WorldWideScience

Sample records for auditory temporal discriminations

  1. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians

    Directory of Open Access Journals (Sweden)

    Kumar, Prawin

    2015-12-01

    Full Text Available Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF. All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0. Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower active discrimination threshold in vocal musicians in comparison to non-musicians.

  2. The effects of context and musical training on auditory temporal-interval discrimination.

    Science.gov (United States)

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis.

    Science.gov (United States)

    Sussman, Elyse; Winkler, István; Kreuzer, Judith; Saher, Marieke; Näätänen, Risto; Ritter, Walter

    2002-12-01

    Our previous study showed that the auditory context could influence whether two successive acoustic changes occurring within the temporal integration window (approximately 200ms) were pre-attentively encoded as a single auditory event or as two discrete events (Cogn Brain Res 12 (2001) 431). The aim of the current study was to assess whether top-down processes could influence the stimulus-driven processes in determining what constitutes an auditory event. Electroencepholagram (EEG) was recorded from 11 scalp electrodes to frequently occurring standard and infrequently occurring deviant sounds. Within the stimulus blocks, deviants either occurred only in pairs (successive feature changes) or both singly and in pairs. Event-related potential indices of change and target detection, the mismatch negativity (MMN) and the N2b component, respectively, were compared with the simultaneously measured performance in discriminating the deviants. Even though subjects could voluntarily distinguish the two successive auditory feature changes from each other, which was also indicated by the elicitation of the N2b target-detection response, top-down processes did not modify the event organization reflected by the MMN response. Top-down processes can extract elemental auditory information from a single integrated acoustic event, but the extraction occurs at a later processing stage than the one whose outcome is indexed by MMN. Initial processes of auditory event-formation are fully governed by the context within which the sounds occur. Perception of the deviants as two separate sound events (the top-down effects) did not change the initial neural representation of the same deviants as one event (indexed by the MMN), without a corresponding change in the stimulus-driven sound organization.

  4. Right hemispheric contributions to fine auditory temporal discriminations: high-density electrical mapping of the duration mismatch negativity (MMN

    Directory of Open Access Journals (Sweden)

    Pierfilippo De Sanctis

    2009-04-01

    Full Text Available That language processing is primarily a function of the left hemisphere has led to the supposition that auditory temporal discrimination is particularly well-tuned in the left hemisphere, since speech discrimination is thought to rely heavily on the registration of temporal transitions. However, physiological data have not consistently supported this view. Rather, functional imaging studies often show equally strong, if not stronger, contributions from the right hemisphere during temporal processing tasks, suggesting a more complex underlying neural substrate. The mismatch negativity (MMN component of the human auditory evoked-potential (AEP provides a sensitive metric of duration processing in human auditory cortex and lateralization of MMN can be readily assayed when sufficiently dense electrode arrays are employed. Here, the sensitivity of the left and right auditory cortex for temporal processing was measured by recording the MMN to small duration deviants presented to either the left or right ear. We found that duration deviants differing by just 15% (i.e. rare 115 ms tones presented in a stream of 100 ms tones elicited a significant MMN for tones presented to the left ear (biasing the right hemisphere. However, deviants presented to the right ear elicited no detectable MMN for this separation. Further, participants detected significantly more duration deviants and committed fewer false alarms for tones presented to the left ear during a subsequent psychophysical testing session. In contrast to the prevalent model, these results point to equivalent if not greater right hemisphere contributions to temporal processing of small duration changes.

  5. Representation of complex vocalizations in the Lusitanian toadfish auditory system: evidence of fine temporal, frequency and amplitude discrimination

    Science.gov (United States)

    Vasconcelos, Raquel O.; Fonseca, Paulo J.; Amorim, M. Clara P.; Ladich, Friedrich

    2011-01-01

    Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene. PMID:20861044

  6. Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds

    OpenAIRE

    Carlin, Michael A.; Elhilali, Mounya

    2013-01-01

    The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their prefe...

