.

  19. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    Science.gov (United States)

    Weissmann, Norbert; Kuzkaya, Nermin; Fuchs, Beate; Tiyerili, Vedat; Schäfer, Rolf U; Schütte, Hartwig; Ghofrani, Hossein A; Schermuly, Ralph T; Schudt, Christian; Sydykov, Akylbek; Egemnazarow, Bakytbek; Seeger, Werner; Grimminger, Friedrich

    2005-01-01

    Background The sources and measurement of reactive oxygen species (ROS) in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR) with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %), the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD) to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA) into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to demonstrate that 1) PMA

  20. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Schudt Christian

    2005-07-01

    Full Text Available Abstract Background The sources and measurement of reactive oxygen species (ROS in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %, the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to

  1. Application of Electron Energy Loss Spectroscopy and Energy Filtering Transmission Electron Microscopy for Microchemical Studies in 2.25Cr-1Mo Steel

    Institute of Scientific and Technical Information of China (English)

    P. Parameswaran; Ilse Papst; F. Hofer; W. Grogger; V.S. Raghunathan

    2005-01-01

    Electron enregy loss spectroscopy (EELS) and energy filtering transmission electron microscopy (EFTEM) investigation on 2.25Cr-1Mo steel was carried out to understand the nature of evolution of secondary carbides. The filtered images obtained from two different ageing treatments indicate that the steel evolves to a more stable carbide namely M23C6 in comparison to M2C. Microchemical information was generated from EELS spectra. Suitable choice for estimating the microchemical state was discussed. To evaluate the behaviour of ageing an elemental ratio of Fe to Cr is employed.

  2. Microstructure of highly strained BiFeO{sub 3} thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Heon Kim, Young, E-mail: young.h.kim@kriss.re.kr [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Bhatnagar, Akash; Pippel, Eckhard; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Alexe, Marin [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); University of Warwick, Coventry CV4 7AL, West Midlands (United Kingdom)

    2014-01-28

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO{sub 3}) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  3. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    Science.gov (United States)

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-02-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.

  4. Electronic structure of RScO{sub 3} from x-ray spectroscopies and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Derks, Christine; Raekers, Michael; Neumann, Manfred [Department of Physics, University of Osnabrueck, D-49069 Osnabrueck (Germany); Kuepper, Karsten [Departement of Solidstate Physics, Univeristy of Ulm, D-89069 Ulm (Germany); Postnikov, Andree [Laboratoire de Physique des Milieux Denses, Universite Paul Verlaine, Metz (France); Uecker, Reinhard [Institute for Crystal Growth, D-12489 Berlin (Germany)

    2010-07-01

    Perovskites of the type RScO{sub 3}, where R represents a trivalent rare-earth metal, exhibit an enormous variety of physical properties and can be used for different applications. They are high k materials and belong to the best available thin film substrates for the epitaxial growth of high quality thin films. This allows a so called strain tailoring of ferroelectric, ferromagnetic, or multiferroic perovskite thin films by choosing different RScO{sub 3}. The electronic structures of a series of RScO{sub 3} single crystals are investigated by means of x-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES), X-ray absorption spectroscopy (XAS) and band structure calculations. By combining XES and XAS measurements together with theoretical calculations the band gaps of the compounds can be accurately determined. The presented results will broaden the complete experimental and theoretical picture of the valence bands of RScO{sub 3} series.

