WorldWideScience

Sample records for auger electron spectroscopy

  1. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.

    1975-01-01

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  2. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    Kuijers, F.J.

    1978-01-01

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  3. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  4. Auger electron spectroscopy of alloy surfaces

    International Nuclear Information System (INIS)

    Overbury, S.H.; Somorjai, G.A.

    1975-03-01

    Regular solution models are used to predict surface segregation of the constituent of lowest surface free energy in homogeneous multicomponent systems. Analysis of the Auger electron emission intensities from alloys yield the surface composition and the depth distribution of the composition near the surface. Auger Electron Spectroscopy (AES) studies of the surface composition of the Ag--Au and Pb--In systems have been carried out as a function of bulk composition and temperature. Although these alloys have very different regular solution parameters their surface compositions are predictable by the regular solution models. (U.S.)

  5. A computer simulation of auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ragheb, M S; Bakr, M H.S. [Dept. Of Accellerators and Ion Sources, Division of Basic Nuclear Sciences, NRC, Atomic Energy Authority, (Egypt)

    1997-12-31

    A simulation study of Auger electron spectroscopy was performed to reveal how far the dependency between the different parameters governing the experimental behavior affects the peaks. The experimental procedure followed by the AC modulation technique were reproduced by means of a computer program. It generates the assumed output Auger electron peaks, exposes them to a retarding AC modulated field and collects the resulting modulated signals. The program produces the lock-in treatment in order to demodulate the signals revealing the Auger peaks. It analyzes the spectrum obtained giving the peak positions and energies. Comparison between results of simulation and the experimental data showed good agreement. The peaks of the spectrum obtained depend upon the amplitude, frequency and resolution of the applied modulated signal. The peak shape is effected by the rise time, the slope and the starting potential of the retarding field. 4 figs.

  6. Chemical information from Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Madden, H.H.

    1981-01-01

    The nature of chemical information in Auger electron spectroscopy (AES) data is reviewed with special emphasis on data from solid surface systems. Two strategies are most frequently used to extract this information: (i) measuring and analyzing energy (chemical) shifts in Auger peaks; and (ii) making use of the shapes of Auger signals to determine the chemical environment at the site of the initial core hole. Chemical shift data are primarily illustrated by highlighting the interaction of oxygen with solids; and analyses of these data based on core-level binding-energy shifts, relaxation, and hole--hole interactions are outlined and discussed. Auger transitions that involve valence electrons are usually those for which lineshapes are taken as indications of the local chemistry at the initial core-hole site. Attempts at extracting valence band density-of-states information from lineshapes are proving successful and this approach to the surface chemical information in AES is illustrated with the aid of examples dealing with the interaction of silicon with hydrogen and with oxygen. The use of the AES lineshapes simply as ''fingerprints'' of the core-hole-site chemistry is examined and illustrated by examples which include studies of silicon nitride properties, of solid surface properties related to catalytic reactions, and of passive films on iron. Auger decay activated desorption processes are briefly examined and found to promise new and unique chemical information when combined with conventional AES. Some gas phase AES studies are also briefly reviewed

  7. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  8. Electronic excitation and Auger spectroscopy of hexamethyldissilane

    International Nuclear Information System (INIS)

    Souza, G.G.B. de; Azevedo e Souza, A.C. de; Martins, R.J.; Lucas, C.A.

    1988-01-01

    In this work, it is presented an spectroscopic study of Si 2 (CH 3 ) 6 which presents interesting characteristics in the Si - Si bond. Electron energy loss technique was used in the energy range of 500 - 200 eV for the electron beam. Electronic excitation spectra were obtained for the energy loss range from 5 to 30 eV, and also Auger spectra. (A.C.A.S.) [pt

  9. Auger electron spectroscopy for the advanced student laboratory

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Mazur, Piotr; Debowska, Ewa

    2009-01-01

    This paper presents Auger electron spectroscopy with a retarding field analyser designed for an advanced physics experiment carried out in 'Physics Laboratory II' at the Institute of Experimental Physics, University of Wroclaw, Poland. The authors discuss the process of setting up the experiment and the results of the measurement of Auger spectra. The advantages and disadvantages of the apparatus are discussed along with its implementation in the teaching process

  10. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  11. Effective applications of auger electron spectroscopy

    International Nuclear Information System (INIS)

    Golnabi, H.

    1996-01-01

    The goal of this study is to explore different aspects of the AES process and to present the new techniques which can be used effectively for analytical purposes. More emphasis is given to AES data acquisition, sensitivity factor and Auger intensity. The experimental details of a typical scanning Auger microprobe (SAM) is also presented. Applications of AES to selected systems such as microelectronic devices, superconductors, an in metallurgy are described

  12. Auger electron and X-ray spectroscopy of hollow atoms

    NARCIS (Netherlands)

    Morgenstern, R; Johnson, RL; Schmidtbocking, H; Sonntag, BF

    1997-01-01

    Hollow atoms as formed during collisions of multiply charged ions on metallic, semiconducting and insulating surfaces have in recent years successfully been investigated by various spectroscopic methods: low- and high-resolution X-ray spectroscopy as well as high resolution Auger electron

  13. Study of solute segregation at interfaces using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    White, C.L.

    1984-01-01

    Interfacial segregation, often confined to within a few atomic distances of the interface, can strongly influence the processing and properties of metals and ceramics. The thinness of such solute-enriched regions can cause them to be particularly suitable for study using surface sensitive microanalytical techniques such as Auger electron spectroscopy (AES). The application of AES to studies of interfacial segregation in metals and ceramics is briefly reviewed, and several examples are presented. 43 references, 14 figures

  14. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  15. A study of Al/Si interface by photoemission, Auger electron yield and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.; Barth, J.; Gerken, F.; Kunz, C.; Deutsches Elektronen-Synchrotron

    1980-06-01

    Photoemission, Auger electron yield and Auger electron spectra were observed for Al/Si(111) interfaces with various Al coverage prepared by successive deposition using a molecular beam source. The Al 3p derived states are introduced at around the top of the valence band by the Al coverage of less than one monolayer. The Al surface layer behaves as a 'metal' and the Fermi level is stabilized in the Al 3p derived states at about 0.3 eV above the top of the valence band of Si. The Schottky barrier height in this stage is about 0.8 eV and further increase in Al coverage does not change the barrier height. A covalent bonding model of the Al/Si interface based on the experimental results is proposed. The present result favors the on-top geometry of Al atoms on Si(111) surface among the geometries used in the pseudopotential calculation by Zhang and Schlueter. (orig.)

  16. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  17. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  18. Positron annihilation induced Auger electron spectroscopy and its implementation at accelerator based low energy positron factories

    International Nuclear Information System (INIS)

    Weiss, A.; Koeymen, A.R.; Mehl, D.; Lee, K.H.; Yang Gimo; Jensen, K.

    1991-01-01

    Positron annihilation induced auger electron spectroscopy (PAES) makes use of a beam of low energy positrons to excite Auger transitions by annihilating core electrons. The large secondary electron background usually present in Auger spectra can be eliminated by setting the positron beam energy well below the Auger electron energy. This allows true Auger lineshapes to be obtained. Further, because the positron is localized just outside the surface before it annihilates, PAES is extremely sensitive to the topmost atomic layer. Recent PAES results obtained at the University of Texas at Arlington will be presented. In addition, the use of high resolution energy analyzers with multichannel particle detection schemes to prevent problems due to the high data rates associated with accelerator based positron beams will be discussed. (orig.)

  19. Application of positron annihilation induced auger electron spectroscopy to the study of surface chemistry

    International Nuclear Information System (INIS)

    Weiss, A.H.; Yang, G.; Nangia, A.; Kim, J.H.; Fazleev, N.G.

    1996-01-01

    Positron annihilation induced Auger Electron Spectroscopy (PAES), makes use a beam of low energy positrons to excite Auger transitions by annihilating core electrons. This novel mechanism provides PAES with a number of unique features which distinguishes it from other methods of surface analysis. In PAES the very large collisionally induced secondary electron background which is present under the low energy Auger peaks using conventional techniques can be eliminated by using a positron beam whose energy is below the range of Auger electron energies. In addition, PAES is more surface selective than conventional Auger Spectroscopy because the PAES signal originates almost exclusively from the topmost atomic layer due to the fact that the positrons annihilating with the core electrons are trapped in an image correlation well just outside the surface. In this paper, recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) to the study of surface structure and surface chemistry will be discussed including studies of the growth, alloying and inter-diffusion of ultrathin layers of metals, metals on semiconductors, and semiconductors on semiconductors. In addition, the possibilities for future application of PAES to the study of catalysis and surface chemistry will be outlined. (author)

  20. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  1. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  2. Many-electron effect in the resonant Auger electron spectroscopy spectra of adsorbates

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that a resonantly excited core hole state in a chemisorbed molecule such as CO/Ni, CO/Pd, and CO/Pt relaxes to a fully relaxed one, i.e., the ionized core hole state of the smallest binding energy observed by photoelectron spectroscopy, before the core hole decays so that the resonant Auger electron spectroscopy (RAES) spectrum shows the normal Auger decay spectrum. It is shown by a many-body theory that the Auger peaks on the higher kinetic energy (K.E.) side in the RAES or AES spectrum, i.e., so called back-bonding peaks, are the two-hole states consisting of a valence hole and a hole in the adsorbate-substrate hybrid states below the substrate Fermi level. The latter hole is the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the back-bonding peak energy and the single valence-hole energy provides an important information about the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the RAES spectrum measured at the resonance energy and the AES spectrum measured at far above the ionization limit shows the competition between relaxation and decay of shakeup satellites such as the charge transfer (CT) shakeup. The relaxation rate of the CT shakeup state can be determined by Auger-photoelectron coincidence spectroscopy (APECS)

  3. Photoelectron-Auger electron coincidence spectroscopy of free molecules: New experiments

    International Nuclear Information System (INIS)

    Ulrich, Volker; Barth, Silko; Lischke, Toralf; Joshi, Sanjeev; Arion, Tiberiu; Mucke, Melanie; Foerstel, Marko; Bradshaw, Alex M.; Hergenhahn, Uwe

    2011-01-01

    Photoelectron-Auger electron coincidence spectroscopy probes the dicationic states produced by Auger decay following the photoionization of core or inner valence levels in atoms, molecules or clusters. Moreover, the technique provides valuable insight into the dynamics of core hole decay. This paper serves the dual purpose of demonstrating the additional information obtained by this technique compared to Auger spectroscopy alone as well as of describing the new IPP/FHI apparatus at the BESSY II synchrotron radiation source. The distinguishing feature of the latter is the capability to record both the photoelectron and Auger electron with good energy and angle resolution, for which purpose a large hemispherical electrostatic analyser is combined with several linear time-of-flight spectrometers. New results are reported for the K-shell photoionization of oxygen (O 2 ) and the subsequent KVV Auger decay. Calculations in the literature for non-coincident O 2 Auger spectra are found to be in moderately good agreement with the new data.

  4. Use of analytical electron microscopy and auger electron spectroscopy for evaluating materials

    International Nuclear Information System (INIS)

    Jones, R.H.; Bruemmer, S.M.; Thomas, M.T.; Baer, D.R.

    1982-11-01

    Analytical electron microscopy (AEM) can be used to characterize the microstructure and microchemistry of materials over dimensions less than 10 nm while Auger electron spectroscopy (AES) can be used to characterize the chemical composition of surfaces and interfaces to a depth of less than 1 nm. Frequently, the information gained from both instruments can be coupled to give new insight into the behavior of materials. Examples of the use of AEM and AES to characterize segregation, sensitization and radiation damage are presented. A short description of the AEM and AES techniques are given

  5. Electronic structure of metallic alloys through Auger and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kleiman, G.G.; Rogers, J.D.; Sundaram, V.S.

    1981-01-01

    A review is presented of experimental results of electron spectroscopy studies for various series of transition metal alloys as well as a model for their interpretation which leads to the possibility for the first time to determine independently relative variations in the dipole barrier and Fermi energy contributions to the work function. (L.C.) [pt

  6. Auger-electron spectroscopy investigation of thin Ag-As-S-Se films

    International Nuclear Information System (INIS)

    Todorov, R; Spasov, G; Petkov, K; Tasseva, J

    2010-01-01

    The photoinduced changes in the refractive index and optical band-gap of thin As 32 S 34 Se 34 films photodoped with silver were studied using spectrophotometric methods. The compositional profile of the films was revealed by means of Auger-electron spectroscopy.

  7. Auger-electron spectroscopy investigation of thin Ag-As-S-Se films

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R; Spasov, G; Petkov, K; Tasseva, J, E-mail: jordanka@clf.bas.b [Acad. J. Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 1113 Sofia (Bulgaria)

    2010-04-01

    The photoinduced changes in the refractive index and optical band-gap of thin As{sub 32}S{sub 34}Se{sub 34} films photodoped with silver were studied using spectrophotometric methods. The compositional profile of the films was revealed by means of Auger-electron spectroscopy.

  8. Auger electron spectroscopy study on interaction between aluminum thin layers and uranium substrate

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Kezhao; Yang Jiangrong; Xiao Hong; Jiang Chunli; Lu Lei

    2005-01-01

    Aluminum thin layers on uranium were prepared by sputter deposition at room temperature in ultra high vacuum analysis chamber. Interaction between U and Al, and growth mode were investigated by Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS). It is shown that Al thin film growth follows the volmer-weber (VW) mode. At room temperature, Al and U interact with each other, resulting in interdiffusion action and formation of U-Al alloys at U/Al interface. Annealing promotes interaction and interdiffusion between U and Al, and UAl x maybe formed at interface. (authors)

  9. Electron beam interactions with CO on W[100] studied by Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Housley, M.; King, D.A.

    1977-01-01

    The interaction of 2500 eV electrons with carbon monoxide chemisorbed on tungsten [100] was investigated by rapid-scan Auger electron spectroscopy. When no α state was present the O and C signals from the β state of CO were invariant during electron bombardment, giving an upper limit estimate for the electron stimulated desorption cross section, Qsub(β), of 2 x 10 -21 cm 2 . With the crystal at room temperature and saturated with CO, however, electron-beam induced accumulation of carbon was observed and characterised, the rate of the process being independent of CO pressure at pressures above 2 x 10 -8 Torr. At 450 K the rate was found to be pressure dependent up to at least 6 x 10 -7 Torr. A model is proposed for the accumulation process, which is based on electron beam dissociation of α 2 -CO to form adsorbed carbon and gaseous O and the creation of new sites for further α 2 -CO adsorption; it is in quantitative agreement with the results and yields a cross section for ESD of α 2 -CO (Qsub(α 2 )=1.55 X 10 -18 cm 2 ) in clo 2 e agreement with direct measurements. (Auth.)

  10. Optical and mechanical design for 1 nm resolution Auger spectroscopy in an electron microscope

    International Nuclear Information System (INIS)

    Bleeker, A.J.

    1991-01-01

    Detailed information about the atomic structure of surfaces and interfaces is vital for the progress in materials science and physics. One widely used surface sensitive technique is Auger spectroscopy (AS). This technique, in which the electron energy spectrum emerging from the sample is evaluated, gives information about the average elemental composition of the surface over a relative large surface area (>30nm). Electron microscopy (EM), on the other hand, is capable of producing surface structural, but no elemental, information with almost atomic resolution. EM and AS techniques have not been combined so far because of the different nature of the instrumentation used in both techniques. In AS instruments the sample is placed in an Ultra High Vacuum (UHV) system with a relatively large open space around the sample. In EM the sample is situated in the tight volume between the magnetic polepieces of the probe forming objective lens. The space around the sample is therefore tight. Furthermore the vacuum in most electron microscopes is not in UHV range. Radical mechanical changes to improve the vacuum are necessary to do AS in an electron microscope. Since the sample is immersed in the strong magnetic field of the objective lens the Auger electrons can not be extracted with conventional electrostatical methods. The only possibility to extract the Auger electrons is through the upper bore of the objective lens. However, this has large implications on the optical system of the microscope and requires a thorough investigation of the extraction of the Auger electrons. In this work it will be discussed how the surface sensitive AS can be combined with the high spatial resolution of the electron microscope in a practical instrument. (author). 102 refs.; 81 figs.; 4 tabs

  11. Surface analysis of Al alloys with X-ray photoelectron and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Sakairi, Masatoshi; Suzuki, Keita; Sasaki, Ryo

    2015-01-01

    In this paper, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were applied to investigate passive films formed on aluminum alloy in 0.5 kmol m -3 H 3 BO 3 /0.05 kmol m -3 Na 2 B 4 O 7 with different metal cations. The metal cation is classified by metal cation hardness, X, which are calculated based on the concept of hard and soft acids and bases (HSAB) of the acid and base in Lewis's rule. From XPS analysis, the metal cations with X > 4 were incorporated in passive films. The area-selected surface analysis of AES was also introduced. (author)

  12. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Southworth, S.H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H 2 and D 2 , and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  13. Ion induced Auger spectroscopy

    International Nuclear Information System (INIS)

    Thomas, E.W.; Legg, K.O.; Metz, W.A.

    1980-01-01

    Auger electron spectra are induced by impact of heavy ions (e.g. Ar + ) on surfaces; it has been suggested that analysis of such spectra would be a useful technique for surface analysis. We have examined the Auger spectra for various projectile-target combinations and present as representative data the spectra for 100 keV Ar + impact on Al, Cr, Mn, Fe and Co. For a projectile incident on a species of higher nuclear charge the spectrum is dominated by Auger lines from the projectile, broadened considerably by the Doppler effect due to the projectile's motion. The spectra are not characteristic of the target and therefore offer no opportunity for surface analysis. For a projectile incident on a target of lower nuclear charge the spectrum is that of the target species but the spectrum is consistent with the source being sputtered excited atoms; the Auger electrons do not come from the surface. We conclude that the ion induced Auger spectra are in general not a convenient method for surface analysis. (orig.)

  14. Characterization of a Fe inclusion in beryllium-matrix using auger electron spectroscopy

    International Nuclear Information System (INIS)

    Arkusk, R.; Moreno, D.; Simca, F.; Yeheskel, O.; Utzmoni, U.

    1991-04-01

    The auger electron spectroscopy techniques was employed to investigate the nature of an inclusion that had been revealed by radiography in a beryllium body produced by the hot isostatic press technique. The investigation's are that the inclusion is composed of several different iron-beryllium intermetallic compounds (BeFe 3 , BeFe 5 , Be 7 Fe). The conclusion drawn is that iron metal impurity was imbedded in the Be powder and that interdiffusion under the process's conditions gave rise to the enlarged inclusion. (author)

  15. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Noritake, E-mail: isomura@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Soejima, Narumasa; Iwasaki, Shiro [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Nomoto, Toyokazu; Murai, Takaaki [Aichi Synchrotron Radiation Center (AichiSR), 250-3 Minamiyamaguchi-cho, Seto, Aichi 489-0965 (Japan); Kimoto, Yasuji [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si{sub 3}N{sub 4}/SiO{sub 2}/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si{sub 3}N{sub 4}/SiO{sub 2}/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  16. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    International Nuclear Information System (INIS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-01-01

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si_3N_4/SiO_2/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si_3N_4/SiO_2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  17. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    Science.gov (United States)

    Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.

    2018-05-01

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.

  18. Growth and trends in Auger-electron spectroscopy and x-ray photoelectron spectroscopy for surface analysis

    International Nuclear Information System (INIS)

    Powell, C.J.

    2003-01-01

    A perspective is given of the development and use of surface analysis, primarily by Auger-electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS), for solving scientific and technological problems. Information is presented on growth and trends in instrumental capabilities, instrumental measurements with reduced uncertainties, knowledge of surface sensitivity, and knowledge and effects of sample morphology. Available analytical resources are described for AES, XPS, and secondary-ion mass spectrometry. Finally, the role of the American Vacuum Society in stimulating improved surface analyses is discussed

  19. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  20. Many-electron effect in the Si K-LL resonant Auger-electron spectroscopy spectra of the Si delta layer in GaAs

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    The Si K-LL resonant Auger-electron spectroscopy (RAES) spectra of silicon delta dopped layers in GaAs with very thin capping layers show both normal Auger decay and resonant Auger decay, when the core-level electron is excited to the conduction band. The resonant Auger peak kinetic energy (KE) shows no dispersion with photon energy, except when excited by the highest energy photons [M.D. Jackson, J.M.C. Thornton, D. Lewis, A. Robinson, M. Fahy, A. Aviary, P. Weightman, Phys. Rev. B71 (2005) 075313]. The RAES spectra are analyzed using a many-body theory. The presence of resonant Auger decay and no dispersion of resonant Auger peak KE with photon energy is explained in terms of the relaxation of a metastable excited core-hole state to a stable one on the time scale of core-hole decay. The excited electron in the conduction band either delocalizes rapidly leaving the ionized Si to decay by a normal Auger decay or drops to a state localized in the Si delta layer before the core-hole decays so that the RAES spectrum has both normal Auger decay and resonant Auger decay. As a result of the relaxation, the resonant Auger peak KE does not show any dispersion with photon energy. The variations with photon energy of the normal or resonant Auger peak intensity, KE, and width are explained in a consistent manner by a many-body theory

  1. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  2. Contribution of Auger electron spectroscopy to study of mechanism of adhesive wear of valves

    International Nuclear Information System (INIS)

    Smrkovsky, E.; Koutnik, M.; Potmesilova, A.

    1987-01-01

    Briefly characterized are hypotheses describing the process of intensive adhesive wear (jamming) of materials on functional friction surfaces of valves. Two types of alloys were studied, 1Cr18Ni8Mo5Mn5Si5Nb and NiCrSiB. Auger electron spectroscopy was used in the study of the chemical composition of surface layers. The following conclusions can be made from the results of the adhesive wear measurement and the Auger spectroscopy measurement: There are oxide layers on the surfaces of the specimens which, however, can only to a certain extent affect the process of adhesive wear. Adhesive wear resistance tests using low hardness specimens show that in spite of the existence of oxide layers, friction pairs showing low surface hardness also feature low adhesive wear resistance. Following heat treatment, the surface oxide layers have practically the same chemical composition as the specimens without heat treatment. However, there adhesive wear resistance is significantly higher. (Z.M.). 3 tabs., 7 refs

  3. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    Science.gov (United States)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  4. Effect of relaxation and decay of a charge transfer shakeup satellite on Auger-electron spectroscopy spectra and Auger-photoelectron coincidence spectroscopy spectra of adsorbates

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    An electron excited to an unoccupied part of adsorbate-substrate hybrid states in a chemisorbed molecule by a resonant core electron excitation or charge transfer (CT) shakeup may delocalize on time scale of core-hole decay so that the excited core-hole state relaxes partly or completely to a fully relaxed one. The Auger decay of the fully relaxed core-hole state via the relaxation of the excited one introduces an additional feature in the resonant Auger-electron spectroscopy (RAES) spectrum and the AES spectrum. However, the additional feature in the RAES spectrum is a normal AES spectrum by decay of the fully relaxed core-hole state, whereas the one in the AES spectrum is the AES spectrum by decay of the fully relaxed core-hole state broadened by the photoelectron spectroscopy (PES) CT shakeup satellite weighted by the branching ratio of the relaxation width. The discrepancies between the AES spectrum measured at high above the ionization threshold and the additional feature in the RAES spectrum consist of the symmetric-like part by the decay of the fully relaxed core-hole state via the relaxation of the CT shakeup state and the asymmetric part by the direct decay of the shakeup states. The asymmetric part increases with a decrease in the hybridization strength. This explains the variation with the hybridization strength in the discrepancies between the RAES spectra and the AES spectra of chemisorbed molecules such as CO/Ni, CO/Cu and CO/Ag. A comparison of the singles PES spectrum with the one measured in coincidence with the AES main line of a selected kinetic energy (KE) provides the delocalization rate of the excited electron in the CT shakeup state as a function of photoelectron KE. The coincidence measurement to obtain the partial singles PES spectrum is discussed

  5. Study of surface segregation of Si on palladium silicide using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Abhaya, S; Amarendra, G; Gopalan, Padma; Reddy, G L N; Saroja, S

    2004-01-01

    The transformation of Pd/Si to Pd 2 Si/Si is studied using Auger electron spectroscopy over a wide temperature range of 370-1020 K. The Pd film gets totally converted to Pd 2 Si upon annealing at 520 K, and beyond 570 K, Si starts segregating on the surface of silicide. It is found that the presence of surface oxygen influences the segregation of Si. The time evolution study of Si segregation reveals that segregation kinetics is very fast and the segregated Si concentration increases as the temperature is increased. Scanning electron microscopy measurements show that Pd 2 Si is formed in the form of islands, which grow as the annealing temperature is increased

  6. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  7. The characterisation of non-evaporable getters by Auger electron spectroscopy Analytical potential and artefacts

    CERN Document Server

    Scheuerlein, C; Taborelli, M

    2002-01-01

    The surfaces of getter materials are particularly difficult to analyse because of their high chemical reactivity. The results obtained can be strongly influenced by the experimental set-up and procedures. In this paper the experimental influence on the Auger electron spectroscopy results is discussed, based on the measurements of more than 100 different non-evaporable getter (NEG) materials. There are four typical changes in the Auger electron spectra when a NEG becomes activated. The oxygen peak intensity decreases, the shape of the metal peaks changes, the carbon peak shape changes shape and intensity and a chlorine peak occurs. All these changes are affected by instrumental artefacts. The Zr-MNV peak shape changes occurring during the reduction of ZrO2 are well suited to determine the onset of NEG activation, while the slope with which the O-KLL peak intensity decreases in a certain temperature range is a better criterion for the determination of the temperature at which activation is complete. The O-KLL i...

  8. Electron stimulated carbon adsorption in ultra high vacuum monitored by Auger Electron Spectroscopy (AES)

    CERN Document Server

    Scheuerlein, C

    2001-01-01

    Electron stimulated carbon adsorption at room temperature (RT) has been studied in the context of radiation induced surface modifications in the vacuum system of particle accelerators. The stimulated carbon adsorption was monitored by AES during continuous irradiation by 2.5 keV electrons and simultaneous exposure of the sample surface to CO, CO2 or CH4. The amount of adsorbed carbon was estimated by measuring the carbon Auger peak intensity as a function of the electron irradiation time. Investigated substrate materials are technical OFE copper and TiZrV non-evaporable getter (NEG) thin film coatings, which are saturated either in air or by CO exposure inside the Auger electron spectrometer. On the copper substrate electron induced carbon adsorption from gas phase CO and CO2 is below the detection limit of AES. During electron irradiation of the non-activated TiZrV getter thin films, electron stimulated carbon adsorption from gas phase molecules is detected when either CO or CO2 is injected, whereas the CH4 ...

  9. Many-body effect in the resonant Ti L23-M23V Auger-electron spectroscopy spectra and Auger-photoelectron coincidence spectroscopy spectra of Ti oxides

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    Recently Danger et al. [J. Danger, H. Magnan, D. Chandesris, P. Le Fevre, S. Bourgeois, J. Jupille, A. Verdini, R. Gotter, A. Morgante, Phys. Rev. B 64 (2001) 045110] and Le Fevre et al. [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B 69 (2004) 155421] showed the absence of resonant Raman scattering feature in the Ti L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectra of Ti oxides measured across the Ti 2p edges. They attributed the absence to the covalent character of the Ti-O bond which allows an effective delocalization of 3d electrons. It is shown by a many-body theory that when the time scale of relaxation of the resonantly excited core-hole state to the fully relaxed core-hole state is much shorter than that of core-hole decay, any sizeable Raman scattering is absent in the RAES spectra measured across the Ti 2p edges. The relaxation width depends on the hybridization strength and the charge transfer (CT) energy between the two states. The L 2 -L 3 V Coster-Kronig (CK) decay widths of TiO 2 and TiO 2-x are determined from the L 23 -M 23 V Auger-photoelectron coincidence spectroscopy (APECS) spectra reported in the aforementioned papers. They are about 0.18 and 0.35 eV, respectively. The CK-decay width in the reduced Ti oxide increases compared to that of TiO 2 in rutile because of filling of the 3d states just below the Fermi level in the former

  10. Auger electron spectroscopy investigation of metallic fusible links in programmable read-only memories

    International Nuclear Information System (INIS)

    Morgan, A.E.; Quackenbush, T.R.; Lim, S.C.P.

    1983-01-01

    The composition of Ni-Cr, Ti-W and Ti-W-N thin film fuses as used in bipolar programmable read-only memories was studied using Auger electron spectroscopy. Measurements were performed on both intact and blown fuses in actual devices, and also on thin film samples processed so as to duplicate device fabrication. Topics of interest were (a) selection of film deposition technique, (b) minimization of contact resistance to aluminum, (c) promotion of good adhesion to SiO 2 , (d) avoidance of chemical attack during device production, (e) fuse corrosion in the finished product and (f) the fusing mechanism during device programming. The results are used to compare and contrast the behavior of the different types of fuses. From these studies, it appears that Ni-Cr could be beneficially replaced as the fuse material by Ti-W or Ti-W-N. (Auth.)

  11. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Jablonski, A.; Powell, C.J.

    2017-01-01

    Highlights: • Effective attenuation lengths (EALs) for determination of surface composition by XPS. • Considerable difference from EALs used for overlayer thickness measurements. • New analytical algorithms for calculating the effective attenuation length. - Abstract: The effective attenuation length (EAL) is normally used in place of the inelastic mean free path (IMFP) to account for elastic-scattering effects when describing the attenuation of Auger electrons and photoelectrons from a planar substrate by an overlayer film. An EAL for quantitative determination of surface composition by Auger-electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) is similarly useful to account for elastic-scattering effects on the signal intensities. We calculated these EALs for four elemental solids (Si, Cu, Ag, and Au) and for energies between 160 eV and 1.4 keV. The XPS calculations were made for two instrumental configurations while the AES calculations were made from the XPS formalism after “switching off” the XPS anisotropy. The EALs for quantitative determination of surface composition by AES and XPS were weak functions of emission angle for emission angles between 0 and 50°. The ratios of the average values of these EALs to the corresponding IMFPs could be fitted to a second-order function of the single-scattering albedo, a convenient measure of the strength of elastic-scattering effects. EALs for quantitative determination of surface composition by AES and XPS for other materials can be simply found from this relationship.

  12. Oxygen adsorption on Cu-9 at. %Al(111) studied by low energy electron diffraction and Auger electron spectroscopy

    Science.gov (United States)

    Yoshitake, Michiko; Bera, Santanu; Yamauchi, Yasuhiro; Song, Weijie

    2003-07-01

    Cu-based alloys have been used for electric cables for long time. In the field of microelectronics, Al had been used for electrical wiring. However, it became clear that electromigration occurs in Al that causes breaking of wires in minute wirings. Due to this problem, Cu wiring is used in most advanced microprocessors. Cu metal is more corrosive than Al and Cu-based alloys with a small amount of Al is expected to solve problems both on electromigration and corrosion. The initial stage of corrosion is oxygen adsorption. We studied surface segregation of Al on Cu-9% Al(111) and oxygen adsorption on the surface with/without Al segregation in ultrahigh vacuum by low energy electron diffraction (LEED) and Auger electron spectroscopy. It was found that Al segregates on the surface to form (√3×√3)R30° structure and the structure vanishes above 595 K to give (1×1) structure while Al still segregates. The specimen was exposed to oxygen at different temperatures. The amount of oxygen uptake was not structure dependent but temperature dependent. Below 595 K, only a small amount of oxygen adsorbed. Between 595 and 870 K, oxygen adsorbed surface showed amorphous LEED pattern. The specimen was annealed at 1070 K after oxygen exposure. When the specimen was exposed oxygen below 870 K, the oxygen Auger intensity decreased significantly by annealing and the annealed surface showed (√3×√3)R30° structure at room temperature. When the specimen was exposed to oxygen at 870 K, diffused spots developed newly in LEED pattern but the pattern disappeared after 1070 K annealing while oxygen Auger intensity remained almost constant. Exposing the specimen to oxygen at 995 K resulted in clear spots in the LEED pattern, which were attributed to the (7/√3×7√3)R30° structure.

  13. Mass spectroscopy of recoiled ions, secondary ion mass spectroscopy, and Auger electron spectroscopy investigation of Y2O3-stabilized ZrO2(100) and (110)

    International Nuclear Information System (INIS)

    Herman, G.S.; Henderson, M.A.; Starkweather, K.A.; McDaniel, E.P.

    1999-01-01

    We have studied the (100) and (110) surfaces of yttria-stabilized cubic ZrO 2 using Auger electron spectroscopy, low energy electron diffraction (LEED), direct recoil spectroscopy, mass spectroscopy of recoiled ions (MSRI), and secondary ion mass spectroscopy (SIMS). The concentration of yttrium at the surface was weakly influenced by the surface structure under the experimental conditions investigated. Both MSRI and SIMS indicated a more enhanced yttrium signal than zirconium signal at the surface compared to the respective bulk concentrations. The surfaces were not very well ordered as indicated by LEED. The yttria-stabilized cubic ZrO 2 single crystal surfaces may not be a suitable model material for pure phase ZrO 2 surfaces due to significant yttria concentrations at the surface. copyright 1999 American Vacuum Society

  14. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  15. Application of a digital data acquisition system for time of flight Positron annihilation-induced Auger Electron Spectroscopy

    Science.gov (United States)

    Gladen, R. W.; Chirayath, V. A.; McDonald, A. D.; Fairchild, A. J.; Chrysler, M. D.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.

    We describe herein a digital data acquisition system for a time-of-flight Positron annihilation-induced Auger Electron Spectrometer. This data acquisition system consists of a high-speed digitizer collecting signals induced by Auger electrons and annihilation gammas in a multi-channel plate electron detector and a BaF2 gamma detector, respectively. The time intervals between these two signals is used to determine the times of flight of the Auger electrons, which are analyzed by algorithms based on traditional nuclear electronics methods. Ultimately, this digital data acquisition system will be expanded to incorporate the first coincidence measurements of Auger electron and annihilation gamma energies.

  16. Atomic Auger spectroscopy: Historical perspective and recent highlights

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    2000-01-01

    The non-radiating decay of an inner-shell ionized atom by the emission of an electron was discovered by Pierre Auger in cloud-chamber experiments in the years 1923 to 1926. The first spectroscopic investigation of Auger electrons was performed by Robinson and Cassie in 1926, marking the birth date of Auger spectroscopy. The following seven decades of Auger spectroscopy will be divided into three periods. In the first period (1926-1960) Auger spectroscopy was mainly connected with β-ray spectroscopy where inner-shell ionization of atoms in the solid state was caused either by γ-conversion or by electron capture. The second period (beginning in 1960) is characterized by the external excitation of gas-phase or free metallic atoms, opening Auger spectroscopy to electron energies in the range of few eV to few keV. The third period (beginning in 1977/78) is characterized by the use of synchrotron radiation with its outstanding properties of tunability, polarization and narrow-band high intensity for the excitation and ionization of inner-shell electrons. Finally, two recent highlights of Auger spectroscopy, the interference between photo- and Auger electron with equal energies and an 'almost' complete experiment for Auger decay, will be presented

  17. Ion-induced Auger electron spectroscopy: a new detection method for compositional homogeneities of alloyed atoms in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A [Osaka Univ., Japan; Imura, T; Iwami, M; Kim, S C; Ushita, K; Okamoto, H; Hamakawa, Y

    1979-09-01

    Auger spectra of Si LMM transitions induced by keV Ar/sup +/ ion bombardment of Si alloy systems have been studied. The spectra observed are composed of two well-defined peaks termed elsewhere the atomic-like and bulk-like peaks, repsectively. A clear correlation has been found between the intensity of the atomic-like peak lying at 88 eV and the content of the foreign atoms alloyed with Si. Experiments were carried out on metallic silicides, or Si alloys with Au, Cu, Pd and Ni, and covalently bonded non-metallic Si alloys of C and H. From these studies, we propose that ion-induced Auger electron spectroscopy might be a useful tool for the determination of alloyed foreign atoms as well as for the study of their compositional homogeneity in binary alloy systems of silicon.

  18. IMPURITY SEGREGATION OF STAINLESS STEEL STUDIED BY ATOM-PROBE AND AUGER ELECTRON SPECTROSCOPY

    OpenAIRE

    Koguchi , Y.; Takahashi , K.; Ishikawa , Y.

    1987-01-01

    The surface compositions of type 304 stainless steel heated in vacuum at 600-900°C were determined by an atom-probe and Auger electron spectroscopic analysis. In addition to enrichment and depletion of alloying elements in the surface of the stainless steel, segregation of impurity elements such as carbon, nitrogen, phosphorus and sulfur is known to occur. In this paper the atom-probe was used to measure the impurity segregation in the grains as well as in the grain boundary while the AES was...

  19. Auger electron spectroscopy and Rutherford backscattering studies of copper in 2024-T3 aluminum following electrochemical anodization in phosphoric acid

    Science.gov (United States)

    Solomon, J. S.

    1981-05-01

    The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.

  20. An Auger electron spectroscopy study on the anodization process of high-quality thin-film capacitors made of hafnium

    International Nuclear Information System (INIS)

    Noya, Atsushi; Sasaki, Katsutaka; Umezawa, Toshiji

    1989-01-01

    Formation process of the anodic oxide film of hafnium for use as a thin-film capacitor has been examined by the current-voltage characteristics of the anodization and the in-depth analysis of formed oxide using Auger electron spectroscopy. It is found that the oxide growth obeys three different rate laws such as the linear rate law at first and next the parabolic rate law during the constant current anodization, and then the reciprocal logarithmic rate law during the constant voltage anodization following after the constant current process. From the Auger electron spectroscopy analysis, it is found that the shape of the compositional depth profile of the grown oxide film varies associating with the rate law of oxidation obeyed. The variation of depth profile correlating with the rate law is discussed with respect to each elementary process such as the transport and/or the reaction of chemical species interpreted from the over-all behavior of anodization process. It is revealed that the stoichiometric film having an interface with sharp transition, which is favorable for obtaining excellent electrical properties of the capacitor, can be obtained under the condition that the phase-boundary reaction is the rate-determining step of the anodization. The constant voltage anodization process also satisfies such circumstances and therefore can be favorable method for preparing highquality thin-film capacitors. (author)

  1. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    Science.gov (United States)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  2. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    International Nuclear Information System (INIS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ∼550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M 2,3 VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  3. Auger electron spectroscopy of the surface of a pipe-like solid C60+18n

    International Nuclear Information System (INIS)

    Khvostov, V.V.; Chernozatonskij, L.A.; Kosakovskaya, Z.Ya.; Babaev, V.V.; Guseva, M.B.

    1992-01-01

    Auger and electron energy loss spectra obtained when probing the surface of nanofiber carbon material by an electron beam point out to C 60 football-type of covers with the outlet to the surface of nanopipe carbon molecules

  4. PAES: Positron annihilation induced Auger electron spectrometer

    OpenAIRE

    Hugenschmidt, Christoph

    2015-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) is a newly developed application for surface studies with high elemental selectivity and exceptional surface sensitivity. The instrument is operated by the Technische Universität München and is located at NEPOMUC.

  5. PAES: Positron annihilation induced Auger electron spectrometer

    Directory of Open Access Journals (Sweden)

    Christoph Hugenschmidt

    2015-08-01

    Full Text Available Positron annihilation induced Auger electron spectroscopy (PAES is a newly developed application for surface studies with high elemental selectivity and exceptional surface sensitivity. The instrument is operated by the Technische Universität München and is located at NEPOMUC.

  6. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites

    International Nuclear Information System (INIS)

    Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2010-01-01

    The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study. This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.

  7. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  8. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  9. The determination of carbon, nitrogen and oxygen in TiCsub(x)Nsub(y)Osub(z) with the Auger electron spectroscopy (AES)

    International Nuclear Information System (INIS)

    Schneider, H.; Nold, E.; Miller, H.T.

    1980-01-01

    The possibility of determining the carbon, nitrogen and oxygen contents in TiCsub(x)Nsub(y)Osub(z) with the Auger-electron-spectroscopy (AES) is discussed. As an example the concentration dependence over the cross section of 1 μm thick TiN-layers is presented. (orig.)

  10. Gold removal rate by ion sputtering as a function of ion-beam voltage and raster size using Auger electron spectroscopy. Final report

    International Nuclear Information System (INIS)

    Boehning, C.W.