  7. Auditory memory for temporal characteristics of sound.

    Science.gov (United States)

    Zokoll, Melanie A; Klump, Georg M; Langemann, Ulrike

    2008-05-01

    This study evaluates auditory memory for variations in the rate of sinusoidal amplitude modulation (SAM) of noise bursts in the European starling (Sturnus vulgaris). To estimate the extent of the starling's auditory short-term memory store, a delayed non-matching-to-sample paradigm was applied. The birds were trained to discriminate between a series of identical "sample stimuli" and a single "test stimulus". The birds classified SAM rates of sample and test stimuli as being either the same or different. Memory performance of the birds was measured as the percentage of correct classifications. Auditory memory persistence time was estimated as a function of the delay between sample and test stimuli. Memory performance was significantly affected by the delay between sample and test and by the number of sample stimuli presented before the test stimulus, but was not affected by the difference in SAM rate between sample and test stimuli. The individuals' auditory memory persistence times varied between 2 and 13 s. The starlings' auditory memory persistence in the present study for signals varying in the temporal domain was significantly shorter compared to that of a previous study (Zokoll et al. in J Acoust Soc Am 121:2842, 2007) applying tonal stimuli varying in the spectral domain.

  8. Temporal-order judgment of visual and auditory stimuli: Modulations in situations with and without stimulus discrimination

    Directory of Open Access Journals (Sweden)

    Elisabeth eHendrich

    2012-08-01

    Full Text Available Temporal-order judgment (TOJ tasks are an important paradigm to investigate processing times of information in different modalities. There are a lot of studies on how temporal order decisions can be influenced by stimuli characteristics. However, so far it has not been investigated whether the addition of a choice reaction time task has an influence on temporal-order judgment. Moreover, it is not known when during processing the decision about the temporal order of two stimuli is made. We investigated the first of these two questions by comparing a regular TOJ task with a dual task. In both tasks, we manipulated different processing stages to investigate whether the manipulations have an influence on temporal-order judgment and to determine thereby the time of processing at which the decision about temporal order is made. The results show that the addition of a choice reaction time task does have an influence on the temporal-order judgment, but the influence seems to be linked to the kind of manipulation of the processing stages that is used. The results of the manipulations indicate that the temporal order decision in the dual task paradigm is made after perceptual processing of the stimuli.

  9. Temporal auditory processing in elders

    Directory of Open Access Journals (Sweden)

    Azzolini, Vanuza Conceição

    2010-03-01

    Full Text Available Introduction: In the trial of aging all the structures of the organism are modified, generating intercurrences in the quality of the hearing and of the comprehension. The hearing loss that occurs in consequence of this trial occasion a reduction of the communicative function, causing, also, a distance of the social relationship. Objective: Comparing the performance of the temporal auditory processing between elderly individuals with and without hearing loss. Method: The present study is characterized for to be a prospective, transversal and of diagnosis character field work. They were analyzed 21 elders (16 women and 5 men, with ages between 60 to 81 years divided in two groups, a group "without hearing loss"; (n = 13 with normal auditive thresholds or restricted hearing loss to the isolated frequencies and a group "with hearing loss" (n = 8 with neurosensory hearing loss of variable degree between light to moderately severe. Both the groups performed the tests of frequency (PPS and duration (DPS, for evaluate the ability of temporal sequencing, and the test Randon Gap Detection Test (RGDT, for evaluate the temporal resolution ability. Results: It had not difference statistically significant between the groups, evaluated by the tests DPS and RGDT. The ability of temporal sequencing was significantly major in the group without hearing loss, when evaluated by the test PPS in the condition "muttering". This result presented a growing one significant in parallel with the increase of the age group. Conclusion: It had not difference in the temporal auditory processing in the comparison between the groups.