  5. The surface detector system of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Allekotte, I. [Instituto Balseiro and Centro Atomico Bariloche (U.N. Cuyo and CNEA, CONICET), 8400 Bariloche (Argentina)], E-mail: ingo@cab.cnea.gov.ar; Barbosa, A.F. [CBPF, Rua Xavier Sigaud 150, Rio de Janeiro (Brazil); Bauleo, P. [Colorado State University, Fort Collins, CO 80523 (United States); Bonifazi, C. [CBPF, Rua Xavier Sigaud 150, Rio de Janeiro (Brazil); Civit, B. [Universidad Tecnologica Nacional Regional Mendoza, Mendoza (Argentina); Escobar, C.O. [Departamento de Raios Cosmicos, Instituto de Fisica, Universidade Estadual de Campinas, CP 6165, 13084-971, Campinas SP (Brazil); Garcia, B. [Universidad Tecnologica Nacional Regional Mendoza, Mendoza (Argentina); Guedes, G. [Universidade Estadual de Feira de Santana (UEFS), Av. Universitaria Km 03 da BR 116, Campus Universitario, 44031-460 Feira de Santana BA (Brazil); Gomez Berisso, M. [Instituto Balseiro and Centro Atomico Bariloche (U.N. Cuyo and CNEA, CONICET), 8400 Bariloche (Argentina); Harton, J.L. [Colorado State University, Fort Collins, CO 80523 (United States); Healy, M. [Department of Physics and Astronomy, University of California, Los Angeles (UCLA), Los Angeles, CA 90095 (United States); Kaducak, M.; Mantsch, P.; Mazur, P.O.; Newman-Holmes, C. [Fermi National Accelerator Laboratory Batavia, IL (United States); Pepe, I. [Universidade Federal da Bahia, Campus de Odina, 40210-340 Salvador BA (Brazil); Rodriguez-Cabo, I. [Dpto. Fisica de Particulas, Universidad de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Salazar, H. [Benemerita Universidad Autonoma de Puebla (BUAP), Ap. Postal J-48, 72500 Puebla, Puebla (Mexico); Smetniansky-De Grande, N. [Laboratorio Tandar, Comision Nacional de Energia Atomica and CONICET, Av. Gral. Paz 1499 (1650) San Martin, Buenos Aires (Argentina); Warner, D. [Colorado State University, Fort Collins, CO 80523 (United States)

    2008-03-01

    The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10{sup 19}eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000km{sup 2}, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory.

  6. The Surface Detector System of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Allekotte, I.; Barbosa, A.F.; Bauleo, P.; Bonifazi, C.; Civit, B.; Escobar, C.O.; Garcia, B.; Guedes, G.; Gomez Berisso, M.; Harton, J.L.; Healy, M.; /Cuyo U. /Buenos Aires, CONICET /Natl. Tech. U., San Rafael /Campinas State U. /UEFS, Feira de Santana /Bahia U. /BUAP, Puebla /Santiago de Compostela U. /Fermilab /UCLA /Colorado State U.

    2007-11-01

    The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10{sup 19} eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000 km{sup 2}, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory.

  7. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  8. Study of the Dielectric Function of Graphene from Spectroscopic Ellipsometry and Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Nelson, Florence

    For more than 60 years, semiconductor research has been advancing up the periodic table. The first transistor was made from germanium. This later gave way to silicon-based devices due to the latter's ability to form an excellent interface with thermally-grown oxide. Now for the last ˜8 years, the focus has moved up one more row to carbon for post-CMOS devices in order to comply with the scaling limitations of Moore's law. However, for each of these, the measurements of film properties and dimensions have always been required for technological applications. These measurement methods often incorporate the use of light or electrons in order to take advantage of a wavelength that is on the order of, or smaller than, the feature sizes of interest. This thesis compares the dielectric function of graphene measured by an optical method to that obtained from an electron energy loss method in order to observe the effect of contamination and substrate on the optical properties of graphene exposed to the environment. Whether viewed in terms of how light affects a material (dielectric function) or how a material affects light (refractive index), the optical response is a quantity that may be used to obtain information about a film's thickness, energy structure, and the types of excitations that are responsible for energy loss. The three main experimental methods used in this thesis work are spectroscopic ellipsometry (SE), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). SE is commonly used in clean-room environments for optical measurement over the energy range of ˜0-5 eV. This method is used to study graphene's dielectric function from the ultraviolet (UV) through infrared (IR) regions through use of an oscillator dispersion model. A nearly constant absorbance over the IR and into the visible region is observed due to vertical transitions between graphene's linearly dispersed pi-bands at the Dirac points. An exciton

  9. The Pierre Auger Observatory: Mass composition results and future plans

    Science.gov (United States)

    Hervé, A. E.; Pierre Auger Collaboration

    2016-07-01

    The Pierre Auger Observatory has been designed to study ultra-high energy cosmic rays. The study of their mass composition can help constrain models concerning their nature and origin. We discuss the different methods of deriving the mass composition of the primary cosmic rays. The methods use different parameters that describe various characteristics of the shower development. We will also discuss the prospects expected from an upgrade of the Pierre Auger Observatory.