    1983-01-01

    Gold removal rate was measured as a function of ion beam voltage and raster size using Auger electron spectroscopy (AES). Three different gold thicknesses were developed as standards. Two sputter rate calibration curves were generated by which gold sputter rate could be determined for variations in ion beam voltage or raster size

  11. Growth and structure of rapid thermal silicon oxides and nitroxides studied by spectroellipsometry and Auger electron spectroscopy

    Science.gov (United States)

    Gonon, N.; Gagnaire, A.; Barbier, D.; Glachant, A.

    1994-11-01

    Rapid thermal oxidation of Czochralski-grown silicon in either O2 or N2O atmospheres have been studied using spectroellipsometry and Auger electron spectroscopy. Multiwavelength ellipsometric data were processed in order to separately derive the thickness and refractive indexes of rapid thermal dielectrics. Results revealed a significant increase of the mean refractive index as the film thickness falls below 20 nm for both O2 or N2O oxidant species. A multilayer structure including an about 0.3-nm-thick interfacial region of either SiO(x) or nitroxide in the case of O2 and N2O growth, respectively, followed by a densified SiO2 layer, was found to accurately fit the experimental data. The interfacial region together with the densified state of SiO2 close to the interface suggest a dielectric structure in agreement with the continuous random network model proposed for classical thermal oxides. Auger electron spectroscopy analysis confirmed the presence of noncrystalline Si-Si bonds in the interfacial region, mostly in the case of thin oxides grown in O2. It was speculated that the initial fast growth regime was due to a transient oxygen supersaturation in the interfacial region. Besides, the self-limiting growth in N2O was confirmed and explained in agreement with several recently published data, by the early formation of a very thin nitride or oxynitride membrane in the highly densified oxide beneath the interface. The beneficial effect of direct nitrogen incorporation by rapid thermal oxidation in N2O instead of O2 for the electrical behavior of metal-oxide-semiconductor capacitors is likely a better SiO2/Si lattice accommodation through the reduction of stresses and Si-Si bonds in the interfacial region of the dielectric.

  12. Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies

    International Nuclear Information System (INIS)

    Lo, W.J.; Somorjai, G.A.

    1978-01-01

    Low-energy-electron diffraction, Auger-electron spectroscopy, electron-energy-loss, and ultraviolet-photoelectron spectroscopies were used to study the structure, composition, and electron energy distribution of a clean single-crystal (111) face of strontium titanate (perovskite). The dependence of the surface chemical composition on the temperature has been observed along with corresponding changes in the surface electronic properties. High-temperature Ar-ion bombardment causes an irreversible change in the surface structure, stoichiometry, and electron energy distribution. In contrast to the TiO 2 surface, there are always significant concentrations of Ti 3+ in an annealed ordered SrTiO 3 (111) surface. This stable active Ti 3+ monolayer on top of a substrate with large surface dipole potential makes SrTiO 3 superior to TiO 2 when used as a photoanode in the photoelectrochemical cell

  13. A quantitative study of valence electron transfer in the skutterudite compound CoP3 by combining x-ray induced Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Diplas, S; Prytz, Oe; Karlsen, O B; Watts, J F; Taftoe, J

    2007-01-01

    We use the sum of the ionization and Auger energy, the so-called Auger parameter, measured from the x-ray photoelectron spectrum, to study the valence electron distribution in the skutterudite CoP 3 . The electron transfer between Co and P was estimated using models relating changes in Auger parameter values to charge transfer. It was found that each P atom gains 0.24 e - , and considering the unit formula CoP 3 this is equivalent to a donation of 0.72 e - per Co atom. This is in agreement with a recent electron energy-loss spectroscopy study, which indicates a charge transfer of 0.77 e - /atom from Co to P

  14. Recommended Auger-electron kinetic energies for 42 elemental solids

    International Nuclear Information System (INIS)

    Powell, C.J.

    2010-01-01

    An analysis is presented of Auger-electron kinetic energies (KEs) from four data sources for 65 Auger transitions in 45 elemental solids. For each data source, a single instrument had been used to measure KEs for many elements. In order to compare KEs from two sources, it was necessary to recalibrate the energy scales of each instrument using recommended reference data. Mean KEs are given for most of the Auger transitions for which there were at least two independent measurements and for which differences from the mean KEs were considered acceptably small. In several cases, comparisons were made to published KE data to resolve discrepancies. We are able to recommend mean KEs for 59 Auger transitions from 42 elemental solids and to provide estimates of the uncertainties of these KEs. This compilation should be useful for the determination of chemical shifts of Auger peaks in Auger electron spectroscopy and X-ray photoelectron spectroscopy.

  15. Investigation of the chemistry of the dielectric/FeCoTb interface by x-ray photoelectron spectroscopy and Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Stickle, W.F.; Coulman, D.

    1987-01-01

    The interfacial chemistry of magneto-optic structures of sputter deposited SiO, SiO 2 , Si 3 N 4 /FeCoTb/SiO, SiO 2 , and Si 3 N 4 was studied in detail by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). XPS and AES depth profiles have revealed a substantial amount of redox chemistry at the dielectric/rare-earth transition metal interfaces. The chemical reactions occur preferentially with the terbium as revealed in the XPS portion of the study by the formation of terbium oxide and terbium silicide. In the case of Si 3 N 4 evidence of TbN/sub x/ has also been observed. ''As deposited'' and annealed samples of the magneto-optic structures are compared and contrasted. It is concluded that Si 3 N 4 is a superior dielectric for magneto-optic media

  16. Effect of heating on the behaviors of hydrogen in C-TiC films with auger electron spectroscopy and secondary ion mass spectroscopy analyses

    International Nuclear Information System (INIS)

    Zou, Y.; Wang, L.W.; Huang, N.K.

    2007-01-01

    C-TiC films with a content of 75% TiC were prepared with magnetron sputtering deposition followed by Ar + ion bombardment. Effect of heating on the behaviors of hydrogen in C-TiC films before and after heating was studied with Auger Electron Spectroscopy and Secondary Ion Mass Spectroscopy (SIMS) analyses. SIMS depth profiles of hydrogen after H + ion implantation and thermal treatment show different hydrogen concentrations in C-TiC coatings and stainless steel. SIMS measurements show the existence of TiH, TiH 2 , CH 3 , CH 4 , C 2 H 2 bonds in the films after H + ion irradiation and the changes in the Ti LMM, Ti LMV and C KLL Auger line shape reveal that they have a good hydrogen retention ability after heating up to the temperature 393 K. All the results show that C-TiC coatings can be used as a hydrogen retainer or hydrogen permeable barrier on stainless steel to protect it from hydrogen brittleness

  17. Determination of diffusion coefficients in Au/Ni thin films by Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Lettif, Ahmed M. [Physics Department, College of Science, Babylon University, Hilla (Iraq)

    2004-07-01

    Interdiffusion in vacuum-deposited Au/Ni thin films at temperatures in the range 200-500 C has been investigated using the Auger depth profiling technique and X-ray diffraction analysis. A modified Wipple model was used to determine the diffusion coefficients of Ni in Au to be 5.3 x 10{sup -16} cm{sup 2}/s at 500 C, 4.0 x 10{sup -17} cm{sup 2}/s at 400 C, 2.5 x 10{sup -18} cm{sup 2}/s at 300 C, and 1.2 x 10{sup -19} cm{sup 2}/s at 200 C. An activation energy of 0.87 eV was calculated. The present diffusion data differ significantly from the corresponding values extracted by some other investigators and the reasons for this disagreement were discussed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature

    Science.gov (United States)

    Lv, Meizhe; Xu, Bin; Cai, Lichao; Guo, Xiaofei; Yuan, Xingdong

    2018-05-01

    After rapid cooling, cubic boron nitride (c-BN) single crystals synthesized under high pressure and high temperature (HPHT) are wrapped in the white film powders which are defined as growth interface. In order to make clear that the transition mechanism of c-BN single crystals, the variation of B and N atomic hybrid states in the growth interface is analyzed with the help of auger electron spectroscopy in the Li-based system. It is found that the sp2 fractions of B and N atoms decreases, and their sp3 fractions increases from the outer to the inner in the growth interface. In addition, Lithium nitride (Li3N) are not found in the growth interface by X-ray diffraction (XRD) experiment. It is suggested that lithium boron nitride (Li3BN2) is produced by the reaction of hexagonal boron nitride (h-BN) and Li3N at the first step, and then B and N atoms transform from sp2 into sp3 state with the catalysis of Li3BN2 in c-BN single crystals synthesis process.

  19. Interdiffusion in epitaxial, single-crystalline Au/Ag thin films studied by Auger electron spectroscopy sputter-depth profiling and positron annihilation

    International Nuclear Information System (INIS)

    Noah, Martin A.; Flötotto, David; Wang, Zumin; Reiner, Markus; Hugenschmidt, Christoph; Mittemeijer, Eric J.

    2016-01-01

    Interdiffusion in epitaxial, single-crystalline Au/Ag bilayered thin films on Si (001) substrates was investigated by Auger electron spectroscopy (AES) sputter-depth profiling and by in-situ positron annihilation Doppler broadening spectroscopy (DBS). By the combination of these techniques identification of the role of vacancy sources and sinks on interdiffusion in the Au/Ag films was possible. It was found that with precise knowledge of the concentration-dependent self-diffusion and impurity diffusion coefficients a distinction between the Darken-Manning treatment and Nernst-Planck treatment can be made, which is not possible on the basis of the determined concentration-depth profiles alone.

  20. Modification to an Auger Electron Spectroscopy system for measuring segregation in a bi-crystal

    International Nuclear Information System (INIS)

    Jafta, C J; Roos, W D; Terblans, J J

    2013-01-01

    It is reported that different crystal surface orientations yield different segregation fluxes. Although there were a few attempts to confirm these predictions experimentally, it is very difficult to compare data without making a few assumptions. Parameters like temperature measurement, crystal history and spectrometer variables are all adding to the complexity of directly comparing the segregation behaviour from one crystal to another. This investigation makes use of a Cu bi-crystal, modifications to the scanning control unit of the AES electron beam to eliminate the difference in experimental parameters and specialized written software to automate the data acquisition process. This makes direct comparison of segregation parameters on two different orientations possible. The paper describes the electron beam modifications, experimental setup and procedures, as well as the software developed to control the electron beam and automate data acquisition.

  1. Positron annihilation induced Auger electron spectroscopic studies of oxide surfaces

    Science.gov (United States)

    Nadesalingam, Manori

    2005-03-01

    Defects on oxide surfaces are well known to play a key role in catalysis. TiO2, MgO, SiO2 surfaces were investigated using Time-Of-Flight Positron induced Auger Electron Spectroscopy (TOF-PAES). Previous work in bulk materials has demonstrated that positrons are particularly sensitive to charged defects. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. Annealed samples in O2 environment show a strong Auger peak of Oxygen. The implication of these results will be discussed

  2. X-ray photoelectron spectroscopy and Auger electron spectroscopy studies on the passivation behavior of plasma-nitrided low alloy steel in nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Chyou, S.D.; Shih, H.C. (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1991-12-14

    Nitrided SAE 4140 steel has been passivated by concentrated nitric acid. The resulting film was characterized using a combination of surface-analytical techniques, such as X-ray photoelectron spectroscopy (XPS) to evaluate the chemical composition of the passive film. Auger electron spectroscopy (AES) combined with ion etching was used to determine the composition depth profiles of nitrided surface. It was found that preferential dissolution of iron leads to enhanced nitrogen and chromium concentrations within the oxynitrided layer. A dense protective oxynitrided layer was found to be formed on the nitrided surface when the concentration of nitric acid was as high as 8 M. The results of X-ray diffraction, XPS and AES analyses conclude that the protective nitride layer is composed of (Fe,Cr){sub 4}N, (Fe,Cr){sub 2-3}N and CrN in the inner layer, Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} and remnant nitrides in the middle layer and nitrides accompanying Cr(OH){sub 3}.H{sub 2}O and {gamma}'-FeOOH in the outermost layer. (orig.).

  3. Investigation of triply excited states of Li-like ions in fast ion-atom collisions by zero-degree Auger projectile electron spectroscopy

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Benis, E.P.; Zamkov, M.; Lin, C.D.; Lee, T.G.; Richard, P.; Gorczyca, T.W.; Morishita, T.

    2005-01-01

    The production of triply excited states of Li-like systems has recently been extended beyond the lithium atom using two different ion-atom collisional techniques: (a) Triple-electron capture into 2s2p 2 and 2p 3 states of F 6+ formed in fast collisions of bare F 9+ ions with Ar and Kr atoms and (b) 180 deg. resonant scattering of quasi-free electrons of H 2 from the 1s2s 3 S metastable state of He-like B, C, N, O and F ions via the 2s2p 2 2 D resonance. Autoionization energies, decay branching ratios and production cross sections for these states were measured using zero-degree Auger projectile electron spectroscopy and compared to theoretical calculations using hyperspherical close coupling (HSCC) and R-matrix methods

  4. Physical design of the positron induced auger electron spectrometer

    International Nuclear Information System (INIS)

    Qin Xiubo; Jiang Xiaopan; Wang Ping; Yu Runsheng; Wang Baoyi; Wei Long

    2009-01-01

    Positron Annihilation Induced Auger Electron Spectroscopy (PAES) has several advantages over those excited by X-rays, high energy electrons or neutrons, such as excellent surface selectivity, high signal-to-noise ratio, low radiation damage,etc. A physical design of time of flight PAES (TOF-PAES) apparatus based on the Beijing Intense Slow Positron Beam (BIPB) is described in this paper. The positrons and electrons are transported in a 4 x 10 -3 T uniform magnetic field, and the gradient of magnetic field is designed to pluralize the Auger electrons emitted with 2π angle. The Auger electron energy is adjusted by a Faraday cage to optimize the energy resolution,which can be better than 2 eV. (authors)

  5. DEPTH MEASUREMENT OF DISRUPTED LAYER ON SILICON WAFER SURFACE USING AUGER SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    V. A. Solodukha

    2016-01-01

    Full Text Available The paper proposes a method for depth measurement of a disrupted layer on silicon wafer surface which is based on application of Auger spectroscopy with the precision sputtering of surface silicon layers and registration of the Auger electron yield intensity. In order to measure the disrupted layer with the help of Auger spectroscopy it is necessary to determine dependence of the released Auger electron amount on sputtering time (profile and then the dependence is analyzed. Silicon amount in the disrupted layer is less than in the volume. While going deeper the disruptive layer is decreasing that corresponds to an increase of atom density in a single layer. The essence of the method lies in the fact the disruptive layer is removed by ion beam sputtering and detection of interface region is carried out with the help of registration of the Auger electron yield intensity from the sputtered surface up to the moment when it reaches the value which is equal to the Auger electron yield intensity for single-crystal silicon. While removing surface silicon layers the registration of the Auger electron yield intensity from silicon surface makes it possible to control efficiently a presence of the disrupted layer on the silicon wafer surface. In this case depth control locality is about 1.0 nm due to some peculiarities of Auger spectroscopy method. The Auger electron yield intensity is determined automatically while using Auger spectrometer and while removing the disrupted layer the intensity is gradually increasing. Depth of the disrupted layer is determined by measuring height of the step which has been formed as a result of removal of the disrupted layer from the silicon wafer surface. Auger spectroscopy methods ensures an efficient depth control surface disruptions at the manufacturing stages of silicon wafers and integrated circuits. The depth measurement range of disruptions constitutes 0.001–1.000 um.

  6. Electron Beam Damage in Poly(Vinyl Chloride) and Poly(Acrylonitrile) as Observed by Auger Electron Spectroscopy

    International Nuclear Information System (INIS)

    Lea, Alan S.; Engelhard, Mark H.; Baer, Donald R.

    2003-01-01

    AES spectra of spun-cast films of poly(vinyl chloride) (PVC) and poly(acrylonitrile) (PAN) were collected over a period of time to determine specimen damage during exposure to a 10kV electron beam. For the PVC, loss of chlorine was observed over a period of 203 minutes to the extent that the final chlorine concentration was only 20% of its original value. PAN exhibited a loss in nitrogen content over a period of 120 minutes, but the rate of damage to the polymer was significantly less than PVC. Figure 1 shows the atomic concentration in the PVC film as a function of dose (time). It takes a dose of approximately 7.0x10-5 Ccm-5 for the chlorine concentration to fall from its original value by 10% (one definition of critical dose). Figure 2 shows a similar drop in nitrogen concentration in the PAN film as a function of dose. For this polymer, it takes a dose of 1.3x10-3 Ccm-2 for the nitrogen concentration to fall by 10%

  7. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  8. Identification of very low energy projectile autoionizing transitions in high velocity collisions using zero-degree Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Liao, C.; Montenegro, E.C.; Hagmann, S.; Richard, P.; Grabbe, S.; Bhalla, C.P.; Wong, K.L.

    1995-01-01

    The unusual looking ''mesa''-shaped cusp observed in O 3+ collisions with He [N. Stolterfoht et al., Proc. 2nd US-Mexico Symp. on Atomic and Molecular Phy. eds. A. Cisneros and T. Morgan (Instituto de Fysica, Cuernavaca, Mexico, 1986) p. 51.], has been investigated using zero-degree electron spectroscopy, in both high resolution singles measurements and lower resolution electron-projectile coincidence measurements at 10, 15 and 23 MeV. The high resolution studies indicate the ''mesa'' peak to be actually composed of primarily two (other than the cusp) very strong autoionizing peaks corresponding to energies of 60 and 100 meV in the emitter frame. The coincidence studies, indicate these lines to originate from excitation of the O 3+ ion followed by autoionization. Ongoing Hartree-Fock-Slater calculations, severely tested at these extremely small transition energies, indicate that these lines can indeed result from the autoionization of t he O 3+ (1s 2 2s2p5l) Rydberg states produced during the collision. Furthermore, the unusually sharp edges of these lines giving rise to the characteristic ''mesa''-shape look, can be explained in terms of the kinematic constraints imposed by the energy and angular acceptance range of the spectrometer. (orig.)

  9. The hydroxylation of passive oxide films on X-70 steel by dissolved hydrogen studied by nuclear reaction analysis, Auger electron spectroscopy, X-ray photoelectron spectroscopy and secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chunsi; Luo Jingli; Munoz-Paniagua, David; Norton, Peter R.

    2006-01-01

    Dissolved hydrogen is known to reduce the corrosion resistance of a passive oxide film on iron and its alloys, especially towards pitting corrosion. Electrochemical techniques have been used to show that the passive films are changed by dissolved hydrogen in an alloy substrate, but direct confirmation of the chemical and compositional profiles and changes has been missing. In this paper we report the direct profiling and compositional analysis of the 4 nm passive film on X-70 steel by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and nuclear reaction analysis (NRA) while hydrogen (deuterium) is charged into the alloy samples from the reverse, unpassivated side. The only route for D to the passive film is therefore by dissolution and diffusion. We show that the original duplex structure of the passive film is converted to a more continuous film containing hydroxyl groups, by reaction with the dissolved hydrogen. This conversion of the oxide ions to hydroxyl groups can lead to more rapid reaction and replacement with (e.g.) Cl - , which is known to enhance pitting. These results are entirely consistent with previous electrochemical studies and provide the first direct confirmation of models on the formation and role of hydroxyl groups derived from these earlier studies

  10. A coincidence study between photo- and Auger electrons

    International Nuclear Information System (INIS)

    Ricz, S.; Koever, A.; Varga, D.; Molnar, J.; Aksela, S.; Jurvansuu, M.

    2000-01-01

    Complete text of publication follows. The investigation of double differential cross sections of photon induced Auger electrons provides very sensitive method for studying the rearrangement process, especially when the angular correlation between photo- and Auger electrons is also studied. Such type of measurements could reveal a new aspect in studying the electron-electron, hole-electron and photoelectron - Auger electron interactions. It enables one to separate the overlapping Auger lines belonging to different initial holes. The traditional coincidence measurement is very time consuming and causes serious calibration problems. In order to overcome these experimental difficulties a new electron-spectrometer (ESA-22) was developed in ATOMKI, Debrecen in cooperation with the Electron spectroscopy group of University of Oulu, Finland. The analyzer consists of a spherical and a cylindrical part. It is very similar to the ESA-21 analyzer. The main differences is that the focal ring can be set different diameters thus either a series of channel detectors can be used to detect the electrons at different angles or a position sensitive channel plate can be applied for simultaneous angular recording of electrons. Furthermore the outer sphere and cylinder are cut into two parts so the spectrometer is capable to analyze two independent angularly resolved electron spectra (in the 0 deg - 180 deg region) at different energy regions, simultaneously. A special electronic control and data handling electronics and software was worked out to control the analyzer. The first results were presented in. In the last year the ESA-22 electron-spectrometer was transported to the I411 beam line of MAX-II synchrotron in Lund, Sweden. The advanced properties of the spectrometer was investigated by measuring coincidences between the photoelectrons originated from the Ar L 3 subshell and the Ar Auger electrons in the 203-207 eV energy region. Fig. 1 shows the single and the coincidence spectra

  11. Application of the Auger and X-ray photoelectron electronic spectroscopies to the study of superficial segregation in the system Pt-Rh

    International Nuclear Information System (INIS)

    Volpe, M.A.; Castellani, N.J.; Leroy, D.B.

    1987-01-01

    The Auger and X-ray photoelectron spectroscopies are applied to the study of the superficial segregation in the system of the binary alloy Pt-Rh. The methodology for the cleaning of the samples, which is essential for the obtainment of reproducible results, has been established. The spectra qualitative analysis allows to identify the element segregated. The application of the Gallon model permits to develop a quantitative study of the phenomenon. (S.M.) [es

  12. Magnetooptic effects and Auger electron spectroscopy of two-layer NiFe-Dy and Fe-Dy films with nonuniform layers

    International Nuclear Information System (INIS)

    Ehdel'man, I.S.; Markov, V.V.; Khudyakov, A.E.; Ivantsov, R.D.; Bondarenko, G.V.; Ovchinnikov, S.G.; Kesler, V.G.; Parshin, A.S.; Ronzhin, I.P.

    2001-01-01

    Magneto-optical effects (magnetic circular dichroism and meridional Kerr effect) and element distribution with layer thickness in two-layer NiFe-Dy and Fe-Dy films, prepared by thermal sputtering of component in ultrahigh vacuum, are investigated. It is shown, that Dy in a two-layer film in the temperature range of 80-300 K makes constant contributions to both effects investigated which are approximately equal to the values of the effects observed in an isolated Dy film only at temperatures below the temperature T c of Dy transition into a ferromagnetic state (T c ∼ 100 K for the films under study). This behaviour of magneto-optical effects is assumed to be due to the influence of a NiFe layer spin system on magnetic state of a Dy layer, this influence is enhanced by the deep penetration of Ni and Fe ions into Dy layer as it follows from the data obtained using Auger electron spectroscopy [ru

  13. Determination of the thickness distribution of a graphene layer grown on a 2″ SiC wafer by means of Auger electron spectroscopy depth profiling

    International Nuclear Information System (INIS)

    Kotis, L.; Gurban, S.; Pecz, B.; Menyhard, M.; Yakimova, R.

    2014-01-01

    Highlights: • The thickness of graphene grown on SiC was determined by AES depth profiling. • The AES depth profiling verified the presence of buffer layer on SiC. • The presence of unsaturated Si bonds in the buffer layer has been shown. • Using multipoint analysis thickness distribution of the graphene on the wafer was determined. - Abstract: Auger electron spectroscopy (AES) depth profiling was applied for determination of the thickness of a macroscopic size graphene sheet grown on 2 in. 6H-SiC (0 0 0 1) by sublimation epitaxy. The measured depth profile deviated from the expected exponential form showing the presence of an additional, buffer layer. The measured depth profile was compared to the simulated one which allowed the derivation of the thicknesses of the graphene and buffer layers and the Si concentration of buffer layer. It has been shown that the graphene-like buffer layer contains about 30% unsaturated Si. The depth profiling was carried out in several points (diameter 50 μm), which permitted the constructing of a thickness distribution characterizing the uniformity of the graphene sheet

  14. Influence of the "surface effect" on the segregation parameters of S in Fe(100): A multi-scale modelling and Auger Electron Spectroscopy study

    Science.gov (United States)

    Barnard, P. E.; Terblans, J. J.; Swart, H. C.

    2015-12-01

    The article takes a new look at the process of atomic segregation by considering the influence of surface relaxation on the segregation parameters; the activation energy (Q), segregation energy (ΔG), interaction parameter (Ω) and the pre-exponential factor (D0). Computational modelling, namely Density Functional Theory (DFT) and the Modified Darken Model (MDM) in conjunction with Auger Electron Spectroscopy (AES) was utilized to study the variation of the segregation parameters for S in the surface region of Fe(100). Results indicate a variation in each of the segregation parameters as a function of the atomic layer under consideration. Values of the segregation parameters varied more dramatically as the surface layer is approached, with atomic layer 2 having the largest deviations in comparison to the bulk values. This atomic layer had the highest Q value and formed the rate limiting step for the segregation of S towards the Fe(100) surface. It was found that the segregation process is influenced by two sets of segregation parameters, those of the surface region formed by atomic layer 2, and those in the bulk material. This article is the first to conduct a full scale investigation on the influence of surface relaxation on segregation and labelled it the "surface effect".

  15. Differential Auger spectrometry

    International Nuclear Information System (INIS)

    Strongin, M.; Varma, M.N.; Anne, J.

    1976-01-01

    A differential Auger spectroscopy method is given for increasing the sensitivity of micro-Auger spectroanalysis of the surfaces of dilute alloys, by alternately periodically switching an electron beam back and forth between an impurity free reference sample and a test sample containing a trace impurity. The Auger electrons from the samples produce representative Auger spectrum signals which cancel to produce an Auger test sample signal corresponding to the amount of the impurity in the test samples

  16. Surface-site-selective study of valence electronic structures of clean Si(100)-2x1 using Si-L23VV Auger electron-Si-2p photoelectron coincidence spectroscopy

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Nagaoka, Shinichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2010-01-01

    Valence electronic structures of a clean Si(100)-2x1 surface are investigated in a surface-site-selective way using Si-L 23 VV Auger electron-Si-2p photoelectron coincidence spectroscopy. The Si-L 23 VV Auger electron spectra measured in coincidence with Si-2p photoelectrons emitted from the Si up-atoms or Si 2nd-layer of Si(100)-2x1 suggest that the position where the highest density of valence electronic states located in the vicinity of the Si up-atoms is shifted by 0.8 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. Furthermore, the valence band maximum in the vicinity of the Si up-atoms is indicated to be shifted by 0.1 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. These results are direct evidence of the transfer of negative charge from the Si 2nd-layer to the Si up-atoms. (author)

  17. Utilization of the statistics techniques for the analysis of the XPS (X-ray photoelectron spectroscopy) and Auger electronic spectra's deconvolutions

    International Nuclear Information System (INIS)

    Puentes, M.B.

    1987-01-01

    For the analysis of the XPS (X-ray photoelectron spectroscopy) and Auger spectra, it is important to performe the peaks' separation and estimate its intensity. For this purpose, a methodology was implemented, including: a spectrum's filter; b) substraction of the base line (or inelastic background); c) deconvolution (separation of the distribution that integrates the spectrum) and d) error of calculation of the mean estimation, comprising adjustment quality tests. A software (FORTRAN IV plus) that permits to use the methodology proposed from the experimental spectra was implemented. The quality of the methodology was tested with simulated spectra. (Author) [es

  18. Characterization of oxide layers on amorphous Mg-based alloys by Auger electron spectroscopy with sputter depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Baunack, S.; Wolff, U. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden, Postfach 270016, 01171, Dresden (Germany); Subba Rao, R.V. [Indira Ghandi Centre for Atomic Research, 603 102, Kalpakkam, Tamil Nadu (India)

    2003-04-01

    Amorphous ribbons of Mg-Y-TM-[Ag](TM: Cu, Ni), prepared by melt spinning, were subjected to electrochemical investigations. Oxide layers formed anodically under potentiostatic control in different electrolytes were investigated by AES and sputter depth profiling. Problems and specific features of characterization of the composition of oxide layers and amorphous ternary or quaternary Mg-based alloys have been investigated. In the alloys the Mg(KL{sub 23}L{sub 23}) peak exhibits a different shape compared to that in the pure element. Analysis of the peak of elastically scattered electrons proved the absence of plasmon loss features, characteristic of pure Mg, in the alloy. A different loss feature emerges in Mg(KL{sub 23}L{sub 23}) and Cu(L{sub 23}VV). The system Mg-Y-TM-[Ag] suffers preferential sputtering. Depletion of Mg and enrichment of TM and Y are found. This is attributed mainly to the preferential sputtering of Mg. Thickness and composition of the formed oxide layer depend on the electrochemical treatment. After removing the oxide by sputtering the concentration of the underlying alloy was found to be affected by the treatment. (orig.)

  19. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    International Nuclear Information System (INIS)

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-01-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  20. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    Science.gov (United States)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  1. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Science.gov (United States)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrère, D.; Rijllart, A.; Saban, R.

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument's capabilities.

  2. Auger Electron Therapy And Brachytherapy Tumor Treatment

    International Nuclear Information System (INIS)

    Laster, B.H.; Shani, G.

    2002-01-01

    Auger Electron Therapy (AET) is a binary approach for improving cancer radiotherapy. It involves the selective targeting of an atom to tumor cells using physiological pathway. The atom is then irradiated by a specific radiation that produces secondary radiation called Auger electrons. One of the problems associated with the clinical application of AET, is that the energy of the photons required for stimulating photoelectric absorption in most of the available high Z target atoms, is too low to achieve penetration through normal surrounding tissues to the depth of the tumor, when an external source is used. The solution is therefore the use of a brachytherapy technique. There are two other problems associated with the use of radiation as a cancer treatment. The first is the limitation on radiation dose to the normal tissue within the treatment volume. The second problem is the limitation imposed by the miniscule size of the critical target of the cell, namely the DNA (0.25% of the cell mass). The solution to the first problem can be achieved by using the brachytherapy technique. The second problem can be resolved by placing the radiation source in close position to the DNA. AET, as we apply it, provides the two solutions to the two problems. When a photon is absorbed by an electron in the K or L shell of an high Z atom, the electron is ejected from the atom, creating a vacancy in the shell. This vacancy is immediately filled with an electron from an upper shell. The energy difference between the two shells is sometimes emitted as an x-ray, however, frequently the energy is transferred to an outer shell electron that is emitted as an Auger electron. These electrons are emitted at energies of up to ∼30 keV and therefore have a very short range in the cell. They will deposit all their energy within 20-30 nm from the point of emission. i.e. all the energy is deposited in the DNA. In our work indium is used as the high Z atom

  3. Electron microscopy and auger spectroscopy study of the wetting of the grain boundaries in the systems Mo-Pb, Mo-Sn, Mo-Ni and Ni-Pb; Etude par microscopie electronique et spectroscopie auger du mouillage des joints de grains dans les systemes Mo-Pb, Mo-Sn, Mo-Ni et Ni-Pb

    Energy Technology Data Exchange (ETDEWEB)

    Charai, A. [Faculte des Sciences et Techniques de Saint Jerome, Lab. TECSEN, UMR 6122 du CNRS, 13 - Marseille (France); Kutcherinenko, I.; Priester, L. [Paris-11 Univ., ISMA, 91 - Orsay (France); Penisson, J.M. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, DRFMC-SP2M, 38 (France); Pontikis, V. [Centre National de la Recherche Scientifique (CNRS), Centre d' Etudes de Chimie Metallurgique, 94 - Vitry-sur-Seine (France); Wolski, K. [Ecole NationaleSuperieure des Mines de Saint Etienne, Centre SMS/MPI, URA 1884 du CNRS, 42 - Saint Etienne (France); Vystavel, T. [Academy of Sciences of Czech Republic, Institute of Physics, Praha (Czech Republic)

    2002-09-01

    Understanding the mechanism of the intergranular penetration of a liquid phase into a metallic solid is an important problem. The structural and chemical characterization of nano-metric films at grain boundaries is now possible by using high resolution electron microscopy associated with X-ray micro-analysis, electron energy loss spectroscopy and Auger spectroscopy. In order to study this problem, two different classes of model materials were selected according to their crystallographic structure: a bcc metal (molybdenum) and an fcc one (nickel). The wetting element was either lead or tin or nickel. In a first approach, the metallic matrix was polycrystalline. The conditions in which the liquid phase penetrates into the grain boundaries were studied by using special preparation and observation techniques. In particular, the use of a Focused Ion Beam microscope (FIB) allowed the preparation of thin foils located very precisely inside the matrix as well as multi-scale observations. These specimens were further observed in electron microscopy with a very high resolution. (authors)

  4. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  5. 3 to 15 keV Ar+ induced Auger electron emission from Si and Ar

    International Nuclear Information System (INIS)

    Kempf, J.; Kaus, G.

    1977-01-01

    Ar + induced Auger electrons from Si and Ar were investigated at bombardment energies between 3-15 keV and target currents of a few μA. The Auger electron yields were compared with secondary ion yields of Si and Ar by simultaneous SIMS-AES measurements. In the ion induced Auger spectra of Si five Auger peaks and in the Ar spectra three Auger peaks were observed. The ion induced Auger electron yield of Si and Ar were found to be strongly dependent upon the primary ion energy. 'Bulk like' and 'atomic like' Auger transitions of ion induced Auger electrons of Si were observed. (orig.) [de

  6. Interaction of measles virus vectors with Auger electron emitting radioisotopes

    International Nuclear Information System (INIS)

    Dingli, David; Peng, K.-W.; Harvey, Mary E.; Vongpunsawad, Sompong; Bergert, Elizabeth R.; Kyle, Robert A.; Cattaneo, Roberto; Morris, John C.; Russell, Stephen J.

    2005-01-01

    A recombinant measles virus (MV) expressing the sodium iodide symporter (NIS) is being considered for therapy of advanced multiple myeloma. Auger electrons selectively damage cells in which the isotope decays. We hypothesized that the Auger electron emitting isotope 125 I can be used to control viral proliferation. MV was engineered to express both carcinoembryonic antigen and NIS (MV-NICE). Cells were infected with MV-NICE and exposed to 125 I with appropriate controls. MV-NICE replication in vitro is inhibited by the selective uptake of 125 I by cells expressing NIS. Auger electron damage is partly mediated by free radicals and abrogated by glutathione. In myeloma xenografts, control of MV-NICE with 125 I was not possible under the conditions of the experiment. MV-NICE does not replicate faster in the presence of radiation. Auger electron emitting isotopes effectively stop propagation of MV vectors expressing NIS in vitro. Additional work is necessary to translate these observations in vivo

  7. Composition profiles of several contaminated and cleaned surfaces of gold thick films on copper plates by Auger electron and secondary ion mass spectroscopies

    International Nuclear Information System (INIS)

    Komiya, S.; Mizuno, M.; Narusawa, T.; Maeda, H.; Yoshikawa, M.

    1974-01-01

    Preparation and evaluation of a clean Au film are investigated. Development of a preparation method for obtaining clean surface on a copper shell in the JFT-2a (DIVA) TOKAMAK toroidal vacuum chamber is the aim of the present work. Au films prepared by ion plating and vacuum evaporation have been analysed by a cylindrical mirror Auger electron analyser in combination with a quadrupole mass spectrometer during 2 keV Xe ion bombardment from a sputter ion gun over the whole range of thickness of several microns. Contaminants are found to segregate on the top surface and at the interface. To expose a clean Au surface by the ion bombardment, surface layers within 1000 A had to be removed from the surfaces contaminated by touching with either a naked hand or a nylon glove or covered by a small amount of Ti. Mutual diffusions across the interfaces are also analyzed as a function of the substrate temperature. A Nb sandwich layer inhibites effectively the mutual diffusion. (auth.)

  8. Auger electron emitters: Insights gained from in vitro experiments

    International Nuclear Information System (INIS)

    Makrigiorgos, G.; Adelstein, S.J.; Kassis, A.I.

    1990-01-01

    This paper outlines the evolution of the current rationale for research into the biological effects of tissue-incorporated Auger electron emitters. The first section is a brief review of the research conducted by several groups in the last fifteen years. The second section describes the in vitro model used in our studies, dosimetric calculations, experimental techniques and recent findings. The third section focuses on the use of Auger electron emitters as in vitro microprobes for the investigation of the radiosensitivity of distinct subcellular components. Examination of the biological effects of the Auger electron emitter 125 I located in different cellular compartments of a single cell line (V 79 hamster lung fibroblast) verifies that DNA is the critical cell structure for radiation damage and that the sensitive sites are of nanometer dimensions. The data from incorporation of several Auger electron emitters at the same location within DNA suggest that there are no saturation effects from the decay of these isotopes (i.e. all the emitted energy is biologically effective) and provide some insight into which of the numerous physical mechanisms accompanying the Auger decay are most important in causing cell damage. Finally the implications of Auger electron emission for radiotherapy and radiation protection in diagnostic nuclear medicine are detailed and further research possibilities are suggested. (orig.)

  9. Ab Initio Analysis of Auger-Assisted Electron Transfer.

    Science.gov (United States)

    Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V

    2015-01-15

    Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.

  10. The study of composition changes in thin film coatings of Ge-As-Se type under relativistic electron irradiation by means of electron Auger spectroscopy

    International Nuclear Information System (INIS)

    Kesler, L.G.; Dovgoshej, N.I.; Savchenko, N.D.

    1991-01-01

    Data on the influence of relativistic electrons on depth profile of Ge 33 As 12 Se 55 films were obtained for the first time. It was established that the most sufficient change of element composition of films in result of electron irradiation took place in the surface layer and on film-sublayer interface. It can be explained by increase of diffusion of impurities and free atoms

  11. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    International Nuclear Information System (INIS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-01-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E≅1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube

  12. Electron microscopy and auger spectroscopy study of the wetting of the grain boundaries in the systems Mo-Pb, Mo-Sn, Mo-Ni and Ni-Pb

    International Nuclear Information System (INIS)

    Charai, A.; Kutcherinenko, I.; Priester, L.; Penisson, J.M.; Pontikis, V.; Wolski, K.; Vystavel, T.

    2002-01-01

    Understanding the mechanism of the intergranular penetration of a liquid phase into a metallic solid is an important problem. The structural and chemical characterization of nano-metric films at grain boundaries is now possible by using high resolution electron microscopy associated with X-ray micro-analysis, electron energy loss spectroscopy and Auger spectroscopy. In order to study this problem, two different classes of model materials were selected according to their crystallographic structure: a bcc metal (molybdenum) and an fcc one (nickel). The wetting element was either lead or tin or nickel. In a first approach, the metallic matrix was polycrystalline. The conditions in which the liquid phase penetrates into the grain boundaries were studied by using special preparation and observation techniques. In particular, the use of a Focused Ion Beam microscope (FIB) allowed the preparation of thin foils located very precisely inside the matrix as well as multi-scale observations. These specimens were further observed in electron microscopy with a very high resolution. (authors)

  13. Photoion Auger-electron coincidence measurements near threshold

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Keller, N.; Liljeby, L.; Short, R.T.; Sellin, I.A.; Lindle, D.W.

    1990-01-01

    The vacancy cascade which fills an atomic inner-shell hole is a complex process which can proceed by a variety of paths, often resulting in a broad distribution of photoion charge states. We have measured simplified argon photoion charge distributions by requiring a coincidence with a K-LL or K-LM Auger electron, following K excitation with synchrotron radiation, as a function of photon energy, and report here in detail the argon charge distributions coincident with K-L 1 L 23 Auger electrons. The distributions exhibit a much more pronounced photon-energy dependence than do the more complicated non-coincident spectra. Resonant excitation of the K electron to np levels, shakeoff of these np electrons by subsequent decay processes, double-Auger decay, and recapture of the K photoelectron through postcollision interaction occur with significant probability. 17 refs

  14. Back-view Auger electron spectrometer-diffractometer

    International Nuclear Information System (INIS)

    Antipov, V.G.; Bol'shunov, I.B.; Romanov, S.S.

