WorldWideScience

Sample records for auf molecular imaging

  1. Contributions on biomedical imaging, with a side-look at molecular imaging; Beitraege zur biomedizinischen Bildgebung mit einem Seitenblick auf Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, G. (ed.)

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [German] In diesem Bericht sind einige Beitraege zum Gebiet 'Bildgebende Verfahren in Biologie und Medizin' zusammengestellt. Sie stammen saemtlich aus dem Institut fuer Biomathematik und Biometrie, IBB, am Forschungszentrum fuer Umwelt und Gesundheit, GSF, in Muenchen/Neuherberg, und seinem engeren Umfeld. Ziel war es, zu sichten, was in und um diesen Themenkreis herum an Wissen und sonstiger Kompetenz hier vorhanden ist. Einige am IBB etablierte Gebiete wie Roentgen-Mammographie oder funktionelle Magnetresonanztherapie wurden ausgeblendet. Der Grund ist die Fokussierung auf ein nicht exakt definierbares, neues Gebiet der Bildgebung, das unter dem Namen 'Molecular Imaging' kursiert und derzeit Furore macht macht. (orig.)

  2. Cardiovascular molecular MR imaging

    OpenAIRE

    Lamb, H J; van der Meer, R. W.; Roos, A. (Anna); Bax, J J

    2007-01-01

    Introduction Cardiovascular molecular imaging is a rapidly evolving field of research, aiming to image and quantify molecular and cellular targets in vivo. MR imaging has some inherent properties that make it very suitable for cardiovascular molecular imaging. Until now, only a limited number of studies have been published on cardiovascular molecular imaging using MR imaging. Review In the current review, MR techniques that have already shown potential are discussed. Metabolic MR imaging can ...

  3. Molecular imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Otmar; Riemann, Burkhard (eds.) [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-02-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  4. Cardiovascular Molecular Imaging

    OpenAIRE

    Khanicheh, Elham

    2009-01-01

    Although there have been significant improvements in the treatment of cardiovascular diseases they still remain the main cause of morbidity and mortality globally. Currently available diagnostic approaches may not be adequate to detect pathologic changes during the early disease stages, which may be valuable for risk stratification and also to assess a response to a therapy. Therefore molecular imaging techniques such as Contrast Enhanced Ultrasound (CEU) molecular imaging to noninvasively i...

  5. Molecular cardiovascular imaging

    International Nuclear Information System (INIS)

    Although huge and long-lasting research efforts have been spent on the development of new diagnostic techniques investigating cardiovascular diseases, still fundamental challenges exist; the main challenge being the diagnosis of a suspected or known coronary artery disease or its consequences (myocardial infarction, heart failure etc.). Beside morphological techniques, functional imaging modalities are available in clinical diagnostic algorithms, whereas molecular cardiovascular imaging techniques are still under development. This review summarizes clinical-diagnostical challenges of modern cardiovascular medicine as well as the potential of new molecular imaging techniques to face these. (orig.)

  6. Molecular MR imaging

    International Nuclear Information System (INIS)

    Basic medicobiological research in recent years has made rapid advances in the functional understanding of normal and pathological processes down to the molecular level. At the same time, various imaging modalities have developed from the depiction of organs to approaching the depiction of the cellular level and are about to make the visualization of molecular processes an established procedure. Besides other modalities like PET and near-infrared fluorescence, MR imaging offers some promising options for molecular imaging as well as some applications that have already been tested such as the visualization of enzyme activity, the depiction of the expression of certain genes, the visualization of surface receptors, or the specific demonstration of cells involved in the body's immune response. A major advantage of molecular magnetic resonance imaging (mMRI) over other more sensitive modalities is its high spatial resolution. However, the establishment of mMRI crucially relies on further improvements in resolution and the development of molecular markers for improving its sensitivity and specificity. The state of the art of mMRI is presented by giving a survey of the literature on experimental studies and reporting the results our study group obtained during investigation on gliomas. (orig.)

  7. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  8. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  9. Molecular Imaging in Genetic Medicine

    Science.gov (United States)

    Jacob, Ayden; Van Gestel, Frederick; Yaghoubi, Shahriar

    2016-01-01

    The field of biomedical imaging has made significant advances in recent times. This includes extremely high-resolution anatomic imaging and functional imaging of physiologic and pathologic processes as well as novel modalities in optical imaging to evaluate molecular features within the cellular environment. The latter has made it possible to image phenotypic markers of various genotypes that are implicated in human development, behavior, and disease. This article discusses the role of molecular imaging in genetic and precision medicine. 

  10. Molecular imaging in atherosclerosis

    International Nuclear Information System (INIS)

    Atherosclerosis is the major cause of cardiovascular disease, which still has the leading position in morbidity and mortality in the Western world. Many risk factors and pathobiological processes are acting together in the development of atherosclerosis. This leads to different remodelling stages (positive and negative) which are both associated with plaque physiology and clinical presentation. The different remodelling stages of atherosclerosis are explained with their clinical relevance. Recent advances in basic science have established that atherosclerosis is not only a lipid storage disease, but that also inflammation has a fundamental role in all stages of the disease. The molecular events leading to atherosclerosis will be extensively reviewed and described. Further on in this review different modalities and their role in the different stages of atherosclerosis will be discussed. Non-nuclear invasive imaging techniques (intravascular ultrasound, intravascular MRI, intracoronary angioscopy and intravascular optical coherence tomography) and non-nuclear non-invasive imaging techniques (ultrasound with Doppler flow, electron-bean computed tomography, coronary computed tomography angiography, MRI and coronary artery MR angiography) will be reviewed. After that we focus on nuclear imaging techniques for detecting atherosclerotic plaques, divided into three groups: atherosclerotic lesion components, inflammation and thrombosis. This emerging area of nuclear imaging techniques can provide measures of biological activity of atherosclerotic plaques, thereby improving the prediction of clinical events. As we will see in the future perspectives, at present, there is no special tracer that can be called the diagnostic tool to diagnose prospective stroke or infarction in patients. Nevertheless, we expect such a tracer to be developed in the next few years and maybe, theoretically, it could even be used for targeted therapy (in the form of a beta-emitter) to combat

  11. Molecular breast imaging. An update

    International Nuclear Information System (INIS)

    The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy (1H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging (23Na-MRI), phosphorus spectroscopy (31P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible. (orig.)

  12. Time-resolved molecular imaging

    Science.gov (United States)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  13. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  14. Molecular imaging in oncology

    OpenAIRE

    Dzik-Jurasz, A S K

    2004-01-01

    Cancer is a genetic disease that manifests in loss of normal cellular homeostatic mechanisms. The biology and therapeutic modulation of neoplasia occurs at the molecular level. An understanding of these molecular processes is therefore required to develop novel prognostic and early biomarkers of response. In addition to clinical applications, increased impetus for the development of such technologies has been catalysed by pharmaceutical companies investing in the development of molecular ther...

  15. Molecular imaging in ovarian cancer.

    Science.gov (United States)

    Reyners, A K L; Broekman, K E; Glaudemans, A W J M; Brouwers, A H; Arts, H J G; van der Zee, A G J; de Vries, E G E; Jalving, M

    2016-04-01

    Ovarian cancer has a high mortality and novel-targeted treatment strategies have not resulted in breakthroughs for this disease. Insight into the molecular characteristics of ovarian tumors may improve diagnosis and selection of patients for treatment with targeted therapies. A potential way to achieve this is by means of molecular imaging. Generic tumor processes, such as glucose metabolism ((18)F-fluorodeoxyglucose) and DNA synthesis ((18)F-fluorodeoxythymidine), can be visualized non-invasively. More specific targets, such as hormone receptors, growth factor receptors, growth factors and targets of immunotherapy, can also be visualized. Molecular imaging can capture data on intra-patient tumor heterogeneity and is of potential value for individualized, target-guided treatment selection. Early changes in molecular characteristics during therapy may serve as early predictors of response. In this review, we describe the current knowledge on molecular imaging in the diagnosis and as an upfront or early predictive biomarker in patients with ovarian cancer. PMID:27141066

  16. A Facile Approach to Fabricate Water-soluble Au-Fe3O4 Nanoparticle for Liver Cancer Cells Imaging

    Institute of Scientific and Technical Information of China (English)

    梁重时; 吴献荣; 谢叶归; 刘顺英

    2012-01-01

    Au-Fe3O4 nanoparticles were widely used as nanoplatforms for biologic applications through readily further functionalization. Dopamine (DA)-coated superparamagnetic iron oxide (SPIO) nanoparticles (DA@Fe3O4) have been successfully synthesized using a one-step process by modified coprecipitation method. Then 2--3 nm gold nanoparticles were easily conjugated to DA@Fe3O4 nanoparticles by the electrostatic force between gold nanoparti- cles and amino groups of dopamine to afford water-soluble Au-Fe3O4 hybrid nanoparticles. A detailed investigation by dynamic light scatting (DLS), transmission electron microscopy (TEM), fourier transform infrared (FT-IR) and X-ray diffraction (XRD) were performed in order to characterize the physicochemical properties of the hybrid nanoparticles. The hybrid nanoparticles were easily functionalized with a targeted small peptide A54 (AGKGTPSLETTP) and fluorescence probe fluorescein isothiocyanate (FITC) for liver cancer cell BEL-7402 imaging. This simple approach to prepare hybrid nanoparticles provides a facile nanoplatform for muti-functional derivations and may be extended to the immobilization of other metals or bimolecular on SPIO surface.

  17. Molecular imaging in myocardial fibrosis

    International Nuclear Information System (INIS)

    With the development of life science and medical technology, myocardial fibrosis is being increasingly recognized as a new therapeutic target for heart diseases. However, traditional methods for detection of myocardial fibrosis, such as myocardial biopsy and laboratory assay of serum metabolites or enzymes, are not satisfactory in meeting the clinical demands because of their intrinsic limitations. Molecular imaging may non-invasively and quantitatively evaluate the presence/absence, degree and turnover of myocardial fibrosis in vivo with good specificity, thus being useful for clinical assessment and intervention. Currently, the commonly used molecular imaging modalities for evaluation of myocardial fibrosis include SPECT, PET and MRI. It is hopeful that the molecular probe for targeted ultrasound technology may also be developed in the near future. This review highlights the current status and future trends of molecular imaging in myocardial fibrosis. (authors)

  18. Molecular imaging of tumour hypoxia

    International Nuclear Information System (INIS)

    By allowing an earlier diagnosis and a more exhaustive assessment of extension of the disease, the tomography by emission of positrons (PET) transforms the care of numerous cancers. At present, 18F-fluorodeoxyglucose ([18F]-F.D.G.) imaging appears as the only one available but new molecular markers are being developed. In the next future they would modify the approach of cancers. In this context, the molecular imaging of the hypoxia and especially the 18Fluoromisonidazole PET ([18F]-MISO PET) can give supplementary information allowing the mapping of hypoxic regions within the tumour. Because of the links, which exist between tumour hypoxia and treatment resistance of very numerous cancers, this information can have an interest, for determination of prognosis as well as for the delineation, volumes to be irradiated. Head and neck tumours are doubtless those for which the literature gives the most elements on the therapeutic impact of tumour hypoxia. Targeted therapies, based on hypoxia, already exist and the contribution of the molecular imaging could be decisive in the evaluation of the impact of such treatment. Molecular imaging of brain tumours remains to be developed. The potential contributions of the [18F]-MISO PET for the care of these patients need to be confirmed. In this context, we propose a review of hypoxia molecular imaging taking as examples head and neck tumours and glioblastomas (GB), two tumours for which hypoxia is one of the key factors to overcome in order to increase therapeutics results

  19. Advances in Multimodality Molecular Imaging

    International Nuclear Information System (INIS)

    Multimodality molecular imaging is now playing a pivotal role in clinical setting and biomedical research. Modern molecular imaging technologies are deemed to potentially lead to a revolutionary paradigm shift in healthcare and revolutionize clinical practice. Within the spectrum of macroscopic medical imaging, sensitivity ranges from the detection of millimolar to submillimolar concentrations of contrast media with computed tomography (CT) and magnetic resonance imaging (MRI), respectively, to picomolar concentrations in single-photon emission computed tomography (SPECT) and positron emission 8 9 tomography (PET): a 108-109 difference. Even though the introduction of dedicated dual-modality imaging systems designed specifically and available commercially for clinical practice is relatively recent, the concept of combining anatomical and functional imaging has been recognized for several decades. Software- and hardware-based correlation between anatomical (x-ray CT, MRI) and physiological (PET) information is a promising research field and now offers unique capabilities for the medical imaging community and biomedical researchers. The introduction of dual-modality PET/CT imaging systems in clinical environments has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a 'one-stop shop' and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging where the first patient images have been shown late in 2006. This paper discusses the

  20. Molecular imaging in cardiovascular diseases

    International Nuclear Information System (INIS)

    Cardiovascular diseases remain the leading cause of morbidity and mortality in industrialized and developing countries. In clinical practice, the in-vivo identification of atherosclerotic lesions, which can lead to complications such as heart attack or stroke, remains difficult. Imaging techniques provide the reference standard for the detection of clinically significant atherosclerotic changes in the coronary and carotid arteries. The assessment of the luminal narrowing is feasible, while the differentiation of stable and potentially unstable or vulnerable atherosclerotic plaques is currently not possible using non-invasive imaging. With high spatial resolution and high soft tissue contrast, magnetic resonance imaging (MRI) is a suitable method for the evaluation of the thin arterial wall. In clinical practice, native MRI of the vessel wall already allows the differentiation and characterization of components of atherosclerotic plaques in the carotid arteries and the aorta. Additional diagnostic information can be gained by the use of non-specific MRI contrast agents. With the development of targeted molecular probes, that highlight specific molecules or cells, pathological processes can be visualized at a molecular level with high spatial resolution. In this review article, the development of pathophysiological changes leading to the development of the arterial wall are introduced and discussed. Additionally, principles of contrast enhanced imaging with non-specific contrast agents and molecular probes will be discussed and latest developments in the field of molecular imaging of the vascular wall will be introduced.

  1. Molecular imaging. Fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jie (ed.) [Chinese Academy of Sciences, Beijing (China). Intelligent Medical Research Center

    2013-07-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  2. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  3. Molecular imaging in cancer treatment

    International Nuclear Information System (INIS)

    The success of cancer therapy can be difficult to predict, as its efficacy is often predicated upon characteristics of the cancer, treatment, and individual that are not fully understood or are difficult to ascertain. Monitoring the response of disease to treatment is therefore essential and has traditionally been characterized by changes in tumor volume. However, in many instances, this singular measure is insufficient for predicting treatment effects on patient survival. Molecular imaging allows repeated in vivo measurement of many critical molecular features of neoplasm, such as metabolism, proliferation, angiogenesis, hypoxia, and apoptosis, which can be employed for monitoring therapeutic response. In this review, we examine the current methods for evaluating response to treatment and provide an overview of emerging PET molecular imaging methods that will help guide future cancer therapies. (orig.)

  4. Molecular Imaging Challenges With PET

    CERN Document Server

    Lecoq, P

    2010-01-01

    The future trends in molecular imaging and associated challenges for in-vivo functional imaging are illustrated on the basis of a few examples, such as atherosclerosis vulnerable plaques imaging or stem cells tracking. A set of parameters are derived to define the specifications of a new generation of in-vivo imaging devices in terms of sensitivity, spatial resolution and signal-to-noise ratio. The limitations of strategies used in present PET scanners are discussed and new approaches are proposed taking advantage of recent progress on materials, photodetectors and readout electronics. A special focus is put on metamaterials, as a new approach to bring more functionality to detection devices. It is shown that the route is now open towards a fully digital detector head with very high photon counting capability over a large energy range, excellent timing precision and possibility of imaging the energy deposition process.

  5. Molecular imaging in cervical cancer.

    Science.gov (United States)

    Khan, Sairah R; Rockall, Andrea G; Barwick, Tara D

    2016-06-01

    Despite the development of screening and of a vaccine, cervix cancer is a major cause of cancer death in young women worldwide. A third of women treated for the disease will recur, almost inevitably leading to death. Functional imaging has the potential to stratify patients at higher risk of poor response or relapse by improved delineation of disease extent and tumor characteristics. A number of molecular imaging biomarkers have been shown to predict outcome at baseline and/or early during therapy in cervical cancer. In future this could help tailor the treatment plan which could include selection of patients for close follow up, adjuvant therapy or trial entry for novel agents or adaptive clinical trials. The use of molecular imaging techniques, FDG PET/CT and functional MRI, in staging and response assessment of cervical cancer is reviewed. PMID:26859085

  6. Cancer Stratification by Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Justus Weber

    2015-03-01

    Full Text Available The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2. Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter, as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.

  7. Molecular imaging in neurology and neuroscience

    International Nuclear Information System (INIS)

    Molecular imaging in neurology and neuroscience is a suspenseful and fast developing tool in order to quantitatively image genomics and proteomics by means of direct and indirect markers. Because of its high-sensitive tracer principle, nuclear medicine imaging has the pioneering task for the methodical progression of molecular imaging. The current development of molecular imaging in neurology changes from the use of indirect markers of gene and protein expression to the direct imaging of the molecular mechanisms. It is the aim of this article to give a short review on the status quo of molecular imaging in neurology with emphasis on clinically relevant aspects. (orig.)

  8. Molecular imaging: future uses in arthritides; Molekulare Bildgebung: Kuenftige Anwendungen bei Arthritiden

    Energy Technology Data Exchange (ETDEWEB)

    Brem, M.H.; Schlechtweg, P.M.; MacKenzie, J.; Winalski, C.S.; Lang, P. [Brigham and Women' s Hospital of Harvard Medical School, Department of Radiology, Boston, MA 02115 (United States)

    2006-05-15

    Molecular imaging is an upcoming field in radiology as a result of great advances in imaging technology, genetics, and biochemistry in the recent past. Early-stage imaging of molecular pathological changes in cells opens the gates to new methods in medical treatment of diseases that otherwise would only be detected in advanced stages. Methods of imaging biochemical pathways with molecular agents are currently an issue of intensive research. This article reviews current modalities of molecular imaging in arthritis that should offer future perspective on early disease detection, diagnosis, and monitoring of treatment efficiency and how they can pave the way to optimized therapy. (orig.) [German] Die molekulare Bildgebung gehoert dank immenser Fortschritte bzgl. Technologie, Genetik und Biochemie in juengster Vergangenheit zu den sehr viel versprechenden neuen Methoden der Bildgebung in der Radiologie. Die Darstellung pathophysiologischer Vorgaenge auf molekularer Ebene in Initialstadien von Erkrankungen eroeffnen ganz neue und noch weitgehend unerforschte Optionen bei der Behandlung von Erkrankungen, die mit herkoemmlichen Methoden erst in weit fortgeschrittenen Stadien erkannt werden koennen. Gegenwaertig wird intensiv an Methoden zur Darstellung dieser verschiedenen zellulaeren Vorgaenge durch Kontrastmittel auf molekularer Basis gearbeitet. In diesem Uebersichtsartikel soll veranschaulicht werden, wie die molekulare Bildgebung bei Arthritiden derzeit und zukuenftig zu verbesserter Frueherkennung, Diagnostik und durch Monitoring der verschiedenen Behandlungsregime zu optimierter Therapie beitragen kann. (orig.)

  9. Sparse image reconstruction for molecular imaging

    CERN Document Server

    Ting, Michael; Hero, Alfred O

    2008-01-01

    The application that motivates this paper is molecular imaging at the atomic level. When discretized at sub-atomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. The paper therefore does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing t...

  10. Molecular imaging for cancer targeting

    International Nuclear Information System (INIS)

    Full text: Molecular-genetic imaging which has grown rapidly is currently been applied to studies of gene expression regulation, activity of signal transduction pathways, angiogenesis, tumor metastases, stem cell migration, and monitoring cells involved in different components of immune response. Our Molecular and Genetic Imaging Core (MAGIC), established in late 2002, has developed a platform of small animal functional, molecular, and morphologic quantitative imaging techniques which are providing data about biochemical, genetic or pharmacological processes in vivo, and repetitively in the same animal. We first established chimeric reporter and therapeutic gene systems for specific targeting on hepatoma of mouse model. In- vivo microPET and bioluminescence imaging demonstrated the usefulness of tissue specific chimeric tk and hNIS genes. For trafficking the stem cell and cancer cells, we also have established dual and triple reporter gene system and correspondent reporter probes for in vivo imaging by microPET or microSPECT. The second application of translational biomedical imaging of cancer targeting therapy is on the inhibitors of tyrosine kinase, the key enzyme of epidermal growth factor receptor (EGFR). Mutations in the kinase domain of EGFR have higher levels of basal receptor phosphorylation and that are associated with clinical responsiveness to Iressa in patients with non-small cell lung cancer (NSCLC). High mutation rate for EGFR in Taiwanese patients of adenocarcinoma of lung suggests an urgent requirement of a non-invasive imaging tool for pre-treatment and during therapy evaluation of lung cancer patients using EGFR signalling inhibitor. Our current work on radiosynthesis of the analogue of Iressa--morpholino-[124I]-IPQA and in vitro and in vivo studies of high basal EGFR-expressing H1299's derivatives (L858R and E746-A750 del cell lines) subcutaneous tumor xenografts in immunocompromised mice, has proven that [124I]-IPQA is a feasible in vivo imaging

  11. Advances of molecular imaging in tumor angiogenesis

    International Nuclear Information System (INIS)

    Tumor angiogenesis has a close relationship with tumor growth, progression, metastasis and the prognosis of tumor patients. Therefore, tumor anti-angiogenic treatment arouses great public interest. Molecular imaging can characteristically display and measure the biochemical process of organisms at cellular and molecular level in vivo,which is based on the specific binding of molecular probe with high affinity and target molecules. In recent years, molecular imaging has a certain progress on visual and quantitative research of tumor angiogenesis and it is expected to become an important technique in the efficacy evaluation and prognostic assessment. This article summarizes the new advances of molecular imaging technology in tumor angiogenesis. (authors)

  12. Molecular and Functional Imaging of Internet Addiction

    OpenAIRE

    Yunqi Zhu; Hong Zhang; Mei Tian

    2015-01-01

    Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) an...

  13. Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques

    OpenAIRE

    Lee, Soo Jin; Paeng, Jin Chul

    2015-01-01

    Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell...

  14. Ultrasound molecular imaging: Moving toward clinical translation

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K., E-mail: willmann@stanford.edu

    2015-09-15

    Highlights: • Ultrasound molecular imaging is a highly sensitive modality. • A clinical grade ultrasound contrast agent has entered first in human clinical trials. • Several new potential future clinical applications of ultrasound molecular imaging are being explored. - Abstract: Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.

  15. Ultrasound molecular imaging: Moving toward clinical translation

    International Nuclear Information System (INIS)

    Highlights: • Ultrasound molecular imaging is a highly sensitive modality. • A clinical grade ultrasound contrast agent has entered first in human clinical trials. • Several new potential future clinical applications of ultrasound molecular imaging are being explored. - Abstract: Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging

  16. Molecular imaging of mental disorders

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) techniques have made it possible to measure changes in neurochemical components in living human brain. PET can be used to investigate various brain functions such as receptors, transporters, enzymes and various biochemical pathways; therefore, it could be a powerful tool for molecular imaging of mental disorders. Since the pathophysiology of schizophrenia has been discussed with a functional alteration of dopaminergic transmission in the brain, we have focused the dopaminergic components for the research target of schizophrenia using PET. Using high affinity ligand [11C]FLB 457, we found reduced D2 receptor binding in the anterior cingulate cortex of patients with schizophrenia, and a significant negative correlation was observed between D2 receptor binding and the positive symptom score. Subregions of interest were defined on the thalamus using individual magnetic resonance images. D2 receptor binding was also lower in the central medial and posterior subregions of the thalamus in patients with schizophrenia. Alterations in D2 receptor function in the extrastriatal region may underlie the positive symptoms of schizophrenia. On the other hand D1 receptor binding was found to be lower in the prefrontal cortex and a significant negative correlation was observed between D1 receptor binding and the negative symptom score. Abnormality of D1 receptor function would be at the bottom of the negative symptoms and cognitive impairment of schizophrenia. Regarding the effect of antipsychotics on dopamine D2 receptor, occupancy and it's time-course have been measured in a living body using PET. This approach can provide in vivo pharmacological evidences of antipsychotics and establish the rational therapeutic strategy. PET is a powerful tool not only in the field of brain research but also drug discovery. (author)

  17. Nanodiamond Imaging: a New Molecular Imaging Approach

    OpenAIRE

    Hegyi, Alex Nathan

    2013-01-01

    Nanodiamond imaging is a novel biomedical imaging technique that non-invasively records the distribution of biologically-tagged nanodiamonds in vivo, in two or three dimensions. A nanodiamond imaging system optically detects electron spin resonance of nitrogen-vacancy centers in nanodiamonds, a non-toxic nanomaterial that is easily biologically functionalized. Two systems were built to demonstrate the feasibility of the technique. Using the first system, we imaged 2D projections of multipl...

  18. Molecular Imaging of Pulmonary Cancer and Inflammation

    OpenAIRE

    Divgi, Chaitanya R.

    2009-01-01

    Molecular imaging (MI) may be defined as imaging in vivo using molecules that report on biologic function. This review will focus on the clinical use of radioactive tracers (nonpharmacologic amounts of compounds labeled with a radioactive substance) that permit external imaging using single photon emission computed tomography (planar, SPECT) or positron emission tomography (PET) imaging. Imaging of lung cancer has been revolutionized with the use of fluorine-18–labeled fluorodeoxyglucose (18F...

  19. Molecular Imaging Probe Development using Microfluidics

    OpenAIRE

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Anna M. Wu; James S. Tomlinson; Shen, Clifton K.-F.

    2011-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many ...

  20. Current state of molecular imaging research

    International Nuclear Information System (INIS)

    The recent years have seen significant advances in both molecular biology, allowing the identification of genes and pathways related to disease, and imaging technologies that allow for improved spatial and temporal resolution, enhanced sensitivity, better depth penetration, improved image processing, and beneficial combinations of different imaging modalities. These advances have led to a paradigm shift in the scope of diagnostic imaging. The traditional role of radiological diagnostic imaging is to define gross anatomy and structure in order to detect pathological abnormalities. Available contrast agents are mostly non-specific and can be used to image physiological processes such as changes in blood volume, flow, and perfusion but not to demonstrate pathological alterations at molecular levels. However, alterations at the anatomical-morphological level are relatively late manifestations of underlying molecular changes. Using molecular probes or markers that bind specifically to molecular targets allows for the non-invasive visualization and quantitation of biological processes such as gene expression, apoptosis, or angiogenesis at the molecular level within intact living organisms. This rapidly evolving, multidisciplinary approach, referred to as molecular imaging, promises to enable early diagnosis, can provide improved classification of stage and severity of disease, an objective assessment of treatment efficacy, and a reliable prognosis. Furthermore, molecular imaging is an important tool for the evaluation of physiological and pathophysiological processes, and for the development of new therapies. This article comprises a review of current technologies of molecular imaging, describes the development of contrast agents and various imaging modalities, new applications in specific disease models, and potential future developments. (orig.)

  1. PET-based molecular imaging in neuroscience

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) allows non-invasive assessment of physiological, metabolic and molecular processes in humans and animals in vivo. Advances in detector technology have led to a considerable improvement in the spatial resolution of PET (1-2 mm), enabling for the first time investigations in small experimental animals such as mice. With the developments in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analysed by PET. This opens up the exciting and rapidly evolving field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. The main and most intriguing advantage of molecular imaging is the kinetic analysis of a given molecular event in the same experimental subject over time. This will allow non-invasive characterisation and ''phenotyping'' of animal models of human disease at various disease stages, under certain pathophysiological stimuli and after therapeutic intervention. The potential broad applications of imaging molecular events in vivo lie in the study of cell biology, biochemistry, gene/protein function and regulation, signal transduction, transcriptional regulation and characterisation of transgenic animals. Most importantly, molecular imaging will have great implications for the identification of potential molecular therapeutic targets, in the development of new treatment strategies, and in their successful implementation into clinical application. Here, the potential impact of molecular imaging by PET in applications in neuroscience research with a special focus on neurodegeneration and neuro-oncology is reviewed. (orig.)

  2. Molecular imaging of movement disorders.

    Science.gov (United States)

    Lizarraga, Karlo J; Gorgulho, Alessandra; Chen, Wei; De Salles, Antonio A

    2016-03-28

    -to-rostral direction. Uptake declines prior to symptom presentation and progresses from contralateral to the most symptomatic side to bilateral, correlating with symptom severity. In progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), striatal activity is symmetrically and diffusely decreased. The caudal-to-rostral pattern is lost in PSP, but could be present in MSA. In corticobasal degeneration (CBD), there is asymmetric, diffuse reduction of striatal activity, contralateral to the most symptomatic side. Additionally, there is hypometabolism in contralateral parieto-occipital and frontal cortices in PD; bilateral putamen and cerebellum in MSA; caudate, thalamus, midbrain, mesial frontal and prefrontal cortices in PSP; and contralateral cortices in CBD. Finally, cardiac sympathetic SPECT signal is decreased in PD. The capacity of molecular imaging to provide in vivo time courses of gene expression, protein synthesis, receptor and transporter binding, could facilitate the development and evaluation of novel medical, surgical and genetic therapies in movement disorders. PMID:27029029

  3. Molecular imaging in quality health care

    International Nuclear Information System (INIS)

    Full text: Quality health care results from translating fundamental bench discoveries and making them available to patients. During the past decade, 'molecular imaging' has emerged both as a new tool/technology and as a research and clinical discipline. Molecular imaging is an interdisciplinary approach involving biologists, physicists, physicians, mathematicians, conventional chemists, radiochemists and other specialists who have joined forces for better understanding and visualizing of both normal physiological processes and the molecular processes preceding the morphological manifestations of disease in vivo. Molecular imaging has been defined as 'non-invasive, quantitative, and repetitive imaging of targeted macromolecules and biological processes in living organisms' or as 'the visual representation, characterization, and quantification of biological processes at the cellular and sub-cellular levels within intact living organisms'. Weissleder defined molecular imaging in the most simple terms as 'studying diseases non-invasively at the molecular level'. Regardless of these semantic differences molecular imaging can contribute significantly to the preclinical and clinical drug and disease evaluation process. It is interesting to note, that despite major advances in imaging technology, cancer mortality has remained largely unchanged over the last three decades. Imaging has thus far enabled us to look through a magnifying glass at disease processes but has failed to dramatically influence disease outcomes. Emerging data suggest that molecular PET imaging is about to change this situation. High resolution molecular imaging devices designed for small animal research have developed into valuable tools for drug evaluation and imaging probe design. These include microPET, microCT, microMRI and optical imaging devices. These have enabled us to study drug effects in vivo by monitoring longitudinally their effects on tumour cell metabolism or proliferation. The only

  4. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Progress of molecular biology, genetic engineering, and polymer chemistry provide various tools to target molecules and cells in vivo. In this paper, recent achievements in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune, and stem cells using molecular nuclear imaging techniques are introduced

  5. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing radiatio

  6. Molecular and Functional Imaging of Internet Addiction

    Directory of Open Access Journals (Sweden)

    Yunqi Zhu

    2015-01-01

    Full Text Available Maladaptive use of the Internet results in Internet addiction (IA, which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI and nuclear imaging modalities including positron emission tomography (PET and single photon emission computed tomography (SPECT. MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition.

  7. Engineered antibodies for molecular imaging of cancer.

    Science.gov (United States)

    Wu, Anna M

    2014-01-01

    Antibody technology has transformed drug development, providing robust approaches to producing highly targeted and active therapeutics that can routinely be advanced through clinical evaluation and registration. In parallel, there is an emerging need to access similarly targeted agents for diagnostic purposes, including non-invasive imaging in preclinical models and patients. Antibody engineering enables modification of key properties (immunogenicity, valency, biological inertness, pharmacokinetics, clearance route, site-specific conjugation) in order to produce targeting agents optimized for molecular imaging. Expanded availability of positron-emitting radionuclides has led to a resurgence of interest and applications of immunoPET (immuno-positron emission tomography). Molecular imaging using engineered antibodies and fragments provides a general approach for assessing cell surface phenotype in vivo and stands to play an increasingly important role in cancer diagnosis, treatment selection, and monitoring of molecularly targeted therapeutics. PMID:24091005

  8. Lyapunovfunktionen auf Zeitskalen

    OpenAIRE

    Zmorzynska, Alexandra

    2004-01-01

    Die Arbeiten von Alexander Michailowitsch Lyapunov (1857-1918) waren der Anfangspunkt intensiver Erforschung des Stabilitätsverhaltens von Differentialgleichungen. In der vorliegenden Arbeit sollen Lyapunovfunktionen auf Zeitskalen in Bezug auf das Stabilitätsverhalten des homogenen linearen Systems x-delta = A(t)x untersucht werden.

  9. Advance of molecular imaging with positron emission tomography

    International Nuclear Information System (INIS)

    Molecular imaging with positron emission tomography (PET) is an important field of molecular imaging. This article summarizes the fundamental of PET molecular imaging technique and its application in protein function, gene expression and gene therapy, receptor imaging, and blood-flow infusion and metabolism imaging. (authors)

  10. Molecular imaging of atherosclerosis in translational medicine

    Energy Technology Data Exchange (ETDEWEB)

    Perrone-Filardi, Pasquale; Costanzo, Pierluigi; Marciano, Caterina; Vassallo, Enrico; Marsico, Fabio; Ruggiero, Donatella; Petretta, Maria Piera; Chiariello, Massimo [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy); Dellegrottaglie, Santo [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy); Mount Sinai Medical Center, Z. and M.A. Wiener Cardiovascular Institute and M.-J. and H.R. Kravis Center for Cardiovascular Health, New York, NY (United States); Rudd, James H.F. [University of Cambridge, School of Clinical Medicine, Cambridge (United Kingdom); Cuocolo, Alberto [University Federico II, Department of Biomorphological and Functional Sciences, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy)

    2011-05-15

    Functional characterization of atherosclerosis is a promising application of molecular imaging. Radionuclide-based techniques for molecular imaging in the large arteries (e.g. aorta and carotids), along with ultrasound and magnetic resonance imaging (MRI), have been studied both experimentally and in clinical studies. Technical factors including cardiac and respiratory motion, low spatial resolution and partial volume effects mean that noninvasive molecular imaging of atherosclerosis in the coronary arteries is not ready for prime time. Positron emission tomography imaging with fluorodeoxyglucose can measure vascular inflammation in the large arteries with high reproducibility, and signal change in response to anti-inflammatory therapy has been described. MRI has proven of value for quantifying carotid artery inflammation when iron oxide nanoparticles are used as a contrast agent. Macrophage accumulation of the iron particles allows regression of inflammation to be measured with drug therapy. Similarly, contrast-enhanced ultrasound imaging is also being evaluated for functional characterization of atherosclerotic plaques. For all of these techniques, however, large-scale clinical trials are mandatory to define the prognostic importance of the imaging signals in terms of risk of future vascular events. (orig.)

  11. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99mTc as a radionuclide. We developed 99mTc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99mTc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99mTc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99mTc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  12. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  13. Quantitative cardiovascular magnetic resonance for molecular imaging

    OpenAIRE

    Lanza Gregory M; Caruthers Shelton D; Winter Patrick M; Wickline Samuel A

    2010-01-01

    Abstract Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examp...

  14. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  15. Pretargeted Molecular Imaging and Radioimmunotherapy

    Directory of Open Access Journals (Sweden)

    David M. Goldenberg, Chien-Hsing Chang, Edmund A. Rossi, William J, McBride, Robert M. Sharkey

    2012-01-01

    Full Text Available Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb localize within a tumor by virtue of its anti-tumor binding site(s before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET as well as treat tumors.

  16. Dose reduction in molecular breast imaging

    Science.gov (United States)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  17. Molecular imaging in quality health care

    International Nuclear Information System (INIS)

    Full text: Quality Health Care results from applying fundamental basic science and preclinical concepts as well as novel technologies to patient care within specific socio-economic frameworks. Cancer mortality has improved recently but outcomes of cancer patients are still unacceptably poor. Molecular Imaging has the potential to improve the outcome of cancer patients in several ways. In the preclinical setting, high resolution molecular imaging devices designed for small animal research have developed into valuable tools for drug evaluation and imaging probe design. These have enabled us to study drug effects in vivo by monitoring longitudinally their effects on tumor cell metabolism or proliferation. The success of Imatinib in treating chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST) has demonstrated that targeted drugs can induce remarkable tumor responses and may even cure cancer patients. Targeted drugs have been used for treating various common solid human tumors, including breast cancer, colorectal cancer, and non-small cell lung cancer. However, diverse signaling pathways are involved in the development and progression of these genetically heterogeneous diseases. Consequently, inhibition of one specific pathway is likely to be efficacious in only in small subsets of patients with specific histological tumor types. It is unlikely that a single 'blockbuster' drug can be effective for all patients with a 'common' tumor. Rather, it will be necessary to develop multiple targeted drugs even for patients that share a single histologically defined tumor type. The inevitable consequence is a decreased revenue/cost ratio for the industry and increasing costs for patients and health care systems. It is therefore of paramount importance to identify drug failure as early as possible in preclinical and clinical trials. Human studies with positron emission tomography (PET) with molecular imaging probes targeting physiological processes such as

  18. Molecular structure by Coulomb explosion imaging of stored molecular ions

    International Nuclear Information System (INIS)

    An experimental scheme, which combines Coulomb explosion imaging (CEI) with storage of fast molecular ions, has been introduced recently at the TSR heavy ion storage ring facility in Heidelberg. CEI is an experimental technique that provides direct observation of the nuclear conformations within small molecules. The combination of CEI with the storage ring technique enables the control of the internal excitation of the measured molecules, which is an essential condition to the interpretation of CEI results in terms of ''structure'' assigned to specific molecular states. This structure is measured as a function of storage time, thus enabling one to study processes of slow intramolecular dynamics such as isomerization, metastable states, etc. Moreover in this scheme, CEI can be used as a diagnostic tool for the intramolecular excitation, while other molecular interactions (e.g. with electrons or photons) are investigated. In this report, the CEI principle and the new experimental setup are described with an emphasis on the new prospects for studies in molecular physics. CEI measurements of stored CH2+ and NH2+ molecular ions are presented. The study of the angular distribution in these molecules as a function of their vibrational relaxation to the ground state, reveals unexpected behavior near the linear conformation which is inconsistent with the current adiabatic theories

  19. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.

  20. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  1. Molecular Imaging of Biomarkers in Breast Cancer

    Science.gov (United States)

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  2. Molecular MR imaging; Molekulare MR-Bildgebung. Stand der Forschung mit exemplarischer Darstellung eigener Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Fleige, G.; Hamm, B. [Humboldt-Univ., Berlin (Germany). Inst. fuer Radiologie; Zimmer, C. [Abt. fuer Neuroradiologie, Universitaetsklinikum Charite, der Humboldt-Univ. zu Berlin (Germany)

    2000-11-01

    Basic medicobiological research in recent years has made rapid advances in the functional understanding of normal and pathological processes down to the molecular level. At the same time, various imaging modalities have developed from the depiction of organs to approaching the depiction of the cellular level and are about to make the visualization of molecular processes an established procedure. Besides other modalities like PET and near-infrared fluorescence, MR imaging offers some promising options for molecular imaging as well as some applications that have already been tested such as the visualization of enzyme activity, the depiction of the expression of certain genes, the visualization of surface receptors, or the specific demonstration of cells involved in the body's immune response. A major advantage of molecular magnetic resonance imaging (mMRI) over other more sensitive modalities is its high spatial resolution. However, the establishment of mMRI crucially relies on further improvements in resolution and the development of molecular markers for improving its sensitivity and specificity. The state of the art of mMRI is presented by giving a survey of the literature on experimental studies and reporting the results our study group obtained during investigation on gliomas. (orig.) [German] Die medizinisch-biologische Grundlagenforschung erbrachte in den letzten jahren einen rasanten Erkenntnisfortschritt fuer das funktionelle Verstaendnis ueber physiologische und pathologische Prozesse bis hinab auf molekulares Niveau. Gleichzeitig haben sich auch verschiedene bildgebende Techniken von der urspruenglichen Organdarstellung der Zellebene genaehert und sind im Begriff, die Sichtbarmachung auch von molekularen Vorgaengen zu etablieren. Neben anderen Verfahren wie PET und Nahinfrarotfluoreszenz weist die MRT einige vielversprechende Optionen und bereits heute erprobte Eisatzmoeglichkeiten in der molekularen Bildgebung auf, wie z.B. die Visualisierung von

  3. Molecular imaging for the diagnosis of dementia

    International Nuclear Information System (INIS)

    Many radiotracers have been developed to visualize pathological protein accumulation and neurotransmitter deficits in the brains of patients with dementia using positron emission tomography (PET). Recent advances in the development of β-sheet binding agents enabled in vivo detection of senile plaques in Alzheimer's disease. Molecular imaging using these agents would contribute to the early and accurate diagnosis of dementia and monitoring therapeutic effect of anti-dementia drugs. (author)

  4. Quantitative Analysis in Multimodality Molecular Imaging

    International Nuclear Information System (INIS)

    PET offers the possibility of truly quantitative (physiological) measurements of tracer concentration in vivo. However, there are several issues limiting both visual qualitative interpretation and quantitative analysis capabilities of reconstructed PET images that must be considered in order to fully realize this potential. The major challenges to quantitative PET can be categorized in 5 classes: (i) factors related to imaging system performance and data acquisition protocols (instrumentation and measurement factors), (ii) those related to the physics of photon interaction with biologic tissues (physical factors), (iii) image reconstruction (reconstruction factors), (iv) factors related to patient motion and other physiological issues (physiological factors), and (v) Methodological factors: issues related to difficulties in developing accurate tracer kinetic models, especially at the voxel level. This paper reflects the tremendous increase in interest in quantitative molecular imaging using PET as both clinical and research imaging modality in the past decade. It offers an overview of the entire range of quantitative PET imaging from basic principles to various steps required for obtaining quantitatively accurate data from dedicated standalone PET and combined PET/CT and PET/MR systems including data collection methods and algorithms used to correct for physical degrading factors as well as image processing and analysis techniques and their clinical and research applications. Impact of physical degrading factors including attenuation of photons and contribution from photons scattered in the patient and partial volume effect on the diagnostic quality and quantitative accuracy of PET data will be discussed. Considerable advances have been made and much worthwhile research focused on the development of quantitative imaging protocols incorporating accurate data correction techniques and sophisticated image reconstruction algorithms. The fundamental concepts of

  5. Molecular Breast Imaging Using Emission Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, O. [University of Florida; Gilland, D. [University of Florida; Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Welch, Benjamin L. [Dilon Technologies

    2013-06-01

    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  6. Targeted Gold Nanoparticles enable Molecular CT Imaging of Cancer

    OpenAIRE

    Popovtzer, Rachela; Agrawal, Ashish; Kotov, Nicholas A.; Popovtzer, Aron; Balter, James; Carey, Thomas E.; Kopelman, Raoul

    2008-01-01

    X-ray based computed tomography (CT), is among the most convenient imaging/diagnostic tools in hospitals today in terms of availability, efficiency and cost. However, in contrast to magnetic resonance imaging (MRI) and various nuclear medicine imaging modalities, CT is not considered a molecular imaging modality since targeted and molecularly specific contrast agents have not yet been developed. Here we describe a targeted molecular imaging platform that enables, for the first time, cancer de...

  7. Molecular Imaging with Activatable Reporter Systems

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes, the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.

  8. Neutron imaging for inertial confinement fusion and molecular optic imaging

    International Nuclear Information System (INIS)

    Scientific domains that require imaging of micrometric/nano-metric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences...). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains, which goals are quiet different, show how micrometric/nano-metric object imaging is a research area at the border of a large number of scientific disciplines. (author)

  9. PET Imaging - from Physics to Clinical Molecular Imaging

    Science.gov (United States)

    Majewski, Stan

    2008-03-01

    From the beginnings many years ago in a few physics laboratories and first applications as a research brain function imager, PET became lately a leading molecular imaging modality used in diagnosis, staging and therapy monitoring of cancer, as well as has increased use in assessment of brain function (early diagnosis of Alzheimer's, etc) and in cardiac function. To assist with anatomic structure map and with absorption correction CT is often used with PET in a duo system. Growing interest in the last 5-10 years in dedicated organ specific PET imagers (breast, prostate, brain, etc) presents again an opportunity to the particle physics instrumentation community to contribute to the important field of medical imaging. In addition to the bulky standard ring structures, compact, economical and high performance mobile imagers are being proposed and build. The latest development in standard PET imaging is introduction of the well known TOF concept enabling clearer tomographic pictures of the patient organs. Development and availability of novel photodetectors such as Silicon PMT immune to magnetic fields offers an exciting opportunity to use PET in conjunction with MRI and fMRI. As before with avalanche photodiodes, particle physics community plays a leading role in developing these devices. The presentation will mostly focus on present and future opportunities for better PET designs based on new technologies and methods: new scintillators, photodetectors, readout, software.

  10. Molecular probes for malignant melanoma imaging.

    Science.gov (United States)

    Ren, Gang; Pan, Ying; Cheng, Zhen

    2010-09-01

    Malignant melanoma represents a serious public health problem and is a deadly disease when it is diagnosed at late stage. Though (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) has been widely used clinically for melanoma imaging, other approaches to specifically identify, characterize, monitor and guide therapeutics for malignant melanoma are still needed. Consequently, many probes targeting general molecular events including metabolism, angiogenesis, hypoxia and apoptosis in melanoma have been successfully developed. Furthermore, probes targeting melanoma associated targets such as melanocortin receptor 1 (MC1R), melanin, etc. have undergone active investigation and have demonstrated high melanoma specificity. In this review, these molecular probes targeting diverse melanoma biomarkers have been summarized. Some of them may eventually contribute to the improvement of personalized management of malignant melanoma. PMID:20497118

  11. Bildungsreform auf dem Lande

    OpenAIRE

    Heckmann, Carolin

    2013-01-01

    Im Fokus der Arbeit stehen die Bildungsreformen auf dem Lande in der Zeitspanne von 1949 bis zum Ende der 1960er Jahre. Die Entwicklung der Volksschule in Nordhessen, genauer im südlichen Ringgau nahe der thüringischen Grenze, wird genauer betrachtet. Dafür wurden Schulchroniken aus dem Südringgau beschrieben und analysiert. Der Fokus liegt dabei auf der Entstehung der Mittelpunktschule Herleshausen/Nesselröden und den damit verbundenen Schließungen der einklassigen Volksschulen in den einzel...