  10. Reduced Auger Recombination in Mid-Infrared Semiconductor Lasers (POSTPRINT)

    Science.gov (United States)

    2013-02-01

    which can reduce the Auger coefficient by an order of magnitude when compared to com- mensurate type-I quantum wells.7,8 As these layers are made...avoid this empirical relation, rather calculating the Auger processes using quantum many-body theory . This approach is used to determine a carrier...approximation with fully resolved k-, spin-, and subband-summations as well as z- integrals . This tech- nique is more thoroughly discussed in Ref. 16

  11. ABOUT A MODELING METHOD OF AN AUGER GEAR IN SOLIDWORKS

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2016-12-01

    Full Text Available In this paperwork is presented a method used in SOLIDWORKS for modeling special items as auger gear and the steps to be taken in order to obtain a better design. There are presented the features that are used for modeling, and then the steps that must be taken in order to obtain the 3D model of a coil and the whole auger gear and also the unfolded coil for subsequent sheet metal cutting.

  12. Measuring spin diffusion of electrons in bulk n-GaAs using circularly dichromatic absorption difference spectroscopy of spin gratings

    Science.gov (United States)

    Yu, Hua-Liang; Zhang, Xiu-Min; Wang, Peng-Fei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Lai, Tianshu

    2009-05-01

    Circular dichromatic absorption difference spectroscopy is developed to measure the spin diffusion dynamics of electrons in bulk n-GaAs. This spectroscopy has higher detection sensitivity over homodyne detection of spin-grating-diffracted signal. A model to describe circular dichromatic absorption difference signal is derived and used to fit experimental signal to retrieve decaying rate of spin gratings. A spin diffusion constant of Ds=201±25 cm2/s for bulk n-GaAs has been measured at room temperature using this technique and is close to electron diffusion constant (Dc), which is much different from the case in GaAs quantum wells where Ds is markedly less than Dc.

  13. Materials characterization by photoelectron spectroscopy; Caracterizacao de materiais por espectroscopia de fotoeletrons

    Energy Technology Data Exchange (ETDEWEB)

    Nascente, P.A.P., E-mail: nascente@ufscar.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    Low energy electrons are suitable for investigating surfaces due to their low mean free path in solids, which correspond to a few atomic layers (0.5 to 3.0 nm), and could be used in one of the following ways: incident electrons cause the emission of backscattered and secondary electrons and the electrons are excited by irradiated photons. The first case includes the emission of Auger electrons, while photoemission corresponds to the second case. X-ray photoelectron spectroscopy (XPS) is one of the most used surface analysis techniques since it is able to identify not only the surface constituents but also their chemical states. XPS can be employed in several areas of science and engineering, but in this report it will be presented only few examples of its use in the characterization of metallic materials, with an emphasis on thin films of noble and transition metals. (author)

  14. Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan;

    2011-01-01

    and crystallization. The samples of different size Ge nanocrystals embedded in the SiO2 matrix were characterized by Raman spectroscopy and photoluminescence. Interplayed size and strain effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect with proper excitation laser...

  15. Electronic and vibrational spectroscopy of the cytochrome c:cytochrome c oxidase complexes from bovine and Paracoccus denitrificans.

    OpenAIRE

    Lynch, S. R.; Copeland, R. A.

    1992-01-01

    The 1:1 complex between horse heart cytochrome c and bovine cytochrome c oxidase, and between yeast cytochrome c and Paracoccus denitrificans cytochrome c oxidase have been studied by a combination of second derivative absorption, circular dichroism (CD), and resonance Raman spectroscopy. The second derivative absorption and CD spectra reveal changes in the electronic transitions of cytochrome a upon complex formation. These results could reflect changes in ground state heme structure or chan...