    1990-01-01

    Design of a device on the base of quasispherical four-grid energy analyzer for recording the Auger electron spectra (AES) and observation of the patterns of slow electron diffraction (SED) on the side of an electron gun, is described. A layout of a small-sized electron gun providing for diffraction pattern recording up to the electron energies E ≅ 20 eV, is presented. At E=100 eV the gun current is ≅ 0.8 muA at electron beam diameter on a sample ≤ 1 mm. In the AES regime the gun allows one to record Auger spectra at electron energy E ≤ 3 keV, current ≅ 5 muA and electron beam diameter on a sample ≤ 0.2 mm. The maximum gun current is ≅ 25 muA for an increased beam diameter. Exapmles illustrating the device operation in AES and SED regimes, are presented

  15. Average L-shell fluorescence, Auger, and electron yields

    International Nuclear Information System (INIS)

    Krause, M.O.

    1980-01-01

    The dependence of the average L-shell fluorescence and Auger yields on the initial vacancy distribution is shown to be small. By contrast, the average electron yield pertaining to both Auger and Coster-Kronig transitions is shown to display a strong dependence. Numerical examples are given on the basis of Krause's evaluation of subshell radiative and radiationless yields. Average yields are calculated for widely differing vacancy distributions and are intercompared graphically for 40 3 subshell yields in most cases of inner-shell ionization

  16. X-ray-excited Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Weightman, P.

    1982-01-01

    This article reviews developments in the understanding of x-ray-excited Auger and photoelectron spectra in the light of theoretical developments in atomic, molecular and solid-state physics. After reviewing progress in XPS and AES separately emphasis is placed on the inter-relationship between the two fields: Auger rates, for example, are the dominant contribution to core-level XPS linewidths and by combining XPS and AES it is possible to deduce information about Coster-Kronig processes which are difficult to study directly. An account is given of how the combination of measurements of environmentally dependent shifts in XPS and AES energies allows one to isolate initial- and final-state contributions which can then be related to the results of other experimental techniques. There is a brief discussion of many-electron effects and a discussion of how the combination of XPS and AES spectra involving valence levels enables the effects of hole-state localisation to be studied. (author)

  17. Production of the Ne Auger electrons by Ne/sup +/ bombardment of Mg and Al surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, J; Pepper, S V [National Aeronautics and Space Administration, Cleveland, Ohio (USA). Lewis Research Center

    1976-07-01

    The authors have bombarded Mg and Al surfaces with Ne/sup +/ ions and in this letter present evidence for the production of an inner shell vacancy in the Ne by the asymmetric Ne-Mg and Ne-Al collision. In addition, autoionization states of neutral Ne have been observed. These states are to be distinguished from the more usual case in Auger electron spectroscopy of de-excitation of an ion with a core vacancy.

  18. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  19. Electron capture Auger aftereffect of ammine cobalt complex

    International Nuclear Information System (INIS)

    Harada, Masayuki; Sano, Hirotoshi

    1976-01-01

    The study of ammine cobalt complex by luminescent Moessbauer spectrometry method was performed. The method was compared with hot atom chemistry method. The electron states in atoms are changed by the aftereffect on Auger emission following the electron capture process. The state of oxidation of disintegration products is usually higher than that of parent nuclei. However, sometimes, lower oxidation is seen in Fe-57, the daughter nuclei of Co-57. This phenomenon may be due to radiation chemistry process, and this effect can be observed by the luminescent Moessbauer spectrometry method. However, the range of the effect can not be seen by the Moessbauer method. Estimation showed that the Auger electrons stay within the surrounding area of the disintegration atom, and the effect does not reach to distant places. The yield of Fe-57 in the electron capture process of Co-57 in cobalt complex, the G-value, and the hot atom chemical yield were obtained. It is concluded that the aftereffect of the Auger process is the localized radiation chemistry effect. Good correlation was seen between the present method and the hot atom chemistry method. (Kato, T.)

  20. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  1. X-ray induced production and yield kinetics of photo- and Auger Electrons in semiconductors

    International Nuclear Information System (INIS)

    Peregudov, V.I.; Pashaev, Eh.M.

    1991-01-01

    The paper is dedicated to theoretical and experimental analysis of the mechanism of indirect excitation of soft Auger-electrons due to atom electron ionization using Ge crystal exposed to MoK α radiation as an example. Process of generation of these Auger-electrons is considered in detail, solution of kinetic equation for electrons, as well as, experimental data proving crucial role of indirect processes in generation of soft Auger-electrons are given

  2. Correlation of the Auger electrons direction of movement with the internal electron conversion direction of movement

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2013-01-01

    On installation of coincidences of γ-quanta with electrons and with law energy electrons about zero area the spatial correlation of the direction emitting Auger-electrons and electron of internal conversion was investigated at the 152 Eu decay. Auger-electrons were registered on e 0 -electrons of the secondary electron emission (γ e IC e 0 -coincidences). It was established, that Auger-electrons of M-series, as well as electrons 'shake-off' at β-decay and internal conversion, are strongly correlated at the direction of movement with the direction of movement of basic particle (β -particle, conversion electron), moving together mainly in the forward hemisphere. The intensity of correlated M-Auger radiation in range energy 1000 - 1700 eV is equal to intensity of correlated radiation 'shake-off' electron from internal conversion in this range. The assumption, that the presence of spatial correlating Auger-electron and conversion electron caused by cur-rent components of electron-electron interaction of particles in the final state is made

  3. Comparison of the PCI distortion effects on the Auger lineshape for electron and photon impact ionization

    International Nuclear Information System (INIS)

    Paripas, B.; Vitez, G.; Vikor, Gy.; Tokesi, K.; Sankari, R.; Calo, A.

    2005-01-01

    The distortion effects of the post-collision interaction (PCI) on the Ar LMM Auger electron lineshape for electron and photon impact ionization have been calculated. The calculations were based on the eikonal model of Kuchiev and Sheinerman [Sov. Phys. - Tech. Phys. 32 (1987) 879]. It is shown that the Auger peak asymmetry depends on the emission angle of the Auger electron relative to the primary beam (and the polarization vector of the photon beam). At a given excess energy, defined as the difference between the impact energy and the binding energy, the absolute value of the Auger peak asymmetry is always larger for electron impact ionization than for photoionization. At the same time, the angular dependence of the PCI distortion is stronger for photoionization. In both cases the Auger peak asymmetry has a maximum when the energy of the ejected electron and that of the Auger electron are nearly equal. The calculations are in good agreement with our previous experimental results

  4. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  5. A new route to nanoscale tomographic chemical analysis: Focused ion beam-induced auger electron spectrosocpy

    Science.gov (United States)

    Parvaneh, Hamed

    This research project is aimed to study the application of ion-induced Auger electron spectroscopy (IAES) in combination with the characteristics of focused ion beam (FIB) microscopy for performing chemical spectroscopy and further evaluate its potential for 3-dimensional chemical tomography applications. The mechanism for generation of Auger electrons by bombarding ions is very different from its electron induced counterpart. In the conventional electron-induced Auger electron spectroscopy (EAES), an electron beam with energy typically in the range 1-10kV is used to excite inner-shell (core) electrons of the solid. An electron from a higher electron energy state then de-excites to fill the hole and the extra energy is then transferred to either another electron, i.e. the Auger electron, or generation of an X-ray (photon). In both cases the emitting particles have charac-teristic energies and could be used to identify the excited target atoms. In IAES, however, large excitation cross sections can occur by promotion of in-ner shell electrons through crossing of molecular orbitals. Originally such phenomenological excitation processes were first proposed [3] for bi-particle gas phase collision systems to explain the generation of inner shell vacancies in violent collisions. In addition to excitation of incident or target atoms, due to a much heavier mass of ions compared to electrons, there would also be a substantial momentum transfer from the incident to the target atoms. This may cause the excited target atom to recoil from the lattice site or alternatively sputter off the surface with the possibility of de-excitation while the atom is either in motion in the matrix or traveling in vacuum. As a result, one could expect differences between the spectra induced by incident electrons and ions and interpretation of the IAE spectra requires separate consideration of both excitation and decay processes. In the first stage of the project, a state-of-the-art mass

  6. Many-electron effect in the resonant L23-M23V Auger-electron spectrum of Ti metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    Above the L23 absorption edge the L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectrum of Ti metal shows a normal L 23 -M 23 V Auger decay spectrum at a constant kinetic energy (K.E.). Here LX and MY are the atomic shells Lx and My, respectively. Apart from a weak spectral feature of the L2-M23V Auger transition appearing around the L2 edge, the RAES spectra of Ti meal show a very little difference between the L2 and L3 regions [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421]. It is shown that the time scale of relaxation of the resonantly excited L23-hole state to the L23-electron ionized state is much shorter than that of the L23-hole decay so that the L 23 -M 23 V RAES spectrum of Ti metal resembles much the normal L 23 -M 23 V Auger decay spectrum. The relaxation of the resonantly excited L23-hole state to the fully relaxed L23-hole state before the L23-hole decays, explains the extra width which is the primary cause of the discrepancy between the experimental high resolution near edge X-ray absorption spectroscopy (XAS) spectrum of Ti metal and the one calculated by the particle-hole Green's function including the Coulomb exchange interaction between the 2p hole and the 3d electron. The time scale of relaxation of the L3V two-hole state created by the L2-L3V Coster-Kronig (CK) decay to the single L3-hole state is much shorter than that of the L3-hole decay so that the L2-L3V-L3-M23V CK preceded Auger decay spectrum resembles much the L3-M23V Auger decay one

  7. Evidence for a new class of many-electron Auger transitions in atoms

    International Nuclear Information System (INIS)

    Lee, I.; Wehlitz, R.; Becker, U.; Amusia, M.Ya.; Academy of Sciences, Saint Petersburg

    1993-01-01

    The possibility of the joint decay of two holes and one excited electron is discussed as one way many-electron Auger transitions can take place. It is shown that existing experimental decay spectra of resonantly excited states in krypton and xenon exhibit weak lines which may be associated with this new type of Auger process. (Author)

  8. A new calculational method to assess the therapeutic potential of Auger electron emission

    International Nuclear Information System (INIS)

    Humm, J.L.; Charlton, D.E.

    1989-01-01

    This paper discusses a new computer code to estimate the efficacy of Auger electron sources in cancer therapy. Auger electron emission accompanies the decay of many radionuclides already commonly used in nuclear medicine, for example; 99m Tc and 201 Tl. The range of these electrons is in general sub-cellular, therefore, the toxicity of the source depends on the site of decay relative to the genetic material of the cell. Electron track structure methods have been used which enable the study of energy deposition from Auger sources down to the Angstrom level. A figure for the minimum energy required per single strand break is obtained by fitting our energy deposition calculations for 125 I decays in a model of the DNA to experimental data on break lengths from 125 I labeled plasmid fragments. This method is used to investigate the efficiency of double strand break production by other Auger sources which have potential value for therapy. The high RBE of Auger sources depends critically on the distance between the source and target material. The application of Auger emitters for therapy may necessitate a carrier molecule that can append the source to the DNA. Many DNA localizing agents are known in the field of chemotherapy, some of which could be carrier molecules for Auger sources; the halogenated thymidine precursors are under scrutiny in this field. The activation of Auger cascades in situ by high energy, collimated X ray and neutron beams is also assessed

  9. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide

    Science.gov (United States)

    Jolley, John G.; Geesey, Gill G.; Hankins, Michael R.; Wright, Randy B.; Wichlacz, Paul L.

    1989-08-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 2% alginic acid polysaccharide aqueous solution. Pre- and post-exposure characterization were done by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that some of the copper was oxidized by the alginic acid solution. Some of the copper was removed from the Cu/Ge interface and incorporated into the polymer matrix. Thus, biocorrosion of copper was exhibited by the alginic acid polysaccharide.

  10. The participant Coster-Kronig preceded Auger transition in the resonant L2,3-M2,3V Auger electron spectrum of Ti metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    The L 2,3 -M 2,3 V resonant Auger electron spectroscopy (RAES) spectrum of Ti metal measured by Le Fevre et al. [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421] is analyzed in the light of relaxation and decay of the resonantly excited L 2,3 -hole states. The relaxation time of the resonantly excited L 2,3 -hole state to the fully relaxed (screened) one is much shorter than the L 2,3 -hole Auger decay time, whereas the participant Coster-Kronig (CK) decay time of the resonantly excited L 2 -hole state to the fully relaxed L 3 -hole state at the L 2 resonance is as short as the relaxation time of the resonantly excited L 2 -hole state to the fully relaxed one. The excited electron is predominantly either rapidly decoupled from the L 2,3 -hole decay or annihilated by the participant CK decay. Thus, near the L 2,3 edges the L 2,3 -M 2,3 V RAES spectral peak appears at constant kinetic energy. The L 2,3 -M 2,3 V RAES spectrum shows a normal L 2,3 -M 2,3 V Auger decay profile not modulated by the density of empty d states probed by the resonant excitation. Not only the relaxation time but also the participant CK decay time depends on photon energy because they depend on the density of empty d states probed by the resonant excitation. As a result, the L 2,3 X-ray absorption spectroscopy spectral line broadening depends on photon energy

  11. Electron emission relevant to inner-shell photoionization of condensed water studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hikosaka, Y., E-mail: hikosaka@las.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Mashiko, R.; Konosu, Y.; Soejima, K. [Department of Environmental Science, Niigata University, Niigata 950-2181 (Japan); Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); SOKENDAI, Okazaki 444-8585 (Japan)

    2016-11-15

    Highlights: • Multi-electron coincidence spectroscopy is applied to the study of electron emissions from condensed H2O molecules. • Coincidence Auger spectra are obtained for different photoelectron energies. • The energy distribution of the slow electrons ejected in the Auger decay is deduced from three-fold coincidences. - Abstract: Multi-electron coincidence spectroscopy using a magnetic-bottle electron spectrometer has been applied to the study of the Auger decay following O1s photoionization of condensed H{sub 2}O molecules. Coincidence Auger spectra are obtained for three different photoelectron energy ranges. In addition, the energy distribution of the slow electrons ejected in the Auger decay of the O1s core hole is deduced from three-fold coincidences.

  12. Ne, Ar, Fe, and Cu Auger-electron production at National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Lee, D.H.; Johnson, B.M.; Jones, K.W.; Guardala, N.A.; Price, J.L.; Stumborg, M.F.; Glass, G.A.

    1992-01-01

    Energetic K and L Auger electrons produced by focussed, filtered, broad-band synchrotron radiation have been measured at the x-ray ring of the National Synchrotron Light Source (NSLS). The x-ray beam was used to study inner-shell photoionization of Ne and Ar gas and Fe and Cu solid film targets. The Auger electrons were analyzed by means of a semi-hemispherical electrostatic electron spectrometer at the energy resolution of ∼ 3 %. The electrons were detected at both 90 degree and 0 degree with respect to the photon beam direction. Broad distributions of the inner-shell photoelectrons were also observed, reflecting the incoming photon flux distribution. The Fe and Cu K Auger electron spectra were found to be very similar to the Ar K Auger electron spectra. This was expected, since deep inner-shell Auger processes are not affected by the outer valence electrons. Above 3 keV in electron energy, there have been few previous Auger electron measurements. 2 figs., 13 refs

  13. Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy.

    NARCIS (Netherlands)

    Terry, S.Y.A.; Vallis, K.A.

    2012-01-01

    PURPOSE: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. METHODS AND MATERIALS: Chromatin structure was

  14. The effect of Coster-Kronig transition on the Auger-photoelectron coincidence spectroscopy spectra of early 3d-transition metals

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2004-01-01

    The singles L23-M45M45 Auger-electron spectroscopy (AES) spectrum of early 3d-transition metal can be fitted by a weighted sum of the density of the single-hole states and that of the two-hole states, broadened by the initial L23-hole lifetime width, respectively (in the present paper we denote the atomic shells Lx, My, and Nz by LX, MY and NZ, respectively). With increasing occupancy of the 3d band the probability of creating the two-hole states by the L23-M45M45 Auger transition and the L2-L3M45 Coster-Kronig (CK) transition increases. However, the M45 hole created by the CK transition is delocalized and becomes decoupled (screened out) from the L3-hole decay so that the L3M45 two-hole state 'decays' to the single L3-hole state before the L3-hole decays. Thus the singles AES spectrum by the L2-L3-M45(M45) CK-transition preceded Auger transition and the singles one by the L3-M45(M45) Auger-transition overlap. We can study the M45-hole dynamics by Auger-photoelectron coincidence spectroscopy because the coincidence spectral lineshape depends on the dynamics of the M45 hole created by the CK transition

  15. Local radiolytic effectiveness of Auger electrons of iodine-125 in benzene-iodine solutions

    International Nuclear Information System (INIS)

    Uenak, P.; Uenak, T.

    1987-01-01

    High radiotoxicity of iodine-125 has been mainly attributed to the local radiolytic effects of Auger electrons on biological systems. In the present study, experimental and theoretical results are compared. The agreement between the experimental and theoretical results explains that the energy absorption of iodine aggregates has an important role in the radiolytic effectiveness of Auger electrons and iodine-125 in benzene-iodine solutions. (author) 18 refs.; 3 figs

  16. Application of principal component and factor analyses in electron spectroscopy

    International Nuclear Information System (INIS)

    Siuda, R.; Balcerowska, G.

    1998-01-01

    Fundamentals of two methods, taken from multivariate analysis and known as principal component analysis (PCA) and factor analysis (FA), are presented. Both methods are well known in chemometrics. Since 1979, when application of the methods to electron spectroscopy was reported for the first time, they became to be more and more popular in different branches of electron spectroscopy. The paper presents examples of standard applications of the method of Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). Advantages one can take from application of the methods, their potentialities as well as their limitations are pointed out. (author)

  17. Summary Report of Consultants' Meeting on Auger Electron Emission Data Needs for Medical Applications

    International Nuclear Information System (INIS)

    Noy, Roberto Capote; Chung, Hyun Kyung; Bartschat, Klaus; Dong, Chenzhong; Jonsson, Per; Kibedi, Tibor; Kondev, Filip G.; Nikjoo, Hooshang; Palffy, Adriana

    2013-11-01

    A summary is given of a Consultants' Meeting on 'Auger Electron Emission Data Needs for Medical Applications'. Participants assessed and reviewed detailed atomic and nuclear data needs for a number of Auger emitters deemed as potentially suitable for applications in nuclear medicine and radiotherapy. Technical discussions are described in this report, along with recommendations for future work, along with recommendations for future work. Presentations by the consultants at the meeting are available at http://www-nds.iaea.org/index-meeting-crp/CM-Auger-2013/. (author)

  18. Two and three electron Auger transitions in collisions of highly-charged ions with surfaces

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Andriamonje, S.; Andrae, H.J.

    1991-01-01

    The Auger electron spectra from Ar 9+ approaching at 265 eV a Si or metal surface in vacua of 10 -5 Pa or UHV are identical. Experiments on atomic physics in front of surfaces are thus possible in standard vacuum. N 7+ approaching a surface at 1000 eV penetrates with great probability into the bulk and gives rise to K 2 L 2 L double Auger lines, observed for the first time with low energy highly charged ions. (orig.)

  19. Core-valence coupling in the Ru 4p photoexcitation/Auger decay process: Auger-photoelectron coincidence spectroscopy study

    International Nuclear Information System (INIS)

    Gotter, R.; Siu, W.-K.; Bartynski, R. A.; Hulbert, S. L.; Wu, Xilin; Zitnik, M.; Nozoye, H.

    2000-01-01

    The N 23 VV Auger spectrum of Ru has been measured in coincidence with 4p 1/2 and with 4p 3/2 photoelectrons. Unlike other metals that exhibit bandlike Auger decays, we find that the two Auger spectra are not shifted by the difference in core level binding energies. A consistent description of these transitions and the core level line shape requires consideration of the relativistic multiplet splitting in the intermediate core hole state and two-valence-hole Auger final state. The results suggest that the large linewidth of the 4p levels is primarily due to multiplet splitting, and that an N 2 (N 3 N 45 )N 45 N 45 super-Coster-Kronig transition is only a minor decay channel. (c) 2000 The American Physical Society

  20. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    Science.gov (United States)

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  1. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    Science.gov (United States)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  2. Resonant Auger studies of metallic systems

    International Nuclear Information System (INIS)

    Coulthard, I.; Antel, W. J. Jr.; Frigo, S. P.; Freeland, J. W.; Moore, J.; Calaway, W. S.; Pellin, M. J.; Mendelsohn, M.; Sham, T. K.; Naftel, S. J.

    2000-01-01

    Results of resonant Auger spectroscopy experimental are presented for Cu, Co, and oxidized Al. Sublifetime narrowing of Auger spectra and generation of sublifetime narrowed absorption spectra constructed from Auger yield measurements were observed. Resonant Auger yields are used to identify three chemical states of oxidized Al. Partial absorption yield spectra were derived giving detailed electronic information and thickness information for the various chemical states of the bulk metal, the passivating aluminum oxide layer, and the metal-oxide interface region. In addition, the total absorption yield spectrum for the oxidized Al sample was constructed from the partial yield data, supporting the consistency of our method. (c) 2000 American Vacuum Society

  3. Experimental studies of fundamental aspects of Auger emission process in Cu(100) and Ag(100)

    Science.gov (United States)

    Joglekar, Prasad Vivek

    Auger spectra at the low energies are accompanied by large contributions unrelated to the Auger transition. The Auger unrelated contributions can obscure the Auger peak and affect the quantitative analysis of the materials under investigation. In this dissertation we present a methodology to measure experimentally the Auger unrelated contributions and eliminate it from the Auger spectrum for obtaining an Auger spectrum inherent to the Auger transition. We used Auger Photoelectron Coincidence Spectroscopy (APECS) to obtain the Auger spectrum. APECS measures the Auger spectrum in coincidence with the core energy level and thus discriminating the contributions arising from secondary electrons and electrons arising from the non-Auger transition. Although APECS removes most of the Auger unrelated contributions, it cannot distinguish the contribution which is measured in coincidence with the inelastically scattered valence band electrons emitted at the core energy. To measure this inelastically scattered valence band contribution we did a series of measurements on Ag(100) to study NVV Auger spectrum in coincidence with 4p energy level and Cu(100) to study MVV Auger spectrum in coincidence with 3p energy level. The coincidence detection of the core and Auger-valence electrons was achieved by the two cylindrical mirror analyzers (CMAs). One CMA was fixed over a range of energies in between VB and core energy level while other CMA scanned corresponding low energy electrons from 0 to70eV. The spectrums measured were fit to a parameterized function which was extrapolated to get an estimate of inelastically scattered valence band electrons. The estimated contribution was subtracted for the Ag and Cu APECS spectrum to obtain a spectrum solely due to Auger transition with inelastically scattered Auger electron and multi Auger decay contributions associated with the transition. In the latter part of this dissertation, we propose a theoretical model based on the spectral intensity

  4. Measurement of Auger electron energies and intensities from muonic transitions in silver

    International Nuclear Information System (INIS)

    Callies, R.; Daniel, H.; Egidy, T. von; Hagn, H.; Hartmann, F.J.; Neumann, W.

    1983-01-01

    There is now general agreement that Coulomb capture of mesonic particles and deexcitation of the formed exotic atom must be accompanied by Auger electron emission. Auger electrons from a thin silver foil were counted by Si-pn-junction detectors with an extraordinarily thin dead layer. Lines could be resolved and intensity ratios determined. Two types of experiments were performed simultaneously, (I) with the slow-muon telescope in coincidence with any e - detector of the array and (II) as above but with an additional Ag X-ray coincidence from a Ge(Li) detector placed close to the target. (Auth.)

  5. Chirped Auger electron emission due to field-assisted post-collision interaction

    Directory of Open Access Journals (Sweden)

    Bonitz M.

    2013-03-01

    Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.

  6. Observation of suppressed Auger mechanism in type-I quantum well structures with delocalized electron-hole wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Hassani Nia, Iman; Fathipour, Vala; Mohseni, Hooman, E-mail: hmohseni@ece.northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-08-15

    We report the first observation of non-threshold Auger mechanism for a quantum well structure with Type-I band alignment. Excitation-dependent photoluminescence measurements were used to extract the Auger recombination coefficients from 77 K up to room temperature. The results verify the role of interface mediated momentum exchange as well as suppression of Auger recombination for delocalized electron-hole wavefunctions.

  7. Microprocessor system for data acquisition processing and display for Auger electrons spectrometer

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Cudny, W.; Hildebrandt, S.; Marzec, J.; Walentek, J.; Zaremba, K.

    1984-01-01

    Data acquisition system for Auger electron spectrometry is developed. The system is used for chemical and structural analysis of materials and consists of a cylindrical mirror analyzer being a measuring spectrometer device, CAMAC unit and control unit. The control unit comprises a microcomputer based on INTEL 8080 microprocessor and display

  8. Determination of local absolute detection efficiency of a ceratron with 55Fe Auger electrons

    International Nuclear Information System (INIS)

    Mori, C.; Sugiyama, T.; Watanabe, T.

    1983-01-01

    The local absolute detection efficiency of a Ceratron (channel electron multiplier made of ceramics) was determined with collimated Mn K Auger electrons ( 5 keV) emitted from 55 Fe as a function of electron incident position and applied voltage. The local efficiency at the channel inlet did not depend so much on the applied voltage. The efficiency at the funnel increased with the applied voltage, while it was always lower than that at the channel inlet. (orig.)

  9. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  10. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Contribution of scanning Auger microscopy to electron beam damage study

    International Nuclear Information System (INIS)

    Fontaine, J.M.

    1983-04-01

    Electron bombardment can produce surface modifications of the analysed sample. The electron beam effects on solid surfaces which have been discussed in the published literature can be classified into the following four categories: (1) heating and its consequent effects, (2) charge accumulation in insulators and its consequent effects, (3) electron stimulated adsorption (ESA), and (4) electron stimulated desorption and/or decomposition (ESD). In order to understand the physico-chemical processes which take place under electron irradiation in an Al-O system, we have carried out experiments in which, effects, such as heating, charging and gas contamination, were absent. Our results point out the role of an enhanced surface diffusion of oxygen during electron bombardment of an Al (111) sample. The importance of this phenomenon and the contribution of near-elastic scattering of the primary electrons (5 keV) to the increase of the oxidation degree observed on Al (111) are discussed, compared to the generally studied effects

  12. Resonant Auger electron-photoion coincidence study of the fragmentation dynamics of an acrylonitrile molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kooser, K; Ha, D T; Granroth, S; Itaelae, E; Nommiste, E; Kukk, E [Department of Physics, University of Turku, FIN-20014 Turku (Finland); Partanen, L; Aksela, H, E-mail: kunkoo@utu.f [Department of Physics, University of Oulu, Box 3000, FIN-90014 Oulu (Finland)

    2010-12-14

    Monochromatic synchrotron radiation was used to promote K-shell electrons of nitrogen and carbon from the cyano group (C {identical_to} N) of gaseous acrylonitrile (C{sub 2}H{sub 3}-CN) to the unoccupied antibonding {pi}*{sub C} {sub {identical_to} N} orbital. Photofragmentation of acrylonitrile molecules following selective resonant core excitations of carbon and nitrogen core electrons to the {pi}*{sub C} {sub {identical_to} N} orbital was investigated using the electron-energy-resolved photoelecton-photoion coincidence technique. The fragment ion mass spectra were recorded in coincidence with the resonant Auger electrons, emitted in the decay process of the core-excited states. Singly and triply deuterated samples were used for fragment identification. The results showed the initial core-hole localization to be of minor importance in determining the dissociation pattern of the molecular cation. The participator and spectator Auger transitions produce entirely different fragmentation patterns and the latter indicates that complex nuclear rearrangements take place. It is suggested that the calculated kinetic energy releases are caused by the existence of metastable states, which appear with the opening of the spectator Auger channels.

  13. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    Science.gov (United States)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  14. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    Science.gov (United States)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  15. Surface-site-selective study of valence electronic states of a clean Si(111)-7x7 surface using Si L23VV Auger electron and Si 2p photoelectron coincidence measurements

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Tahara, Masashi; Nagaoka, Shin-ichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2011-01-01

    Valence electronic states of a clean Si(111)-7x7 surface are investigated in a surface-site-selective way using high-resolution coincidence measurements of Si pVV Auger electrons and Si 2p photoelectrons. The Si L 23 VV Auger electron spectra measured in coincidence with energy-selected Si 2p photoelectrons show that the valence band at the highest density of states in the vicinity of the rest atoms is shifted by ∼0.95 eV toward the Fermi level (E F ) relative to that in the vicinity of the pedestal atoms (atoms directly bonded to the adatoms). The valence-band maximum in the vicinity of the rest atoms, on the other hand, is shown to be shifted by ∼0.53 eV toward E F relative to that in the vicinity of the pedestal atoms. The Si 2p photoelectron spectra of Si(111)-7x7 measured in coincidence with energy-selected Si L 23 VV Auger electrons identify the topmost surface components, and suggest that the dimers and the rest atoms are negatively charged while the pedestal atoms are positively charged. Furthermore, the Si 2p-Si L 23 VV photoelectron Auger coincidence spectroscopy directly verifies that the adatom Si 2p component (usually denoted by C 3 ) is correlated with the surface state just below E F (usually denoted by S 1 ), as has been observed in previous angle-resolved photoelectron spectroscopy studies.

  16. Electron spectroscopy studies of argon K-shell excitation and vacancy cascades

    International Nuclear Information System (INIS)

    Southworth, S.H.; MacDonald, M.A.; LeBrun, T.; Azuma, Y.; Cooper, J.W.

    1995-01-01

    Electron spectroscopy combined with tunable synchrotron radiation has been used for studies of Ar K-shell excitation and vacancy decay processes. In addition, electrons and fluorescent X-rays have been recorded in coincidence to select subsets of the ejected electron spectra. Examples are presented for Ar 1s photoelectrons and KLL and LMM Auger spectra

  17. X-ray photoelectron and x-ray-induced auger electron spectroscopic data, 2

    International Nuclear Information System (INIS)

    Baba, Yuji; Sasaki, Teikichi

    1984-04-01

    The intrinsic data of the X-ray photoelectron spectra (XPS) and X-ray-induced Auger electron spectra (XAES) for 4d transition-metals and related oxides were obtained by means of a spherical electron spectrometer. The metallic surfaces were cleaned by two different metheds : mechanical filing and Ar + ion etching. In the case of the Ar + io n bombarded Y, Zr, and Nb metals, the binding energies of the core-lines and the kinetic energies of the Auger lines shift from those for the mechanically filed surfaces. The energy shifts were interpreted in terms of the ion-induced lattice distortion of the metal surfaces. The oxides examined are typical compounds such as Y 2 O 3 , ZrO 2 , Nb 2 O 5 , MoO 3 and RuO 2 . The data consists of 4 wide scans, 33 core-line spectra, 10 valence-band spectra and 12 XAES spectra. The peak positions of the core-lines and the Auger lines were summarized in 6 tables together with their chemical shifts. (author)

  18. X-ray photoelectron and x-ray-induced Auger electron spectroscopic data, 1

    International Nuclear Information System (INIS)

    Baba, Yuji; Sasaki, T.A.

    1984-02-01

    The intrinsic data of the X-ray photoelectron spectra (XPS) and X-ray-induced Auger electron spectra (XAES) for 3d transition-metals and related oxides were presented. The clean surfaces of the metals were obtained by two different methods ; mechanical filings and Ar + ion etchings. The oxides examined are typical compounds such as Sc 2 O 3 , TiO 2 , V 2 O 5 and NiO. The report consists of 4 wide scans, 26 core-line spectra, 10 valence-band spectra and 20 XAES spectra. The peak positions of the core-lines and the Auger lines were summarized in 8 tables together with their chemical shifts. (author)

  19. Study of electron beam effects on surfaces using x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Gettings, M.; Coad, J.P.

    1976-02-01

    Discrepancies in the surface analyses of oxidised or heavily contaminated materials have been observed between X-ray Photoelectron Spectroscopy (XPS) and techniques using electron beams (primarily Auger Electron Spectroscopy (AES)). These discrepancies can be ascribed to the influence of the primary electron beam and to illustrate the various types of electron effects different materials were analysed using XPS and Secondary Ion Mass Spectroscopy (SIMS) before and after large area electron bombardment. The materials used included chrome and stainless steels, nickel, platinum, glass and brass. (author)

  20. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)

    2014-08-15

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.

  1. New electronics for the surface detectors of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Kleifges, M., E-mail: Matthias.Kleifges@kit.edu [Karlsruhe Institute of Technology – Institute for Data Processing and Electronics, Karlsruhe (Germany)

    2016-07-11

    The Pierre Auger Observatory is the largest installation worldwide for the investigation of ultra-high energy cosmic rays. Air showers are detected using a hybrid technique with 27 fluorescence telescopes and 1660 water-Cherenkov detectors (WCD) distributed over about 3000 km{sup 2}. The Auger Collaboration has decided to upgrade the electronics of the WCD and complement the surface detector with scintillators (SSD). The objective is to improve the separation between the muonic and the electron/photon shower component for better mass composition determination during an extended operation period of 8–10 years. The surface detector electronics records data locally and generates time stamps based on the GPS timing. The performance of the detectors is significantly improved with a higher sampling rate, an increased dynamic range, new generation of GPS receivers, and FPGA integrated CPU power. The number of analog channels will be increased to integrate the new SSD, but the power consumption needs to stay below 10 W to be able to use the existing photovoltaic system. In this paper, the concept of the additional SSD is presented with a focus on the design and performance of the new surface detector electronics.

  2. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    International Nuclear Information System (INIS)

    Thisgaard, H.

    2008-08-01

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  3. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  4. X-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide

    International Nuclear Information System (INIS)

    Dillard, J.G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H.J.

    1984-01-01

    The adsorption of molecular iodine on uranium metal and on uranium dioxide has been investigated at 25 0 C. Clean surfaces were prepared in an ultrahigh vacuum apparatus and were characterized by X-ray photoelectron (XPS) and X-ray and electron-induced Auger electron spectroscopies (AES). Adsorption of I 2 was studied for exposures up to 100 langmuirs (1 langmuir = 10 -6 torr s) on uranium metal and to 75 langmuirs on uranium dioxide. Above about 2-langmuir I 2 exposure on uranium, spectroscopic evidence is obtained to indicate the beginning of UI 3 formation. Saturation coverage for I 2 adsorption on uranium dioxide occurs at approximately 10-15 langmuirs. Analysis of the XPS and AES results as well as studies of spectra as a function of temperature lead to the conclusions that a dissociative chemisorption/reaction process occurs on uranium metal while nondissociative adsorption occurs on uranium dioxide. Variations in the iodine Auger kinetic energy and in the Auger parameter are interpreted in light of extra-atomic relaxation processes. 42 references, 10 figures, 1 table

  5. Methods for Determining Metal Uptake in Cellular DNA for Auger Electron Therapy

    International Nuclear Information System (INIS)

    Seror, V.; Novick, S.; Weiner, E.; Laster, B.; Hambright, P.

    2004-01-01

    Stable indium-labeled tetra(4-N-methylpyridyl)porphyrin [InTMPyP(4)] was evaluated as a carrier of a high Z atom, indium (In), into tumor cell DNA for its subsequent activation by radiation in a proposed radiotherapeutic technique, Auger Electron Therapy (AET). Porphyrins with metals can bind to DNA and are useful vehicles for transporting the indium to the DNA of the tumor. AET combines the use of a metalloporphyrin with a stable high Z atom, such as indium, and photons emitted from radioactive brachytherapy seeds, such as iodine-125, to increase the radiation dose in the DNA of the tumor by generating a photoelectric effect in the K absorption edge of the indium (In) atom. This results in the emission of cascading Auger electrons that act as high LET radiation and thus impart significant non-reparable damage to the tumor compared to the radiation alone. The K absorption edge of In is 27.9 keV and the average photon energy of the iodine-125 seeds is ∼ 28 keV

  6. Modelling of radiation risk induced by radon and sources of Auger electrons

    International Nuclear Information System (INIS)

    Boem, R.

    2003-01-01

    This thesis follows the national and worldwide radon research and application Auger radionuclides in nuclear medicine. Results of this thesis can be summarised into several points: (1) For the prediction of cancer risk following the exposure, it is also necessary to consider the mean cycle time of target cells. From our analyses it can be concluded that the mean cycle time of target cells should exceed 100 days. (2) The value of excess relative risk is for smokers ERR/WLM = (2.4-4.1)x10 -3 WLM -1 and that of the nonsmokers ERR/WLM=(4.2-10.7)x10 -3 WLM -1 , considering the underground medium. Excess relative risk for the nonsmokers ERR/(Bq m -3 ) = (1.0-3.5) Bq -1 m 3 and for smokers ERR/(Bq m -3 ) = (0.3-1.2) 10 -3 Bq -1 m 3 is supposed in dwellings. (3) Microdosimetric models are very helpful and suitable for prediction of the radon risk for underground conditions, as well as for indoor radon risk evaluation and they are also able to take into account the influence of the smoking habit. (4) The spatial distribution of energy deposition events and their magnitude is an essential input to evaluate the effects of radiation on biological systems. Therefore, for the calculation of deposited energy from the DNA incorporated Auger emitters, it is necessary at the DNA level to employ the MC calculation. In an effort to save computer time and memory it is possible to use the fitted function for monoenergetic electrons for estimation of at least relative radiotoxicity. The value of energy deposited in a small volume (sphere of diameter 2 nm) can be considered as the first estimation of an Auger emitter's radiotoxicity. (author)

  7. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  8. Origin of Si(LMM) Auger Electron Emission from Silicon and Si-Alloys by keV Ar+ Ion Bombardment

    Science.gov (United States)

    Iwami, Motohiro; Kim, Su Chol; Kataoka, Yoshihide; Imura, Takeshi; Hiraki, Akio; Fujimoto, Fuminori

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar+ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  9. Origin of Si(LMM) Auger electron emission from silicon and Si-alloys by keV Ar/sup +/ ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, M; Kim, S; Kataoka, Y; Imura, T; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar/sup +/ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  10. Surface analysis of WC--Co composite materials (2) Quantitative Auger electron spectrometry

    International Nuclear Information System (INIS)

    Tongson, L.L.; Biggers, J.V.; Dayton, G.O.; Bind, J.M.; Knox, B.E.

    1978-01-01

    The unique sensitivity of Auger electron spectrometry (AES) to combined carbon has been exploited in measuring the surface compositions of hot-pressed, conventionally sintered and mixed powders of WC--Co composite materials. AES sensitivity factors for tungsten and carbon (in WC) relative to cobalt were determined. The concentrations of the major elements in hot-pressed samples measured with AES using the relative sensitivity method were compared to those obtained independently by electron microprobe (EMP) and x-ray fluorescence (XRF) techniques. Corollary studies using ion scattering spectrometry (ISS) showed the absence of (1) matrix effects in the AES measurements, (2) preferential sputtering during ion bombardment, and (3) deposition of the easier-to-sputter component (cobalt) onto WC

  11. Auger decay of 1σg and 1σu hole states of the N2 molecule. II. Young-type interference of Auger electrons and its dependence on internuclear distance

    International Nuclear Information System (INIS)

    Cherepkov, N. A.; Semenov, S. K.; Schoeffler, M. S.; Titze, J.; Petridis, N.; Jahnke, T.; Cole, K.; Schmidt, L. Ph. H.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Akoury, D.; Williams, J. B.; Landers, A. L.; Osipov, T.; Lee, S.; Prior, M. H.; Belkacem, A.; Weber, Th.

    2010-01-01

    Theoretical two-center interference patterns produced (i) by the K-shell photoionization process of the N 2 molecule and (ii) by the Auger decay process of the K-shell hole state of the N 2 molecule are compared for the case of equal photo- and Auger-electron energies of about 360 eV. The comparison shows that both the angular distribution of the photoelectrons and the angular distribution of the Auger electrons of equal energy in the molecular frame are primarily defined by the Young interference. The experimental data for the angular resolved K-shell Auger electrons as a function of the kinetic-energy release (KER) obtained earlier [Phys. Rev. A 81, 043426 (2010)] have been renormalized in order to visualize the angular variation in the regions of low Auger-electron intensities. That renormalized data are compared with the corresponding theoretical results. From the known behavior of the potential energy curves, the connection between the KER and the internuclear distance can be established. Since the Young interference pattern is sensitive to the internuclear distance in the molecule, from the measured KER dependence of the Young interference pattern one can trace the behavior of the Auger-electron angular distribution for different molecular terms as a function of internuclear distance. The results of that analysis are in a good agreement with the corresponding theoretical predictions.