  12. Molecular imaging of apoptosis in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hakumaeki, Juhana M. [Cellular and Molecular Imaging Group, Department of Biomedical NMR, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio (Finland) and Department of Clinical Radiology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)]. E-mail: juhana.hakumaki@uku.fi; Liimatainen, Timo [Cellular and Molecular Imaging Group, Department of Biomedical NMR, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2005-11-01

    Apoptosis plays an important role in cancer. Mechanisms hindering its action are implicated in a number of malignancies. Also, the induction of apoptosis plays a pivotal role in non-surgical cancer treatment regimes such as irradiation, chemotherapy, or hormones. Recent advanced in imaging science have made it now possible for us to detect and visualize previously inaccessible and even unrecognized biological phenomena in cells and tissue undergoing apoptosis in vivo. Not only are these imaging techniques painting an intriguing picture of the spatiotemporal characteristics and metabolic and biophysical of apoptosis in situ, but they are expected to have an ever increasing impact in preclinical testing and design of new anticancer agents as well. Rapid and accurate visualization of apoptotic response in the clinical settings can also be of significant diagnostic and prognostic worth. With the advent of molecular medicine and patient-tailored treatment options and therapeutic agents, such monitoring techniques are becoming paramount.

  13. Bioresponsive probes for molecular imaging: concepts and in vivo applications

    NARCIS (Netherlands)

    Duijnhoven, S.M. van; Robillard, M.S.; Langereis, S.; Grull, H.

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecu

  14. Imaging of Lung Cancer in the Era of Molecular Medicine

    OpenAIRE

    Nishino, Mizuki; Jackman, David M.; Hatabu, Hiroto; Jänne, Pasi A.; Johnson, Bruce E.; Van den Abbeele, Annick D.

    2011-01-01

    Recent discoveries characterizing the molecular basis of lung cancer brought fundamental changes in lung cancer treatment. The authors review the molecular pathogenesis of lung cancer, including genomic abnormalities, targeted therapies, and resistance mechanisms, and discuss lung cancer imaging with novel techniques. Knowledge of the molecular basis of lung cancer is essential for radiologists to properly interpret imaging and assess response to therapy. Quantitative and functional imaging h...

  15. Current Progress of Aptamer-Based Molecular Imaging

    OpenAIRE

    Wang, Andrew Z.; Farokhzad, Omid C.

    2014-01-01

    Aptamers, single-stranded oligonucleotides, are an important class of molecular targeting ligand. Since their discovery, aptamers have been rapidly translated into clinical practice. They have been approved as therapeutics and molecular diagnostics. Aptamers also possess several properties that make them uniquely suited to molecular imaging. This review aims to provide an overview of aptamers’ advantages as targeting ligands and their application in molecular imaging.

  16. Molecular hydrogen polarization images of OMC-1

    Science.gov (United States)

    Burton, Michael G.; Minchin, N. R.; Hough, J. H.; Aspin, C.; Axon, D. J.

    1991-01-01

    An image of the polarization of the shocked H2 v = 1-0 S(1) line emission in the core of OMC-1 has been obtained. Along the molecular outflow of the source, the line is dichroically polarized by a medium of aligned grains located between the earth and the shock fronts. The polarization pattern traces the magnetic field direction, which is parallel to the outflow axis and to the large-scale field direction determined from far-IR continuum measurements. Close to the IR source IRc2, the likely source of the outflow, the aligned vectors twist, indicating that the magnetic field direction changes. Modeling the line ratios of scattered H2 lines in the reflection nebula, it is concluded that the size distribution of grains there is typical of the small grains in the diffuse interstellar medium. By contrast, the scattered continuum radiation from the core region suggests that the grains there are larger than this.

  17. Molecular imaging in Libman-Sacks endocarditis

    DEFF Research Database (Denmark)

    Dahl, Anders; Schaadt, Bente K; Santoni-Rugiu, Eric;

    2015-01-01

    cardiothoracic surgery and pathologic examinations showed characteristic morphology of Libman-Sacks vegetations. All microbiological examinations including blood cultures, microscopy, culture and 16s PCR of the valve were negative and the diagnosis of Libman-Sacks endocarditis was convincing. It is difficult to...... distinguish Libman-Sacks endocarditis from culture-negative infective endocarditis (IE). Molecular imaging techniques are being used increasingly in cases of suspected IE but no studies have previously reported the use in patients with Libman-Sacks endocarditis. In the present case, (18)F-FDG-PET-CT clearly...... demonstrated the increased glucose uptake caused by infiltrating white blood cells in the ongoing inflammatory process at the mitral valve. In conclusion, (18)F-FDG-PET-CT cannot be used to distinguish between IE and non-infective Libman-Sacks vegetations....

  18. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    OpenAIRE

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques.

  19. Molecular breast imaging with gamma emitters.

    Science.gov (United States)

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  20. Molecular imaging of hypoxia with radiolabelled agents

    International Nuclear Information System (INIS)

    Tissue hypoxia results from an inadequate supply of oxygen (O2) that compromises biological functions. Structural and functional abnormalities of the tumour vasculature together with altered diffusion conditions inside the tumour seem to be the main causes of tumour hypoxia. Evidence from experimental and clinical studies points to a role for tumour hypoxia in tumour propagation, resistance to therapy and malignant progression. This has led to the development of assays for the detection of hypoxia in patients in order to predict outcome and identify patients with a worse prognosis and/or patients that would benefit from appropriate treatments. A variety of invasive and non-invasive approaches have been developed to measure tumour oxygenation including oxygen-sensitive electrodes and hypoxia marker techniques using various labels that can be detected by different methods such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), autoradiography and immunohistochemistry. This review aims to give a detailed overview of non-invasive molecular imaging modalities with radiolabelled PET and SPECT tracers that are available to measure tumour hypoxia. (orig.)

  1. Applications of molecular MRI and optical imaging in cancer

    OpenAIRE

    Penet, Marie-France; Mikhaylova, Maria; Li, Cong; Krishnamachary, Balaji; Glunde, Kristine; Pathak, Arvind P.; Bhujwalla, Zaver M.

    2010-01-01

    Some of the most exciting advances in molecular-functional imaging of cancer are occurring at the interface between chemistry and imaging. Several of these advances have occurred through the development of novel imaging probes that report on molecular pathways, the tumor micro-environment and the response of tumors to treatment; as well as through novel image-guided platforms such as nanoparticles and nanovesicles that deliver therapeutic agents against specific targets and pathways. Cancer c...

  2. Goldnanoteilchen auf Titandioxid

    OpenAIRE

    Borg, Nils

    2009-01-01

    In dieser Arbeit wurde das Wachstum sowie die ultraschnelle Elektronendynamik des Oberflächenplasmon Polaritons von Goldnanoteilchen auf Titandioxid untersucht. Die Messung der Dephasierungszeit des Oberflächenplasmons von Nanoteilchen mit definierter Form und Größe erfolgte dabei mit der Methode des spektralen Lochbrennens. Die Nanoteilchen wurden durch Deposition von Goldatomen aus einem thermischen Atomstrahl mit anschließender Diffussion und Nukleation, d.h. Volmer-Weber-Wachstum...

  3. Validity of the breast imaging reporting and data system BI-RADS{sup TM} for clinical mammography in men; Anwendbarkeit des Breast Imaging Reporting and Data System (BI-RADS{sup TM}) auf die klinische Mammographie des Mannes

    Energy Technology Data Exchange (ETDEWEB)

    Bock, K.; Duda, V.F.; Bonwetsch, C.; Hadji, P.; Schulz, K.D. [Marburg Univ. (Germany). Klinik fuer Gynaekologie, Gynaekologische Endokrinologie und Onkologie; Iwinska-Zelder, J.; Klose, K.J. [Marburg Univ. (Germany). Klinik fuer Diagnostische Radiologie; Rode, G. [Diagnostische Gemeinschaftspraxis Marburg (Germany)

    2001-11-01

    Aim: The implementation of diagnostic standards enhances quality assurance. The American College of Radiology's breast imaging-reporting and data system (BI-RADS{sup TM}) is intended to standardize terminology in the mammography report, the assessment of the findings, and the recommendation af action to be taken. The purpose of this study was to assess the value of the standardized system for clinically apparent male breast tumors. Do the special male anatomy and physiology limit the applicability of an evaluation system designed for female screening mammograms? Methods: 4 investigators with different degrees of experience retrospectively evaluated 160 male mammograms. Our study was based on the 36 cases which could be correlated to histopathological findings: gynecomastia in the majority of cases, but also 4 invasive ductal carcinoma, 1 leiomyosarcoma and 1 ductal carcinoma in situ. Results: Assessment of the mammograms by BI-RADS{sup TM} (3{sup rd} Edition 1998) correctly placed all cases of malignancy into categories 4 and 5 without respect to the investigators's level of experience. Conclusion: Therefore, we conclude that the BI-RADS{sup TM}-classification can successfully be used to classify male mammograms with a high positive predictive value for malignancy. Knowledge of gender-specific imaging characteristics increases the specificity at a constant high level of sensitivity. (orig.) [German] Ziel: In der apparativen Diagnostik dient die Einfuehrung von Standards der Qualitaetssicherung. Das breast imaging-reporting and data system (BI-RADS{sup TM}) des American College of Radiology standardisiert den Sprachgebrauch in der Befundbeschreibung, die Befundbewertung und die resultierenden Empfehlungen in der Mammographie. Unser Interesse galt der Frage, inwieweit dieses System der Kategorisierung von Screening-Mammographien der Frau uebertragbar ist auf klinische Mammographien des Mannes. Begrenzen Anatomie und Physiologie der maennlichen Brustdruese

  4. Auswirkungen von Langlaufloipen auf Moorvegetation

    OpenAIRE

    Lanvers, Jan; Sieg, Birgit; Fartmann, Thomas

    2014-01-01

    Moore unterliegen auf Grund ihrer zahlreichen spezialisierten Arten und zugleich starken Gefährdung dem Schutz der EU Fauna-Flora-Habitat-Richtlinie. In Süddeutschland, am Rand der Alpen, ist noch eine Vielzahl naturschutzfachlich wertvoller Moore vorhanden. Teilweise verlaufen durch diese Moore Langlaufloipen, über deren Wirkung auf die Vegetation bislang allerdings nur wenig bekannt ist. In dieser Arbeit werden deshalb die Auswirkungen von Langlaufloipen auf Standort, Flora und Vegetation v...

  5. Molecular Imaging and Therapy of Merkel Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Volkan Beylergil

    2014-04-01

    Full Text Available Several molecular imaging modalities have been evaluated in the management of Merkel cell carcinoma (MCC, a rare and aggressive tumor with a high tendency to metastasize. Continuous progress in the field of molecular imaging might improve management in these patients. The authors review the current modalities and their impact on MCC in this brief review article.

  6. Quantum dots for multimodal molecular imaging of angiogenesis

    OpenAIRE

    Mulder, W.J.M.; Strijkers, G.J.; Nicolay, K.; Griffioen, A W

    2010-01-01

    Quantum dots exhibit unique optical properties for bioimaging purposes. We have previously developed quantum dots with a paramagnetic and functionalized coating and have shown their potential for molecular imaging purposes. In the current mini-review we summarize the synthesis procedure, the in vitro testing and, importantly, the in vivo application for multimodal molecular imaging of tumor angiogenesis.

  7. Use of molecular imaging to guide and assess radiation therapy

    International Nuclear Information System (INIS)

    Imaging is intimately associated with radiation therapy (RT). Anatomical imaging is the standard of care for crucial components of the RT process such as tumor localization, treatment planning, and positioning verification. However, as disease progression and treatment response at the molecular and cellular level precede visible structural changes to tissue, applications of functional and molecular imaging are becoming increasingly more important. Use of molecular imaging in RTcan be divided into three phases: (1) Imaging for diagnosis and staging, performed during the initial phases of RT to establish the presence and progression of disease (2) Imaging for target definition, performed prior to RT in order to determine the spatial extent of the tumor and the position of normal tissue (3) Imaging for treatment response assessment, performed during or after RT to establish effectiveness, predict outcome, and potentially modify therapy. Following diagnosis and staging molecular imaging can help to define which type of therapy should be used, as well assess the spatial extent of the tumor, thus providing grounds for more reliable target definition. Molecular imaging has been shown to significantly reduce large inter-observer variability in target definition compared to anatomical imaging. This reduction leads to significant reduction in treatment margin, thereby enabling more accurate and precise tumor targeting. Furthermore, molecular imaging has the potential to characterize biological heterogeneity within tumors, providing foundations for so-called biologically conformal radiotherapy, or dose painting. Early treatment response assessment refers to the use of molecular imaging during the course of therapy, and late treatment response assessment refers to the use of molecular imaging after the therapy has been completed. While late assessment enables prediction of treatment outcome, early assessment, in addition, enables treatment adaptation

  8. Molecular imaging of macrophage enzyme activity in cardiac inflammation

    OpenAIRE

    Ali, Muhammad; Pulli, Benjamin; Chen, John W.

    2014-01-01

    Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to th...

  9. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    OpenAIRE

    Kelsey Herrmann; Johansen, Mette L.; Craig, Sonya E.; Jason Vincent; Michael Howell; Ying Gao; Lan Lu; Bernadette Erokwu; Agnes, Richard S.; Zheng-Rong Lu; Pokorski, Jonathan K.; James Basilion; Vikas Gulani; Mark Griswold; Chris Flask

    2015-01-01

    Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T 1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T 1-weighted imaging techniques. In this study, we used a dynamic quantitative T 1 mapping strategy to more ob...

  10. Functional and molecular image guidance in radiotherapy treatment planning optimization.

    Science.gov (United States)

    Das, Shiva K; Ten Haken, Randall K

    2011-04-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters, such as metabolism, proliferation, hypoxia, perfusion, and ventilation, onto anatomically imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high-functioning subregions of normal organs or dose escalation to selected subregions of the tumor as well as the potential to adapt radiotherapy to functional changes that occur during the course of treatment. The practical use of functional/molecular imaging in radiotherapy optimization must take into cautious consideration several factors whose influences are still not clearly quantified or well understood including patient positioning differences between the planning computed tomography and functional/molecular imaging sessions, image reconstruction parameters and techniques, image registration, target/normal organ functional segmentation, the relationship governing the dose escalation/sparing warranted by the functional/molecular image intensity map, and radiotherapy-induced changes in the image intensity map over the course of treatment. The clinical benefit of functional/molecular image guidance in the form of improved local control or decreased normal organ toxicity has yet to be shown and awaits prospective clinical trials addressing this issue. PMID:21356479

  11. Molecular imaging in the framework of personalized cancer medicine.

    Science.gov (United States)

    Belkić, Dzevad; Belkić, Karen

    2013-11-01

    With our increased understanding of cancer cell biology, molecular imaging offers a strategic bridge to oncology. This complements anatomic imaging, particularly magnetic resonance (MR) imaging, which is sensitive but not specific. Among the potential harms of false positive findings is lowered adherence to recommended surveillance post-therapy and by persons at increased cancer risk. Positron emission tomography (PET) plus computerized tomography (CT) is the molecular imaging modality most widely used in oncology. In up to 40% of cases, PET-CT leads to changes in therapeutic management. Newer PET tracers can detect tumor hypoxia, bone metastases in androgen-sensitive prostate cancer, and human epidermal growth factor receptor type 2 (HER2)-expressive tumors. Magnetic resonance spectroscopy provides insight into several metabolites at the same time. Combined with MRI, this yields magnetic resonance spectroscopic imaging (MRSI), which does not entail ionizing radiation and is thus suitable for repeated monitoring. Using advanced signal processing, quantitative information can be gleaned about molecular markers of brain, breast, prostate and other cancers. Radiation oncology has benefited from molecular imaging via PET-CT and MRSI. Advanced mathematical approaches can improve dose planning in stereotactic radiosurgery, stereotactic body radiotherapy and high dose-rate brachytherapy. Molecular imaging will likely impact profoundly on clinical decision making in oncology. Molecular imaging via MR could facilitate early detection especially in persons at high risk for specific cancers. PMID:24511645

  12. Inversion of Strong Field Photoelectron Spectra for Molecular Orbital Imaging

    CERN Document Server

    Puthumpally-Joseph, R; Peters, M; Nguyen-Dang, T T; Atabek, O; Charron, E

    2016-01-01

    Imaging structures at the molecular level is a fast developing interdisciplinary research field that spans across the boundaries of physics and chemistry. High spatial resolution images of molecules can be obtained with photons or ultrafast electrons. In addition, images of valence molecular orbitals can be extracted via tomographic techniques based on the coherent XUV radiation emitted by a molecular gas exposed to an intense ultra-short infrared laser pulse. In this paper, we demonstrate that similar information can be obtained by inverting energy resolved photoelectron spectra using a simplified analytical model.

  13. Photoelectron spectroscopy of self-assembled monolayers of molecular switches on noble metal surfaces; Photoelektronenspektroskopie selbstorganisierter Adsorbatschichten aus molekularen Schaltern auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Nils

    2012-09-12

    Self-assembled monolayers (SAMs) of butanethiolate (C4) on single crystalline Au(111) surfaces were prepared by adsorption from solution. The thermally activated desorption behaviour of the C4 molecules from the gold substrate was examined by qualitative thermal desorption measurements (TDM), through this a desorption temperature T{sub Des}=473 K could be determined. With this knowledge, it was possible to produce samples of very good surface quality, by thermal treatment T{sub Sample}image potential states. The reversible photo- and thermally activated isomerization of the molecular switch 3-(4-(4-Hexyl-phenylazo)-phenoxy)-propane-1-thiol (ABT), deposited by self-assembly from solution on Au(111), was examined using laser-based photoelectron spectroscopy. Differences in the molecular dipole moment characteristic for the trans and the cis isomer of ABT were observed via changes in the sample work function, accessible by detection of the threshold energy for photoemission. A quantitative

  14. Molecular imaging: Bridging the gap between neuroradiology and neurohistology

    OpenAIRE

    Heckl, S; Pipkorn, R.; Nägele, T; Vogel, U; Küker, W.; Voigt, K.

    2004-01-01

    Historically, in vivo imaging methods have largely relied on imaging gross anatomy. More recently it has become possible to depict biological processes at the cellular and molecular level. These new research methods use magnetic resonance imaging (MRI), positron emission tomography (PET), near-infrared optical imaging, scintigraphy, and autoradiography in vivo and in vitro. Of primary interest is the development of methods using MRI and PET with which the progr...

  15. An introduction to functional and molecular imaging with MRI

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) has been applied to many aspects of functional and molecular imaging. Many of the parameters used to produce image contrast in MRI are influenced by the local chemical environment around the atoms being imaged; these parameters can be exploited to probe the molecular content of tissues and this has been shown to have many applications in radiology. Diffusion-weighted imaging is a well-established method for measuring small changes in the molecular movement of water that occurs following the onset of ischaemia and in the presence of tumours. Exogenous contrast agents containing gadolinium or iron oxide have been used to image tissue vascularity, cell migration, and specific biological processes, such as cell death. MR spectroscopy is a technique for measuring the concentrations of tissue metabolites and this has been used to probe metabolic pathways in cancer, in cardiac tissue, and in the brain. Several groups are developing positron-emission tomography (PET)-MRI systems that combine the spatial resolution of MRI with the metabolic sensitivity of PET. However, the application of MRI to functional and molecular imaging is limited by its intrinsic low sensitivity. A number of techniques have been developed to overcome this which utilize a phenomenon termed hyperpolarization; these have been used to image tissue pH, cellular necrosis, and to image the lungs. Although most of these applications have been developed in animal models, they are increasingly being translated into human imaging and some are used routinely in many radiology departments.

  16. Imaging the Breakdown of Molecular Frame Dynamics through Rotational Uncoupling

    CERN Document Server

    Zipp, Lucas J; Bucksbaum, Philip H

    2016-01-01

    We have observed directly in the time domain the uncoupling of electron motion from the molecular frame due to rotational-electronic coupling in a molecular Rydberg system. In contrast to Born- Oppenheimer dynamics, in which the electron is firmly fixed to the molecular frame, there exists a regime of molecular dynamics known as $l$-uncoupling where the motion of a non-penetrating Rydberg electron decouples from the instantaneous alignment of the molecular frame. We have imaged this unusual regime in time-dependent photoelectron angular distributions of a coherently prepared electron wave packet in the 4$f$ manifold of $N_2$.

  17. Designing an university-level module on molecular imaging chemistry

    International Nuclear Information System (INIS)

    Full text: Why do we need radiopharmacy, radiopharmacy, radiopharmacy training? In this post-genomic era, molecular imaging has gain tremendous interest not only amongst physicians but also from biologists, chemists, physicists, engineers, statisticians, pharmaceutical companies and even from governments. There is no doubt that nuclear medicine has been engaged in molecular medicine more than one decade ago. Positron emission tomography (PET) has reawaken interest in long forgotten radiopharmacy. Only major hospitals in the developed countries have invested in the development of dedicated radiopharmacy laboratory and training or recruitment of radiopharmacist. But PET has forced nuclear medicine to create a radiopharmacy unit and adopt radiopharmacy guidelines such as good radiopharmaceutical practice (GRPP) and good manufacturing practice (GMP). It is compounded by the fact that SPECT radiopharmaceutical chemistry has advanced significantly for both diagnostics and therapeutics, which calls for a high level of understanding on radiopharmaceutical chemistry and technical know-how. These factors eventually lead to introduction of tran ing program, courses and degree program. The most striking examples will be European Association of Nuclear Medicine (EANM) radiopharmacy courses and a series of IAEA activities on GRPP, GMP and technologist training programs. Various forms of training or education program can be formulated for various levels, starting from basic radiopharmacy course to PhD program, depending on the following factors; (1) National interest and policies on bio/medical sector; (2) Size of the nuclear medicine community in the respective country; (3) Institution interest and policies; and (4) Existing infrastructure and programs. Current Radiopharmacy Education in Singapore: In Singapore, all of the major nuclear medicine centers are supervised by radiopharmacists with PhD degree. All of the nuclear medicine technologists in the major centers have got

  18. Optical molecular imaging technology in genetically engineered mouse models

    International Nuclear Information System (INIS)

    Optical molecular imaging technology has been rapidly developed to non-invasively, quantitatively and dynamically monitor the in vivo biological processes in real time. It is widely used in various fields of biomedicine and life sciences with advantages like easy operation, real-time study, high sensitivity and low cost image equipment. In recent years, the generation of transgenic animal models in combination with optical molecular imaging reporter genes has greatly facilitated the development of the imaging technology and expanded its application. In this article, we review the research progress by optical molecular imaging in genetically engineered mice (GEM) for 1) investigating tumorigenesis, growth or metastasis, 2) monitoring cell cycle, cell proliferation, apoptosis or angiogenesis, 3) evaluating the inflammation process and 4) providing a modality for pharmaceutical development. (authors)

  19. Tight binding description of the STM image of molecular chains

    OpenAIRE

    Calev, Yoel; Cohen, Hezy; Cuniberti, Gianaurelio; Nitzan, Abraham; Porath, Danny

    2004-01-01

    A tight binding model for scanning tunneling microscopy images of a molecule adsorbed on a metal surface is described. The model is similar in spirit to that used to analyze conduction along molecular wires connecting two metal leads and makes it possible to relate these two measurements and the information that may be gleaned from the corresponding results. In particular, the dependence of molecular conduction properties along and across a molecular chain on the chain length, intersite elect...

  20. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  1. The development of nanobody probes for molecular imaging

    International Nuclear Information System (INIS)

    The nanobody is a novel antibody fragment, which has beneficial biophysical and pharmacokinetic properties, such as the small molecular weight, high affinity and specificity for antigen. Nanobody is ideally suitable for molecular imaging as a targeting probe that could label antigen at nmol level in vitro. In animal models of xenografted tumor, atherosclerotic plaques and brain disorders, the target tissues were specifically and clearly detected and the high tumor-to-blood (T/B) ratios were obtained. Structural or chemical modified nanobodies will have higher affinity and retention to target tissues, and be convenient for the application of molecular imaging. With the development of the related research, nanobody-based molecular imaging will be gradually transformed into the clinical applications, and play an important role in early diagnosis and therapeutic assessment. (authors)

  2. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  3. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    International Nuclear Information System (INIS)

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  4. Molecular Imaging of Healing After Myocardial Infarction

    OpenAIRE

    Naresh, Nivedita K; Ben-Mordechai, Tamar; Leor, Jonathan; Epstein, Frederick H

    2011-01-01

    The progression from acute myocardial infarction (MI) to heart failure continues to be a major cause of morbidity and mortality. Potential new therapies for improved infarct healing such as stem cells, gene therapy, and tissue engineering are being investigated. Noninvasive imaging plays a central role in the evaluation of MI and infarct healing, both clinically and in preclinical research. Traditionally, imaging has been used to assess cardiac structure, function, perfusion, and viability. H...

  5. Cancerology: to see and to treat with molecular imaging

    International Nuclear Information System (INIS)

    By allowing to visualize, beyond the organs and tissues structure, the molecules present inside cells and their action in cell functioning, to the genome level, the molecular imaging opens a new era in biology and medicine and creates the conditions for the perfecting of targeting and personalised treatments of cancers. The E.M.I.L. network is the only European network in molecular imaging for the cancer. It has been initiated and is coordinated by 'the genes expression in vivo imaging group' of the Cea at Orsay. The E.M.I.L network represents 43 organisms of 13 european countries with 6 technological platforms. (N.C.)

  6. Functional and Molecular Image Guidance in Radiotherapy Treatment Planning Optimization

    OpenAIRE

    Das, Shiva K.; Ten Haken, Randall K.

    2011-01-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters such as metabolism, proliferation, hypoxia, perfusion and ventilation, among others, onto anatomically-imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high functioning subregions of normal organs or dose escalation to selected subregions of tumor, as well as the p...

  7. Nuclear medicine - from physiology to molecular imaging

    International Nuclear Information System (INIS)

    The induction of Medical Imaging in clinical practice occurred through Nuclear Medicine in 1937 through the first application of 131-Iodine in tracer imaging. The concept translated rapidly into other areas of clinical medicine through the invention of newer radiopharmaceuticals over the next six decades. The growth of nuclear imaging acted as a catalyst for other imaging modalities like sonography, CT scan and MRI. In effect everywhere nuclear medicine was the stimulus and growth has taken place around its concepts. This in turn strengthened and stimulated further fascinating developments in nuclear medicine so much that today it is the fascinating era of 'FUSION IMAGING' in medical diagnosis. The CT and MRI succeeded in producing exquisite images of human organs with details as close to as a pathologist would see in histology room after the organ is delivered to him. Unfortunately the pathophysiological details of the disease how, why, when etc - remained unanswered. Hence the impact on treatment was not drastic as modulation of disease process is possible only if we know how and why and when it occurred. These searching questions continued to stimulate the research in nuclear medicine and outcome has been tremendous in the last few years

  8. Reaktionen auf Geschmacksstoffe bei Duftstoffsensibilisierten

    OpenAIRE

    Fornoff, Nicole

    2005-01-01

    Positive Reaktionen im Epikutantest (ECT) auf den Duftstoffmix (DM) sind relativ häufig, teilweise ohne anamnestischen Bezug zu Duftstoffkontakt. Da Duftstoffe auch als Aromastoffe in Nahrungsmitteln weit verbreitet sind, wurde untersucht, ob die orale Zufuhr von Duftstoffen bei Sensibilisierten eine klinische Reaktion auslöst. Methode: 39 Personen mit einem positiven ECT auf den standartisierten 8%igen Duftstoffmix (DM) nahmen an der Studie teil. Bei allen Probanden wurde der DM und 11 Einze...

  9. Molecular Optical Coherence Tomography Contrast Enhancement and Imaging

    Science.gov (United States)

    Oldenburg, Amy L.; Applegate, Brian E.; Tucker-Schwartz, Jason M.; Skala, Melissa C.; Kim, Jongsik; Boppart, Stephen A.

    Histochemistry began as early as the nineteenth century, with the development of synthetic dyes that provided spatially mapped chemical contrast in tissue [1]. Stains such as hematoxylin and eosin, which contrast cellular nuclei and cytoplasm, greatly aid in the interpretation of microscopy images. An analogous development is currently taking place in biomedical imaging, whereby techniques adapted for MRI, CT, and PET now provide in vivo molecular imaging over the entire human body, aiding in both fundamental research discovery and in clinical diagnosis and treatment monitoring. Because OCT offers a unique spatial scale that is intermediate between microscopy and whole-body biomedical imaging, molecular contrast OCT (MCOCT) also has great potential for providing new insight into in vivo molecular processes. The strength of MCOCT lies in its ability to isolate signals from a molecule or contrast agent from the tissue scattering background over large scan areas at depths greater than traditional microscopy techniques while maintaining high resolution.

  10. Molecular imaging of angiogenesis with SPECT

    International Nuclear Information System (INIS)

    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. (orig.)

  11. Molecular imaging in neuroendocrine tumors : Molecular uptake mechanisms and clinical results

    NARCIS (Netherlands)

    Koopmans, Klaas P.; Neels, Oliver N.; Kema, Ido P.; Elsinga, Philip H.; Links, Thera P.; de Vries, Elisabeth G. E.; Jager, Pieter L.

    2009-01-01

    Neuroendocrine tumors can originate almost everywhere in the body and consist of a great variety of subtypes. This paper focuses on molecular imaging methods using nuclear medicine techniques in neuroendocrine tumors, coupling molecular uptake mechanisms of radiotracers with clinical results. A non-

  12. Advances of Molecular Imaging in Epilepsy.

    Science.gov (United States)

    Galovic, Marian; Koepp, Matthias

    2016-06-01

    Positron emission tomography (PET) is a neuroimaging method that offers insights into the molecular functioning of a human brain. It has been widely used to study metabolic and neurotransmitter abnormalities in people with epilepsy. This article reviews the development of several PET radioligands and their application in studying the molecular mechanisms of epilepsy. Over the last decade, tracers binding to serotonin and γ-aminobutyric acid (GABA) receptors have been used to delineate the location of the epileptic focus. PET studies have examined the role of opioids, cannabinoids, acetylcholine, and dopamine in modulating neuronal hyperexcitability and seizure termination. In vivo analyses of drug transporters, e.g., P-glycoprotein, have increased our understanding of pharmacoresistance that could inform new therapeutic strategies. Finally, PET experiments targeting neuroinflammation and glutamate receptors might guide the development of novel biomarkers of epileptogenesis. PMID:27113252

  13. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  14. Molecular photoacoustic imaging of follicular thyroid carcinoma

    DEFF Research Database (Denmark)

    Levi, Jelena; Kothapalli, Sri-Rajashekar; Bohndiek, Sarah;

    2013-01-01

    Purpose To evaluate the potential of targeted photoacoustic imaging as a non-invasive method for detection of follicular thyroid carcinoma. Experimental Design We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers...

  15. Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging

    International Nuclear Information System (INIS)

    Hydroxyapatite (HAp) is the most important constituent of biological tissues such as bone and teeth and exhibits several characteristic features. HAp nanoparticles (NPs) are good host materials and can be functionalized with various kinds of dopants and substrates. By endowing HAp NPs with desired properties in order to render them suitable for biomedical applications including cellular imaging, non-invasive and quantitative visualisation of molecular process occurring at cellular and subcellular levels becomes possible. Depending on their functional properties, HAp based nanoprobes can be divided into three classes, i.e., luminescent HAp NPs (for both down conversion and up conversion luminescence), magnetic HAp NPs, and luminomagnetic HAp NPs. Luminomagnetic HAp NPs are particularly attractive in terms of bimodal imaging and even multimodal imaging by virtue of their luminescence and magnetism. Functionalized HAp NPs are potential candidates for targeted drug delivery applications. This review (with 166 references) spotlights the cellular imaging applications of three types of HAp NPs. Specific sections cover aspects of molecular imaging and the various imaging modes, a comparison of the common types of nanoprobes for bioimaging, synthetic methods for making the various kinds of HAp NPs, followed by overviews on fluorescent NPs for bioimaging (such as quantum dots, gold nanoclusters, lanthanide-doped or fluorophore-doped NPs), magnetic HAp NPs for use in magnetic resonance imaging (MRI), luminomagnetic HAp NPs for bimodal imaging, and sections on drug delivery as well as cellular imaging applications of HAp based nanoprobes (including targeted imaging). (author)

  16. Molecular Scale Imaging with a Smooth Superlens

    CERN Document Server

    Chaturvedi, Pratik; Logeeswaran, VJ; Yu, Zhaoning; Islam, M Saif; Wang, S Y; Williams, R Stanley; Fang, Nicholas

    2009-01-01

    We demonstrate a smooth and low loss silver (Ag) optical superlens capable of resolving features at 1/12th of the illumination wavelength with high fidelity. This is made possible by utilizing state-of-the-art nanoimprint technology and intermediate wetting layer of germanium (Ge) for the growth of flat silver films with surface roughness at sub-nanometer scales. Our measurement of the resolved lines of 30nm half-pitch shows a full-width at half-maximum better than 37nm, in excellent agreement with theoretical predictions. The development of this unique optical superlens lead promise to parallel imaging and nanofabrication in a single snapshot, a feat that are not yet available with other nanoscale imaging techniques such as atomic force microscope or scanning electron microscope.

  17. Molecular imaging in myeloma precursor disease

    OpenAIRE

    Mena, E.; Choyke, P; Tan, E; Landgren, O; Kurdziel, K

    2011-01-01

    Multiple myeloma (MM) is consistently preceded by its pre-malignant states, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). By definition, precursor conditions do not exhibit end-organ disease (anemia, hypercalcemia, renal failure, skeletal lytic lesions, or a combination of these). However, new imaging methods are demonstrating that some patients in the MGUS or SNM category are exhibiting early signs of MM.

  18. Molecular imaging by single-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Cusanno, F. E-mail: cusanno@iss.infn.it; Accorsi, R.; Cinti, M.N.; Colilli, S.; Fortuna, A.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lanza, R.C.; Loizzo, A.; Lucentini, M.; Pani, R.; Pellegrini, R.; Santavenere, F.; Scopinaro, F

    2004-07-11

    In vivo imaging of pharmaceuticals labeled with radionuclides has proven to be a powerful tool in human subjects. The same imaging methods have often been applied to small animal but usually only within the nuclear medicine (NM) community, and usually only to evaluate the efficacy of new radiopharmaceuticals. We have built a compact mini gamma camera, a pixellated array of NaI(Tl) crystals coupled to 3'' R2486 Hamamatsu Position Sensitive PMT; in combination with a pinhole collimator, which allows for high resolution in vivo SPECT imaging. Calculations show that reasonable counting rates are possible. The system has been tested and preliminary measurements on mice have been done. The performances of the camera are in the expectations. Improvements will be done both on the collimation technique and on the detector. Simulations have been performed to study a coded aperture collimator. The results show that the efficiency can be greatly improved without sacrificing the spatial resolution. A dedicated mask has been designed and will be used soon.

  19. Molecular imaging by single-photon emission

    International Nuclear Information System (INIS)

    In vivo imaging of pharmaceuticals labeled with radionuclides has proven to be a powerful tool in human subjects. The same imaging methods have often been applied to small animal but usually only within the nuclear medicine (NM) community, and usually only to evaluate the efficacy of new radiopharmaceuticals. We have built a compact mini gamma camera, a pixellated array of NaI(Tl) crystals coupled to 3'' R2486 Hamamatsu Position Sensitive PMT; in combination with a pinhole collimator, which allows for high resolution in vivo SPECT imaging. Calculations show that reasonable counting rates are possible. The system has been tested and preliminary measurements on mice have been done. The performances of the camera are in the expectations. Improvements will be done both on the collimation technique and on the detector. Simulations have been performed to study a coded aperture collimator. The results show that the efficiency can be greatly improved without sacrificing the spatial resolution. A dedicated mask has been designed and will be used soon

  20. Molecular Imaging of Breast Cancer: Present and future directions

    Directory of Open Access Journals (Sweden)

    David eAlcantara

    2014-12-01

    Full Text Available Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases and biological processes (e.g. apoptosis, angiogenesis, and metastasis that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  1. Molecular imaging with dynamic contrast-enhanced computed tomography

    International Nuclear Information System (INIS)

    Dynamic contrast-enhanced computed tomography (DCE-CT) is a quantitative technique that employs rapid sequences of CT images after bolus administration of intravenous contrast material to measure a range of physiological processes related to the microvasculature of tissues. By combining knowledge of the molecular processes underlying changes in vascular physiology with an understanding of the relationship between vascular physiology and CT contrast enhancement, DCE-CT can be redefined as a molecular imaging technique. Some DCE-CT derived parameters reflect tissue hypoxia and can, therefore, provide information about the cellular microenvironment. DCE-CT can also depict physiological processes, such as vasodilatation, that represent the physiological consequences of molecular responses to tissue hypoxia. To date the main applications have been in stroke and oncology. Unlike some other molecular imaging approaches, DCE-CT benefits from wide availability and ease of application along with the use of contrast materials and software packages that have achieved full regulatory approval. Hence, DCE-CT represents a molecular imaging technique that is applicable in clinical practice today.

  2. Molecular imaging using sodium iodide symporter (NIS)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Je Yoel [School of Dentistry, Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-04-01

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

  3. Molecular imaging using sodium iodide symporter (NIS)

    International Nuclear Information System (INIS)

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases

  4. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2016-03-15

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  5. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    International Nuclear Information System (INIS)

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  6. Molecular imaging in cardiovascular diseases; Molekulare kardiovaskulaere MRT-Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Botnar, R.M. [King' s College London (United Kingdom). Imaging Sciences; St. Thomas' NHS Foundation Trust, London (United Kingdom); Ebersberger, H. [Heart Center Munich-Bogenhausen, Munich (Germany). Dept. of Cardiology and Intensive Care Medicine; Noerenberg, D. [Charite, Berlin (Germany). Inst. for Radiology; and others

    2015-02-15

    Cardiovascular diseases remain the leading cause of morbidity and mortality in industrialized and developing countries. In clinical practice, the in-vivo identification of atherosclerotic lesions, which can lead to complications such as heart attack or stroke, remains difficult. Imaging techniques provide the reference standard for the detection of clinically significant atherosclerotic changes in the coronary and carotid arteries. The assessment of the luminal narrowing is feasible, while the differentiation of stable and potentially unstable or vulnerable atherosclerotic plaques is currently not possible using non-invasive imaging. With high spatial resolution and high soft tissue contrast, magnetic resonance imaging (MRI) is a suitable method for the evaluation of the thin arterial wall. In clinical practice, native MRI of the vessel wall already allows the differentiation and characterization of components of atherosclerotic plaques in the carotid arteries and the aorta. Additional diagnostic information can be gained by the use of non-specific MRI contrast agents. With the development of targeted molecular probes, that highlight specific molecules or cells, pathological processes can be visualized at a molecular level with high spatial resolution. In this review article, the development of pathophysiological changes leading to the development of the arterial wall are introduced and discussed. Additionally, principles of contrast enhanced imaging with non-specific contrast agents and molecular probes will be discussed and latest developments in the field of molecular imaging of the vascular wall will be introduced.

  7. Development of molecular imaging in the European radiological community

    International Nuclear Information System (INIS)

    The recent and concomitant advances in molecular biology and imaging for diagnosis and therapy will place in vivo imaging techniques at the centre of their clinical transfer. Before that, a wide range of multidisciplinary preclinical research is already taking place. The involvement of radiologists in this new field of imaging sciences is therefore absolutely mandatory during these two phases of development. Achievement of such objectives requires the refinement of strategy within the European radiological community and the European Society of Radiology (ESR) will have to drive a number of actions to stimulate the younger generation of radiologists and to facilitate their access to knowledge. For that purpose, a molecular imaging (MI) subcommittee of the ESR Research Committee based on a group of involved radiologists will be constituted to develop contacts with other constitutive committees and associated societies to provide proposals to our community. (orig.)

  8. Imaging the molecular dynamics of dissociative electron attachment to water

    Energy Technology Data Exchange (ETDEWEB)

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  9. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis

    OpenAIRE

    Maiseyeu, Andrei; Mihai, Georgeta; Kampfrath, Thomas; Simonetti, Orlando P.; Sen, Chandan K.; Roy, Sashwati; Rajagopalan, Sanjay; Parthasarathy, Sampath

    2009-01-01

    Exteriorized phosphatidylserine (PS) residues in apoptotic cells trigger rapid phagocytosis by macrophage scavenger receptor pathways. Mimicking apoptosis with liposomes containing PS may represent an attractive approach for molecular imaging of atherosclerosis. We investigated the utility of paramagnetic gadolinium liposomes enriched with PS (Gd-PS) in imaging atherosclerotic plaque. Gd-PS-containing Gd-conjugated lipids, fluorescent rhodamine, and PS were prepared and characterized. Cellula...

  10. Molecular imaging of vessels in mouse models of disease

    International Nuclear Information System (INIS)

    Vascular imaging of angiogenesis in mouse models of disease requires multi modal imaging hardware capable of targeting both structure and function at different physical scales. The three dimensional (3D) structure and function vascular information allows for accurate differentiation between biological processes. For example, image analysis of vessel development in angiogenesis vs. arteriogenesis enables more accurate detection of biological variation between subjects and more robust and reliable diagnosis of disease. In the recent years a number of micro imaging modalities have emerged in the field as preferred means for this purpose. They provide 3D volumetric data suitable for analysis, quantification, validation, and visualization of results in animal models. This review highlights the capabilities of microCT, ultrasound and microPET for multimodal imaging of angiogenesis and molecular vascular targets in a mouse model of tumor angiogenesis. The basic principles of the imaging modalities are described and experimental results are presented.

  11. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S. [Oak Ridge National Laboratory; Endres, Christopher J. [Johns Hopkins, Baltimore; Foss, Catherine A. [Johns Hopkins, Baltimore; Nimmagadda, Sridhar [Johns Hopkins, Baltimore; Jung, Hyeyun [Johns Hopkins, Baltimore; Goddard, James S. [Oak Ridge National Laboratory; Lee, Seung Joon [JLAB; McKisson, John [JLAB; Smith, Mark F. [University of Maryland; Stolin, Alexander V. [West Virginia University; Weisenberger, Andrew G. [JLAB; Pomper, Martin G. [Johns Hopkins, Baltimore

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  12. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Endres, Christopher [Johns Hopkins University; Foss, Catherine [Johns Hopkins University; Nimmagadda, Sridhar [Johns Hopkins University; Jung, Hyeyun [Johns Hopkins University; Goddard Jr, James Samuel [ORNL; Lee, Seung Joon [Jefferson Lab; McKisson, John [Jefferson Lab; Smith, Mark F. [University of Maryland School of Medicine, The, Baltimore, MD; Stolin, Alexander [West Virginia University, Morgantown; Weisenberger, Andrew G. [Jefferson Lab; Pomper, Martin [Johns Hopkins University

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  13. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Science.gov (United States)

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2014-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake. PMID:23536223

  14. New imaging strategies for monitoring molecular pharmacotherapy of GIST; Neue bildgebende Strategien zum Monitoring molekularer Pharmakotherapien bei GIST

    Energy Technology Data Exchange (ETDEWEB)

    Berger, F.; Reiser, M. [Klinikum Grosshadern der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Muenchen (Germany)

    2008-09-15

    Prognosis and clinical management of patients with gastrointestinal stromal tumors (GIST) has changed significantly with the introduction of new molecular-targeted drugs such as imatinib. This development is accompanied by a need to re-evaluate the established imaging criteria used to assess treatment response. The frequently used response evaluation criteria in solid tumors (RECIST) are mainly based on one-dimensional tumor size and do not take into account functional changes in responding GISTs such as a decrease in CT density or in the number of intratumoral vessels. Positron emission tomography (PET) has been found to be highly sensitive in detecting early response and to have a predictive value in the long term response to imatinib treatment. Monitoring the course of the disease by PET is limited due to scanner availability and economic constraints. Modified CT response criteria using a combination of tumor density and tumor size are especially promising in early response assessment and have a good prognostic value. Further optimization of existing response criteria and evaluation of new candidate markers of treatment response, such as quantitative perfusion will be the key for optimized monitoring of targeted therapies in GIST. (orig.) [German] Prognose und klinisches Management von Patienten mit gastrointestinalem Stromatumor (GIST) haben sich nach Einfuehrung neuer molekularer Pharmakotherapien wie Imatinib dramatisch geaendert. Damit einhergegangen ist die Notwendigkeit, bisher etablierte bildgebende Methoden zur Beurteilung des Ansprechens auf die Therapie zu ueberdenken. Die derzeit am haeufigsten eingesetzten Responsekriterien, die RECIST- (Response-evaluation-criteria-in-solid-tumors-)Kriterien, beruhen wesentlich auf der unidirektionalen Messung tumoroeser Laesionen. Aenderungen in der CT-Dichte oder der Anzahl intratumoraler Blutgefaesse werden hierbei nicht beruecksichtigt. Die Positronenemissionstomographie (PET) ist ein sensitives Verfahren zur

  15. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, G.; Dierckx, R.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Conti, F. [Rheumatology Unit, I Faculty of Medicine and Surgery, Sapienza University of Rome (Italy); Chianelli, M. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Unit of Nuclear Medicine, Regina apostolorum Hospital, Albano, Rome (Italy); Scopinaro, F. [Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy); Signore, A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy)

    2010-02-15

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-{alpha}, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with {sup 99m}Tc or {sup 111}In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for

  16. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    International Nuclear Information System (INIS)

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure–function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [18F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed “theranostics”. Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. -- Highlights: •Molecular functional imaging (MFI) gives insight into the tumor biology and intratumoral heterogeneity. •It has potential role in identifying radiomic signatures associated with underlying gene-expression. •Radiomics can be used to create a road map

  17. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.

    Science.gov (United States)

    Senapati, Subhadip; Lindsay, Stuart

    2016-03-15

    Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two

  18. Tumor epidermal growth factor receptor molecular imaging research

    International Nuclear Information System (INIS)

    Because of the importance of epidermal growth factor signaling pathway in oncogenesis, maintenance, and progression of different types of tumors, there are great significance that non-invasive monitoring of epidermal growth factor receptor (EGFR) in the diagnosis and the judge of therapeutic efficacy. The studys of radioactive tracers for EGFR have provided a good basis for the molecular imaging of EGFR. (authors)

  19. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    NARCIS (Netherlands)

    Vermeulen, J.F.; Brussel, A.S. van; Groep, P. van der; Morsink, F.H.; Bult, P.; Wall, E. van der; Diest, P.J. van

    2012-01-01

    ABSTRACT: BACKGROUND: Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers m

  20. Molecular imaging and the neuropathologies of Parkinson's disease

    DEFF Research Database (Denmark)

    Cumming, Paul; Borghammer, Per

    2012-01-01

    The main motor symptoms of Parkinson's disease (PD) are linked to degeneration of the nigrostriatal dopamine (DA) fibers, especially those innervating the putamen. This degeneration can be assessed in molecular imaging studies with presynaptic tracers such as [(18)F]-fluoro-L-DOPA (FDOPA) and...