  16. Trapping photon-dressed Dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy

    Science.gov (United States)

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2012-05-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated.

  17. Differential oscillator strengths for chlorine dioxide, OClO, produced by electron impact energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J.A.; Mason, N.J. [University Coll., London (United Kingdom). Dept. of Physics and Astronomy; Marston, G.; Wayne, R.P. [Oxford Univ. (United Kingdom). Physical Chemistry Lab.

    1995-09-28

    Electron impact spectroscopy has been used for the first time to obtain energy-loss spectra for chlorine dioxide, OC10, over an energy range 2.5 {yields} 12.5 eV. The differential oscillator strength (DOS) obtained from the energy-loss spectrum is compared with the DOS obtained from optical measurements. Oscillator strengths for several transitions have been calculated from a summation of the DOS and comparisons are also made with previous optical data. (author).

  18. Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of $\\overline{p}He^{+}$

    CERN Document Server

    Hori, M; Eades, John; Gomikawa, K; Hayano, R S; Ono, N; Pirkl, Werner; Widmann, E; Torii, H A; Juhász, B; Barna, D; Horváth, D

    2006-01-01

    A femtosecond optical frequency comb and continuous-wave pulse- amplified laser were used to measure 12 transition frequencies of antiprotonic helium to fractional precisions of (9-16) 10/sup -9lifetimes hitherto unaccessible to our precision laser spectroscopy method. Comparisons with three-body QED calculations yielded an antiproton-to-electron mass ratio of M/sub pmacron//m/sub e/=1836.152 674(5).

  19. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    Science.gov (United States)

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  20. Evidences from electron momentum spectroscopy for ultra-fast charge transfers and structural reorganizations in a floppy molecule: Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, Michael S; Hajgato, Balazs; Morini, Filippo, E-mail: michael.deleuze@uhasselt.b [Theoretical Chemistry, Department SBG, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium)

    2009-11-01

    Calculations of electron momentum distributions employing advanced Dyson orbital theories and statistical thermodynamics beyond the RRHO approximation fail to quantitatively reproduce the outermost momentum profile inferred from experiments on ethanol employing high resolution Electron Momentum Spectroscopy [1]. Study of the influence of nuclear dynamics in the initial ground state and final ionized state indicates that this discrepancy between theory and experiment reflects a charge transfer occurring during an ultra-fast dissociation of the ethanol radical cation into a methyl radical and H{sub 2}C=O-H{sup +}.

  1. Spectroscopy of RFe3(BO3)4 multiferroics: phase transitions, spin-phonon interaction, coupled electron-phonon modes

    Science.gov (United States)

    Popova, M. N.

    2016-12-01

    Review of the work performed in the author's laboratory is given, on high-resolution Fourier spectroscopy studies of multiferroics from the family of rare-earth iron borates with the structure of the natural mineral huntite. For these multiferroics, we reveal spectral signatures of interactions between electronic, spin, and lattice degrees of freedom. We have observed and investigated coupled electron-phonon modes in PrFe3(BO3)4 and TbFe3(BO3)4. The structure of the magnetically ordered phase of EuFe3(BO3)4 is determined.

  2. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Morini, Filippo; Deleuze, Michael S., E-mail: michael.deleuze@uhasselt.be [Center of Molecular and Materials Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Watanabe, Noboru; Takahashi, Masahiko [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A{sub 1} symmetry on the 9a{sub 1} momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  3. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-).

    Science.gov (United States)

    Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun

    2016-02-28

    The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  4. Firmware, detector performance and first data of the AMIGA muon counters for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Uwe