  12. Auger-electron cascades, charge potential and microdosimetry of iodine-125

    Energy Technology Data Exchange (ETDEWEB)

    Booz, J.; Pomplun, E.; Olko, P.; Paretzke, H.G.

    1987-06-01

    This paper is a contribution to the microdosimetry of I-125. It shows microdosimetric spectra of individual and average disintegrations of I-125 for various target sizes and gives evidence for the relative contributions of energy-depositon events of low and high LET. It further presents information on the relative efficiencies of Auger-electrons and multiple charges in terms of local energy deposition, e.g. to model targets of DNA, and discusses their radiobiological implications, e.g. the microdosimetric understanding of the different efficiencies of specific and random incorporations of I-125. When I-125 is specifically incorporated into DNA, most of the energy deposition events are very large, e.g. above 40 keV/..mu..m for a simulated target volume of 20 nm diameter, regardless of the number and energy of Auger electrons emitted. Therefore it is not necessary, for the discussion of the radiobiological implications, to distinguish between different classes of disintegrations. For unspecific, homogeneous incorporation of I-125 somewhere into tissue, about 20% of the dose to critical targets of 25 nm diameter is made up by disintegrations that happen to occur within these targets. When assuming that other critical targets and target structures can be neglected, this part of the dose will be equally effective as in the case of specific incorporation of I-125 into such target models. In addition, there are the normal, low-LET radiation effects from the other, 80% large fraction of the dose. With this information, for the biological systems and end points for which a short section of the elemental chromatine fiber can be taken as the relevant critical target, it is shown that the expected D/sub 37/ value for homogeneous unspecific incorporation of I-125 can be estimated when the D/sub 37/ for specific incorporation in DNA is known.

  13. Comments on Auger electron production by Ne/sup +/ bombardment of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S V; Ferrante, J [National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center

    1979-09-01

    In this letter, the authors first report rather conclusive experimental evidence showing that the Ne Auger signal is due to asymmetric Ne-metal collisions and not symmetric Ne-Ne collisions. Next it is shown that the Ne Auger signal is in fact observable by Ne/sup +/ bombardment of Si and with signal strength comparable to that of the Si Auger signal for 3 keV incident ion energy. Finally, they comment on some trends in the relative amplitudes of the 21.9 and 25.1 eV Ne Auger signals as a function of incident ion energy and target species.

  14. ESR spectroscopy and electron distribution

    International Nuclear Information System (INIS)

    Davies, A.G.

    1997-01-01

    EPR spectroscopy can map out the electron distribution in a molecule, in much the same way as proton NMR spectroscopy can map out the proton distribution, and it provides some of the most direct evidence for the principal concepts underlying the electronic theory of organic structure and mechanism. This is illustrated for phenomena of conjugation, hyper-conjugation, substituent effects in annulenes, Hueckel theory, ring strain, the Mills-Nixon effect, and ion pairing. (author)

  15. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  16. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    Science.gov (United States)

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  17. Production of Mg and Al Auger electrons by noble gas ion bombardment of Mg and Al surfaces. [3 KeV, electron promotion

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, J; Pepper, S V [National Aeronautics and Space Administration, Cleveland, Ohio (USA). Lewis Research Center

    1976-08-01

    In this letter the relative production efficiency of Mg and Al Auger electrons by He, Ne, Ar, Kr and Xe ion bombardment as a function of ion energy (<=3 keV) is reported. Some comments on the interpretation of the results in terms of electron promotion are also given.

  18. Relationship Between Chromatin Structure and Sensitivity to Molecularly Targeted Auger Electron Radiation Therapy

    International Nuclear Information System (INIS)

    Terry, Samantha Y.A.; Vallis, Katherine A.

    2012-01-01

    Purpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage (γH2AX assay) and clonogenic survival were evaluated after exposure to 111 In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of 111 In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. Results: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of γH2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 μM) compared with IR alone (16 ± 0.6 and 14 ± 0.3 vs. 12 ± 0.4 and 11 ± 0.2, respectively). More γH2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to 111 In-DTPA-hEGF (6 MBq/μg) plus SAHA vs. 111 In-DTPA-hEGF alone (11 ± 0.3 and 12 ± 0.7 vs. 9 ± 0.4 and 7 ± 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and 111 In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 μM) vs. IR alone (0.6% ± 0.01 and 0.3% ± 0.2 vs. 5.8% ± 0.2 and 2% ± 0.1, respectively) and after 111 In-DTPA-hEGF plus SAHA compared to 111 In-DTPA-hEGF alone (21% ± 0.4% and 19% ± 4.6 vs. 33% ± 2.3 and 32% ± 3.7). SAHA did not affect 111 In-DTPA-hEGF nuclear localization. Hypertonic treatment resulted in fewer γH2AX foci per cell after IR and 111 In-DTPA-hEGF compared to controls but did not significantly alter clonogenic

  19. electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. 6 figs

  20. Electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of the commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article discusses electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. (UK)

  1. 135La as an auger-electron emitter for targeted internal radiotherapy

    DEFF Research Database (Denmark)

    Fonslet, Jesper; Lee, Boon Quan; Tran, Thuy A.

    2018-01-01

    Introduction: 135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, imaging characteristics, and dosimetry related to 135La therapy. Methods and Results: 135La was produced by 16.5 Me....... The generated Auger spectrum was used to recalculate cellular S-factors. Conclusion: 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy. ....... recovered > 98 % of the 135La with an effective molar activity of 70 ±20 GBq/µmol. To better assess cellular and organ dosimetry of this nuclide, we have recalculated the X-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade...

  2. Electron spectroscopy of crystals

    CERN Document Server

    Nemoshkalenko, V V

    1979-01-01

    This book is conceived as a monograph, and represents an up-to-date collection of information concerning the use of the method of X-ray photoelectron spec­ troscopy in the study of the electron structure of crystals, as well as a personal interpretation of the subject by the authors. In a natural way, the book starts in Chapter 1 with a recapitulation of the fundamentals of the method, basic relations, principles of operation, and a com­ parative presentation of the characteristics and performances of the most com­ monly used ESCA instruments (from the classical ones-Varian, McPherson, Hewlett Packard, and IEEE-up to the latest model developed by Professor Siegbahn in Uppsala), and continues with a discussion of some of the difficult problems the experimentalist must face such as calibration of spectra, prepara­ tion of samples, and evaluation of the escape depth of electrons. The second chapter is devoted to the theory of photoemission from crystal­ line solids. A discussion of the methods of Hartree-Fo...

  3. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.

    1996-01-01

    The purpose of our studies is to elucidate the kinetics of DNA strand breaks caused by low-energy Auger electron emitters in close proximity to DNA. Previously we have studied the DNA break yields in plasmids after the decay of indium-111 bound to DNA or free in solution. In this work, we compare the DNA break yields in supercoiled DNA of iodine-125 decaying close to DNA following DNA intercalation, minor-groove binding, or surface binding, and at a distance form DNA. Supercoiled DNA, stored at 4 C to accumulate radiation dose from the decay of 125 I, was then resolved by gel electrophoresis into supercoiled, nicked circular, and linear forms, representing undamaged DNA, single-strand breaks, and double-strand breaks respectively. DNA-intercalated or groove-bound 125 I is more effective than surface-bound radionuclide or 125 I free in solution. The hydroxyl radical scavenger DMSO protects against damage by 125 I free in solution but has minimal effect on damage by groove-bound 125 I. (orig.)

  4. Electron momentum spectroscopy

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1986-03-01

    For electron energies greater than a few hundred eV and recoil momenta less than a few atomic units, the differential cross section for the non-coplanar symmetric (e,2e) reaction on an atom or molecule depends on the target and ion structure only through the target-ion overlap. Experimental criteria for the energy and momentum are that the apparent structure information does not change when the energy and momentum are varied. The plane-wave impulse approximation is a sufficient description of the reaction mechanism for determining spherically-averaged squares of momentum-space orbitals for atoms and molecules and for coefficients describing initial and final state correlations

  5. iDEEAA: A novel, versatile apparatus for electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lupulescu, C., E-mail: cosmin.lupulescu@helmholtz-berlin.de [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Arion, T. [Centre for Free-Electron Laser Science (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Hergenhahn, U. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Ovsyannikov, R. [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Förstel, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Gavrila, G. [Technische Universität Chemnitz, Fakultät Elektrotechnik und Informationstechnik, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Eberhardt, W. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Centre for Free-Electron Laser Science (DESY), Notkestrasse 85, 22607 Hamburg (Germany)

    2013-12-15

    Highlights: •We developed an experimental end station for time- and angle-resolved X-ray electron spectroscopy. •The instrument can operate in combination with synchrotron radiation, VUV Helium discharge source or table-top high-harmonic laser sources. •Band mapping in solids is possible with unprecedented rapidity. •Electron–electron coincidence spectroscopy is performed at higher data collection rate (due to improved transmission) and with improved energy resolution. -- Abstract: We report the development and present status of the iDEEAA (Instrument for Direct Electron Energy and Angular Analysis) experimental end station for time- and angle-resolved X-ray photoelectron spectroscopy. The setup is based on multidimensional detection of photoelectrons by means of both time-of-flight (TOF) and/or electrostatic analyzers. The instrument offers the possibility to record simultaneously and independently photoelectron and Auger electron spectra. Samples can be either gases or solids. The system can operate with multiple photon sources, such as laboratory-based table-top laser extreme ultraviolet (EUV) sources, monochromatic Helium discharge lamp and soft X-ray synchrotron pulses. We demonstrate the performance of the setup by carrying out electron–electron coincidence experiments on CH{sub 4} and by mapping the band structure of Bi{sub 2}Se{sub 3} using photons of the BESSY II electron storage ring.

  6. Principles of electron tunneling spectroscopy

    CERN Document Server

    Wolf, E L

    2012-01-01

    Electron tunnelling spectroscopy as a research tool has strongly advanced understanding of superconductivity. This book explains the physics and instrumentation behind the advances illustrated in beautiful images of atoms, rings of atoms and exotic states in high temperature superconductors, and summarizes the state of knowledge that has resulted.

  7. Analysis of angular dependent Auger spectroscopy (ADAS) based on a quasiatomic model

    International Nuclear Information System (INIS)

    Davis, H.L.

    1977-01-01

    Calculated results are presented which are in good agreement with published M 2 , 3 VV Cu (100) ADAS data. The calculations are based on a quasiatomic model where each individual Auger emission is a partial wave of definite (l,m) character, but (l,m) may differ from emission to emission. The (l,m) emission weights have been estimated by fitting the data with a linear combination of calculated intensities for (l,m) up to l = 5. It is found that surprisingly few (l,m) values are necessary to obtain reasonable fits to the data, and the best fits occur for combinations of (l,m) intensities in which the l = 3 waves were most heavily weighted

  8. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  9. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy

    International Nuclear Information System (INIS)

    Panyutin, I.G.; Winters, T.A.; Feinendegen, L.E.; Neumann, R.D.

    2000-01-01

    Targeting of radiation damage to specific DNA sequences is the essence of antigene radiotherapy. This technique also provides a tool to study molecular mechanisms of DNA repair on a defined, single radio damaged site. It was achieved such sequence-specific radio damage by combining the highly localized DNA damage produced by the decay of Auger-electron-emitters such as 125 I with the sequence-specific action of triplex-forming oligonucleotides (TFO). TFO complementary to polypurine-polypyrimidine regions of human genes were synthesized and labeled with 125 I-dCTP by the primer extension method. 125 I-TFO were delivered into cells with several delivery systems. In addition, human enzymes capable of supporting DNA single-strand-break repair were isolated and assessed for their role in the repair of this lesion. Also, the mutagenicity and repairability of 125 I-TFO-induced double strand breaks (DSB) were assessed by repair of plasmid possessing a site-specific DSB lesion. Using plasmids containing target polypurine-polypyrimidine tracts, it was obtained the fine structure of sequence-specific DNA breaks produced by decay of 125 I with single-nucleotide resolution. It was showed that the designed 125 I-TFO in nanomolar concentrations could bind to and introduce double-strand breaks into the target sequences in situ, i.e., within isolated nuclei and intact digitonin-permeabilized cells. It was also showed 125 I-TFO-induced DSB to be highly mutagenic lesions resulting in a mutation frequency of nearly 80%, with deletions comprising the majority of mutations. The results obtained demonstrate the ability of 125 I-TFO to target specific sequences in their natural environment - within eukaryotic nucleus. Repair of 125 I-TFO-induced DNA damage should typically result in mutagenic gene inactivation

  10. L-MM Auger electron production in 0.3-1.6 MeV Kr-Kr collisions

    International Nuclear Information System (INIS)

    DeGroot, P.; Zarcone, M.J.; Kessel, Q.C.; Connecticut Univ., Storrs

    1987-01-01

    Relative total cross sections for Kr L-Auger electron emission are presented and compared with the corresponding X-ray data of Woerlee and Shanker and coworkers. These data sets all show the same incident ion energy dependence, indicating a constant fluorescence yield for the collision conditions under consideration. These data are also in agreement with a rotational coupling calculation by shanker and coworkers that was carried out within the framework of the one-electron molecular orbital model of Fano and Lichten. (orig.)

  11. 135La as an Auger-electron emitter for targeted internal radiotherapy

    Science.gov (United States)

    Fonslet, J.; Lee, B. Q.; Tran, T. A.; Siragusa, M.; Jensen, M.; Kibédi, T.; E Stuchbery, A.; Severin, G. W.

    2018-01-01

    135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, and dosimetry related to 135La therapy. 135La was produced by 16.5 MeV proton irradiation of metallic natBa on a medical cyclotron, and was isolated and purified by trap-and-release on weak cation-exchange resin. The average production rate was 407  ±  19 MBq µA-1 (saturation activity), and the radionuclidic purity was 98% at 20 h post irradiation. Chemical separation recovered  >  98 % of the 135La with an effective molar activity of 70  ±  20 GBq µmol-1. To better assess cellular and organ dosimetry of this nuclide, we have calculated the x-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade. The generated Auger spectrum was used to calculate cellular S-factors. 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy.

  12. Electron spectroscopy of nanodiamond surface states

    Energy Technology Data Exchange (ETDEWEB)

    Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P

    2003-06-15

    Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp{sup 3} hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of {sigma}{sub p} up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms {sigma}{sub s}{sup 1}{sigma}{sub p}{sup 2}{pi}{sup 1} surface states without overlapping of {pi}-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface.

  13. Electron spectroscopy of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    Galiy, P.V.; Musyanovych, A.V.; Nenchuk, T.M.

    2005-01-01

    The results of the quantitative X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In 4 Se 3 crystals are presented. The carbon coating formation occurs as the result of interaction of the air and residual gases atmosphere in ultra high vacuum (UHV) Auger spectrometer chamber with atomic clean interlayer cleavage surfaces of the crystals. The kinetics and peculiarities of interfacial carbon layer formation on the cleavage surfaces of the crystals, elemental and phase composition of the interface have been studied by quantitative XPS, AES and mass-spectroscopy

  14. Molecular effects in carbon K-shell Auger-electron production by 0.6-2.0 MeV protons and extraction of an atomic cross section

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Lapicki, G.

    1987-01-01

    Carbon K-shell Auger-electron production cross sections are reported for 0.6-2.0 MeV protons incident on CH 4 (methane), C 2 H 2 (acetylene), C 2 H 4 (ethylene), C 2 H 6 (ethane), n-C 4 H 10 (normal butane), i-C 4 H 10 (isobutane), C 6 H 6 (benzene), CO (carbon monoxide), and CO 2 (carbon dioxide). A constant-energy mode 45 0 parallel-plate electrostatic analyzer was used for detection of Auger electrons. The carbon KLL Auger-electron cross sections for all molecules were found to be lower than that found for CH 4 by 9-23%. All carbon KLL Auger-electron data could be brought into agreement when corrected for the chemical shift of the carbon K-shell binding energy in molecules and for intramolecular scattering. KLL Auger-electron production cross sections are compared to first Born and ECPSSR theories and show good agreement with both after the chemical shift of the carbon K-shell binding energy in molecules and the effects of intramolecular scattering are considered. (orig.)

  15. The KLM plus KLN Auger electron spectrum of rubidium in different matrices

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Kovalík, Alojz; Perevoshchikov, L. L.; Filosofov, D. V.; Vénos, Drahoslav; Lee, B. Q.; Ekman, J.; Baimukhanova, A.

    2017-01-01

    Roč. 50, č. 15 (2017), č. článku 155001. ISSN 0953-4075 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Rb-85 * Sr-85 * KLM- * KLN-Auger transitions * atomic environment * chemical shift * multiconfiguration Dirac-Hartree-Fock calculations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.792, year: 2016

  16. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  17. Proceedings of the 5. seminar on electron spetroscopy of socialist countries

    International Nuclear Information System (INIS)

    1984-01-01

    Instrumental, experimental, and theoretical aspects of electron spectroscopy as well as their applications to solve problems arising in surface physics and surface chemistry have been discussed. 94 synopses on photoelectron spectroscopy (XPS and UPS), Auger electron spectroscopy, electron energy loss spectroscopy, appearance potential spectroscopy, low-energy electron diffraction, reflection of high-energy electron diffraction, and secondary ion mass spectroscopy are included

  18. Angular distribution of scattered electron and medium energy electron spectroscopy for metals

    International Nuclear Information System (INIS)

    Oguri, Takeo; Ishioka, Hisamichi; Fukuda, Hisashi; Irako, Mitsuhiro

    1986-01-01

    The angular distribution (AD) of scattered electrons produced by medium energy incident electrons (E P = 50 ∼ 300 eV) from polycrystalline Ti, Fe, Ni, Cu and Au were obtained by the angle-resolved medium energy electron spectrometer. The AD of the energy loss peaks are similar figures to AD of the elastically reflected electron peaks. Therefore, the exchanged electrons produced by the knock-on collision between the incident electrons and those of metals without momentum transfer are observed as the energy loss spectra (ELS). This interpretation differs from the inconsequent interpretation by the dielectric theory or the interband transition. The information depth and penetration length are obtained from AD of the Auger electron peaks. The contribution of the surface to spectra is 3 % at the maximum for E P = 50 eV. The true secondary peaks representing the secondary electron emission spectroscopy (SES) are caused by the emissions of the energetic electrons (kT e ≥ 4 eV), and SES is the inversion of ELS. The established fundamental view is that the medium energy electron spectra represent the total bulk density of states. (author)

  19. Accelerator based Production of Auger-Electron-emitting Isotopes for Radionuclide Therapy

    DEFF Research Database (Denmark)

    Thisgaard, Helge

    Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron...... isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able...

  20. Quantitative Auger depth profiling of LPCVD and PECVD silicon nitride films

    International Nuclear Information System (INIS)

    Keim, E.G.; Aite, K.

    1989-01-01

    Thin silicon nitride films (100-210 nm) with refractive indices varying from 1.90 to 2.10 were deposited on silicon substrates by low pressure chemical vapour deposition (LPCVD) and plasma enhanced chemical vapour deposition (PECVD). Rutherford backscattering spectrometry (RBS), ellipsometry, surface profiling measurements and Auger electron spectroscopy (AES) in combination with Ar + sputtering were used to characterize these films. We have found that the use of (p-p)heights of the Si LVV and N KLL Auger transitions in the first derivative of the energy distribution (dN(E)/dE) leads to an accurate determination of the silicon nitride composition in Auger depth profiles over a wide range of atomic Si/N ratios. Moreover, we have shown that the Si KLL Auger transition, generally considered to be a better probe than the low energy Si LVV Auger transition in determining the chemical composition of silicon nitride layers, leads to deviating results. (orig.)

  1. A perfect wetting of Mg monolayer on Ag(111) under atomic scale investigation: First principles calculations, scanning tunneling microscopy, and Auger spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migaou, Amani; Guiltat, Mathilde; Payen, Kevin; Landa, Georges; Hémeryck, Anne, E-mail: anne.hemeryck@laas.fr [LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse (France); Sarpi, Brice; Daineche, Rachid; Vizzini, Sébastien [Aix Marseille University, IM2NP, Fac Sci St. Jérôme, F-13397 Marseille (France)

    2016-05-21

    First principles calculations, scanning tunneling microscopy, and Auger spectroscopy experiments of the adsorption of Mg on Ag(111) substrate are conducted. This detailed study reveals that an atomic scale controlled deposition of a metallic Mg monolayer perfectly wets the silver substrate without any alloy formation at the interface at room temperature. A liquid-like behavior of the Mg species on the Ag substrate is highlighted as no dot formation is observed when coverage increases. Finally a layer-by-layer growth mode of Mg on Ag(111) can be predicted, thanks to density functional theory calculations as observed experimentally.

  2. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double-strand breaks: a Monte Carlo study using Geant4 toolkit.

    Science.gov (United States)

    Piroozfar, Behnaz; Raisali, Gholamreza; Alirezapour, Behrouz; Mirzaii, Mohammad

    2018-04-01

    In this study, the effect of 111 In position and Auger electron energy on direct induction of DSBs was investigated. The Geant4-DNA simulation toolkit was applied using a simple B-DNA form extracted from PDBlib library. First, the simulation was performed for electrons with energies of 111 In and equal emission probabilities to find the most effective electron energies. Then, 111 In Auger electrons' actual spectrum was considered and their contribution in DSB induction analysed. The results showed that the most effective electron energy is 183 eV, but due to the higher emission probability of 350 eV electrons, most of the DSBs were induced by the latter electrons. Also, it was observed that most of the DSBs are induced by electrons emitted within 4 nm of the central axis of the DNA and were mainly due to breaks with <4 base pairs distance in opposing strands. Whilst, when 111 In atoms are very close to the DNA, 1.3 DSBs have been obtained per decay of 111 In atoms. The results show that the most effective Auger electrons are the 350 eV electrons from 111 In atoms with <4 nm distance from the central axis of the DNA which induce ∼1.3 DSBs per decay when bound to the DNA. This value seems reasonable when compared with the reported experimental data.

  3. Radioactive gold nanoparticles with beta energy and auger electron cascades in nanomedicine: green nanotechnology and radiochemical approaches

    International Nuclear Information System (INIS)

    Katti, Kattesh V.

    2016-01-01

    In our continued efforts to apply Green Nanotechnology for the development of therapeutic radioactive gold nanoparticles, we have developed a new generation of 198 Au theranostic probes. Laminin receptors are overexpressed in a large number of human tumors and the high in vivo affinity of EGCG toward Laminin receptors has allowed us to develop Laminin receptor specific radioactive gold nanoparticles to achieve tumor specificity. This lecture will provide: (a) Oncological aspects of Auger electrons through nanomedicine; (b) details on the intervention of nuclear activation analysis and various radioanalytical approaches for the production of tumor specific radioactive gold-198 nanoparticles; and (c) full in vivo investigations on therapeutic properties of EGCG-198-AuNP agent in treating prostate tumors

  4. PAC spectroscopy of electronic ceramics

    International Nuclear Information System (INIS)

    Gardner, J.A.; Wang, R.; Schwenker, R.; Sommers, J.A.

    1991-01-01

    Dilute indium dopants in cerium oxides and YBa 2 Cu 3 O x have been studied by 111 In/Cd Perturbed Angular Correlation (PAC) spectroscopy. By controlling oxygen vacancy concentration in the cerium oxides through doping or high-temperature vacuum annealing, we have found that indium always forms a defect complex unless the sample is doped to reduce greatly the oxygen vacancy concentration. Three different vacancy-associated complexes are found with concentrations that depend on doping and oxygen stoichiometry. Another defect complex occurs in samples having negligible vacancy concentration. At low temperatures, evidence is found of interaction with an electronic hole trapped by 111 Cd after the radioactive decay of the 111 In parent. In YBa 2 Cu 3 O x the indium substitutes preferentially at the Y site but has measurable probability of substitution in at least one of the two copper sites. A symmetry change near 650 C is consistent with the well-documented orthorhombic/tetragonal transition for samples in air or oxygen. (author). 23 refs, 10 figs

  5. Auger processes in ion-surface collisions

    International Nuclear Information System (INIS)

    Zampieri, Guillermo.

    1985-01-01

    Bombardment of solid targets with low-energy noble gas ions can produce Auger electron emission from the target atoms and/or from the projectiles. In the case of Auger emission from the projectile, Auger emission was observed during the bombardment of Na, Mg, Al and Si with Ne + ions. This emission was studied as a function of the energy, incidence angle and charge state of the projectile. From the analysis, it is concluded that the emission originates in the decay in vacuum of excited and reflected Ne atoms, moving outside the surface. Auger emission was not observed during the bombardment of K, V and Ni with Ar + ions; Zr and Cs with Kr + , and Xe + ions, respectively; and Li and Be with He + ions. In the case of Auger emission from the target, studies of certain aspects of the Na, Mg and Al Auger electron emission spectra were made. The results allow to identify two components in the Auger feature, coresponding to two kinds of Auger transition. The total spectra results from the superposition of both kinds of emission. Auger spectra from K obtained during Ar + and K + bombardment of K-implanted Be, Mg, Al and Cu were also analyzed. Similar to the Na, Mg and Al Auger spectra, the K Auger feature is composed of an atomic like peak superimposed on a bandlike structure. Both components correspond to Auger transitions in K atoms with a 3p vacancy, occuring in vacuum and inside the solid, respectively. (M.E.L.) [es

  6. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using {sup 125}I, an Auger electron emitter

    Energy Technology Data Exchange (ETDEWEB)

    Gardette, M.; Papon, J.; Bonnet, M.; Labarre, P.; Miot-Noirault, E.; Madelmont, J. C.; Chezal, J. M.; Moins, N. [UMR 990, INSERM, Universite d' Auvergne, Clermont-Ferrand (France); Desbois, N. [EA 3660, Universite de Bourgogne, Dijon (France); Wu, T. D.; Guerquin-Kern, J. L. [U 759 INSERM, Institute Curie, Orsay (France)

    2013-06-01

    The full text of the publication follows. The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodo-benzamides or analogs are known to possess specific affinity for melanoma tissue. New hetero-aromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using {sup 125}I, Auger electrons emitter which gives high-energetic localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with {sup 125}I, the two compounds induced in vitro a significant radiotoxicity on B16F0 melanoma cells. The acridine compound, ICF01040, appeared more radio toxic than the acridone compound, ICF01035. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with ICF01035, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. Nevertheless, an important radiotoxicity was measured for the two compounds while the nuclear accumulation was low. Indeed, even if nuclear localization remains the main target sensitive to Auger electrons, the cell membrane remains sensitive to {sup 125}I decays. So, these compounds may induce secondary toxic effects of irradiation, such as membrane lipid damage. Conducted to current experiments are evaluate such hypothesis. Taken together, these results suggest that ICF01040 is a better candidate for application in targeted radionuclide therapy using {sup 125}I. The next step will be in vivo evaluation, where high tumoral vectorization gives

  7. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  8. Effects of electron correlation, exchange, and relaxation on x-ray, Auger, and Coster-Kronig transitions

    International Nuclear Information System (INIS)

    Karim, K.R.

    1983-01-01

    The first topic deals with Auger and radiative deexcitation of highly stripped phosphorus atoms. X-ray wavelengths, Auger energies, and decay rates have been calculated for various states of the P 4+ ion, with configurations (1s 2 2s 2 2p 5 )3s3p, 3s3d, 3s 2 , 3p 2 , and 3d 2 . Intermediate coupling and configuration interaction have been taken into account. The energies and decay rates are found to be strongly affected by configuration interaction. The theoretical results are compared with recent observations in ion-atom collision experiments. Good agreement with measured spectra is found, and the calculations characterize a number of lines that had not previously been identified. The second topic relates to the effects of exchange, relaxation, and electron correlation on the L 1 -L 23 M 1 Coster-Kronig spectrum of argon. The present calculation leads to good agreement with experimental transition energies and removes some of the discrepancies in transition rates. The total calculated transition rates are still about a factor of two higher than the measured rates. Relaxation tends to minimize the differences between individual L 1 -L 23 M 1 ( 1 P) and L 1 -L 23 M 1 ( 3 P) transition rates. The initial- and final-ionic-configuration interaction reduces the total decay rate by approx.35%. Inclusion of complete relaxation increases the total rate, however, by approx.1.5% rather than reducing it, with respect to calculations without relaxation. The exchange interaction also increases this rate by approx.9%

  9. Inner-shell electron spectroscopy for microanalysis

    International Nuclear Information System (INIS)

    Joy, D.C.; Maher, D.M.

    1979-01-01

    The transmission electron energy-loss spectrum shows characteristic edges corresponding to the excitation of inner-shell electrons of atoms in a thin sample. Analysis of these edges provides detailed chemical, structural, and electronic data from the radiated volume. By combining electron spectroscopy and electron microscopy, this microanalytical technique can be performed in conjunction with high-resolution imaging of the sample. It is shown that this approach has advantages of sensitivity, spatial resolution, and convenience over other comparable techniques. 7 figures

  10. Electron attachment cross sections obtained from electron attachment spectroscopy

    International Nuclear Information System (INIS)

    Popp, P.; Baumbach, J.I.; Leonhardt, J.W.; Mothes, S.

    1988-01-01

    Electron capture detectors have a high sensitivity for substances with high thermal electron attachment cross sections. The electron attachment spectroscopy makes it possible to change the mean electron energy in such a way that the maximum for dissociative electron attachment is reached. Thus, best operation modes of the detection system as well as significant dependencies of electron attachment coefficients are available. Cross sections for electron attachment as a function of the electron energy are obtained with the knowledge of electron energy distribution functions from Boltzmann equation analysis by a special computer code. A disadvantage of this electron attachment spectroscopy is the superposition of space charge effects due to the decrease of the electron drift velocity with increasing mean electron energy. These influences are discussed. (author)

  11. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  12. Electron-electron coincidence spectroscopies at surfaces

    International Nuclear Information System (INIS)

    Stefani, G.; Iacobucci, S.; Ruocco, A.; Gotter, R.

    2002-01-01

    In the past 20 years, a steadily increasing number of electron-electron coincidence experiments on atoms and molecules have contributed to a deeper understanding of electron-electron correlation effects. In more recent years this technique has been extended to the study of solid surfaces. This class of one photon IN two electrons OUT experiments will be discussed with an emphasis on grazing incidence geometry, that is expected to be particularly suited for studying surfaces. The crucial question of which is the dominant mechanism that leads to ejection of pairs of electron from the surface will be addressed. It will be shown that, depending on the kinematics chosen, the correlated behaviour of the pairs of electrons detected might be singled out from independent particle one

  13. Auger vs resonance neutralization in low energy He+ ion scattering

    International Nuclear Information System (INIS)

    Woodruff, D.P.

    1983-01-01

    He + ions incident on a metal surface can neutralize either by an Auger or resonant charge exchange. While the Auger process has always been thought to be dominant, recent theoretical interest in the simpler one-electron resonance process has led to suggestions that this alone can account for the neutralization seen in low energy He + ion scattering. In this paper this assertion is analysed by looking at the wider information available on charge exchange processes for He + ion scattering through comparison with Li + ion scattering, the importance of multiple scattering in both these scattering experiments and the results of ion neutralization spectroscopy. These lead to the conclusion that while resonance neutralization to produce metastable He* may well occur at a substantial rate in He + ion scattering, the dominant process leading to loss of ions from the final scattered signal is Auger neutralization as originally proposed. (author)

  14. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    Science.gov (United States)

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  15. KLL resonant Auger transitions in metallic Cu and Ni

    International Nuclear Information System (INIS)

    Koever, L.; Berenyi, Z.; Cserny, I.

    2004-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metals contain important information on the effects of the solid environment on deep core Auger transitions. Following the changes in the spectra when fine tuning the exciting photon energy across the K-shell ionization threshold with high energy resolution is informative concerning the possible resonant processes, expected to indicate the single-step nature of threshold Auger emission. The satellite structures in these spectra are strongly related to the unoccupied local electronic states above the Fermi level, as well as to the excitation, relaxation and screening processes associated with core hole ionization. In spite of the fundamental significance of the phenomena mentioned above, even non resonant high energy resolution studies of KLL Auger spectra of 3d transition metals (using laboratory X-ray sources) are very scarce due to the demanding experimental conditions requested. A very efficient tool for studying these phenomena is the Tunable High Energy XPS developed at HASYLAB which provides unique conditions, photon x and energy resolution for deep core Auger spectroscopy. Using the THE-XPS instrument at the BW2 beamline the high energy resolution (ΔE = 0.2 eV) KL 2,3 L 2,3 Auger spectra of polycrystalline Cu and Ni foils were measured with the Scienta SES-200 hemispherical analyzer. In the high energy range Cu 2p photo-electron peaks appearing in the Cu KLL Auger spectra due to the excitation by internal Cu K X-rays and trusted value for the Cu 2p3/2 binding energy were used for energy calibration. The exciting photon energy range was tuned up to about 50 eV above the K absorption edge and for the resonant energy region to 5 eV (Cu KLL) and 4 eV (Ni KLL) below threshold ensuring a photon beam with an energy width of about 1.1 eV. The evolution of the satellite structure as a function of excitation energy above threshold indicates di rent behaviour for particular satellites, making

  16. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  17. Development of Micron-Resolved Electron Spectroscopy to Study Organic Thin Films in Real Devices

    International Nuclear Information System (INIS)

    Wang, C.-H.; Fan, L.-J.; Yang, Y.-W.; Su, J.-W.; Chan, S.-W.; Chen, M.-C.

    2010-01-01

    A straightforward application of an electron energy analyzer equipped with an image detector to micron-resolved electron spectroscopic studies of organic thin film devices is reported. The electron spectroscopies implemented include synchrotron-based UPS, XPS, and Auger yield NEXAFS. Along the non-energy-dispersion direction of the analyzer, a spatial resolution of ∼40 μm is obtained through the employment of entrance slits, electrostatic lenses and segmented CCD detector. One significant benefit offered by the technique is that the electronic transport and electronic structure of the same micron-sized sample can be directly examined. The example illustrated is a top-contact organic field effect transistor (OFET) fabricated from semiconducting triethylsilylethynyl anthradithiophene and gold electrodes. It is found that an extensive out-diffusion of gold atoms to adjacent conduction channels takes place, presumably due to the inability of soft organic materials in dissipating the excess energy with which gaseous Au atoms possess.

  18. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kaciulis, S., E-mail: saulius.kaciulis@ismn.cnr.it [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Mezzi, A.; Balijepalli, S.K. [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Lavorgna, M. [Institute of Polymers, Composites and Biomaterials, IPCB-CNR, P.le Fermi, 80055 Napoli (Italy); Xia, H.S. [State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 Sichuan (China)

    2015-04-30

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D{sub x} parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter.

  19. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    International Nuclear Information System (INIS)

    Kaciulis, S.; Mezzi, A.; Balijepalli, S.K.; Lavorgna, M.; Xia, H.S.

    2015-01-01

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D x parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter

  20. Conversion electron spectroscopy in transfermium nuclei

    International Nuclear Information System (INIS)

    Herzberg, R.D.

    2003-01-01

    Conversion electron spectroscopy is an essential tool for the spectroscopy of heavy deformed nuclei. The conversion electron spectrometer SACRED has been used in conjunction with the gas-filled recoil separator RITU to study conversion electron cascades in 254 No. The spectra reveal the ground state rotational bands down to low spin. A detailed analysis of the background seen for 254 No shows that approximately 40% of the decay path goes via excited high K bands which may be built on an isomer. (orig.)

  1. Auger spectra of alkanes

    International Nuclear Information System (INIS)

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  2. Evidence of sequential interatomic decay in argon trimers obtained by electron-triple-ion coincidence spectroscopy

    International Nuclear Information System (INIS)

    Liu, X-J; Saito, N; Fukuzawa, H; Morishita, Y; Stoychev, S; Kuleff, A; Suzuki, I H; Tamenori, Y; Richter, R; Pruemper, G; Ueda, K

    2007-01-01

    Sequential interatomic decay, where the first step is an Auger decay with interatomic character and the second step is a pure interatomic Coulombic decay (ICD), is identified in Ar trimers Ar 3 . The 2p hole state in Ar 3 decays via the L 2,3 M 1 M 2,3 Auger to the one-site two-hole states Ar ++ (3s -1 3p -1 )-Ar-Ar that couples to the two-site satellite states Ar + (3p -2 nl)-Ar + (3p -1 )-Ar. These states are subject to ICD to the states Ar + (3p -1 )-Ar + (3p -1 )-Ar + (3p -1 ), in which the nl electron fills the 3p hole in the same Ar site and one of the 3p electrons in the third Ar site is emitted as a slow ICD electron. This ICD process is identified unambiguously by electron-ion-ion-ion coincidence spectroscopy in which the kinetic energy of the slow ICD electron and the kinetic energy release among the three Ar + ions are measured in coincidence. (fast track communication)

  3. Electron spectroscopy of collisional excited atoms

    International Nuclear Information System (INIS)

    Straten, P. van der.

    1987-01-01

    In this thesis measurements are described in which coincidences are detected between scattered projectiles and emitted electrons. This yields information on two-electron excitation processes. In order to show what can be learnt from coincidence experiments a detailed theoretical analysis is given. The transition amplitudes, which contain all the information, are introduced (ch.2). In ch.3 the experimental set-up is shown. The results for the Li + -He system are shown in ch. 7 and are compared with predictions based on the Molecular-Orbitalmodel which however does not account for two-excitation mechanisms. With the transition amplitudes also the wave function of the excited atom has been completely determined. In ch.8 the shape of the electron cloud, induced by the collision, is derived from the amplitudes. The relation between the oscillatory motion of this cloud after the collision and the correlation between the two electrons of the excited atom is discussed. In ch. 6 it is shown that the broad structures in the non-coincident energy spectra of the Li + -He system are erroneously interpretated as a result of electron emission from the (Li-He) + -quasimolecule. A model is presented which explains, based on the results obtained from the coincidence measurements, these broad structures. In ch. 4 the Post-Collision Interaction process is treated. It is shown that for high-energy collisions, in contrast with general assumptions, PCI is important. In ch. 5 the importance of PCI-processes in photoionization of atoms, followed by Auger decay, are studied. From the formulas derived in ch. 4 simple analytical results are obtained. These are applied to recent experiments and good agreement is achieved. 140 refs.; 55 figs.; 9 tabs

  4. Depth sectioning using electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    D'Alfonso, A J; Findlay, S D; Allen, L J; Cosgriff, E C; Kirkland, A I; Nellist, P D; Oxley, M P

    2008-01-01

    The continued development of electron probe aberration correctors for scanning transmission electron microscopy has enabled finer electron probes, allowing atomic resolution column-by-column electron energy loss spectroscopy. Finer electron probes have also led to a decrease in the probe depth of focus, facilitating optical slicing or depth sectioning of samples. The inclusion of post specimen aberration corrected image forming lenses allows for scanning confocal electron microscopy with further improved depth resolution and selectivity. We show that in both scanning transmission electron microscopy and scanning confocal electron microscopy geometries, by performing a three dimensional raster scan through a specimen and detecting electrons scattered with a characteristic energy loss, it will be possible to determine the location of isolated impurities embedded within the bulk.

  5. Electron capture and energy-gain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taulbjerg, K.

    1989-01-01

    The applicability of translation energy spectroscopy as a tool to determine individual reaction cross sections in atomic collisions is analyzed with special emphasis on the electron capture process in highly charged ion collisions. A condition is derived to separate between higher collision energies where translation energy spectroscopy is problem free and lower energies where strong overlap of individual spectra features prohibits an analysis of the total translation energy spectrum by means of a simple deconvolution procedure. 8 refs., 6 figs.

  6. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    Science.gov (United States)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our

  7. Penning ionization processes studied by electron spectroscopy

    International Nuclear Information System (INIS)

    Yencha, A.J.