  1. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm in...... medicine towards more individualized treatment....

  2. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Bishnu P. [Division of Gastroenterology, Department of Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109 (United States); Wang, Thomas D., E-mail: thomaswa@umich.edu [Division of Gastroenterology, Department of Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109 (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2010-06-11

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research.

  3. Multi-modality systems for molecular tomographic imaging

    Science.gov (United States)

    Li, Mingze; Bai, Jing

    2009-11-01

    In vivo small animal imaging is a cornerstone in the study of human diseases by providing important clues on the pathogenesis, progression and treatment of many disorders. Molecular tomographic imaging can probe complex biologic interactions dynamically and to study diseases and treatment responses over time in the same animal. Current imaging technique including microCT, microMRI, microPET, microSPECT, microUS, BLT and FMT has its own advantages and applications, however, none of them can provide structural, functional and molecular information in one context. Multi-modality imaging, which utilizes the strengths of different modalities to provide a complete understanding of the object under investigation, emerges as an important alternative in small animal imaging. This article is to introduce the latest development of multimodality systems for small animal tomographic imaging. After a systematic review of imaging principles, systems and commerical products for each stand-alone method, we introduce some multimodality strategies in the latest years. In particular, two dual-modality systems, i.e. FMT-CT and FMT-PET are presented in detail. The end of this article concludes that though most multimodality systems are still in a laboratory research stage, they will surely undergo deep development and wide application in the near future.

  4. Optical techniques for the molecular imaging of angiogenesis

    International Nuclear Information System (INIS)

    The process of angiogenesis, an essential hallmark for tumour development as well as for several inflammatory diseases and physiological phenomena, is of growing interest for diagnosis and therapy in oncology. In the context of biochemical characterisation of key molecules involved in angiogenesis, several targets for imaging and therapy could be identified in the last decade. Optical imaging (OI) relies on the visualisation of near infrared (NIR) light, either its absorption and scattering in tissue (non-enhanced OI) or using fluorescent contrast agents. OI offers excellent signal to noise ratios due to virtually absent background fluorescence in the NIR range and is thus a versatile tool to image specific molecular target structures in vivo. This work intends to provide a survey of the different approaches to imaging of angiogenesis using OI methods in preclinical research as well as first clinical trials. Different imaging modalities as well as various optical contrast agents are briefly discussed. (orig.)

  5. Inverse transport problems in quantitative PAT for molecular imaging

    Science.gov (United States)

    Ren, Kui; Zhang, Rongting; Zhong, Yimin

    2015-12-01

    Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.

  6. PET molecular imaging in stem cell therapy for neurological diseases

    International Nuclear Information System (INIS)

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  7. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  8. Low-Noise CMOS Image Sensors for Radio-Molecular Imaging

    NARCIS (Netherlands)

    Chen, Y.

    2012-01-01

    This thesis presents the development of low-noise CMOS image sensors for radio-molecular imaging. The development is described in two directions: firstly, from the technology point of view to reduce the pixel noise level, and secondly from the design point of view to reduce the pixel readout circuit

  9. Anfragebearbeitung auf Mehrkern-Rechnerarchitekturen

    OpenAIRE

    Huber, Frank

    2012-01-01

    Der Trend zu immer mehr parallelen Recheneinheiten innerhalb eines Prozessors stellt an die Softwareentwicklung neue Herausforderungen. Um die vorhandenen Ressourcen auszulasten und die stetige Steigerung der Parallelität in einen Leistungszuwachs umzusetzen, muss Software von der sequentiellen Verarbeitung in eine hochgradig parallele Verarbeitung übergehen. Diese Arbeit untersucht, wie solch eine parallele Verarbeitung in Bezug auf Relationale Datenbankmanagementsysteme umzusetzen ist. Daz...

  10. Imprints of Molecular Clouds in Radio Continuum Images

    CERN Document Server

    Yusef-Zadeh, F

    2012-01-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic ray particles. The contribution of the continuum emission along different pathlengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the snake filament and G359.75-0.13 demonstrate an anti--correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are iden...

  11. Molecular imaging of brown adipose tissue in health and disease

    International Nuclear Information System (INIS)

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, 18F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to 18F-FDG, other radiopharmaceuticals such as 99mTc-sestamibi, 123I-metaiodobenzylguanidine (MIBG), 18F-fluorodopa and 18F-14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  12. Molecular imaging of brown adipose tissue in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Bauwens, Matthias [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Maastricht University, Research School NUTRIM, Maastricht (Netherlands); Wierts, Roel; Brans, Boudewijn [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Royen, Bart van; Backes, Walter [MUMC, Department of Medical Imaging, Division of Radiology, Maastricht (Netherlands); Bucerius, Jan [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany); Maastricht University, Research School CARIM, Maastricht (Netherlands); Mottaghy, Felix [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany)

    2014-04-15

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, {sup 18}F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to {sup 18}F-FDG, other radiopharmaceuticals such as {sup 99m}Tc-sestamibi, {sup 123}I-metaiodobenzylguanidine (MIBG), {sup 18}F-fluorodopa and {sup 18}F-14(R,S)-[{sup 18}F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  13. Molecular application of spectral photoacoustic imaging in pancreatic cancer pathology

    Science.gov (United States)

    Lakshman, Minalini; Hupple, Clinton; Lohse, Ines; Hedley, David; Needles, Andrew; Theodoropoulos, Catherine

    2012-12-01

    Spectral imaging is an advanced photo-acoustic (PA) mode that can discern optical absorption of contrast agent(s) in the tissue micro-environment. This advancement is made possible by precise control of optical wavelength using a tunable pulsed laser, ranging from 680-970 nm. Differential optical absorption of blood oxygenation states makes spectral imaging of hemoglobin ideal to investigate remodeling of the tumor microenvironment- a molecular change that renders resistance to standard cancer treatment. Approach: Photo-acoustic imaging was performed on the Vevo® LAZR system (VisualSonics) at 5-20 Hz. Deep abdominal imaging was accomplished with a LZ250D probe at a center frequency of 21MHz and an axial resolution of 75 μm. The tumor model was generated in an immune compromised mouse by surgical implantation of primary patient derived tumors, in the pancreas. Results: Spectral imaging for oxygen saturation at 750 nm and 850 nm characterized this tumor with a poorly oxygenated core surrounded by a well oxygenated periphery. Multispectral imaging identified a sub region in the core with a four-fold signal exclusively at 750 and 800 nm. A co-registered 2D image of this region was shown to be echogenic and calcification was suspected. Perfusion imaging with contrast enhanced ultrasound using microbubbles (Vevo MicroMarker® contrast agents, VisualSonics) identified functional vessels towards this sub region. Histology confirmed calcification and vascularization in the tumor core. Taken together, non-invasive characterization of the tumor microenvironment using photo-acoustics rendered spectral imaging a sensitive tool to monitor molecular changes representative of progression of pancreatic cancer that kills within 6 months of diagnosis.

  14. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    Science.gov (United States)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  15. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.;

    2011-01-01

    Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However, with this achie...... small animal PET/CT for studies of muscle and tendon in exercise models. © 2011 Bentham Science Publishers Ltd.......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However, with this...... this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume...

  16. Non-neoplastic hyperthrophic osteoarthropathy on the base of an infected aortic prosthesis. Aspects of diagnostic imaging; Nichtneoplastische hypertrophische Osteoarthropathie auf dem Boden einer infizierten Aortenprothese. Aspekte der bildgebenden Diagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Golder, W. [Freie Univ. Berlin (Germany). Klinik fuer Radiologie, Nuklearmedizin und Physikalische Therapie; Schnorfeil, M.; Braun, J. [Freie Univ. Berlin (Germany). Klinik fuer Nephrologie und Endokrinologie; Dollinger, P. [Freie Univ. Berlin (Germany). Klinik fuer Allgemein-, Gefaess- und Thoraxchirurgie

    2001-05-01

    Secondary hypertrophic osteoarthropathy of the legs is a rare complication of arterial graft surgery. The syndrome is composed of arthralgias, clubbing of the toes and periostosis of the long bones and is usually associated with an infected aortic prosthesis. Often a CT-guided biopsy is performed in order to identify the graft as the primary focus. In addition to the lamellar periostosis demonstrable by conventional radiographs, a vast edema of the bone marrow and surrounding soft tissue is disclosed by MRI. Imaging promotes the early surgical reintervention. (orig.) [German] Die sekundaere hypertrophische Osteoarthropathie der unteren Extremitaeten ist eine seltene Komplikation der Bypasschirurgie. Am haeufigsten wird das aus Arthralgien, Trommelschlegelzehen und Periostose der langen Roehrenknochen bestehende Syndrom bei infizierten Aortenprothesen beobachtet. Die Identifizierung des Grafts als Fokus gelingt oft erst durch die CT-gezielte Punktion. Die MRT deckt ueber die im konventionellen Roentgenbild nachweisbare Periostose hinaus ein ausgedehntes Knochenmark- und Weichteiloedem sowie fokale subchondrale Nekrosen auf. Die bildgebende Diagnostik traegt zur Differenzialindikation von konservativer Therapie und chirurgischer Reintervention wesentlich bei. (orig.)

  17. Magnetic resonance imaging (MRI) of the TMJ: Influence on therapy and inter-observer agreement of two radiologists; Magnetresonanztomographie (MRT) des Kiefergelenkes: Einfluss auf Therapieentscheidung und Uebereinstimmung zweier Auswerter

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, M.; Okweschokwu, S. [Radiologie Haydnhaus, Bonn (Germany); Greven, M. [Medeco Zahnklinik, Bonn (Germany)

    2002-11-01

    Aim: To evaluate the influence of MRI of the temporomandibular joint on the therapeutic strategy in patients with craniomandibular disorders (internal derangement) and, furthermore, to analyze interobserver agreement for defined MRI criteria. Materials and Methods: Fifty-one unilateral and bilateral MRI examinations of 32 patients were enrolled. Therapeutic strategies before and after performance of the MRI were compared. Retrospectively, two radiologists independently analyzed the MR images for position of the disk, position of the condyle, signal intensity of the disk and bilaminar zone, osseous changes and several additional findings, using a check list. Agreement was tested by kappa statistics. Results: In 56% of the cases, changes of the therapeutic regimen were registered after MRI. Statistically significant agreement of the two observers was found for anterior position of the disk (kappa=0.44), transverse position of the disk (kappa=0.46) and position of the condyle (kappa=0.45). No significant agreement was found for signal intensity of the disk (kappa=0.14) or bilaminar zone (kappa=0.24), osseous changes (kappa=0.13) and the additional findings (kappa=0.29). Discussion: MRI has a measurable impact on the therapeutic approach to the internal derangement of the TMJ. The position of the disk and condyle can be reproducibly judged, while the signal intensity of the disk and bilaminar zone and the osseous changes are subject to wide observer variations. (orig.) [German] Zielsetzung: Es sollte der Einfluss der MRT des Kiefergelenkes auf die Therapieentscheidung untersucht werden. Des Weiteren sollten Uebereinstimmungen zweier unabhaengiger Radiologen in der Beurteilung von Kiefergelenk MRT anhand definierter Kriterien bestimmt werden. Material und Methoden: 51 MR-Untersuchungen des Kiefergelenkes wurden ausgewertet. Bei diesen Patienten wurde das urspruengliche mit dem Behandlungskonzept nach MRT verglichen. Alle MRT wurden von zwei Radiologen ausgewertet. Die

  18. Advances in radionuclide molecular imaging of pancreatic β-cells

    International Nuclear Information System (INIS)

    In both type 1 and type 2 diabetes mellitus, β-cell mass (BCM) is lost.Various treatments are developed to restore or reconstruct BCM. The development of non-invasive methods to quantify BCM in vivo offers the potential for early detection of β-cell dysfunction prior to the clinical onset of diabetes. PET imaging with radioligands that directly target the pancreatic β-cells appears promising. The ability to determine the BCM has been investigated in several targets and their corresponding radiotracers, including radiolabeled receptor ligands, antibodies, metabolites and reporter genes. Therefore, we summarize the recent progress in radionuclide molecular imaging of pancreatic β-cells. (authors)

  19. Tau PET: the next frontier in molecular imaging of dementia.

    Science.gov (United States)

    Xia, Chenjie; Dickerson, Bradford C

    2016-09-01

    We have arrived at an exciting juncture in dementia research: the second major pathological hallmark of Alzheimer's disease (AD)-tau-can now be seen for the first time in the living human brain. The major proteinopathies in AD include amyloid-β plaques and neurofibrillary tangles (NFTs) made of hyperphosphorylated paired helical filament (PHF) tau. Since its advent more than a decade ago, amyloid PET imaging has revolutionized the field of dementia research, enabling more confident diagnosis of the likely pathology in patients with a variety of clinical dementia syndromes, paving the way for the identification of people with preclinical or prodromal AD pathology, and serving as a minimally invasive molecular readout in clinical trials of putative disease-modifying interventions. Now that we are on the brink of a second revolution in molecular imaging in dementia, it is worth considering the likely potential impact of this development on the field. PMID:27334648

  20. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  1. Ferritin as a Novel Reporter Gene for Photoacoustic Molecular Imaging

    OpenAIRE

    Ha, Seung Han; Carson, Andrew R.; Kim, Kang

    2012-01-01

    Reporter genes may serve as endogenous contrast agents in the field of photoacoustic (PA) molecular imaging (PMI), enabling greater characterization of detailed cellular processes and disease progression. To demonstrate the feasibility of using ferritin as a reporter gene, human melanoma SK-24 (SK-MEL-24) cells were co-transfected with plasmid expressing human heavy chain ferritin (H-FT) and plasmid expressing enhanced green fluorescent protein (pEGFP-C1) using lipofectamine™ 2000. Non-transf...

  2. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    OpenAIRE

    Wachsmann, Jason; PENG, FANGYU

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many ...

  3. Novel molecular imaging platform for monitoring oncological kinases

    OpenAIRE

    Ross Brian D; Nyati Shyam; Rehemtulla Alnawaz; Bhojani Mahaveer S

    2010-01-01

    Abstract Recent advances in oncology have lead to identification of a plethora of alterations in signaling pathways that are critical to oncogenesis and propagation of malignancy. Among the biomarkers identified, dysregulated kinases and associated changes in signaling cascade received the lion's share of scientific attention and have been under extensive investigations with goal of targeting them for anti-cancer therapy. Discovery of new drugs is immensely facilitated by molecular imaging te...

  4. Non-invasive Optical Molecular Imaging for Cancer Detection

    Science.gov (United States)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  5. PET-based molecular nuclear neuro-imaging

    International Nuclear Information System (INIS)

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy

  6. The development of nuclear medicine molecular imaging: An era of multiparametric imaging

    International Nuclear Information System (INIS)

    Nuclear medical molecular imaging is developing toward a multimodality and multitracer future. Abundant complementary data generated from different tracers in different modalities are successfully serving the biological research and clinical treatment. Among the others, PER-MRI has the greatest potential and will be a research of interest in the near future. This article focused on the evolution history on nuclear medicine from single modality to multimodality, single tracer to multitracer. It also gave a brief summary to the identifications, differences, pros and consofmultimodality, multitracer, multiparametric molecular imaging. Issues, problems and challenges concerned with her development and recognition are also discussed. (authors)

  7. Photoacoustic molecular imaging for in vivo liver iron quantitation

    Science.gov (United States)

    Maccarinelli, Federica; Carmona, Fernando; Regoni, Maria; Arosio, Paolo

    2016-05-01

    A recent study showed that ferritin is a suitable endogenous contrast agent for photoacoustic molecular imaging in cultured mammalian cells. We have therefore tested whether this imaging technique can be used for in vivo quantification of iron in mouse livers. To verify this hypothesis, we used multispectral optoacoustic tomography (MSOT) to image albino CD1 mice before and after experimental iron loading. Postmortem assays showed that the iron treatment caused a 15-fold increase in liver iron and a 40-fold increase in liver ferritin levels, while in vivo longitudinal analysis using MSOT revealed just a 1.6-fold increase in the ferritin/iron photoacoustic signal in the same animals. We conclude that MSOT can monitor changes in ferritin/iron levels in vivo, but its sensitivity is much lower than that of ex vivo iron assays.

  8. A novel SPECT camera for molecular imaging of the prostate

    Science.gov (United States)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  9. Novel Molecular Imaging Approaches to Abdominal Aortic Aneurysm Risk Stratification.

    Science.gov (United States)

    Toczek, Jakub; Meadows, Judith L; Sadeghi, Mehran M

    2016-01-01

    Selection of patients for abdominal aortic aneurysm repair is currently based on aneurysm size, growth rate, and symptoms. Molecular imaging of biological processes associated with aneurysm growth and rupture, for example, inflammation and matrix remodeling, could improve patient risk stratification and lead to a reduction in abdominal aortic aneurysm morbidity and mortality. (18)F-fluorodeoxyglucose-positron emission tomography and ultrasmall superparamagnetic particles of iron oxide magnetic resonance imaging are 2 novel approaches to abdominal aortic aneurysm imaging evaluated in clinical trials. A variety of other tracers, including those that target inflammatory cells and proteolytic enzymes (eg, integrin αvβ3 and matrix metalloproteinases), have proven effective in preclinical models of abdominal aortic aneurysm and show great potential for clinical translation. PMID:26763279

  10. Individualisierendes Rechtschreibtraining auf verhaltenstherapeutischer Basis

    OpenAIRE

    Schneider, Wolfgang; Springer, Adolf

    2013-01-01

    14 rechtschreibschwache Schüier des 4. und 5. Schuljahrs nahmen an einem fünfmonatigen Rechtschreib-Förderprogramm auf verhaltenstherapeutischer und instruktionspsychologischer Grundlage teil. Das Training bestand aus einem individualisierenden Verfahren unter Anwendung eines Münzverstärkungsprogramms. Gegenüber einer unbehandelten Kontrollgruppe zeigte sich für die Experimentalgruppe eine insgesamt deutliche Abnahme in der Fehlerhäufigkeit, die sich statistisch absichern ließ. Zusätzlich wir...

  11. Breast imaging technology: Probing physiology and molecular function using optical imaging - applications to breast cancer

    International Nuclear Information System (INIS)

    The present review addresses the capacity of optical imaging to resolve functional and molecular characteristics of breast cancer. We focus on recent developments in optical imaging that allow three-dimensional reconstruction of optical signatures in the human breast using diffuse optical tomography (DOT). These technologic advances allow the noninvasive, in vivo imaging and quantification of oxygenated and deoxygenated hemoglobin and of contrast agents that target the physiologic and molecular functions of tumors. Hence, malignancy differentiation can be based on a novel set of functional features that are complementary to current radiologic imaging methods. These features could enhance diagnostic accuracy, lower the current state-of-the-art detection limits, and play a vital role in therapeutic strategy and monitoring

  12. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Hebert Alberto; Sala, Evis; Hricak, Hedvig [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Grimm, Jan [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York (United States); Donati, Olivio F. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. (orig.)

  13. Molecular orbital imaging using attosecond pulses generated in N2

    International Nuclear Information System (INIS)

    Complete text of publication follows. The strong interaction of a molecule with a laser field frees by tunnel ionization an attosecond electron wave packet that probes its bound state half a laser cycle later as it re-collides with the core. Rich information on ths (possibly transient) electronic and nuclear configuration is encoded in the attosecond XUV burst emitted during recombination, a process called high-order harmonic generation (HHG). Complete characterization (intensity, phase and polarization) of this observable gives access to the transition dipole moment over a large momentum span. This transition dipole may allow direct imaging of the radiating molecular orbital using a tomographic procedure. For the first time we succeeded to characterize the intensity, phase and polarization of the XUV emission in aligned N2 molecules. Our measurements evidence multi-orbital contributions to the attosecond emission and also reveal the ellipticity of the harmonics. Recent experimental and theoretical studies have revealed that molecules could be tunnel ionized from several orbitals simultaneously. These different orbitals lead to interfering contributions in the attosecond emission. We were able to separate these contributions and by using the tomographic molecular orbital reconstruction technique, HOMO and HOMO-1 orbitals were reconstructed in N2. These reconstructions show remarkable agreement with theoretical simulations and also provide us with the sign changes in the orbital wave functions. An investigation was addressed to the validity of the plane wave approximation in our calculation. The coherent superposition of the HOMO and HOMO-1 orbitals provides time-resolved experimental images of the wave packet ('hole') left empty after coherent tunnel ionization from both orbitals. The recombining electron wave packet probes the 'hole' at the instant of recombination providing information about the electronic structure of the molecule at that moment. This imaging of

  14. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging.

    Science.gov (United States)

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von Zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  15. A targeted molecular probe for colorectal cancer imaging

    Science.gov (United States)

    Attramadal, T.; Bjerke, R.; Indrevoll, B.; Moestue, S.; Rogstad, A.; Bendiksen, R.; Healey, A.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. Morbidity, mortality and healthcare costs can be reduced if the disease can be detected at an early stage. Screening is a viable approach as there is a clear link to risk factors such as age. We have developed a fluorescent contrast agent for use during colonoscopy. The agent is administered intravenously and is targeted to an early stage molecular marker for colorectal cancer. The agent consists of a targeting section comprising a peptide, and a fluorescent reporter molecule. Clinical imaging of the agent is to be performed with a far red fluorescence imaging channel (635 nm excitation/660-700 nm emission) as an adjunct to white light colonoscopy. Preclinical proof of mechanism results are presented. The compound has a K d of ~3nM. Two human xenograft tumour models were used. Tumour cells were implanted and grown subcutaneously in nude mice. Imaging using a fluorescence reflectance imaging system and quantitative biodistribution studies were performed. Substances tested include the targeted agent, and a scrambled sequence of the peptide (no binding) used as a negative control. Competition studies were also performed by co-administration of 180 times excess unlabelled peptide. Positive imaging contrast was shown in the tumours, with a clear relationship to expression levels (confirmed with quantitative biodistribution data). There was a significant difference between the positive and negative control substances, and a significant reduction in contrast in the competition experiment.

  16. Near Infrared Imaging of Molecular Beacons in Cancers

    Science.gov (United States)

    Chance, Britton

    2001-03-01

    The recent demonstrations of the efficacy of the tumor to background contrast in breast cancer using the tricarbo-cyanine near infrared (NIR) agent with time domain 2-D imaging presages the greater efficacy of site-directed optical contrast agents for early detection of cancers which show contrast (tissue to background) of over 20 fold. Further increases of contrast are obtained with structures that quench the fluorescence until the agent is delivered, recognized, and opened by specific enzymatic activity of the tumor. These are termed ``Molecular Beacons". In order to image the localization of the Beacons, we employ light pen ( 20μ) in LN2 gives the desired 3D high resolution image of the location of the Beacon within in the cancer cell. Since cancer prevention is linked to early detection, the high signal to background obtainable with Molecular Beacons enables the detection of very early subsurface cancers, especially breast and prostate (NIH, UIP). Thus the fluorescent Beacon excites and emits in the NIR window and signals from several cm deep in breast are detected by diffusive wave optical tomography (DWOT). Detection of objects ( 800 nm) affording 0.2 mm object detection of even low Beacon concentrations. One, two, and 3-D localization is made possible by one, two, and three orthogonal phase array null planes.

  17. Contributions on biomedical imaging, with a side-look at molecular imaging

    International Nuclear Information System (INIS)

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.)

  18. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  19. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    Science.gov (United States)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  20. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    OpenAIRE

    Lu, Yujie; Zhu, Banghe; Shen, Haiou; Rasmussen, John C.; WANG, GE; Sevick-Muraca, Eva M.

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to...

  1. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases

    OpenAIRE

    Lu, Feng-Mei; Yuan, Zhen

    2015-01-01

    Molecular imaging is an attractive technology widely used in clinical practice that greatly enhances our understanding of the pathophysiology and treatment in central nervous system (CNS) diseases. It is a novel multidisciplinary technique that can be defined as real-time visualization, in vivo characterization and qualification of biological processes at the molecular and cellular level. It involves the imaging modalities and the corresponding imaging agents. Nowadays, molecular imaging in n...

  2. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    Science.gov (United States)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  3. Laser induced - tunneling, electron diffraction and molecular orbital imaging

    International Nuclear Information System (INIS)

    Full text: Multiphoton ionization in the tunneling limit is similar to tunneling in a scanning tunneling microscope. In both cases an electron wave packet tunnels from a bound (or valence) state to the continuum. I will show that multiphoton ionization provides a route to extend tunneling spectroscopy to the interior of transparent solids. Rotating the laser polarization is the analogue of scanning the STM tip - a means of measuring the crystal symmetry of a solid. In gas phase molecules the momentum spectrum of individual electrons can be measured. I will show that, as we rotate the molecule with respect to the laser polarization, the photoelectron spectrum samples a filter projection of the momentum wave function (the molecular analogue to the band structure) of the ionizing orbital. Some electrons created during multiphoton ionization re-collide with their parent ion. I will show that they diffract, revealing the scattering potential of the ion - the molecular structure. The electron can also interfere with the initial orbital from which it separated, creating attosecond XUV pulses or pulse trains. The amplitude and phase of the radiation contains all information needed to re-construct the image of the orbital (just as a sheared optical interferometer can fully characterize an optical pulse). Strong field methods provide an extensive range of new tools to apply to atomic, molecular and solid-state problems. (author)

  4. Molecular imaging by optically-detected electron spin resonance of nitrogen-vacancies in nanodiamond

    CERN Document Server

    Hegyi, Alex

    2012-01-01

    Molecular imaging refers to a class of noninvasive biomedical imaging techniques with the sensitivity and specificity to image biochemical variations in-vivo. An ideal molecular imaging technique visualizes a biochemical target according to a range of criteria, including high spatial and temporal resolution, high contrast relative to non-targeted tissues, depth-independent penetration into tissue, lack of harm to the organism under study, and low cost. Because no existing molecular imaging modality is ideal for all purposes, new imaging approaches are needed. Here we demonstrate a novel molecular imaging approach, called nanodiamond imaging, that uses nanodiamonds containing nitrogen-vacancy (NV) color centers as an imaging agent, and image nanodiamond targets in pieces of chicken breast. Nanodiamonds can be tagged with biologically active molecules so they bind to specific receptors; their distribution can then be quantified in-vivo via optically-detected magnetic resonance of the NVs. In effect, we are demo...

  5. Graphene-based nanomaterials as molecular imaging agents.

    Science.gov (United States)

    Garg, Bhaskar; Sung, Chu-Hsun; Ling, Yong-Chien

    2015-01-01

    Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events at the cellular and molecular level within tissues, living cells, and/or intact objects that can be advantageously applied in the areas of diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale reactions including enzymatic conversions and protein-protein interactions. Consequently, over the years, great advancement has been made in the development of a variety of MI agents such as peptides, aptamers, antibodies, and various nanomaterials (NMs) including single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim & Novoselov, has ignited considerable research efforts to rationally design and execute a wide range of graphene-based NMs making them an attractive platform for developing highly sensitive MI agents. Owing to their exceptional physicochemical and biological properties combined with desirable surface engineering, graphene-based NMs offer stable and tunable visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus have been explored for in vitro and in vivo imaging applications as a promising alternative of traditional imaging agents. This review begins by describing the intrinsic properties of graphene and the key MI modalities. After which, we provide an overview on the recent advances in the design and development as well as physicochemical properties of the different classes of graphene-based NMs (graphene-dye conjugates, graphene-antibody conjugates, graphene-nanoparticle composites, and graphene quantum dots) being used as MI agents for potential applications including theranostics. Finally, the major challenges and future directions in the field will be discussed. PMID:25857851

  6. Near-infrared dyes for molecular probes and imaging

    Science.gov (United States)

    Patonay, Gabor; Beckford, Garfield; Strekowski, Lucjan; Henary, Maged; Kim, Jun Seok; Crow, Sidney

    2009-02-01

    Near-Infrared (NIR) fluorescence has been used both as an analytical tool as molecular probes and in in vitro or in vivo imaging of individual cells and organs. The NIR region (700-1100 nm) is ideal with regard to these applications due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. NIR dyes are also useful in studying binding characteristics of large biomolecules, such as proteins. Throughout these studies, different NIR dyes have been evaluated to determine factors that control binding to biomolecules, including serum albumins. Hydrophobic character of NIR dyes were increased by introducing alkyl and aryl groups, and hydrophilic moieties e.g., polyethylene glycols (PEG) were used to increase aqueous solubility. Recently, our research group introduced bis-cyanines as innovative NIR probes. Depending on their microenvironment, bis-cyanines can exist as an intramolecular dimer with the two cyanines either in a stacked form, or in a linear conformation in which the two subunits do not interact with each other. In this intramolecular H-aggregate, the chromophore has a low extinction coefficient and low fluorescence quantum yield. Upon addition of biomolecules, the H-and D- bands are decreased and the monomeric band is increased, with concomitant increase in fluorescence intensity. Introduction of specific moieties into the NIR dye molecules allows for the development of physiological molecular probes to detect pH, metal ions and other parameters. Examples of these applications include imaging and biomolecule characterizations. Water soluble dyes are expected to be excellent candidates for both in vitro and in vivo imaging of cells and organs.

  7. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with (18)F positron emission tomography.

    Science.gov (United States)

    Scherer, Daniel J; Psaltis, Peter J

    2016-08-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of (18)Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of (18)Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) and sodium (18)F-fluoride ((18)F-NaF). PMID:27500093

  8. Molecular and Ionized Hydrogen in 30 Doradus. I. Imaging Observations

    Science.gov (United States)

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-01

    We present the first fully calibrated H2 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H2-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H2, Brγ, CO, and 8 μm emission, the H2 to Brγ line ratio, and Cloudy models, we find that the H2 emission is formed inside the PDRs of 30 Doradus, 2-3 pc to the ionization front of the H ii region, in a relatively low-density environment <104 cm-3. Comparisons with Brγ, 8 μm, and CO emission indicate that H2 emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  9. Molecular and Ionized Hydrogen in 30 Doradus. I. Imaging Observations

    CERN Document Server

    Yeh, Sherry C C; Matzner, Christopher D; Pellegrini, Eric W

    2015-01-01

    We present the first fully calibrated H$_2$, 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-Field Infrared Imager on the CTIO 4-meter Blanco Telescope. Together with a NEWFIRM Br$\\gamma$ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H$_2$-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are photodissociation regions viewed edge-on. Based on the morphologies of H$_2$, Br$\\gamma$, $^{12}$CO, and 8$\\mu$m emission, the H$_2$ to Br$\\gamma$ line ratio and Cloudy models, we find that the H$_2$ emission is formed inside the photodissociation regions of 30 Doradus, 2 - 3 pc to the ionization front of the HII region, in a relatively low-density environment $<$ 10$^4$ cm$^{-3}$. Comparisons with Br$\\gamma$, 8$\\mu$m, and CO emissi...

  10. A Review of Tumor Specific Imaging Methods: A Glance at the Use of Molecular Imaging

    Directory of Open Access Journals (Sweden)

    M.A. Oghabian

    2005-08-01

    Full Text Available Introduction & Background: Conventional imaging modalities of CT, MRI, ultrasound, radionuclide, and even metabolic PET are insensitive to reveal tumor and metastasis of less than few millimeters containing not much fewer than 500,000 cells. At this size, a tu-mor has effectively undergone about 20 cell dou-blings, and is sufficiently stuffed with gene defects and likely to metastasize. New techniques generally known as molecular imaging lead to a patient-specific approach based on physiologic, antigenic, molecular, and genetic disease markers. In this article, Current and the near term trends and techniques in early de-tection of cancer using gene specific, cell specific, or even patient specific approaches are summarized. A number of markers are used for cancer imaging. Anatomic markers show cell morphology defects at the sub-10-µm level on CT, MRI, and OCT (Optical Coherence Tomography. These techniques often fail to provide accurate and basic information necessary to manage the patient’s disease such as true metastatic extent. Functional markers use dynamic features, such as capillary leak (using ICG, IndoCyanine Green, lymphatic transport (by colloid, or Tc-Sestamibi, blood oxygenation, and blood flow. The features provide signal by a bulk phenomenon, and hence are still insensitive. More specifically, anti-genic probes, such as targeted antibodies have been demonstrated effectively in vivo for both diagnostic and therapeutic purposes, such as PSMA in the pros-tate cancer, CEA in colorectal cancer, and HER-2/neu in breast cancer. Metabolic probes accumulate at the site of a specific metabolic activity, and rely on imag-ing agents involving certain enzymatic pathways or transport functions of the cell. Examples are 18FDG (18F-fluoroDeoxyGlucose in PET and 11C-thymidine. Recent spectroscopy techniques do not need such labeled probes. The common method for in-vivo spectroscopy is MRSI (Proton Magnetic Resonance Spectroscopy that can

  11. Die Einflüsse des Tabakkonsums auf die weibliche Fertilität und auf eine ART-Behandlung

    Directory of Open Access Journals (Sweden)

    Gruber I

    2011-01-01

    Full Text Available Rauchen ist ein Gesundheitsrisiko. Der Griff zur Zigarette hat ein „cooles“ Image – vor allem bei jungen Menschen gilt Rauchen als Zeichen von „Reife“. Der Zigarettenrauch enthält mehr als 3800 chemische Komponenten. Die darin enthaltenen Toxine greifen in jedes Stadium der Reproduktion ein, und beeinträchtigen dadurch die Gesundheit der nächsten Generation. Zigarettenrauch bewirkt bei Frauen nachweislich eine vorzeitige Menopause, weiters eine verminderte Chance auf eine spontane Konzeption, auch der Erfolg im Rahmen einer assistierten Reproduktion ist deutlich vermindert. Raucher weisen eine unbestrittene Reduktion von Spermienqualität und Spermienbeweglichkeit auf. Insbesondere werden vermehrt DNA-Schäden in den Spermien nachgewiesen, darum sind auch spätere embryonale oder postnatale Störungen häufiger. Deshalb sollte rauchenden Paaren mit Kinderwunsch eine Rauchentwöhnung im Rahmen eines Aufklärungsgespräches dringend empfohlen werden.

  12. Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation

    OpenAIRE

    Dauth, M.; Wiessner, M.; Feyer, V.; Schöll, A.; Puschnig, P.; Reinert, F.; Kümmel, S.

    2015-01-01

    Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter ar...

  13. Molecular Ion Geometries from Inversion of Coulomb Explosion Imaging Data

    International Nuclear Information System (INIS)

    The inversion of Coulomb explosion imaging (CEI) data is made possible by means of a scheme termed the modified backward integration (MBI) method. This method allows one to analyze CEI data for a single Coulomb explosion event so as to infer the geometry of the relevant molecule or molecular ion. We outline the MBI scheme whose two key features are the use of a hyperspherical coordinate system and the change of the independent variable from time to the hyper-radial coordinate. We also test the method on simulated open-quote open-quote experimental close-quote close-quote data for idealized model species of known geometry, and then apply it to CEI data actually measured. copyright 1996 The American Physical Society

  14. Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy

    Science.gov (United States)

    Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel

    2013-03-01

    Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.

  15. [Molecular imaging for early diagnosis of Alzheimer's disease].

    Science.gov (United States)

    Pozo García, Miguel Angel

    2004-01-01

    The progressive aging of the population and the difficulty of diagnosing and treating Alzheimer's disease (AD) portends an exponencial increase in the prevalence of this illness. One way to approach this social and health problem is to develop diagnostic techniques that allow us to detect the disease in its pre-clinical stages and apply early treatment that can slow down AD advance. Molecular imaging, in particular that generated by positron emission tomography with 2-fluoro-2 deoxi-D-glucose (PET-FDG) has shown high sensitivity in detecting changes in cerebral metabolic activity in the early stages of AD, and allow other dementias and physiological changes that accompany normal aging to be distinguished from AD. PMID:15997594

  16. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  17. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  18. Recent trends in Molecular Imaging : PET/CT in Neurology

    Directory of Open Access Journals (Sweden)

    R P Tripathi

    2015-06-01

    Full Text Available PET/CT is an important molecular imaging technique for the assessment ofneurological disorders. The most widely used radiopharmaceutical for both clinical and research purposes is [18F] 2-fluoro-2-deoxy-D-glucose (FDG. It is extensively used owing to its favourable physical characteristics. It enables depiction of cerebral glucose metabolism, and has thus been used to study various pathological states. Despite this, FDG has its own limitations. This is owing to its limited specificity and high cortical uptake. This has paved the way for the development of several non-FDG PET radiopharmaceuticals. We present the insights gained at our institution, using these radiotracers in the assessment of neurological disease. Our study shows that the use of FDG and non-FDG novel PET radiopharmaceuticals facilitates the early diagnosis, delineation of extent, prognostication and monitoring of therapeutic response in several neuropathological states.PET/CT is an important molecular imaging technique for the assessment ofneurological disorders. The most widely used radiopharmaceutical for both clinicaland research purposes is [18F] 2-fluoro-2-deoxy-D-glucose (FDG. It is extensivelyused owing to its favourable physical characteristics. It enables depiction of cerebralglucose metabolism, and has thus been used to study various pathological states.Despite this, FDG has its own limitations. This is owing to its limited specificity andhigh cortical uptake. This has paved the way for the development of several non-FDGPET radiopharmaceuticals. We present the insights gained at our institution, usingthese radiotracers in the assessment of neurological disease. Our study shows that theuse of FDG and non-FDG novel PET radiopharmaceuticals facilitates the earlydiagnosis, delineation of extent, prognostication and monitoring of therapeuticresponse in several neuropathological states.

  19. Novel Metal Ion Based Estrogen Mimics for Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, Raghavan

    2006-01-30

    The overall objective of the SBIR Phase I proposal is to prepare and evaluate a new class of {sup 99m}Tc or {sup 94m}Tc containing estrogen-like small molecules ('estrogen mimics') for SPECT or PET molecular imaging of estrogen receptor positive (ER+) tumors. In this approach, the metal ion is integrated into the estrone skeleton by isosteric substitution of a carbon atom in the steroidal structure to give new class of mimics that are topologically similar to the native estrogen (Fig. 1). Although both N{sub 2}S{sub 2} and N{sub 3}S mimics 1 and 2 were considered as target structures, molecular modeling study revealed that the presence of the acetyl group at position-15 in the N{sub 3}S mimic 2 causes steric hinderance toward binding of 2 to SHBG. Therefore, initial efforts were directed at the synthesis and evaluation of the N{sub 2}S{sub 2} mimic 1.

  20. A solution for archiving and retrieving preclinical molecular imaging data in PACS using a DICOM gateway

    Science.gov (United States)

    Lee, Jasper; Liu, Bihui; Liu, Brent

    2011-03-01

    Advances in biology, computer technology and imaging technology have given rise to a scientific specialty referred to as molecular imaging, which is the in vivo imaging of cellular and molecular pathways using contrast-enhancing targeting agents. Increasing amounts of molecular imaging research are being performed at pre-clinical stages, generating diverse datasets that are unstructured and thereby lacking in archiving and distribution solutions. Since PACS in radiology is a mature clinical archiving solution, a method is proposed to convert current imaging files from preclinical molecular imaging studies into DICOM formats for archival and retrieval from PACS systems. A web-based DICOM gateway is presented with an emphasis on metadata mapping in the DICOM header, system connectivity, and overall user workflow. This effort to conform preclinical imaging data to the DICOM standard is necessary to utilize current PACS solutions for preclinical imaging data content archiving and distribution.

  1. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging.

  2. Nuclear molecular imaging of paragangliomas; Imagerie moleculaire nucleaire des paragangliomes

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, D.; Tessonnier, L.; Mundler, O. [Service central de biophysique et de medecine nucleaire, CHU de la Timone, 13 - Marseille (France)

    2010-08-15

    Paragangliomas (PGL) are relatively rare neural crest tumors originating in the adrenal medulla (usually called pheochromocytoma), chemoreceptors (i.e., carotid and aortic bodies) or autonomic ganglia. These tumors are highly vascular, usually benign and slow-growing. PGL may occur as sporadic or familial entities, the latter mostly in association with germline mutations of the succinate dehydrogenase (SDH) B, SDHC, SDHD, SDH5, von Hippel-Lindau (VHL), ret proto-oncogene (RET), neurofibromatosis 1 (NF1) (von Recklinghausen's disease), prolyl hydroxylase domain protein 2 (PHD2) genes and TMEM127. Molecular nuclear imaging has a central role in characterization of PGL and include: somatostatin receptor imaging ({sup 111}In, {sup 68}Ga), MIBG scintigraphy ({sup 131}I, {sup 123}I), {sup 18}F-dihydroxy-phenylalanine ({sup 18}F-DOPA) positron emission tomography (PET), and {sup 18}F-deoxyglucose ({sup 18}F-FDG) PET. The choice of the tracer is not yet fully established but the work-up of familial forms often require the combination of multiple approaches. (authors)

  3. Imaging of multi-step hepatocarcinogenesis. Imaging, pathophysiologic and molecular correlation

    International Nuclear Information System (INIS)

    For the diagnosis of early hepatocellular carcinoma (HCC), it is essential to understand the correlation between its pathophysiology and concomitant image changes during multi-step hepatocarcinogenesis (MS-HCG). For this, authors explain about the circulatory alteration inside/outside of the nodule at MS-HCG and its pathophysiologic base, and imaging mechanics of HCC in gadolinium ethoxybenzyl-diethylene-triamine-pentaacetic acid (Gd-EOB-DTPA) enhanced MRI and its molecular base. Imaging diagnosis of early HCC has been difficult as the ordinary images only give the presence of dysplastic nodules (DN) while pathologic diagnosis can decide the disease with observed focus (or foci) of HCC within DN. The important diagnostic imaging involves CT during hepatic arteriography (CTHA) and CT during arterial portography (CTAP), which can show blood flow changes within and around DN along the progression of early to well/moderately differentiated HCC. That is, it has been shown that, with the progression of malignancy of DN in MS-HCG, the portal blood flow decreases to zero finally at the moderate phase, and arterial flow is once reduced, and due to angiogenesis, is increased to the far higher level than normal at well/moderate phases. Recently, Gd-EOB-DTPA enhanced MRI is suggested to be a useful imaging for HCC diagnosis as, not only blood flow imaging, but also the function of hepatocytes are evaluable with the agent. It is taken up in normal hepatocytes from sinusoidal blood via the organic anion transporting polypeptide (OATP) and excluded in bile via multidrug resistance associated protein 2 (Mrp2). Alteration of expression of the transporters in HCC can be reflected by the enhanced MRI. The circulatory alteration by CT detection around the nodule and Gd-EOB-DTPA enhanced MRI will be the most important imaging means of early HCC diagnosis. (T.T.)

  4. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  5. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    Science.gov (United States)

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation. PMID:27091626

  6. Mit der Kamera forschend auf Reisen

    OpenAIRE

    Mendel, Tommi

    2011-01-01

    Was haben Pilger- und Backpackerreisen gemeinsam? Inwiefern können beide als Übergangsrituale verstanden werden? Diese Fragen stellt sich Tommi Mendel in seiner Doktorarbeit und begleitete dafür Fusspilger und Globetrotter auf der Reise.

  7. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    Science.gov (United States)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  8. Spectral imaging of the Central Molecular Zone in multiple 3-mm molecular lines

    CERN Document Server

    Jones, P A; Cunningham, M R; Requena-Torres, M A; Menten, K M; Schilke, P; Belloche, A; Leurini, S; Martin-Pintado, J; Ott, J; Walsh, A J

    2011-01-01

    We have mapped 20 molecular lines in the Central Molecular Zone (CMZ) around the Galactic Centre, emitting from 85.3 to 93.3 GHz. This work used the 22-m Mopra radio telescope in Australia, equipped with the 8-GHz bandwidth UNSW-MOPS digital filter bank, obtaining \\sim 2 km/s spectral and \\sim 40 arcsec spatial resolution. The lines measured include emission from the c-C3H2, CH3CCH, HOCO+, SO, H13CN, H13CO+, SO, H13NC, C2H, HNCO, HCN, HCO+, HNC, HC3N, 13CS and N2H+ molecules. The area covered is Galactic longitude -0.7 to 1.8 deg. and latitude -0.3 to 0.2 deg., including the bright dust cores around Sgr A, Sgr B2, Sgr C and G1.6-0.025. We present images from this study and conduct a principal component analysis on the integrated emission from the brightest 8 lines. This is dominated by the first component, showing that the large-scale distribution of all molecules are very similar. We examine the line ratios and optical depths in selected apertures around the bright dust cores, as well as for the complete map...

  9. Positron radioactive molecular imaging agents for early diagnosis of Parkinson's disease

    International Nuclear Information System (INIS)

    Positron radioactive molecular imaging can be used to do early diagnose of Parkinson's disease, a senile neurodegenerative disease, and the method has been accepted by more and more doctors and patients. In this paper, we give a review on positron radioactive molecular imaging agents in clinical application and research of Parkinson's disease. (authors)

  10. Einflussfaktoren auf die Teamleistung im interkulturellen Vergleich

    OpenAIRE

    Ritz, Frank

    2004-01-01

    Die Teamleistung ist in Einrichtungen hohen Gefährdungspotentials aus sicherheitswissenschaftlicher Sicht vor allem unter dem Aspekt, sicheres Handeln im Team zu gewährleisten, von Bedeutung. In dieser Arbeit wird Teamleistung anhand der wahrgenommenen Interaktionsprozesse innerhalb von Teams in Operationssälen untersucht. Auf Grundlage wissenschaftlicher Literatur werden wichtige Einflussfaktoren auf die Teamleistung in organisationalem Vertrauen und dem Vertrauen in automatisierte Systeme v...

  11. V-Topologien auf Körpererweiterungen

    OpenAIRE

    Dupont, Katharina

    2010-01-01

    In meiner Diplomarbeit untersuche ich wie sich V-Topologien, d.h. von Bewertungen oder Absolutbeträgen induzierte Topologien, auf Körpererweiterungen verhalten. Wir zeigen, dass sich jede V-Topologie auf jede algebraische Körpererweiterung fortsetzen lässt und untersuchen unter welchen Voraussetzungen diese Fortsetzung eindeutig ist. In diesem Zusammenhang befassen wir uns mit den Begriffen topologisch henselsch (nach Berrondo) und t-henselsch (nach Prestel/Ziegler). Im letzten Teil der Arbe...