    2013-10-30

    With the Pierre Auger Observatory, being the largest air shower detector setup in the world, ultra-high-energy cosmic rays are studied with full trigger efficiency above E=3 x 10{sup 18} eV. In order to achieve a more detailed understanding of cosmic ray physics at lower energies down to E∼10{sup 17} eV, e.g. the transition from galactic to extragalactic sources and a possible change in the composition of the primary cosmic rays, the observatory is currently upgraded by the AMIGA enhancement (Auger Muons and Infill for the Ground Array). The muon counters of AMIGA, buried underground, will allow for dedicated measurements of the number of muons in air showers, thus increasing the precision in determining the type of the primary particle. Until middle of 2012, eight prototype muon counters of the AMIGA enhancement were installed at the experimental site of the Pierre Auger Observatory at Malargue, Argentina, forming one detector hexagon referred to as the pre-unitary cell (PUC). Each muon counter comprises a highly modular electronics readout system. Following the production of these systems, tests of single components as well as of the full readout electronics were carried out. In the framework of this thesis dedicated firmware, allowing for the commissioning and first data taking with the PUC, has been developed and tested. Among other features, this firmware includes a self-trigger of the muon counters as well as algorithms for the synchronization of the muon detector (MD) with the existing surface detector (SD) array. The functionality and performance of the electronics readout system with regard to this firmware has been investigated. In addition, first analyses of combined MD and SD data have been performed.

  5. Anisotropy Studies with the Pierre Auger Observatory

    CERN Document Server

    Santos, E M

    2009-01-01

    An anisotropy signal for the arrival directions of ultra-high energy cosmic rays (UHECR) of more than 99% confidence level was established using data collected by the Pierre Auger Observatory. Cosmic rays with energy above $\\sim 6 \\times 10^{19}$ eV show a correlation with the positions of extragalactic nearby active galactic nuclei (AGN), being maximum for sources at less than $\\sim$100 Mpc and angular separation of a few degrees. The evolution of the correlation signal with the energy shows that the departure from anisotropy coincides with the flux suppression observed in the spectrum, being therefore consistent with the hypothesis that the correlated events have their origin in extragalactic sources close enough to avoid significant interaction with the cosmic microwave background (the Greisen-Zatsepin-Kuz'min effect). Even though the observed signal cannot unambiguously identify AGNs as the production sites of UHECRs, the potential sources have to be distributed in a similar way. A number of additional st...

  6. Hadronic physics with the Pierre Auger Observatory

    CERN Document Server

    Cazon, L

    2015-01-01

    Extensive air showers are the result of billions of particle reactions initiated by single cosmic rays at ultra-high energy. Their characteristics are sensitive both to the mass of the primary cosmic ray and to the fine details of hadronic interactions. Ultra-high energy cosmic rays can be used to experimentally extend our knowledge on hadronic interactions in energy and kinematic regions beyond those tested by human-made accelerators. We report on how the Pierre Auger Observatory is able to measure the proton-air cross section for particle production at a center-of-mass energy per nucleon of 39 TeV and 56 TeV and also to constrain the new hadronic interaction models tuned after the results of the Large Hadron Collider, by measuring: the average shape of the electromagnetic longitudinal profile of air showers, the moments of the distribution of the depth at which they reach their maximum, and the content and production depth of muons in air showers with a primary center-of-mass energy per nucleon around and a...

  7. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.

    Science.gov (United States)

    Páli, Tibor; Kóta, Zoltán

    2013-01-01

    Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or

  8. An electronically tuned wideband probehead for NQR spectroscopy in the VHF range

    Science.gov (United States)

    Scharfetter, Hermann

    2016-10-01

    Nuclear quadrupole resonance spectroscopy is an analytical method which allows to characterize materials which contain quadrupolar nuclei, i.e. nuclei with spin ⩾1. The measurement technology is similar to that of NMR except that no static magnetic field is necessary. In contrast to NMR, however, it is frequently necessary to scan spectra with a very large bandwidth with a span of several tens of % of the central frequency so as to localize unknown peaks. Standard NMR probeheads which are typically constructed as resonators must be tuned and matched to comparatively narrow bands and must thus be re-tuned and re-matched very frequently when scanning over a whole NQR spectrum. At low frequencies up to few MHz dedicated circuits without the need for tuning and matching have been developed, but many quadrupole nuclei have transitions in the VHF range between several tens of MHz up to several hundreds of MHz. Currently available commercial NQR probeheads employ stepper motors for setting mechanically tuneable capacitors in standard NMR resonators. These yield high quality factors (Q) and thus high SNR but are relatively large and clumsy and do not allow for fast frequency sweeps. This article presents a new concept for a NQR probehead which combines a previously published no-tune no-match wideband concept for the transmit (TX) pulse with an electronically tuneable receive (RX) part employing varactor diodes. The prototype coil provides a TX frequency range of 57 MHz with a center frequency of 97.5 MHz with a return loss of ⩽-15 dB. During RX the resonator is tuned and matched automatically to the right frequency via control voltages which are read out from a previously generated lookup table, thus providing high SNR. The control voltages which bias the varactors settle very fast and allow for hopping to the next frequency point in the spectrum within less than 100 μs. Experiments with a test sample of ZnBr2 proved the feasibility of the method.