    1978-01-01

    The technique of measuring the kinetic energy of electrons ejected from atomic or molecular species as a result of collisional energy transfer between a metastable excited rare gas atom and an atom or molecule is known as Penning ionization spectroscopy. Like the analogous photoionization process of photoelectron spectroscopy, a considerable amount of information has been gained about the ionization potentials of numerous molecular systems. It is, in fact, through the combined analyses of photoelectron and Penning electron spectra that affords a probe of the particle-particle interactions that occur in the Penning process. In this paper a short survey of the phenomenon of Penning ionization, as studied by electron spectroscopy, will be presented as it pertains to the ionization processes of simple molecules by metastable excited atoms. (author)

  8. Photoelectron and Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} obtained by using monochromatized synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shin-ichi, E-mail: nagaoka@ehime-u.ac.jp [Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Endo, Hikaru; Nagai, Kanae [Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Takahashi, Osamu [Institute for Sustainable Sciences and Development, Hiroshima University, Higashi-Hiroshima 739-8511 (Japan); Tamenori, Yusuke [Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198 (Japan); Suzuki, Isao H. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Advanced Institute of Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-08-15

    Highlights: • Various photo- and Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} vapor were measured. • The measured spectra were interpreted with the aid of some calculations. • The spectra showed profiles close to those expected from SiCl{sub 4} and Si(CH{sub 3}){sub 4}. • These results were discussed in conjunction with site-specific fragmentation. - Abstract: A variety of photoelectron and Auger-electron spectra of 1,1,1-trimethyltrichlorodisilane vapor (Cl{sub 3}SiSi(CH{sub 3}){sub 3}) were measured by using monochromatized synchrotron radiation and a hemispherical electron energy analyzer. The measured spectra were interpreted with the aid of some calculations by means of the outer valence Green's function (OVGF) method or the density-functional-theory (DFT) method. Since Cl{sub 3}SiSi(CH{sub 3}){sub 3} consists of -SiCl{sub 3} and -Si(CH{sub 3}){sub 3} moieties, the experimental core-electron binding-energies were compared with those of tetrachlorosilane and tetramethylsilane (SiCl{sub 4} and Si(CH{sub 3}){sub 4}, respectively). This comparison showed that electronic properties of Cl{sub 3}SiSi(CH{sub 3}){sub 3} hold a close correlation with those of SiCl{sub 4} and Si(CH{sub 3}){sub 4}. Si:L{sub 23}VV, Cl:L{sub 23}VV and C:KVV Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} also showed profiles close to those expected from the spectra of SiCl{sub 4} and Si(CH{sub 3}){sub 4}. The results obtained here were discussed in conjunction with electronic relaxation leading to site-specific fragmentation.

  9. Dynamical effects in electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianqiang Sky, E-mail: jianqiang.zhou@polytechnique.edu; Reshetnyak, Igor; Giorgetti, Christine; Sottile, Francesco; Reining, Lucia [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS, Université Paris-Saclay, F-91128 Palaiseau (France); Kas, J. J.; Rehr, J. J. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Sponza, Lorenzo [Department of Physics, King’s College London, London WC2R 2LS (United Kingdom); Guzzo, Matteo [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, D-12489 Berlin (Germany); Gatti, Matteo [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS, Université Paris-Saclay, F-91128 Palaiseau (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette (France)

    2015-11-14

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green’s function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that occur in that case.

  10. Dynamical effects in electron spectroscopy

    International Nuclear Information System (INIS)

    Zhou, Jianqiang Sky; Reshetnyak, Igor; Giorgetti, Christine; Sottile, Francesco; Reining, Lucia; Kas, J. J.; Rehr, J. J.; Sponza, Lorenzo; Guzzo, Matteo; Gatti, Matteo

    2015-01-01

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green’s function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that occur in that case

  11. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Perevoshchikov, L. L.; Kovalík, Alojz; Filosofov, D. V.; Yushkevich, Yu. V.; Ryšavý, Miloš; Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Zhdanov, V. S.

    2014-01-01

    Roč. 197, DEC (2014), s. 64-71 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Kr-83 * Rb-83 * Sr-83 * electron binding energy * KLL transitions * natural atomic level width * multiconfiguration Dirac-Fock calculations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.436, year: 2014

  12. Satellite structure in Auger and (e,2e) spectra of germanium

    International Nuclear Information System (INIS)

    Went, M.R.; Vos, M.; Kheifets, A.S.

    2006-01-01

    The interpretation of electron spectroscopy data is often complicated by the presence of satellites. These satellites are either due to different final states reached after the excitation (intrinsic satellites) or due to energy loss experienced by the escaping electron on its way out the target (extrinsic satellites). Unravelling these two contributions in an unambiguous way is difficult. In this paper we compare the intrinsic satellite structures obtained for germanium by two different high-energy spectroscopies: Auger spectroscopy of deep core levels and valence band electron momentum spectroscopy. Despite the different nature of the two probes we find a similar shape of the intrinsic satellites and comparable intensity

  13. Study of non stoichiometric pure and Zr-Doped yttria surfaces by X-Ray photoelectron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gautier, M.; Duraud, J.P.; Jollet, F.; Thromat, N.; Maire, P.; Le Gressus, C.

    1988-01-01

    Surfaces of oxygen-deficient yttrium oxide, pure or Zr-doped, have been studied by means of X-ray photoelectron spectroscopy and scanning electron microscopy. The bulk local geometric structure of these non-stoichiometric compounds was previously determined around the Y atom by an EXAFS (Extended X-ray absorption fine structure) study. The local electronic structure around both Y and O, at the surface, was investigated by X-ray photoelectron spectroscopy. The partial transfer of the electronic distribution between the anion and the cation was probed using the Auger parameter. Coupling of these experiments with microscopic observations show that: - In the pure oxygen-deficient sample, the concentration of oxygen vacancies appears to be increased at the grain boundaries. - The Auger parameter shows upon reduction an evolution of the Y-O bond towards a more covalent one, this evolution being modulated with the presence of Zr0 2

  14. Spectroscopy of two-electron atoms

    International Nuclear Information System (INIS)

    Desesquelles, J.

    1988-01-01

    Spectroscopy of heliumlike ions is discussed putting emphasis on mid and high Z atoms. Experimental aspects of ion charge, excitation production, clean spectra, and precise wavelength measurement are detailed. Recent results obtained at several laboratories including Lyon, Argonne, Notre-Dame, Oxford, Berkeley, Darmstadt, Paris, are used to test the QED contributions and higher order relativistic corrections to two-electron atom energies. (orig.)

  15. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values.

    Science.gov (United States)

    Falzone, Nadia; Lee, Boon Q; Fernández-Varea, José M; Kartsonaki, Christiana; Stuchbery, Andrew E; Kibédi, Tibor; Vallis, Katherine A

    2017-03-21

    The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67 Ga, 80m Br, 89 Zr, 90 Nb, 99m Tc, 111 In, 117m Sn, 119 Sb, 123 I, 124 I, 125 I, 135 La, 195m Pt and 201 Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKs using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKs in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.

  16. Single Molecule Spectroscopy of Electron Transfer

    International Nuclear Information System (INIS)

    Holman, Michael; Zang, Ling; Liu, Ruchuan; Adams, David M.

    2009-01-01

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  17. High-resolution Auger spectroscopy on 79 MeV Ar5+, 89 MeV Ar6+, and 136 MeV Ar7+ ions after excitation by helium

    International Nuclear Information System (INIS)

    Schneider, T.

    1988-01-01

    In this thesis the atomic structure of highly excited Ar 6+ and Ar 7+ ions was studied. For this 79 MeV Ar 5+ , 89 MeV Ar 6+ , and 136 MeV Ar 7+ ions of a heavy ion accelerator were excited by a He gas target to autoionizing states and the Auger electrons emitted in the decay were measured in highly-resolving state. The spectra were taken under an observational angle of zero degree relative to the beam axis in order to minimize the kinematical broadening of the Auger lines. (orig./HSI) [de

  18. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  19. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  20. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  1. Theoretical and experimental study of the double ionization by electron impact involving the Auger effect: processes and exchanges interferences; Etude theorique et experimentale de la double ionisation par impact electronique incluant l'effet auger: interferences d'echanges et de processus

    Energy Technology Data Exchange (ETDEWEB)

    Catoire, F

    2006-09-15

    In this work, double ionisation mechanisms of argon by electron impact in which the Auger effect is included have been studied as a function of the incident electron energy. Five and six fold differential cross sections in angle and in energy have been measured and analysed in a coplanar geometry. The efficiency of the apparatus has been improved by the use of a new toroidal analyser. For the first time, the six fold differential cross section in which the Auger electron and the ejected electron with identical kinetic energies (205 eV) are involved, was measured at an incident energy of 956 eV in the case of argon. In the theoretical models developed during this work, the triple continuum is represented by a manifold of coulomb waves describing the interaction of all electrons with the residual ion. Exchange effects between electrons were also included in the models. Comparison between experimental and theoretical results allows to study the relative contribution of the Auger process and the direct double ionisation on the angular dependence five fold differential cross section. In particular, the Auger process contribution seems to become increasingly important as the incident energy is increased.

  2. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  3. Modification to an Auger Electron Spectroscopy system for measuring segregation in a bi-crystal

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-03-01

    Full Text Available . Parameters like temperature measurement, crystal history and spectrometer variables are all adding to the complexity of directly comparing the segregation behaviour from one crystal to another. This investigation makes use of a Cu bi-crystal, modifications...

  4. Auger Physicists visit CMS

    CERN Multimedia

    Hoch, Michael

    2012-01-01

    Visit at CERN P5 CMS in the experimental cavern Alan Watson, Auger Spokesperson Emeritus, University of Leeds; Jim Cronin, Nobel Laureate, Auger Spokesperson Emeritus, University of Chicago; Jim Virdee, CMS Former Spokesperson, Imperial College; Jim Matthews, Auger Co-Spokesperson, Louisiana State University

  5. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  6. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part I - an absolute traceable energy calibration for electron spectrometers

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.; Anthony, M.T.

    1991-01-01

    Experiments have been made to provide calibrated kinetic energy values for AES peaks in order to calibrate Auger electron spectrometers of various resolving powers. The kinetic energies are measured using a VG Scientific ESCALAB 2 which has power supplies appropriate for AES measurements in both the constant ΔE and constant ΔE/E modes. The absolute calibration of the energy scale is obtained by the development of a new measurement chain which, in turn, is calibrated in terms of the post-1990 representation of electron volts using XPS peaks with a traceable kinetic energy accuracy of 0.02 eV. The effects of instrumental and operating parameters, including the spectrometer dispersion and stray magnetic fields, are all assessed and contribute errors for three peaks not exceeding 0.06 eV and for two peaks not exceeding 0.03 eV. Calibrated positions in the direct spectrum are given for the Cu M 2,3 VV, Au N 6,7 VV, Ag M 4 NN, Cu L 3 VV and Au M 5 N 6,7 N 6,7 transitions at 0.2 eV resolution, referred to both the Standard Vacuum Level and the Fermi level. For the derivative spectrum the positions of the negative excursions are derived numerically by computer from this data and are established with the same accuracy. Data are tabulated for the above peaks in both the direct and differentiated modes for the popular resolutions of 0.15%, 0.3% and 0.6% produced by Gaussian broadening of the high resolution spectra. Differentiations are effected by both sinusoidal modulation and Savitzky-Golay functions of 2 eV and 5 eV peak-to-peak

  7. Positron lifetime measurements and positron-annihilation induced auger electron spectroscpy using slow positron beams; Teisoku yodenshi bimu wo mochiita yodenshi jumyo sokutei oyobi yodenshi shometsu reiki oje denshi bunko

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. [Electrotechnical Lab., Tsukuba (Japan)

    1996-02-20

    Slow positron beam with less than several eV can be controlled freely such as accelerating, throttling the beam size, shortening the pulse or making pulse with short time width and so forth. These low positron beams are applied to various measurements like Doppler broadening measurement of annihilation {gamma} rays or lifetime measurement of positron, and secondary particle measurements using positron microscope, positron electron ray diffraction, flight time method and so forth. In particular, these recent years, high intensity slow positron beams were possible using accelerators like electron linac and its application is increasing. In this report, pulse shortening method for high intensity slow positron beam, and incidence energy variable positron lifetime measurement method using this slow pulsed beam and flight time type positron-annihilation-induced auger electron spectroscopy are outlined. In future, these measurements can be possible to carry out with high resolution and also with high counting rate if higher intensity monochromatic excellent positron beam than present one is produced. 31 refs., 5 figs.

  8. Implementation of the Electron conversion Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Hernandez, Torres, D.; Noriega Scull, C.

    1996-01-01

    In the present work has been exposed the principles of the Conversion Moessbauer Electron Spectroscopy and its possibilities of application. Is also described the operation of the parallel plate avalanche detector made at the CEADEN starting from modifications done to the Gancedo's model and is exposed examples of the use of this detector in the characterization of corroded surfaces, with chemical cleaning and in samples of welded joints. The experiences obtained of this work were extended to the National Polytechnic Institute of Mexico where a similar detector, made in our center, was installed there

  9. 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin.

    Science.gov (United States)

    Cornelissen, Bart; Waller, Andrew; Target, Carol; Kersemans, Veerle; Smart, Sean; Vallis, Katherine A

    2012-02-20

    The F3 peptide (KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK), a fragment of the human high mobility group protein 2, binds nucleolin. Nucleolin is expressed in the nuclei of normal cells but is also expressed on the membrane of some cancer cells. The goal was to investigate the use of 111In-labeled F3 peptide for Auger electron-targeted radiotherapy. F3 was labeled with fluorescein isothiocyanate (FITC) for confocal microscopy and conjugated to p-SCN-benzyl-diethylenetriaminepentaacetic acid (BnDTPA) for labeling with 111In to form 111In-BnDTPA-F3. MDA-MB-231-H2N (231-H2N) human breast cancer cells were exposed to 111In-BnDTPA-F3 and used in cell fractionation, γH2AX immunostaining (a marker of DNA double-strand breaks), and clonogenic assays. In vivo, biodistribution studies of 111In-BnDTPA-F3 were performed in 231-H2N xenograft-bearing mice. In tumor growth delay studies, 111In-BnDTPA-F3 (3 μg, 6 MBq/μg) was administered intravenously to 231-H2N xenograft-bearing mice once weekly for 3 weeks. Membrane-binding of FITC-F3 was observed in 231-H2N cells, and there was co-localization of FITC-F3 with nucleolin in the nuclei. After exposure of 231-H2N cells to 111In-BnDTPA-F3 for 2 h, 1.7% of 111In added to the medium was membrane-bound. Of the bound 111In, 15% was internalized, and of this, 37% was localized in the nucleus. Exposure of 231-H2N cells to 111In-BnDTPA-F3 (1 μM, 6 MBq/μg) resulted in a dose-dependent increase in γH2AX foci and in a significant reduction of clonogenic survival compared to untreated cells or cells exposed to unlabeled BnDTPA-F3 (46 ± 4.1%, 100 ± 1.8%, and 132 ± 7.7%, respectively). In vivo, tumor uptake of 111In-BnDTPA-F3 (3 μg, 6 MBq/μg) at 3-h post-injection was 1% of the injected dose per gram (%ID/g), and muscle uptake was 0.5%ID/g. In tumor growth delay studies, tumor growth rate was reduced 19-fold compared to untreated or unlabeled BnDTPA-F3-treated mice (p = 0.023). 111In-BnDTPA-F3 is internalized into 231-H2N cells and translocates

  10. Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S., E-mail: sebastien.incerti@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Suerfu, B.; Xu, J. [Department of Physics, Princeton University, Princeton, NJ (United States); Ivantchenko, V. [Ecoanalytica, Moscow (Russian Federation); Geant4 Associates International Ltd, Hebden Bridge (United Kingdom); Mantero, A. [SWHARD srl, via Greto di Cornigliano 6r, 16152 Genova (Italy); Brown, J.M.C. [School of Mathematics and Physics, Queen’s University Belfast, Belfast, Northern Ireland (United Kingdom); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Francis, Z. [Université Saint Joseph, Faculty of Sciences, Department of Physics, Beirut (Lebanon); Karamitros, M. [Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN (United States); Tran, H.N. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-04-01

    A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.

  11. Modeling of LMM-MVV Auger-Auger Coincidence Spectra From Solids

    Science.gov (United States)

    Sundaramoorthy, R.; Weiss, A. H.; Hulbert, S. L.; Bartynski, R. A.

    2006-03-01

    Atoms that are highly excited due to the presence of a hole in an inner shell often relax via an Auger transition. This auto-ionizing process results in a final state with two or more holes from an Auger cascade. We present results of the direct measurements of the second and third Auger decays in this sequence. We have measured the Mn MVV Auger spectra from a single-crystal sample of MnO in time coincidence with Auger electrons emitted from prior Mn LMM Auger decays and find these to be much wider than the MVV spectrum measured in time coincidence with M core photoelectron emission. We present a model which attributes the increased energy width of the MVV transitions that follow LMM decays to the rearrangement of ``not so innocent'' bystander hole(s) in the valence band. The energetics of the Auger cascade process are modeled mathematically in terms of correlation integral(s) and convolution integral(s) over the valence band density of states. Comparisons with recent Auger-Auger coincidence studies of Ag and Pd will be made. Acknowledgements: Welch Foundation, NSF DMR98-12628, NSF DMR98-01681, and DOE DE-AC02-98CH10886.

  12. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    Science.gov (United States)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  13. FTIR spectroscopy of electron irradiated polymers

    International Nuclear Information System (INIS)

    Finch, D.S.

    1988-04-01

    The chemical changes in electron beam irradiated polymers, in particular PVC, are considered in order to relate the formation of conjugated structures to changes in the electrical properties. Infrared spectroscopy has been used to measure these changes. Fourier Transform techniques and computing facilities make better data processing possible. A method for base line interpretation is demonstrated whereby a shift parallel to the abscisal axis in a region of the polymer that is non absorbing is used to evaluate the baseline. This technique has proved to be highly reproducible providing that the polymer films to be examined are optically homogeneous. Evaluation of the rate of decay of the total area of the carbon chlorine region of the polymer has been compared with the chlorine decay curve analysed by the measurement of x-ray emission during irradiation of bulk samples. The significant reduction in the evolution of atomic chlorine through x-ray analysis has been attributed to the trapping of HCl within the polymer film and its subsequent slow diffusion out of the polymer. With PVC, one of the main products as a result of irradiation is the formation of conjugated sequences. These were studied by the use of uv-visible spectroscopy. (author)

  14. Hot Electron Nanoscopy and Spectroscopy (HENs)

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Allione, Marco; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2017-01-01

    This chapter includes a brief description of different laser coupling methods with guided surface plasmon polariton (SPP) modes at the surface of a cone. It shows some devices, their electromagnetic simulations, and their optical characterization. A theoretical section illustrates the optical and quantum description of the hot charge generation rate as obtained for the SPP propagation along the nanocone in adiabatic compression. The chapter also shows some experimental results concerning the application of the hot electron nanoscopy and spectroscopy (HENs) in the so-called Schottky configuration, highlighting the sensitivity and the nanoscale resolution of the technique. The comparison with Kelvin probe and other electric atomic force microscopy (AFM) techniques points out the intrinsic advantages of the HENs. In the end, some further insights are given about the possibility of exploiting HENs with a pulsed laser at the femtosecond time scale without significant pulse broadening and dispersion.

  15. Hot Electron Nanoscopy and Spectroscopy (HENs)

    KAUST Repository

    Giugni, Andrea

    2017-08-17

    This chapter includes a brief description of different laser coupling methods with guided surface plasmon polariton (SPP) modes at the surface of a cone. It shows some devices, their electromagnetic simulations, and their optical characterization. A theoretical section illustrates the optical and quantum description of the hot charge generation rate as obtained for the SPP propagation along the nanocone in adiabatic compression. The chapter also shows some experimental results concerning the application of the hot electron nanoscopy and spectroscopy (HENs) in the so-called Schottky configuration, highlighting the sensitivity and the nanoscale resolution of the technique. The comparison with Kelvin probe and other electric atomic force microscopy (AFM) techniques points out the intrinsic advantages of the HENs. In the end, some further insights are given about the possibility of exploiting HENs with a pulsed laser at the femtosecond time scale without significant pulse broadening and dispersion.

  16. Auger electron emitter against multiple myeloma - targeted endo-radio-therapy with 125I-labeled thymidine analogue 5-iodo-4'-thio-2'-deoxyuridine

    International Nuclear Information System (INIS)

    Morgenroth, Agnieszka; Dinger, Cornelia; Zlatopolskiy, Boris D.; Al-Momani, Ehab; Glatting, Gerhard; Mottaghy, Felix M.; Reske, Sven N.

    2011-01-01

    Introduction: Multiple myeloma (MM) is a plasma cell malignancy characterized by accumulation of malignant, terminally differentiated B cells in the bone marrow. Despite advances in therapy, MM remains an incurable disease. Novel therapeutic approaches are, therefore, urgently needed. Auger electron-emitting radiopharmaceuticals are attractive for targeted nano-irradiation therapy, given that DNA of malignant cells is selectively addressed. Here we evaluated the antimyeloma potential of the Auger electron-emitting thymidine analogue 125 I-labeled 5-iodo-4'-thio-2'-deoxyuridine ([ 125 I]ITdU). Methods: Cellular uptake and DNA incorporation of [ 125 I]ITdU were determined in fluorodeoxyuridine-pretreated KMS12BM, U266, dexamethasone-sensitive MM1.S and -resistant MM1.R cell lines. The effect of stimulation with interleukin 6 (IL6) or insulin-like growth factor 1 (IGF1) on the intracellular incorporation of [ 125 I]ITdU was investigated in cytokine-sensitive MM1.S and MM1.R cell lines. Apoptotic cells were identified using Annexin V. Cleavage of caspase 3 and PARP was visualized by Western blot. DNA fragmentation was investigated using laddering assay. Therapeutic efficiency of [ 125 I]ITdU was proven by clonogenic assay. Results: [ 125 I]ITdU was shown to be efficiently incorporated into DNA of malignant cells, providing a promising mechanism for delivering highly toxic Auger radiation emitters into tumor DNA. [ 125 I]ITdU had a potent antimyeloma effect in cell lines representing distinct disease stages and, importantly, in cell lines sensitive or resistant to the conventional therapeutic agent, but was not toxic for normal plasma and bone marrow stromal cells. Furthermore, [ 125 I]ITdU abrogated the protective actions of IL6 and IGF1 on MM cells. [ 125 I]ITdU induced massive damage in the DNA of malignant plasma cells, which resulted in efficient inhibition of clonogenic growth. Conclusion: These studies may provide a novel treatment strategy for overcoming

  17. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A; Benabdallah, N; Desbree, A [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses (France)

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres of unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S

  18. Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy

    OpenAIRE

    ?anda, Franti?ek; Perl?k, V?clav; Lincoln, Craig N.; Hauer, J?rgen

    2015-01-01

    Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency?frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and...

  19. Auger measurements on the two-dimensional adsorption of krypton on graphite

    International Nuclear Information System (INIS)

    Kramer, H.M.; Suzanne, J.

    1975-01-01

    The adsorption of krypton on a (0001) plane of graphite was studied by means of Auger Electron Spectroscopy. The spectrum of krypton in the energy range from 5eV to 11eV and from 30eV to 70eV is reported. By means of LEED a √3x√3 superstructure is found for the adsorbed monolayer of Kr [fr

  20. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  1. 3D Auger quantitative depth profiling of individual nanoscaled III–V heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hourani, W. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Gorbenko, V. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Univ. Grenoble Alpes, LTM, CNRS, F-38000 Grenoble (France); Barnes, J.-P.; Guedj, C. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Cipro, R.; Moeyaert, J.; David, S.; Bassani, F.; Baron, T. [Univ. Grenoble Alpes, LTM, CNRS, F-38000 Grenoble (France); Martinez, E., E-mail: eugenie.martinez@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2016-11-15

    Highlights: • The nanoscale chemical characterization of III–V heterostructures is performed using Auger depth profiling below decananometric spatial resolution. • Reliable indium quantification is achieved on planar structures for thicknesses down to 9 nm. • Quantitative 3D compositional depth profiles are obtained on patterned structures, with sufficient lateral resolution to analyze one single trench. • The Auger intrinsic spatial resolution is estimated around 150–200 nm using a comparison with HAADF-STEM. • Auger and SIMS provide reliable in-depth chemical analysis of such complex 3D heterostructures, in particular regarding indium quantification. - Abstract: The nanoscale chemical characterization of III–V heterostructures is performed using Auger depth profiling below decananometric spatial resolution. This technique is successfully applied to quantify the elemental composition of planar and patterned III–V heterostructures containing InGaAs quantum wells. Reliable indium quantification is achieved on planar structures for thicknesses down to 9 nm. Quantitative 3D compositional depth profiles are obtained on patterned structures, for trench widths down to 200 nm. The elemental distributions obtained in averaged and pointed mode are compared. For this last case, we show that Zalar rotation during sputtering is crucial for a reliable indium quantification. Results are confirmed by comparisons with secondary ion mass spectrometry, photoluminescence spectroscopy, transmission electron microscopy and electron dispersive X-ray spectroscopy. The Auger intrinsic spatial resolution is quantitatively measured using an original methodology based on the comparison with high angle annular dark field scanning transmission electron microscopy measurements at the nanometric scale.

  2. Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra

    Directory of Open Access Journals (Sweden)

    Thomas J. A. Wolf

    2017-07-01

    Full Text Available Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.

  3. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  4. Study by AES, EELS Spectroscopy of electron Irradiation on InP and InPO4/InP in comparison with Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lounis, Z; Bouslama, M; Hamaida, K; Abdellaoui, A; Ouerdane, A; Ghaffour, M; Berrouachedi, N; Jardin, C

    2012-01-01

    We give the great interest to characterise the InP and InPO 4 /InP submitted to electron beam irradiation owing to the Auger Electron Spectroscopy (AES) associated to both methods Electron Energy Loss Spectroscopy (EELS). The incident electron produces breaking of (In-P) chemical bonds. The electron beam even acts to stimulate oxidation of InP surface involving on the top layers. Other, the oxide InPO 4 developed on InP does appear very sensitive to the irradiation due to electron beam shown by the monitoring of EELS spectra recorded versus the irradiated times of the surface. There appears a new oxide thought to be In 2 O 3 . We give the simulation methods Casino (Carlo simulation of electron trajectory in solids) for determination with accuracy the loss energy of backscattered electrons and compared with reports results have been obtained with EELS Spectroscopy. These techniques of spectroscopy alone do not be able to verify the affected depth during interaction process. So, using this simulation method, we determine the interaction of electrons in the matter.

  5. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  6. Electron correlation in the 4d-16p→5s-26p and 5s-15p-16p resonance Auger transitions of Xe

    International Nuclear Information System (INIS)

    Osmekhin, S.; Nikkinen, J.; Sankari, R.; Maeaettae, M.; Kukk, E.; Huttula, M.; Heinaesmaeki, S.; Aksela, H.; Aksela, S.

    2007-01-01

    The Xe 4d -1 6p→5s 0 5p 6 6p and 5s 1 5p 5 6p resonant Auger transitions have been studied both theoretically and experimentally. High resolution resonant Auger spectra have been recoded with different photon bandwidths which have enabled to separate the first step Auger transition from the overlapping second step transitions. Theoretical calculations using multi-configuration Dirac-Fock approach with different configuration expansions were carried out, compared to each other and to the experiment. The calculations with the largest basis set were found to reproduce the distribution of the intensity to the main and satellite lines in both the 5s 0 5p 6 6p and 5s 1 5p 5 6p Auger groups reasonably well, and to predict the structure of the 4d -1 6p→5s 0 5p 6 6p main lines very well

  7. Quantitative Auger analysis of Nb-Ge superconducting alloys

    International Nuclear Information System (INIS)

    Buitrago, R.H.

    1980-01-01

    The feasibility of using Auger electron analysis for quantitative analysis was investigated by studying Nb 3 Ge thin-film Auger data with different approaches. A method base on elemental standards gave consistent quantitative values with reported Nb-Ge data. Alloy sputter yields were also calculated and results were consistent with those for pure elements

  8. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  9. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  10. Electron spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Knupfer, M.

    1994-01-01

    In the last two classes of materials have been discovered which distinguish themselves due to a transition into the superconducting state at relatively high temperatures. These are the cuprate superconductors and the alkali metal doped fullerenes. In this work the electronic structure of representatives of these materials, undoped and Ca-doped YBa 2 Cu 4 O 8 and A 3 C 60 (A=K, Rb), has been investigated using electron energy-loss spectroscopy and photoemission spectroscopy. (orig.) [de

  11. Spectroscopy of heavy few-electron ions

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1986-07-01

    In this paper we ask first, why is it interesting to investigate heavy-few electron ions. Then the various accelerator-based methods to produce heavy few-electron ions are discussed. In the main part an overview on available heavy few-electron ion data and current experiments is given. The summary will end up with future aspects in this field. (orig.)

  12. Photoelectron spectroscopy via electronic spectroscopy of molecular ions

    International Nuclear Information System (INIS)

    Khan, Z.H.

    1990-01-01

    In this work, a new aspect of the correlation between optical and photoelectron spectra is discussed on the basis of which the first ionization potentials of condensed-ring aromatics can be estimated from certain features in the electronic spectra of their positive ions. Furthermore, it is noticed that the first IP's are very sensitive to molecular size as the latter's inclusion in the regression formulas improves the results considerably. Once the first ionization potential for a molecule is determined, its higher IP's may be computed if the lower-energy electronic bands for its cation are known. This procedure is especially useful for such systems whose uv photoelectron spectra are unknown. (author). 11 refs, 10 figs, 1 tab

  13. Photo-electron spectroscopy using synchrotron radiation of molecular radicals and fragments produced by laser photo-dissociation

    International Nuclear Information System (INIS)

    Nahon, Laurent

    1991-01-01

    This research thesis reports the combined use of a laser and of a synchrotron radiation in order to respectively photo-dissociate a molecule and to photo-ionize fragments which are analysed by photo-electron spectroscopy. This association allows, on the one hand, radical photo-ionization to be studied, and, on the other hand, polyatomic molecule photo-dissociation to be studied. The author studied the photo-excitation and/or photo-ionization in layer 4d (resp. 3d) of atomic iodine (resp. bromine) produced almost complete laser photo-dissociation of I_2 (resp. Br_2). He discuses the processes of relaxation of transitions from valence 4d to 5p (resp. 3d to 4p) which occur either by direct self-ionization or by resonant Auger effect, and reports the study of photo-dissociation of s-tetrazine (C_2N_4H_2) [fr

  14. WE-E-BRE-08: Impact of IUdR in Rat 9L Glioma Cell Survival for 25–35 KeV Photo-Activated Auger Electron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, D; Hogstrom, K [Louisiana State University, Baton Rouge, LA (United States); Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Brown, T; Dugas, J; Varnes, M [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Matthews, K [Louisiana State University, Baton Rouge, LA (United States)

    2014-06-15

    Purpose: To determine the biological effect from Auger electrons with 9% and 18% iododeoxyuridine (IUdR) incorporated into the DNA of rat 9L glioma cells at photon energies above and below the K-edge of iodine (33.2 keV). Methods: Rat 9L glioma cell survival versus dose curves with 0%, 9%, and 18% thymidine replacement with IUdR were measured using four irradiation energies (4 MV x-rays; monochromatic 35, 30, and 25 keV synchrotron photons). For each of 11 conditions (Energy, %IUdR) survival curves were fit to the data (826 cell cultures) using the linear-quadratic model. The ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear-energy transfer (LET), radiosensitization (RS), and Auger effect (AE) were extracted. Results: At 35, 30, and 25 keV, SER10,LET values were 1.08±0.03, 1.22±0.02, and 1.37±0.02, respectively. At 4 MV SER10,RS values for 9% and 18% IUdR were 1.28±0.02 and 1.40±0.02, respectively. Assuming LET effects are independent of %IUdR and radiosensitization effects are independent of energy, SER10,AE values for 18% IUdR at 35, 30, and 25 keV were 1.35±0.05, 1.06±0.03, and 0.98±0.03, respectively; values for 9% IUdR at 35 and 25 keV were 1.01±0.04 and 0.82±0.02, respectively. Conclusion: For 18% IUdR the radiosensitization effect of 1.40 and the Auger effect of 1.35 at 35 keV are equally important to the combined effect of 1.90. No measureable Auger effect was observed for energies below the K-edge at 20 and 25 keV, as expected. The insignificant Auger effect at 9% IUdR was not expected. Additional data (40–70 keV) and radiobiological modeling are being acquired to better understand the energy dependence of Auger electron therapy with IUdR. Funding support in part by the National Science Foundation Graduate Research Fellowship Program and in part by Contract No. W81XWH-10-1-0005 awarded by the U.S. Army Research Acquisition Activity. This paper does not necessarily

  15. Highly effective portable beta spectrometer for precise depth selective electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Aldiyarov, N.U.; Kadyrzhanov, K.K.; Seytimbetov, A.M.; Zhdanov, V.S.

    2007-01-01

    Full text: More broad application of the nuclear-physical method of precise Depth Selective Electron Moessbauer Spectroscopy (DS EMS) is limited by insufficient accessibility of highly-effective beta spectrometers with acceptable resolution. It should be mentioned that the method DS EMS is realized at a combined installation that consists of a highly-effective beta spectrometer and a conventional portable nuclear gamma-resonance spectrometer. Yet few available beta spectrometers have sophisticated design and controlling; in most cases they are cumbersome. All the attempts to simplify beta spectrometers resulted in noticeable worsening of depth resolution for the DS EMS method making the measurements non precise. There is currently an obvious need in a highly-effective portable easily controlled beta spectrometer. While developing such portable beta spectrometer, it is more promising to use as basis a simpler spectrometer, which has ratio of sample size to spectrometer size of about five times. The paper presents an equal-arm version of a highly-effective portable beta spectrometer with transverse heterogeneous sector magnetic field that assures double focusing. The spectrometer is equipped with a large-area non-equipotential source (a sample under investigation) and a position-sensitive detector. This portable spectrometer meets all requirements for achievement of the DS EMS depth resolution close to the physical limit and demonstrates the following main characteristics: equilibrium orbit radius ρ 0 = 80 mm, instrumental energy resolution 0.6 % at solid angle 1 % of 4π steradian, area of non-equipotential source ∼ 80 mm 2 , registration by position-sensitive detector of ∼ 10 % of the energy interval. Highly-effective portable beta spectrometer assures obtaining Moessbauer data with depth resolution close to physical limit of the DS EMS method. So in measurements at conversion and Auger electrons with energies of about units of keV and above, the achieved

  16. Experimental (e, 2e) study of exchange interferences in the resonant Auger decay of Ar induced by electron impact

    International Nuclear Information System (INIS)

    Paripás, Béla; Palásthy, Béla; Žitnik, Matjaz

    2013-01-01

    Highlights: •The interference of autoionizing resonances with a common final ionic state is measured. •We have developed a method to experimentally verify for the exchange interference effect. •The sum of kinetic energies of the two detected electrons is kept constant. •Mainly the interference effects of [2p 3/2 ]4p and [2p 1/2 ]4p resonances in argon are studied. •The results possibly indicate small exchange interference effects. -- Abstract: Any two autoionizing resonances with a common final ionic state can be made to interfere by an appropriate selection of electron impact energy. To reveal the exchange interference effects a selective detection of electron pairs related to the selected final state is desired. We have performed a constant ionic state (e, 2e) experiment (CIS) isolating the final state by keeping the sum of transmission energies of two independent electron spectrometers constant. In the focus of this work are the exchange interference effects of 2p 3/2 −1 4p and 2p 1/2 −1 4p resonances in argon decaying to the 3p −2 ( 1 D)4p 2 P, 2 D final ionic state with energy E F = 37.3 ± 0.2 eV. We have developed a method to experimentally verify for the exchange interference effect. It is based on a comparison of the CIS spectrum recorded at the critical primary electron energy that activates the interferences, and the constructed, interference-free CIS spectrum that is build up from the CIS spectrum measured at primary electron energy away from the critical value. The results possibly indicate small exchange interference effects that may have been considerably smeared out at present experimental energy resolution

  17. Electron spectroscopy studies in heavy fermions

    International Nuclear Information System (INIS)

    Arko, A.J.

    1986-02-01

    Photoemission experiments (whereby an electron absorbs a packet of light energy and is able to escape from the host material due to its increased energy) can measure directly the energy distribution of electrons in various materials. Our measurements on a recently-discovered class of metallic materials called ''heavy fermions'' show that the electrons that actually carry the electric current in these metals exist only within an extremely narrow range of energies. This range, which we will call the bandwidth, is narrower than that found in ordinary metals like copper by at least a factor of 10. Indeed it is surprising that they can carry electric current at all since such narrow energy ranges (or band widths) are characteristic of electrons confined to their host atoms, as in a non-metal, rather than of electrons that are free to wander through a metal. 8 refs

  18. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, such as admittance or dielectric constant - as a function of frequency and comparing the results with expectations based on physical, chemical, and microstructural models. This article reviews the principles and practical aspects of the technique, the representations of the results, the analysis of data......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  19. Surface analysis by electron spectroscopy. General concepts and applications

    International Nuclear Information System (INIS)

    Feliu, S.

    1993-01-01

    An introduction is made to the techniques of electron spectroscopy (XPS and AES) used in the study of surface phenomena. Their theoretical principles, the singular information supplied by these techniques and their basic instrumentation (vacuum systems, excitation sources and electron analysers) are described. A revision of their applications to the Materials Science and the Corrosion Sciences is also made. Author. 44 refs

  20. A high dutycycle low cost multichannel analyser for electron spectroscopy

    International Nuclear Information System (INIS)

    Norell, K.E.; Baltzer, P.

    1983-03-01

    A high dutycycle multichannel analyzer has been designed and used in time-of-flight electron spectroscopy. The memory capacity is 64k counts. The number of channels is 8192 with a time resolution of 100 ns. An oscilloscope is used to display the spectra synchronous with the counting. The unit has been built with standard electronic components. (author)

  1. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kostanovskiy, I.A., E-mail: kostanovskiyia@gmail.com [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Afanas’ev, V.P. [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Naujoks, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-07-15

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses.

  2. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    International Nuclear Information System (INIS)

    Kostanovskiy, I.A.; Afanas’ev, V.P.; Naujoks, D.; Mayer, M.

    2015-01-01

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses

  3. Spectroscopy of electron irradiated polymers in electron microscope

    International Nuclear Information System (INIS)

    Faraj, S.H.; Salih, S.M.

    1981-01-01

    The damage induced by energetic electrons in the course of irradiation of polymers in a transmission electron microscope was investigated spectroscopically. Damage on the molecular level has been detected at very low exposure doses. These effects have been induced by electron doses less than that received by the specimen when it is situated at its usual place of the specimen stage in the electron microscope by a factor of 1,000. (author)

  4. Auger spectrometry of atoms and molecules

    International Nuclear Information System (INIS)

    Krause, M.O.

    1994-01-01

    The author discusses the importance of Auger spectrometry at synchrotron radiation centers. First, he explains how a high energy photon source such as the APS (Advanced Photon Source) could be used to help provide missing spectral information about the shell structure of some elements. The missing data occurs mainly at higher energies in the 1--10 keV ranges as for the K-shells of Z = 30 to 60 elements and the L-shells for Z = 30 to 100 elements. He explains how even though Auger electron spectrometry does not depend on synchrotron radiation it can greatly benefit from this variable photon source as it allows one to select the Auger line group that is most suitable for a specific purpose. Most significantly, a continuous photon source becomes indispensable when one is interested in threshold effects. Lastly, he discusses coherence effects between different inner-shell vacancy states by way of some recent work done at Daresbury

  5. Future directions in electron momentum spectroscopy of matter

    International Nuclear Information System (INIS)

    Weigold, E.

    1998-01-01

    The development of coincidence spectrometers with multivariable detection techniques, higher energy kinematics, monochromated and spin-polarised electron sources, will usher in a new generation of electron momentum spectroscopy revealing new electronic phenomena in atoms, molecules and solids. This will be enhanced by developments in target preparation, such as spin polarised, oriented and aligned atoms and molecules, radicals, surfaces and strongly correlated systems in condensed matter. Copyright (1998) CSIRO Australia

  6. Bromine-80m-labeled estrogens: Auger-electron emitting, estrogen receptor-directed ligands with potential for therapy of estrogen receptor positive cancers

    International Nuclear Information System (INIS)

    DeSombre, E.R.; Mease, R.C.; Hughes, A.; Harper, P.V.; DeJesus, O.T.; Friedman, A.M.