  12. Biogas-BHKW: Einflussparameter auf die Formaldehydemissionen

    OpenAIRE

    Neumann, Torsten; Beer, Volker; Wedwitschka, Harald

    2010-01-01

    An 11 Blockheizkraftwerken (BHKW) ohne Oxidationskatalysator und an 10 BHKW mit Oxidationskatalysator in Sachsen und Thüringen wurden die Einflussfaktoren auf die Formaldehydemissionen untersucht. Geprüft wurden insbesondere die Motorbetriebsparameter wie z.B. Zylindertemperaturen, Verbrennungsluftverhältnis, die Biogaszusammensetzung und die Biogasfeuchte. Im Ergebnis konnte kein bzw. nur ein geringer Einfluss der untersuchten Parameter auf die Formaldehydbildung festgestellt werden. Ebe...

  13. Nutzerzentrierte Untersuchung von Benachrichtigungen auf intelligenten Uhren

    OpenAIRE

    Yalcin, Taha

    2014-01-01

    Mit der Verbreitung von intelligenten Geräten wie Smartphones, Uhren oder Tablets spielen Benachrichtigungen und deren Auswirkung auf das Nutzerverhalten eine große Rolle. Diese Arbeit beschäftigt sich mit Benachrichtigungen auf intelligenten Uhren. Mit Hilfe einer Online-Umfrage und einer Feldstudie wurde untersucht, welche Benachrichtigungen von unterschiedlichen Anwendungsarten bei den Nutzern als wichtiger empfunden werden und welche als unwichtiger. Hierbei konzentrierte sich diese A...

  14. Hybrid gold nanoparticles in molecular imaging and radiotherapy

    International Nuclear Information System (INIS)

    Metallic nanoparticles, because of their size, chemical and physical properties, are particularly attractive as therapeutic probes in treating cancer. Central to any clinical advances in nanoparticulate based therapy will be to produce hybrid nanoparticles that can be targeted to vascular, extracellular or cell surface receptors. Development of hybrid nanoparticles that specifically target cancer vasculature has received considerable attention. Most cancers have leaky vasculature and the defective vascular architecture, created due to the rapid vascularization necessary to serve fast growing cancers, in combination with poor lymphatic drainage allows increased permeation and retention effects. The leaky vasculature, because of higher porosity and permeability, serve as natural high affinity targets to metallic nanoparticles. Another attractive approach toward the application of nanotechnology to nanomedicine is the utility of nanoparticles that display inherent therapeutic properties. For example radioactive gold nanoparticles present attractive prospects in therapy of cancer. The radioactive properties of Au-198 (βmax = 0.96 MeV; t1/2 = 2.7 d) and Au-199 (βmax = 0.46 MeV; t1/2 = 3.14 d) make them ideal candidates for use in radiotherapeutic applications. In addition, they both have imageable gamma emissions for dosimetry and pharmacokinetic studies and Au-199 can be made carrier-free by indirect methods. Gold nanoparticles are of interest for treatment of disease as they can deliver agents directly into cells and cellular components with a higher concentration of radioactivity, e.g. higher dose of radioactivity, to cancerous tumour cells. This presentation will provide latest results on (i) the production of biocompatible hybrid gold nanoparticles; (ii) production, characterization and biodistribution of Au-198 nanoparticles and (iii) details on the utility of gold nanoparticles in molecular imaging using X ray contrast (CT) techniques. (author)

  15. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  16. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    International Nuclear Information System (INIS)

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging

  17. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    International Nuclear Information System (INIS)

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  18. Basic research and clinical application of optical molecular imaging in breast cancer

    International Nuclear Information System (INIS)

    As a rapidly developing biomedical imaging technology,in vivo optical molecular imaging has been widely applied in various research fields owing to its unique real-time, quantitative and noninvasive characteristics. The applications of in vivo optical imaging technology in the basic and clinical research of breast cancer were reviewed, including detection of distant metastasis,tumor apoptosis, cell cycle, hypoxia and angiogenesis, ER-mediated molecular pathway, breast cancer stem cells, early diagnosis, sentinel node biopsy, evaluation of drug efficacy and detection of human epidermal growth factor receptor-2 (HER-2) expression. They all seem to have a promising potential in in vivo optical molecular imaging. (authors)

  19. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  20. The Center for Integrated Molecular Brain Imaging (Cimbi) database.

    Science.gov (United States)

    Knudsen, Gitte M; Jensen, Peter S; Erritzoe, David; Baaré, William F C; Ettrup, Anders; Fisher, Patrick M; Gillings, Nic; Hansen, Hanne D; Hansen, Lars Kai; Hasselbalch, Steen G; Henningsson, Susanne; Herth, Matthias M; Holst, Klaus K; Iversen, Pernille; Kessing, Lars V; Macoveanu, Julian; Madsen, Kathrine Skak; Mortensen, Erik L; Nielsen, Finn Årup; Paulson, Olaf B; Siebner, Hartwig R; Stenbæk, Dea S; Svarer, Claus; Jernigan, Terry L; Strother, Stephen C; Frokjaer, Vibe G

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions related to the serotonergic transmitter system with its normative data on the serotonergic subtype receptors 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 and the 5-HT transporter (5-HTT), but can easily serve other purposes. The Cimbi database and Cimbi biobank were formally established in 2008 with the purpose to store the wealth of Cimbi-acquired data in a highly structured and standardized manner in accordance with the regulations issued by the Danish Data Protection Agency as well as to provide a quality-controlled resource for future hypothesis-generating and hypothesis-driven studies. The Cimbi database currently comprises a total of 1100 PET and 1000 structural and functional MRI scans and it holds a multitude of additional data, such as genetic and biochemical data, and scores from 17 self-reported questionnaires and from 11 neuropsychological paper/computer tests. The database associated Cimbi biobank currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank. PMID:25891375

  1. Advance in molecular imaging research of vascular smooth muscle cells in the vascular diseases

    International Nuclear Information System (INIS)

    Vascular smooth muscle cells (VSMCs) are the primary cells within the vascular wall structure and maintain the tension of blood vessels, playing a key role in the restenosis, atherosclerosis and some other vascular diseases. With the development of molecular imaging, VSMCs cellular level of imaging studies is becoming more and more attention. The phenotype modulation, proliferation, migration and molecular imaging research progress of VSMCs in pathologic state were reviewed, to improve the management of vascular restenosis and atherosclerosis. (authors)

  2. Molecular markers in breast cancer: new tools in imaging and prognosis

    OpenAIRE

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluorescent labeled (NIRF) tracers for detection of breast cancer. Thus far, only a few molecular imaging tracers have been taken to the clinic of which most are suitable for PET. My thesis describes the e...

  3. Molecular imaging of HER2-positive breast cancer: a step toward an individualized 'image and treat' strategy

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...

  4. Molecular imaging of HER2-positive breast cancer: a step toward an individualized 'image and treat' strategy

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...... individual approaches to targeted therapy of HER2-positive breast cancers....

  5. Investigations on the usefulness of CEACAMs as potential imaging targets for molecular imaging purposes.

    Directory of Open Access Journals (Sweden)

    Markus Heine

    Full Text Available Members of the carcinoembryonic antigen cell adhesion molecules (CEACAMs family are the prototype of tumour markers. Classically they are used as serum markers, however, CEACAMs could serve as targets for molecular imaging as well.In order to test the anti CEACAM monoclonal antibody T84.1 for imaging purposes, CEACAM expression was analysed using this antibody. Twelve human cancer cell lines from different entities were screened for their CEACAM expression using qPCR, Western Blot and FACS analysis. In addition, CEACAM expression was analyzed in primary tumour xenografts of these cells. Nine of 12 tumour cell lines expressed CEACAM mRNA and protein when grown in vitro. Pancreatic and colon cancer cell lines showed the highest expression levels with good correlation of mRNA and protein level. However, when grown in vivo, the CEACAM expression was generally downregulated except for the melanoma cell lines. As the CEACAM expression showed pronounced expression in FemX-1 primary tumours, this model system was used for further experiments. As the accessibility of the antibody after i.v. application is critical for its use in molecular imaging, the binding of the T84.1 monoclonal antibody was assessed after i.v. injection into SCID mice harbouring a FemX-1 primary tumour. When applied i.v., the CEACAM specific T84.1 antibody bound to tumour cells in the vicinity of blood vessels. This binding pattern was particularly pronounced in the periphery of the tumour xenograft, however, some antibody binding was also observed in the central areas of the tumour around blood vessels. Still, a general penetration of the tumour by i.v. application of the anti CEACAM antibody could not be achieved despite homogenous CEACAM expression of all melanoma cells when analysed in tissue sections. This lack of penetration is probably due to the increased interstitial fluid pressure in tumours caused by the absence of functional lymphatic vessels.

  6. Molecular Imaging of Transporters with Positron Emission Tomography

    Science.gov (United States)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  7. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    Science.gov (United States)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (bioluminescence based modalities for molecular imaging in live mice.

  8. From molecular imaging to personalized radionuclide therapy of cancer

    International Nuclear Information System (INIS)

    Full text of publication follows. 68Gallium is a positron emitter (t1/2 68 min) which can be produced from a generator in a convenient, 'in-house' preparation and used for labeling of peptides, e.g. somatostatin analogues (SA) like DOTATOC or DOTATATE for molecular imaging of SSTR expressing tumors. Since 2004, we have performed over 7700 68Ga PET/CT studies in patients with neuroendocrine tumors (NET) and have established SSTR PET/CT as the new gold standard for imaging G1 and G2 NET (staging, re-staging, therapy response evaluation and detection of unknown primary NET). The same peptides can be labeled with 177Lutetium or 90Yttrium for radionuclide therapy, a form of personalized treatment (THERANOSTICS approach). PRRNT is based on the receptor-mediated internalization of SA. Several clinical trials indicate that PRRNT can deliver effective radiation doses to tumors. A German multi-institutional registry study with prospective follow up in 450 patients indicates that PRRT is an effective therapy for patients with G1-2 neuroendocrine tumors, irrespective of previous therapies, with a survival advantage of several years compared to other therapies and only minor side effects. Median overall survival (OS) of all patients from the start of treatment was 59 months. Median progression-free survival (PFS) measured from last cycle of therapy accounted to 41 mo. Median PFS of pancreatic NET was 39 mo. Similar results were obtained for NET of unknown primary (median PFS: 38 mo) whereas NET of small bowel had a median PFS of 51 months. Side effects like 3-4 NEThro- or hemato-toxicity were observed in only 0.2% and 2% of patients respectively. PRRNT is highly effective in the management of NET, even in advanced cases. In patients with progressive neuroendocrine tumors, fractionated, personalized PRRNT with lower doses of radioactivity given over a longer period of time (Bad Berka Concept using sequential (DUO) PRRNT) results in excellent therapeutic responses. By

  9. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    CERN Document Server

    Aamir, R; Bateman, C.J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.K.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; Ruiter, N.de; Gieseg, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P.J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S.J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.J.; Hodge, K.

    2014-01-01

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we ...

  10. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    International Nuclear Information System (INIS)

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20–140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we are one of the first to present data from multi-energy photon-processing small animal CT systems, we make the raw, partial and fully processed data available with the intention that others can analyze it using their familiar routines. The raw, partially processed and fully processed data of lamb tissue along with the phantom calibration data can be found at http://hdl.handle.net/10092/8531

  11. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  12. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Hospital, Gwangju (Korea, Republic of); Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of)

    2009-08-15

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  13. Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury

    Science.gov (United States)

    Hoyt, Kenneth; Warram, Jason M.; Wang, Dezhi; Ratnayaka, Sithira; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Purpose The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. Procedures A population of rats underwent 30 min of renal ischemia (acute kidney injury, N=6) or sham injury (N=4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. Results Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. Conclusions Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted. PMID:25905474

  14. Molecular MR imaging of cancer gene therapy. Ferritin transgene reporter takes the stage

    International Nuclear Information System (INIS)

    Molecular imaging using magnetic resonance (MR) imaging has been actively investigated and made rapid progress in the past decade. Applied to cancer gene therapy, the technique's high spatial resolution allows evaluation of gene delivery into target tissues. Because noninvasive monitoring of the duration, location, and magnitude of transgene expression in tumor tissues or cells provides useful information for assessing therapeutic efficacy and optimizing protocols, molecular imaging is expected to become a critical step in the success of cancer gene therapy in the near future. We present a brief overview of the current status of molecular MR imaging, especially in vivo reporter gene imaging using ferritin and other reporters, discuss its application to cancer gene therapy, and present our research of MR imaging detection of electroporation-mediated cancer gene therapy using the ferritin reporter gene. (author)

  15. Handbook of nuclear medicine and molecular imaging principles and clinical applications

    CERN Document Server

    Kim, Edmund E; Tateishi, Ukihide; Baum, Richard P

    2012-01-01

    This handbook will provide updated information on nuclear medicine and molecular imaging techniques as well as its clinical applications, including radionuclide therapy, to trainees and practitioners of nuclear medicine, radiology and general medicine. Updated information on nuclear medicine and molecular imaging are vitally important and useful to both trainees and existing practitioners. Imaging techniques and agents are advancing and changing so rapidly that concise and pertinent information are absolutely necessary and helpful. It is hoped that this handbook will help readers be better equipped for the utilization of new imaging methods and treatments using radiopharmaceuticals.

  16. Hepatische Effekte von Wachstumshormon auf den Glukosestoffwechsel

    Directory of Open Access Journals (Sweden)

    Rufinatscha K

    2015-01-01

    Full Text Available Untherapierter Wachstumshormonmangel im Erwachsenenalter (AGHD ist mit viszeraler Adipositas, Dyslipidämie, Insulinresistenz und Fettleber verbunden. Interessanterweise finden sich viele der AGHD-Merkmale auch bei Patienten mit metabolischem Syndrom. Die nichtalkoholische Fettlebererkrankung (NAFLD gilt als hepatische Manifestation des metabolischen Syndroms. In einigen Studien wurden bei Patienten mit NAFLD verminderte Konzentrationen von zirkulierendem IGF-1, dessen Synthese zu einem großen Teil durch Wachstumshormon (GH reguliert wird, beschrieben. Mäuse, welche eine hepatische Wachstumshormondefizienz aufweisen, zeigen zahlreiche phänotypische Charakteristika des metabolischen Syndroms, unter anderen auch eine Fettlebererkrankung. Dies legt einen Zusammenhang zwischen dem Wachstumshormon und der Entstehung einer NAFLD nahe. Ziel unserer Studie ist es, in einem Zellkulturmodell die Effekte des Wachstumshormons auf den intrazellulären Glukosestoffwechsel näher zu untersuchen. Im Detail sollen Auswirkungen einer verminderten Wachstumshormonrezeptorexpression auf den Insulinsignaltransduktionsweg, den Glykogengehalt und auf Schlüsselenzyme der Glukoneogenese untersucht werden. Präliminäre Daten zeigen, dass eine verminderte Wachstumshormonrezeptorexpression mit intrazellulären Veränderungen des hepatischen Glukosestoffwechsels verbunden ist. Die verminderte Insulinsensitivität könnte auf Alterationen im Insulinsignaltransduktionsweg und Änderungen der Glukoneogenese zurückzuführen sein. Diese präliminären Daten weisen darauf hin, dass Wachstumshormon einen direkten Einfluss auf den Glukosestoffwechsel in der Leber hat. Zudem legen sie nahe, dass Veränderungen im Wachstumshormonstoffwechsel einen wichtigen pathophysiologischen Mechanismus in der Entstehung der Fettlebererkrankung bei Patienten mit metabolischem Syndrom darstellen könnten. Der folgende Artikel soll einen kurzen Überblick über die Effekte von Wachstumshormon

  17. Investigating Atmospheric Oxidation with Molecular Dynamics Imaging and Spectroscopy

    Science.gov (United States)

    Merrill, W. G.; Case, A. S.; Keutsch, F. N.

    2013-06-01

    Volatile organic compounds (VOCs) in the Earth's atmosphere constitute trace gas species emitted primarily from the biosphere, and are the subject of inquiry for a variety of air quality and climate studies. Reactions intiated (primarily) by the hydroxyl radical (OH) lead to a myriad of oxygenated species (OVOCs), which in turn are prone to further oxidation. Investigations of the role that VOC oxidation plays in tropospheric chemistry have brought to light two troubling scenarios: (1) VOCs are responsible in part for the production of two EPA-regulated pollutants---tropospheric ozone and organic aerosol---and (2) the mechanistic details of VOC oxidation remain convoluted and poorly understood. The latter issue hampers the implementation of near-explicit atmospheric simulations, and large discrepancies in OH reactivity exist between measurements and models at present. Such discrepancies underscore the need for a more thorough description of VOC oxidation. Time-of-flight measurements and ion-imaging techniques are viable options for resolving some of the mechanistic and energetic details of VOC oxidation. Molecular beam studies have the advantage of foregoing unwanted bimolecular reactions, allowing for the characterization of specific processes which must typically compete with the complex manifold of VOC oxidation pathways. The focus of this work is on the unimolecular channels of organic peroxy radical intermediates, which are necessarily generated during VOC oxidation. Such intermediates may isomerize and decompose into distinct chemical channels, enabling the unambiguous detection of each pathway. For instance, a (1 + 1') resonance enhanced multiphoton ionization (REMPI) scheme may be employed to detect carbon monoxide generated from a particular unimolecular process. A number of more subtle mechanistic details may be explored as well. By varying the mean free path of the peroxy radicals in a flow tube, the role of collisional quenching in these unimolecular

  18. Molecular Imaging : Computer Reconstruction and Practice - Proceedings of the NATO Advanced Study Institute on Molecular Imaging from Physical Principles to Computer Reconstruction and Practice

    CERN Document Server

    Lemoigne, Yves

    2008-01-01

    This volume collects the lectures presented at the ninth ESI School held at Archamps (FR) in November 2006 and is dedicated to nuclear physics applications in molecular imaging. The lectures focus on the multiple facets of image reconstruction processing and management and illustrate the role of digital imaging in clinical practice. Medical computing and image reconstruction are introduced by analysing the underlying physics principles and their implementation, relevant quality aspects, clinical performance and recent advancements in the field. Several stages of the imaging process are specifically addressed, e.g. optimisation of data acquisition and storage, distributed computing, physiology and detector modelling, computer algorithms for image reconstruction and measurement in tomography applications, for both clinical and biomedical research applications. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehen...

  19. Untersuchungen einer Kraftmesstechnik basierend auf optischer Objektverfolgung

    OpenAIRE

    Rutschmann, Sabrina; Martinez Schramm, Jan; Wolfram, Jeremy; Laurence, Stuart

    2009-01-01

    Im Hochenthalpiekanal Göttingen (HEG) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) soll im Rahmen des ExoMars-Projektes erstmalig eine berührungslose Kraftmesstechnik einge-setzt werden. Eine Hochgeschwindigkeitskamera nimmt die Bewegungstrajektorie eines freiflie-genden Modells auf, aus der mit einer computergestützten Objektdetektion auf die angreifen-den Kräfte rückgeschlossen werden soll. Ziel der hier beschriebenen Arbeit soll es sein, die Genauigkeit und damit die Anwendbark...

  20. Neurobiological mechanisms of treatment resistant depression: Functional, structural and molecular imaging studies

    NARCIS (Netherlands)

    B.P. de Kwaasteniet

    2015-01-01

    This thesis investigated the neurobiological mechanisms of TRD using functional, structural and molecular imaging studies. First the neurobiological mechanisms of MDD were investigated and revealed decreased functional connectivity between the ventral and dorsal network. Thereafter, structural conne

  1. Molecular imaging of cancer: MR spectroscopy and beyond

    International Nuclear Information System (INIS)

    Proton magnetic resonance spectroscopic imaging is a non-invasive diagnostic tool for the investigation of cancer metabolism. As an adjunct to morphologic and dynamic magnetic resonance imaging, it is routinely used for the staging, assessment of treatment response, and therapy monitoring in brain, breast, and prostate cancer. Recently, its application was extended to other cancerous diseases, such as malignant soft-tissue tumours, gastrointestinal and gynecological cancers, as well as nodal metastasis. In this review, we discuss the current and evolving clinical applications of proton magnetic resonance spectroscopic imaging. In addition, we will briefly discuss other evolving techniques, such as phosphorus magnetic resonance spectroscopic imaging, sodium imaging and diffusion-weighted imaging in cancer assessment.

  2. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    OpenAIRE

    Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang

    2013-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard S...

  3. Der Einfluss von Anreizsystemen auf die intrinsische Motivation

    OpenAIRE

    Kunz, Jennifer; Quitmann, Annegret

    2011-01-01

    Der Einfluss unterschiedlicher Anreiztypen auf die intrinsische Motivation ist seit Jahren Gegenstand einer heftigen Kontroverse. Der vorliegende Beitrag erweitert diese Diskussion, indem er die Analyse auf zwei weitere Kernelemente von Anreizsystemen, die Ausgestaltung der Bemessungsgrundlage und der Belohnungsfunktion, ausweitet. Er arbeitet auf Basis eines sach-analytischen Vorgehens unter Einbeziehung der Theorie der kognitiven Bewertung heraus, welchen Einfluss die in der betriebswirtsch...

  4. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody.

    Science.gov (United States)

    Pan, Ying; Volkmer, Jens-Peter; Mach, Kathleen E; Rouse, Robert V; Liu, Jen-Jane; Sahoo, Debashis; Chang, Timothy C; Metzner, Thomas J; Kang, Lei; van de Rijn, Matt; Skinner, Eila C; Gambhir, Sanjiv S; Weissman, Irving L; Liao, Joseph C

    2014-10-29

    A combination of optical imaging technologies with cancer-specific molecular imaging agents is a potentially powerful strategy to improve cancer detection and enable image-guided surgery. Bladder cancer is primarily managed endoscopically by white light cystoscopy with suboptimal diagnostic accuracy. Emerging optical imaging technologies hold great potential for improved diagnostic accuracy but lack imaging agents for molecular specificity. Using fluorescently labeled CD47 antibody (anti-CD47) as molecular imaging agent, we demonstrated consistent identification of bladder cancer with clinical grade fluorescence imaging systems, confocal endomicroscopy, and blue light cystoscopy in fresh surgically removed human bladders. With blue light cystoscopy, the sensitivity and specificity for CD47-targeted imaging were 82.9 and 90.5%, respectively. We detected variants of bladder cancers, which are diagnostic challenges, including carcinoma in situ, residual carcinoma in tumor resection bed, recurrent carcinoma following prior intravesical immunotherapy with Bacillus Calmette-Guérin (BCG), and excluded cancer from benign but suspicious-appearing mucosa. CD47-targeted molecular imaging could improve diagnosis and resection thoroughness for bladder cancer. PMID:25355698

  5. Molecular shape of Lumbricus terrestris erythrocruorin studied by electron microscopy and image analysis

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin van

    1989-01-01

    The molecular structure of erythrocruorin (hemoglobin) from Lumbricus terrestris has been studied by electron microscopy of negatively stained particles. Over 1000 molecular projections were selected from a number of electron micrographs and were then classified by multivariate statistical image-pro

  6. Imaging of Flow Patterns with Fluorescent Molecular Rotors

    OpenAIRE

    Mustafic, Adnan; Huang, Hsuan-Ming; Theodorakis, Emmanuel A.; Haidekker, Mark A

    2010-01-01

    Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer states (TICT) upon photoexcitation. Some classes of molecular rotors, among them those that are built on the benzylidene malononitrile motif, return to the ground state either by nonradiative intramolecular rotation or by fluorescence emission. In low-viscosity solvents, intramolecular rotation dominates, and the fluorescence quantum yield is low. Higher solvent viscosities reduce the intram...

  7. Deblurring molecular images using desorption electrospray ionization mass spectrometry

    Science.gov (United States)

    Parry, R. Mitchell; Galhena, Asiri S.; Fernandez, Facundo M.; Wang, May D.

    2016-01-01

    Traditional imaging techniques for studying the spatial distribution of biological molecules such as proteins, metabolites, and lipids, require the a priori selection of a handful of target molecules. Imaging mass spectrometry provides a means to analyze thousands of molecules at a time within a tissue sample, adding spatial detail to proteomic, metabolomic, and lipidomic studies. Compared to traditional microscopic images, mass spectrometric images have reduced spatial resolution and require a destructive acquisition process. In order to increase spatial detail, we propose a constrained acquisition path and signal degradation model enabling the use of a general image deblurring algorithm. Our analysis shows the potential of this approach and supports prior observations that the effect of the sprayer focuses on a central region much smaller than the extent of the spray. PMID:19963935

  8. Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation.

    Science.gov (United States)

    Knapinska, Anna M; Gratacós, Frances M; Krause, Christopher D; Hernandez, Kristina; Jensen, Amber G; Bradley, Jacquelyn J; Wu, Xiangyue; Pestka, Sidney; Brewer, Gary

    2011-04-01

    AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues--Ser(15), Ser(78), and Ser(82)-by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2-Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization. PMID:21245386

  9. Regionale Einflussfaktoren auf den Ausbau erneuerbarer Energien

    OpenAIRE

    Keppler, Dorothee

    2007-01-01

    First published in GAIA: Keppler, Dorothee: Regionale Einflussfaktoren auf den Ausbau erneuerbarer Energien : Ergebnisse einer Fallstudie in der Brandenburger Energieregion Lausitz. - In: GAIA : ökologische Perspektiven für Wissenschaft und Gesellschaft. - ISSN: 0940-5550. - 16 (2007), 4, pp. 289–296.

  10. Value based management auf Basis von ERIC

    OpenAIRE

    Velthuis, Louis John

    2004-01-01

    Im Rahmen des Value Based Managements sollen alle Manahmen der Unternehmensfhrung auf die Steigerung des intrinsischen Marktwertes des Eigenkapitals ausgerichtet werden. Hauptanwendungsbereiche des Value Based Managements sind die Planung, Performancemessung, Managemententlohnung sowie die Bereichssteuerung. Eine konsequente shareholder-orientierte Steuerung beinhaltet eine adquate Ermittlung von Wertbeitrgen in den einzelnen Anwendungsbereichen. Hierzu dienen insbesondere absolute Wertbeitra...

  11. Dünne Beschichtungen auf Biomaterialien

    Science.gov (United States)

    Klee, Doris; Lahann, Jörg; Plüster, Wilhelm

    Ein Schwerpunkt der Implantatentwicklung liegt in der Synthese und Verarbeitung geeigneter Biomaterialien, die bezüglich ihrer mechanischen Eigenschaften und ihrer Stabilität die erwünschte Funktion im Organismus erfüllen sollen. Die biologische Antwort auf Biomaterialien im Implantateinsatz wird jedoch hauptsächlich von der chemischen Zusammensetzung und der Struktur der Implantatoberfläche bestimmt [1]. Sie ist entscheidend für die Langzeitverträglichkeit eines Implantats. Geeignete Ansätze zur Verbesserung der Grenzflächenverträglichkeit von Biomaterialien, ohne die mechanischen Eigenschaften und die Funktionalität des Implantates zu verändern, beruhen auf die Aufbringung einer definierten, falls erforderlich biologisch aktiven Beschichtung auf die Werkstoffoberfläche. Bei den eingesetzten Beschichtungsverfahren handelt es sich vielfach um bekannte Verfahren zur Oberflächenmodifizierung technischer Werkstoffe, die auf physikalischen und chemischen Prozessen basieren. Je nach Beschichtungsverfahren können unterschiedliche Schichtdicken erzielt werden. Zur Charakterisierung der Zusammensetzung und Struktur der beschichteten Biomaterialoberflächen ist der Einsatz oberflächensensitiver Analytik unverzichtbar. Vielfach wird eine Kombination von Methoden eingesetzt, die sich hinsichtlich ihrer Informationstiefe und Informationsaussage unterscheiden [1].

  12. Molecular imaging of gene expression and protein function in vivo with PET and SPECT.

    Science.gov (United States)

    Sharma, Vijay; Luker, Gary D; Piwnica-Worms, David

    2002-10-01

    Molecular imaging is broadly defined as the characterization and measurement of biological processes in living animals, model systems, and humans at the cellular and molecular level using remote imaging detectors. One underlying premise of molecular imaging is that this emerging field is not defined by the imaging technologies that underpin acquisition of the final image per se, but rather is driven by the underlying biological questions. In practice, the choice of imaging modality and probe is usually reduced to choosing between high spatial resolution and high sensitivity to address a given biological system. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) inherently use image-enhancing agents (radiopharmaceuticals) that are synthesized at sufficiently high specific activity to enable use of tracer concentrations of the compound (picomolar to nanomolar) for detecting molecular signals while providing the desired levels of image contrast. The tracer technologies strategically provide high sensitivity for imaging small-capacity molecular systems in vivo (receptors, enzymes, transporters) at a cost of lower spatial resolution than other technologies. We review several significant PET and SPECT advances in imaging receptors (somatostatin receptor subtypes, neurotensin receptor subtypes, alpha(v)beta(3) integrin), enzymes (hexokinase, thymidine kinase), transporters (MDR1 P-glycoprotein, sodium-iodide symporter), and permeation peptides (human immunodeficiency virus type 1 (HIV-1) Tat conjugates), as well as innovative reporter gene constructs (herpes simplex virus 1 thymidine kinase, somatostatin receptor subtype 2, cytosine deaminase) for imaging gene promoter activation and repression, signal transduction pathways, and protein-protein interactions in vivo. PMID:12353250

  13. Molecular markers in breast cancer: new tools in imaging and prognosis

    NARCIS (Netherlands)

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluoresc

  14. The application of molecular nuclear medicine in imaging diagnosis and targeted treatment of thyroid carcinoma

    International Nuclear Information System (INIS)

    Thyroid carcinoma is the most common malignancy of endocrine system. Different pathological classifications of thyroid carcinoma differ greatly in biological behavior and prognosis. As a newly-emerging subject, molecular nuclear medicine has made rapid advances in both diagnosis and treatment of thyroid carcinoma. With the application of new imaging agents and devices such as SPECT/CT and PET/CT, molecular nuclear imaging can demonstrate, both qualitatively and quantitatively, the alterations in specific molecules of thyroid cancer on cellular and molecular level. Meanwhile, it is capable of utilizing radiopharmaceuticals to target specifically to these molecules. Here we present a review on the latest progresses in this field. (authors)

  15. A DR-WFOI fusion system for the real-time molecular imaging in vivo

    Institute of Scientific and Technical Information of China (English)

    Kun Bi; Xiaochun Xu; Lei Xi; Shaoqun Zeng; Qingming Luo

    2008-01-01

    Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them contributes to the development and discovery of medicine. We introduce an equipment, performance of which is better than that of another molecular imaging system manufactured by Kodak Corp. It can take real-time small animal imaging in vivo, with lower cost and shorter development cycle on the LabVIEW platform. At last, a paradigm experiment on a nude mouse with green fluorescent protein (GFP) transgenic tumor is given to present a real-time DR-WFOI fusion simultaneous image.

  16. Molecular probes for imaging cell growth and cell differentiation

    International Nuclear Information System (INIS)

    This paper summarizes PET/SPECT probes for the in vivo imaging of cell behavior such as cell growth, differentiation, migration, adhesion, angiogenesis, and apoptosis. These probes may be indispensable for the fundamental research of regenerative medicine. (author)

  17. High-order harmonic spectroscopy for molecular imaging of polyatomic molecules

    CERN Document Server

    Negro, M; Faccialà, D; De Silvestri, S; Vozzi, C; Stagira, S

    2014-01-01

    High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution, of the order of the angstrom. Imaging of the outermost molecular orbital by high-order harmonic generation has been limited for a long time to very simple molecules, like nitrogen. Recently we demonstrated a technique that overcame several of the issues that have prevented the extension of molecular orbital tomography to more complex species, showing that molecular imaging can be applied to a triatomic molecule like carbon dioxide. Here we report on the application of such technique to nitrous oxide (N2O) and acetylene (C2H2). This result represents a first step towards the imaging of fragile compounds, a category which includes most of the fundamental biological molecules.

  18. Effect of molecular organization on the image histograms of polarization SHG microscopy

    OpenAIRE

    Psilodimitrakopoulos, Sotiris; Amat Roldán, Iván; Loza Álvarez, Pablo; Artigas García, David

    2012-01-01

    Based on its polarization dependency, second harmonic generation (PSHG) microscopy has been proven capable to structurally characterize molecular architectures in different biological samples. By exploiting this polarization dependency of the SHG signal in every pixel of the image, average quantitative structural information can be retrieved in the form of PSHG image histograms. In the present study we experimentally show how the PSHG image histograms can be affected by the organization of th...

  19. Autonomic innervation of the heart. Role of molecular imaging

    International Nuclear Information System (INIS)

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  20. First PET Center in Mexico: the power of molecular imaging

    International Nuclear Information System (INIS)

    Positron Emission Tomography (PET) is a non-invasive diagnostic imaging technique modality. It represents the forefront of medical images and was developed as a quantitative technique for imaging biochemical and physiological processes in the human body. PET is unique because it produces images of the body's basic biochemistry or function. Traditional diagnostic techniques such as x-rays, CT scans or MRI, produce images of the body's anatomy or structure. The premise with these techniques is that the change in anatomy or structure that occurs with disease can be seen. However, biochemical processes are also altered with disease and may occur before there is a change gross anatomy. PET is an imaging technique that is used to visualize some of these processes. The development of PET as we know it today began in 1974 with the development of a single ring detector system by Phelps et al. Today, over 350 PET scanners are in use in the world, mainly in the USA (over 140), Europe (particularly in the Anglo-Saxon countries and France) and Japan. Many of these facilities also have their own cyclotron to produce the positron emitters. In the Southern hemisphere, only Australia, Argentina. and recently Mexico, have a very small number of PET facilities. (Author)

  1. Autonomic innervation of the heart. Role of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A; Elsinga, Philip H. [Univ. Medical Center Groningen (Netherlands). Nuclear Medicine and Molecular Imaging; Tio, Rene A. [Univ. Medical Center Groningen (Netherlands). Thorax Center Cardiology; Schwaiger, Markus (ed.) [Technische Univ. Muenchen Klinikum Rechts der Isar (Germany). Nuklearmedizinische Klinik

    2015-03-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  2. The research progress of dual-modality probes for molecular imaging

    International Nuclear Information System (INIS)

    Various imaging modalities have been exploited to investigate the anatomic or functional dissemination of tissues in the body. However, no single imaging modality allows overall structural, functional, and molecular information as each imaging modality has its own unique strengths and weaknesses. The combination of two imaging modalities that investigates the strengths of different methods might offer the prospect of improved diagnostic abilities. As more and more dual-modality imaging system have become clinically adopted, significant progress has been made toward the creation of dual-modality imaging probes, which can be used as novel tools for future multimodality systems. These all-in-one probes take full advantage of two different imaging modalities and could provide comprehensive information for clinical diagnostics. This review discusses the advantages and challenges in developing dual-modality imaging probes. (authors)

  3. Molecular imaging to target transplanted muscle progenitor cells.

    Science.gov (United States)

    Gutpell, Kelly; McGirr, Rebecca; Hoffman, Lisa

    2013-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse). Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living

  4. Imaging molecular structure and dynamics using laser driven recollisions

    International Nuclear Information System (INIS)

    Complete test of publication follows. Laser driven electron recollision provides a unique tool for measuring the structure and dynamics of matter. We illustrate this with experiments that use HHG to measure molecular structure with sub-Angstrom spatial and sub-femtosecond temporal resolution. Our recent work has looked in particular at the signal from high order harmonic generation which contains rich information about the structure and intra-molecular dynamics of small molecules. This we will illustrate by two types of experiment; (a) measurements of HHG from aligned molecular samples to observe two-centre recombination interference and electronic structure dependence of the angle dependent yield, (b) reconstruction of intra-molecular proton dynamics from the spectral dependence of the HHG using the intrinsic chirp of recolliding electrons. We experimentally investigate the process of intramolecular quantum interference in high-order harmonic generation in impulsively aligned CO2 molecules. The recombination interference effect is clearly seen through the order dependence of the harmonic yield in an aligned sample. This confirms that the effective de Broglie wavelength of the returning electron wave is not significantly altered by acceleration in the Coulomb field of the molecular ion. For the first time, to our knowledge, we demonstrate that such interference effects can be effectively controlled by changing the ellipticity of the driving laser field. Here we also report the results of angular dependence measurements of high order harmonics (17tth - 27th) from impulsively aligned organic molecules: Acetylene, Ethylene, and Allene. Since these molecules have a relatively low Ip an appropriately short pulse is required to produce as many harmonic orders as possible. This was provided by the ∼ 10 fs beam line of the ASTRA laser at Rutherford Appleton Laboratory whilst a somewhat longer pulse, properly forwarded with respect to the driving pulse, induced the

  5. Bioluminescence: a versatile technique for imaging cellular and molecular features

    Science.gov (United States)

    Paley, Miranda A.

    2016-01-01

    Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems.

  6. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the...... finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z(2), where Z is the quasiparticle renormalization factor, compared to the static IC approximation...

  7. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  8. Quantitative sensing of microviscosity in protocells and amyloid materials using fluorescence lifetime imaging of molecular rotors

    Science.gov (United States)

    Thompson, Alex J.; Tang, T.-Y. Dora; Herling, Therese W.; Che Hak, C. Rohaida; Mann, Stephen; Knowles, Tuomas P. J.; Kuimova, Marina K.

    2014-03-01

    Molecular rotors are fluorophores that have a fluorescence quantum yield that depends upon intermolecular rotation. The fluorescence quantum yield, intensity and lifetime of molecular rotors all vary as functions of viscosity, as high viscosities inhibit intermolecular rotation and cause an increase in the non-radiative decay rate. As such, molecular rotors can be used to probe viscosity on microscopic scales. Here, we apply fluorescence lifetime imaging microscopy (FLIM) to measure the fluorescence lifetimes of three different molecular rotors, in order to determine the microscopic viscosity in two model systems with significant biological interest. First, the constituents of a novel protocell - a model of a prebiotic cell - were studied using the molecular rotors BODIPY C10 and kiton red. Second, amyloid formation was investigated using the molecular rotor Cy3.

  9. Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation

    International Nuclear Information System (INIS)

    Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter are not eigenstates of a single-particle Hamiltonian and thus do not fit into the usual simple interpretation of electronic structure in terms of molecular orbitals. In a combined theoretical and experimental study we thus check whether a Dyson-orbital and a molecular-orbital based interpretation of ARPES lead to differences that are relevant on the experimentally observable scale. We discuss a scheme that allows for approximately calculating Dyson orbitals with moderate computational effort. Electronic relaxation is taken into account explicitly. The comparison reveals that while molecular orbitals are frequently good approximations to Dyson orbitals, a detailed understanding of photoemission intensities may require one to go beyond the molecular orbital picture. In particular we clearly observe signatures of the Dyson-orbital character for an adsorbed semiconductor molecule in ARPES spectra when these are recorded over a larger momentum range than in earlier experiments. (paper)

  10. Synthesis and evaluation of a peptide targeted small molecular Gd-DOTA monoamide conjugate for MR molecular imaging of prostate cancer

    OpenAIRE

    Wu, Xueming; Burden-Gulley, Susan M.; Yu, Guan-Ping; Tan, Mingqian; Lindner, Daniel; Brady-Kalnay, Susann M.; Lu, Zheng-Rong

    2012-01-01

    Tumor extracellular matrix has an abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. Innovative design and development of safe and effective targeted contrast agents to these biomarkers would allow effective MR cancer molecular imaging with high spatial resolution. In this study, we synthesized a low molecular weight CLT1 peptide targeted Gd(III) chelate CLT1-dL-(Gd-DOTA)4 specific to clotted plasma proteins in tumor stroma for cancer MR molecula...

  11. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System.

    Science.gov (United States)

    Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin

    2016-01-20

    The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field. PMID:26616533

  12. Progress in molecular nuclear medicine imaging of pancreatic beta cells

    International Nuclear Information System (INIS)

    Diabetes mellitus is a common and frequently occurring disease which seriously threaten the health of human beings. Type 1 and type 2 diabetes respectively results from being destroyed and insufficient beta-cell mass. The associated symptoms appear until 50%-60% decrease of beta-cell mass. Because pancreas is deeply located in the body, with few beta-cell mass, the current methods of clinical diagnosis are invasive and late. So diagnosis of metabolism disease of beta-cell early non-invasively becomes more and more popular, imaging diagnosis of diabetes mellitus becomes the focus of researches, but how to estimate the mass of beta-cell still an important subject in imaging technology. (authors)

  13. Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kenanova, Vania; Barat, Bhaswati; Olafsen, Tove; Chatziioannou, Arion; Herschman, Harvey R.; Wu, Anna M. [David Geffen School of Medicine at the University of California Los Angeles, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Braun, Jonathan [David Geffen School of Medicine at the University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA (United States)

    2009-01-15

    Reporter genes can provide a way of noninvasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression, or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression. To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human Fc{gamma}RIIb receptor. The NA3-Fc{gamma}RIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging. Flow cytometry identified Jurkat clones stably expressing NA3-Fc{gamma}RIIb at low, medium, and high levels. High and medium NA3-Fc{gamma}RIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA {sup 124}I-labeled single-chain Fv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4 h. MicroPET image quantitation showed tumor activity of 1.8 {+-} 0.2, 15.2 {+-} 1.3, and 4.6 {+-} 1.2 percent injected dose per gram (%ID/g) at 4, 20, and 48 h, respectively. Biodistribution at 48 h demonstrated tumor uptake of 4.8 {+-} 0.8%ID/g. The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo. (orig.)

  14. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging.

    Science.gov (United States)

    Meng, Congsen; Janssen, Maurice H M

    2015-02-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude. PMID:25725826

  15. Ein erweiterter Blickwinkel auf Gender Mainstreaming

    Directory of Open Access Journals (Sweden)

    Gesine Fuchs

    2005-11-01

    Full Text Available Der vorliegende Band füllt eine Lücke zwischen der wissenschaftlichen Fundamentalkritik an Gender Mainstreaming und optimistischen Anleitungen zur Umsetzung von Gender-Mainstreaming-Strategien, indem er Kontroversen, Ansätze theoriegeleiteter Begleitforschung und erste Ergebnisse versammelt. Die Autorinnen konzentrieren sich insbesondere auf die politischen, auch mikropolitischen, Bedingungen zur Umsetzung. Das Buch ist empfehlenswert für alle, die Gender Mainstreaming umsetzen wollen und dazu Politik treiben müssen.

  16. Informationssystem Versorgungsdaten bei DIMDI nimmt Pilotbetrieb auf

    OpenAIRE

    Müller, W.

    2014-01-01

    Am 17. Februar 2014 nimmt das neue Informationssystem Versorgungsdaten (Datentransparenz) des DIMDI den Pilotbetrieb auf. Damit werden erstmals aggregierte Versorgungsdaten der gesetzlichen Krankenkassen für Analysen nutzbar. Das System eröffnet insbesondere der Versorgungsforschung neue Möglichkeiten: Zugänglich werden unter anderem ambulante und stationäre Diagnosen sowie Daten über ambulant verordnete und abgerechnete Arzneimittel. In dieser Vollständigkeit - über die verschiedenen gesetzl...

  17. Recht auf Fortpflanzung und medizinischer Fortschritt

    OpenAIRE

    Knoop, Susanne

    2005-01-01

    Die Dissertation untersucht die Frage, ob es ein vom deutschen Grundgesetz geschuetztes Recht des Menschen auf Fortpflanzung gibt und welchen Umfang dieser Schutz ggf. hat. Dabei wird insbesondere geprueft, ob auch die Inanspruchnahme von Methoden der medizinisch assistierten Fortpflanzung Grundrechtsschutz geniesst. Zum Einstieg in das Thema wird im Teil 1 zunaechst eine Bestimmung der zur Fortpflanzung gehoerenden Entscheidungen und Taetigkeiten durchgefuehrt, verbunden mit einer begri...

  18. Auf ein Neues: Reform der Pflegeversicherung

    OpenAIRE

    Rothgang, Heinz; Raffelhüschen, Bernd; Vatter, Johannes; Lüngen, Markus; Paschke, Ellen; Eekhoff, Johann; Läufer, Ines

    2011-01-01

    Die Bundesregierung hatte geplant, Ende September Eckpunkte für eine Reform der Pflegeversicherung vorzustellen. Da sich die Koalitionspartner nicht einigen konnten, wird dies nun verschoben. Die Autoren des Zeitgesprächs machen deutlich, dass jetzt aber Entscheidungen erforderlich sind: Auf der Ausgabenseite wird sich die demographische Entwicklung niederschlagen, die Anpassung des Pflegebegriffs kann zu Kostensteigerungen führen und auch die Entlohnung der Beschäftigten wird steigen. Entspr...

  19. Einfluss von Kalorienrestriktion auf den Metabolismus

    OpenAIRE

    Schwarz, Franziska (Dipl. Ernähr.)

    2015-01-01

    Die Häufung von Diabetes, Herz-Kreislauf-Erkrankungen und einigen Krebsarten, deren Entstehung auf Übergewicht und Bewegungsmangel zurückzuführen sind, ist ein aktuelles Problem unserer Gesellschaft. Insbesondere mit fortschreitendem Alter nehmen die damit einhergehenden Komplikationen zu. Umso bedeutender ist das Verständnis der pathologischen Mechanismen in Folge von Adipositas, Bewegungsmangel, des Alterungsprozesses und den Einfluss-nehmenden Faktoren. Ziel dieser Arbeit war die Entste...

  20. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    Science.gov (United States)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  1. Enhancing contrast and quantitation by spatial frequency domain fluorescence molecular imaging

    Science.gov (United States)

    Sun, Jessica; Hathi, Deep; Zhou, Haiying; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Optical imaging with fluorescent contrast agents is highly sensitive for molecular imaging but is limited in depth to a few centimeters below the skin. Planar fluorescence imaging with full-field, uniform illumination and scientific camera image capture provides a portable and robust configuration for real-time, sensitive fluorescence detection with scalable resolution, but is inherently surface weighted and therefore limited in depth to a few millimeters. At the NIR region (700-1000 nm), tissue absorption and autofluorescence are relatively reduced, increasing depth penetration and reducing background signal, respectively. Optical imaging resolution scales with depth, limiting microscopic resolution with multiphoton microscopy and optical coherence tomography to skin and peri-tumoral tissues are not uniform, varying in thickness and color, complicating subsurface fluorescence measurements. Diffuse optical imaging methods have been developed that better quantify optical signals relative to faster full-field planar reflectance imaging, but require long scan times, complex instrumentation, and reconstruction algorithms. Here we report a novel strategy for rapid measurement of subsurface fluorescence using structured light illumination to improve quantitation of deep-seated fluorescence molecular probe accumulation. This technique, in combination with highly specific, tumor-avid fluorescent molecular probes, will easily integrate noninvasive diagnostics for superficial cancers and fluorescence guided surgery.