  9. Structural, chemical and electronic properties of the Co2MnSi(001)/MgO interface

    OpenAIRE

    Fetzer, Roman; Wüstenberg, Jan-Peter; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2012-01-01

    The performance of advanced magnetic tunnel junctions build of ferromagnetic (FM) electrodes and MgO as insulating barrier depends decisively on the properties of the FM/insulator interface. Here, we investigate interface formation between the half-metallic compound Co2MnSi (CMS) and MgO by means of Auger electron spectroscopy, low energy electron diffraction and low energy photoemission. The studies are performed for different annealing temperatures TA and MgO layer coverages (4, 6, 10, 20 a...

  10. Electronic structure of nickel porphyrin NiP: Study by X-ray photoelectron and absorption spectroscopy

    Science.gov (United States)

    Svirskiy, G. I.; Sergeeva, N. N.; Krasnikov, S. A.; Vinogradov, N. A.; Sergeeva, Yu. N.; Cafolla, A. A.; Preobrajenski, A. B.; Vinogradov, A. S.

    2017-02-01

    Energy distributions and properties of the occupied and empty electronic states for a planar complex of nickel porphyrin NiP are studied by X-ray photoemission and absorption spectroscopy techniques. As a result of the analysis of the experimental spectra of valence photoemission, the nature and energy positions of the highest occupied electronic states were determined: the highest occupied state is formed mostly by atomic states of the porphine ligand; the following two states are associated with 3 d states of the nickel atom. It was found that the lowest empty state is specific and is described by the σ-type b 1 g MO formed by empty Ni3{d_{{x^2} - {y^2}}}-states and occupied 2 p-states of lone electron pairs of nitrogen atoms. This specific nature of the lowest empty state is a consequence of the donor-acceptor chemical bond in NiP.

  11. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy.

    Science.gov (United States)

    Nord, Magnus; Vullum, Per Erik; Hallsteinsen, Ingrid; Tybell, Thomas; Holmestad, Randi

    2016-10-01

    Thresholds for beam damage have been assessed for La0.7Sr0.3MnO3 and SrTiO3 as a function of electron probe current and exposure time at 80 and 200kV acceleration voltage. The materials were exposed to an intense electron probe by aberration corrected scanning transmission electron microscopy (STEM) with simultaneous acquisition of electron energy loss spectroscopy (EELS) data. Electron beam damage was identified by changes of the core loss fine structure after quantification by a refined and improved model based approach. At 200kV acceleration voltage, damage in SrTiO3 was identified by changes both in the EEL fine structure and by contrast changes in the STEM images. However, the changes in the STEM image contrast as introduced by minor damage can be difficult to detect under several common experimental conditions. No damage was observed in SrTiO3 at 80kV acceleration voltage, independent of probe current and exposure time. In La0.7Sr0.3MnO3, beam damage was observed at both 80 and 200kV acceleration voltages. This damage was observed by large changes in the EEL fine structure, but not by any detectable changes in the STEM images. The typical method to validate if damage has been introduced during acquisitions is to compare STEM images prior to and after spectroscopy. Quantifications in this work show that this method possibly can result in misinterpretation of beam damage as changes of material properties.