  10. Effects of Temporal Sequencing and Auditory Discrimination on Children's Memory Patterns for Tones, Numbers, and Nonsense Words

    Science.gov (United States)

    Gromko, Joyce Eastlund; Hansen, Dee; Tortora, Anne Halloran; Higgins, Daniel; Boccia, Eric

    2009-01-01

    The purpose of this study was to determine whether children's recall of tones, numbers, and words was supported by a common temporal sequencing mechanism; whether children's patterns of memory for tones, numbers, and nonsense words were the same despite differences in symbol systems; and whether children's recall of tones, numbers, and nonsense…

  11. Spatiotemporal Relationships among Audiovisual Stimuli Modulate Auditory Facilitation of Visual Target Discrimination.

    Science.gov (United States)

    Li, Qi; Yang, Huamin; Sun, Fang; Wu, Jinglong

    2015-03-01

    Sensory information is multimodal; through audiovisual interaction, task-irrelevant auditory stimuli tend to speed response times and increase visual perception accuracy. However, mechanisms underlying these performance enhancements have remained unclear. We hypothesize that task-irrelevant auditory stimuli might provide reliable temporal and spatial cues for visual target discrimination and behavioral response enhancement. Using signal detection theory, the present study investigated the effects of spatiotemporal relationships on auditory facilitation of visual target discrimination. Three experiments were conducted where an auditory stimulus maintained reliable temporal and/or spatial relationships with visual target stimuli. Results showed that perception sensitivity (d') to visual target stimuli was enhanced only when a task-irrelevant auditory stimulus maintained reliable spatiotemporal relationships with a visual target stimulus. When only reliable spatial or temporal information was contained, perception sensitivity was not enhanced. These results suggest that reliable spatiotemporal relationships between visual and auditory signals are required for audiovisual integration during a visual discrimination task, most likely due to a spread of attention. These results also indicate that auditory facilitation of visual target discrimination follows from late-stage cognitive processes rather than early stage sensory processes. © 2015 SAGE Publications.

  12. MODELING SPECTRAL AND TEMPORAL MASKING IN THE HUMAN AUDITORY SYSTEM

    DEFF Research Database (Denmark)

    Dau, Torsten; Jepsen, Morten Løve; Ewert, Stephan D.

    2007-01-01

    An auditory signal processing model is presented that simulates psychoacoustical data from a large variety of experimental conditions related to spectral and temporal masking. The model is based on the modulation filterbank model by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997)] but inclu......An auditory signal processing model is presented that simulates psychoacoustical data from a large variety of experimental conditions related to spectral and temporal masking. The model is based on the modulation filterbank model by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997...... was tested in conditions of tone-in-noise masking, intensity discrimination, spectral masking with tones and narrowband noises, forward masking with (on- and off-frequency) noise- and pure-tone maskers, and amplitude modulation detection using different noise carrier bandwidths. One of the key properties...

  13. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  14. Auditory temporal processing in patients with temporal lobe epilepsy.

    Science.gov (United States)

    Lavasani, Azam Navaei; Mohammadkhani, Ghassem; Motamedi, Mahmoud; Karimi, Leyla Jalilvand; Jalaei, Shohreh; Shojaei, Fereshteh Sadat; Danesh, Ali; Azimi, Hadi

    2016-07-01

    Auditory temporal processing is the main feature of speech processing ability. Patients with temporal lobe epilepsy, despite their normal hearing sensitivity, may present speech recognition disorders. The present study was carried out to evaluate the auditory temporal processing in patients with unilateral TLE. The present study was carried out on 25 patients with epilepsy: 11 patients with right temporal lobe epilepsy and 14 with left temporal lobe epilepsy with a mean age of 31.1years and 18 control participants with a mean age of 29.4years. The two experimental and control groups were evaluated via gap-in-noise and duration pattern sequence tests. One-way ANOVA was run to analyze the data. The mean of the threshold of the GIN test in the control group was observed to be better than that in participants with LTLE and RTLE. Also, it was observed that the percentage of correct responses on the DPS test in the control group and in participants with RTLE was better than that in participants with LTLE. Patients with TLE have difficulties in temporal processing. Difficulties are more significant in patients with LTLE, likely because the left temporal lobe is specialized for the processing of temporal information. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  16. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  17. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    OpenAIRE

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2011-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, an...