  2. Molecular fragmentation by recombination with cold electrons studied with a mass sensitive imaging detector

    OpenAIRE

    Mendes, M

    2010-01-01

    The recombination of a molecular cation with a low-energy electron, followed by fragmentation, is a fundamental reaction process in cold and dilute plasmas. For polyatomic ions, it can yield molecular fragments in ro-vibrationally excited states. The discrimination between decay channels with chemically different fragments and the measurement of their excitation energies pose an experimental challenge. This work discusses a new experimental scheme based on fast beam fragment imaging in a stor...

  3. Small animal SPECT and its place in the matrix of molecular imaging technologies

    International Nuclear Information System (INIS)

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute (-10 molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies. (topical review)

  4. Targeting the treatment of drug abuse with molecular imaging

    International Nuclear Information System (INIS)

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences

  5. Positron emission tomography: diagnostic imaging on a molecular level

    International Nuclear Information System (INIS)

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed

  6. Molecular imaging of cancer with radiolabeled peptides and PET.

    Science.gov (United States)

    Vāvere, Amy L; Rossin, Raffaella

    2012-06-01

    Radiolabeled peptides hold promise for diagnosis and therapy of cancer as well as for early monitoring of therapy outcomes, patient stratification, etc. This manuscript focuses on the development of peptides labeled with 18F, 64Cu, 68Ga and other positron-emitting radionuclides for PET imaging. The major techniques for radionuclide incorporation are briefly discussed. Then, examples of positron-emitting peptides targeting somatostatin receptors, integrins, gastrin-releasing peptide receptors, vasointestinal peptide receptors, melanocortin 1 receptors and others are reviewed. PMID:22292762

  7. Imaging Multi-Particle Atomic and Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Landers, Allen [Auburn Univ., AL (United States)

    2016-02-12

    Final Report for Grant Number: DE- FG02-10ER16146 This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms and molecules with photons and electrons. The duration of the grant was the 5 year period from 4/1/2010 – 10/31/2015. All of the support from the grant was used to pay salaries of the PI, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 20 peer reviewed publications over these 5 years with 2 of the publications in Physical Review Letters and 1 in Nature; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B ...).

  8. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    Directory of Open Access Journals (Sweden)

    A. Greco

    2012-01-01

    Full Text Available Ultrasound biomicroscopy (UBM is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research.

  9. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area. PMID:27420575

  10. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h. PMID:26530921

  11. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  12. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  13. Somatostatin Receptor-Based Molecular Imaging and Therapy for Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2013-01-01

    Full Text Available Neuroendocrine tumors (NETs are tumors originated from neuroendocrine cells in the body. The localization and the detection of the extent of NETs are important for diagnosis and treatment, which should be individualized according to the tumor type, burden, and symptoms. Molecular imaging of NETs with high sensitivity and specificity is achieved by nuclear medicine method using single photon-emitting and positron-emitting radiopharmaceuticals. Somatostatin receptor imaging (SRI using SPECT or PET as a whole-body imaging technique has become a crucial part of the management of NETs. The radiotherapy with somatostatin analogues labeled with therapeutic beta emitters, such as lutetium-177 or yttrium-90, has been proved to be an option of therapy for patients with unresectable and metastasized NETs. Molecular imaging can deliver an important message to improve the outcome for patients with NETs by earlier diagnosis, better choice of the therapeutic method, and evaluation of the therapeutic response.

  14. Plasmon Resonance Energy Transfer (PRET)-based Molecular Imaging of Cytochrome c in Living Cells

    OpenAIRE

    Choi, Yeonho; Kang, Taewook; Lee, Luke P.

    2009-01-01

    We describe the development of innovative plasmon resonance energy transfer (PRET)-based molecular imaging of biomolecules in living cells. Our strategy of in vivo PRET imaging relies on the resonant plasmonic energy transfer from a gold nanoplasmonic probe to conjugated target molecules, which creates “quantized quenching dips” within the Rayleigh scattering spectrum of the probe. The positions of these quantized quenching dips exactly match with the absorption peaks of the target molecule s...

  15. Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging

    OpenAIRE

    Tan, Mingqian; Wu, Xueming; Jeong, Eun-Kee; Chen, Qianjin; Lu, Zheng-Rong

    2010-01-01

    Effective imaging of cancer molecular biomarker is critical for accurate cancer diagnosis and prognosis. CLT1 peptide was observed to specifically bind to the fibrin-fibronectin complexes presented in tumor extracellular matrix. In this study, we synthesized and evaluated CLT1 peptide-targeted nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance (MR) imaging of the fibrin-fibronectin complexes in tumor. The targeted nanoglobular contrast agents were prepared by conjugating peptide...

  16. Calculation of images of oriented C_60 molecules using molecular orbital theory

    OpenAIRE

    Hands, Ian D; Dunn, Janette L; Bates, Colin A.

    2010-01-01

    Using Hückel molecular-orbital theory, images are created to represent the electron distributions expected for a C60 molecule adsorbed on a substrate. Three different orientations of the C60 molecule on the substrate are considered. The effect of the interaction of the molecule with the substrate is treated purely from the basis of symmetry using group theoretical methods. The resulting electron distributions are then used to generate idealized images which represent how the molec...

  17. Early Cancer Detection and Targeted Therapy by Magnetic Resonance Molecular Imaging and Nano Medicine

    OpenAIRE

    Li, Zhao

    2015-01-01

    The common theme of my 5-year PhD research is to channel progress in spin physics and nano-bio-materials into meaningful improvements in the theoretical studies, methodological developments, and advanced applications of magnetic resonance (MR) to: 1) MR Molecular Imaging: to detect lesions (especially cancers) at early stages through imaging the existence and locations of physiologically important biomarkers; and2) MR Nano Medicine: to cure diseases (especially cancers) by targeted therapy th...

  18. "Steuer auf die Steuer": Mehrbelastungen durch Steuerkumulation begrenzen

    OpenAIRE

    Fichte, Damian; Lemmer, Jens

    2016-01-01

    Unter der Bezeichnung „Steuer auf die Steuer“ versteht man eine Doppelbesteuerung bzw. Steuerkumulation. Bestimmte Güter unterliegen sowohl einer speziellen Verbrauchsteuer als auch der allgemeinen Umsatzsteuer, sodass dadurch eine Belastungsverschärfung eintritt. Da auf Güter wie Benzin, Kaffee, Strom, Alkohol und Tabak jeweils eine spezielle Verbrauchsteuer erhoben wird, sind alle Bürger von einer „Steuer auf die Steuer“ betroffen. Anders als die Umsatzsteuer werden jedoch die speziellen Ve...

  19. High-resolution, high sensitivity detectors for molecular imaging with radionuclides: The coded aperture option

    International Nuclear Information System (INIS)

    Molecular imaging with radionuclides is a very sensitive technique because it allows to obtain images with nanomolar or picomolar concentrations. This has generated a rapid growth of interest in radionuclide imaging of small animals. Indeed radiolabeling of small molecules, antibodies, peptides and probes for gene expression enables molecular imaging in vivo, but only if a suitable imaging system is used. Detecting small tumors in humans is another important application of such techniques. In single gamma imaging, there is always a well known tradeoff between spatial resolution and sensitivity due to unavoidable collimation requirements. Limitation of the sensitivity due to collimation is well known and affects the performance of imaging systems, especially if only radiopharmaceuticals with limited uptake are available. In many cases coded aperture collimation can provide a solution, if the near field artifact effect can be eliminated or limited. At least this is the case for 'small volumes' imaging, involving small animals. In this paper 3D-laminography simulations and preliminary measurements with coded aperture collimation are presented. Different masks have been designed for different applications showing the advantages of the technique in terms of sensitivity and spatial resolution. The limitations of the technique are also discussed

  20. High-resolution, high sensitivity detectors for molecular imaging with radionuclides: The coded aperture option

    Science.gov (United States)

    Cusanno, F.; Cisbani, E.; Colilli, S.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lo Meo, S.; Lucentini, M.; Magliozzi, M. L.; Santavenere, F.; Lanza, R. C.; Majewski, S.; Cinti, M. N.; Pani, R.; Pellegrini, R.; Orsini Cancelli, V.; De Notaristefani, F.; Bollini, D.; Navarria, F.; Moschini, G.

    2006-12-01

    Molecular imaging with radionuclides is a very sensitive technique because it allows to obtain images with nanomolar or picomolar concentrations. This has generated a rapid growth of interest in radionuclide imaging of small animals. Indeed radiolabeling of small molecules, antibodies, peptides and probes for gene expression enables molecular imaging in vivo, but only if a suitable imaging system is used. Detecting small tumors in humans is another important application of such techniques. In single gamma imaging, there is always a well known tradeoff between spatial resolution and sensitivity due to unavoidable collimation requirements. Limitation of the sensitivity due to collimation is well known and affects the performance of imaging systems, especially if only radiopharmaceuticals with limited uptake are available. In many cases coded aperture collimation can provide a solution, if the near field artifact effect can be eliminated or limited. At least this is the case for "small volumes" imaging, involving small animals. In this paper 3D-laminography simulations and preliminary measurements with coded aperture collimation are presented. Different masks have been designed for different applications showing the advantages of the technique in terms of sensitivity and spatial resolution. The limitations of the technique are also discussed.

  1. Quantitative multicolor compositional imaging resolves molecular domains in cell-matrix adhesions.

    Directory of Open Access Journals (Sweden)

    Eli Zamir

    Full Text Available BACKGROUND: Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: We present here a compositional imaging approach for the analysis and display of multi-component compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focal-adhesion-associated complexes to Rho-kinase inhibition. CONCLUSIONS/SIGNIFICANCE: Multicolor compositional imaging resolves "molecular signatures" characteristic to focal-adhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional "contents-resolved" dimensions. We propose that compositional imaging can serve as a powerful tool for studying complex multi-molecular assemblies in cells and for mapping their distribution at sub-micron resolution.

  2. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice.

    Science.gov (United States)

    Pu, Kanyi; Shuhendler, Adam J; Jokerst, Jesse V; Mei, Jianguo; Gambhir, Sanjiv S; Bao, Zhenan; Rao, Jianghong

    2014-03-01

    Photoacoustic imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, photoacoustic molecular imaging probes have to be developed. Here, we introduce near-infrared light absorbing semiconducting polymer nanoparticles as a new class of contrast agents for photoacoustic molecular imaging. These nanoparticles can produce a stronger signal than the commonly used single-walled carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph-node photoacoustic mapping in living mice at a low systemic injection mass. Furthermore, the semiconducting polymer nanoparticles possess high structural flexibility, narrow photoacoustic spectral profiles and strong resistance to photodegradation and oxidation, enabling the development of the first near-infrared ratiometric photoacoustic probe for in vivo real-time imaging of reactive oxygen species--vital chemical mediators of many diseases. These results demonstrate semiconducting polymer nanoparticles to be an ideal nanoplatform for developing photoacoustic molecular probes. PMID:24463363

  3. Molecular Dynamics Study of a Thermal Expansion Coefficient: Ti Bulk with an Elastic Minimum Image Method

    Institute of Scientific and Technical Information of China (English)

    Yakup Hundur; Rainer Hippler; Ziya B. Güven(c)

    2006-01-01

    @@ Linear thermal expansion coefficient (TEC) of Ti bulk is investigated by means of molecular dynamics simulation.The elastic minimum image convention of periodic boundary conditions is introduced to allow the bulk to adjust its size according to the new fixed temperature. The TEC and the specific heat of Ti are compared to the available theoretical and experimental data.

  4. Molecular Imaging Using Fluorescence and Bioluminescence to Reveal Tissue Response to Laser-Mediated Thermal Injury

    Science.gov (United States)

    Mackanos, Mark A.; Jansen, E. Duco; Contag, Christopher H.

    For decades biological investigation has focused on a reductionist approach, which has greatly advanced our understanding of the biological process, but has also served to move the analysis further and further away from the living body. This was necessary as we sought to identify the cells, genes, mutations and/or etiological agents that were associated with a given process. The information generated through these approaches can now be used to advance more integrative strategies in which specific cellular and molecular events can be studied in context of the functional circulation and intact organ systems of living animals, and humans. Essential tools for integrative analyses of biology include imaging modalities that enable visualization of structure and function in the living body. The relatively recent development of molecular probes as exogenous contrast agents and reporter genes that encode proteins with unique properties that can be distinguished from tissues and cells has ushered in a new set of approaches that are being called molecular imaging.

  5. A synthetic molecular system capable of mirror-image genetic replication and transcription.

    Science.gov (United States)

    Wang, Zimou; Xu, Weiliang; Liu, Lei; Zhu, Ting F

    2016-07-01

    The overwhelmingly homochiral nature of life has left a puzzle as to whether mirror-image biological systems based on a chirally inverted version of molecular machinery could also have existed. Here we report that two key steps in the central dogma of molecular biology, the template-directed polymerization of DNA and transcription into RNA, can be catalysed by a chemically synthesized D-amino acid polymerase on an L-DNA template. We also show that two chirally mirrored versions of the 174-residue African swine fever virus polymerase X could operate in a racemic mixture without significant enantiomeric cross-inhibition to the activity of each other. Furthermore, we demonstrate that a functionally active L-DNAzyme could be enzymatically produced using the D-amino acid polymerase. The establishment of such molecular systems with an opposite handedness highlights the potential to exploit enzymatically produced mirror-image biomolecules as research and therapeutic tools. PMID:27325097

  6. Molecular images as a tool in research. From radiopharmacy to radiopharmacology

    International Nuclear Information System (INIS)

    Full text: The rapidly emerging biomedical research discipline of Molecular Imaging (MI) enables the visualization, characterization and quantification of biologic process taking place at the cellular and sub-cellular levels within the intact living organism. The overall goal of MI is to interrogate biologic process in the cell of a living subject to report on and reveal their molecular abnormalities that form the basis of disease. This is in contrast to classical diagnostic imaging where documented findings are the result of the end effects of these molecular alterations, usually in the form of macroscopic and well-established gross pathology. MI includes the field of Nuclear Medicine (SPECT and PET) and other strategies that do not depend on radioactivity to produce imaging signals (optical, bioluminescence and Magnetic Resonance). The emergence of MI strategies has made possible the achievement of several important biomedical research goals that open the door to advancement of study in molecular medicine. These various accomplishments include: (1) development of non invasive 'in vivo' imaging methods to reflect gene expression and more complex events such as protein-protein interactions; (2) ability to monitor multiple molecular events near simultaneously; (3) capacity to follow cell trafficking and cell targeting; (4) optimization of drug and gene therapy; (5) capability of imaging drug effects at a molecular and cellular level; (6) assessment of disease progression at a molecular pathologic level; (7) advancement of the possibility of achieving all the above mentioned goals rapidly, reproducibly and quantitatively, in support of monitoring a time-dependent manner the experimental, developmental, environmental and therapeutic influences on gene products in a single living subject. Although many laboratory based proof-of-principle and validation studies have been conducted using MI approaches, a great deal more experimental research will be necessary to

  7. Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology.

    Science.gov (United States)

    Petibois, Cyril; Déléris, Gérard

    2006-10-01

    Fourier-transform infrared (FT-IR) spectro-imaging enables global analysis of samples, with resolution close to the cellular level. Recent studies have shown that FT-IR imaging enables determination of the biodistribution of several molecules of interest (carbohydrates, lipids, proteins) for tissue analysis without pre-analytical modification of the sample such as staining. Molecular structure information is also available from the same analysis, notably for protein secondary structure and fatty acyl chain peroxidation level. Thus, several cancer markers can be identified from FT-IR tissue images, enabling accurate discrimination between healthy and tumor areas. FT-IR imaging applications are now able to provide unique chemical and morphological information about tissue status. With the fast image acquisition provided by modern mid-infrared imaging systems, it is now envisaged to analyze cerebral tumor exereses in delays compatible with neurosurgery. Accordingly, we propose to take FT-IR imaging into consideration for the development of new molecular histopathology tools. PMID:16935373

  8. Catalytic Molecular Imaging of MicroRNA in Living Cells by DNA-Programmed Nanoparticle Disassembly.

    Science.gov (United States)

    He, Xuewen; Zeng, Tao; Li, Zhi; Wang, Ganglin; Ma, Nan

    2016-02-24

    Molecular imaging is an essential tool for disease diagnostics and treatment. Direct imaging of low-abundance nucleic acids in living cells remains challenging because of the relatively low sensitivity and insufficient signal-to-background ratio of conventional molecular imaging probes. Herein, we report a class of DNA-templated gold nanoparticle (GNP)-quantum dot (QD) assembly-based probes for catalytic imaging of cancer-related microRNAs (miRNA) in living cells with signal amplification capacity. We show that a single miRNA molecule could catalyze the disassembly of multiple QDs with the GNP through a DNA-programmed thermodynamically driven entropy gain process, yielding significantly amplified QD photoluminescence (PL) for miRNA imaging. By combining the robust PL of QDs with the catalytic amplification strategy, three orders of magnitude improvement in detection sensitivity is achieved in comparison with non-catalytic imaging probe, which enables facile and accurate differentiation between cancer cells and normal cells by miRNA imaging in living cells. PMID:26694689

  9. Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Jyothi U. Menon, Praveen K. Gulaka, Madalyn A. McKay, Sairam Geethanath, Li Liu, Vikram D. Kodibagkar

    2012-01-01

    Full Text Available An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence, dual-functional (oximetry/detection nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications.

  10. Study on novel peptide probe 131I-RRL for tumor molecular imaging

    International Nuclear Information System (INIS)

    To study the potential application value of Ary-Ary-Leu(RRL) specially combined with tumor derived endothelial cells in tumor molecular imaging for melanoma bearing mice, a novel peptide RRL was designed and labeled with 131I by chloramine-T method, and mice bearing melanoma tumor were injected 131I-RRL to imaging. The labeling results showed that the optimized condition were following: 50 μg RRL, 10 μL (74 MBq) Na 131I, 90 μg chloramine-T, total reaction volume 100 μL, and reaction time 3 min, the labeling yield was over 69%. The labeling compound was purified by Sephadex G25, its radiochemical purity was > 95%. In vitro binding experiments, FITC-RRL was mainly combine with tumor cells and tumor angiogenesis endothelial cells, and in the SPECT imaging, 131I-RRL peptide could successfully image the tumor in nude mice bearing melanoma tumor for 24 h after injection. The results indicated that small molecular peptide RRL was a promising carrier for tumor molecular imaging and radioimmunotherapy. (authors)

  11. Target-to-background enhancement in multispectral endoscopy with background autofluorescence mitigation for quantitative molecular imaging

    Science.gov (United States)

    Yang, Chenying; Hou, Vivian W.; Girard, Emily J.; Nelson, Leonard Y.; Seibel, Eric J.

    2014-07-01

    Fluorescence molecular imaging with exogenous probes improves specificity for the detection of diseased tissues by targeting unambiguous molecular signatures. Additionally, increased diagnostic sensitivity is expected with the application of multiple molecular probes. We developed a real-time multispectral fluorescence-reflectance scanning fiber endoscope (SFE) for wide-field molecular imaging of fluorescent dye-labeled molecular probes at nanomolar detection levels. Concurrent multichannel imaging with the wide-field SFE also allows for real-time mitigation of the background autofluorescence (AF) signal, especially when fluorescein, a U.S. Food and Drug Administration approved dye, is used as the target fluorophore. Quantitative tissue AF was measured for the ex vivo porcine esophagus and murine brain tissues across the visible and near-infrared spectra. AF signals were then transferred to the unit of targeted fluorophore concentration to evaluate the SFE detection sensitivity for sodium fluorescein and cyanine. Next, we demonstrated a real-time AF mitigation algorithm on a tissue phantom, which featured molecular probe targeted cells of high-grade dysplasia on a substrate containing AF species. The target-to-background ratio was enhanced by more than one order of magnitude when applying the real-time AF mitigation algorithm. Furthermore, a quantitative estimate of the fluorescein photodegradation (photobleaching) rate was evaluated and shown to be insignificant under the illumination conditions of SFE. In summary, the multichannel laser-based flexible SFE has demonstrated the capability to provide sufficient detection sensitivity, image contrast, and quantitative target intensity information for detecting small precancerous lesions in vivo.

  12. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    International Nuclear Information System (INIS)

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images

  13. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    Science.gov (United States)

    Zhang, Guanglei; Pu, Huangsheng; He, Wei; Liu, Fei; Luo, Jianwen; Bai, Jing

    2015-02-01

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  14. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044 (China); Pu, Huangsheng; Liu, Fei; Bai, Jing [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); He, Wei [China Institute of Sport Science, Beijing 100061 (China); Luo, Jianwen, E-mail: luo-jianwen@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2015-02-23

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  15. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  16. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  17. Filme, die beflügeln : Einflüsse von Filmen auf die Reisemotivation, Raumwahrnehmung und Imagebildung

    OpenAIRE

    Siehl, Stefan

    2010-01-01

    Populäre Filme, TV-Serien, Werbespots oder bekannte Filmfiguren haben einen enormen Einfluss auf das Image ihrer Schauplätze und auf unsere kulturräumlichen Vorstellungen. Erfolgreiche Filme erreichen ein Millionenpublikum und in der Folge dessen gewinnt Filmtourismus weltweit an Bedeutung. Filme haben sich zu einer Institution für den Tourismusmarkt entwickelt. Ein Grund liegt in der Gemeinsamkeit des Films und der Reise – beide entführen für eine gewisse Zeit aus dem Alltag heraus in eine W...

  18. What role for 99mTc radiopharmaceuticals in the age of molecular imaging?

    International Nuclear Information System (INIS)

    Molecular imaging is a new paradigm that is currently emerging in the field of medical and biological sciences as a novel tool for exploring fundamental biological processes at the molecular level in integrated living organisms. Nuclear imaging is a sensitive methodological approach that employs radiolabelled probes to investigate biomolecular interactions. This approach may ultimately lead to a deeper understanding of the route through which single biochemical pathways are grouped to form networks of biological processes controlling the behaviour of a whole organism. Technetium-99m radiopharmaceuticals are playing an important role in this new scenario and are currently expanding the applications of these tracers, particularly through the use of high resolution small animal scanners. This review briefly illustrates some of the recent results in this area and the potential developments that may further stimulate the research interest in 99mTc imaging agents. (author)

  19. Auswirkungen auf limnische Lebensräume

    OpenAIRE

    Haase, Peter; Hering, Daniel; Hoffmann, Andreas; Müller, Ruth; Nowak, Carsten; Pauls, Steffen; Stoll, Stefan; Straile, Dietmar

    2012-01-01

    Die direkten Auswirkungen der in Folge des projizierten Klimawandels steigenden Lufttemperaturen und veränderten Niederschläge auf limnischeSysteme in Deutschland sind vielfältig: So wird die veränderte Niederschlagssituation (mehr Extremereignisse, weniger Sommerniederschlag, mehr Winterniederschlag; s. Kap 2) das Abflussverhalten von Fließgewässern sowie die Wasserstände von Standgewässern in Form einer erhöhten Amplitude deutlich beeinflussen. Tendenziell werden kleinere Gewässer häufiger ...

  20. Auf dem Weg zur Digitalen Bibliothek

    OpenAIRE

    Degkwitz, Andreas; Frank, Nina; Hendrix, Imma; Pfeifenberger, Regina; Tollkühn, Katharina

    2013-01-01

    Nichts hat den Lebensalltag in den vergangenen zwanzig Jahren mehr verändert als das Internet, das uns mit Handys, Laptops, Net- und Notebooks, Smartphones und Tablet-PCs allgegenwärtig begleitet. Das iPhone bietet den permanenten Zugang zu weltweit verfügbarer Information in der Westentasche und hat damit einen völlig neuen Umgang mit Interaktion und Informationsrecherche herbeigeführt. Der tief greifende Wandel hat sich massiv auf die Weiterentwicklung der Serviceprofile wissenschaftl...

  1. Weltseeverkehr: Warten auf das Ende der Baisse

    OpenAIRE

    Böhme, Hans

    1999-01-01

    Erwartungsgemäß kam es im Jahr 1998 noch nicht zu einer Trendwende auf den Seeverkehrsmärkten. Sie standen vielmehr weiter unter starkem Druck. Neben der Asien-Krise machte sich 1998 zunehmend die konjunkturelle Abschwächung in der Welt bemerkbar. Auch die ersten Monate 1999 haben wenig Aussicht eröffnet, daß es noch vor Jahresende zu einer nachhaltigen Aufwärtsbewegung kommt. Die Schwächetendenzen verbreiteten und vertierten sich im Verlauf des Jahres 1998. Nachdem die Bulkcarrier schon 1997...

  2. Electronic Commerce auf lokalen Märkten

    OpenAIRE

    Schwickert, Axel C.; Lüders, René

    1999-01-01

    eCommerce, versteht man es als Business-to-Consumer-Beziehung, sollte nicht lediglich unter dem Gesichtspunkt des globalen Handels betrachtet werden. Besonders Markttransaktionen von privaten Haushalten bzgl. Konsumgütern bzw. Gütern des täglichen Bedarfs finden vorwiegend auf lokalen und physischen Märkten statt. Die Bundesbürger verwenden z. B. einen großen Teil ihres verfügbaren Einkommens zum Kauf von Lebensmitteln oder Kleidung, die sie in Kaufhäusern, Supermärkten oder im selbständigen ...

  3. Macht auf das Tor! - Opens the gate!

    Directory of Open Access Journals (Sweden)

    Claudemir de Quadros

    2011-09-01

    Full Text Available Macht auf das Tor! (Abra o portão foi publicado, possivelmente, na primeira metade do século 20. Editado por Max Dirkschneider, Raimund Heuler e Felix Oberborbeck, apresenta músicas, rimas, piadas, jogos e canções.A edição apresentada nesse espaço é de um livro que pertence à família de Carolina Drebes, estudante do curso de Pedagogia do Centro Universitário Franciscano, Santa Maria/RS.

  4. Image-guided Coring for Large-scale Studies in Molecular Pathology.

    Science.gov (United States)

    Montaser-Kouhsari, Laleh; Knoblauch, Nicholas W; Oh, Eun-Yeong; Baker, Gabrielle; Christensen, Stephen; Hazra, Aditi; Tamimi, Rulla M; Beck, Andrew H

    2016-07-01

    Sampling of formalin-fixed paraffin-embedded (FFPE) tissue blocks is a critical initial step in molecular pathology. Image-guided coring (IGC) is a new method for using digital pathology images to guide tissue block coring for molecular analyses. The goal of our study is to evaluate the use of IGC for both tissue-based and nucleic acid-based projects in molecular pathology. First, we used IGC to construct a tissue microarray (TMA); second, we used IGC for FFPE block sampling followed by RNA extraction; and third, we assessed the correlation between nuclear counts quantitated from the IGC images and RNA yields. We used IGC to construct a TMA containing 198 normal and breast cancer cores. Histopathologic analysis showed high accuracy for obtaining tumor and normal breast tissue. Next, we used IGC to obtain normal and tumor breast samples before RNA extraction. We selected a random subset of tumor and normal samples to perform computational image analysis to quantify nuclear density, and we built regression models to estimate RNA yields from nuclear count, age of the block, and core diameter. Number of nuclei and core diameter were the strongest predictors of RNA yields in both normal and tumor tissue. IGC is an effective method for sampling FFPE tissue blocks for TMA construction and nucleic acid extraction. We identify significant associations between quantitative nuclear counts obtained from IGC images and RNA yields, suggesting that the integration of computational image analysis with IGC may be an effective approach for tumor sampling in large-scale molecular studies. PMID:26186251

  5. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    Science.gov (United States)

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  6. Spektralselektive optoelektronische Sensoren auf der Basis amorphen Siliziums

    OpenAIRE

    Rieve, Peter

    2006-01-01

    Die Dissertation beschreibt die Entwicklung spektralselektiver optoelektronischer Sensoren auf der Basis amorphen Siliziums. Das herausragende Merkmal dieses neuartigen Detektortyps besteht in seiner spannungsgesteuerten spektralen Empfindlichkeit, welche die Wellenlängenabhängigkeit der optischen Absorption des Halbleitermaterials durch die Bereitstellung eines entsprechenden Ladungsträger-Driftprofils ausnutzt. Auf diese Weise ist es möglich, mit einem einzigen Bauelement ein komplettes ...

  7. Der Einfluss von Rekrutiererverhaltensweisen auf den Bewerber: Ein mediierter Prozess

    OpenAIRE

    Eberz, Lisa-Marie; Baum, Matthias; Kabst, Rüdiger

    2012-01-01

    In dieser Studie wird die Wirkung der Rekrutiererfreundlichkeit und -kompetenz auf den Bewerber und dessen Absicht, den Bewerbungsprozess weiter zu verfolgen, empirisch analysiert. Als theoretisches Fundament dienen das Signaling und die Theory of Reasoned Action. Unter Zuhilfenahme eines Strukturgleichungsmodells kann gezeigt werden, dass die wahrgenommene Freundlichkeit und Kompetenz des Rekrutierers entgegen bisheriger Annahmen keine direkten Auswirkungen auf den Bewerbungsprozess haben, s...

  8. PET for molecular imaging of cancer: a tool for tailored therapy

    International Nuclear Information System (INIS)

    The concept of personalised medicine has led to a need for improved phenotyping as well as prediction of treatment response early after therapy initiation. Most of the molecular biology methods used today need tissue sampling for in vitro analysis. In contrast, molecular imaging allows for non-invasive studies at the molecular level in living, intact organisms. Accordingly, molecular imaging with PET has been one of the most successful techniques in such phenotyping and response prediction using FDG. In addition, recent development of new PET tracers has further improved the value of PET in tumor characterization. Such new PET tracers allow for visualization of tumor specific receptors and tissue characteristics such as ability to metastasize. Furthermore, PET has a high sensitivity and allows for quantification and is not prone to sampling error as seen with biopsies. We will present examples of development of probes targeting the somatostatin receptor type 2, over-expressed in neuroendocrine tumors, including our first-in-man studies of 64Cu-DOTATATE. Also development in probes for visualization of the invasive phenotype will be presented. Finally, with the most recent development of true integrated PET/MRI scanners it has now become possible to add information from MRI. The value of such hybrid imaging will also be briefly discussed. (author)

  9. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-01-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents. PMID:27147293

  10. Molecular Imaging of Biological Gene Delivery Vehicles for Targeted Cancer Therapy: Beyond Viral Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon; Nguyen, Vu H. [Chonnam National University Medical School, Gwangju (Korea, Republic of); Gambhir, Sanjiv S. [Stanford University, California(United States)

    2010-04-15

    Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonarrival biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.

  11. Molecular Imaging of Biological Gene Delivery Vehicles for Targeted Cancer Therapy: Beyond Viral Vectors

    International Nuclear Information System (INIS)

    Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonarrival biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.

  12. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M.

    2016-05-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  13. Relationship between detector size and the need for extra images and their effect on radiation exposure in digital mammography screening; Zusammenhang zwischen der Detektorgroesse und der Notwendigkeit von Zusatzaufnahmen sowie deren Auswirkung auf die Strahlenexposition im digitalen Mammografie-Screening

    Energy Technology Data Exchange (ETDEWEB)

    Entz, K.; Sommer, A. [University Hospital Muenster (Germany). Reference Center for Mammography; Heindel, W. [University Hospital Muenster (Germany). Reference Center for Mammography; University Hospital Muenster (Germany). Dept. of Clinical Radiology; Lenzen, H. [University Hospital Muenster (Germany). Dept. of Clinical Radiology

    2014-09-15

    Purpose: To determine the number of extra images (EI) that are necessary for imaging large breasts when using a detector smaller than 24 cm x 30 cm and to calculate the additional average glandular dose (AGD) for these images. Materials and Methods: The screening mammograms taken between 2007 and 2011 were assessed for a photon counting full-field digital mammography (PCM) system (detector size: 24 cm x 26 cm) and a computed radiography (CR) system (24 cm x 30 cm). The number of EI was recorded and the AGD calculated. This AGD was compared with the mean AGD of 47 conventional full-field digital mammography (FFDM) systems. Results: A total of 62,466 examinations were analyzed. EI had to be taken in 0.6% (199/32,766) of all PCM examinations and 0.3% (90/29 700) of all CR examinations. This corresponded to a total of 327 and 191 EI for the PCM and CR systems, respectively. More than one quarter of the examinations with EI were necessary because the breast was not properly positioned in the original image (PCM 31%, CR 29%). The mean AGD per EI was 0.7 ± 0.1 mGy for the PCM and 2.6 ± 1.2 mGy for the CR system. The mean AGD for all breast thicknesses for FFDM was 1.4 ± 0.3 mGy. Conclusion: In general, large breasts cannot be imaged with just one image per view. The number of examinations where EI are needed is doubled with the 24 cm x 26 cm detector of the PCM system. However, the absolute number is small. The total dose, as the sum of the original and the EI, is equal to the mean AGD of a single image of the FFDM systems and lower than the dose of a single image with the CR system. (orig.)

  14. Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma.

    Directory of Open Access Journals (Sweden)

    James K Tsuruta

    Full Text Available Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2 is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6 ± 0.27 (n = 13, p = 0.0032. The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression.

  15. Rhodopsin molecular contrast imaging by optical coherence tomography for functional assessment of photoreceptors (Conference Presentation)

    Science.gov (United States)

    Nafra, Zahra; Liu, Tan; Jiao, Shuliang

    2016-03-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. We developed a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. A broadband supercontinuum laser, whose filtered output was centered at 520 nm, was used as the illuminating light source. To test the capabilities of the system on rhodopsin mapping we imaged the retina of albino rats. The rats were dark adapted before imaging. An integrated near infrared OCT was used to guide the alignment in dark. VIS-OCT three-dimensional images were then acquired under dark- and light- adapted states sequentially. Rhodopsin distribution was calculated from the differential image. The rhodopsin distributions can be displayed in both en face view and depth-resolved cross-sectional image. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

  16. Molecular-scale imaging of unstained deoxyribonucleic acid fibers by phase transmission electron microscopy

    International Nuclear Information System (INIS)

    The molecular structure of deoxyribonucleic acid (DNA) fibers was observed by a phase reconstruction method called three-dimensional Fourier filtering using a 200 kV transmission electron microscope. The characteristic helical structure and the spacing of adjacent base pairs of DNA were partially resolved due to an improved signal-to-noise ratio and resolution enhancement by the phase reconstruction although the molecular structure was damaged by the electron beam irradiation. In the spherical aberration-free phase images, the arrangements of single atom-sized spots forming sinusoidal curves were sometimes observed, which seem to be the contrast originating in the sulfur atoms along the main chains

  17. In vivo imaging of immuno-spin trapped radicals with molecular magnetic resonance imaging in a diabetic mouse model.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; Henderson, Michael; Downum, Kristen; Lupu, Florea; Silasi-Mansat, Robert; Ramirez, Dario C; Gomez-Mejiba, Sandra E; Bonini, Marcelo G; Ehrenshaft, Marilyn; Mason, Ronald P

    2012-10-01

    Oxidative stress plays a major role in diabetes. In vivo levels of membrane-bound radicals (MBRs) in a streptozotocin-induced diabetic mouse model were uniquely detected by combining molecular magnetic resonance imaging (mMRI) and immunotrapping techniques. An anti-DMPO (5,5-dimethyl-1-pyrroline N-oxide) antibody (Ab) covalently bound to an albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent (anti-DMPO probe), and mMRI, were used to detect in vivo levels of DMPO-MBR adducts in kidneys, livers, and lungs of diabetic mice, after DMPO administration. Magnetic resonance signal intensities, which increase in the presence of a Gd-based molecular probe, were significantly higher within the livers, kidneys, and lungs of diabetic animals administered the anti-DMPO probe compared with controls. Fluorescence images validated the location of the anti-DMPO probe in excised tissues via conjugation of streptavidin-Cy3, which targeted the probe biotin moiety, and immunohistochemistry was used to validate the presence of DMPO adducts in diabetic mouse livers. This is the first report of noninvasively imaging in vivo levels of MBRs within any disease model. This method can be specifically applied toward diabetes models for in vivo assessment of free radical levels, providing an avenue to more fully understand the role of free radicals in diabetes. PMID:22698922

  18. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby; Sørensen, Jesper; Schiøtt, Birgit

    2013-01-01

    amyloid fibrils and the disease pathology. Alzheimer’s disease is very difficult to diagnose, and much research is being performed to develop noninvasive diagnostic methods, such as imaging with small-molecule agents. The interactions between amyloid fibrils and imaging agents are challenging to examine...... experimentally due to the insoluble nature of amyloid fibrils. This study uses molecular dynamics simulations to investigate the interactions between 13 aromatic amyloid imaging agents, entailing 4 different organic scaffolds, and a model of an amyloid fibril. Clustering analysis combined with free energy...... binding modes for imaging agents is proposed to originate from subtle differences in amino acid composition of the surface grooves on an amyloid fibril, resulting in fine tuning of the binding affinities for a specific amyloid fibril....

  19. Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime.

    Science.gov (United States)

    Battisti, Antonella; Panettieri, Silvio; Abbandonato, Gerardo; Jacchetti, Emanuela; Cardarelli, Francesco; Signore, Giovanni; Beltram, Fabio; Bizzarri, Ranieri

    2013-07-01

    The arsenal of fluorescent probes tailored to functional imaging of cells is rapidly growing and benefits from recent developments in imaging strategies. Here, we present a new molecular rotor, which displays strong absorption in the green region of the spectrum, very little solvatochromism, and strong emission sensitivity to local viscosity. The emission increase is paralleled by an increase in emission lifetime. Owing to its concentration-independent nature, fluorescence lifetime is particularly suitable to image environmental properties, such as viscosity, at the intracellular level. Accordingly, we demonstrate that intracellular viscosity measurements can be efficiently carried out by lifetime imaging with our probe and phasor analysis, an efficient method for measuring lifetime-related properties (e.g., bionalyte concentration or local physicochemical features) in living cells. Notably, we show that it is possible to monitor the partition of our probe into different intracellular regions/organelles and to follow mitochondrial de-energization upon oxidative stress. PMID:23780224

  20. Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging.

    Science.gov (United States)

    Bauerle, Tobias; Komljenovic, Dorde; Semmler, Wolfhard

    2012-03-01

    Bone is among the most common locations of metastasis and therefore represents an important clinical target for diagnostic follow-up in cancer patients. In the pathogenesis of bone metastases, disseminated tumor cells proliferating in bone interact with the local microenvironment stimulating or inhibiting osteoclast and osteoblast activity. Non-invasive imaging methods monitor molecular, functional and morphologic changes in both compartments of these skeletal lesions - the bone and the soft tissue tumor compartment. In the bone compartment, morphologic information on skeletal destruction is assessed by computed tomography (CT) and radiography. Pathogenic processes of osteoclast and osteoblast activity, however, can be imaged using optical imaging, positron emission tomography (PET), single photon emission CT (SPECT) and skeletal scintigraphy. Accordingly, conventional magnetic resonance imaging (MRI) and CT as well as diffusion- weighted MRI and optical imaging are used to assess morphologic aspects on the macroscopic and cellular level of the soft tissue tumor compartment. Imaging methods such as PET, MR spectroscopy, dynamic contrast-enhanced techniques and vessel size imaging further elucidate on pathogenic processes in this compartment including information on metabolism and vascularization. By monitoring these aspects in bone lesions, new insights in the pathogenesis of skeletal metastases can be gained. In translation to the clinical situation, these novel methods for the monitoring of bone metastases might be applied in patients to improve follow-up of these lesions, in particular after therapeutic intervention. This review summarizes established and experimental imaging techniques for the monitoring of tumor and bone cell activity including molecular, functional and morphological aspects in bone metastases. PMID:22214500

  1. Atmospheric-pressure molecular imaging of biological tissues and biofilms by LAESI mass spectrometry.

    Science.gov (United States)

    Nemes, Peter; Vertes, Akos

    2010-01-01

    Ambient ionization methods in mass spectrometry allow analytical investigations to be performed directly on a tissue or biofilm under native-like experimental conditions. Laser ablation electrospray ionization (LAESI) is one such development and is particularly well-suited for the investigation of water-containing specimens. LAESI utilizes a mid-infrared laser beam (2.94 μm wavelength) to excite the water molecules of the sample. When the ablation fluence threshold is exceeded, the sample material is expelled in the form of particulate matter and these projectiles travel to tens of millimeters above the sample surface. In LAESI, this ablation plume is intercepted by highly charged droplets to capture a fraction of the ejected sample material and convert its chemical constituents into gas-phase ions. A mass spectrometer equipped with an atmospheric-pressure ion source interface is employed to analyze and record the composition of the released ions originating from the probed area (pixel) of the sample. A systematic interrogation over an array of pixels opens a way for molecular imaging in the microprobe analysis mode. A unique aspect of LAESI mass spectrometric imaging is depth profiling that, in combination with lateral imaging, enables three-dimensional (3D) molecular imaging. With current lateral and depth resolutions of ~100 μm and ~40 μm, respectively, LAESI mass spectrometric imaging helps to explore the molecular structure of biological tissues. Herein, we review the major elements of a LAESI system and provide guidelines for a successful imaging experiment. PMID:20834223

  2. Justifying molecular images in cell biology textbooks: From constructions to primary data.

    Science.gov (United States)

    Serpente, Norberto

    2016-02-01

    For scientific claims to be reliable and productive they have to be justified. However, on the one hand little is known on what justification precisely means to scientists, and on the other the position held by philosophers of science on what it entails is rather limited; for justifications customarily refer to the written form (textual expressions) of scientific claims, leaving aside images, which, as many cases from the history of science show are relevant to this process. The fact that images can visually express scientific claims independently from text, plus their vast variety and origins, requires an assessment of the way they are currently justified and in turn used as sources to justify scientific claims in the case of particular scientific fields. Similarly, in view of the different nature of images, analysis is required to determine on what side of the philosophical distinction between data and phenomena these different kinds of images fall. This paper historicizes and documents a particular aspect of contemporary life sciences research: the use of the molecular image as vehicle of knowledge production in cell studies, a field that has undergone a significant shift in visual expressions from the early 1980s onwards. Focussing on textbooks as sources that have been overlooked in the historiography of contemporary biomedicine, the aim is to explore (1) whether the shift of cell studies, entailing a superseding of the optical image traditionally conceptualised as primary data, by the molecular image, corresponds with a shift of justificatory practices, and (2) to assess the role of the molecular image as primary data. This paper also explores the dual role of images as teaching resources and as resources for the construction of knowledge in cell studies especially in its relation to discovery and justification. Finally, this paper seeks to stimulate reflection on what kind of archival resources could benefit the work of present and future epistemic

  3. Molecular imaging of hypoxia in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Connie [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); National Cancer Centre, Department of Radiation Oncology, Singapore (Singapore); St Thomas' Hospital, Imaging 2, London (United Kingdom); Blower, Philip J. [King' s College London, St Thomas' Hospital, Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Goh, Vicky [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Landau, David B. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Clinical Oncology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Cook, Gary J.R. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Clinical PET Imaging Centre, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom)

    2015-05-01

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  4. Molecular Imaging of Cyclooxygenase-2 in Canine Transitional Cell Carcinomas In Vitro and In Vivo

    OpenAIRE

    Cekanova, Maria; Uddin, Md. Jashim; Bartges, Joseph W.; Callens, Amanda; Legendre, Alfred M.; Rathore, Kusum; Wright, Laura; Carter, Amanda; Marnett, Lawrence J

    2013-01-01

    The enzyme cyclooxygenase-2 (COX-2) is induced at high levels in tumors, but not in surrounding normal tissues, which makes it an attractive target for molecular imaging of cancer. We evaluated the ability of novel optical imaging agent, fluorocoxib A to detect urinary bladder canine transitional cell carcinomas (K9TCC). Here, we show that fluorocoxib A uptake overlapped with COX-2 expression in primary K9TCC cells in vitro. Using subcutaneously implanted primary K9TCC in athymic mice, we dem...

  5. Molecular imaging of hypoxia in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  6. The Changing Face of Vascular Interventional Radiology: The Future Role of Pharmacotherapies and Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, Charles R., E-mail: crtapping@doctors.org.uk; Bratby, Mark J., E-mail: mark.bratby@ouh.nhs.uk [Oxford University Hospitals, John Radcliffe Hospital, Department of Radiology (United Kingdom)

    2013-08-01

    Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies.

  7. The changing face of vascular interventional radiology: the future role of pharmacotherapies and molecular imaging.

    Science.gov (United States)

    Tapping, Charles R; Bratby, Mark J

    2013-08-01

    Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies. PMID:23636247

  8. The Changing Face of Vascular Interventional Radiology: The Future Role of Pharmacotherapies and Molecular Imaging

    International Nuclear Information System (INIS)

    Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies

  9. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    Science.gov (United States)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  10. Development of a protease-sensitive molecular imaging agent for optoacoustic tomography

    Science.gov (United States)

    La Rivière, Patrick J.; Green, Anthony; Norris, James R.

    2007-02-01

    We are working to develop a molecular imaging agent that will allow for in vivo imaging of proteases by use of optoacoustic tomography. Proteases are protein-cleaving proteins known to be overactive in a number of pathologies, including cancers and vascular disease. Protease-sensitive "smart probes" have previously been developed in the context of pure optical imaging. These involve pairs of mutually quenching fluorophores attached to a backbone by protease-cleavable peptide side chains; cleaving of the side chains liberates the fluorophores and leads to increase in fluorescence. Optoacoustic imaging is sensitive not to fluorescence but to optical absorption and so a smart imaging probe for protease imaging would need to shift its absorption peak upon cleavage. Naturally, the absorption peaks of the cleaved (and, ideally, uncleaved) molecules should be in the near infrared for maximum tissue penetration. We have designed a molecule that should achieve these specifications. It comprises two active sites, derivatives of natural photosynthetic bacteriochlorophylls that absorb in the near IR, conjugated to a lysine backbone by peptide spacers specific to the protease being imaged. When these bacteriochlorophylls dimerize and stack in the uncleaved molecule, their absorption peak shifts about 20-30 nm. When they are cleaved from the molecule the absorption peak shifts back to that of bacteriochlorophyll monomers. We have performed a preliminary synthesis of the molecule and confirmed by use of a spectrometer that the pairing of the bacteriochlorophylls leads to the expected absorption shift.