  12. Electronic structure of metastable bcc Cu-Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations.

    Science.gov (United States)

    Liebscher, C H; Freysoldt, C; Dennenwaldt, T; Harzer, T P; Dehm, G

    2016-07-12

    Metastable Cu-Cr alloy thin films with nominal thickness of 300nm and composition of Cu67Cr33 (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu85Cr15 (at%) and Cu42Cr58 (at%) and domain size of 1-5nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu-Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu-Cr solid solutions with bcc crystal structure a single peak after the L3-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu-Cr solid solutions with 10at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu50Cr50 (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu-Cr d-band that lies between the delocalized d-bands of Cu and Cr.

  13. Monitoring preparation and phase transitions of carburized W(1 1 0) by reflectance difference spectroscopy.

    Science.gov (United States)

    Bachmann, Magdalena; Memmel, Norbert; Bertel, Erminald; Denk, Mariella; Hohage, Michael; Zeppenfeld, Peter

    2012-10-01

    Reflectance difference spectroscopy (RDS) is applied to follow in situ the preparation of clean and carburized W(1 1 0) surfaces and to study the temperature-induced transition between the R(15 × 3) and R(15 × 12) carbon/tungsten surface phases. RDS data for this transition are compared to data obtained from Auger-electron spectroscopy and low-energy electron diffraction. All techniques reveal that this transition, occurring around 1870 K, is reversible with a small hysteresis, indicating a first-order-like behaviour. The present results also prove a high surface sensitivity of RDS, which is attributed to the excitation of electronic p-like surface resonances of W(1 1 0).

  14. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    Science.gov (United States)

    2009-12-19

    boosted frame where electric field reaches the Schwinger limit for production of electron-positron pairs from vacuum. The theoretical framework...were directed toward radiative shock hydrodynamics. Lowering the threshold for Schwinger electron-positron pair production (Stepan Bulanov

  15. Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopy: Nano-metalized polymer as case study

    Science.gov (United States)

    Deris, Jamileh; Hajati, Shaaker; Tougaard, Sven; Zaporojtchenko, Vladimir

    2016-07-01

    In this work, Au was deposited with nominal effective thickness of 0.8 nm on polystyrene (PS) at room temperature. According to previous study, using XPS peak shape analysis [S. Hajati, V. Zaporojtchenko, F. Faupel, S. Tougaard, Surf. Sci. 601 (2007) 3261-3267], Au nanoparticles (Au-NPs) of sizes 5.5 nm were formed corresponding to such effective thickness (0.8 nm). Then the sample was annealed to 200 °C, which is far above the glass transition of PS. At this temperature, the Au-NPs were diffused within the depth 0.5 nm-6.5 nm as found using nondestructive XPS peak shape analysis. Electrons with primary energy 500 eV were used because the electronic properties will then be probed in utmost surface (∼1 IMFP range of depths that is 1.8 nm for PS). By using QUEELS software, theoretical and experimental electron inelastic cross section, energy loss function, electron inelastic mean free path and surface excitation parameters were obtained for the sample. The information obtained here, does not rely on any previously known information on the sample. This means that the method, applied here, is suitable for the determination of the electronic properties of new and unknown composite nanostructures.

  16. Two-dimensional Penning ionization electron spectroscopy of open-shell metallocenes: outer valence ionic states of vanadocene and nickelocene.

    Science.gov (United States)

    Kishimoto, Naoki; Kimura, Miku; Ohno, Koichi

    2013-04-11

    In order to investigate outer valence ionic states of open-shell metallocenes, we have applied two-dimensional collision-energy/electron-energy-resolved Penning ionization electron spectroscopy (2D-PIES) upon collision with metastable He*(2(3)S) excited atoms as well as a high level ab initio molecular orbital calculation (the partial third-order quasiparticle theory of the electron propagator (P3)) to ionization from neutral ground states of vanadocene ((4)A2g) and nickelocene ((3)A2g). Assignments of observed Penning ionization electron/He I ultraviolet photoelectron spectra were consistent with the P3 calculation results for ionization of α and β spin electrons except for electron correlation bands observed by PIES. Negative collision energy dependence of partial Penning ionization cross-sections (CEDPICS) indicate attractive interaction with He*(2(3)S) around the molecule. Results by model potential calculation utilizing Li(2(2)S) instead of He*(2(3)S) for interaction between He*(2(3)S) and open-shell metallocenes do not explain the strong negative CEDPICS of the bands observed in PIES.