  18. Temporal expectation weights visual signals over auditory signals.

    Science.gov (United States)

    Menceloglu, Melisa; Grabowecky, Marcia; Suzuki, Satoru

    2017-04-01

    Temporal expectation is a process by which people use temporally structured sensory information to explicitly or implicitly predict the onset and/or the duration of future events. Because timing plays a critical role in crossmodal interactions, we investigated how temporal expectation influenced auditory-visual interaction, using an auditory-visual crossmodal congruity effect as a measure of crossmodal interaction. For auditory identification, an incongruent visual stimulus produced stronger interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. In contrast, for visual identification, an incongruent auditory stimulus produced weaker interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. The fact that temporal expectation made visual distractors more potent and visual targets less susceptible to auditory interference suggests that temporal expectation increases the perceptual weight of visual signals.

  19. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  20. Auditory Phoneme Discrimination in Illiterates: Mismatch Negativity--A Question of Literacy?

    Science.gov (United States)

    Schaadt, Gesa; Pannekamp, Ann; van der Meer, Elke

    2013-01-01

    These days, illiteracy is still a major problem. There is empirical evidence that auditory phoneme discrimination is one of the factors contributing to written language acquisition. The current study investigated auditory phoneme discrimination in participants who did not acquire written language sufficiently. Auditory phoneme discrimination was…

  1. Mind the gap: temporal discrimination and dystonia.

    Science.gov (United States)

    Sadnicka, A; Daum, C; Cordivari, C; Bhatia, K P; Rothwell, J C; Manohar, S; Edwards, M J

    2017-06-01

    One of the most widely studied perceptual measures of sensory dysfunction in dystonia is the temporal discrimination threshold (TDT) (the shortest interval at which subjects can perceive that there are two stimuli rather than one). However the elevated thresholds described may be due to a number of potential mechanisms as current paradigms test not only temporal discrimination but also extraneous sensory and decision-making parameters. In this study two paradigms designed to better quantify temporal processing are presented and a decision-making model is used to assess the influence of decision strategy. 22 patients with cervical dystonia and 22 age-matched controls completed two tasks (i) temporal resolution (a randomized, automated version of existing TDT paradigms) and (ii) interval discrimination (rating the length of two consecutive intervals). In the temporal resolution task patients had delayed (P = 0.021) and more variable (P = 0.013) response times but equivalent discrimination thresholds. Modelling these effects suggested this was due to an increased perceptual decision boundary in dystonia with patients requiring greater evidence before committing to decisions (P = 0.020). Patient performance on the interval discrimination task was normal. Our work suggests that previously observed abnormalities in TDT may not be due to a selective sensory deficit of temporal processing as decision-making itself is abnormal in cervical dystonia. © 2017 EAN.

  2. Genetic pleiotropy explains associations between musical auditory discrimination and intelligence.

    Science.gov (United States)

    Mosing, Miriam A; Pedersen, Nancy L; Madison, Guy; Ullén, Fredrik

    2014-01-01

    Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions.

  3. Hand proximity facilitates spatial discrimination of auditory tones

    Directory of Open Access Journals (Sweden)

    Philip eTseng

    2014-06-01

    Full Text Available The effect of hand proximity on vision and visual attention has been well documented. In this study we tested whether such effect(s would also be present in the auditory modality. With hands placed either near or away from the audio sources, participants performed an auditory-spatial discrimination (Exp 1: left or right side, pitch discrimination (Exp 2: high, med, or low tone, and spatial-plus-pitch (Exp 3: left or right; high, med, or low discrimination task. In Exp 1, when hands were away from the audio source, participants consistently responded faster with their right hand regardless of stimulus location. This right hand advantage, however, disappeared in the hands-near condition because of a significant improvement in left hand’s reaction time. No effect of hand proximity was found in Exp 2 or 3, where a choice reaction time task requiring pitch discrimination was used. Together, these results suggest that the effect of hand proximity is not exclusive to vision alone, but is also present in audition, though in a much weaker form. Most important, these findings provide evidence from auditory attention that supports the multimodal account originally raised by Reed et al. in 2006.