    1988-01-01

    A triphenylbromoethylene, 1,1-bis(p-hydroxyphenyl)-2-bromo-2-phenylethylene, Br-BHPE, and a bromosteroidal estrogen, 17α- bromovinylestradiol, BrVE 2 , were labeled with the Auger electron emitting nuclide bromine-80m, prepared by the [p,n] reaction with 80 Se. To assess their potential as estrogen receptor (ER) directed therapeutic substrates the bromine-80m labeled estrogens were injected into immature female rats and the tissue distribution studied at 0.5 and 2 hours. Both radiobromoestrogens showed substantial diethylstilbesterol (DES)-inhibitable localization in the ER rich tissues, uterus, pituitary, ovary and vagina at both time points. While the percent dose per gram tissue was higher for the Br-BHPE, the BrVE 2 showed higher tissue to blood ratios, especially at 2 hr, reflecting the lower blood concentrations of radiobromine following administration of the steroidal bromoestrogen. Comparing intraperitoneal, intravenous and subcutaneous routes of administration for the radiobromine labeled Br-BHPE, the intraperitoneal route was particularly advantageous to provide maximum, DES-inhibitable concentrations in the peritoneal, ER-rich target organs, the uterus, ovary and vagina. While uterine concentrations after BrBHPE were from 10--48% dose/g and after BrVE 2 were 15--25% dose/g, similar treatment with /sup 80m/Br as sodium bromide showed uniform low concentrations in all tissues at about the levels seen in blood. The effective specific activity of [/sup 80m/Br]BrBHPE, assayed by specific binding to ER in rat uterine cytosol, was 8700 Ci/mmole. 23 refs., 9 figs., 2 tabs

  7. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain......Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  8. Electron impact spectroscopy of methane, silane, and germane

    International Nuclear Information System (INIS)

    Dillon, M.A.; Wang, R.G.; Spence, D.

    1985-01-01

    Electronic spectra of the group IV/sub a/ hydrides, i.e., methane (CH 4 ), silane (SiH 4 ), and germane (GeH 4 ) have been investigated by means of electron energy loss spectroscopy in an energy range that includes all single-electron excitation from the valence shell. Electron impact spectra of the three gases recorded using electrons of 200-eV incidence are presented. The conditions employed were chosen to favor the excitation of states by direct scattering and to exclude those transitions requiring an exchange mechanism

  9. Electron Effective-Attenuation-Length Database

    Science.gov (United States)

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  10. Microprocessor monitored Auger spectrometer

    International Nuclear Information System (INIS)

    Sapin, Michel; Ghaleb, Dominique; Pernot, Bernard.

    1982-05-01

    The operation of an Auger spectrometer, used for studying surface impurity diffusion, has been fully automatized with the help of a microprocessor. The characteristics, performance and practical use of the system are described together with the main advantage for the experimentator [fr

  11. Electron coincidence spectroscopy of sodium and potassium

    International Nuclear Information System (INIS)

    Frost, L.; Weigold, E.

    1982-03-01

    The Na 3s and K 4s electron momentum distributions have been obtained using the noncoplanar symmetric (e,2e) reaction at total energies of 800 eV and 1200 eV. They show excellent agreement with the results of plane wave impulse approximation calculations using Roothaan-Hartree-Fock functions, after small corrections are made for the finite angular resolution of the apparatus. The potassium valence s momentum profile is a little narrower than that for sodium, implying a correspondingly slightly larger spatial distribution of the outer valence electrons. The ratio between the (n-1)p and ns cross-sections at their respective maxima in q-space were measured to be 0.009 +- 0.003 and 0.019 +- 0.003 for Na and K respectively. These cross-section ratios are in agreement with the PWIA calculations

  12. Electronic structure of Pu carbides: photoelectron spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Gouder, T.; Havela, L.; Shick, Alexander; Huber, F.

    2008-01-01

    Roč. 403, č. 5-9 (2008), s. 852-853 ISSN 0921-4526 R&D Projects: GA AV ČR(CZ) IAA100100530 Grant - others:EU(XE) RITA -CT-2006-026176 Institutional research plan: CEZ:AV0Z10100520 Keywords : photoemission * electronic structure * plutonium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 2008

  13. Electron cyclotron emission spectroscopy on thermonuclear plasmas

    International Nuclear Information System (INIS)

    Tubbing, B.J.D.

    1987-01-01

    Analysis of electron cyclotron emission (ECE) enables one to infer the radial profile of the electron temperature in tokamaks. The Dutch FOM institute for plasma physics has designed, built, installed and operated a grating polychromator for ECE measurements at JET. This thesis deals with a few instrumental aspects of this project and with applications of ECE measurements in tokamak physics studies. Ch. 3 and 4 deal with the wave transport in ECE systems. In Ch. 3 a method is developed to infer the mode conversion, which is a source for transmission losses, in a waveguide component from the antenna pattern of its exit aperture. In Ch. 4 the design and manufacture of the waveguide transition system to the grating polychromator are described. In Ch. 5 a method is reported for calibration of the spectrometers, based on the use of a microwave source which simulates a large area blackbody of very high temperature. The feasibility of the method is tested by applying it to two different ECE systems. In Ch. 6 a study of heat pulse propagation in tokamak plasma's, based on measurement of the electron temperature with the grating polychromator, is presented. 105 refs.; 48 figs.; 8 tabs

  14. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl

    2006-01-01

    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give on the weath......Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...

  15. Many-electron effects in photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-06-01

    The deviations from Koopmans' one-electron model of photoionization which lead to satellite structure in the photoelectron spectrum are examined within the formalism of configuration interaction (CI). The mechanisms which contribute to satellite intensity may be classified as continuum state configuration interaction, final ionic state configuration interaction, and initial state configuration interaction. The discussion centers around the last two mechanisms, these being the prime contributors to the satellite intensity well above threshold. Specific examples of theoretical ''spectra'' are presented for the F(1s) region of HF and the 1s region of neon. The agreement between theory and experiment is found to be excellent. In these two instances, initial state configuration interaction contributions increase the satellite intensity and are of nearly equal importance to the final ionic state mixing

  16. Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors

    OpenAIRE

    Schackert, Michael Peter

    2014-01-01

    This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  17. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schackert, Michael Peter

    2014-07-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  18. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  19. Gamma-ray and electron spectroscopy in nuclear physics

    International Nuclear Information System (INIS)

    Ejiri, H.

    1989-01-01

    This book is devoted to the role of gamma-ray and conversion-electron (γ-e) spectroscopy in developing our understanding of nuclear structure and nuclear reaction-mechanisms. The book was written because of the spectacular development in the last decade of new γ-e spectroscopic methods, and their application to various kinds of nuclear reactions and the need to present γ-e spectroscopy from the point of view of nuclear structure as well as of reaction mechanism. The importance of γ-e spectroscopy is due to the simplicity and familiarity of the electromagnetic interaction, which gives accurate values for many nuclear quantities and reveals special nuclear properties. γ-e spectroscopy is applied to investigate static as well as dynamic nuclear properties over a wide range of excitation energies from the ground state to states of extreme temperatures and angular momentum, including some new degrees of freedom. (author)

  20. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  1. Electron spectroscopy for atoms, molecules and condensed matter

    International Nuclear Information System (INIS)

    Siegbahn, K.

    1981-12-01

    A review is given of the research performed at the Institute of Physics, Uppsala under the direction of Prof. Siegbahn. in the field of electron spectroscopy applied to solids, liquids and gases. The developemnt of the spectroscopic methods is the central theme of the review. (L.E.)

  2. Auger emission from solid surfaces bombarded with ions

    International Nuclear Information System (INIS)

    Grizzi, Oscar.

    1986-01-01

    The Auger electron emission from Be, Na, Mg, Al and Si bombarded with 0,5-20 KeV noble gas ions is studied. Sharp structures of the Auger electron spectra of Na and Be were identified. A Monte Carlo program was adapted to simulate the colision cascade in the solid, inner shell excitations and Auger decays. From the comparision of experimental and simulated Auger intensities, the relative role of symmetric and asymmetric collisions in Be K- and Al L-shell excitation were evaluated. In the case of Be, the discussion of the exciting processes to higher projectile energies was extended. To this end, the simulation to early measurements of Be K X-ray yields was applied. From this analysis, information about the variations of the fluorescence yield and outer-shell occupation numbers of Be with projectile energy was obtained. The study of the shape of the sharp Auger structures and their dependence with the energy and incidence projectile angle gives information about the collisional processes, inner hole lifetimes and Auger decays. From the evaluation of the energy and angular distribution of the excited sputtered atoms and the interaction between them and the metallic-surface, the energy shift distributions in the Auger energies were obtained. From the comparison of these distributions with the experimental atomic peaks, the main causes of the broadening of these peaks were determined. (M.E.L.) [es

  3. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.

    Science.gov (United States)

    Boyd, Marie; Ross, Susan C; Dorrens, Jennifer; Fullerton, Natasha E; Tan, Ker Wei; Zalutsky, Michael R; Mairs, Robert J

    2006-06-01

    Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus

  4. Interatomic Coulombic decay following the Auger decay: Experimental evidence in rare-gas dimers

    International Nuclear Information System (INIS)

    Ueda, K.; Fukuzawa, H.; Liu, X.-J.; Sakai, K.; Pruemper, G.; Morishita, Y.; Saito, N.; Suzuki, I.H.; Nagaya, K.; Iwayama, H.; Yao, M.; Kreidi, K.; Schoeffler, M.; Jahnke, T.; Schoessler, S.; Doerner, R.; Weber, Th.; Harries, J.; Tamenori, Y.

    2008-01-01

    Interatomic Coulombic decay (ICD) in Ar 2 , ArKr and Kr 2 following Ar 2p or Kr 3d Auger decay has been investigated by means of momentum-resolved electron-ion-ion coincidence spectroscopy. This sequential decay leads to Coulombic dissociation into dication and monocation. Simultaneously determining the kinetic energy of the ICD electron and the kinetic energy release between the two atomic ions, we have been able to unambiguously identify the ICD channels. We find that, in general, spin-conserved ICD, in which the singlet (triplet) dicationic state produced via the atomic Auger decay preferentially decays to the singlet (triplet) state, transferring the energy to the other atom, is faster than spin-flip ICD, in which the Auger final singlet (triplet) dicationic state decays to the triplet (singlet) state. However, spin-flip ICD may take place when spin-conserved ICD becomes energetically forbidden. Dipole-forbidden ICDs from Kr 2+ (4s -21 S)-B (B = Ar or Kr) to Kr 2+ (4p -21 D, 3 P)-B + are also observed

  5. The Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10 19 eV and with equal exposures for the northern and southern skies

  6. Electron momentum spectroscopy of the core state of solid carbon

    International Nuclear Information System (INIS)

    Caprari, R.S.; Clark, S.A.C.; McCarthy, I.E.; Storer, P.J.; Vos, M.; Weigold, E.

    1994-08-01

    Electron momentum spectroscopy (binary encounter (e,2e)) experimental results are presented for the core state of an amorphous carbon allotrope. The (e,2e) cross section has two identifiable regions. One is a narrow energy width 'core band peak' that does not disperse with momentum. At higher binding energies there is an energy diffuse 'multiple scattering continuum', which is a consequence of (e,2e) collisions with core electrons that are accompanied by inelastic scattering of one or more of the incoming or outgoing electrons. Comparisons of experimental momentum distributions with the Hartree-Fock atomic carbon ls orbital are presented for both regions. 16 refs., 4 figs

  7. Electron correlation effects in XUV photoabsorption spectroscopy of atoms

    International Nuclear Information System (INIS)

    Codling, K.

    1976-01-01

    Reference is made to sophisticated experiments involving the measurement of the angular distribution of photo-ejected electrons, coincidence electrons and ion spectroscopy, which can only be interpreted in terms of electron correlation effects. After an introductory review of previous work, the lectures fall under the following headings: experimental procedures (light sources, monochromators, absorption cells, limitations on the simple photoasbsorption experiment, and complementary techniques); experimental results (discrete states in the continuum, gross features in the photoionisation continuum (rare gases, alkalis, alkaline earths, rare earths, transition elements)). (U.K.)

  8. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  9. The Pierre Auger project

    International Nuclear Information System (INIS)

    Mantsch, P.M.

    1996-01-01

    The Pierre Auger project is a broadly based international effort to make a detailed study of cosmic rays at the highest energies. Two air shower detectors are proposed, one to be placed in the Northern Hemisphere and one in the Southern Hemisphere. Each installation will consist of an array of 1600 particle detectors spread over 3000 km 2 with a solid angle acceptance of 2 sr for cosmic ray air showers. Eah installation will also have an atmospheric fluorescence detector viewing the volume above the surface array. These two air shower detector techniques working together form a powerful instrument for the proposed research. The objectives of the Pierre Auger project are to measure the arrival direction, energy, and mass composition of 60 events per year above an energy of 10 20 eV and 6000 events per year above 10 19 eV. A collaboration is now being formed with the goal of having the Pierre Auger observatory in operation by 2001

  10. Nanoscale Chemical Characterization of Solid-State Microbattery Stacks by Means of Auger Spectroscopy and Ion-Milling Cross Section Preparation.

    Science.gov (United States)

    Uhart, A; Ledeuil, J B; Pecquenard, B; Le Cras, F; Proust, M; Martinez, H

    2017-09-27

    The current sustained demand for "smart" and connected devices has created a need for more miniaturized power sources, hence for microbatteries. Lithium-ion or "lithium-free" all-solid-state thin-film batteries are adapted solutions to this issue. The capability to carry out spatially resolved chemical analysis is fundamental for the understanding of the operation in an all-solid-state microbattery. Classically cumbersome and not straightforward techniques as TEM/STEM/EELS and FIB preparation methods could be used to address this issue. The challenge in this work is to make the characterization of Li-based material possible by coupling ion-milling cross section preparation method and AES techniques to characterize the behavior of a LiCoO 2 positive electrode in an all solid state microbattery. The surface chemistry of LiCoO 2 has been studied before and after LiPON deposition. Modifications of the chemical environments characteristic of the positive electrode have been reported at different steps of the electrochemical process. An original qualitative and a semiquantitative analysis has been used in this work with the peak deconvolution method based on real, certified reference spectra to better understand the lithiation/delithiation process. This original coupling has demonstrated that a full study of the pristine, cycled, and post mortem positive electrode in a microbattery is also possible. The ion-milling preparation method allows access to a large area, and the resolution of Auger analysis is highly resolved in energy to separate the lithium and the cobalt signals in an accurate way.

  11. Micro-area Auger analysis of a SiC/Ti fibre composite

    Science.gov (United States)

    Zironi, E. P.; Poppa, H.

    1981-01-01

    Micro-area Auger electron spectroscopy with a spatial resolution of less than 50 nm has been used to study the concentration of elements across the reaction zone of a W-reinforced SiC fiber in a titanium matrix. Although the elemental concentrations obtained by this technique are affected by the reaction zone morphology to a greater extent than in the case of X-ray microprobe analysis, the proposed technique has the advantage of a much higher spatial resolution and avoids the problems of bulk averaging that characterize the X-ray technique.

  12. Theory of K-MM radiative-Auger transitions

    International Nuclear Information System (INIS)

    Baptista, G.B.

    1975-01-01

    Presently available calculations of transition probabilities for radiative-Auger and double-Auger processes are based on shake-off theory. In this theory, such processes are thought of as being due to electron core rearrangement associated with de-excitation of an inner shell vacancy. It is suggested that radiative-Auger processes result from the interaction of two electrons with one another and the radiation field in the presence of an inner shell vacancy, while double-Auger processes result from the interaction of an electron with two electrons in the presence of a similar vacancy. Expressions for the transition probabilities of these processes are derived in second order time dependent perturbation theory. The interaction is taken as the sum of the Coulomb interaction and electron-field interaction of the electrons involved. This approach allows calculation of the detailed photon or electron energy distribution resulting from such processes, as well as the relative and absolute transition rates involved. As a specific example of this approach the transition probability for the K-MM radiative-Auger effect in argon is calculated and compared with available experimental data. Scaled Thomas-Fermi wavefunctions are used to calculate the total transition probability which is found to be 2.68 x 10 -4 eV/h-bar In addition, the spectral distribution of emitted photons is obtained, and agreement both in magnitude and with the general features of the experimental data is excellent

  13. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  14. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  15. Allenylidene Complexes of Ruthenium: Synthesis, Spectroscopy and Electron Transfer Properties

    Czech Academy of Sciences Publication Activity Database

    Winter, R. F.; Záliš, Stanislav

    2004-01-01

    Roč. 248, 15/16 (2004), s. 1565-1583 ISSN 0010-8545 R&D Projects: GA ČR GA203/03/0821; GA MŠk OC D14.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : spectroscopy * allenylidine complexes of ruthenium * electron transfer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.446, year: 2004

  16. Electron energy loss spectroscopy of gold nanoparticles on graphene

    International Nuclear Information System (INIS)

    DeJarnette, Drew; Roper, D. Keith

    2014-01-01

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports

  17. DNA Electronic Fingerprints by Local Spectroscopy on Graphene

    Science.gov (United States)

    Balatsky, Alexander

    2013-03-01

    Working and scalable alternatives to the conventional chemical methods of DNA sequencing that are based on electronic/ionic signatures would revolutionize the field of sequencing. The approach of a single molecule imaging and spectroscopy with unprecedented resolution, achieved by Scanning Tunneling Spectroscopy (STS) and nanopore electronics could enable this revolution. We use the data from our group and others in applying this local scanning tunneling microscopy and illustrate possibilities of electronic sequencing of freeze dried deposits on graphene. We will present two types of calculated fingerprints: first in Local Density of States (LDOS) of DNA nucleotide bases (A,C,G,T) deposited on graphene. Significant base-dependent features in the LDOS in an energy range within few eV of the Fermi level were found in our calculations. These features can serve as electronic fingerprints for the identification of individual bases in STS. In the second approach we present calculated base dependent electronic transverse conductance as DNA translocates through the graphene nanopore. Thus we argue that the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. Work supported by US DOE, NORDITA.

  18. Line optical and Auger data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wall, W E; Stevenson, J R [Georgia Inst. of Tech., Atlanta (USA). School of Physics

    1978-06-01

    A software/hardware package has been developed for use with an 8K DEC PDP-8/L or /I minicomputer, providing real time acquisition and manipulation of optical reflectivity, Auger, and photoemission data. Optical data and Auger or photoemission data may be acquired simultaneously. Provisions have been included for the addition of a scanning rotating ellipsometer. Synchrotron radiation from an electron storage ring has been the primary optical source. Optical reflectivity is measured using single photon counting with a ratio technique that samples a portion of the incident light with one detector and the reflected light with a second detector. Differential Auger or photoemission data is acquired using a cylindrical mirror electron energy analyzer under computer control in a signal averaging mode of operation. Direct electron distribution curves may be displayed using a numerical integration routine. Software was written in assembly language to conserve available memory; however, a modular approach was used to allow easy additions and modifications to experiments. Data arrays may be manipulated and stored as single variables.

  19. Clean and contaminated TiD2 films: Fabrication and Auger spectra

    International Nuclear Information System (INIS)

    Malinowski, M.E.

    1978-01-01

    Clean and intentionally contaminated stoichiometric TiD 2 thin films have been formed under controlled conditions and the surface compositions of the films measured using Auger electron spectroscopy. The unique ultrahigh vacuum system used to fabricate the films is described in detail. In addition, the Auger spectra of clean and CO- and CO 2 -contaminated films, before and after deuteriding, are presented. The MVV and LMV peaks in the differential spectrum of TiD 2 are significantly different from the corresponding peaks in the Ti spectrum, presumably a result of the deuteride formation. Films intentionally contaminated with CO and CO 2 have Auger spectra with oxygen peaks and carbide-like carbon peaks. The C and O peak heights and shapes for Ti exposed to CO and CO 2 do not change upon formation of TiD 2 . In addition, for each of these gases, a definite ratio of C/O peak heights was observed: For CO, the C/O ratio was approx.1.3, while for CO 2 it was approx.0.58. Both ratios were independent of gas exposures up to approx.1 Torr s

  20. Auger processes in tracks of fast multicharged ions

    International Nuclear Information System (INIS)

    Katin, V.V.; Martynenko, Yu.V.; Yavlinskij, Yu.N.

    1992-01-01

    The fast multicharged ion spends about 40% of energy losses on vacancy creation in the inner electron shells. This energy is transferred to the kinetic energy of electrons due to the cascade of Auger processes during ∼ 10 -14 s whereas the primary excited electrons receive the energy in ∼10 -16 s. (author)

  1. Effect of interface roughness on Auger recombination in semiconductor quantum wells

    Science.gov (United States)

    Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson

    2017-03-01

    Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.

  2. Auger recombination in sodium iodide

    Science.gov (United States)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  3. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    Science.gov (United States)

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  4. Quantum dynamics and electronic spectroscopy within the framework of wavelets

    International Nuclear Information System (INIS)

    Toutounji, Mohamad

    2013-01-01

    This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron–phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested. (paper)

  5. Transition from the radiationless resonant Raman scattering to the normal Auger decay in a charge transfer system

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    The transition from the radiationless resonant Raman scattering to the normal Auger decay in resonant Auger-electron spectroscopy (RAES) spectra of charge transfer (CT) systems is discussed by treating the relaxation and the core-hole decay of the excited core-hole state on the same footing by a many-body theory. When the resonantly excited electron remains at the excited atomic site during the core-hole decay, the RAES spectrum shows the characteristic feature of the resonant Auger-Raman effect, whereas when the excited electron has been transferred from the atomic site before the core-hole decays, the RAES spectrum shows the normal Auger decay. The present theory supports the interpretation of the variation with photon energy of the intensity ratio of the latter spectrum to the former one in the RAES spectrum by the Ar 2p → 4s resonance of Ar atoms adsorbed on Ru(0 0 1) surface reported by Keller et al. [C. Keller, M. Stichler, G. Comelli, F. Esch, S. Lizzit, D. Menzel, W. Wurth, Phys. Rev. B 57 (1998) 11951]. The transition from the radiationless resonant Raman scattering to the normal Auger decay in the RAES spectrum of CuO reported by Finazzi et al. [M. Finazzi, G. Ghiringhell, O. Tjernberg, Ph. Ohresser, N.B. Brookes, Phys. Rev. B 61 (2000) 4629] is discussed in terms of the relaxation of the resonantly excited core-hole state to the core-electron ionized main-line state by the hole-particle excitations. The merging of the resonant Raman-Auger-electron kinetic energy into the normal one about 2 eV above the absorption maximum in Cu 2 O reported by Finazzi et al. [M. Finazzi, G. Ghiringhell, O. Tjernberg, Ph. Ohresser, N.B. Brookes, Phys. Rev. B 61 (2000) 4629] is explained in terms of the change in the characteristics of the screening electron in the two-hole final state. The Ti L 23 -M 23 V RAES spectra of TiO 2 and TiO 2-x are also analyzed

  6. Experimental verification of the line-shape distortion in resonance Auger spectra

    International Nuclear Information System (INIS)

    Aksela, S.; Kukk, E.; Aksela, H.; Svensson, S.

    1995-01-01

    When the mean excitation energy and the width of a broad photon band are varied the Kr 3d 5/2 -1 5p→4p -2 5p resonance Auger electron lines show strong asymmetry and their average kinetic energies shift. Even extra peaks appear. Our results demonstrate experimentally, for the first time, that the incident photon energy distribution has very crucial importance on the resonance Auger line shape and thus on the reliable data analysis of complicated Auger spectra

  7. Resonance tunneling electron-vibrational spectroscopy of polyoxometalates.

    Science.gov (United States)

    Dalidchik, F I; Kovalevskii, S A; Balashov, E M

    2017-05-21

    The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier-Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters-energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level.

  8. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  9. XPS and Auger investigation of mechanisms affecting corrosion inhibition of metals

    International Nuclear Information System (INIS)

    Holmes, R.M.; Surman, D.J.

    1989-01-01

    Atmospheric corrosion of metal surfaces need not be extremely obvious to cause extensive damage to many products. Very small corrosion pits and spots can cause defects in critical copper sources, often resulting in the catastrophic failure of complete electronic assemblies. Microscopic corrosion in steel can lead to the complete failure of subsequently added coatings or furnishings, the automotive industry has become aware. In addition, corrosion at its earliest stages can initiate other corrosion at a later date, resulting in inferior finishings or coatings. A major interest in atmospheric corrosion is in the mechanism by which the initial corrosion initiated and propagated. The initial phase involves the attack of the very other surface layers, hence it is difficult to observe with conventional techniques such as SEM/EDX. This paper presents some of the results obtained by both Auger electron spectroscopy and x- ray photoelectron spectroscopy, of steel and copper samples exposed to corrosive materials under controlled conditions

  10. GROWTH AND ELECTRONIC-STRUCTURE OF SOME MONOVALENT METALS ON TIS2(001)

    NARCIS (Netherlands)

    WEITERING, HH; HIBMA, T

    1991-01-01

    The epitaxial growth of Ag on TiS2(001) is characterized using reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Ag grows in the (111) orientation epitaxially on TiS2(001) with Ag[110BAR]parallel-toTiS2[100]. The growth

  11. ¹¹¹In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer.

    Science.gov (United States)

    Fasih, Aisha; Fonge, Humphrey; Cai, Zhongli; Leyton, Jeffrey V; Tikhomirov, Ilia; Done, Susan J; Reilly, Raymond M

    2012-08-01

    Increased expression of epidermal growth factor receptors (EGFR) in breast cancer (BC) is often associated with trastuzumab (Herceptin)-resistant forms of the disease and represents an attractive target for novel therapies. Nimotuzumab is a humanized IgG(1) monoclonal antibody that is in clinical trials for treatment of EGFR-overexpressing malignancies. We show here that nimotuzumab derivatized with benzylisothiocyanate diethylenetriaminepentaacetic acid for labelling with the subcellular range Auger electron-emitter, (111)In and modified with nuclear translocation sequence (NLS) peptides ((111)In-NLS-Bn-DTPA-nimotuzumab) was bound, internalized and transported to the nucleus of EGFR-positive BC cells. Emission of Auger electrons in close proximity to the nucleus caused multiple DNA double-strand breaks which diminished the clonogenic survival (CS) of MDA-MB-468 cells that have high EGFR density (2.4 × 10(6) receptors/cell) to less than 3 %. (111)In-Bn-DTPA-nimotuzumab without NLS peptide modification was sevenfold less effective for killing MDA-MB-468 cells. (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification were equivalently cytotoxic to MDA-MB-231 and TrR1 BC cells that have moderate EGFR density (5.4 × 10(5) or 4.2 × 10(5) receptors/cell, respectively) reducing their CS by twofold. MDA-MB-231 cells have intrinsic trastuzumab resistance due to low HER2 density, whereas TrR1 cells have acquired resistance despite HER2 overexpression. Biodistribution and microSPECT/CT imaging revealed that (111)In-NLS-Bn-DTPA-nimotuzumab exhibited more rapid elimination from the blood and lower tumour uptake than (111)In-Bn-DTPA-nimotuzumab. Tumour uptake of the radioimmunoconjugates in mice with MDA-MB-468 xenografts was high (8-16 % injected dose/g) and was blocked by administration of an excess of unlabelled nimotuzumab, demonstrating EGFR specificity. We conclude that (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification are promising Auger

  12. Auger North: The Pierre Auger Observatory in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Mantsch, Paul M.; /Fermilab

    2009-01-01

    Results from Auger South have settled some fundamental issues about ultra-high energy (UHE) cosmic rays and made clear what is needed now to identify the sources of these particles, to uncover the acceleration process, to establish the particle types, and to test hadronic interaction properties at extreme energies. The cosmic rays above 55 EeV are key. Auger North targets this high energy frontier by increasing the collecting power of the Auger Observatory by a factor of eight for those high energy air showers. Particles above about 40 EeV have been shown to be subject to propagation energy loss, as predicted by Greisen, Zatsepin and Kuzmin (GZK) in 1966. Moreover, it is now evident that there is a detectable flux of particles from extragalactic sources within the GZK sphere. The inhomogeneous distribution of matter in the local universe imprints its anisotropy on the arrival directions of cosmic rays above 55 EeV. The challenge is to collect enough of those arrival directions to identify the class of astrophysical accelerators and measure directly the brightest sources. Auger North will increase the event rate from 25 per year to 200 per year and give the Auger Observatory full sky exposure. The Auger Observatory also has the capability to detect UHE photons and neutrinos from discrete sources or from the decays of GZK pions. With the expanded aperture of Auger North, the detection of GZK photons and neutrinos will provide a complementary perspective of the highest energy phenomena in the contemporary universe. Besides being an observatory for UHE cosmic rays, photons, and neutrinos, the Auger Observatory will serve as a laboratory for the study of hadronic interactions with good statistics over a wide range of center-of-mass energies above what can be reached at the LHC. Auger North will provide statistical power at center-of-mass energies above 250 TeV where the alternative extrapolations of hadronic cross sections diverge. Auger North is ready to go. The

  13. Auger North: The Pierre Auger Observatory in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Mantsch, Paul M.

    2009-01-01

    Results from Auger South have settled some fundamental issues about ultra-high energy (UHE) cosmic rays and made clear what is needed now to identify the sources of these particles, to uncover the acceleration process, to establish the particle types, and to test hadronic interaction properties at extreme energies. The cosmic rays above 55 EeV are key. Auger North targets this high energy frontier by increasing the collecting power of the Auger Observatory by a factor of eight for those high energy air showers. Particles above about 40 EeV have been shown to be subject to propagation energy loss, as predicted by Greisen, Zatsepin and Kuzmin (GZK) in 1966. Moreover, it is now evident that there is a detectable flux of particles from extragalactic sources within the GZK sphere. The inhomogeneous distribution of matter in the local universe imprints its anisotropy on the arrival directions of cosmic rays above 55 EeV. The challenge is to collect enough of those arrival directions to identify the class of astrophysical accelerators and measure directly the brightest sources. Auger North will increase the event rate from 25 per year to 200 per year and give the Auger Observatory full sky exposure. The Auger Observatory also has the capability to detect UHE photons and neutrinos from discrete sources or from the decays of GZK pions. With the expanded aperture of Auger North, the detection of GZK photons and neutrinos will provide a complementary perspective of the highest energy phenomena in the contemporary universe. Besides being an observatory for UHE cosmic rays, photons, and neutrinos, the Auger Observatory will serve as a laboratory for the study of hadronic interactions with good statistics over a wide range of center-of-mass energies above what can be reached at the LHC. Auger North will provide statistical power at center-of-mass energies above 250 TeV where the alternative extrapolations of hadronic cross sections diverge. Auger North is ready to go. The

  14. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  15. THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II

    Directory of Open Access Journals (Sweden)

    Karsten Holldack

    2016-02-01

    Full Text Available The THz beamline at BESSY II employs high power broadband femto- to picosecond long THz pulses for magneto-optical THz and FIR studies. A newly designed set-up exploits the unique properties of ultrashort THz pulses generated by laser-energy modulation of electron bunches in the storage ring or alternatively from compressed electron bunches. Experiments from 0.15 to 5 THz (~ 5 – 150 cm-1 may be conducted at a user station equipped with a fully evacuated high resolution FTIR spectrometer (0.0063 cm-1, lHe cooled bolometer detectors, a THz TDS set-up and different sample environments, including a superconducting high field magnet (+11 T - 11T with variable temperature insert (1.5 K – 300 K, a sample cryostat and a THz attenuated total reflection chamber.  Main applications are Frequency Domain Fourier transform THz-Electron Paramagnetic Resonance (FD-FT THz-EPR, THz-FTIR spectroscopy and optical pump - THz probe time domain spectroscopy (TDS, with sub-ps time resolution.

  16. Electron spectroscopy for surface analysis - the ES300 electron spectrometer and its applications

    International Nuclear Information System (INIS)

    Walker, J.A.J.; Price, W.B.

    1980-07-01

    The features of the ES300 electron spectrometer are described together with factors which affect the energy spectrum, experimental variables and interpretation of the spectral information. A discussion of five applications illustrates the use of X-ray photo-electron spectroscopy (XPS) in the diverse work of the Risley Nuclear Power Development Laboratories (RNL). The analytical results are given for each of the examples and their interpretation discussed in the chemical context of the original problem. (author)

  17. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...

  18. Design of nuclear spectroscopy electronics based on the EUROsystem standard

    International Nuclear Information System (INIS)

    Pahor, J.

    1987-11-01

    The development of modular nuclear instruments in the EUROcard system has been continued by the design of a staircase generator; such an instrument is needed for accurate testing of spectroscopy amplifiers. The generator provides very precisely defined steps with the period between them varying from 8 to 50 microseconds, the output voltage continuously variable from 2 to 5 V, and attenuated ion steps between 1 and 100. Great care was taken that individual steps exhibit no overshot, thus providing a very clean signal to the input of a tested amplifier. The circuitry is kept simple, and it can be easily constructed in any electronics laboratory. Figs

  19. Diode laser spectroscopy of oxygen electronic band at 760 nm

    International Nuclear Information System (INIS)

    Lucchesini, A.; De Rosa, M.; Gozzini, S.

    1998-01-01

    Collisional broadening and shift coefficients have been obtained by analyzing the line shapes of oxygen absorptions in the 760 nm electronic band. By using a diode laser spectrometer with commercially available etherostructure Al x Ga 1-x As diode lasers operating in 'free-running mode', line shape parameters have been collected at room temperature by varying the gas pressure. A systematic study has been carried on seven absorption lines by scanning the diode laser emission wavelength around the gas resonances. The weak absorption lines have been detected by using the wavelength modulation (WM) spectroscopy technique with second-harmonic detection

  20. 8th international conference on electronic spectroscopy and structure

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  1. Inelastic electron tunneling spectroscopy of a single nuclear spin.

    Science.gov (United States)

    Delgado, F; Fernández-Rossier, J

    2011-08-12

    Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.

  2. Probing Plasmonic Nanostructures with Electron Energy - Loss Spectroscopy

    DEFF Research Database (Denmark)

    Raza, Søren

    for nonlocal response. The experimental work comprises the use of electron energy-loss spectroscopy (EELS) to excite and study both localized and propagating surface plasmons in metal structures. Following a short introduction, we present the theoretical foundation to describe nonlocal response in Maxwell......, dimer with nanometer-sized gaps, core-shell nanowire with ultrathin metal shell, and a thin metal film. In all cases we compare the nonlocal models with the local-response approximation. Below the plasma frequency, we find that the distance between the induced positive and negative surface charges...

  3. Electron energy-loss spectroscopy on fullerenes and fullerene compounds

    International Nuclear Information System (INIS)

    Armbruster, J.

    1996-03-01

    A few years ago, a new form of pure carbon, the fullerenes, has been discovered, which shows many fascinating properties. Within this work the spatial and electronic structure of some selected fullerene compounds have been investigated by electron-energy-loss spectroscopy in transmission. Phase pure samples of alkali intercalated fullerides A x C 60 (A=Na, K, Cs) have been prepared using vacuum distillation. Measruements of K 3 C 60 show a dispersion of the charge carrier plasmon close to zero. This can be explained by calculations, which take into account both band structure and local-field (inhomogeneity) effects. The importance of the molecular structure can also be seen from the A 4 C 60 compounds, where the non-metallic properties are explained by a splitting of the t 1u and t 1g derived bands that is caused by electron-correlation and Jahn-Teller effects. First measurements of the electronic structure of Na x C 60 (x>6) are presented and reveal a complete transfer from the sodium atoms but an incomplete transfer onto the C 60 molecules. This behaviour can be explained by taking into account additional electronic states that are situated between the sodium atoms in the octahedral sites and are predicted by calculations using local density approximation. The crystal structure of the higher fullerenes C 76 and C 84 is found to be face-centered cubic

  4. Auger electron emitter against multiple myeloma - targeted endo-radio-therapy with {sup 125}I-labeled thymidine analogue 5-iodo-4'-thio-2'-deoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Morgenroth, Agnieszka, E-mail: amorgenroth@ukaachen.de [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Nuclear Medicine Clinic, University Aachen, RWTH, Pauwelsstrasse 30, D-52074 Aachen (Germany); Dinger, Cornelia; Zlatopolskiy, Boris D.; Al-Momani, Ehab; Glatting, Gerhard [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Mottaghy, Felix M. [Nuclear Medicine Clinic, University Aachen, RWTH, Pauwelsstrasse 30, D-52074 Aachen (Germany); Reske, Sven N. [Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany)

    2011-10-15

    Introduction: Multiple myeloma (MM) is a plasma cell malignancy characterized by accumulation of malignant, terminally differentiated B cells in the bone marrow. Despite advances in therapy, MM remains an incurable disease. Novel therapeutic approaches are, therefore, urgently needed. Auger electron-emitting radiopharmaceuticals are attractive for targeted nano-irradiation therapy, given that DNA of malignant cells is selectively addressed. Here we evaluated the antimyeloma potential of the Auger electron-emitting thymidine analogue {sup 125}I-labeled 5-iodo-4'-thio-2'-deoxyuridine ([{sup 125}I]ITdU). Methods: Cellular uptake and DNA incorporation of [{sup 125}I]ITdU were determined in fluorodeoxyuridine-pretreated KMS12BM, U266, dexamethasone-sensitive MM1.S and -resistant MM1.R cell lines. The effect of stimulation with interleukin 6 (IL6) or insulin-like growth factor 1 (IGF1) on the intracellular incorporation of [{sup 125}I]ITdU was investigated in cytokine-sensitive MM1.S and MM1.R cell lines. Apoptotic cells were identified using Annexin V. Cleavage of caspase 3 and PARP was visualized by Western blot. DNA fragmentation was investigated using laddering assay. Therapeutic efficiency of [{sup 125}I]ITdU was proven by clonogenic assay. Results: [{sup 125}I]ITdU was shown to be efficiently incorporated into DNA of malignant cells, providing a promising mechanism for delivering highly toxic Auger radiation emitters into tumor DNA. [{sup 125}I]ITdU had a potent antimyeloma effect in cell lines representing distinct disease stages and, importantly, in cell lines sensitive or resistant to the conventional therapeutic agent, but was not toxic for normal plasma and bone marrow stromal cells. Furthermore, [{sup 125}I]ITdU abrogated the protective actions of IL6 and IGF1 on MM cells. [{sup 125}I]ITdU induced massive damage in the DNA of malignant plasma cells, which resulted in efficient inhibition of clonogenic growth. Conclusion: These studies may provide a

  5. Si(LMM) Auger electron emission from Si alloys by keV Ar/sup +/ ion bombardment, new effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A; Kim, S; Imura, T; Iwami, M [Osaka Univ., Suita (Japan). Faculty of Engineering

    1979-09-01

    Si(LMM) Auger spectra excited by keV ion bombardment were studied in Si alloyed with several elements (Au, Cu, Pd, Ni, C, and H). The spectra differed completely from those of pure Si. The main characteristics are (1) the spectra are composed of two well-separated peaks (88 and 92 eV) called the atomic-like peak (88 eV) and the bulk-like peak (92 eV); and (2) the atomic-like peak is enhanced with respect to the bulk-like peak, and this enhancement becomes more obvious as the concentration of partner elements of the alloys are increased. The possible application of the present phenomena is proposed as a technique for detecting the homogeneity of Si alloy films in the three-dimensional sense - as an example, the three-dimensional distribution of hydrogen in hydrogenated amorphous silicon (a-Si-H).

  6. Utility of γH2AX as a molecular marker of DNA double-strand breaks in nuclear medicine: applications to radionuclide therapy employing auger electron-emitting isotopes.

    Science.gov (United States)

    Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-01-01

    There is an intense interest in the development of radiopharmaceuticals for cancer therapy. In particular, radiopharmaceuticals which involve targeting radionuclides specifically to cancer cells with the use of monoclonal antibodies (radioimmunotherapy) or peptides (targeted radiotherapy) are being widely investigated. For example, the ultra-short range Auger electron-emitting isotopes, which are discussed in this review, are being considered in the context of DNAtargeted radiotherapy. The efficient quantitative evaluation of the levels of damage caused by such potential radiopharmaceuticals is required for assessment of therapeutic efficacy and determination of relevant doses for successful treatment. The DNA double-strand break surrogate marker, γH2AX, has emerged as a useful biomonitor of damage and thus effectiveness of treatment, offering a highly specific and sensitive means of assessment. This review will cover the potential applications of γH2AX in nuclear medicine, in particular radionuclide therapy.