  17. Two-dimensional electron paramagnetic resonance spectroscopy of nitroxides: Elucidation of restricted molecular motions in glassy solids

    Science.gov (United States)

    Dubinskii, Alexander A.; Maresch, Günter G.; Spiess, Hans-Wolfgang

    1994-02-01

    The combination of concepts of two-dimensional (2D) spectroscopy with the well-known field step electron-electron double resonance (ELDOR) method offers a practical route to recording 2D ELDOR spectra covering the full spectral range needed for electron paramagnetic resonance (EPR) of nitroxide spin labels in the solid state. The 2D ELDOR pattern provides information about molecular reorientation measured in real time, the anisotropies of electron phase, and electron spin-lattice relaxation as well as nuclear spin-lattice relaxation all of which are connected with the detailed geometry of the molecular reorientation. Thus, in 2D ELDOR the same electron spin probes the motional behavior over a wide range of correlation times from 10-4 to 10-12 s. An efficient algorithm for simulating 2D ELDOR spectra is derived, based on analytical solutions of the spin relaxation behavior for small-angle fluctuations and offers a means of quantitatively analyzing experimental data. As an example, the motion of nitroxide spin labels in a liquid-crystalline side-group polymer well below its glass transition is determined as a β-relaxation process with a mean angular amplitude of 5° and a distribution of correlation times with a mean correlation time of 0.9×10-10 s and a width of 2.5 decades.

  18. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy

    Science.gov (United States)

    Renner, O.; Šmíd, M.; Batani, D.; Antonelli, L.

    2016-07-01

    In a series of experiments performed with laser-irradiated planar targets at the PALS laser facility, the generation of suprathermal electrons has been studied at conditions relevant for the development of a shock ignition approach to inertial confinement fusion. A simultaneous application of high-collection-efficiency K-shell imaging with high resolution x-ray spectroscopy offers a novel approach to hot electron diagnosis at non-coated or moderately coated, medium-atomic-number targets, where the contribution of suprathermal-electron-generated, frequency-shifted Kα emission from highly ionized atoms cannot be neglected. Based on experimental data provided by these combined techniques and their interpretation via collisional-radiative atomic codes and Monte Carlo modeling of hot electron energy deposition in heated Cu targets, the fraction of the energy converted to hot electrons at laser intensities  ≈1016 W cm-2 was measured to be at the level of 0.1-0.8%. The higher values of conversion efficiency found for frequency tripled radiation support a theoretical conjecture of enhanced laser energy absorption by a resonance mechanism and its transport to a flow of fast electrons.

  19. Electronic structure simulation of chromium aluminum oxynitride by discrete variational-X alpha method and X-ray photoelectron spectroscopy

    CERN Document Server

    Choi, Y; Lee, J D; Kim, E; No, K

    2002-01-01

    We use a first-principles discrete variational (DV)-X alpha method to investigate the electronic structure of chromium aluminum oxynitride. When nitrogen is substituted for oxygen in the Cr-Al-O system, the N2p level appears in the energy range between O2p and Cr3d levels. Consequently, the valence band of chromium aluminum oxynitride becomes broader and the band gap becomes smaller than that of chromium aluminum oxide, which is consistent with the photoelectron spectra for the valence band using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). We expect that this valence band structure of chromium aluminum oxynitride will modify the transmittance slope which is a requirement for photomask application.

  20. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy.

    Science.gov (United States)

    Hoesch, M; Kim, T K; Dudin, P; Wang, H; Scott, S; Harris, P; Patel, S; Matthews, M; Hawkins, D; Alcock, S G; Richter, T; Mudd, J J; Basham, M; Pratt, L; Leicester, P; Longhi, E C; Tamai, A; Baumberger, F

    2017-01-01

    A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm(2), and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ⋅ 10(13) ph/s and well below 3 meV for high resolution spectra.