  4. Auditory temporal-order thresholds show no gender differences

    NARCIS (Netherlands)

    van Kesteren, Marlieke T. R.; Wierslnca-Post, J. Esther C.

    2007-01-01

    Purpose: Several studies on auditory temporal-order processing showed gender differences. Women needed longer inter-stimulus intervals than men when indicating the temporal order of two clicks presented to the left and right ear. In this study, we examined whether we could reproduce these results in

  5. Auditory temporal-order thresholds show no gender differences

    NARCIS (Netherlands)

    van Kesteren, Marlieke T R; Wiersinga-Post, J Esther C

    2007-01-01

    PURPOSE: Several studies on auditory temporal-order processing showed gender differences. Women needed longer inter-stimulus intervals than men when indicating the temporal order of two clicks presented to the left and right ear. In this study, we examined whether we could reproduce these results in

  6. Spectro-temporal characterization of auditory neurons: redundant or necessary?

    NARCIS (Netherlands)

    Eggermont, J.J.; Aertsen, A.M.H.J.; Hermes, D.J.; Johannesma, P.I.M.

    1981-01-01

    For neurons in the auditory midbrain of the grass frog the use of a combined spectro-temporal characterization has been evaluated against the separate characterizations of frequency-sensitivity and temporal response properties. By factoring the joint density function of stimulus intensity, I(f, t),

  7. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    Science.gov (United States)

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  8. Auditory phase and frequency discrimination: a comparison of nine procedures.

    Science.gov (United States)

    Creelman, C D; Macmillan, N A

    1979-02-01

    Two auditory discrimination tasks were thoroughly investigated: discrimination of frequency differences from a sinusoidal signal of 200 Hz and discrimination of differences in relative phase of mixed sinusoids of 200 Hz and 400 Hz. For each task psychometric functions were constructed for three observers, using nine different psychophysical measurement procedures. These procedures included yes-no, two-interval forced-choice, and various fixed- and variable-standard designs that investigators have used in recent years. The data showed wide ranges of apparent sensitivity. For frequency discrimination, models derived from signal detection theory for each psychophysical procedure seem to account for the performance differences. For phase discrimination the models do not account for the data. We conclude that for some discriminative continua the assumptions of signal detection theory are appropriate, and underlying sensitivity may be derived from raw data by appropriate transformations. For other continua the models of signal detection theory are probably inappropriate; we speculate that phase might be discriminable only on the basis of comparison or change and suggest some tests of our hypothesis.

  9. Processamento auditivo em indivíduos com epilepsia de lobo temporal Auditory processing in patients with temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Juliana Meneguello

    2006-08-01

    Full Text Available A epilepsia do lobo temporal ocasiona descargas elétricas excessivas onde a via auditiva tem sua estação final. É uma das formas mais comuns e de mais difícil controle da doença. O correto processamento dos estímulos auditivos necessita da integridade anatômica e funcional de todas as estruturas envolvidas na via auditiva. OBJETIVO: Verificar o Processamento Auditivo de pacientes portadores de epilepsia do lobo temporal quanto aos mecanismos de discriminação de sons em seqüência e de padrões tonais, discriminação da direção da fonte sonora e atenção seletiva para sons verbais e não-verbais. MÉTODO: Foram avaliados oito indivíduos com epilepsia do lobo temporal confirmada e com foco restrito a essa região, através dos testes auditivos especiais: Teste de Localização Sonora, Teste de Padrão de Duração, Teste Dicótico de Dígitos e Teste Dicótico Não-Verbal. O seu desempenho foi comparado ao de indivíduos sem alteração neurológica (estudo caso-controle. RESULTADO: Os sujeitos com epilepsia do lobo temporal apresentaram desempenho semelhante aos do grupo controle quanto ao mecanismo de discriminação da direção da fonte sonora e desempenho inferior quanto aos demais mecanismos avaliados. CONCLUSÃO: Indivíduos com epilepsia do lobo temporal apresentaram maior prejuízo no processamento auditivo que os sem danos corticais, de idades semelhantes.Temporal epilepsy, one of the most common presentation of this pathology, causes excessive electrical discharges in the area where we have the final station of the auditory pathway. Both the anatomical and functional integrity of the auditory pathway structures are essential for the correct processing of auditory stimuli. AIM: to check the Auditory Processing in patients with temporal lobe epilepsy regarding the auditory mechanisms of discrimination from sequential sounds and tone patterns, discrimination of the sound source direction and selective attention to verbal