  7. Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123"+/CD131"− phenotype of leukemia stem cells

    International Nuclear Information System (INIS)

    Gao, Catherine; Leyton, Jeffrey V.; Schimmer, Aaron D.; Minden, Mark; Reilly, Raymond M.

    2016-01-01

    Chimeric IgG_1 monoclonal antibody CSL360 recognizes the CD123"+/CD131"− phenotype expressed by leukemic stem cells (LSC). Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates incorporating nuclear translocation sequence (NLS) peptides bound specifically to Raji cells transfected with CD123 and exhibited a K_D of 11 nmols/L in a competition receptor-binding assay using CD123-transfected CHO cells. "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and transported to the nucleus of human AML-5 myeloid leukemia cells. The clonogenic survival of AML-5 cells was reduced by "1"1"1In-DTPA-NLS-CSL360 up to 3.7-fold. Isotype control "1"1"1In-DTPA-chIgG_1 was 2-fold less cytotoxic, and unlabeled CSL360, DTPA-NLS-CSL360 or free "1"1"1In acetate did not decrease cell survival. These results are promising for further evaluation of "1"1"1In-DTPA-NLS-CSL360 for Auger electron radioimmunotherapy of AML targeting the critical LSC subpopulation. - Highlights: • "1"1"1In-DTPA-NLS-CSL360 the CD123"+/CD131"− phenotype of leukemic stem cells (LSC). • "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and imported into the nucleus of AML-5 leukemia cells. • "1"1"1In-DTPA-NLS-CSL360 reduced the clonogenic survival of AML-5 leukemia cells by 4-fold.

  8. Characterization of functional LB films using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Kuroda, Shin-ichi

    1995-01-01

    The role of ESR spectroscopy in the characterization of functional LB films is discussed. Unpaired electrons in LB films are associated with isolated radical molecules produced by charge transfer, paramagnetic metallic ions such as Cu 2+ , strongly interacting spins in the mixed valence states in charge-transfer salts, and so on. These spins often manifest the functions of materials. They can also act as microscopic probes in the ESR analysis devoted for the elucidation of characteristic properties of LB films. In structural studies, ESR is of particular importance in the analysis of molecular orientation of LB films. ESR can unambiguously determine the orientation of molecules through g-value anisotropy: different g value, different resonance field. Two types of new control methods of molecular orientation in LB films originated from the ESR analysis: study of in-plane orientation in dye LB films which led to the discovery of flow-orientation effect, and observation of drastic change of orientation of Cu-porphyrin in LB films using the trigger molecule, n-hexatriacontane. In the studies of electronic properties, hyperfine interactions between electron and nuclear spins provide information about molecular orbitals and local structures. Stable isotopes have been successfully applied to the stable radicals in merocyanine LB films to identify hyperfine couplings. In conducting LB films composed of charge-transfer salts, quasi-one-dimensional antiferromagnetism in semiconducting films and spin resonance of conduction electrons in metallic films are observed. Results provide microscopic evidence for the development of columnar structures of constituent molecules. Development of new functional LB films may provide more cases where ESR spectroscopy will clarify the nature of such films. (author)

  9. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies

    Science.gov (United States)

    Ledeuil, J. B.; Uhart, A.; Soulé, S.; Allouche, J.; Dupin, J. C.; Martinez, H.

    2014-09-01

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming

  10. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  11. Auger radiation targeted into DNA: a therapy perspective

    International Nuclear Information System (INIS)

    Buchegger, Franz; Perillo-Adamer, Florence; Bischof Delaloye, Angelika; Dupertuis, Yves M.

    2006-01-01

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of α particles. In contrast to α radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided α and β radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  12. Auger radiation targeted into DNA: a therapy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Buchegger, Franz [University Hospital of Lausanne CHUV, Service of Nuclear Medicine, Lausanne (Switzerland); University Hospital of Lausanne, Service of Nuclear Medicine, Lausanne (Switzerland); Perillo-Adamer, Florence; Bischof Delaloye, Angelika [University Hospital of Lausanne CHUV, Service of Nuclear Medicine, Lausanne (Switzerland); Dupertuis, Yves M. [University Hospital of Geneva, Service of Nutrition, Geneva (Switzerland)

    2006-11-15

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of {alpha} particles. In contrast to {alpha} radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided {alpha} and {beta} radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  13. Atomic column resolved electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Duscher, G.; Pennycook, S.J.; Browning, N.D.

    1998-01-01

    Spatially resolved electron energy-loss spectroscopy (EELS) is rapidly developing into a unique and powerful tool to characterize internal interfaces. Because atomic column resolved Z-contrast imaging can be performed simultaneously with EELS in the scanning transmission electron microscope, this combination allows the atomic structure to be correlated with the electronic structure, and thus the local properties of interfaces or defects can be determined directly. However, the ability to characterize interfaces and defects at that level requires not only high spatial resolution but also the exact knowledge of the beam location, from where the spectrum is obtained. Here we discuss several examples progressing from cases where the limitation in spatial resolution is given by the microscopes or the nature of the sample, to one example of impurity atoms at a grain boundary, which show intensity and fine structure changes from atomic column to atomic column. Such data can be interpreted as changes in valence of the impurity, depending on its exact site in the boundary plane. Analysis ofthis nature is a valuable first step in understanding the microscopic structural, optical and electronic properties of materials. (orig.)

  14. MCDF calculations of Auger cascade processes

    Science.gov (United States)

    Beerwerth, Randolf; Fritzsche, Stephan

    2017-10-01

    We model the multiple ionization of near-neutral core-excited atoms where a cascade of Auger processes leads to the emission of several electrons. We utilize the multiconfiguration Dirac-Fock (MCDF) method to generate approximate wave functions for all fine-structure levels and to account for all decays between them. This approach allows to compute electron spectra, the population of final-states and ion yields, that are accessible in many experiments. Furthermore, our approach is based on the configuration interaction method. A careful treatment of correlation between electronic configurations enables one to model three-electron processes such as an Auger decay that is accompanied by an additional shake-up transition. Here, this model is applied to the triple ionization of atomic cadmium, where we show that the decay of inner-shell 4p holes to triply-charged final states is purely due to the shake-up transition of valence 5s electrons. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  15. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  16. Thickness periodicity in the auger line shape from epitaxial (111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Y; Vook, R W; Chao, S S

    1981-01-01

    The 61 eV MMM Cu Auger line doublet was recorded in the derivative mode as a function of thickness for epitaxial (111)Cu films approximately 1500 angstrom thick. The overlap of the doublet lines makes it possible to define a measure of the doublet profile called the ''R-factor'' as a ratio of the peak-to-peak heights of the small overlap oscillation to that of the major oscillation. To within the experimental error, it was found that the R-factor varies with a periodicity of approximately one monoatomic layer as the film thickens. Since these films grow by a layer growth mechaniism, the surface topography varies periodically with the number of monolayers deposited, going from a smooth to a rough to a smooth, etc. surface. It is believed that the occurrence of such a periodicity implies that there is a difference in the electronic structure at the surface of the flat areas of the film from that at the edges of monolayer high, flat islands. The amplitude of the oscillation in R is interpreted to be a measure of the relative amounts of edge area compared to flat area. These results show that it is possible to use Auger electron spectroscopy to monitor surface topography and the electronic structure changes that accompany the topographical changes occurring when epitaxial films grow by a layer growth mechanism.

  17. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodskikh, S. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Zhaunerchyk, V. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Mucke, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Eland, J.H.D. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Squibb, R.J. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Karlsson, L. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, P. [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Feifel, R., E-mail: raimund.feifel@gu.se [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-12-16

    Highlights: • The first ever valence double ionization spectrum of acetaldehyde is reported. • The first ever site-selectively extracted Auger spectra of acetaldehyde are reported. • The first ever Auger spectra of acetaldehyde involving shake-up states are reported. • The first ever triple ionization spectra of acetaldehyde are reported. • The first ever energy sharing of electron pairs emitted by acetaldehyde is presented. - Abstract: Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  18. First test results from the Front-End Board with Cyclone V as a test high-resolution platform for the Auger-Beyond-2015 Front End Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew [University of Lodz, Department of Physics and Applied Informatics, Faculty of High-Energy Astrophysics, 90-236 Lodz, Pomorska 149, (Poland)

    2015-07-01

    The paper presents the first results from the Front- End Board (FEB) with the biggest Cyclone{sup R} V E FPGA 5CEFA9F31I7N, supporting 8 channels sampled up to 250 MSps at 14-bit resolution. Considered sampling for the SD is 120 MSps, however, the FEB has been developed with external anti-aliasing filters to keep a maximal flexibility. Six channels are targeted to the SD, two the rest for other experiments like: Auger Engineering Radio Array and additional muon counters. More channels and higher sampling generate larger size of registered events. We used the standard radio channel for a radio transmission from the detectors to the Central Data Acquisition Station (CDAS) to avoid at present a significant modification of a software in both sides: the detector and the CDAS (planned in a future for a final design). Seven FEBs have been deployed in the test detectors on a dedicated Engineering Array in a hexagon. Several variants of the FPGA code were tested for 120, 160, 200 and even 240 MSps DAQ. Tests confirmed a stability and reliability of the FEB design in real pampas conditions with more than 40 deg. C daily temperature variation and a strong sun exposition with a limited power budget only from a single solar panel. (authors)

  19. Gas flow counter conversion electron Moessbauer spectroscopy (GFC-CEMS)

    International Nuclear Information System (INIS)

    Williamson, A.; Vijay, Y.K.; Jain, I.P.

    1999-01-01

    Conversion Electron Moessbauer Spectroscopy (CEMS) is well established technique to study surface properties of materials. However non availability of commercial experimental set up and complexity of operational parameters have been restricting the working experimental groups with in the country and abroad. In this paper we have presented the development work for the design of Gas Flow Counter (GFC), e.g. convenient sample mount, grounding, steady flow rate adjustment and minimum He-losses so that the detector operation and installation becomes convenient and dependable. The basic design is modified e.g. large volume to maintain steady gas flow, sample mount close to central wire and O-ring fitted flange. The CEMS spectra are recorded using conventional Moessbauer drive and 57 Co source. The calibrated spectrum shows a detection efficiency of about 20% for natural iron and steel foil. The CEMS spectrum for FeTi bulk and transmission Moessbauer Spectroscopy (TMS) spectrum of FeTi thin film deposited by vacuum evaporation on thin glass substrate were recorded to test the performance of GFC-CEMS. (author)

  20. Electronic structure of atoms: atomic spectroscopy information system

    International Nuclear Information System (INIS)

    Kazakov, V V; Kazakov, V G; Kovalev, V S; Meshkov, O I; Yatsenko, A S

    2017-01-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists. (paper)

  1. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  2. Identification of irradiated chicken meat using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Chawla, S.P.; Thomas, Paul

    2004-01-01

    Studies were carried out on detection of irradiation treatment in chicken using electron spin resonance (ESR) spectroscopy. The effect of gamma- irradiation treatment on radiation induced signal in different types of chicken namely, broiler, deshi and layers was studied. Irradiation treatment induced a characteristic ESR signal that was not detected in non-irradiated samples. The shape of the signal was not affected by type of the bone. The intensity of radiation induced ESR signal was affected by factors such as absorbed radiation dose, bone type irradiation temperature, post-irradiation storage, post-irradiation cooking and age of the bird. Deep-frying resulted in the formation of a symmetric signal that had a different shape and was weaker than the radiation induced signal. This technique can be effectively used to detect irradiation treatment in bone-in chicken meat even if stored and/or subjected to various traditional cooking procedures. (author)

  3. Ballistic electron emission spectroscopy on Ag/Si devices

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, A; Bobisch, C A; Matena, M; Moeller, R [Department of Physics, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: amin.bannani@uni-due.de

    2008-09-17

    In this work we report on ballistic electron emission spectroscopy (BEES) studies on epitaxial layers of silver grown on silicon surfaces, with either a Si(111)-(7 x 7) or Si(100)-(2 x 1) surface reconstruction. The experiments were done at low temperature and in ultra-high vacuum (UHV). In addition, BEES measurements on polycrystalline Ag films grown on hydrogen-terminated H:Si(111)-(1 x 1) and H:Si(100)-(2 x 1) surfaces were performed. The Schottky barrier heights were evaluated by BEES. The results are compared to the values for the barrier height reported for macroscopic Schottky diodes. We show that the barrier heights for the epitaxial films substantially differ from the values measured on polycrystalline Ag films, suggesting a strong effect of the interface on the barrier height.

  4. Electronic structure of atoms: atomic spectroscopy information system

    Science.gov (United States)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  5. Determination of the electron-electron collisional frequency by means of plasma electron spectroscopy

    International Nuclear Information System (INIS)

    Kolokolov, N.B.; Kudryavtsev, A.A.; Romanenko, V.A.

    1989-01-01

    Methods of controlling fast part of electron distribution function (DF) in nonlocal regime of current-free plasma are suggested and realized. Artificially created step in DF fast part has a simple link with frequencies of electron-electron and elastic electron-atom collisions that may be defined in the corresponding experiments

  6. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  7. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  8. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies...... of the hole in this manner. In a second example, a hole is created in an inner shell by the first pulse, and the second probe pulse couples an even more tightly bound state to that hole. The hole decays in this example by Auger electron emission, and the absorption spectroscopy follows the decay of the hole...

  9. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    Science.gov (United States)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  10. Attosecond photoelectron spectroscopy of electron transport in solids

    International Nuclear Information System (INIS)

    Magerl, Elisabeth

    2011-01-01

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  11. Attosecond photoelectron spectroscopy of electron transport in solids

    Energy Technology Data Exchange (ETDEWEB)

    Magerl, Elisabeth

    2011-03-31

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  12. Evidence for correlated double-electron capture in slow collisions of multicharged ions with He and H2

    International Nuclear Information System (INIS)

    Meyer, F.W.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Stolterfoht, N.

    1986-01-01

    High resolution measurements of the production of L 1 L 23 M Coster-Kronig and LMM-Auger electrons in slow collisions of C 4+ , N 5+ , O 6+ , and 0 7+ with He and H 2 have been performed, using the method of 0 0 Auger spectroscopy. For the latter three projectiles, strong Coster Kronig lines are observed, which are attributed to the configurations (core)2pnl, produced by double-electron capture. It is argued that production of these nonequivalent electron configurations must involve electron-electron correlation. From a comparison of the production cross sections for these Coster-Kronig electrons and the LMM-Auger electrons, it is further argued the correlation plays a significant role in two-electron transfer processes. 7 refs., 5 figs

  13. Transfer of spectral weight in spectroscopies of correlated electron systems

    International Nuclear Information System (INIS)

    Rozenberg, M.J.; Kotliar, G.; Kajueter, H.

    1996-01-01

    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society

  14. Evidence of interatomic Coulombic decay in ArKr after Ar 2p Auger decay

    International Nuclear Information System (INIS)

    Morishita, Y; Saito, N; Suzuki, I H; Fukuzawa, H; Liu, X-J; Sakai, K; Pruemper, G; Ueda, K; Iwayama, H; Nagaya, K; Yao, M; Kreidi, K; Schoeffler, M; Jahnke, T; Schoessler, S; Doerner, R; Weber, T; Harries, J; Tamenori, Y

    2008-01-01

    We have identified interatomic Coulombic decay (ICD) processes in the ArKr dimer following Ar 2p Auger decay, using momentum-resolved electron-ion-ion coincidence spectroscopy and simultaneously determining the kinetic energy of the ICD electron and the KER between Ar 2+ and Kr + . We find that the spin-conserved ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 1 D and 3 P, respectively, ionizing the Kr atom, are significantly stronger than the spin-flip ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 3 P and 1 D, respectively

  15. Radiative Auger effect in ion-atom collisions

    International Nuclear Information System (INIS)

    Richard, P.; Oltjen, J.; Jamison, K.A.; Kauffman, R.L.; Woods, C.W.; Hall, J.M.

    1975-01-01

    The radiative Auger effect, RAE, is observed for Al and Si bombarded by 1-2MeV H + . This is the first observation of the RAE X-ray edge using ion excitation. The K-L 23 L 23 RAE edge energy and the relative intensity are in agreement with the previously reported electron and photon induced spectra. (Auth.)

  16. Inner-shell spectroscopy and exchange interaction of Rydberg electrons bound by singly and doubly charged Kr and Xe atoms in small clusters

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Hatsui, Takaki; Setoyama, Hiroyuki; Ruehl, Eckart; Kosugi, Nobuhiro

    2011-01-01

    Surface-site resolved Kr 3d 5/2 -1 5p and 3d 5/2 -1 6p and Xe 4d 5/2 -1 6p and 4d 5/2 -1 7p Rydberg excited states in small van der Waals Kr and Xe clusters with a mean size of = 15 are investigated by X-ray absorption spectroscopy. Furthermore, surface-site resolved Kr 4s -2 5p, 4s -2 6p, and 4s -1 4p -1 5p shakeup-like Rydberg states in small Kr clusters are investigated by resonant Auger electron spectroscopy. The exchange interaction of the Rydberg electron with the surrounding atoms and the induced polarization of the surrounding atoms in the singly and doubly ionized atoms are deduced from the experimental spectra to analyze different surface-site contributions in small clusters, assuming that the corner, edge, face, and bulk sites have 3, 5-6, 8, and 12 nearest neighbor atoms. These energies are almost proportional to the number of the nearest neighbor atoms. The present analysis indicates that small Kr and Xe clusters with = 15 have an average or mixture structure between the fcc-like cubic and icosahedron-like spherical structures.

  17. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  18. Recent advances in ion and electron spectroscopy of polymer surfaces

    Science.gov (United States)

    Gardella, Joseph A.

    1988-01-01

    The structure of microdomains and bonding at multicomponent polymer material interfaces has been studied using a variety of surface sensitive spectroscopic techniques. In our laboratory, low energy ion scattering spectroscopy (ISS) and static secondary ion mass spectrometry (SIMS) serve to complement results from angular dependent X-ray photoelectron spectroscopy (XPS or ESCA), Fourier transform infrared (FTIR) with attenuated total reflectance (ATR) sampling and SEM techniques to provide a quantitative picture of the relationships between structure, bonding, morphology and microdomain formation in near surface regions of polymeric systems. The added surface sensitivity of ISS can yield quantitative information at a sampling depth of 3-5 Å, which, with ESCA and FTIR analysis yields a "non-destructive" depth profile of domain formation in copolymer and blend systems. These studies will be illustrated with results from siloxane and siloxane/polycarbonate copolymer systems, where a complete picture of surface domain formation and morphology as a function of composition and polymer crystallinity has been developed. ISS can also yield information regarding the orientation of surface functional groups which ESCA and FTIR do not have either sensitivity and/or sufficient detection limits to analyze. These studies will be illustrated by the analysis of plasma hydrolysis/oxidation of stereoregular poly(methyl-methacrylate). The effects of functional group orientation on reactivity will be explored using results from ISS, ESCA and FTIR for stereoregular (isotatic, syndiotactic) and random (atactic) PMMA. Electron energy loss spectroscopy at high resolution (HREELS) has recently been extended to the examination of polymer and organic surfaces. Vibrational information from this experiment can yield very precise results about surface functional groups (1-20 Å) but at much lower resolution than is typical from IR and Raman techniques. However, the promise of evaluating surface

  19. Impulse approximation treatment of electron-electron excitation and ionization in energetic ion-atom collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Lee, D.H.; Sanders, J.M.; Richard, P.

    1993-01-01

    The effect of electron-electron interactions between projectile and target electrons observed in recent measurements of projectile K-shell excitation and ionization using 0 projectile Auger electron spectroscopy are analysed within the framework of the impulse approximation (IA). The IA formulation is seen to give a good account of the threshold behavior of both ionization and excitation, while providing a remarkably simple intuitive picture of such electron-electron interactions in ion-atom collisions in general. Thus, the applicability of the IA treatment is extended to cover most known processes involving such interactions including resonance transfer excitation, binary encounter electron production, electron-electron excitation and ionization. (orig.)

  20. From The Pierre Auger Observatory to AugerPrime

    Science.gov (United States)

    Parra, Alejandra; Martínez Bravo, Oscar; Pierre Auger Collaboration

    2017-06-01

    In the present work we report the principal motivation and reasons for the new stage of the Pierre Auger Observatory, AugerPrime. This upgrade has as its principal goal to clarify the origin of the highest energy cosmic rays through improvement in studies of the mass composition. To accomplished this goal, AugerPrime will use air shower universality, which states that extensive air showers can be completely described by three parameters: the primary energy E 0, the atmospheric shower depth of maximum X max, and the number of muons, Nμ . The Auger Collaboration has planned to complement its surface array (SD), based on water-Cherenkov detectors (WCD) with scintillator detectors, calls SSD (Scintillator Surface Detector). These will be placed at the top of each WCD station. The SSD will allow a shower to shower analysis, instead of the statistical analysis that the Observatory has previously done, to determine the mass composition of the primary particle by the electromagnetic to muonic ratio.

  1. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.

    Science.gov (United States)

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I

    2017-08-22

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states

  2. Studies of ultrathin magnetic films and particle-surface interactions with spin-sensitive electron spectroscopies

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1991-06-01

    Research during the current grant year has focused on: Investigation of probing depth in electron scattering from epitaxially grown paramagnetic films by means of Spin-Polarized Electron Energy Loss Spectroscopy; and studies of the dynamics of metastable He(2 3 S) deexcitation at surfaces utilizing Spin-Polarized Metastable Deexcitation Spectroscopy . This report discussed this research

  3. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    Science.gov (United States)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  4. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    International Nuclear Information System (INIS)

    Mishra, P; Lohani, H; Sekhar, B R; Kundu, A K; Menon, Krishnakumar S R; Patel, R; Solanki, G K

    2015-01-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ–Z, Γ–Y and Γ–T symmetry directions. The valence band maximum occurs nearly midway along the Γ–Z direction, at a binding energy of −0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4p z orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ–T direction. Detailed electronic structure analysis reveals the significance of the cation–anion 4p orbitals hybridization in the valence band dispersion of IV–VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis. (paper)

  5. Manipulation of resonant Auger processes with strong optical fields

    Science.gov (United States)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  6. Electronic structure of EuN: Growth, spectroscopy, and theory

    DEFF Research Database (Denmark)

    Richter, J. H.; Ruck, B.J.; Simpson, M.

    2011-01-01

    and the lowest-lying 8S multiplet. The Hubbard-I model is also in good agreement with purely atomic multiplet calculations for the Eu M-edge XAS. LSDA+U and DMFT calculations find a metallic ground state, while QSGW results predict a direct band gap at X for EuN of about 0.9 eV that matches closely an absorption...... and QSGW models capture the density of conduction band states better than does LSDA+U. Only the Hubbard-I model contains a correct description of the Eu 4f atomic multiplets and locates their energies relative to the band states, and we see some evidence in XAS for hybridization between the conduction band...... edge seen in optical transmittance at 0.9 eV, and a smaller indirect gap. Overall, the combination of theoretical methods and spectroscopies provides insights into the complex nature of the electronic structure of this material. The results imply that EuN is a narrow-band-gap semiconductor that lies...

  7. Analysis of contaminants on electronic components by reflectance FTIR spectroscopy

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1982-09-01

    The analysis of electronic component contaminants by infrared spectroscopy is often a difficult process. Most of the contaminants are very small, which necessitates the use of microsampling techniques. Beam condensers will provide the required sensitivity but most require that the sample be removed from the substrate before analysis. Since it can be difficult and time consuming, it is usually an undesirable approach. Micro ATR work can also be exasperating, due to the difficulty of positioning the sample at the correct place under the ATR plate in order to record a spectrum. This paper describes a modified reflection beam condensor which has been adapted to a Nicolet 7199 FTIR. The sample beam is directed onto the sample surface and reflected from the substrate back to the detector. A micropositioning XYZ stage and a close-focusing telescope are used to position the contaminant directly under the infrared beam. It is possible to analyze contaminants on 1 mm wide leads surrounded by an epoxy matrix using this device. Typical spectra of contaminants found on small circuit boards are included

  8. Spectroscopy of hexafluorides with an odd number of electrons

    International Nuclear Information System (INIS)

    Boudon, V.

    1995-05-01

    From a theoretical point of view, a tensorial formalism adapted to the study of molecules or octahedral ions with a half-integer angular momentum has been developed for the first time. We have used here the method of projective representations, more consistent than that of double groups. A complete set of coupling coefficients and formulas, as well as the corresponding computing programs have been elaborated. This has firstly allowed us to write a simple model describing the vibronic structure of colored hexafluorides. Then, some applications of this formalism to the study of ro-vibronic couplings of XY 6 molecules in a fourfold degenerate electronic state have been considered, especially concerning operators associated to dynamic Jahn-Teller effect. From an experimental point of view, we have considered IrF 6 , for which we have mastered the synthesis, purification and conservation processes. A first study at low resolution (absorption and Raman scattering) has been performed for this molecule. We have then set up two high resolution spectroscopic devices in the visible region (saturated absorption - tested with an iodine cell- and simple absorption with multiple pass). These especially use a dye laser. They should now allow the spectroscopy of the visible band of IrF 6 in order to resolve for the first time its fine rotational structure. (author)

  9. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    Energy Technology Data Exchange (ETDEWEB)

    Yedra, Ll.; Estradé, S., E-mail: sestrade@ub.edu [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); TEM-MAT, CCiT, Universitat de Barcelona, Solé i Sabarís 1, 08028 Barcelona (Spain); Torruella, P.; Eljarrat, A.; Peiró, F. [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Darbal, A. D. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); Weiss, J. K. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); NanoMEGAS SPRL, Blvd. Edmond Machtens 79, B-1080 Brussels (Belgium)

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  10. Study on cell survival, induction of apoptosis and micronucleus formation in SCL-II and RTiV3 cells after exposure to the Auger electron emitter Tc-99m

    International Nuclear Information System (INIS)

    Kadenbach, K.; Kriehuber, R.; Weiss, D.G.

    2003-01-01

    Full text: Cell survival, induction of apoptosis and micronucleus (MN) formation have been investigated in the human squamous cell carcinoma cell line SCL-II and in the rat tracheal cell line RTiV3 after exposure to the Auger electron emitter Tc-99m. Cells were either acutely gamma(Co-60)-irradiated (0.78 Gy/min) or exposed to Tc-99m-Pertechnetate (25-300 MBq/20ml) for 24 h under cell culture conditions and assayed for cell survival (Colony-forming assay), micronucleus formation (Cytochalasin B assay) and the frequency of apoptotic cells (Fluorescence microscopy). Analytical dosimetrical models have been applied to derive the absorbed dose corresponding to the accumulated decays of Tc-99m. Absorbed doses up to 1.3 Gy could be achieved after Tc-99m exposure leading to no significant cell killing in this dose range except at one dose point (0.25 Gy) in SCL-II cells. MN formation was consistently lower when compared to Co-60 irradiated cells and showed a linear dose-response. The apoptotic response in SCL-II cells after Tc-99m exposure was described best by a 3rd order polynomial and increased apoptosis induction could be observed at much lower doses (0.25 Gy) in comparison to the reference radiation (0.8 Gy). The relative biological effectiveness (RBE) has been determined for MN formation and apoptosis induction and was found to be in the range of 0.1- 1.3 for both investigated biological endpoints, depending on which mathematical model for describing the dose-effect curve was used. Up-take experiments revealed an activity concentration ratio cells vs. medium of 1.2 after 16 h up to 24 h of exposure. No increased biological effectiveness of Tc-99m applied as Sodium-Pertechnetate could be observed in the investigated cell lines in comparison to gamma-irradiation. Induction of apoptosis is slightly increased after Tc-99m exposure in SCL-II cells and it has to be further evaluated, if this is due to the emitted Auger-component. A passive up-take mechanism of Tc-99m is

  11. Spectroscopy of hexafluorides with an odd number of electrons; Spectroscopie des hexafluorures a nombre impair d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Boudon, V

    1995-05-01

    From a theoretical point of view, a tensorial formalism adapted to the study of molecules or octahedral ions with a half-integer angular momentum has been developed for the first time. We have used here the method of projective representations, more consistent than that of double groups. A complete set of coupling coefficients and formulas, as well as the corresponding computing programs have been elaborated. This has firstly allowed us to write a simple model describing the vibronic structure of colored hexafluorides. Then, some applications of this formalism to the study of ro-vibronic couplings of XY{sub 6} molecules in a fourfold degenerate electronic state have been considered, especially concerning operators associated to dynamic Jahn-Teller effect. From an experimental point of view, we have considered IrF{sub 6}, for which we have mastered the synthesis, purification and conservation processes. A first study at low resolution (absorption and Raman scattering) has been performed for this molecule. We have then set up two high resolution spectroscopic devices in the visible region (saturated absorption - tested with an iodine cell- and simple absorption with multiple pass). These especially use a dye laser. They should now allow the spectroscopy of the visible band of IrF{sub 6} in order to resolve for the first time its fine rotational structure. (author)

  12. Spectroscopy of hexafluorides with an odd number of electrons; Spectroscopie des hexafluorures a nombre impair d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Boudon, V

    1995-05-01

    From a theoretical point of view, a tensorial formalism adapted to the study of molecules or octahedral ions with a half-integer angular momentum has been developed for the first time. We have used here the method of projective representations, more consistent than that of double groups. A complete set of coupling coefficients and formulas, as well as the corresponding computing programs have been elaborated. This has firstly allowed us to write a simple model describing the vibronic structure of colored hexafluorides. Then, some applications of this formalism to the study of ro-vibronic couplings of XY{sub 6} molecules in a fourfold degenerate electronic state have been considered, especially concerning operators associated to dynamic Jahn-Teller effect. From an experimental point of view, we have considered IrF{sub 6}, for which we have mastered the synthesis, purification and conservation processes. A first study at low resolution (absorption and Raman scattering) has been performed for this molecule. We have then set up two high resolution spectroscopic devices in the visible region (saturated absorption - tested with an iodine cell- and simple absorption with multiple pass). These especially use a dye laser. They should now allow the spectroscopy of the visible band of IrF{sub 6} in order to resolve for the first time its fine rotational structure. (author)

  13. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  14. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  15. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  16. Atomic-layer-resolved analysis of surface magnetism by diffraction spectroscopy

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2010-01-01

    X-ray absorption near edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) measurements by Auger-electron-yield detection are powerful analysis tools for the electronic and magnetic structures of surfaces, but all the information from atoms within the electron mean-free-path range is summed into the obtained spectrum. In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, diffraction spectroscopy, which is the combination of X-ray absorption spectroscopy and Auger electron diffraction (AED). From a series of measured thickness dependent AED patterns, we deduced a set of atomic-layer-specific AED patterns arithmetically. Based on these AED patterns, we succeeded in disentangling obtained XANES and XMCD spectra into those from different atomic layers.

  17. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  18. Angular dependence of Auger signals from a GaAs (111) surface

    International Nuclear Information System (INIS)

    Barnard, W.O.

    1984-03-01

    This dissertation is concerned with the angular dependence of the L 3 M 4 M 4 1067 eV Ga and L 3 M 4 M 4 1228 eV As Auger electron signals from a (111) GaAs surface, using a system which is equipped with a cylindrical mirror analyser. Following a detailed discussion of the Auger process, a review is given of angular effects in the emission excitation and detection of Auger signals. Present theories are discussed and an empirical theory is developed to test the experimental results obtained in this study. The experimental procedures and equipment used are presented. It was found that the Auger signals show a strong variation with the angle of rotation about the normal of a GaAs surface. Furthermore, the nature of the angular spectra of the Ga and As signals are interchanged when the electron beam incident surface is changed from (111) to (111). The main features of the angular variation of the quasi-elastic backscattered signal is reflected in the corresponding Ga and As Auger angular spectra. The angular dependence of the quasi-elastic backscattered signal can be explained semi-quantitatively in terms of the empirical theory. Theoretical arguments are presented which suggest that the Auger signals should show an angular dependence similar to the quasi-elastic backscattered signal. Evidence was found that geometric screening-off of underlying atoms by surface and near surface atoms influence the Auger yield

  19. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Science.gov (United States)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  20. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    International Nuclear Information System (INIS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.

    2015-01-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range

  1. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  2. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  3. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Kraaer, Jens; Tougaard, Sven

    2014-01-01

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  4. Study of the Auger line shape of polyethylene and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M; Pepper, S V

    1984-03-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account according to the theories of Cini and Sawatzky and Lenselink.

  5. Chemical effects in materials studies using Auger analysis

    International Nuclear Information System (INIS)

    Rye, R.R.

    1985-01-01

    Core-valence-valence Auger spectra (AES) afford a unique local view of valence electron structure. The direct involvement in the Auger process of both core and valence states means that the transition matrix element will have a large value only for that portion of the valence electron density which covers the same spatial extent as the core wave function. Thus, the information content of AES is local to the atomic site containing the initial core hole. Our approach in understanding the local information content of AES has been mainly experimental through the intercomparison of model systems, both molecular and solid. The use of molecules in this regard is particularly useful since the vast array of molecular species of known geometric and electronic structures allows one to both vary these properties in a systematic fashion to observe trends and to choose a molecule to probe a specific chemical question

  6. Many-body effect in the partial singles N2,3 photoelectron spectroscopy spectrum of atomic Cd

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    We can extract out the photoelectron kinetic energy (KE) dependent imaginary part of the core-hole self-energy by employing Auger-photoelectron coincidence spectroscopy (APECS). The variation with photoelectron KE in the Auger electron spectroscopy (AES) spectral peak intensity of a selected decay channel measured in coincidence with photoelectrons of a selected KE is the partial singles (non-coincidence) photoelectron spectroscopy (PES) spectrum, i.e., the product of the singles PES one and the branching ratio of the partial Auger decay width of a selected decay channel to the imaginary part of the core-hole self-energy. When a decay channel the partial Auger decay width of which is photoelectron KE independent is selected, we can extract out spectroscopically the imaginary part of the core-hole self-energy because the variation with photoelectron KE in the relative spectral intensity of the partial singles PES spectrum to the singles one is that in the branching ratio of the partial Auger decay width of a selected decay channel. As an example we discussed the N 2,3 -hole self-energy of atomic Cd

  7. Many-body calculation of the coincidence L3 photoelectron spectroscopy main line of Ni metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    The partial singles L 3 photoelectron spectroscopy (PES) main line of Ni metal correlated with Auger electrons emitted by the localized L 3 -VV Auger decay is calculated by a many-body theory. The partial singles L 3 PES main line of Ni metal almost coincides in both line shape and peak kinetic energy (KE) with the singles one. The former main line peak shows a KE shift of only 0.01 eV toward the lower KE and a very small asymmetric line shape change compared to the singles one. The asymmetric line shape change and the peak KE shift of the partial singles L 3 main line are very small. However, they are due to the variation with photoelectron KE in the branching ratio of the partial Auger decay width in the partial singles L 3 PES main line by the photoelectron KE dependent imaginary part of the shakeup self-energy. The L 3 PES main line of Ni metal measured in coincidence with the L 3 -VV ( 1 G) Auger electron spectroscopy (AES) main line peak is the partial singles one modulated by a spectral function R a of a fixed energy Auger electron analyzer so that it should show only a symmetric line narrowing by R a compared to the singles one. The L 3 PES main line peak of Ni metal measured in coincidence with the delocalized band-like L 3 -VV AES peak or not completely split-off (or not completely localized) L 3 -VV ( 3 F) AES peak, will show an asymmetric line narrowing and a KE shift compared to the singles one. Thus, the L 3 PES main line of Ni metal in coincidence with various parts of the L 3 -VV AES spectrum depends on which part of the L 3 -VV AES spectrum a fixed energy Auger electron analyzer is set. The experimental verification is in need

  8. Electronic structure of layered ferroelectric high-k titanate La2Ti2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Gavrilova, T. A.; Grivel, Jean-Claude

    2009-01-01

    The electronic structure of binary titanate La2Ti2O7 has been studied by x-ray photoelectron spectroscopy. Spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in La2Ti2O7 are determined as alpha(Ti) = 872...

  9. Electronic structure of layered titanate Nd2Ti2O7

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Gavrilova, T.A.; Grivel, Jean-Claude

    2008-01-01

    The electronic structure of the binary titanate Nd2Ti2O7 has been studied by X-ray photoelectron spectroscopy (XPS). Spectral features of the valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Nd2Ti2O7 are determined as alpha...

  10. [A high resolution projection electron spectrometers]: Final report 1978-1987

    International Nuclear Information System (INIS)

    1988-01-01

    The main emphasis of the work has been to study inner shell ionization processes. The signatures have been K x-rays or K Auger transitions. We have worked with semiconductor or Bragg x-ray spectrometers. Toward the end of the contract we concentrated on projectile electron spectroscopy. These topics and other atomic physics projects are described briefly in this progress report

  11. Time dependent thermal treatment of oxidized MWCNTs studied by the electron and mass spectroscopy methods

    Czech Academy of Sciences Publication Activity Database

    Stobinski, L.; Lesiak, B.; Zemek, Josef; Jiříček, Petr

    2012-01-01

    Roč. 258, č. 20 (2012), s. 7912-7917 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z10100521 Keywords : MWCNTs * ox-MWCNTs * functional materials * electron spectroscopy * mass spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.112, year: 2012

  12. Studies on low energy ion-atom collisions by means of electron-spectroscopy

    International Nuclear Information System (INIS)

    Hirosi Suzuki

    1991-01-01

    The typical results of studies on autoionization processes produced by low energy ion-atom collisions are given by means of the ejected electron spectroscopy, which have been performed by Atomic Physics Group of Sophia University

  13. Electronic properties of Mn-phthalocyanine–C60 bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Roth, Friedrich; Herzig, Melanie; Knupfer, Martin; Lupulescu, Cosmin; Darlatt, Erik; Gottwald, Alexander; Eberhardt, Wolfgang

    2015-01-01

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C 60 (MnPc:C 60 ) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C 60 . Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C 60 bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C 60 to MnPc thin films

  14. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates

    International Nuclear Information System (INIS)

    Zereshkian, Arman; Leyton, Jeffrey V.; Cai, Zhongli; Bergstrom, Dane; Weinfeld, Michael; Reilly, Raymond M.

    2014-01-01

    Introduction: Leukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, 111 In-NLS-7G3, which recognizes the CD123 + /CD131 - phenotype uniquely displayed by LSCs. Methods: The surviving fraction (SF) of CD123 + /CD131 - AML-5 cells exposed to 111 In-NLS-7G3 (33–266 nmols/L; 0.74 MBq/μg) or to γ-radiation (0.25-5 Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 μmols/L) combined with 111 In-NLS-7G3 (16–66 nmols/L) or with γ-radiation (0.25–2 Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of 111 In-NLS-7G3 measured by cell fractionation. Results: Binding of 111 In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1 μM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123 + /CD131 - epitope. 111 In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25 Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with 111 In-NLS-7G3 (16–66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25–0.5 Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to

  15. Electron spectroscopy using a multi-detector array

    International Nuclear Information System (INIS)

    Butler, P.A.; Cann, K.J.; Trzaska, W.H.

    1996-01-01

    A description is given of the novel electron spectrometer SACRED, which uses a multi-element Si array to detect cascades of conversion electrons. Its application to the study of deformed structures in 222 Th is described. (orig.)

  16. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  17. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    International Nuclear Information System (INIS)

    Zhou, X.J.

    2010-01-01

    In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible

  18. In-beam conversion electron spectroscopy using the SACRED array

    International Nuclear Information System (INIS)

    Jones, P.M.; Cann, K.J.; Cocks, J.F.C.; Jones, G.D.; Julin, R.; Schulze, B.; Smith, J.F.; Wilson, A.N.

    1997-01-01

    Conversion electron studies of medium-heavy to heavy nuclear mass systems are important where the internal conversion process begins to dominate over gamma-ray emission. The use of a segmented detector array sensitive to conversion electrons has been used to study multiple conversion electron cascades from nuclear transitions. The application of the silicon array for conversion electron detection (SACRED) for in-beam measurements has successfully been implemented. (orig.). With 2 figs

  19. Evidence for correlated double-electron capture in slow O6+ + He collisions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Meyer, F.W.; Havener, C.C.; Stolterfoht, N.; Swenson, J.K.; Shafroth, S.M.