  11. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    OpenAIRE

    Tan Liu; Rong Wen; Lam, Byron L.; Puliafito, Carmen A.; Shuliang Jiao

    2015-01-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption oc...

  12. Molecular Imaging Approaches to Understanding the Roles of Hydrogen Peroxide Biology in Stress and Development

    OpenAIRE

    Dickinson, Bryan Craig

    2010-01-01

    The production of hydrogen peroxide (H2O2) in biological systems is associated with a variety of pathologies including neurodegenerative diseases, cancer, and the general process of aging. However, a growing body of evidence suggests that the reactivity of this particular reactive oxygen species (ROS) is also harnessed for physiological processes. Molecular imaging using fluorescence microscopy offers a valuable approach for deciphering the multifaceted roles of H2O2 in biological processes. ...

  13. The dopaminergic basis of human behaviors: a review of molecular imaging studies

    OpenAIRE

    Egerton, Alice; Mehta, Mitul A; Montgomery, Andrew J; Lappin, Julia M.; Howes, Oliver D; Reeves, Suzanne J.; Cunningham, Vincent J; Grasby, Paul M.

    2009-01-01

    This systematic review describes human molecular imaging studies which have investigated alterations in extracellular DA levels during performance of behavioral tasks. Whilst heterogeneity in experimental methods limits meta-analysis, we describe the advantages and limitations of different methodological approaches. Interpretation of experimental results may be limited by regional cerebral blood flow (rCBF) changes, head movement and choice of control conditions. We revisit our original study...

  14. Molecular Sensing and Imaging of Human Disease Cells and Their Responses to Biochemical Stimuli

    OpenAIRE

    Xiao, Lifu

    2015-01-01

    The overall goal of this dissertation is to develop noninvasive imaging techniques that allow us not only to detect diseased cells but also to study the molecular mechanisms underlying these diseases. Atomic force microscopy and Raman spectroscopy are applied to measure cellular mechanical properties (e.g. Young’s Modulus, adhesion force) and biochemical composition of living cancerous vs. healthy (A549 vs. SAEC) human lung epithelial cells. These biomechanical and biochemical properties c...

  15. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Elham Khanicheh

    Full Text Available BACKGROUND/OBJECTIVES: Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1 with contrast enhanced ultrasound (CEU could assess treatment effects on endothelial phenotype in early atherosclerosis. METHODS: Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day. At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MB(VCAM and control microbubbles (MB(Ctr. Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression. RESULTS: Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MB(VCAM in non-treated animals (MB(VCAM 2±0.3 vs MB(Ctr 0.7±0.2, p<0.01, but not in statin-treated animals (MB(VCAM 0.8±0.2 vs MB(Ctr 1.0±0.2, p = ns; p<0.01 for the effect of statin on MB(VCAM signal. CONCLUSIONS: Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.

  16. On Sensitivity of Molecular Specific Photoacoustic Imaging Using Plasmonic Gold Nanoparticles

    OpenAIRE

    Mallidi, Srivalleesha; Joshi, Pratixa P.; Sokolov, Konstantin; Emelianov, Stanislav

    2009-01-01

    Functionalized gold nanospheres undergo receptor mediated aggregation on cancer cells that overexpress the epidermal growth factor receptor (EGFR). This phenomenon leads to a red shift in the plasmon resonance frequency of the EGFR-targeted gold nanoparticles. Previously we demonstrated that highly selective detection of cancer cells can be achieved using the combination of multi-wavelength photoacoustic imaging and molecular specific gold nanoparticles. In this study, we use tissue models to...

  17. Molecular imaging in Alzheimer's disease: new perspectives on biomarkers for early diagnosis and drug development

    OpenAIRE

    Nordberg, Agneta

    2011-01-01

    Recent progress in molecular imaging has provided new important knowledge for further understanding the time course of early pathological disease processes in Alzheimer's disease (AD). Positron emission tomography (PET) amyloid beta (Aβ) tracers such as Pittsburgh Compound B detect increasing deposition of fibrillar Aβ in the brain at the prodromal stages of AD, while the levels of fibrillar Aβ appear more stable at high levels in clinical AD. There is a need for PET ligands to visualize smal...

  18. Molecular Magnetic Resonance Imaging of Tumors with a PTPµ Targeted Contrast Agent1

    OpenAIRE

    Burden-Gulley, Susan M.; Zhou, Zhuxian; Craig, Sonya EL; Lu, Zheng-Rong; Brady-Kalnay, Susann M.

    2013-01-01

    Molecular magnetic resonance imaging (MRI) of tumors improves the specificity of MRI by using targeted probes conjugated to contrast-generating metals. The limitation of this approach is in the identification of a target molecule present in sufficient concentration for visualization and the development of a labeling reagent that can penetrate tumor tissue with the fast kinetics required for use in a clinical setting. The receptor protein tyrosine phosphatase PTPµ is a transmembrane protein th...

  19. IMAGING OF THE CCS 22.3 GHz EMISSION IN THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Thioxoethenylidene (CCS) is an abundant interstellar molecule and a good tracer of high density and evolutionary stage of dense molecular clouds. It is also a suitable candidate for Zeeman splitting observations for its high splitting factor and narrow thermal line widths. We report here Expanded Very Large Array 22.3 GHz observations of three dense molecular cores TMC-1, TMC-1C, and L1521B in the Taurus molecular cloud complex to image the CCS 21-10 transition. For all three sources, the clumpy CCS emission is most likely tracing the starless cores. However, these compact structures account for only ∼1%-13% of the integrated emission detected in single-dish observations, indicating the presence of significant large-scale diffuse emission in favorable conditions for producing CCS.

  20. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mathieu Salaün

    Full Text Available Several matrix metalloproteinases (MMPs are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging.To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma.K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors.In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27, but in none of the non-invasive (0/4 (p=0.001.MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer.

  1. Application of Machine Learning tools to recognition of molecular patterns in STM images

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kalinin, Sergei; Sumpter, Bobby

    The ability to utilize individual molecules and molecular assemblies as data storage elements has motivated scientist for years, concurrent with the continuous effort to shrink a size of data storage devices in microelectronics industry. One of the critical issues in this effort lies in being able to identify individual molecular assembly units (patterns), on a large scale in an automated fashion of complete information extraction. Here we present a novel method of applying machine learning techniques for extraction of positional and rotational information from scanning tunneling microscopy (STM) images of π-bowl sumanene molecules on gold. We use Markov Random Field (MRF) model to decode the polar rotational states for each molecule in a large scale STM image of molecular film. We further develop an algorithm that uses a convolutional Neural Network combined with MRF and input from density functional theory to classify molecules into different azimuthal rotational classes. Our results demonstrate that a molecular film is partitioned into distinctive azimuthal rotational domains consisting typically of 20-30 molecules. In each domain, the ``bowl-down'' molecules are generally surrounded by six nearest neighbor molecules in ``bowl-up'' configuration, and the resultant overall structure form a periodic lattice of rotational and polar states within each domain. Research was supported by the US Department of Energy.

  2. Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam

    International Nuclear Information System (INIS)

    Double-resonant excitation of nitric oxide in a seeded supersonic molecular beam forms a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma travels with the propagation of the molecular beam in z over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The ω1 + ω2 laser crossed molecular beam excitation geometry convolutes the axial Gaussian distribution of NO in the molecular beam with the Gaussian intensity distribution of the perpendicularly aligned laser beam to create an ellipsoidal volume of Rydberg gas. Detected images describe the evolution of this initial density as a function of selected Rydberg gas initial principal quantum number, n0, ω1 laser pulse energy (linearly related to Rydberg gas density, ρ0) and flight time. Low-density Rydberg gases of lower principal quantum number produce uniformly expanding, ellipsoidal charge-density distributions. Increase either of n0 or ρ0 breaks the ellipsoidal symmetry of plasma expansion. The volume bifurcates to form repelling plasma volumes. The velocity of separation depends on n0 and ρ0 in a way that scales uniformly with ρe, the density of electrons formed in the core of the Rydberg gas by prompt Penning ionization. Conditions under which this electron gas drives expansion in the long axis dimension of the ellipsoid favours the formation of counter-propagating shock waves

  3. Wirkung von chronisch-psychosozialem Stress auf myeloide Suppressorzellen und auf Tumorwachstum

    OpenAIRE

    Schmidt, Dominic

    2016-01-01

    In der vorliegenden Arbeit wurde untersucht, welche Auswirkungen chronisch-psychosozialer Stress auf das Immunsystem besitzt. CSC induziert unreife, myeloide Zellen, die regulatorisch das Immunsystem beeinflussen und in der Literatur als myeloide Suppressorzellen (myeloid-derived supressor cells; MDSC) bekannt sind. Lymphozyten, B- und T-Zellen, waren nach CSC in sekundär lymphatischen Organen reduziert, wohingegen MDSC prozentual anstiegen. Ferner stieg das suppressive Verhalten monozytische...

  4. Textsortenklassifikation auf der basus Kommunikativer Grundbedingungen

    Directory of Open Access Journals (Sweden)

    Gabriele Diewald

    1995-12-01

    Full Text Available Im folgenden wird versucht, eine Basisklassifikation von Textsorten zu entwerfen, die umfassend und nichtwillkürlich ist. Mit "umfassend" ist gemeint, daß nicht nur ein bestimmter Ausschnitt aus dem Spektrum möglicher Sprachverwendungen untersucht wird, sondern daß alle Vorkommen dominant sprachlicher Kommunikation, mit denen ein Sprecher normalerweise konfrontiert ist, einbezogen werden.1 Mit "nichtwillkürlich" ist zum einen gemeint, daß die Wahl der Klassifikationskriterien nicht beliebig, sondern aus relevanten, textexternen Faktoren ableitbar ist. 2 Zum anderen betrifft das Problem der Willkürlichkeit die Frage, ob ein Modell die schlüssige Zurückführung von Texteigenschaften auf entsprechende Klassifikationsmerkmale ermöglicht.

  5. The development of EGFR molecular imaging and gene mutation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    In vivo epidermal growth factor receptor (EGFR) imaging has great potential to affect patient-specific treatment for NSCLC, applying a targeted therapy, and measuring molecular-specific effects of treatment. New PET/CT radiotracers,such as N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl) methoxy]quinazolin-4-amine (ZD6476), five 4-(anilino) quinazoline derivatives (ML01) and 4-[(3-iodophenyl) amino]-7-(2-[2-{2-(2-[2-{2-([18F]fluoroethoxy)-ethoxy}-ethoxy]-ethoxy)- ethoxy }-ethoxy]-quinazoline-6-yl-acrylamide) ([18F]F-PEG6-IPQA) are now available. But, 11C labeled-4-N-(3-bromoanilino)-6, 7-dimethoxyquinazoline (PD153035) is the only PET/CT radiotracer used for human clinical evaluation,primarily for EGFR imaging. Finally, the most important aspect of successful imaging is the identification and characterization of EGFR at the cellular or sub-cellular level with high specificity for the target. Considering the need for further development of such PET/CT tracers, EGFR molecular imaging will be presented along with an important examination of the progression that has been made thus far in the field. (authors)

  6. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    Science.gov (United States)

    Liu, Tan; Wen, Rong; Lam, Byron L.; Puliafito, Carmen A.; Jiao, Shuliang

    2015-09-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

  7. Preparation of lisinopril-capped gold nanoparticles for molecular imaging of angiotensin-converting enzyme

    Science.gov (United States)

    Li, Yuan; Baeta, Cesar; Aras, Omer; Daniel, Marie-Christine

    2009-05-01

    Overexpression of angiotensin-converting enzyme (ACE) has been associated with the pathophysiology of cardiac and pulmonary fibrosis. Moreover, the prescription of ACE inhibitors, such as lisinopril, has shown a favorable effect on patient outcome for patients with heart failure or systemic hypertension. Thus targeted imaging of the ACE would be of crucial importance for monitoring tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-coated gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. The preparation involved non-modified lisinopril, using its primary amine group as the anchoring function on the gold nanoparticles surface. The stable lisinopril-coated gold nanoparticles obtained were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM). Their zeta potential was also measured in order to assess the charge density on the modified gold nanoparticles (GNPs).

  8. Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction.

    Science.gov (United States)

    Thackeray, James T; Bankstahl, Jens P; Wang, Yong; Wollert, Kai C; Bengel, Frank M

    2016-01-01

    Acute tissue inflammation after myocardial infarction influences healing and remodeling and has been identified as a target for novel therapies. Molecular imaging holds promise for guidance of such therapies. The amino acid (11)C-methionine is a clinically approved agent which is thought to accumulate in macrophages, but not in healthy myocytes. We assessed the suitability of positron emission tomography (PET) with (11)C-methionine for imaging post-MI inflammation, from cell to mouse to man. Uptake assays demonstrated 7-fold higher (11)C-methionine uptake by polarized pro-inflammatory M1 macrophages over anti-inflammatory M2 subtypes (ptranslation of novel image-guided, inflammation-targeted regenerative therapies. PMID:27570549

  9. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging.

    Science.gov (United States)

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27332865

  10. Drift correction for single-molecule imaging by molecular constraint field, a distance minimum metric

    International Nuclear Information System (INIS)

    The recent developments of far-field optical microscopy (single molecule imaging techniques) have overcome the diffraction barrier of light and improve image resolution by a factor of ten compared with conventional light microscopy. These techniques utilize the stochastic switching of probe molecules to overcome the diffraction limit and determine the precise localizations of molecules, which often requires a long image acquisition time. However, long acquisition times increase the risk of sample drift. In the case of high resolution microscopy, sample drift would decrease the image resolution. In this paper, we propose a novel metric based on the distance between molecules to solve the drift correction. The proposed metric directly uses the position information of molecules to estimate the frame drift. We also designed an algorithm to implement the metric for the general application of drift correction. There are two advantages of our method: First, because our method does not require space binning of positions of molecules but directly operates on the positions, it is more natural for single molecule imaging techniques. Second, our method can estimate drift with a small number of positions in each temporal bin, which may extend its potential application. The effectiveness of our method has been demonstrated by both simulated data and experiments on single molecular images

  11. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke.

    Science.gov (United States)

    Caine, Sally; Hackett, Mark J; Hou, Huishu; Kumar, Saroj; Maley, Jason; Ivanishvili, Zurab; Suen, Brandon; Szmigielski, Aleksander; Jiang, Zhongxiang; Sylvain, Nicole J; Nichol, Helen; Kelly, Michael E

    2016-07-01

    Stroke is a major global health problem, with the prevalence and economic burden predicted to increase due to aging populations in western society. Following stroke, numerous biochemical alterations occur and damage can spread to nearby tissue. This zone of "at risk" tissue is termed the peri-infarct zone (PIZ). As the PIZ contains tissue not initially damaged by the stroke, it is considered by many as salvageable tissue. For this reason, much research effort has been undertaken to improve the identification of the PIZ and to elucidate the biochemical mechanisms that drive tissue damage in the PIZ in the hope of identify new therapeutic targets. Despite this effort, few therapies have evolved, attributed in part, to an incomplete understanding of the biochemical mechanisms driving tissue damage in the PIZ. Magnetic resonance imaging (MRI) has long been the gold standard to study alterations in gross brain structure, and is frequently used to study the PIZ following stroke. Unfortunately, MRI does not have sufficient spatial resolution to study individual cells within the brain, and reveals little information on the biochemical mechanisms driving tissue damage. MRI results may be complemented with histology or immuno-histochemistry to provide information at the cellular or sub-cellular level, but are limited to studying biochemical markers that can be successfully "tagged" with a stain or antigen. However, many important biochemical markers cannot be studied with traditional MRI or histology/histochemical methods. Therefore, we have developed and applied a multi-modal imaging platform to reveal elemental and molecular alterations that could not previously be imaged by other traditional methods. Our imaging platform incorporates a suite of spectroscopic imaging techniques; Fourier transform infrared imaging, Raman spectroscopic imaging, Coherent anti-stoke Raman spectroscopic imaging and X-ray fluorescence imaging. This approach does not preclude the use of

  12. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  13. Molecular-imaging-based dose painting – a novel paradigm for radiation therapy prescription

    Science.gov (United States)

    Bentzen, Søren M.; Gregoire, Vincent

    2011-01-01

    Dose painting is the prescription of a non-uniform radiation dose distribution to the target volume based on functional or molecular images shown to be indicative of the local risk of relapse. Two prototypical strategies for implementing this novel paradigm in radiation oncology are reviewed: sub-volume boosting and dose painting by numbers. Sub-volume boosting involves the selection of a “target within the target”, defined by image segmentation on the basis of the quantitative information in the image or morphologically, and this is related to image based target volume selection and delineation. Dose painting by numbers is a voxel-level prescription of dose based on a mathematical transformation of the image intensity of individual pixels. Quantitative use of images to decide both where and how to delivery radiation therapy in an individual case is also called theragnostic imaging. Dose painting targets are imaging surrogates for cellular or microenvironmental phenotypes associated with poor radioresponsiveness. In this review, the focus is on positron emission tomography (PET) tracers: FDG and choline as surrogates for tumor burden, FLT as a surrogate for proliferation (or cellular growth fraction) and hypoxia sensitive tracers including FMISO, EF3, EF5 and Cu-ATSM as surrogates of cellular hypoxia. Research advances supporting the clinico-biological rationale for dose painting are reviewed as are studies of the technical feasibility of optimizing and delivering realistic dose painted radiation therapy plans. Challenges and research priorities in this exciting research field are defined and a possible design for a randomized clinical trial of dose painting is presented. PMID:21356478

  14. Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes

    International Nuclear Information System (INIS)

    A method for synthesizing superparamagnetic iron oxide (SPIO) multi-nanoparticle aggregates as molecular magnetic resonance imaging (MRI) contrast agents is described. The approach utilizes organic acid/base interactions in the colloid to induce highly controllable nanoparticle aggregation. Monodisperse aggregates with diameters as large as 100 nm are synthesized by manipulating the interfacial surface chemistry of the SPIO nanoparticles in tetrahydrofuran solvent. Subsequent phospholipid micelle encapsulation yields micellar multi-SPIO (mmSPIO) aggregates with enhanced T2 relaxivity (368.0 s-1 mmol-1 Fe) as compared to micellar single particle SPIO (302.0 s-1 mmol-1 Fe). mmSPIO conjugated to anti-CA125 monoclonal antibodies were incubated with ovarian carcinoma cell lines to demonstrate targeted in vitro molecular MRI, resulting in a 66% shortening in T2 time for CA125 positive NIH:OVCAR-3 cells and a less than 3% change in T2 time for CA125 negative SK-OV-3 cells. The controllable aggregation of mmSPIO shows potential for the development of molecular MRI contrast agents with optimal sizes for specific diagnostic imaging applications

  15. Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, B A; Haag, M A; Stoldt, C R [Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427 (United States); Serkova, N J [Department of Anesthesiology, Biomedical MRI/MRS Cancer Center Core, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045 (United States); Shroyer, K R [Department of Pathology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045 (United States)], E-mail: conrad.stoldt@colorado.edu

    2008-07-02

    A method for synthesizing superparamagnetic iron oxide (SPIO) multi-nanoparticle aggregates as molecular magnetic resonance imaging (MRI) contrast agents is described. The approach utilizes organic acid/base interactions in the colloid to induce highly controllable nanoparticle aggregation. Monodisperse aggregates with diameters as large as 100 nm are synthesized by manipulating the interfacial surface chemistry of the SPIO nanoparticles in tetrahydrofuran solvent. Subsequent phospholipid micelle encapsulation yields micellar multi-SPIO (mmSPIO) aggregates with enhanced T{sub 2} relaxivity (368.0 s{sup -1} mmol{sup -1} Fe) as compared to micellar single particle SPIO (302.0 s{sup -1} mmol{sup -1} Fe). mmSPIO conjugated to anti-CA125 monoclonal antibodies were incubated with ovarian carcinoma cell lines to demonstrate targeted in vitro molecular MRI, resulting in a 66% shortening in T{sub 2} time for CA125 positive NIH:OVCAR-3 cells and a less than 3% change in T{sub 2} time for CA125 negative SK-OV-3 cells. The controllable aggregation of mmSPIO shows potential for the development of molecular MRI contrast agents with optimal sizes for specific diagnostic imaging applications.

  16. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    Science.gov (United States)

    Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož

    2016-03-01

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  17. Whole-body MR imaging in children with suspected osteonecrosis after intensive chemotherapy: preliminary results; Ganzkoerper-MRT bei Kindern mit Verdacht auf Osteonekrose nach intensiver Chemotherapie: Erste Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Beer, M.; Stenzel, M.; Darge, K. [Universitaetsklinikum Wuerzburg (Germany). Inst. fuer Roentgendiagnostik; Girschick, H.; Schlegel, P.G. [Universitaetsklinikum Wuerzburg (Germany). Kinderklinik

    2008-03-15

    Purpose: use of multidrug chemotherapy poses the risk of avascular osseous necroses in children. Depiction of the whole body, including clinically non-apparent sites is mandatory for starting early and proper treatment, including surgical approaches in lesions near the joints. We analyzed the value of whole-body MRI in the detection of osteonecrosis, (1) in relation to conventional X-ray imaging and clinical symptoms, (2) using different MRI sequences, (3) with follow-up examinations. Materials and methods: 5 patients suffering from an oncological disease, 13 to 16 years old (3 x ALL, 1 x medulloblastoma, 1 x CML), and recently developing bone pain were examined with X-ray imaging of the particular region and a whole-body MRI (T2w TIRM, T1w TSE sequences, pre- and post-contrast GD-DTPA, including fat suppression techniques). Neck/thorax/abdomen/pelvis, and upper and lower extremities were acquired in the coronal plane, and the feet in sagittal orientation. 4 of 5 patients had at least one follow-up examination (in the mean after 10 {+-} 4 months). Results: none of the initial X-ray images revealed an abnormal finding. The whole-body MRI showed in 4 of 5 children bone marrow lesions compatible with osteonecrosis. The locations were around the knee joints (n = 3) and the tibiae/ankle joints (n = 4). In addition to the symptomatic sites, MRI revealed additional lesions at the following sites: humerus (n = 5), hip joints (n = 4), knee joints (n = 6), ankle joints (n = 4). The size varied from small focal lesions to lesions measuring 90% of the whole transverse diameter of the bone. The lesions were able to be detected most easily with heavily T2-weighted (TIRM) sequences, and the diagnosis was most easily established using the non-enhanced TSE T1-weighted sequences. As a consequence of the results of the whole-body MRI, all patients with lesions compatible with osteonecrosis received symptomatic (n = 2) or specific (n = 2) therapy. In the follow-up examinations, a

  18. Light at the end of the tunnel in radiation therapy: molecular imaging in radiation research

    International Nuclear Information System (INIS)

    Accurate dose delivery to malignant tissue in radiotherapy is quite important for enhancing the treatment efficacy while minimizing morbidity of surrounding normal tissues. Advances in therapeutic strategies and diagnosis technologies along with our understanding of the biology of tumor response to radiation therapy have paved way to allow nearly 60% of current cancer patients to be treated with Radiation Therapy. The confluence of molecular imaging and nanotechnology fields are bridging physics and medicine and are quickly making strides in opening new avenues and therapeutic strategies that complement radiation therapy - with a distinct footprint in immunotherapy, adoptive cell therapy, and targeted chemotherapy. Incorporating optical imaging in radiation therapy in my laboratory, we demonstrated that molecular probes can monitor radiation-induced physiological changes at the target and off-target sites using in vivo molecular imaging approaches. Further we show endogenous bioluminescence resulting from whole body irradiation, which is distinct from the Cherenkov radiation. Mice without anesthesia were held in ventilated mouse pie cage and subjected to 5 Gy X-ray irradiation using commercially available X-RAD320 irradiator (1 Gy/min; F2 beam hardening filter 1.5 mm Al, 0.25 mm Cu, 0.75 mm Sn,). The endogenous bioluminescence from the subjects was captured using cooled CCD camera. Significant increase (up to 100 fold) in the amounts of photons released as bioluminescence was detected during 5 min capture from the mice subjected to irradiation compared to that of the control. To determine the early inflammatory response, the reactive oxygen species (ROS) activity was monitored using L-012 (8-amino-5-chloro-7-phenylpyridol (3,4-d)pyridazine-1,4(2H,3H) dione), a chemiluminescence reporter. L-012 was administered (i.p) after 15 min of irradiation. Chemiluminescence resulting from the irradiation induced ROS activity, possible through the action of the

  19. Impairment of retrograde neuronal transport in oxaliplatin-induced neuropathy demonstrated by molecular imaging.

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    Full Text Available BACKGROUND AND PURPOSE: The purpose of our study was to utilize a molecular imaging technology based on the retrograde axonal transport mechanism (neurography, to determine if oxaliplatin-induced neurotoxicity affects retrograde axonal transport in an animal model. MATERIALS AND METHODS: Mice (n = 8/group were injected with a cumulative dose of 30 mg/kg oxaliplatin (sufficient to induce neurotoxicity or dextrose control injections. Intramuscular injections of Tetanus Toxin C-fragment (TTc labeled with Alexa 790 fluorescent dye were done (15 ug/20 uL in the left calf muscles, and in vivo fluorescent imaging performed (0-60 min at baseline, and then weekly for 5 weeks, followed by 2-weekly imaging out to 9 weeks. Tissues were harvested for immunohistochemical analysis. RESULTS: With sham treatment, TTc transport causes fluorescent signal intensity over the thoracic spine to increase from 0 to 60 minutes after injection. On average, fluorescence signal increased 722%+/-117% (Mean+/-SD from 0 to 60 minutes. Oxaliplatin treated animals had comparable transport at baseline (787%+/-140%, but transport rapidly decreased through the course of the study, falling to 363%+/-88%, 269%+/-96%, 191%+/-58%, 121%+/-39%, 75%+/-21% with each successive week and stabilizing around 57% (+/-15% at 7 weeks. Statistically significant divergence occurred at approximately 3 weeks (p≤0.05, linear mixed-effects regression model. Quantitative immuno-fluorescence histology with a constant cutoff threshold showed reduced TTc in the spinal cord at 7 weeks for treated animals versus controls (5.2 Arbitrary Units +/-0.52 vs 7.1 AU +/-1.38, p0.56, T-test. CONCLUSION: We show-for the first time to our knowledge-that neurographic in vivo molecular imaging can demonstrate imaging changes in a model of oxaliplatin-induced neuropathy. Impaired retrograde neural transport is suggested to be an important part of the pathophysiology of oxaliplatin-induced neuropathy.

  20. Which role for Technetium-99m radiopharmaceuticals in the age of molecular imaging?

    International Nuclear Information System (INIS)

    Full text: Molecular imaging is a new paradigm that is currently modifying our common approach to the study of fundamental biological processes. In this representation, the behaviour of a single cell in a living tissue is thought to be the result of the entanglement of a number of basic biochemical pathways, which are tightly grouped together to form a final biological network extended through the whole organism. Nuclear imaging is a subfield characterized by the use of radiolabeled single-molecule probes, which are specifically designed for monitoring selected biomolecular processes belonging to a particular biological network. After the advent of a new generation of small animal scanners having a submillimiter resolution, Single Photon Emission Computed Tomography (SPECT) is receiving a growing interest brought about by the observation that, unlike Positron Emission Tomography, there is no intrinsic physical limit to the resolution that could be achieved when single-photon emitting radiolabeled probes are employed. Technetium-99m is still recognized as the γ-emitting radionuclide having the most ideal nuclear properties and, therefore, 99mTc radiopharmaceuticals may play a significant role in molecular imaging, particularly if novel categories of tracers exhibiting superior imaging characteristics will be developed using advanced chemical methods. At present, a number of fundamental biological processes can be successfully monitored using 99mTc agents, and they will be shortly reviewed in this paper. Examples range from the use of [99mTcO4]- for monitoring gene expression, to the labeling of a large number of different peptides targeting receptors expressed in various disease states and processes such as tumour proliferation, inflammation, angiogenesis and formation of atherotic plaques. Problems and perspectives in the design of imaging agents for the central nervous system will also be discussed. (author)

  1. Advances of molecular imaging probes for the diagnosis of Alzheimer's disease.

    Science.gov (United States)

    Zhou, Ming; Wang, Xiaobo; Liu, Zhiguo; Yu, Lun; Hu, Shuo; Chen, Lizhang; Zeng, Wenbin

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in multiple cognitive domains and it becomes the most common cause of dementia in the elderly. There is an urgent need for the early diagnosis and treatment of AD to ease caregiver burden and medical costs, as well as improve patients' living activities associated with the dramatic increasing number of affected individuals. Molecular imaging with target-specific probes is contributing to identify the underlying biology in AD, which benefits to the early diagnosis of AD and the evaluation of anti-AD therapy. Molecular imaging probes, such as (11)C-PIB, (11)C-MP4A, (18)F-AV-45, and (11)F-FDG, can selectively bind to special bimolecular of AD or accurately accumulate at the location of damage areas, thus become an edge tool for a better management of the diseases in the clinical practice and new drug development. In the past decades, a large variety of probes is being developed and tested to be useful for the early and accurate diagnosis of Alzheimer's disease, patient selection for disease-modifying therapeutic trials and monitoring the effect of anti-amyloid therapy. Since imaging probes may also help to guide physicians to identify those patients that could best benefit from a given therapeutic regimen, dose, or duration of drug, this paper is to present a perspective of the available imaging probes for AD, classified on different modalities. Meanwhile, recent advances of those probes that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval are outlined. Additionally, future directions and specific application of imaging strategies designed for both diagnosis and treatment for AD are discussed. PMID:24484277

  2. Molecular cardiac PET besides FDG viability imaging; Molekulare Kardiale PET jenseits der FDG-Vitalitaetsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, O.; Burchert, W. [Universitaetsklinik der Ruhr-Univ. Bochum (Germany). Inst. fuer Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabetszentrum NRW

    2009-06-15

    Molecular cardiac non F-18-FDG PET is currently based on perfusion imaging. It is of excellent diagnostic accuracy to detect coronary artery disease (CAD) and superior to perfusion SPECT. There is also evidence for its incremental prognostic value. The unique feature of PET to measure myocardial perfusion in absolute terms and in short time periods define its impact on cardiac imaging enabling both the evaluation of early changes in CAD and the accurate characterization of multivessel disease. Currently, all available PET perfusion tracers in Europe are cyclotron products. Rb-82, a generator product, is the most frequently employed perfusion tracer in the United States and cyclotron independent. This tracer has the potential to become an alternative in Europe soon. Nowadays, PET systems are manufactured as hybrid PET-CT scanners. In oncology, hybrid imaging revealed, that the combination of functional and morphological imaging is superior to the single components. In cardiology, the integration of perfusion PET imaging with CT calcium scoring and CT anatomy of the coronary arteries represents a similar constellation. Atherosclerotic plaque evaluation by combined PET-CT technique will be one of the most promising future applications with a potential immense impact on prophylaxis, diagnosis and therapy of CAD in the future. (orig.)

  3. Multimodal molecular imaging system for pathway-specific reporter gene expression.

    Science.gov (United States)

    Rossi, Marco; Massai, Luisa; Diamanti, Daniela; Fiengo, Pasquale; De Rosa, Antonella; Magrini, Roberta; Magnoni, Letizia; Chellini, Sara; Coniglio, Silvia; Diodato, Enrica; Pilli, Elena; Caradonna, Nicola Pasquale; Sardone, Gianluca; Monti, Martina; Roggeri, Riccardo; Lionetti, Vincenzo; Recchia, Fabio; Tunici, Patrizia; Valensin, Silvia; Scali, Carla; Pollio, Giuseppe; Porcari, Valentina

    2016-04-30

    Preclinical imaging modalities represent an essential tool to develop a modern and translational biomedical research. To date, Optical Imaging (OI) and Magnetic Resonance Imaging (MRI) are used principally in separate studies for molecular imaging studies. We decided to combine OI and MRI together through the development of a lentiviral vector to monitor the Wnt pathway response to Lithium Chloride (LiCl) treatment. The construct was stably infected in glioblastoma cells and, after intracranial transplantation in mice, serial MRI and OI imaging sessions were performed to detect human ferritin heavy chain protein (hFTH) and firefly luciferase enzyme (FLuc) respectively. The system allowed also ex vivo analysis using a constitutive fluorescence protein expression. In mice, LiCl administration has shown significantly increment of luminescence signal and a lower signal of T2 values (POI and a 7 Tesla MRI scanner. This study indicates that OI and MRI can be performed in a single in vivo experiment, providing an in vivo proof-of-concept for drug discovery projects in preclinical phase. PMID:26987608

  4. Chapter 4 - Applications of nanotechnology in molecular imaging of the brain.

    Science.gov (United States)

    McAteer, Martina A; Choudhury, Robin P

    2009-01-01

    Rapid advances in the field of nanotechnology promise revolutionary improvements in the diagnosis and therapy of neuroinflammatory disorders. An array of iron oxide nano- and microparticle agents have been developed for in vivo molecular magnetic resonance imaging (mMRI) of cerebrovascular endothelial targets, such as vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and the glycoprotein receptor GP IIb/IIIa expressed on activated platelets. Molecular markers of glioma cells, such as matrix metalloproteinase-2 (MMP-2), and markers for brain tumor angiogenesis, such as alpha (v) beta (3) integrin (alpha(v)beta(3)), have also been successfully targeted using nanoparticle imaging probes. This chapter provides an overview of targeted, iron oxide nano- and microparticles that have been applied for in vivo mMRI of the brain in experimental models of multiple sclerosis (MS), brain ischemia, cerebral malaria (CM), brain cancer, and Alzheimer's disease. The potential of targeted nanoparticle agents for application in clinical imaging is also discussed, including multimodal and therapeutic approaches. PMID:20302829

  5. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer

    International Nuclear Information System (INIS)

    Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer 18F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms

  6. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    Science.gov (United States)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  7. Adsorptionsmechanismen von Perylen und PTCDA auf Ag(110)

    OpenAIRE

    Ellerbrake, R. (Rainer)

    2003-01-01

    Das Adsorptionsverhalten der aromatischen Kohlenwasserstoffe Perylen und PTCDA, per Vakuumsublimation auf Ag(110) aufgedampft, wird mit experimentellen und theoretischen Methoden untersucht. TDS-, XPS-, STM und LEED-Untersuchungen zeigen, dass sich Perylen auf Ag(110) im Monolagenbereich nahe Raumtemperatur bzgl. der Bedeckung wie ein 2D van der Waals-Gas verhält. Erst nahe der geschlossenen Monolage bilden sich periodische, aber inkommensurable Strukturen aus. Computer...

  8. Abbildung relationaler Daten auf die Ontologie des CIDOC CRM

    OpenAIRE

    Peter, Sven

    2015-01-01

    Vor dem Hintergrund des Problems der Datenbankintegration hat diese Arbeit das Mapping der relationalen Daten des Bilddatenbanksystems ConedaKor auf die vom ICOM entwickelte Ontologie CIDOC CRM zum Ziel. Nachdem die beiden zugrunde liegenden Datenmodelle vorgestellt worden sind, diskutiert die Arbeit verschiedene Mapping-Ansätze im Hinblick auf die Automatisierung des Mapping-Prozesses. Aus dieser Diskussion resultierend, wird für das spezifische Problem des Abbildens der relationalen Date...

  9. Einfluss produktionsbezogener Kommunikation auf das Verbrauchervertrauen in (Bio-)Lebensmittel

    OpenAIRE

    Kriege-Steffen, Astrid

    2015-01-01

    Untersuchungsgegenstand in der vorliegenden Arbeit ist der Einfluss von Vertrauen in Lebensmittel auf den Kaufentscheidungsprozess und die Bedeutung von produktionsbezogener Kommunikation auf das Verbrauchervertrauen. Die Entscheidungsgründe für oder gegen bestimmte Lebensmittel wurden bereits in einigen Studien untersucht. Dabei werden beispielsweise die Bedeutung des Preises, des Gesundheitswertes und des Tier- und Umweltschutzes erfasst. Ebenso werden Ängste der Konsumenten in Bezug au...

  10. Untersuchungen zum Einfluss des Eingliederungsalters auf die Fruchtbarkeitsleistung von Jungsauen

    OpenAIRE

    Görtz, Eva Maria

    2014-01-01

    Die Wirtschaftlichkeit der Ferkelerzeugung wird maßgeblich von der Fruchtbarkeitsleistung der Sauenherden bestimmt. Das Ziel der vorliegenden Arbeit bestand darin, einen möglichen Einfluss des Eingliederungsalters auf die Fruchtbarkeitsleistung von Jungsauen zu untersuchen. Mit den Ergebnissen sollten Vorschläge zur Leistungsstabilisierung und Leistungssteigerung der Praxis unterbreitet werden können. Erwartet wurden positive Auswirkungen einer früheren Einstallung der Jungsauen auf die Leist...

  11. Flüssigphasenabscheidung von Titandioxid auf Polymerlatex-Templaten

    OpenAIRE

    Strohm, Holger

    2005-01-01

    Es wurde der Einfluss einer Substratfunktionalisierung auf die Flüssigphasenabscheidung von TiO2 auf dispersen Polymerlatexpartikeln in wässriger Lösung untersucht. Als Partikelsubstrate wurden zwei verschiedene Polystyrol-Latizes verwendet: Ein Latex mit einer geringen negativen Oberflächenladungsdichte (PS-Latex) und ein carboxylatfunktionalisierter Latex (PSC-Latex) mit einer hohen Dichte oberflächengebundener Ladungen. Durch die Adsorption von Polyelektrolyten aus wässriger Lösung konnte ...

  12. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    International Nuclear Information System (INIS)

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  13. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Cheng, Lin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-11-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the

  14. Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging

    International Nuclear Information System (INIS)

    Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at 60 .deg. C in oven overnight for hardening. Four sealed pipe tips containing [18F]FDG solution were used as fiduciary markers. After injection of [18F]FDG via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment

  15. Diffractive imaging of a molecular rotational wavepacket with femtosecond Megaelectronvolt electron pulses

    CERN Document Server

    Yang, Jie; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Centurion, Martin; Wang, Xijie

    2015-01-01

    Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, since the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. We performed a gas-phase electron diffraction experiment using Megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved an unprecedented combination of 100 fs root-mean-squared (RMS) temporal resolution and sub-Angstrom (0.76 {\\AA}) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomical...

  16. Simultaneous molecular imaging of EGFR and HER2 using hyperspectral darkfield microscopy and immunotargeted nanoparticles

    Science.gov (United States)

    Crow, Matthew J.; Marinakos, Stella; Chilkoti, Ashutosh; Wax, Adam P.

    2009-02-01

    Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER2) contribute to the regulation of cell proliferation, and when jointly over-expressed are associated with several types of cancer. The ability to monitor both receptors simultaneously results in a more accurate indicator of degree of cancerous activity than either receptor alone. Plasmonic nanoparticles (NPs) show promise as a potential EGFR and HER2 biomarker over alternatives such as fluorophores and quantum dots, which are limited by their cytotoxicity and photobleaching. To observe immunolabeled NPs bound to receptor-expressing cells, our past experiments were conducted using a novel optical darkfield microspectroscopy system. We implemented an epi-illumination darkfield broadband light train, which allows for darkfield analysis of live cells in culture with enhanced NP contrast. Under this setup, molecularly specific binding of NPs immunolabeled with anti-EGFR was confirmed. We have since adapted our darkfield setup, which previously only obtained spectral information from a line imaging spectrometer, to incorporate hyperspectral imaging capabilities, allowing widefield data acquisition within seconds. The new system has been validated through observation of shifts in the peak wavelength of scattering by gold NPs on silanated cover glasses using several immersion media. Peak resonant scattering wavelengths match well with that predicted by Mie theory. We will further demonstrate the potential of the system with simultaneous molecular imaging of multiple receptors in vitro using labeled EGFR+/HER2+ SK-BR-3 human breast cancer cells with anti-EGFR immunolabeled gold nanospheres and anti-HER2 immunolabeled gold nanorods, with each scattering in different spectral windows. Additional trials will be performed to demonstrate molecularly specific binding using EGFR+/HER2- MDA-MB-468 and HER2+/EGFR- MDA-MB-453 breast cancer cells.

  17. Early detection of breast cancer: a molecular optical imaging approach using novel estrogen conjugate fluorescent dye

    Science.gov (United States)

    Bhattacharjee, Shubhadeep; Jose, Iven

    2011-02-01

    Estrogen induced proliferation of mutant cells is widely understood to be the one of major risk determining factor in the development of breast cancer. Hence determination of the Estrogen Receptor[ER] status is of paramount importance if cancer pathogenesis is to be detected and rectified at an early stage. Near Infrared Fluorescence [NIRf] Molecular Optical Imaging is emerging as a powerful tool to monitor bio-molecular changes in living subjects. We discuss pre-clinical results in our efforts to develop an optical imaging diagnostic modality for the early detection of breast cancer. We have successfully carried out the synthesis and characterization of a novel target-specific NIRf dye conjugate aimed at measuring Estrogen Receptor[ER] status. The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of Indocyanine Green (ICG) cyanine dye, bis-1,1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. In-vitro studies regarding specific binding and endocytocis of the dye performed on ER+ve [MCF-7] and control [MDA-MB-231] adenocarcinoma breast cancer cell lines clearly indicated nuclear localization of the dye for MCF-7 as compared to plasma level staining for MDA-MB-231. Furthermore, MCF-7 cells showed ~4.5-fold increase in fluorescence signal intensity compared to MDA-MB-231. A 3-D mesh model mimicking the human breast placed in a parallel-plate DOT Scanner is created to examine the in-vivo efficacy of the dye before proceeding with clinical trials. Photon migration and florescence flux intensity is modeled using the finite-element method with the coefficients (quantum yield, molar extinction co-efficient etc.) pertaining to the dye as obtained from photo-physical and in-vitro studies. We conclude by stating that this lipophilic dye can be potentially used as a target specific exogenous contrast agent in molecular optical imaging for early detection of breast cancer.

  18. Comprehensive Evaluation of the Anti-Angiogenic and Anti-Neoplastic Effects of Endostar on Liver Cancer through Optical Molecular Imaging

    OpenAIRE

    Qian ZHANG; Du, Yang; Xue, Zhenwen; Chi, Chongwei; Jia, Xiaohua; Tian, Jie

    2014-01-01

    Molecular imaging enables non-invasive monitoring of tumor growth, progression, and drug treatment response, and it has become an important tool to promote biological studies in recent years. In this study, we comprehensively evaluated the in vivo anti-angiogenic and anti-neoplastic effects of Endostar on liver cancer based on the optical molecular imaging systems including micro-computer tomography (Micro-CT), bioluminescence molecular imaging (BLI) and fluorescence molecular tomography (FMT...

  19. Rotational Spectromicroscopy: Imaging the Orbital Interaction between Molecular Hydrogen and an Adsorbed Molecule

    Science.gov (United States)

    Li, Shaowei; Yuan, Dingwang; Yu, Arthur; Czap, Gregory; Wu, Ruqian; Ho, W.

    2015-05-01

    A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j =0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom.

  20. The effect of aging on atherosclerotic plaque inflammation and molecular calcification: A PET CT imaging study

    DEFF Research Database (Denmark)

    Blomberg, Björn; Thomassen, Anders; Simonsen, Jane Angel;

    cardiovascular risk factors were prospectively assessed by 18F-FDG (inflammation) and sodium 18F-fluoride (18F-NaF) (molecular calcification) PET CT imaging. Global aortic uptake of 18F-FDG and 18F-NaF was determined semi-quantitatively by calculating the average blood pool corrected standardized uptake value (cSUV......) [Mean SUVAORTA - Mean SUVBLOOD POOL]. Furthermore, the average maximum 18F-NaF cSUV was determined in the coronary arteries. Calculating regression and correlation coefficients summarized the data. Results: A quadratic relationship was observed between aging and aortic 18F-FDG avidity. A second order...

  1. Peptidyl Molecular Imaging Contrast Agents Using a New Solid Phase Peptide Synthesis Approach

    OpenAIRE

    Yoo, Byunghee; Pagel, Mark D.

    2007-01-01

    A versatile method is disclosed for solid phase peptide synthesis (SPPS) of molecular imaging contrast agents. A DO3A moiety was derivatized to introduce a CBZ-protected amino group and then coupled to a polymeric support. CBZ cleavage with Et2AlCl/thioanisole was optimized for SPPS. Amino acids were then coupled to the aminoDOTA loaded resin using conventional step-wise Fmoc SPPS to create a product with DOTA coupled to the C-terminus of the peptide. In a second study, the DO3A moiety was co...

  2. Rotational Spectromicroscopy: Imaging the Orbital Interaction between Molecular Hydrogen and an Adsorbed Molecule.

    Science.gov (United States)

    Li, Shaowei; Yuan, Dingwang; Yu, Arthur; Czap, Gregory; Wu, Ruqian; Ho, W

    2015-05-22

    A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j=0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom. PMID:26047242

  3. Molecular imaging in sporadic and at genetically risk populations of Alzheimer´s disease

    OpenAIRE

    Nordberg, Agneta

    2013-01-01

    The time course and order of the pathological‐physiological processes in Alzheimer´s disease (AD) is still under investigation and it is expected that molecular imaging will provide important insight into early brain pathology. Multi‐tracer PET tracer studies visualizing fibrillar amyloid, infla...

  4. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Nan Guo

    2014-10-01

    Full Text Available Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art.

  5. Multi-target photoacoustic molecular imaging of cardiovascular inflammatory biomarkers using bioconjugated gold nanorods

    Science.gov (United States)

    Ha, S.; Tripathy, S.; Carson, A.; Lavery, L. L.; Zhang, H.; Agarwal, A.; Kotov, N.; Villanueva, F. S.; Kim, K.

    2011-03-01

    Multiple cardiovascular inflammatory biomarkers were simultaneously imaged in vivo using antibody conjugated gold nanorods (GNRs) injected into a mouse model of vascular injury stimulated by a photochemical reaction of Rose Bengal dye to green light. Mixed solutions of ICAM-1 antibody conjugated GNRs (715 nm) and E-selectin antibody conjugated GNRs (800 nm) were injected to bind to their respective inflammatory markers on the luminal surface of the inferior vena cava of a mouse. Photoacoustic intensity was measured by a commercial ultrasound probe synchronized to a pulsed laser (10-18 mJ/cm2) at 715 nm or 800 nm clearly identified the upregulation of targeted biomarkers. Histopathology on the harvested tissues confirmed inflammation. The feasibility of simultaneous photoacoustic molecular imaging of inflammation responses in cardiovascular system using a commercial ultrasound system has been demonstrated in vivo.