  10. Temporal Organization of Sound Information in Auditory Memory

    Directory of Open Access Journals (Sweden)

    Kun Song

    2017-06-01

    Full Text Available Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  11. Temporal Organization of Sound Information in Auditory Memory.

    Science.gov (United States)

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  12. Stability of auditory discrimination and novelty processing in physiological aging.

    Science.gov (United States)

    Raggi, Alberto; Tasca, Domenica; Rundo, Francesco; Ferri, Raffaele

    2013-01-01

    Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs) allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN) and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  13. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  14. Auditory temporal processing skills in musicians with dyslexia.

    Science.gov (United States)

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    Science.gov (United States)

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  16. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  17. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    Science.gov (United States)

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  19. Temporal Organization of Sound Information in Auditory Memory

    OpenAIRE

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed ...

  20. Non-verbal auditory cognition in patients with temporal epilepsy before and after anterior temporal lobectomy

    Directory of Open Access Journals (Sweden)

    Aurélie Bidet-Caulet

    2009-11-01

    Full Text Available For patients with pharmaco-resistant temporal epilepsy, unilateral anterior temporal lobectomy (ATL - i.e. the surgical resection of the hippocampus, the amygdala, the temporal pole and the most anterior part of the temporal gyri - is an efficient treatment. There is growing evidence that anterior regions of the temporal lobe are involved in the integration and short-term memorization of object-related sound properties. However, non-verbal auditory processing in patients with temporal lobe epilepsy (TLE has raised little attention. To assess non-verbal auditory cognition in patients with temporal epilepsy both before and after unilateral ATL, we developed a set of non-verbal auditory tests, including environmental sounds. We could evaluate auditory semantic identification, acoustic and object-related short-term memory, and sound extraction from a sound mixture. The performances of 26 TLE patients before and/or after ATL were compared to those of 18 healthy subjects. Patients before and after ATL were found to present with similar deficits in pitch retention, and in identification and short-term memorisation of environmental sounds, whereas not being impaired in basic acoustic processing compared to healthy subjects. It is most likely that the deficits observed before and after ATL are related to epileptic neuropathological processes. Therefore, in patients with drug-resistant TLE, ATL seems to significantly improve seizure control without producing additional auditory deficits.

  1. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    Science.gov (United States)

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  4. Recurrent coupling improves discrimination of temporal spike patterns

    Directory of Open Access Journals (Sweden)

    Chun-Wei eYuan

    2012-05-01

    Full Text Available Despite the ubiquitous presence of recurrent synaptic connections insensory neuronal systems, their general functional purpose is not wellunderstood. A recent conceptual advance has been achieved by theoriesof reservoir computing in which recurrent networks have been proposedto generate short-term memory as well as to improve neuronalrepresentation of the sensory input for subsequent computations.Here, we present a numerical study on the distinct effects ofinhibitory and excitatory recurrence in a canonical linearclassification task. It is found that both types of coupling improvethe ability to discriminate temporal spike patterns as compared to apurely feed-forward system, although in different ways. For a largeclass of inhibitory networks, the network's performance is optimal aslong as a fraction of roughly 50% of neurons per stimulus is activein the resulting population code. Thereby the contribution of inactiveneurons to the neural code is found to be even more informative thanthat of the active neurons, generating an inherent robustness ofclassification performance against temporal jitter of the inputspikes. Excitatory couplings are found to not only produce ashort-term memory buffer but also to improve linear separability ofthe population patterns by evoking more irregular firing as comparedto the purely inhibitory case. As the excitatory connectivity becomesmore sparse, firing becomes more variable and pattern separabilityimproves. We argue that the proposed paradigm is particularlywell-suited as a conceptual framework for processing of sensoryinformation in the auditory pathway.