    1987-01-01

    Double electron capture by few-electron multicharged ions during slow collisions with He may result in Auger-decaying product states of the projectile, provided the initial projectile charge exceeds +4. These autoionizing states can be characterized by either (nearly) equivalent electron configurations, in which the two captured electrons occupy essentially the same or adjacent shells, or by non-equivalent configurations, in which one of the electrons is in a Rydberg state. Using the method of zero-degree Auger spectroscopy, the authors have verified population of both types of autoionizing states by double electron capture during slow collisions of O 6+ with He: for these systems, both LMM Auger electrons, attributed to the (nearly) equivalent electron configuration (1s 2 ) 3iota3iota' or (1s 2 )3iota4iota', and L 1 L 23 M-Coster Kronig electrons, attributed to the non-equivalent electron configurations (1s 2 )2pniota, were observed. Comparison of the LMM Auger electron and Coster Kronig electron production cross sections suggests that the correlated double capture process is of comparable importance to the sequential single capture mechanism

  20. Vertical-Screw-Auger Conveyer Feeder

    Science.gov (United States)

    Walton, Otis (Inventor); Vollmer, Hubert J. (Inventor)

    2016-01-01

    A conical feeder is attached to a vertically conveying screw auger. The feeder is equipped with scoops and rotated from the surface to force-feed regolith the auger. Additional scoops are possible by adding a cylindrical section above the conical funnel section. Such then allows the unit to collect material from swaths larger in diameter than the enclosing casing pipe of the screw auger. A third element includes a flexible screw auger. All three can be used in combination in microgravity and zero atmosphere environments to drill and recover a wide area of subsurface regolith and entrained volatiles through a single access point on the surface.

  1. Electronic structure investigation of oxidized aluminium films with electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Guo, X.; Canney, S.; Kheifets, A.S.; Vos, M.; Fang, Z.; Utteridge, S.; McCarthy, I.E.; Weigold, E.

    1996-09-01

    Electron momentum spectroscopy (EMS) of (e, 2e) measurements with oxidized aluminium thin films have been performed. Due to the surface sensitive mature of the EMS spectrometer employed the measured (e, 2e) events come from the front oxidized layer as viewed by the electron detectors. The measurements show clearly two major features in the spectral momentum density distribution and they are related to the upper valence band and the lower valence band of aluminum oxide. The first is a 'dual parabola' energy-momentum dispersion pattern spanning about 8 eV in the upper valence band. This 'dual parabola' pattern has been qualitatively reproduced by a linear muffin-tin orbital (LMTO) calculation on spherically averaged α-A1 2 O 3 with nearly the same energy span. In the lower valence band, the LMTO calculation indicates a dispersion spanning about 5 eV, and the measured spectral momentum density plot shows a similar 'bowl' shape but with less dispersion. The possible causes which blur the dispersion in the lower valence band are discussed. Other features in the spectral momentum density distribution are also discussed and compared with the LMTO calculation. 45 refs., 1 tab., 10 figs

  2. Status of the development of electron volt inelastic neutron spectroscopy

    International Nuclear Information System (INIS)

    Newport, R.J.; Taylor, A.D.; Williams, W.G.

    1984-05-01

    High energy inelastic neutron scattering spectroscopy is reviewed in the light of material presented at the 'High Energy Excitations in Condensed Matter' (HEECM) Workshop, held at Los Alamos National Laboratory 13-15 February 1984. Particular attention is paid to the development of instrumentation based on nuclear resonance analysers. (author)

  3. Efficient spin transitions in inelastic electron tunneling spectroscopy.

    Science.gov (United States)

    Lorente, Nicolás; Gauyacq, Jean-Pierre

    2009-10-23

    The excitation of the spin degrees of freedom of an adsorbed atom by tunneling electrons is computed using strong coupling theory. Recent measurements [Heinrich, Science 306, 466 (2004)] reveal that electron currents in a magnetic system efficiently excite its magnetic moments. Our theory shows that the incoming electron spin strongly couples with that of the adsorbate so that memory of the initial spin state is lost, leading to large excitation efficiencies. First-principles transmissions are evaluated in quantitative agreement with the experiment.

  4. Practical guide to surface science and spectroscopy

    CERN Document Server

    Chung, Yip-Wah

    2001-01-01

    Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-...

  5. Spurious effects of electron emission from the grids of a retarding field analyser on secondary electron emission measurements. Results on a (111) copper single crystal

    International Nuclear Information System (INIS)

    Pillon, J.; Roptin, D.; Cailler, M.

    1976-01-01

    Spurious effects of a four grid retarding field analyzer were studied for low energy secondary electron measurements. Their behavior was investigated and two peaks in the energy spectrum were interpreted as resulting from tertiary electrons from the grids. It was shown that the true secondary electron peak has to be separated from these spurious peaks. The spectrum and the yields sigma and eta obtained for a Cu(111) crystal after a surface cleanness control by Auger spectroscopy are given

  6. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    Science.gov (United States)

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  7. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  8. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    NARCIS (Netherlands)

    Schmitz, O.; Beigman, I. L.; Vainshtein, L. A.; Schweer, B.; Kantor, M.; Pospieszczyk, A.; Xu, Y.; Krychowiak, M.; Lehnen, M.; Samm, U.; Unterberg, B.

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T-e(r, t) and electron density ne(r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed

  9. A new apparatus for electron-ion multiple coincidence momentum imaging spectroscopy

    International Nuclear Information System (INIS)

    Morishita, Y.; Kato, M.; Pruemper, G.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Oura, M.; Yamaoka, H.; Suzuki, I.H.; Saito, N.

    2006-01-01

    We have developed a new experimental apparatus for the electron-ion multiple coincidence momentum imaging spectroscopy in order to obtain the angular distributions of vibration-resolved photoelectrons from molecules fixed in space. The apparatus consists of a four-stage molecular supersonic jet and a spectrometer analyzing three-dimensional momenta of fragment ions and electrons in coincidence

  10. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Lynch, D.W.

    2004-01-01

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals

  11. Vacuum ultraviolet spectroscopy of some hydrocarbons by electron impact technique

    International Nuclear Information System (INIS)

    Azevedo e Souza, A.C. de.

    1985-07-01

    A detailed description of the construction and operation of the electron impact spectrometer of the Electron Impact Laboratory at the Chemistry Institute of Federal University of Rio de Janeiro are presented. The main characteristics of this spectrometer are: incident energy from 0.5 to 3.0 KeV; angular range from -60 0 to + 60 0 ; energy loss from 0 to 500 eV; energy resolution from 0.5 to 2.5 eV and; electron velocity analyser equal to electrostatic (Mollenstedt type. The data acquisition system is based on a microcomputer Motorola; recently an APPLE II system has been incorporated to the spectrometer. Electron energy loss spectra for the nitrogen molecule as well as for some hydrocarbons (C 2 H 6 , C 2 H 4 , C 2 H 2 ) have been obtained. The data were converted into double differential cross sections and generalized oscillator strenghts. (author) [pt

  12. Microanalysis by spectroscopy of transmitted electron energy losses

    International Nuclear Information System (INIS)

    Colliex, C.; Trebbia, P.

    1978-01-01

    Among the various signals which, in a transmission electron microscope, result from the interactions between the primary beam of well defined energy E 0 and the sample, the spectrum of the energy distribution of the electrons transmitted contains useful informations on the chemical and physical properties of the sample. Consequently the adaptation of an energy dispersive system on an electron microscope enables new fields of research to be investigated, particularly a localised chemical analysis technique with a space resolution scale equal to that of the electron microscope. It is this second aspect that we suggest describing in particular here. Already, this technique appears to be indispensable in the problems arising from the analysis of very small quantities of matter: detection limits in the order of 10 -19 to 10 -20 g (around 100 to 1000 atoms) would seem to be resonably possible [fr

  13. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  14. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Knut, Ronny; Lindblad, Rebecka [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden); Gorgoi, Mihaela [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Rensmo, Håkan [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden); Karis, Olof, E-mail: olof.karis@physics.uu.se [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden)

    2013-10-15

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems.

  15. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    International Nuclear Information System (INIS)

    Knut, Ronny; Lindblad, Rebecka; Gorgoi, Mihaela; Rensmo, Håkan; Karis, Olof

    2013-01-01

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems

  16. Electron momentum density measurements by means of positron annihilation and Compton spectroscopy

    International Nuclear Information System (INIS)

    Gerber, W.; Dlubek, G.; Marx, U.; Bruemmer, O.; Prautzsch, J.

    1982-01-01

    The electron momentum density is measured applying positron annihilation and Compton spectroscopy in order to get information about electron wave functions. Compton spectroscopic measurements of Pd-Ag and Cu-Zn alloy systems are carried out taking into account crystal structure, mixability, and order state. Three-dimensional momentum densities of silicon are determined in order to get better information about its electronic structure. The momentum density and the spin density of ferromagnetic nickel are investigated using angular correlation curves

  17. Electron Spectroscopy Studies of Iron, Iron Sulfides and Supported Iron Surfaces: Chemisorption of Simple Gases.

    Science.gov (United States)

    Lee, Yiu Chung

    EELS was used to investigate the chemisorption of oxygen and carbon on iron. The EELS spectra of oxidized iron show characteristic features with strong enhancement of the interband transitions involving the Fe 3d band (4.6 and 7.5 eV) and moderate enhancement of the M(,2,3) transition doublet (54.4 and 58.2 eV). The changes in the electron energy loss structures with an overlayer of graphitic or carbidic carbon were investigated. The adsorption and growth of iron on Ni(100) has been studied using the combined techniques of LEED and EELS. Initially iron grows by a layer-by-layer mechanism for the first few layers. High iron coverages result in the observation of complex LEED patterns with satellites around the main (1 x 1) diffraction sports. This is due to the formation of b.c.c. Fe(110) crystallites arranged in domains with different orientations. EELS studies show the presence of three stages in the growth of iron on Ni(100): low-coverage, film-like and bulk-like. Auger and EELS were used to study the iron sulfide (FeS(,2), Fe(,7)S(,8) and FeS) surfaces. A characteristic M(,2,3) VV Auger doublet with a separation of 5.0 eV was observed on the sulfides. An assignment of the electron energy loss peaks was made based on the energy dependence of the loss peaks and previous photoemission results. The effect of argon ion bombardment was studied. Peaks with strong iron and sulfur character were observed. Heating the damaged sulfides results in reconstruction of the sulfide surfaces. The reactions of the sulfides with simple gases, such as H(,2), CO, CH(,4), C(,2)H(,4), NH(,3) and O(,2) were also studied. Using XPS, the chemisorption of SO(,2) on CaO(100) has been studied. The chemical state of sulfur has been identified as that of sulfate. The kinetics of SO(,2) chemisorption on CaO are discussed. The binding states of Fe and Na on CaO were determined to be Fe('2+) and Na('+) respectively. At low Fe or Na coverages (< 0.5 ML), there is a large increase in the rate of

  18. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  19. Electron temperature measurements in lowdensity plasmas by helium spectroscopy

    International Nuclear Information System (INIS)

    Brenning, N.

    1977-09-01

    This method to use relative intensities of singlet and triplet lines of neutral helium to measure electron temperature in low-density plasmas is examined. Calculations from measured and theoretical data about transitions in neutral helium are carried out and compared to experimental results. It is found that relative intensities of singlet and triplet lines from neutral helium only can be used for TE determination in low-density, short-duration plasmas. The most important limiting processes are excitation from the metastable 2 3 S level and excitation transfer in collisions between electrons and excited helium atoms. An evaluation method is suggested, which minimizes the effect of these processes. (author)

  20. Intramolecular dynamics due to electron transitions: from photoelectron spectroscopy to Femtochemistry

    International Nuclear Information System (INIS)

    Gadzuk, J.W.

    1999-01-01

    Select spectroscopic and chemical physics problems associated with atomic motion triggered by electronic transitions are the topics of this paper. The story starts with the initial stimulation provided by Dick Brundle's photoelectron spectroscopy studies of adsorbed molecules and continues to contemporary examples in photoelectron spectroscopy and Femtochemistry, all of which are theoretically modelled within a unified framework of time-dependent, driven oscillators and decaying states. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Stochastic stimulated electronic x-ray Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Victor Kimberg

    2016-05-01

    → π * transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations.

  2. Electronic structure of palladium and its relation to uv spectroscopy

    DEFF Research Database (Denmark)

    Christensen, N.E.

    1976-01-01

    The electronic-energy-band structure of palladium has been calculated by means of the relativistic augmented-plane-wave method covering energies up to 30 eV above the Fermi level. The optical interband transitions producing structure in the dielectric function up to photon energies of 25 eV have ...

  3. A study of electron scattering through noise spectroscopy

    NARCIS (Netherlands)

    Kumar, Manohar

    2012-01-01

    Charge counting statistics (C.S.) of traversing electron in quantum devices like atomic-molecular junctions is sensitive to the local perturbation in the charge field at the contact and in the quantum channels. The first cumulant of C.S. i.e. current-voltage characteristic of such devices has been

  4. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  5. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide

  6. The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu

    International Nuclear Information System (INIS)

    Tobin, James; Yu, Sung; Chung, Brandon; Morton, Simon; Komesu, Takashi; Waddill, George

    2008-01-01

    We are developing the technique of spin-polarized photoelectron spectroscopy as a probe of electron correlation with the ultimate goal of resolving the Pu electronic structure controversy. Over the last several years, we have demonstrated the utility of spin polarized photoelectron spectroscopy for determining the fine details of the electronic structure in complex systems such as those shown in the paper.

  7. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    Science.gov (United States)

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  8. Structural defects in multiferroic BiMnO3 studied by transmission electron microscopy and electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yang, H.; Chi, Z. H.; Yao, L. D.; Zhang, W.; Li, F. Y.; Jin, C. Q.; Yu, R. C.

    2006-01-01

    The multiferroic material BiMnO 3 synthesized under high pressure has been systematically studied by transmission electron microscopy and electron energy-loss spectroscopy, and some important structural defects are revealed in this multiferroic material. The frequently observed defects are characterized to be Σ3(111) twin boundaries, Ruddlesden-Popper [Acta Crystallogr. 11, 54 (1958)] antiphase boundaries, and a p p superdislocations connected with a small segment of Ruddlesden-Popper defect. These defects are present initially in the as-synthesized sample. In addition, we find that ordered voids (oxygen vacancies) are easily introduced into the multiferroic BiMnO 3 by electron-beam irradiation

  9. High-dose dosimetry using electron spin resonance (ESR) spectroscopy

    International Nuclear Information System (INIS)

    Kojima, Takuji; Tanaka, Ryuichi

    1992-01-01

    An electron spin resonance (ESR) dosimeter capable of measuring large doses of radiation in radiotherapy and radiation processing is outlined. In particular, an alanine/ESR dosimeter is discussed, focusing on the development of elements, the development of the ESR dosimetric system, the application of alanine/ESR dosimeter, and basic researches. Rod elements for gamma radiation and x radiation and film elements for electron beams are described in detail. The following recent applications of the alanine/ESR dosimeter are introduced: using as a transfer dosimeter, applying to various types of radiation, diagnosing the deterioration of radiological materials and equipments, and applying to ESR imaging. The future subjects to be solved in the alanine/ESR dosimetric system are referred to as follows: (1) improvement of highly accurate elements suitable for the measurement of various types of radiation, (2) establishment of sensitive calibration method of the ESR equipment itself, and (3) calibration and standardization of radiation doses. (K.N.) 65 refs

  10. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale......, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons...... in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron...

  11. 30 CFR 77.1502 - Auger holes; restriction against entering.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger holes; restriction against entering. 77... UNDERGROUND COAL MINES Auger Mining § 77.1502 Auger holes; restriction against entering. No person shall be permitted to enter an auger hole except with the approval of the MSHA Coal Mine Safety and Health District...

  12. 30 CFR 819.13 - Auger mining: Coal recovery.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  13. Study of the electronic structure of pure aluminium, aluminium oxide and nitride by spectroscopy of electrons excited under electronic and photonic bombardment (X and UV)

    International Nuclear Information System (INIS)

    Gautier-Soyer, Martine

    1985-01-01

    This research thesis reports the use of electron spectroscopy with electrons excited under electronic or photonic (X or UV) bombardment for the study of electronic state density of aluminium, aluminium oxide (Al 2 O 3 ) and aluminium nitride (AlN). The objective is to get an insight into phenomena related to technological problems of adherence, wear, lubrication, corrosion or breakdown met in metals, insulators and semiconductors. The author highlighted the presence of occupied surface states on Al(111) and Al(100), and electronic levels localised in the forbidden band of Al 2 O 3 and AlN, induced by structural defects which promote surface reactivity [fr

  14. Paradoxical effects of Auger electron-emitting 111In-DTPA-NLS-CSL360 radioimmunoconjugates on hCD45+ cells in the bone marrow and spleen of leukemia-engrafted NOD/SCID or NRG mice

    International Nuclear Information System (INIS)

    Bergstrom, Dane; Leyton, Jeffrey V.; Zereshkian, Arman; Chan, Conrad; Cai, Zhongli; Reilly, Raymond M.

    2016-01-01

    Introduction: 111 In-DTPA-NLS-CSL360 radioimmunoconjugates (RIC) recognize the overexpression of the interleukin-3 receptor α-subchain (CD123) relative to the β-subchain (CD131) on leukemia stem cells (LSC). Our aim was to study Auger electron radioimmunotherapy (RIT) of acute myeloid leukemia (AML) with 111 In-DTPA-NLS-CSL360 in non-obese diabetic severe combined immunodeficiency (NOD/SCID) mice or NOD-Rag1 null IL2rγ null (NRG) mice engrafted with CD123 + human AML-5 cells. Methods: The toxicity of three doses of 111 In-DTPA-NLS-CSL360 (3.3–4.8 MBq; 11–15 μg each) injected i.v. every two weeks was studied in non-engrafted NOD/SCID or NRG mice pre-treated with 200 cGy of γ-radiation required for AML engraftment. Engraftment efficiency of (1–5) × 10 6 cells AML-5 cells inoculated i.v. into NOD/SCID or NRG mice was assessed by flow cytometric analysis for human CD45 + (hCD45 + ) cells in the bone marrow (BM) and spleen. AML-5 engrafted mice were treated with two or three doses (3.7 MBq; 10 μg each) every two weeks of 111 In-DTPA-NLS-CSL360, non-specific 111 In-DTPA-NLS-hIgG, unlabeled CSL360 (10 μg) or normal saline. The percentage of hCD45 + cells in the BM and spleen were measured at one week after completion of treatment. Results: 111 In-DTPA-NLS-CSL360 in combination with 200 cGy of γ-radiation caused an initial transient decrease in body weight in NOD/SCID but not in NRG mice. There were no hematological, liver or kidney toxicities. The spleen exhibited 13-fold lower engraftment efficiency than the BM in NOD/SCID mice inoculated with 1 × 10 6 cells but both organs were highly (>85%) engrafted in NRG mice. Unexpectedly, 111 In-DTPA-NLS-CSL360 or non-specific 111 In-DTPA-NLS-hIgG caused a paradoxical 1.5-fold increase (P < 0.0001) in the proportion of hCD45 + cells in the BM of NOD/SCID mice compared to normal saline treated mice. 111 In-DTPA-NLS-CSL360 reduced hCD45 + cells in the spleen by 3.0-fold compared to 111 In-DTPA-NLS-hIgG (P = 0

  15. Influence of the partial temporal coherence of short FEL pulses on two-colour photoionization and photoinduced Auger decay of atoms

    International Nuclear Information System (INIS)

    Kazansky, A K; Sazhina, I P; Kabachnik, N M

    2013-01-01

    The influence of the partial temporal coherence of free electron laser (FEL) radiation on the sidebands arising in the electron spectra of laser-assisted photoionization and photoinduced Auger decay of atoms is theoretically analysed. A simple model is developed which describes the inner-shell photoionization by a short (femtosecond) FEL pulse and the following Auger decay in a strong field of an infrared laser. The model is based on the time-dependent approach and uses the strong field approximation for both photo- and Auger electrons. Particular calculations have been carried out for Ne 1s photoionization and KLL Auger emission. We demonstrate that the temporal coherence of FEL pulses influences the line widths in the photoelectron spectrum. For a small coherence time the sidebands in this spectrum cannot be resolved. On the other hand, our calculations show that in the Auger electron spectrum the sidebands are practically independent of the coherence time of the ionizing pulse.

  16. Xe N4,5O-OOO satellite Auger spectrum

    International Nuclear Information System (INIS)

    Partanen, L; Huttula, M; Heinaesmaeki, S; Aksela, H; Aksela, S

    2007-01-01

    The N 4,5 O 1,2,3 -O 1,2,3 O 2,3 O 2,3 Auger transitions, appearing as a satellite structure in the N 4,5 -OO Auger spectrum of xenon, were studied in detail. By measuring the N 4,5 O-OOO satellite Auger spectrum both below and above the 4p ionization threshold, we were able to separate the satellite production via the direct photo-double ionization and the Auger cascade from the 4p states. The N 3 -N 4,5 O 2,3 Coster-Kronig transitions and the subsequent N 4,5 O 2,3 -O 2,3 O 2,3 O 2,3 satellite Auger transitions were calculated using the HF wavefunctions and the most intense satellite lines were assigned. The Xe N 4,5 O-OOO satellite spectrum was compared with the previously studied Kr M 4,5 N-NNN satellite Auger spectrum. The 5s orbital in Xe was found to reveal more pronounced electron correlation than the 4s orbital in Kr

  17. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  18. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  19. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  20. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    International Nuclear Information System (INIS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztaray, Balint; Baer, Tomas

    2009-01-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm -1 field, which enables the direct measurement of rate constants in the 10 3 -10 7 s -1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  1. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  2. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  3. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  4. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  5. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  6. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  7. Application of ESCA spectroscopy to the study of electronic structure of high temperature superconductors

    International Nuclear Information System (INIS)

    Dagoury, G.

    1988-01-01

    Characteristics of high T c oxide superconductors are very sensitive to slight variation of chemical composition, ESCA spectroscopy is used for identification of YBaCuO superconductivity. Binding energy of the different electronic levels and structure of valence band are determined [fr

  8. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    NARCIS (Netherlands)

    Frisenda, R.; Perrin, M.L.; Van der Zant, H.S.J.

    2015-01-01

    We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from

  9. Identifying highly conducting Au–C links through inelastic electron tunneling spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Foti, G.; Vázquez, Héctor; Sanchez-Portal, D.; Arnau, A.; Frederiksen, T.

    2014-01-01

    Roč. 118, OCT (2014), s. 27106-27112 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : molecular electronics * alkanes * tin-functionalization * anchoring groups * vibrational spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.772, year: 2014

  10. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Godiksen, Anita; Vennestrøm, Peter N. R.; Rasmussen, Søren Birk

    2017-01-01

    Recent quantitative electron paramagnetic resonance spectroscopy (EPR) data on different copper species present in copper exchanged CHA zeolites are presented and put into context with the literature on other copper zeolites. Results presented herein were obtained using ex situ and in situ EPR...

  11. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    DEFF Research Database (Denmark)

    Cheng, D.S.; Yang, G.; Zhao, Y.Q.

    2015-01-01

    developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which...

  12. The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy

    DEFF Research Database (Denmark)

    Kiewidt, Lars; Karamehmedovic, Mirza

    2018-01-01

    In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields...

  13. Photon- and electron-induced surface voltage in electron spectroscopies on ZnSe(0 0 1)

    International Nuclear Information System (INIS)

    Cantoni, M.; Bertacco, R.; Brambilla, A.; Ciccacci, F.

    2009-01-01

    The surface band bending in ZnSe(0 0 1), as a function of the temperature, is investigated both in the valence band (by photoemission) and in the conduction band (by inverse photoemission and absorbed current spectroscopies). Two different mechanisms are invoked for interpreting the experimental data: the band bending due to surface states, and the surface voltage induced by the incident beam. While the latter is well known in photoemission (surface photovoltage), we demonstrate the existence of a similar effect in inverse photoemission and absorbed current spectroscopies, induced by the incident electrons instead of photons. These results point to the importance of considering the surface voltage effect even in electron-in techniques for a correct evaluation of the band bending.

  14. Interpretation of intensities in electron-momentum and photoelectron spectroscopies

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1984-06-01

    Relative intensities for the photoelectron reaction on atoms and molecules are not related to structure calculations in the same way as those for the noncoplanar symmetric (e,2e) reaction. The photoelectron dipole matrix element is dependent on recoil momentum only through its unique relationship to the photon energy and is much harder to calculate for chemically-interesting momenta. Relative intensities for binary (e,2e) reactions are independent of total energy at high enough energies and strongly dependent on symmetry and recoil momentum, for which an intensity profile can be measured for values starting at zero. In comparing with structure calculations, binary (e,2e) intensities for low recoil momentum may be compared directly with pole strengths in calculations of the one-electron Green's function or corresponding configuration-interaction calculations. In the case of states within a single symmetry manifold the relative intensities will be independent of recoil momentum up to some maximum, usually at least a few atomic units

  15. Electron spectroscopy in the fundamental process of electron-nucleus bremsstrahlung

    International Nuclear Information System (INIS)

    Hillenbrand, Pierre-Michel

    2013-07-01

    Within the scope of this thesis the fundamental process of electron-nucleus bremsstrahlung was studied in inverse kinematics at the Experimental Storage Ring ESR at GSI. For the system U 88+ + N 2 at 90 MeV/u it was shown, that by using inverse kinematics coincidence measurements between the scattered electron and the emitted photon can be performed for the case, in which the incoming electron transfers almost all of its kinetic energy onto the emitted photon. The sensitivity to the fundamental process could be achieved by measuring triple differential cross sections as a function of the emission angle of the photon and the scattered electron as well as the energy of the scattered electron. The optics of the magnetic electron spectrometer used were thoroughly revised and optimized to the experimental requirements. Analyzing different coincidences in this collision system, it was possible to determine the contributions to the electron distribution arising from radiative electron capture to the projectile continuum, nonradiative electron capture to the projectile continuum, and electron loss to the projectile continuum. The experimental results of each of these processes were compared to theoretical calculations. The electron spectra for the radiative and the nonradiative electron capture to continuum clearly reproduce the opposite asymmetry predicted by theory. Furthermore electron spectra for collisions of U 28+ with different gases were measured.

  16. SEM, Scanning Auger and XPS characterization of chemically pretreated Ti surfaces intended for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pisarek, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)], E-mail: marcinp@ichf.edu.pl; Lewandowska, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Roguska, A. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Janik-Czachor, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2007-07-15

    Titanium is known as a biocompatible metal characterized by biological and corrosion immunity and good mechanical properties, including a high fracture toughness. In a variety of environments, this metal undergoes 'natural' oxidation which determine its resistance to corrosion. It can also be exposed to chemical treatments in acidic or alkaline solutions which 'enforces' chemical and morphological changes of Ti surface. Those methods, if well controlled, may increase the effective Ti surface area, making it more biocompatible. However, the morphological and chemical factors responsible for their interactions with biological cells are still not well known. The aim of this work was to compare surface chemical and morphological changes introduced by commonly used aqueous NaOH pretreatment with those occurring in a new 'piranha' acidic solution. Particular attention was paid to possible changes which may be decisive for the biocompatibility of the Ti-elements subjected to these surface modifications. Surface analytical techniques such as Auger electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) combined with Ar{sup +} ion sputtering allowed us to investigate in detail the chemical composition of Ti oxide layers. SEM examinations provided morphological characterization of the surface of Ti samples. The results revealed large difference in morphology of Ti surfaces pretreated with different procedures whereas only minor difference in the chemistry of the surfaces were detected.

  17. A study of core electron binding energies in technetium-99m complexes by internal conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Burke, J.F.; Archer, C.M.; Wei Chiu, K.; Latham, I.A.; Egdell, R.G.

    1991-01-01

    Core electron binding energies in a series of 99m Tc complexes have been studied by internal conversion electron spectroscopy (ICES) in a conventional x-ray photoelectron spectrometer. In both 3d and 3p regions, a chemical shift of about 1 eV is observed per unit increase in oxidation state. The role of ICES in characterizing radiopharmaceutical agents is illustrated with studies of some novel 99m Tc-phosphine complexes that have been developed for myocardial perfusion imaging. (author)

  18. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  19. Electronic structure of xenon implanted with low energy in amorphous silicon

    International Nuclear Information System (INIS)

    Barbieri, P.F.; Landers, R.; Oliveira, M.H. de; Alvarez, F.; Marques, F.C.

    2007-01-01

    Electronic structure of Xe implanted in amorphous silicon (a-Si) films are investigated. Xe atoms were implanted with low energy by ion beam assisted deposition (IBAD) technique during growth of the a-Si films. The Xe implantation energy varied in the 0-300 eV energy range. X-ray photoelectron spectroscopy (XPS), X-ray Auger excited spectroscopy (XAES) and X-ray absorption spectroscopy (XAS) were used for investigating the Xe electronic structure. The Xe M 4 N 45 N 45 transitions were measured to extract the Auger parameter and to analyze the initial state and relaxation contributions. It was found that the binding energy variation is mainly due to initial state contribution. The relaxation energy variation also shows that the Xe trapped environment depends on the implantation energy. XAS measurements reveals that Xe atoms are dispersed in the a-Si matrix

  20. Radiosterilization dosimetry by electron-spin resonance spectroscopy. Cefotetan

    International Nuclear Information System (INIS)

    Basly, J.P.; Longy, I.; Bernard, M.

    1998-01-01

    As an alternative to heat and gas exposure sterilization, ionizing radiation is gaining interest as a sterilization process for medicinal products. Nevertheless, essentially for economic profit, unauthorized and uncontrolled use of radiation processes may be expected. In this context, it is necessary to find methods of distinguishing between irradiated and nonirradiated pharmaceuticals. In the absence of suitable detection methods, our attention was focused on electron-spin resonance (ESR) spectrometry. A third generation cephalosporin, cefotetan, was chosen as a model; this antibiotic is a potential candidate for radiation treatment due to its thermosensitivity. While the ESR spectra of a nonirradiated sample presents no signal, a nonsymmetrical signal, dependent on the irradiation dose, is found in irradiated samples. The number of free radicals was estimated by comparing the second integral from radiosterilized samples and a diphenylpicryl hydrazyl reference. Estimation of the number of free radicals gives 7x10 17 radicals g -1 at 20kGy (1.1x10 16 radicals in 15mg). From this result, the G-value (number of radicals (100eV) -1 ) could be estimated as 0.6. Decay of radicals upon storage were modeled using a bi-exponential function. The limit of detection of free radicals after irradiation at 25kGy is up to two years. This result agrees with those obtained on other cephalosporins. Aside from qualitative detection, ESR spectrometry can be used for dose estimation. Linear regression is applicable for doses lower than 20kGy. Since the radiation dose selected must always be based upon the bioburden of the products and the degree of sterility required (EN 552 and ANSI/AAMI/ISO 11137), 25kGy could no longer be accepted as a 'routine' dose for sterilizing a pharmaceutical. Doses in the 5-20kGy range could be investigated and linear regression appeared to be the least expensive route to follow. The best results for the integration of the curves were obtained with

  1. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    International Nuclear Information System (INIS)

    Yang Wanli; Qiao Ruimin

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode–electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries. (topical review)

  2. On the mechanism of electron-beam induced phenomena in Na β-alumina

    International Nuclear Information System (INIS)

    Livshits, A.; Polak, M.

    1983-01-01

    A detailed mechanism is proposed for the emergence of sodium to the cleavage-face of the superionic conductor Na β-alumina during high dose electron bombardment. It is based on Auger electron spectroscopy measurements and optical microscope observations of the bombarded surface, and it involves both electromigration of the mobile Na + and fault formation at the cleavage-face resulting from induced internal stress. (author)

  3. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei; Cheng, Bin; Liu, Wei-Ting; Tsai, Meng-Lin; He, Jr-Hau; Chuvilin, Andrey

    2017-01-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  4. Energy-momentum density of graphite by electron-momentum spectroscopy

    International Nuclear Information System (INIS)

    Vos, M.; Fang, Z.; Canney, S.; Kheifets, A.; McCarthy, I.E.; Weigold, E.

    1996-11-01

    The energy-resolved electron momentum density of graphite has been measured along a series of well-defined directions using electron momentum spectroscopy (EMS). This is the first measurement of this kind performed on a single-crystal target with a thoroughly controlled orientation which clearly demonstrates the different nature of the σ and π bands in graphite. Good agreement between the calculated density and the measured one is found, further establishing that fact that EMS yields more direct and complete information on the valence electronic structure that any other method. 12 refs., 2 figs

  5. Electron energy-loss spectroscopy of quasi-one-dimensional cuprates and vanadates

    International Nuclear Information System (INIS)

    Atzkern, S.

    2001-01-01

    In a combination of experimental and theoretical methods in this thesis the electronic structures of quasi-one-dimensional cuprates and vanadates were studied. For this the momentum-dependent loss function was measured by means of the electron energy-loss spectroscopy in transmission on monocrystals of Li 2 CuO 2 , CuGeO 3 , V 2 O 5 and α'-NaVO 5 . The comparison of the experimental data with results from band-structure and cluster calculations allowed conclusions on the mobility and correlations of the electrons in these systems

  6. Dispersive electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy.

    Science.gov (United States)

    Berleb, Stefan; Brütting, Wolfgang

    2002-12-31

    Electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) is investigated by impedance spectroscopy under conditions of space-charge limited conduction (SCLC). Existing SCLC models are extended to include the field dependence of the charge carrier mobility and energetically distributed trap states. The dispersive nature of electron transport is revealed by a frequency-dependent mobility with a dispersion parameter alpha in the range 0.4-0.5, independent of temperature. This indicates that positional rather than energetic disorder is the dominant mechanism for the dispersive transport of electrons in Alq3.

  7. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  8. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  9. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    International Nuclear Information System (INIS)

    Buratti, S.; Ballabio, D.; Giovanelli, G.; Dominguez, C.M. Zuluanga; Moles, A.; Benedetti, S.; Sinelli, N.

    2011-01-01

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: → We monitored time-related changes in red wine fermentation process. → NIR and MIR spectroscopies, electronic nose and tongue were applied. → Data were kinetically modelled to identify critical points during fermentation. → NIR, MIR electronic nose and tongue were able to follow the fermentation process. → The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that

  10. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, S., E-mail: susanna.buratti@unimi.it [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Ballabio, D. [Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Giovanelli, G. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Dominguez, C.M. Zuluanga [Instituto de Ciencia y Tecnologia de Alimentos, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia); Moles, A.; Benedetti, S.; Sinelli, N. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2011-07-04

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: > We monitored time-related changes in red wine fermentation process. > NIR and MIR spectroscopies, electronic nose and tongue were applied. > Data were kinetically modelled to identify critical points during fermentation. > NIR, MIR electronic nose and tongue were able to follow the fermentation process. > The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that NIR and MIR

  11. Operations of and Future Plans for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  12. DNA damage by Auger emitters

    International Nuclear Information System (INIS)

    Martin, R.F.; d'Cunha, Glenn; Gibbs, Richard; Murray, Vincent; Pardee, Marshall; Allen, B.J.

    1988-01-01

    125 I atoms can be introduced at specific locations along a defined DNA target molecule, either by site-directed incorporation of an 125 I-labelled deoxynucleotide or by binding of an 125 I-labelled sequence-selective DNA ligand. After allowing accumulation of 125 I decay-induced damage to the DNA, application of DNA sequencing techniques enables positions of strand breaks to be located relative to the site of decay, at a resolution corresponding to the distance between adjacent nucleotides [0.34 nm]. Thus, DNA provides a molecular framework to analyse the extent of damage following [averaged] individual decay events. Results can be compared with energy deposition data generated by computer-simulation methods developed by Charlton et al. The DNA sequencing technique also provides information about the chemical nature of the termini of the DNA chains produced following Auger decay-induced damage. In addition to reviewing the application of this approach to the analysis of 125 I decay induced DNA damage, some more recent results obtained by using 67 Ga are also presented. (author)

  13. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    International Nuclear Information System (INIS)

    Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S

    2016-01-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)

  14. Study of distribution of electron density in heteropolymolybdates by method of X-ray electron spectroscopy

    International Nuclear Information System (INIS)

    Molchanov, V.N.; Kazanskij, L.P.; Torchenkova, E.A.; Spitsyn, V.I.

    1978-01-01

    X-ray electron spectra of some iso- and heteropolymolybdates relating to different structure types are investigated to study electron structure of complex polyoxyion-heteropolyanions. Binding energies of Modsub(5/2) and 01s-electrons in iso- and heteropolycompounds line are measured and their interdependence is detected. The effective charge of oxygen and molybdenum atoms in heteropolymolybdates increases with decreasing a number of external sphere cations per an oxygen atom and a number of Mo=0 multiple bonds

  15. Auger Prime the new stage of the Pierre Auger Observatory, using Universality

    International Nuclear Information System (INIS)

    Parra, Alejandra; Martínez, Oscar; Salazar, Humberto

    2016-01-01

    The Pierre Auger Observatory is currently in an update stage denominated AugerPrime. The Observatory will have scintillator detectors on top of each of the surface stations (WCD). The main goal of AugerPrime is to improve the studies on mass composition for ultra high energy cosmic rays, for this purpose AugerPrime will use Universality. The model will parameterize the signal in four principal components, the objective is an adequate discrimination of the muonic and electromagnetic components. We are interested in the discrimination of these two components using simulations. To do that, we are working with OfflineTrunk (the official software of the Collaboration). Our work is focused on the development of some modules for analysis and study of the signal from AugerPrime. (paper)

  16. Enhanced radiative Auger emission from lithiumlike 16S13+

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Clark, M.W.; Oglesby, C.S.; Tanis, J.A.; Graham, W.G.; McFarland, R.H.; Morgan, T.J.; Johnson, B.M.; Jones, K.W.

    1990-01-01

    The radiative Auger emission (RAE) from 0.94--6.25-MeV/u 16 S 13+ (lithiumlike) projectiles excited in collisions with He target atoms has been measured. For these highly stripped ions the intensity of RAE photons relative to Kα x-ray emission is enhanced by about a factor of five compared with theoretical calculations and an earlier experimental measurement for S ions with few electron vacancies. The enhancement of RAE for S 13+ is qualitatively similar to results reported previously for lithiumlike 23 V 20+ ; however, some differences between S and V are evident

  17. Enhanced radiative Auger emission from lithiumlike 20Ca17+

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.; Morgan, T.J.; Stoeckli, M.P.; Berkner, K.H.; Schlachter, A.S.; Stearns, J.W.

    1991-01-01

    Radiative Auger emission (RAE) from lithiumlike 20 Ca 17+ projectiles excited in collisions with He has been measured. The intensity of RAE photons relative to K α X-ray emission is enhanced by a factor of 10-17 compared with theoretical calculations for ions with few electron vacancies. The enhancement of RAE for Ca 17+ is consistent with the results reported previously for lithiumlike 16 S 13+ and 23 V 20+ and indicates a systematic dependence on Z. Both the enhancement and the relative RAE transition rate increase with Z. (orig.)

  18. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  19. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  20. Dedicated detectors for surface studies by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Bibicu, I.; Rogalski, M.S.; Nicolescu, G.

    2001-01-01

    Moessbauer spectroscopy is a nuclear resonance method largely utilized in solid state studies. Following resonant nuclear absorption, gamma radiations, conversion X-rays, conversion or Auger electrons are emitted. By detection of gamma radiations information about the sample as a whole are obtained while by detection of electrons or X radiation one obtains data on the surface layer. Our laboratory was among the firsts to produce and use flow gas proportional detectors for surface studies by Moessbauer spectroscopy. Four types of detectors were devised: - detectors for electron detection (90% He + 10% CH 4 ); - detectors for conversion X-ray detection (90% Ar + 10% CH 4 ); - detectors for electrons or internal conversion X rays; - detectors for simultaneous detection of electrons and conversion X rays emitted from the same source. All detectors allow simultaneous Moessbauer measurements both for surface and volume for a given sample. Details of construction are presented for the four types of detectors