  6. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  7. Development of a Confocal Optical System Design for Molecular Imaging Applications of Biochip

    Directory of Open Access Journals (Sweden)

    Guoliang Huang

    2007-08-01

    Full Text Available A novel confocal optical system design and a dual laser confocal scanner have been developed to meet the requirements of highly sensitive detection of biomolecules on microarray chips, which is characterized by a long working distance (wd>3.0 mm, high numerical aperture (NA=0.72, and only 3 materials and 7 lenses used. This confocal optical system has a high scanning resolution, an excellent contrast and signal-to-noise ratio, and an efficiency of collected fluorescence of more than 2-fold better than that of other commercial confocal biochip scanners. The scanner is as equally good for the molecular imaging detection of enclosed biochips as for the detection of biological samples on a slide surface covered with a cover-slip glass. Some applications of gene and protein imagings using the dual laser confocal scanner are described.

  8. The Use of Anatomical Information for Molecular Image Reconstruction Algorithms: Attenuation/Scatter Correction, Motion Compensation, and Noise Reduction.

    Science.gov (United States)

    Chun, Se Young

    2016-03-01

    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples. PMID:26941855

  9. Exploration of target molecules for molecular imaging of inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Higashikawa, Kei; Akada, Naoki; Yagi, Katsuharu [Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530 (Japan); Watanabe, Keiko; Kamino, Shinichiro; Kanayama, Yousuke; Hiromura, Makoto [Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe 650-0047 (Japan); Enomoto, Shuichi, E-mail: senomoto@pharm.okayama-u.ac.jp [Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530 (Japan); Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe 650-0047 (Japan)

    2011-07-08

    Highlights: {sup {yields}18}F-FDG PET could discriminate each inflamed area of IBD model mice clearly. {sup {yields}18}F-FDG PET could not discriminate the difference of pathogenic mechanism. {yields} Cytokines and cytokine receptors expression was different by pathogenic mechanism. {yields} Cytokines and cytokine receptors would be new target molecules for IBD imaging. -- Abstract: Molecular imaging technology is a powerful tool for the diagnosis of inflammatory bowel disease (IBD) and the efficacy evaluation of various drug therapies for it. However, it is difficult to elucidate directly the relationships between the responsible molecules and IBD using existing probes. Therefore, the development of an alternative probe that is able to elucidate the pathogenic mechanism and provide information on the appropriate guidelines for treatment is earnestly awaited. In this study, we investigated pathognomonic molecules in the intestines of model mice. The accumulation of fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) in the inflamed area of the intestines of dextran sulfate sodium (DSS)- or indomethacin (IND)-induced IBD model mice was measured by positron emission tomography (PET) and autoradiography to confirm the inflamed area. The results suggested that the inflammation was selectively induced in the colons of mice by the administration of DSS, whereas it was induced mainly in the ilea and the proximal colons of mice by the administration of IND. To explore attractive target molecules for the molecular imaging of IBD, we evaluated the gene expression levels of cytokines and cytokine receptors in the inflamed area of the intestines of both model mice. We found that the expression levels of cytokines and cytokine receptors were significantly increased during the progression of IBD, whereas the expression levels were decreased as the mucosa began to heal. In particular, the expression levels of these molecules had already changed before the symptoms of IBD appeared. In

  10. The 30 Doradus Nebula: An Imaging Study of Molecular and Ionized Hydrogen

    Science.gov (United States)

    Yeh, Sherry; Seaquist, E. R.; Matzner, C. D.

    2013-01-01

    We present the very first, fully calibrated H2 1--0 S(1) image of the entire 30 Doradus nebula. The observations were carried out using the NOAO Extremely Wide Field Infrared Imager on the CTIO 4-meter telescope. Together with a Brγ image of 30 Dor taken by NEWFIRM, our images reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. Based on the morphologies of H2 and Brγ, line ratio H2 to Brγ, and Cloudy models, we found that the H2 emission is formed inside the photodissociation regions of 30 Doradus, very close to the surface in association with the ionization front of the HII region. We also suggest that the bright H2-emitting area, which expands from the northeast to the southwest of R136, is a photodissociation region viewed face-on, while many clumps and elephant trunk features located at the outer shells of 30 Doradus are also photodissociation regions viewed edge-on. The characteristic radiation to gas pressure ratio is evaluated at selected regions in 30 Doradus, and we conclude that radiation pressure is not the dominating force at the current phase of 30 Doradus, while the pressurization of stellar winds and the injection of photoevaporative flows are likely the major feedback mechanisms acting to reduce the observed ionization parameter in 30 Doradus.

  11. High Resolution Imaging of Defect Structures in Polymer and Organic Molecular Crystals

    Science.gov (United States)

    Martin, David

    2003-03-01

    We have been developing techniques for the low dose High Resolution Electron Microscopy (HREM) imaging of defect structures in polymer and organic molecular crystals. We have examined a variety of technologically important materials systems including rigid-rod polymers, poly(imides), poly(diacetylenes), poly(bisthiazoles), poly(bisoxazoles), and aromatic polyamides such as poly(paraphenylene terephthalamide) (PPTA or Kevlar(R)) and poly(metaphenylene diisophthalamide) (MPDI or Nomex(R)). These studies have made it possible for us to image the molecular reorganization in the vicinity of dislocations, surfaces, and grain boundaries. We have also learned about the micromechanisms of lattice bending and twisting. Most recently we have been examining the microstructure of pentacene, a highly-crystalline conjugated organic small molecule that is of interest for making flexible electronic devices such as thin-film transistors. We have also been examing the utility of low voltage techniques using a table-top sized electron microscope that operates near 5 kV.

  12. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    Science.gov (United States)

    Glaser, Adam K.; Zhang, Rongxiao; Andreozzi, Jacqueline; Gladstone, David; Pogue, Brian

    2016-03-01

    Cherenkov radiation has emerged as a novel source of light with a number of applications in the biomedical sciences. It's unique properties, including its broadband emission spectrum, spectral weighting in the ultraviolet and blue wavebands, and local generation of light within a given tissue have made it an attractive source of light for techniques ranging from widefield imaging to oximetry and phototherapy. To help guide the future development of this field in the context of molecular imaging, quantitative estimates of the light fluence rates of Cherenkov radiation from a number of radionuclide and external radiotherapy beams in tissue was explored for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.1 - 1 nW/cm2 per MBq/g for radionuclides and 1 - 10 μW/cm2 per Gy/sec for external radiotherapy beams, dependent on the given waveband and optical properties. For phototherapy applications, the total light fluence was found to be on the order of nJ/cm2 for radionuclides, and mJ/cm2 for radiotherapy beams. To validate these findings, experimental validation was completed with an MV x-ray photon beam incident onto a tissue phantom, confirming the magnitudes of the simulation values. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at these relatively low fluence values.

  13. Characterization and biodistribution of a novel MRI molecular imaging agent by neutron activation analysis

    International Nuclear Information System (INIS)

    Angiogenesis is integral to the development and progression of atherosclerotic disease and solid tumor growth. New microvessels form in atherosclerotic plaque and the presence of new vessels has been associated with carotid plaque instability. Likewise, solid tumor growth depends upon angiogenesis to provide tumor cells with oxygen and nutrients. Recently, Lanza et al. have demonstrated molecular imaging of angiogenesis both in human melanoma xenografts in nude mice and atherosclerotic rabbits by magnetic resonance imaging (MRI) with clinical magnet strengths using αvβ3-targeted nanoparticles developed in their lab. αvβ3-integrin is a selective molecular epitope expressed by angiogenic endothelium and the MRI contrast agent consists of a lipid-encapsulated, liquid perfluorocarbon nanoparticle directly coupled to a selective αvβ3 ligand. The nanoparticle also contains the paramagnetic contrast agent gadolinium linked to the nanoparticle as Gd-DTPA-bis-oleate. Use of neutron activation analysis to confirm the Gd content of the nanoparticle formulations and determine the biodistribution of Gd post injection is reported. (author)

  14. Molecular Imaging of Stem Cells: Tracking Survival, Biodistribution, Tumorigenicity, and Immunogenicity

    Directory of Open Access Journals (Sweden)

    Eugene Gu, Wen-Yi Chen, Jay Gu, Paul Burridge, Joseph C. Wu

    2012-01-01

    Full Text Available Being able to self-renew and differentiate into virtually all cell types, both human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs have exciting therapeutic implications for myocardial infarction, neurodegenerative disease, diabetes, and other disorders involving irreversible cell loss. However, stem cell biology remains incompletely understood despite significant advances in the field. Inefficient stem cell differentiation, difficulty in verifying successful delivery to the target organ, and problems with engraftment all hamper the transition from laboratory animal studies to human clinical trials. Although traditional histopathological techniques have been the primary approach for ex vivo analysis of stem cell behavior, these postmortem examinations are unable to further elucidate the underlying mechanisms in real time and in vivo. Fortunately, the advent of molecular imaging has led to unprecedented progress in understanding the fundamental behavior of stem cells, including their survival, biodistribution, immunogenicity, and tumorigenicity in the targeted tissues of interest. This review summarizes various molecular imaging technologies and how they have advanced the current understanding of stem cell survival, biodistribution, immunogenicity, and tumorigenicity.

  15. Molecular orbital imaging of cobalt phthalocyanine on native oxidized copper layers using STM

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qinmin; Huang, Min; Qin, Zhihui [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Xiaohongshan West 30, Wuchang, Wuhan 430071 (China); Cao, Gengyu, E-mail: gycao@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Xiaohongshan West 30, Wuchang, Wuhan 430071 (China)

    2012-07-15

    To observe molecular orbitals using scanning tunneling microscopy, well-ordered oxidized layers on Cu(001) were fabricated to screen the individual adsorbed cobalt phthalocyanine (CoPc) molecules from the electronic influence of the metal surface. Scanning tunneling microscope images of the molecule on this oxidized layer show similarities to the orbital distribution of the free molecule. The good match between the differential conductance mapping images and the calculated charge distribution at energy levels corresponding to the frontier orbitals of CoPc provides more evidence of the screening of the oxidized layer from interactions between the metal surface and supported molecules. -- Highlights: Black-Right-Pointing-Pointer STM is a powerful tool to depict molecular orbitals, a basic concept of chemistry. Black-Right-Pointing-Pointer Native copper oxide layer was fabricated for adsorption of cobalt phthalocyanine. Black-Right-Pointing-Pointer Detailed orbitals of CoPc were successfully observed for the 1st time by STM. Black-Right-Pointing-Pointer The effect of the layer is explained by DFT quantum mechanical computations.

  16. Molecular orbital imaging of cobalt phthalocyanine on native oxidized copper layers using STM

    International Nuclear Information System (INIS)

    To observe molecular orbitals using scanning tunneling microscopy, well-ordered oxidized layers on Cu(001) were fabricated to screen the individual adsorbed cobalt phthalocyanine (CoPc) molecules from the electronic influence of the metal surface. Scanning tunneling microscope images of the molecule on this oxidized layer show similarities to the orbital distribution of the free molecule. The good match between the differential conductance mapping images and the calculated charge distribution at energy levels corresponding to the frontier orbitals of CoPc provides more evidence of the screening of the oxidized layer from interactions between the metal surface and supported molecules. -- Highlights: ► STM is a powerful tool to depict molecular orbitals, a basic concept of chemistry. ► Native copper oxide layer was fabricated for adsorption of cobalt phthalocyanine. ► Detailed orbitals of CoPc were successfully observed for the 1st time by STM. ► The effect of the layer is explained by DFT quantum mechanical computations.

  17. 124Iodine: A Longer-Life Positron Emitter Isotope—New Opportunities in Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Giuseppe Lucio Cascini

    2014-01-01

    Full Text Available 124Iodine (124I with its 4.2 d half-life is particularly attractive for in vivo detection and quantification of longer-term biological and physiological processes; the long half-life of 124I is especially suited for prolonged time in vivo studies of high molecular weight compounds uptake. Numerous small molecules and larger compounds like proteins and antibodies have been successfully labeled with 124I. Advances in radionuclide production allow the effective availability of sufficient quantities of 124I on small biomedical cyclotrons for molecular imaging purposes. Radioiodination chemistry with 124I relies on well-established radioiodine labeling methods, which consists mainly in nucleophilic and electrophilic substitution reactions. The physical characteristics of 124I permit taking advantages of the higher PET image quality. The availability of new molecules that may be targeted with 124I represents one of the more interesting reasons for the attention in nuclear medicine. We aim to discuss all iodine radioisotopes application focusing on 124I, which seems to be the most promising for its half-life, radiation emissions, and stability, allowing several applications in oncological and nononcological fields.

  18. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    International Nuclear Information System (INIS)

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  19. Image-charge-induced localization of molecular orbitals at metal-molecule interfaces

    DEFF Research Database (Denmark)

    Strange, M.; Thygesen, K. S.

    2012-01-01

    Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semiempirical model describing a pi-conjugat......Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semiempirical model describing a pi......-conjugated molecular wire in contact with a metal surface. We find that image charge effects pull the frontier molecular orbitals toward the metal surface, while orbitals with higher or lower energy are pushed away. This affects both the size of the energetic image charge shifts and the coupling of the individual...... orbitals to the metal substrate. Full diagonalization of the QP equation and, to some extent, self-consistency in the GW self-energy, is important to describe the effect, which is not captured by standard density functional theory or Hartree-Fock. These results should be important for the understanding and...

  20. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status.

    Science.gov (United States)

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors' ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  1. Molecular imaging in patients with mood disorders: a review of PET findings

    International Nuclear Information System (INIS)

    Mood disorders are chronic, recurrent psychiatric disorders with high morbidity rates that cause severe disability. Researchers have used molecular imaging extensively in studies of mood disorders. In this article, we concisely and selectively review the major findings of positron emission tomography studies of patients with mood disorders. Specifically, we describe findings from cerebral blood flow, cerebral glucose/oxygen metabolism, and radioligand studies in both cross-sectional and longitudinal investigations. Patients with mood disorders have mood-correlated regional metabolism changes and molecular abnormalities in several neurotransmitter systems. Although the findings of these studies are not completely consistent and confounding factors, including drug effects and specific methodology, should be strictly controlled, these results reveal the pathophysiology of mood disorders and aid the development of novel treatment approaches for mood disorders. Future positron emission tomography research will benefit greatly from the development of better radioligands to simultaneously identify multiple neurotransmitter systems in the specific brain region and the integration of more detecting methods in specifying the neurobiological predictors of treatment response in patients with mood disorders. Understanding the molecular mechanisms in underlying mood disorders will result in aetiological diagnosis and individualization of treatment of these disorders. (orig.)

  2. Molecular imaging in patients with mood disorders: a review of PET findings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiaozhen [Zhejiang University, Department of Nuclear Medicine, Second Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Hangzhou (China); Zhejiang University, Medical PET Center, Hangzhou (China); Zhejiang University, Institute of Nuclear Medicine and Molecular Imaging, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Liu, Weibo; Li, Huichun [Zhejiang University, Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Hangzhou (China); Zhang, Hong [Zhejiang University, Department of Nuclear Medicine, Second Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Zhejiang University, Institute of Nuclear Medicine and Molecular Imaging, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [The University of Texas MD Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-07-15

    Mood disorders are chronic, recurrent psychiatric disorders with high morbidity rates that cause severe disability. Researchers have used molecular imaging extensively in studies of mood disorders. In this article, we concisely and selectively review the major findings of positron emission tomography studies of patients with mood disorders. Specifically, we describe findings from cerebral blood flow, cerebral glucose/oxygen metabolism, and radioligand studies in both cross-sectional and longitudinal investigations. Patients with mood disorders have mood-correlated regional metabolism changes and molecular abnormalities in several neurotransmitter systems. Although the findings of these studies are not completely consistent and confounding factors, including drug effects and specific methodology, should be strictly controlled, these results reveal the pathophysiology of mood disorders and aid the development of novel treatment approaches for mood disorders. Future positron emission tomography research will benefit greatly from the development of better radioligands to simultaneously identify multiple neurotransmitter systems in the specific brain region and the integration of more detecting methods in specifying the neurobiological predictors of treatment response in patients with mood disorders. Understanding the molecular mechanisms in underlying mood disorders will result in aetiological diagnosis and individualization of treatment of these disorders. (orig.)

  3. Images of shock-excited molecular hydrogen in young stellar outflows

    Science.gov (United States)

    Garden, Rognvald P.; Russell, Adrian P. G.; Burton, Michael G.

    1990-01-01

    High-angular resolution molecular hydrogen (H2) v = 1-0 S(1) line images of several well-known molecular outflow sources (DR 21, NGC 2071, HH 7-11, and HH 12) are presented. It is found that all of the outflow sources possess highly collimated jets of shock-excited gas that are extremely clumpy and often consist of bright knots that are placed periodically along the jet axis. The H2 emission-line jets are significantly more collimated than their corresponding CO outflows and remain collimated to large distances from their driving source. In DR 21 and NGC 2071, the H2 jets appear to become more collimated with increasing distance from the central source, suggesting that they are pressure-confined by the ambient cloud medium. In HH 7-11 and HH 12 the shock-excited ionized and molecular components are spatially coincident and appear to be of comparable shape and size; this suggests that the shocked gas is highly mixed on scales significantly smaller than the current spatial resolution.

  4. Design and Synthesis of Near-Infrared Peptide for in Vivo Molecular Imaging of HER2.

    Science.gov (United States)

    Joshi, Bishnu P; Zhou, Juan; Pant, Asha; Duan, Xiyu; Zhou, Quan; Kuick, Rork; Owens, Scott R; Appelman, Henry; Wang, Thomas D

    2016-02-17

    We report the development, characterization, and validation of a peptide specific for the extracellular domain of HER2. This probe chemistry was developed for molecular imaging by using a structural model to select an optimal combination of amino acids that maximize the likelihood for unique hydrophobic and hydrophilic interactions with HER2 domain 3. The sequence KSPNPRF was identified and conjugated with either FITC or Cy5.5 via a GGGSK linker using Fmoc-mediated solid-phase synthesis to demonstrate flexibility for this chemical structure to be labeled with different fluorophores. A scrambled sequence was developed for control by altering the conformationally rigid spacer and moving both hydrophobic and hydrophilic amino acids on the C-terminus. We validated peptide specificity for HER2 in knockdown and competition experiments using human colorectal cancer cells in vitro, and measured a binding affinity of kd = 21 nM and time constant of k = 0.14 min(-1) (7.14 min). We used this peptide with either topical or intravenous administration in a preclinical model of colorectal cancer to demonstrate specific uptake in spontaneous adenomas and to show feasibility for real time in vivo imaging with near-infrared fluorescence. We used this peptide in immunofluorescence studies of human proximal colon specimens to evaluate specificity for sessile serrated and sporadic adenomas. Improved visualization can be used endoscopically to guide tissue biopsy and detect premalignant lesions that would otherwise be missed. Our peptide design for specificity to HER2 is promising for clinical translation in molecular imaging methods for early cancer detection. PMID:26709709

  5. Micro-CT molecular imaging of tumor angiogenesis using a magnetite nano-cluster probe.

    Science.gov (United States)

    Liu, Ping; Li, Jing; Zhang, Chunfu; Xu, Lisa X

    2013-06-01

    Due to its high resolution, micro-CT is desirable for molecular imaging of tumor angiogenesis. However, the sensitivity of micro-CT to contrast agents is relatively low. Therefore, the purpose of this study is to develop high micro-CT sensitive molecular imaging probes for direct visualization and dynamic monitoring of tumor angiogenesis. To this end, Arg-Gly-Asp (RGD) peptides conjugated magnetite nano clusters (RGD-MNCs) were developed by assembling individual magnetite nano particles into clusters with amphiphilic (maleimide) methoxypoly(ethylene glycol)-b-poly(lactic acid) ((Mal)mPEG-PLA) copolymer and subsequently encoding RGD peptides onto the clusters for specific targeting alpha(v)beta3 integrin. The hydrodynamic size of RGD-MNCs was about 85 nm. To test its specificity, alpha(v)beta3 positive cells (H1299) were incubated with magnetite nano clusters (MNCs), RGD-MNCs or RGD-MNCs competition with free RGD peptides. Prussian Blue staining and inductively coupled plasma optical emission spectrometer (ICP-OES) measurements indicated that the cell uptake of RGD-MNCs was significantly more than that of MNCs, which could be inhibited by free RGD peptides. For detection of tumor angiogenesis, mice bearing H1299 tumors were injected intravenously with RGD-MNCs at the dose of 400 micro mol Fe/kg. Tumor angiogenic hot spots as well as individual angiogenic vessels could be clearly manifested by micro-CT imaging 12 h post injection, which was dynamically monitored with the extension of probe circulation time. Subsequent histological studies of tumor tissues verified that RGD-MNCs registered tumor angiogenic vessels. Our study demonstrated that RGD-MNC probes fabricated in this study could be used to effectively target alpha(v)beta3 integrin. Using high resolution micro-CT in combination with the probes, tumor angiogenesis could be studied dynamically. PMID:23858968

  6. A real-time technique for improving molecular imaging and guiding drug delivery in large blood vessels: in vitro and ex vivo results

    OpenAIRE

    Patil, Abhay V.; Rychak, Joshua J.; Klibanov, Alexander L.; Hossack, John A.

    2011-01-01

    Ultrasound-based molecular imaging employs targeted microbubbles to image vascular pathology. This approach also has the potential to monitor molecularly targeted microbubble-based drug-delivery. We present an image-guided drug-delivery technique that uses multiple pulses to translate, image and cavitate microbubbles in real-time. This technique can be applied to both imaging of pathology in large arteries (sizes and flow comparable to those in humans), and guiding localized drug delivery in ...

  7. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    Science.gov (United States)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  8. Metal-Based Systems for Molecular Imaging Applications - COST D38 Annual Workshop - Scientific Program and Abstracts

    International Nuclear Information System (INIS)

    The main objective of the Action is the development of metal-based imaging probes for cellular and molecular imaging applications, based on MRI, PET, SPECT and optical imaging that will facilitate early diagnosis, assessment of disease progression and treatment evaluation.The goal of this Action is to further the development of innovative imaging probes through the pursuit of innovations in a number of different areas, ranging from the design of imaging units endowed with enhanced sensitivity to the control of the structural and electronic determinants responsible for the molecular recognition of the target molecule.At present, in vivo diagnostic systems basically assess the structure and function of human organs. Therefore, for important diseases such as cancer and cardiovascular pathologies,and also diseases of the central nervous system, only the late symptoms are detected. It is expected that the advances in genomics and proteomics will have a tremendous impact on human health care of the future. However, advances in molecular biology are already redefining diseases in terms of molecular abnormalities. With this knowledge, new generations of diagnostic imaging agents can be defined that aim at the detection of those molecular processes in vivo.The molecular imaging approach offers a great potential for earlier detection and characterisation of disease, and evaluation of treatment. However, more research is necessary to bring these ideas to clinical applications and a key aspect relates to the development of high-specificity, high-sensitivity imaging probes for the different detection modalities. Additionally, the Action includes research activities dealing with the exploitation of peculiar nuclear properties of given isotopes for therapeutic effects, thus integrating the diagnostic and the therapeutic stages.Apart from its use in early diagnosis in clinical practice, the molecular imaging approach will have also a major impact on the development of new

  9. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. I. HIGH-RESOLUTION MOLECULAR GAS IMAGING

    International Nuclear Information System (INIS)

    We present high-resolution images of the 12CO(2-1) emission in the central 1' (1 kpc) of NGC 5128 (Centaurus A), observed using the Submillimeter Array. We elucidate for the first time the distribution and kinematics of the molecular gas in this region with a resolution of 6.''0 x 2.''4 (100 pc x 40 pc). We spatially resolve the circumnuclear molecular gas in the inner 24''x 12'' (400 pc x 200 pc), which is elongated along a position angle of P.A. ≅155 deg. and perpendicular to the radio/X-ray jet. The southeast (SE) and northwest (NW) components of the circumnuclear gas are connected to molecular gas found at larger radii. This gas appears as two parallel filaments at P.A. = 120 deg., which are coextensive with the long sides of the 3 kpc parallelogram shape of the previously observed dust continuum, as well as ionized and pure rotational H2 lines. Spatial and kinematical asymmetries are apparent in both the circumnuclear and outer gas, suggesting noncoplanar and/or noncircular motions. We extend to inner radii (r12CO(2 - 1) observations show relevant deviations from this model: namely, the physical connection between the circumnuclear gas and that at larger radii, brighter SE and NW sides on the parallelogram-shaped feature, and an outer curvature of its long sides. Overall, it resembles more closely an S-shaped morphology, a trend that is also found in other molecular species. Hence, we qualitatively explore the possible contribution of a weak bi-symmetric potential which would naturally explain these peculiarities.

  10. Molecular Ultrasound Imaging of Early Vascular Response in Prostate Tumors Irradiated with Carbon Ions

    Directory of Open Access Journals (Sweden)

    Moritz Palmowski

    2009-09-01

    Full Text Available Individualized treatments with combination of radiotherapy and targeted drugs require knowledge about the behavior of molecular targets after irradiation. Angiogenic marker expression has been studied after conventional radiotherapy, but little is known about marker response to charged particles. For the very first time, we used molecular ultrasound imaging to intraindividually track changes in angiogenic marker expression after carbon ion irradiation in experimental tumors. Expression of intercellular adhesion molecule-1 (ICAM-1 and of αvβ3-integrin in subcutaneous AT-1 prostate cancers in rats treated with carbon ions (16 Gy was studied using molecular ultrasound and immunohistochemistry. For this purpose, cyanoacrylate microbubbles were synthesized and linked to specific ligands. The accumulation of targeted microbubbles in tumors was quantified before and 36 hours after irradiation. In addition, tumor vascularization was analyzed using volumetric Doppler ultrasound. In tumors, the accumulation of targeted microbubbles was significantly higher than in nonspecific ones and could be inhibited competitively. Before irradiation, no difference in binding of αvβ3-integrin-specific or ICAM-1-specific microbubbles was observed in treated and untreated animals. After irradiation, however, treated animals showed a significantly higher binding of αvβ3-integrin-specific microbubbles and an enhanced binding of ICAM-1-specific microbubbles than untreated controls. In both groups, a decrease in vascularization occurred during tumor growth, but no significant difference was observed between irradiated and nonirradiated tumors. In conclusion, carbon ion irradiation upregulates ICAM-1 and αvβ3-integrin expression in tumor neovasculature. Molecular ultrasound can indicate the regulation of these markers and thus may help to identify the optimal drugs and time points in individualized therapy regimens.

  11. The Use of Radiation Detectors in Medicine: The Future of Molecular Imaging and Multimodality Imaging: Advantages and Technological Challenges (3/3)

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  12. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    International Nuclear Information System (INIS)

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUVmax; SUVmean) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R2. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUVmean (P=.018), and midtreatment FLT SUVmax (P=.006). Large decreases in FLT SUVmean from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUVmax (P=.022) in combination with large FLT response from

  13. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Tyler J. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bowen, Stephen R. [Departments of Radiation Oncology and Radiology, University of Washington, Seattle, Washington (United States); Deveau, Michael A. [Department of Small Animal Clinical Sciences, Texas A& M University, College Station, Texas (United States); Kubicek, Lyndsay [Angell Animal Medical Center, Boston, Massachusetts (United States); White, Pamela [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bentzen, Søren M. [Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Chappell, Richard J. [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Forrest, Lisa J. [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, Robert, E-mail: rjeraj@wisc.edu [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2015-03-15

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in

  14. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging

    Science.gov (United States)

    Pernia Leal, Manuel; Rivera-Fernández, Sara; Franco, Jaime M.; Pozo, David; de La Fuente, Jesús M.; García-Martín, María Luisa

    2015-01-01

    Magnetic resonance based molecular imaging has emerged as a very promising technique for early detection and treatment of a wide variety of diseases, including cancer, neurodegenerative disorders, and vascular diseases. The limited sensitivity and specificity of conventional MRI are being overcome by the development of a new generation of contrast agents, using nanotechnology approaches, with improved magnetic and biological properties. In particular, for molecular imaging, high specificity, high sensitivity, and long blood circulation times are required. Furthermore, the lack of toxicity and immunogenicity together with low-cost scalable production are also necessary to get them into the clinics. In this work, we describe a facile, robust and cost-effective ligand-exchange method to synthesize dual T1 and T2 MRI contrast agents with long circulation times. These contrast agents are based on manganese ferrite nanoparticles (MNPs) between 6 and 14 nm in size covered by a 3 kDa polyethylene glycol (PEG) shell that leads to a great stability in aqueous media with high crystallinity and magnetization values, thus retaining the magnetic properties of the uncovered MNPs. Moreover, the PEGylated MNPs have shown different relaxivities depending on their size and the magnetic field applied. Thus, the 6 nm PEGylated MNPs are characterized by a low r2/r1 ratio of 4.9 at 1.5 T, hence resulting in good dual T1 and T2 contrast agents under low magnetic fields, whereas the 14 nm MNPs behave as excellent T2 contrast agents under high magnetic fields (r2 = 335.6 mM-1 s-1). The polymer core shell of the PEGylated MNPs minimizes their cytotoxicity, and allows long blood circulation times. This combination of cellular compatibility and excellent T2 and r2/r1 values under low magnetic fields, together with long circulation times, make these nanomaterials very promising contrast agents for molecular imaging.Magnetic resonance based molecular imaging has emerged as a very promising

  15. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    International Nuclear Information System (INIS)

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99mTc-HYNlC-TOC has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non Hodgkin's Iymphoma (NHL). The aim of this study was to establish biokinetic models for 99mTc-HYNlC-TOC and 188Re-anti-CD20 prepared from Iyophilized kits, and to evaluate their dosimetry as target-specific radiopharmaceuticals. Whole-body images were acquired at different times after 99mTc-HYNlC-TOC or 188Re-anti-CD20 administration obtained from instant freeze-dried kit formulations with radiochemical purities > 95 %. Regions of interest (ROls) were drawn around source organs on each time frame. The cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate time-activity curves in each organ, to adjust the biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. 99mTc-HYNlC-TOC images showed an average tumor/blood (heart) ratio of 4.3 ± 0.7 in receptor-positive tumors at 1 h and the mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv. Results showed that after administration of 7 GBq of 188Re-anti-CD20 the absorbed dose to whole body would be 0.7 Gy (0.1 mGy/MBq) which is the indicated dose for non Hodgkin's Iymphome therapies. (Author)

  16. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring

    OpenAIRE

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the ...

  17. Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    Science.gov (United States)

    Burton, Michael G.; Moorhouse, Alan; Brand, P. W. J. L.; Roche, Patrick F.; Geballe, T. R.

    1989-01-01

    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce.

  18. New image colocalization coefficient for fluorescence microscopy to quantify (bio-)molecular interactions.

    Science.gov (United States)

    Herce, H D; Casas-Delucchi, C S; Cardoso, M C

    2013-03-01

    The spatial relationship, or degree of colocalization, between two or more types of molecules in live cells is commonly detected using fluorescence microscopy. This spatial distribution can be used to estimate the interaction between fluorescently labelled molecules. These interactions are usually quantified by analysing the correlation and/or the overlap between images, using the Pearson's and Manders' coefficients, respectively. However, the correlation and overlap coefficients are parameters not designed to quantify molecular interactions. Here we propose a new colocalization coefficient specifically designed to quantify the interactions between molecules. In well-defined thermodynamic ensembles, this coefficient can in principle be used to calculate relevant statistical thermodynamic quantities such as binding free energies. PMID:23301670

  19. Novel high resolution SPECT instrumentation and techniques for molecular imaging of small animals

    International Nuclear Information System (INIS)

    The main purpose of the project is the development and tuning of an advanced detector system for molecular imaging with radionuclides on small animal. The equipment has sub-millimeter spatial resolution, adequate sensitivity and field of view, It is designed for studies, on animal models, of diagnostic and/or therapeutic techniques in cardiovascular diseases, such as detection and identification of vulnerable plaques in atherosclerosis and stem cell therapy for cardiac repair. The present activities is carried on in collaboration with groups from Johns Hopkins University (Baltimore), Jefferson Lab (Newport News), Istituto Nazionale Fisica Nucleare (INFN) and ISS (Dept. Technology and Health and Dept. Therapeutic Research and Medicines Evaluation). The main results of the last two years are summarized as follows: development of the SPECT system prototype; set up of the technique for vulnerable plaques detection;demonstration of detectability of the cardiac perfusion via peritoneum injection of the radiotracer

  20. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    International Nuclear Information System (INIS)

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD

  1. Molecular imaging with radionuclides, a powerful technique for studying biological processes in vivo

    Science.gov (United States)

    Cisbani, E.; Cusanno, F.; Garibaldi, F.; Magliozzi, M. L.; Majewski, S.; Torrioli, S.; Tsui, B. M. W.

    2007-02-01

    Our team is carrying on a systematic study devoted to the design of a SPECT detector with submillimeter resolution and adequate sensitivity (1 cps/kBq). Such system will be used for functional imaging of biological processes at molecular level in small animal. The system requirements have been defined by two relevant applications: study of atherosclerotic plaques characterization and stem cells diffusion and homing. In order to minimize costs and implementation time, the gamma detector will be based—as much as possible—on conventional components: scintillator crystal and position sensitive PhotoMultipliers read by individual channel electronics. A coded aperture collimator should be adapted to maximize the efficiency. The optimal selection of the detector components is investigated by systematic use of Monte-Carlo simulations (and laboratory validation tests); and finally preliminary results are presented and discussed here.

  2. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    International Nuclear Information System (INIS)

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM 14N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging

  3. PET molecular imaging of peripheral and central inflammatory processes targeting the TSPO 18 kDa

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the in vivo potential of the TSPO 18 kDa as a bio-marker of inflammation, with the use of its radioligand [18F]DPA-714, to non-invasively quantify the inflammatory state within the scope of various pathologies. Multiple animal models of various inflammatory diseases, to include: inflammatory bowel disease, neuro-inflammation, and septic shock, were developed and put in place by adapted measures. The animals well-being and the subsequent inflammation was evaluated. The inflammatory state was measured using quantitative PET imaging with the TSPO radioligand [18F]DPA-714 and correlated to the expression of conventional inflammatory markers using microscopy. Based on the observed data, we were able to distinguish control groups from treated groups when using [18F]DPA-714. This TSPO radioligand permitted us to quantify the inflammatory level and to observe evolutionary changes in the inflammatory state of the disease in multiple models. The PET results, using the [18F]DPA-714 signal was correlated with an increased TSPO expression at cellular level. Results indicate that [18F]DPA-714 is a suitable tracer for studying inflammation of multiple diseases. [18F]DPA-714 could be a good molecular probe to non-invasively evaluate the level and localization of inflammation. Moreover, in vivo imaging using this TSPO ligand is potentially a powerful tool to stage and certainly to follow the evolution and therapeutic efficiency at molecular level in inflammatory diseases. (author)

  4. Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept

    International Nuclear Information System (INIS)

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-hole collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a ∼150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 ± 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images acquired with

  5. Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.; O' Connor, Michael K. [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905 (United States)

    2013-01-15

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-hole collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images

  6. Maria Montessori und das Recht der Kinder auf Bildung

    OpenAIRE

    Dieter, Anne

    2007-01-01

    Vor einhundert Jahren eröffnete die Wissenschaftlerin und Sozialreformerin Dr. med. Maria Montessori in Rom ihre erste Kindertagesstätte, das „Casa dei Bambini”. Inzwischen gibt es allein in Deutschland ca. eintausend Kindergärten und auch Schulen, die nach ihrem Konzept arbeiten. Der Beitrag will auf die Zusammenhänge zwischen dem Menschenrecht auf Bildung, dem pädagogischen Konzept der Maria Montessori und ihrem natur- und verhaltenswissenschaftlich begründeten Ansatz der Lernforschung hinw...

  7. Zum Unternehmerhabitus. Eine kultursoziologische Bestimmung im Hinblick auf Schumpeter

    OpenAIRE

    Loer, Thomas

    2006-01-01

    Unternehmerisches Handeln ist soziologisch gesehen ein Typus des Handelns, der unter den Bedingungen der Moderne exemplarisch für Handeln überhaupt stehen kann, verbindet es doch Freimut zu riskanter Entscheidung mit dem Anspruch auf rationale Verlässlichkeit: Der Unternehmer kann ebenso wenig umhin, Neuerungen zu suchen und zu fördern wie er dabei auf berechnende Berücksichtigung und materiale Würdigung seiner Möglichkeiten und der Erfolgschancen seines Handelns verzichten kann. Um so handel...

  8. Enantioselektive katalytische Hydrierung mit polymerfixiertem Katalysator auf einer Kieselgurmatrix

    OpenAIRE

    Jaser, Karl

    2004-01-01

    Diese Arbeit beschäftigt sich mit der Fixierung des enantioselektiven Rhodium-Pyrphos-Katalysators auf einer inerten Kieselgurmatrix. Dabei wird als Polymer Glycerin-tris[polypropylenglycol-amingestoppt]-ether verwendet, das mit 1,3,5-Benzoltricarbonsäure-trichlorid oder 1,6-Diisocyanato-hexan vernetzt wird. Die Hydrierdauer einer bestimmten Menge Acetamidozimtsäure, der Umsatz und der ee-Wert, die im Batch-Betrieb ermittelt wurden, lassen einen Rückschluss auf die Menge des reaktiven Rhodium...

  9. Künstliche Ribonucleasen auf Basis von 2-Aminobenzimidazolen

    OpenAIRE

    Peter, Sascha

    2007-01-01

    Die Entwicklung künstlicher Ribonucleasen bietet das Potential, Werkzeuge für die Biotechnologie und langfristig neuartige Pharmaka bereitzustellen. 2-Aminobenzimidazole haben sich als metallfreie Katalysatoren zur unspezifischen Spaltung von Ribonucleinsäuren bewährt. In der vorliegenden Arbeit sollte das Konzept von künstlichen Ribonucleasen auf Basis dieser Molekülklasse auf seine Tragfähigkeit gerprüft werden. Außerdem sollten weitere mechanistische Erkenntnisse über die Katalyse der RNA-...

  10. Einflüsse von Umweltvariablen und Fahrereigenschaften auf die Wahl der Geschwindigkeit im Kraftfahrzeug

    OpenAIRE

    Brandenburg, Stefan

    2014-01-01

    Welche Geschwindigkeit wählen Sie auf einer Landstraße? Welche auf einer Autobahn? Sicherlich werden Ihre Antworten auf beide Fragen ähnlich lauten, beispielsweise: Kommt darauf an, welches Geschwindigkeitslimit gilt. Genau diese beispielhafte Antwort fanden bereits empirische Untersuchungen zu dieser Fragestellung (z. B. vanNes, Brandenburg & Twisk, 2008, 2010). Nach den Ergebnissen dieser Untersuchungen stellt das jeweilige Geschwindigkeitslimit den größten Einfluss auf die Wahl der Geschwi...

  11. Real-time targeted molecular imaging using singular value spectra properties to isolate the adherent microbubble signal

    International Nuclear Information System (INIS)

    Ultrasound-based real-time molecular imaging in large blood vessels holds promise for early detection and diagnosis of various important and significant diseases, such as stroke, atherosclerosis, and cancer. Central to the success of this imaging technique is the isolation of ligand–receptor bound adherent microbubbles from free microbubbles and tissue structures. In this paper, we present a new approach, termed singular spectrum-based targeted molecular (SiSTM) imaging, which separates signal components using singular value spectra content over local regions of complex echo data. Simulations were performed to illustrate the effects of acoustic target motion and harmonic energy on SiSTM imaging-derived measurements of statistical dimensionality. In vitro flow phantom experiments were performed under physiologically realistic conditions (2.7 cm s−1 flow velocity and 4 mm diameter) with targeted and non-targeted phantom channels. Both simulation and experimental results demonstrated that the relative motion and harmonic characteristics of adherent microbubbles (i.e. low motion and large harmonics) yields echo data with a dimensionality that is distinct from free microbubbles (i.e. large motion and large harmonics) and tissue (i.e. low motion and low harmonics). Experimental SiSTM images produced the expected trend of a greater adherent microbubble signal in targeted versus non-targeted microbubble experiments (P < 0.05, n = 4). The location of adherent microbubbles was qualitatively confirmed via optical imaging of the fluorescent DiI signal along the phantom channel walls after SiSTM imaging. In comparison with two frequency-based real-time molecular imaging strategies, SiSTM imaging provided significantly higher image contrast (P < 0.001, n = 4) and a larger area under the receiver operating characteristic curve (P < 0.05, n = 4). (paper)

  12. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    Science.gov (United States)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  13. Magnetic Resonance Spectroscopy: An In Vivo Molecular Imaging Biomarker for Parkinson's Disease?

    Science.gov (United States)

    Ciurleo, Rosella; Di Lorenzo, Giuseppe; Marino, Silvia

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder caused by selective loss of dopaminergic neurons in the substantia nigra pars compacta which leads to dysfunction of cerebral pathways critical for the control of movements. The diagnosis of PD is based on motor symptoms, such as bradykinesia, akinesia, muscular rigidity, postural instability, and resting tremor, which are evident only after the degeneration of a significant number of dopaminergic neurons. Currently, a marker for early diagnosis of PD is still not available. Consequently, also the development of disease-modifying therapies is a challenge. Magnetic resonance spectroscopy is a quantitative imaging technique that allows in vivo measurement of certain neurometabolites and may produce biomarkers that reflect metabolic dysfunctions and irreversible neuronal damage. This review summarizes the abnormalities of cerebral metabolites found in MRS studies performed in patients with PD and other forms of parkinsonism. In addition, we discuss the potential role of MRS as in vivo molecular imaging biomarker for early diagnosis of PD and for monitoring the efficacy of therapeutic interventions. PMID:25302300

  14. Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Zheng

    Full Text Available BACKGROUND: To explore the characteristics of diffusion tensor imaging (DTI and magnetic resonance (MR imaging in healthy native kidneys. METHODS: Seventy-three patients without chronic kidney disease underwent DTI-MRI with spin echo-echo planar (SE-EPI sequences accompanied by an array spatial sensitivity encoding technique (ASSET. Cortical and medullary mean, axial and radial diffusivity (MD, AD and RD, fractional anisotropy (FA and primary, secondary and tertiary eigenvalues (λ1, λ2, λ3 were analysed in both kidneys and in different genders. RESULTS: Cortical MD, λ2, λ3, and RD values were higher than corresponding medullary values. The cortical FA value was lower than the medullary FA value. Medullary λ1 and RD values in the left kidney were lower than in the right kidney. Medullary λ2, and λ3 values in women were higher than those in men. Medullary FA values in women were lower than those in men. Medullary FA (r = 0.351, P = 0.002 and λ1 (r = 0.277, P = 0.018 positively correlated with eGFR. Medullary FA (r = -0.25, P = 0.033 negatively correlated with age. CONCLUSIONS: Renal water molecular diffusion differences exist in human kidneys and genders. Age and eGFR correlate with medullary FA and primary eigenvalue.

  15. Molecular anatomy of ascending aorta in atherosclerosis by MS Imaging: Specific lipid and protein patterns reflect pathology.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Balluff, Benjamin; Maroto, Aroa S; Carreira, Ricardo J; van Zeijl, Rene J M; Gonzalez-Calero, Laura; de la Cuesta, Fernando; Barderas, Maria G; Lopez-Almodovar, Luis F; Padial, Luis R; McDonnell, Liam A; Vivanco, Fernando; Alvarez-Llamas, Gloria

    2015-08-01

    The molecular anatomy of healthy and atherosclerotic tissue is pursued here to identify ongoing molecular changes in atherosclerosis development. Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. Mass spectrometry imaging (MSI) is a novel unexplored ex vivo imaging approach in CVD able to provide in-tissue molecular maps. A rabbit model of early atherosclerosis was developed and high-spatial-resolution MALDI-MSI was applied to comparatively analyze histologically-based arterial regions of interest from control and early atherosclerotic aortas. Specific protocols were applied to identify lipids and proteins significantly altered in response to atherosclerosis. Observed protein alterations were confirmed by immunohistochemistry in rabbit tissue, and additionally in human aortas. Molecular features specifically defining different arterial regions were identified. Localized in the intima, increased expression of SFA and lysolipids and intimal spatial organization showing accumulation of PI, PG and SM point to endothelial dysfunction and triggered inflammatory response. TG, PA, SM and PE-Cer were identified specifically located in calcified regions. Thymosin β4 (TMSB4X) protein was upregulated in intima versus media layer and also in response to atherosclerosis. This overexpression and localization was confirmed in human aortas. In conclusion, molecular histology by MS Imaging identifies spatial organization of arterial tissue in response to atherosclerosis. PMID:26079611

  16. Einfluss von Titan auf den Entwurf von Unterwasserfahrzeugen

    OpenAIRE

    Malletschek, Andreas

    2011-01-01

    Die Dissertation zum „Einfluss von Titan auf den Entwurf von Unterwasserfahrzeugen“ beschäftigt sich sowohl mit der Erarbeitung der werkstoffseitigen Grundlagen für die allgemeine Integration von Titan in der Meerestechnik als auch mit der konkreten Analyse und Bewertung der Anwendung von Titan in verschiedenen schiffstechnischen Systeme eines Unterwasserfahrzeugs.

  17. Auswirkung der Studienberatung auf Studierverhalten, Studiergewohnheiten und Leistungsmotivation von Studierenden

    OpenAIRE

    Ghulam, Mustafa

    2014-01-01

    Einleitung: Warum Studierenden sich an die Studienberatung wenden und welchen geschichtlichen Hintergrund die Institution der Studienberatung hat, wurde bereits erforscht, aber die genaue Umsetzung und die genauen Auswirkungen auf Studierverhalten, Studiergewohnheiten und Leistungsmotivation von Studierenden stellen Forschungslücken dar. Diesen Aspekten wird im Rahmen der vorliegenden Arbeit nachgegangen. Methoden: Mit 36 Studierenden aus den Bachelorstudiengängen (Betriebswirtschaftslehre, ...

  18. Determinanten der technischen Sozialisation - Einflussfaktoren auf die MINT-Studienwahl

    OpenAIRE

    Pfenning, Uwe

    2014-01-01

    Darstellung und Diskussion der zentralen Determinanten der Berufsfindung für MINT-Berufe und zur Definition zum MINT-Beurfen in der Moderne unter Bezugnahme auf Aspekte der Technikemanzipation von den Naturwissenschaften, der Techniksozialisation als Findungsprozess zwischen eigenen Talenten und externen Anforderungsprofilen sowie der Technikmündigkeit als Leitbild der Moderne.

  19. On the stability of AuFe alloy nanoparticles

    International Nuclear Information System (INIS)

    AuFe nanoparticles with mean diameters d p = 13.2 nm have been prepared by inert-gas condensation. Conventional and high-resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy investigations show that the particles are mostly icosahedra. Scanning transmission electron microscopy–energy-dispersive x-ray spectroscopy and scanning transmission electron microscopy–electron energy-loss spectroscopy show that the as-grown particles exhibit a core-shell structure. The shell is mainly composed of an amorphous FeO layer. Although Fe and Au are immiscible in the bulk, the particle cores are found to be homogeneously mixed at the atomic level with a local composition of around Au84Fe16 (at.%). AuFe nanoparticles exhibit a complex magnetic structure in which the core behaves as a spin glass with a freezing temperature of 35 K, whereas the amorphous FeO shell behaves as a ferro-ferrimagnetic system. On annealing above 300 °C, the AuFe icosahedra phases separate into their elemental constituents. Hence the as-grown AuFe icosahedra are metastable, thereby implying that the bulk phase diagram also applies for nanoscopic materials. (papers)

  20. Uneinheitliche Entwicklungen auf dem sächsischen Arbeitsmarkt

    OpenAIRE

    Michael Weber

    2015-01-01

    Seit Jahresbeginn wurde auf dem sächsischen und dem gesamten ostdeutschen Arbeitsmarkt die sozialversicherungspflichtige Beschäftigung weiter ausgebaut, während die geringfügige Beschäftigung zurückgefahren wurde. Auch die saisonbereinigte Zahl der freien Stellen ist erstmals seit anderthalb Jahren wieder rückläufig.

  1. Nährwertkennzeichnung und ihr Einfluss auf das Verbraucherverhalten

    DEFF Research Database (Denmark)

    Grunert, Klaus G.; Storcksdieck, Stefan

    2009-01-01

    , die an prominenter Stelle auf der Vorderseite der Verpackung angebracht werden. Neuere Forschung zeigt, dass die meisten Verbraucher in der Lage sind, solche Informationen korrekt zu verarbeiten, dass aber nur eine Minderheit der Verbraucher dies im Geschäft auch tut. Die entscheidende Frage der...

  2. Untersuchung des flexiblen Finite-Elemente-Toolkits FEniCS auf einer BlueGene/Q-Architektur im Hinblick auf parallele Effizienz

    OpenAIRE

    Breuer, Thomas

    2015-01-01

    Zur Lösung von Differentialgleichungen mit Hilfe der Finite-Elemente-Methode (FEM) gibt es viele Implementierungen, die in unterschiedlichsten Simulationsprogrammeneingesetzt werden. Diese Software ist meistens auf ein bestimmtes Anwendungsgebiet spezialisiert und auch nicht sehr portabel für die Verwendung auf unterschiedlichen Computerarchitekturen. Im Gegensatz zu dieserSpezialisierung gibt es auf der anderen Seite Simulationssoftware wie das Open-Source-Projekt FEniCS, welches einen allge...

  3. Investigating the dopaminergic synapse in vivo. II. Molecular imaging studies in small laboratory animals.

    Science.gov (United States)

    Nikolaus, Susanne; Larisch, Rolf; Beu, Markus; Antke, Christina; Kley, Konstantin; Forutan, Farhad; Wirrwar, Andreas; Müller, Hans-Wilhelm

    2007-01-01

    Dopaminergic synaptic function may be assessed either at the presynaptic terminal or at the postsynaptic binding sites using molecular in vivo imaging methods. Apart from the density of binding sites, parameters such as alterations in dopamine synthesis, dopamine storage or dopamine release can be quantified either by application of specific radiotracers or by assessing the competition between the exogenous radioligand and endogenous dopamine. The performance of animal studies allows the induction of specific short-term or long-term synaptic conditions via pharmacological challenges or infliction of neurotoxic lesions. Therefore, small laboratory animals such as rats and mice have become invaluable models for a variety of human disorders. This article gives an overview of those small animal studies which have been performed so far on dopaminergic neurotransmission using in vivo imaging methods, with a special focus on the relevance of findings within the functional entity of the dopaminergic synapse. Taken together, in vivo investigations on animal models of Parkinson's disease showed decreases of dopamine storage, dopamine release and dopamine transporter binding, no alterations of dopamine synthesis and DA release, and either increases or no alterations of D2 receptor binding, while in vivo investigations of animal models of Huntington's disease. showed decreases of DAT and D1 receptor binding. For D2 receptor binding, both decreases and increases have been reported, dependent on the radioligand employed. Substances of abuse, such as alcohol, amphetamine and methylphenidate, led to an increase of dopamine release in striatal regions. This held for the acute application of substances to both healthy animals and animal models of drug abuse. Findings also showed that chronic application of cocaine induced long-term reductions of both D1 and D2 receptor binding, which disappeared after several weeks of withdrawal. Finally, preliminary results yielded the first

  4. Molecular imaging of tumor angiogenesis with VEGFR2 targeting microbubbles in colon cancer bearing nude mice

    International Nuclear Information System (INIS)

    Objective: To evaluate the effect of tumor neovascularization imaging in a nude mouse model of colon cancer by contrast ultrasound molecular imaging (UMI) of VEGF receptor 2 (kinase insert domain receptor, KDR). Methods: Targeted microbubbles (MBt) were built by conjugating K237, a small peptide with high affinity for KDR, to liposome microbubbles through a biotin-avidin bridge. Control microbubbles (MBc) with control peptide were prepared by the same method. Nude mice models of LS174T human colon cancer were established. MBt and MBc were injected intravenously in twelve mice in random order with an interval of 30 min. MBt were injected in another six mice after K237-peptide blocking. UMI was performed in all mice at 5 min postinjection to observe the imaging difference and measure the video intensity (Ⅵ) of tumor tissues in different groups. One-way analysis of variance and the least significant difference t test were performed to analyze the difference of tumor Ⅵ in the groups with MBt, MBc and K237 blocking. Immunohistochemistry was applied to detect the expression and distribution of KDR in tumor tissue and adjacent tumor tissues. Results: K237 peptide was successfully conjugated to the surface of microbubbles through biotin-avidin mediation. Ultrasound imaging signal of the tumor was high in the MBt group, while there were no significant enhancement in the groups of K237 blocking and MBc. The Ⅵ in MBt, MBc and K237 blocking groups was significantly different (F=39.130, P<0.01). There was a significant difference of Ⅵ in the MBt group compared to the MBc group (30.18 ± 9.56 vs 8.28 ± 4.74, t=6.91, P<0.01). In the K237 blocking group Ⅵ was significantly lower than that in the MBt group (9.23 ± 3.44 vs 30.18 ± 9.56, t=4.91, P<0.01). Immunohistochemistry results showed that KDR was highly expressed in tumor tissue. Conclusions: KDR-targeting liposome contrast microbubbles may specifically and efficiently link to tumor vascular endothelial cells in

  5. Einfluss steigender Temperaturen und CO2-Konzentrationen auf Pflanzenphänologie und -anatomie

    OpenAIRE

    Streitfert, Anita

    2005-01-01

    Die CO2-Konzentration ist seit 1750 von 280 ppm auf heute 375 ppm angestiegen und wird sich bis 2100 weiter auf 540-970 ppm erhöhen. Dieser Anstieg wirkt sich indirekt über die Erwärmung der Atmosphäre als auch direkt auf die Pflanzen aus. Ziel dieser Arbeit war daher die Auswirkung der Klimaerwärmung in den letzten 50 Jahren und der prognostizierten Klimaerwärmung auf die Pflanzenentwicklung sowie die Wirkung von moderat erhöhten CO2-Konzentrationen (+20 %) auf die Phänologie, die Anatomie u...

  6. Molecular image in biomedical research. Molecular imaging unit of the National Cancer Research Center; Imagen molecular an investigation biomedica. La Unidad de Imagen Molecular del Centro Nacional de Investigaciones Oncologicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez Bruzon, J.; Mulero Anhiorte, F.

    2010-07-01

    This article has two basic objectives. firstly, it will review briefly the most important imaging techniques used in biomedical research indicting the most significant aspects related to their application in the preclinical stage. Secondly, it will present a practical application of these techniques in a pure biomedical research centre (not associated to a clinical facility). Practical aspects such as organisation, equipment, work norms, shielding of the Spanish National Cancer Research Centre (CNIO) Imaging Unit will be shown. This is a pioneering facility in the application of these techniques in research centres without any dependence or any direct relationship with other hospital Nuclear Medicine services. (Author) 7 refs.

  7. Einfluss von DNA-Variationen auf die koronare Herzerkrankung

    Directory of Open Access Journals (Sweden)

    Drexel H

    2008-01-01

    Full Text Available Erkenntnisse aus Familien- oder Zwillingsstudien lassen auf einen hohen genetischen Hintergrund der koronaren Herzerkrankung (KHK schließen. Seit einiger Zeit versucht man mittels intensiver Forschung, die genetischen Faktoren, welche das kardiovaskuläre Risiko beeinflussen, zu identifizieren. Aufgrund der hohen Frequenz der KHK in der Bevölkerung spielen hierbei Mendel’sche Erkrankungen, wie die familiäre Hypercholesterinämie, nur eine untergeordnete Rolle. Anhand der Ergebnisse aus Kopplungs- und Assoziationsstudien sind bisher zahlreiche DNA-Polymorphismen in Kandidatengenen als potenzielle genetische Risikofaktoren für die KHK vorgeschlagen worden. Die möglichen Auswirkungen dieser Polymorphismen auf das Erkrankungsrisiko werden in der Literatur allerdings meist kontrovers diskutiert. Metaanalysen haben gezeigt, dass DNA-Polymorphismen der Gene für Apolipoprotein E, Cholesteryl Ester Transfer-Protein, Faktor V, Prothrombin und Adiponektin einen signifikanten Zusammenhang mit der KHK aufweisen. Die jüngste Entwicklung von technischen Verfahren für die Hochdurchsatzgenotypisierung sowie die wachsende Kenntnis um die Strukturierung des Genoms in Haplotypen eröffnete der Forschung neue Möglichkeiten für die Ermittlung des genetischen Einflusses auf die KHK. Infolgedessen konnten mehrere unabhängig durchgeführte genomweite Assoziationsstudien den chromosomalen Abschnitt 9p21 erstmalig als genetischen Modulator für die KHK identifizieren. Die genaue Wirkweise dieser in der Region 9p21 lokalisierten DNA-Variationen auf die Entstehung der KHK ist bis dato allerdings unbekannt. Zukünftige technologische Entwicklungen, wie das "next generation sequencing", werden innerhalb absehbarer Zeit die Forschung über den Zusammenhang zwischen genetischer Variabilität und der KHK weiter maßgeblich beeinflussen. Durch dieses Wissen wird es uns gelingen, das KHK-Risiko besser abschätzen zu können und neue Therapien auf Personen mit hohem

  8. Herschel-SPIRE Imaging Spectroscopy of Molecular Gas in M82

    Science.gov (United States)

    Kamenetzky, J.; Glenn, J.; Rangwala, N.; Maloney, P.; Bradford, M.; Wilson, C. D.; Bendo, G. J.; Baes, M.; Boselli, A.; Cooray, A.; Isaak, K. G.; Lebouteiller, V.; Madden, S.; Panuzzo, P.; Schirm, M. R. P.; Spinoglio, L.; Wu, R.

    2012-07-01

    We present new Herschel-SPIRE imaging spectroscopy (194-671 μm) of the bright starburst galaxy M82. Covering the CO ladder from J = 4 → 3 to J = 13 → 12, spectra were obtained at multiple positions for a fully sampled ~3 × 3 arcmin map, including a longer exposure at the central position. We present measurements of 12CO, 13CO, [C I], [N II], HCN, and HCO+ in emission, along with OH+, H2O+, and HF in absorption and H2O in both emission and absorption, with discussion. We use a radiative transfer code and Bayesian likelihood analysis to model the temperature, density, column density, and filling factor of multiple components of molecular gas traced by 12CO and 13CO, adding further evidence to the high-J lines tracing a much warmer (~500 K), less massive component than the low-J lines. The addition of 13CO (and [C I]) is new and indicates that [C I] may be tracing different gas than 12CO. No temperature/density gradients can be inferred from the map, indicating that the single-pointing spectrum is descriptive of the bulk properties of the galaxy. At such a high temperature, cooling is dominated by molecular hydrogen. Photon-dominated region (PDR) models require higher densities than those indicated by our Bayesian likelihood analysis in order to explain the high-J CO line ratios, though cosmic-ray-enhanced PDR models can do a better job reproducing the emission at lower densities. Shocks and turbulent heating are likely required to explain the bright high-J emission.

  9. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications.

    Science.gov (United States)

    Glaser, Adam K; Zhang, Rongxiao; Andreozzi, Jacqueline M; Gladstone, David J; Pogue, Brian W

    2015-09-01

    Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01-1 nW cm(-2) per MBq g(-1) for radionuclides, and 1-100 μW cm(-2) per Gy s(-1) for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ cm(-2) for radionuclides, and mJ cm(-2) for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The results of this study are publicly available for distribution online at www.dartmouth.edu/optmed/. PMID:26270125

  10. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    International Nuclear Information System (INIS)

    Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01–1 nW cm−2 per MBq g−1 for radionuclides, and 1–100 μW cm−2 per Gy s−1 for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ cm−2 for radionuclides, and mJ cm−2 for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The results of this study are publicly available for distribution online at www.dartmouth.edu/optmed/. (paper)

  11. Pediatric radiological diagnostics in suspected child abuse; Kinderradiologische Diagnostik bei Verdacht auf Kindesmisshandlung

    Energy Technology Data Exchange (ETDEWEB)

    Erfurt, C.; Schmidt, U. [Technische Universitaet Dresden, Institut fuer Rechtsmedizin, Medizinische Fakultaet, Dresden (Germany); Hahn, G. [Universitaetsklinikum Carl Gustav Carus, Dresden, Abteilung Kinderradiologie, Institut und Poliklinik fuer Radiologische Diagnostik, Dresden (Germany); Roesner, D. [Universitaetsklinikum Carl Gustav Carus, Dresden, Klinik und Poliklinik fuer Kinderchirurgie, Dresden (Germany)

    2009-10-15

    Advanced and specialized radiological diagnostics are essential in the case of clinical suspicion of pediatric injuries to the head, thorax, abdomen, and extremities when there is no case history or when ''battered child syndrome'' is assumed on the basis of inadequate trauma. In particular, the aim of this sophisticated diagnostic procedure is the detection of lesions of the central nervous system (CNS) in order to initiate prompt medical treatment. If diagnostic imaging shows typical findings of child abuse, accurate documented evidence of the diagnostic results is required to prevent further endangerment of the child's welfare. (orig.) [German] Klinisch diagnostizierte Verletzungen an Kopf, Thorax, Abdomen oder Extremitaeten eines Kindes bei scheinbar leerer Anamnese oder Angabe eines inadaequaten Traumas erfordern beim Verdacht auf ein Battered-Child-Syndrom eine erweiterte und spezialisierte radiologische Diagnostik. Diese soll insbesondere im Bereich des ZNS Verletzungsfolgen erfassen, um therapeutische Massnahmen einleiten zu koennen. Bei typischen, auf eine Misshandlung hinweisenden radiologischen Befunden ist eine praezise beweissichere Befunddokumentation erforderlich, um eine weitere Kindeswohlgefaehrdung zu vermeiden. (orig.)

  12. Molecular analysis of arterial remodeling: a novel application of infrared imaging

    Science.gov (United States)

    Herman, Brad C.; Kundi, Rishi; Yamanouchi, Dai; Kent, K. Craig; Liu, Bo; Pleshko, Nancy

    2009-02-01

    Arterial remodeling, i.e. changes in size and/or structure of arteries, plays an important role in vascular disease. Conflicting findings have been reported as to whether an abundance of collagen causes inward or outward remodeling, phenomena that result in either a smaller or larger lumen, respectively. We hypothesize that the amount, type and quality of collagen influence the remodeling response. Here, we create mechanical injury to the rat carotid artery using a balloon catheter, and this leads to inward remodeling. Treatment of the artery with Connective Tissue Growth Factor (CTGF) causes outward remodeling. We investigated the arterial composition in injured CTGF-treated and non-CTGF-treated and sham CTGF-treated and non-CTGF treated arteries 14 days post-injury (n = 7-8 per group) using infrared imaging. A Perkin Elmer Spotlight Spectrum 300 FT-IR microscope was used for data collection. Cross-sections of paraffinembedded arteries were scanned at 2 cm-1 spectral resolution with spatial resolution of 6.25 μm/pixel, and data analyzed using Malvern Instruments ISys 5.0. Post-injury, we found a nearly 50% reduction in the average 1338/AM2 area ratio (correlated to collagen helical integrity). The most dramatic change was a 600% increase in the 1660/1690 peak height ratio, which has previously been related to collagen crosslink maturity. In all cases, CTGF treatment resulted in the observed changes in peak parameters normalized back to control values. Overall, these preliminary studies demonstrate that infrared imaging can provide insight into the underlying molecular changes that contribute to arterial disease.

  13. Label free molecular sexing of monomorphic birds using infrared spectroscopic imaging.

    Science.gov (United States)

    Steiner, Gerald; Preusse, Grit; Zimmerer, Cordelia; Krautwald-Junghanns, Maria-Elisabeth; Sablinskas, Valdas; Fuhrmann, Herbert; Koch, Edmund; Bartels, Thomas

    2016-04-01

    The absence of sexual dimorphism in many birds often makes sex determination difficult. In particular immature birds and adults of monomorphic species show no external sex characteristics. Molecular techniques based on DNA hybridization or polymerase chain reaction (PCR) are standard methods for sex identification. However, these methods are expensive and time consuming procedures and require special sample preparation. Noninvasive methods for a rapid determination of bird's gender are of increasing importance for ornithologists, breeders as well as for successful captive-breeding programs. Fourier transform infrared (FT-IR) spectroscopy is one such technique that can provide gender specific information. In this study, using the example of domestic pigeons (Columba livia f. dom.) we demonstrate that only a small amount of the feather pulp is needed to determine the gender. FT-IR spectroscopic images of feather pulp suspensions were recorded in transmission mode. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to identify the sex. The gender related information are described by 2nd and 4th principal component principle component (PC). The 2nd PC represents different amounts of proteins while the 4th PC shows variations within the amide I and amide II bands as well as in the region of phosphate vibrations of nucleic acids. Blood cells of male pigeons exhibit a significantly higher amount of proteins and nucleic acids than those of female pigeons. Feather pulp samples of male species were assigned with 100% accuracy. Seven from eight female samples were assigned correctly while one sample could not be classified. This study demonstrates that the sex of domestic pigeons can be accurately and and rapidly identified by infrared spectroscopic imaging. PMID:26838394

  14. Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Jiang, Nan; Chiang, Naihao; Madison, Lindsey R; Pozzi, Eric A; Wasielewski, Michael R; Seideman, Tamar; Ratner, Mark A; Hersam, Mark C; Schatz, George C; Van Duyne, Richard P

    2016-06-01

    Nanoscale chemical imaging of a dynamic molecular phase boundary has broad implications for a range of problems in catalysis, surface science, and molecular electronics. While scanning probe microscopy (SPM) is commonly used to study molecular phase boundaries, its information content can be severely compromised by surface diffusion, irregular packing, or three-dimensional adsorbate geometry. Here, we demonstrate the simultaneous chemical and structural analysis of N-N'-bis(2,6-diisopropylphenyl)-1,7-(4'-t-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PPDI) molecules by UHV tip-enhanced Raman spectroscopy. Both condensed and diffusing domains of PPDI coexist on Ag(100) at room temperature. Through comparison with time-dependent density functional theory simulations, we unravel the orientation of PPDI molecules at the dynamic molecular domain boundary with unprecedented ∼4 nm spatial resolution. PMID:27183322

  15. Momentum imaging spectrometer for molecular fragmentation dynamics induced by pulsed electron beam

    International Nuclear Information System (INIS)

    A momentum imaging spectrometer has been built for studying the electron impact molecular fragmentation dynamics. The setup consists of a pulsed electron gun and a time of flight system as well as a two-dimensional time and position sensitive multi-hit detector. The charged fragments with kinetic energy up to 10 eV can be detected in 4π solid angles and their three-dimensional momentum vectors can be reconstructed. The apparatus is tested by electron impact ionization of Ar and dissociative ionization of CO2. By analyzing the ion-ion coincidence spectra, the complete and incomplete Coulomb fragmentation channels for CO22+ and CO23+ are identified. The kinetic energy release (KER) and angular correlation for the two-body breakup channel CO22+*→ O++ CO+ are reported. The peak value of total KER is found to be 6.8 eV which is consistent with the previous photoion-photoion coincidence studies, and the correlation angle of O+ and CO+ is also explicitly determined to be 172.5°

  16. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors.

    Science.gov (United States)

    Mao, Xinxin; He, Jiuming; Li, Tiegang; Lu, Zhaohui; Sun, Jian; Meng, Yunxiao; Abliz, Zeper; Chen, Jie

    2016-01-01

    Distinguishing breast invasive ductal carcinoma (IDC) and breast ductal carcinoma in situ (DCIS) is a key step in breast surgery, especially to determine whether DCIS is associated with tumor cell micro-invasion. However, there is currently no reliable method to obtain molecular information for breast tumor analysis during surgery. Here, we present a novel air flow-assisted ionization (AFAI) mass spectrometry imaging method that can be used in ambient environments to differentiate breast cancer by analyzing lipids. In this study, we demonstrate that various subtypes and histological grades of IDC and DCIS can be discriminated using AFAI-MSI: phospholipids were more abundant in IDC than in DCIS, whereas fatty acids were more abundant in DCIS than in IDC. The classification of specimens in the subtype and grade validation sets showed 100% and 78.6% agreement with the histopathological diagnosis, respectively. Our work shows the rapid classification of breast cancer utilizing AFAI-MSI. This work suggests that this method could be developed to provide surgeons with nearly real-time information to guide surgical resections. PMID:26868906

  17. Molecular cytogenetic analysis of human blastocysts andcytotrophoblasts by multi-color FISH and Spectra Imaging analyses

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf; Jung,Christine J.; Nguyen, Ha-Nam; Chu, Lisa W.; Pedersen, Roger A.; Fisher,Susan J.; Weier, Heinz-Ulrich G.

    2006-02-08

    Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.

  18. A molecular scanner to automate proteomic research and to display proteome images.

    Science.gov (United States)

    Binz, P A; Müller, M; Walther, D; Bienvenut, W V; Gras, R; Hoogland, C; Bouchet, G; Gasteiger, E; Fabbretti, R; Gay, S; Palagi, P; Wilkins, M R; Rouge, V; Tonella, L; Paesano, S; Rossellat, G; Karmime, A; Bairoch, A; Sanchez, J C; Appel, R D; Hochstrasser, D F

    1999-11-01

    Identification and characterization of all proteins expressed by a genome in biological samples represent major challenges in proteomics. Today's commonly used high-throughput approaches combine two-dimensional electrophoresis (2-DE) with peptide mass fingerprinting (PMF) analysis. Although automation is often possible, a number of limitations still adversely affect the rate of protein identification and annotation in 2-DE databases: the sequential excision process of pieces of gel containing protein; the enzymatic digestion step; the interpretation of mass spectra (reliability of identifications); and the manual updating of 2-DE databases. We present a highly automated method that generates a fully annoated 2-DE map. Using a parallel process, all proteins of a 2-DE are first simultaneously digested proteolytically and electro-transferred onto a poly(vinylidene difluoride) membrane. The membrane is then directly scanned by MALDI-TOF MS. After automated protein identification from the obtained peptide mass fingerprints using PeptIdent software (http://www.expasy.ch/tools/peptident.html + ++), a fully annotated 2-D map is created on-line. It is a multidimensional representation of a proteome that contains interpreted PMF data in addition to protein identification results. This "MS-imaging" method represents a major step toward the development of a clinical molecular scanner. PMID:10565287

  19. Herschel-SPIRE Imaging Spectroscopy of Molecular Gas in M82

    CERN Document Server

    Kamenetzky, J; Rangwala, N; Maloney, P; Bradford, M; Wilson, C D; Bendo, G J; Baes, M; Boselli, A; Cooray, A; Isaak, K G; Lebouteiller, V; Madden, S; Panuzzo, P; Schirm, M R P; Spinoglio, L; Wu, R

    2012-01-01

    We present new Herschel-SPIRE imaging spectroscopy (194-671 microns) of the bright starburst galaxy M82. Covering the CO ladder from J=4-3 to J=13-12, spectra were obtained at multiple positions for a fully sampled ~ 3 x 3 arcminute map, including a longer exposure at the central position. We present measurements of 12CO, 13CO, [CI], [NII], HCN, and HCO+ in emission, along with OH+, H2O+ and HF in absorption and H2O in both emission and absorption, with discussion. We use a radiative transfer code and Bayesian likelihood analysis to model the temperature, density, column density, and filling factor of multiple components of molecular gas traced by 12CO and 13CO, adding further evidence to the high-J lines tracing a much warmer (~ 500 K), less massive component than the low-J lines. The addition of 13CO (and [CI]) is new and indicates that [CI] may be tracing different gas than 12CO. No temperature/density gradients can be inferred from the map, indicating that the single-pointing spectrum is descriptive of th...

  20. Noninvasive Molecular Imaging of Cell Death in Myocardial Infarction using 111In-GSAO

    Science.gov (United States)

    Tahara, Nobuhiro; Zandbergen, H. Reinier; de Haas, Hans J.; Petrov, Artiom; Pandurangi, Raghu; Yamaki, Takayoshi; Zhou, Jun; Imaizumi, Tsutomu; Slart, Riemer H. J. A.; Dyszlewski, Mary; Scarabelli, Tiziano; Kini, Annapoorna; Reutelingsperger, Chris; Narula, Navneet; Fuster, Valentin; Narula, Jagat

    2014-01-01

    Acute insult to the myocardium is associated with substantial loss of cardiomyocytes during the process of myocardial infarction. In this setting, apoptosis (programmed cell death) and necrosis may operate on a continuum. Because the latter is characterized by the loss of sarcolemmal integrity, we propose that an appropriately labeled tracer directed at a ubiquitously present intracellular moiety would allow non-invasive definition of cardiomyocyte necrosis. A trivalent arsenic peptide, GSAO (4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid), is capable of binding to intracellular dithiol molecules such as HSP90 and filamin-A. Since GSAO is membrane impermeable and dithiol molecules abundantly present intracellularly, we propose that myocardial localization would represent sarcolemmal disruption or necrotic cell death. In rabbit and mouse models of myocardial infarction and post-infarct heart failure, we employed In-111-labelled GSAO for noninvasive radionuclide molecular imaging. 111In-GSAO uptake was observed within the regions of apoptosis seeking agent- 99mTc-Annexin A5 uptake, suggesting the colocalization of apoptotic and necrotic cell death processes. PMID:25351258

  1. Image reconstruction of fluorescent molecular tomography based on the tree structured Schur complement decomposition

    Directory of Open Access Journals (Sweden)

    Wang Jiajun

    2010-05-01

    Full Text Available Abstract Background The inverse problem of fluorescent molecular tomography (FMT often involves complex large-scale matrix operations, which may lead to unacceptable computational errors and complexity. In this research, a tree structured Schur complement decomposition strategy is proposed to accelerate the reconstruction process and reduce the computational complexity. Additionally, an adaptive regularization scheme is developed to improve the ill-posedness of the inverse problem. Methods The global system is decomposed level by level with the Schur complement system along two paths in the tree structure. The resultant subsystems are solved in combination with the biconjugate gradient method. The mesh for the inverse problem is generated incorporating the prior information. During the reconstruction, the regularization parameters are adaptive not only to the spatial variations but also to the variations of the objective function to tackle the ill-posed nature of the inverse problem. Results Simulation results demonstrate that the strategy of the tree structured Schur complement decomposition obviously outperforms the previous methods, such as the conventional Conjugate-Gradient (CG and the Schur CG methods, in both reconstruction accuracy and speed. As compared with the Tikhonov regularization method, the adaptive regularization scheme can significantly improve ill-posedness of the inverse problem. Conclusions The methods proposed in this paper can significantly improve the reconstructed image quality of FMT and accelerate the reconstruction process.

  2. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    Science.gov (United States)

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785

  3. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging.

    Science.gov (United States)

    Eberlin, Livia S; Tibshirani, Robert J; Zhang, Jialing; Longacre, Teri A; Berry, Gerald J; Bingham, David B; Norton, Jeffrey A; Zare, Richard N; Poultsides, George A

    2014-02-18

    Surgical resection is the main curative option for gastrointestinal cancers. The extent of cancer resection is commonly assessed during surgery by pathologic evaluation of (frozen sections of) the tissue at the resected specimen margin(s) to verify whether cancer is present. We compare this method to an alternative procedure, desorption electrospray ionization mass spectrometric imaging (DESI-MSI), for 62 banked human cancerous and normal gastric-tissue samples. In DESI-MSI, microdroplets strike the tissue sample, the resulting splash enters a mass spectrometer, and a statistical analysis, here, the Lasso method (which stands for least absolute shrinkage and selection operator and which is a multiclass logistic regression with L1 penalty), is applied to classify tissues based on the molecular information obtained directly from DESI-MSI. The methodology developed with 28 frozen training samples of clear histopathologic diagnosis showed an overall accuracy value of 98% for the 12,480 pixels evaluated in cross-validation (CV), and 97% when a completely independent set of samples was tested. By applying an additional spatial smoothing technique, the accuracy for both CV and the independent set of samples was 99% compared with histological diagnoses. To test our method for clinical use, we applied it to a total of 21 tissue-margin samples prospectively obtained from nine gastric-cancer patients. The results obtained suggest that DESI-MSI/Lasso may be valuable for routine intraoperative assessment of the specimen margins during gastric-cancer surgery. PMID:24550265

  4. Biodistribution and Lymphatic Tracking of the Main Neurotoxin of Micrurus fulvius Venom by Molecular Imaging.

    Science.gov (United States)

    Vergara, Irene; Castillo, Erick Y; Romero-Piña, Mario E; Torres-Viquez, Itzel; Paniagua, Dayanira; Boyer, Leslie V; Alagón, Alejandro; Medina, Luis Alberto

    2016-01-01

    The venom of the Eastern coral snake Micrurus fulvius can cause respiratory paralysis in the bitten patient, which is attributable to β-neurotoxins (β-NTx). The aim of this work was to study the biodistribution and lymphatic tracking by molecular imaging of the main β-NTx of M. fulvius venom. β-NTx was bioconjugated with the chelator diethylenetriaminepenta-acetic acid (DTPA) and radiolabeled with the radionuclide Gallium-67. Radiolabeling efficiency was 60%-78%; radiochemical purity ≥92%; and stability at 48 h ≥ 85%. The median lethal dose (LD50) and PLA₂ activity of bioconjugated β-NTx decreased 3 and 2.5 times, respectively, in comparison with native β-NTx. The immune recognition by polyclonal antibodies decreased 10 times. Biodistribution of β-NTx-DTPA-(67)Ga in rats showed increased uptake in popliteal, lumbar nodes and kidneys that was not observed with (67)Ga-free. Accumulation in organs at 24 h was less than 1%, except for kidneys, where the average was 3.7%. The inoculation site works as a depot, since 10% of the initial dose of β-NTx-DTPA-(67)Ga remains there for up to 48 h. This work clearly demonstrates the lymphatic system participation in the biodistribution of β-NTx-DTPA-(67)Ga. Our approach could be applied to analyze the role of the lymphatic system in snakebite for a better understanding of envenoming. PMID:27023607

  5. Biodistribution and Lymphatic Tracking of the Main Neurotoxin of Micrurus fulvius Venom by Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Irene Vergara

    2016-03-01

    Full Text Available The venom of the Eastern coral snake Micrurus fulvius can cause respiratory paralysis in the bitten patient, which is attributable to β-neurotoxins (β-NTx. The aim of this work was to study the biodistribution and lymphatic tracking by molecular imaging of the main β-NTx of M. fulvius venom. β-NTx was bioconjugated with the chelator diethylenetriaminepenta-acetic acid (DTPA and radiolabeled with the radionuclide Gallium-67. Radiolabeling efficiency was 60%–78%; radiochemical purity ≥92%; and stability at 48 h ≥ 85%. The median lethal dose (LD50 and PLA2 activity of bioconjugated β-NTx decreased 3 and 2.5 times, respectively, in comparison with native β-NTx. The immune recognition by polyclonal antibodies decreased 10 times. Biodistribution of β-NTx-DTPA-67Ga in rats showed increased uptake in popliteal, lumbar nodes and kidneys that was not observed with 67Ga-free. Accumulation in organs at 24 h was less than 1%, except for kidneys, where the average was 3.7%. The inoculation site works as a depot, since 10% of the initial dose of β-NTx-DTPA-67Ga remains there for up to 48 h. This work clearly demonstrates the lymphatic system participation in the biodistribution of β-NTx-DTPA-67Ga. Our approach could be applied to analyze the role of the lymphatic system in snakebite for a better understanding of envenoming.

  6. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging.

    Science.gov (United States)

    Leitner, Michael; Stock, Lorenz G; Traxler, Lukas; Leclercq, Laurent; Bonazza, Klaus; Friedbacher, Gernot; Cottet, Hervé; Stutz, Hanno; Ebner, Andreas

    2016-08-01

    Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated. PMID:27265903

  7. Farbe bekennen – Grüne Bibliotheken auf die Tagesordnung! Vortrag auf dem 103. Deutschen Bibliothekartag, Bremen, 5. Juni 2014

    Directory of Open Access Journals (Sweden)

    Petra Hauke

    2014-12-01

    Full Text Available Was in vielen Ländern bereits im Alltag der Bibliotheken verankert ist, beginnt in Deutschland erst sehr zaghaft: Das Verantwortungsbewusstsein von Bibliotheken für die ökologische Bildung der Gesellschaft und die Konsequenzen daraus für die Bibliothekspraxis. Es ist höchste Zeit, in der deutschen Bibliothekslandschaft publik zu machen, was eine „Grüne Bibliothek“ sein kann – bezogen auf das Gebäude, die Ausstattung, das Management, die Services für die Nutzer. Anhand einer Checkliste wird gezeigt, wie Bibliotheken mit einem „grünen“ Konzept nicht nur selbst etwas für die ökologische Nachhaltigkeit tun können, sondern auch wie sie als Multiplikatoren in den Kommunen, Hochschulen und bei anderen Trägern Einfluss auf das ökologische Verhalten nehmen und damit einen wichtigen Beitrag für unsere Gesellschaft leisten. Bringing environmental awareness to libraries does not necessarily imply huge financial efforts or a big budget. Ecological sustainability is an undervalued aspect of the marketing strategy for libraries which has more impact on clients and on stakeholders than one would expect. Small steps in going green can make a big impact for the library’s image. Little financial input can produce an important marketing outcome. Activities in this field can be developed in cooperation with unpaid partners like non-governmental organisations (NGOs, Friends of the Library groups, library suppliers and, last but not least, the library users. A checklist on how to go green gives an overview of important aspects in planning, construction, and library operations in order to introduce the first “green footsteps”.

  8. Comparison of T2 and T2*-weighted MR molecular imaging of a mouse model of glioma

    International Nuclear Information System (INIS)

    Standard MRI has been used for high-grade gliomas detection, albeit with limited success as it does not provide sufficient specificity and sensitivity to detect complex tumor structure. Therefore targeted contrast agents based on iron oxide, that shorten mostly T2 relaxation time, have been recently applied. However pulse sequences for molecular imaging in animal models of gliomas have not been yet fully studied. The aim of this study was therefore to compare contrast-to-noise ratio (CNR) and explain its origin using spin-echo (SE), gradient echo (GE), GE with flow compensation (GEFC) as well as susceptibility weighted imaging (SWI) in T2 and T2* contrast-enhanced molecular MRI of glioma. A mouse model was used. U87MGdEGFRvIII cells (U87MG), derived from a human tumor, were injected intracerebrally. A 9.4 T MRI system was used and MR imaging was performed on the 10 day after the inoculation of the tumor. The CNR was measured prior, 20 min, 2 hrs and 24 hrs post intravenous tail administration of glioma targeted paramagnetic nanoparticles (NPs) using SE, SWI, GE and GEFC pulse sequences. The results showed significant differences in CNR among all pulse sequences prior injection. GEFC provided higher CNR post contrast agent injection when compared to GE and SE. Post injection CNR was the highest with SWI and significantly different from any other pulse sequence. Molecular MR imaging using targeted contrast agents can enhance the detection of glioma cells at 9.4 T if the optimal pulse sequence is used. Hence, the use of flow compensated pulse sequences, beside SWI, should to be considered in the molecular imaging studies

  9. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    Science.gov (United States)

    Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan

    2015-12-01

    Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell. PMID:26657340

  10. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    Directory of Open Access Journals (Sweden)

    Fabiana A Caetano

    2015-12-01

    Full Text Available Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  11. Establishment of clonal MIN-O transplant lines for molecular imaging via lentiviral transduction & in vitro culture.

    Directory of Open Access Journals (Sweden)

    David L Boucher

    Full Text Available As the field of molecular imaging evolves and increasingly is asked to fill the discovery and validation space between basic science and clinical applications, careful consideration should be given to the models in which studies are conducted. The MIN-O mouse model series is an established in vivo model of human mammary precancer ductal carcinoma in situ with progression to invasive carcinoma. This series of transplant lines is propagated in vivo and experiments utilizing this model can be completed in non-engineered immune intact FVB/n wild type mice thereby modeling the tumor microenvironment with biological relevance superior to traditional tumor cell xenografts. Unfortunately, the same qualities that make this and many other transplant lines more biologically relevant than standard cell lines for molecular imaging studies present a significant obstacle as somatic genetic re-engineering modifications common to many imaging applications can be technically challenging. Here, we describe a protocol for the efficient lentiviral transduction of cell slurries derived from precancerous MIN-O lesions, in vitro culture of "MIN-O-spheres" derived from single cell clones, and the subsequent transplantation of these spheres to produce transduced sublines suitable for optical imaging applications. These lines retain the physiologic and pathologic properties, including multilineage differentiation, and complex microanatomic interaction with the host stroma characteristic of the MIN-O model. We also present the in vivo imaging and immunohistochemical analysis of serial transplantation of one such subline and detail the progressive multifocal loss of the transgene in successive generations.

  12. Auf den Schultern von Riesen und Zwergen Einsteins unvollendete Revolution

    CERN Document Server

    Renn, Jürgen

    2006-01-01

    Dies ist die Geschichte von Einsteins unvollendeter Revolution, einer tiefgreifenden Veränderung unserer Begriffe von Raum, Zeit, Materie und Strahlung. Diese Revolution begann in Einsteins Wunderjahr 1905, wurde durch seine allgemeine Relativitätstheorie aus dem Jahre 1915 fortgesetzt und wirkt in den heutigen Versuchen der Wissenschaft, die Entstehung und das Schicksal des Universums zu verstehen, weiter. Vor dem Hintergrund einer historischen Theorie des wissenschaftlichen Fortschritts wird Einsteins bis heute nicht abgeschlossene Revolution als das Ergebnis einer langfristigen Entwicklung des Wissens verständlich. Anhand der spannenden Geschichte von Einsteins Entdeckungen wird nachvollziehbar, warum große Denker wie Einstein weiter gesehen haben als ihre Vorgänger. Sie standen nicht nur auf den Schultern von Riesen, also den wissenschaftlichen Leistungen einzelner großer Vorgänger wie Newton, sondern auch auf den Schultern von "Zwergen", dem wissenschaftlichen Wissen, dem technischen Wissen, und d...

  13. Investigating the dopaminergic synapse in vivo. I. Molecular imaging studies in humans.

    Science.gov (United States)

    Nikolaus, Susanne; Antke, Christina; Kley, Konstantin; Poeppel, Thorsten D; Hautzel, Hubertus; Schmidt, Daniela; Müller, Hans-Wilhelm

    2007-01-01

    Dopaminergic synaptic function may be assessed either at the presynaptic terminal or at the postsynaptic binding sites using molecular in vivo imaging methods. Apart from the density of binding sites, parameters such as alterations in dopamine synthesis, dopamine storage or dopamine release can be quantified either by application of specific radiotracers or by assessing the competition between the exogenous radioligand and endogenous dopamine. Investigations of humans in both clinical and experimental settings have yielded evidence that disturbances of dopaminergic function may be associated with numerous neurological and psychiatric conditions, among which are movement disorders, schizophrenia, attention-deficit hyperactivity disorder, depression and drug abuse. This article gives an overview of those studies, which so far have been performed on dopaminergic neurotransmission in humans using in vivo imaging methods. We focus on disease-related deficiencies within the functional entity of the dopaminergic synapse. Taken together, in vivo findings yield evidence of presynaptic dysfunctions in Parkinson's disease with decreases in striatal dopamine synthesis, dopamine storage, dopamine release and dopamine transporter binding. In contrast, 'Parkinson plus' syndromes (multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies) are characterized by both pre- and postsynaptic deficiencies with reductions in striatal dopamine synthesis, dopamine storage, dopamine release, and dopamine transporter, as well as D, and D, receptor binding. In patients with Huntington's disease, postsynaptic dysfunctions with reductions of striatal D1 and D2 receptor binding have become apparent, whereas attention-deficit/ hyperactivity disorder is mainly characterized by presynaptic deficits with increases in dopamine transporter binding. Interestingly, findings are also consistent with respect to drug abuse: cocaine, amphetamine

  14. Der Einfluss von Relaxin auf das Wachstum von Mammakarzinomen

    OpenAIRE

    Habla, Christiane

    2010-01-01

    Brustkrebs ist die häufigste Krebstodesursache bei Frauen in den Industrienationen mit einer jährlich ansteigenden Neuerkrankungsrate (Senn und Niederberger 2002). Durch vorangegangene Untersuchungen wurde bereits deutlich, dass das Peptidhormon Relaxin unter in vitro Bedingungen maßgeblich zur Tumorprogression von Mammakarzinomen beiträgt (Binder et al. 2002). Die vorliegende Arbeit hat untersucht, ob Relaxin diese Wirkung auch in vivo auf Mammakarzinome ausübt. Relaxin ist...

  15. Auswirkungen von Mehrfachmandaten deutscher Vorstands- und Aufsichtsratsvorsitzender auf den Unternehmenserfolg

    OpenAIRE

    Balsmeier, Benjamin; Buchwald, Achim; Peters, Heiko

    2010-01-01

    Mehrfachmandatsträger in Vorständen und Aufsichtsräten stehen seit langer Zeit in der öffentlichen Kritik. Anhand eines Paneldatensatzes für die größten deutschen Unternehmen im Zeitraum von 1996 bis 2006 wird der Einfluss von Mehrfachmandaten von Vorstands- und Aufsichtsratsvorsitzenden auf den Unternehmenserfolg untersucht. Die Ergebnisse legen den Schluss nahe, dass zwischen der Anzahl der Aufsichtsratsmandate des Vorstandsvorsitzenden und dem Erfolg seines Unternehmens ein konkaver positi...

  16. Zur Wirkung hoher Temperaturen auf vorratsschädliche Insekten

    OpenAIRE

    Adler, Cornel

    2008-01-01

    Vorratsschädliche Insekten sind Spezialisten, die in der Lage sind, trockene pflanzliche Materialien aufzuspüren, zu besiedeln und damit über die Befeuchtung durch Respiration dem Abbau durch weitere Organismen (Pilze, Milben, Bakterien) zuzuführen. Auf diese Weise sind sie die Auslöser eines Kompostierungsprozesses. Durch ihr hervorragendes Orientierungsvermögen entlang eines Duftstoffgradienten finden sie sich regelmäßig in Vorratslagern und Gebäuden der Lebens- und Futtermittelverarbeitung...

  17. Die Rothschilds. Aktien auf Waterloo (Erich Waschneck, Deutschland, 1940)

    OpenAIRE

    Hoppe, Johanne

    2015-01-01

    Der Vorbehaltsfilm Die Rothschilds. Aktien auf Waterloo (Erich Waschneck, Deutschland 1940) zeichnet ein Zerrbild historischer Tatsachen um den Aufstieg der Familie Rothschild aus Frankfurt am Main zur europäischen Finanzmacht zu Beginn des 19. Jahrhunderts und stützt somit antisemitische wie antibritische Legendenbildung. Mein Text soll den Inhalt wie den zeitgenössischen Entstehungskontext unter besonderer Berücksichtigung der politischen Absichtenbeschreiben um in der Folge eine Analyse de...

  18. Evaluierung des Deutschen Satellitendatenarchivs auf Nachhaltigkeit und Effizienz

    OpenAIRE

    Wegner, Max

    2013-01-01

    Das Deutsche Satellitendatenarchiv (D-SDA) ist eine Kernkomponente des Erdbeobachtungszentrums (Earth Observation Center, EOC) des Deutschen Zentrums für Luft- und Raumfahrt (DLR). Diese Arbeit evaluiert das D-SDA anhand der Long Term Data Preservation Common Guidelines der Europäischen Raumfahrtagentur ESA bezüglich seiner Nachhaltigkeit und Effizienz. Auf dieser Grundlage werden zwei Maßnahmen für eine gesteigerte Effizienz, Wirtschaftlichkeit beziehungsweise Nachhaltigkeit diskutiert und n...

  19. Auswirkungen verschiedener Zellaufschlussverfahren auf den Prozess der Zuckergewinnung

    OpenAIRE

    Rudolph, Holger

    2007-01-01

    Die Extraktion ist der einzige Prozessabschnitt der Saccharosegewinnung, der im sauren Milieu durchgeführt wird. Dies geschieht aus Rücksicht auf die Stabilität des Pektins der Zellwände. Die Extraktion im alkalischen Milieu verspricht zahlreiche wirtschaftliche Vorteile, konnte bislang aber trotz zahlreicher Untersuchungen nicht großtechnisch umgesetzt werden. Die Probleme ergeben sich hauptsächlich aus der für die thermische Denaturierung erforderlichen hohen Temperatur. In der vorliegenden...

  20. Einfluss des Pneumoperitoneums auf die Ultrastruktur des Peritoneums

    OpenAIRE

    Jakob, Jens

    2004-01-01

    Hintergrund: Der Einsatz minimal invasiver Techniken in der onkologischen Chirurgie wird wegen der Berichte über Trokarmetastasen kontrovers diskutiert. Die Pathogenese von Inzisionsmetastasen und intraperitonealem Tumorwachstum ist bisher nicht bekannt. Als mögliche Ursachen kommen bei Einsatz der laparoskopischen Chirurgie auch Einflüsse von Gas und Druck auf das Peritoneum in Betracht. Dabei könnte eine peritoneale Inflammation die Adhäsion und das Wachstum von Tumorzellen begünstigen. Wir...