  5. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  6. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  7. Anatomical pathways for auditory memory II: Information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Directory of Open Access Journals (Sweden)

    Monica eMunoz-Lopez

    2015-05-01

    Full Text Available Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 minutes. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 seconds. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys’ auditory memory performance. It is possible, therefore, that the anatomical pathways differ. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC. We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG, and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY and anterograde (10% BDA 10,000 MW tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex, and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  8. Auditory event-related potentials in children with benign epilepsy with centro-temporal spikes.

    Science.gov (United States)

    Tomé, David; Sampaio, Mafalda; Mendes-Ribeiro, José; Barbosa, Fernando; Marques-Teixeira, João

    2014-12-01

    Benign focal epilepsy in childhood with centro-temporal spikes (BECTS) is one of the most common forms of idiopathic epilepsy, with onset from age 3 to 14 years. Although the prognosis for children with BECTS is excellent, some studies have revealed neuropsychological deficits in many domains, including language. Auditory event-related potentials (AERPs) reflect activation of different neuronal populations and are suggested to contribute to the evaluation of auditory discrimination (N1), attention allocation and phonological categorization (N2), and echoic memory (mismatch negativity--MMN). The scarce existing literature about this theme motivated the present study, which aims to investigate and document the existing AERP changes in a group of children with BECTS. AERPs were recorded, during the day, to pure and vocal tones and in a conventional auditory oddball paradigm in five children with BECTS (aged 8-12; mean=10 years; male=5) and in six gender and age-matched controls. Results revealed high amplitude of AERPs for the group of children with BECTS with a slight latency delay more pronounced in fronto-central electrodes. Children with BECTS may have abnormal central auditory processing, reflected by electrophysiological measures such as AERPs. In advance, AERPs seem a good tool to detect and reliably reveal cortical excitability in children with typical BECTS. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Frontal and superior temporal auditory processing abnormalities in schizophrenia.

    Science.gov (United States)

    Chen, Yu-Han; Edgar, J Christopher; Huang, Mingxiong; Hunter, Michael A; Epstein, Emerson; Howell, Breannan; Lu, Brett Y; Bustillo, Juan; Miller, Gregory A; Cañive, José M

    2013-01-01

    Although magnetoencephalography (MEG) studies show superior temporal gyrus (STG) auditory processing abnormalities in schizophrenia at 50 and 100 ms, EEG and corticography studies suggest involvement of additional brain areas (e.g., frontal areas) during this interval. Study goals were to identify 30 to 130 ms auditory encoding processes in schizophrenia (SZ) and healthy controls (HC) and group differences throughout the cortex. The standard paired-click task was administered to 19 SZ and 21 HC subjects during MEG recording. Vector-based Spatial-temporal Analysis using L1-minimum-norm (VESTAL) provided 4D maps of activity from 30 to 130 ms. Within-group t-tests compared post-stimulus 50 ms and 100 ms activity to baseline. Between-group t-tests examined 50 and 100 ms group differences. Bilateral 50 and 100 ms STG activity was observed in both groups. HC had stronger bilateral 50 and 100 ms STG activity than SZ. In addition to the STG group difference, non-STG activity was also observed in both groups. For example, whereas HC had stronger left and right inferior frontal gyrus activity than SZ, SZ had stronger right superior frontal gyrus and left supramarginal gyrus activity than HC. Less STG activity was observed in SZ than HC, indicating encoding problems in SZ. Yet auditory encoding abnormalities are not specific to STG, as group differences were observed in frontal and SMG areas. Thus, present findings indicate that individuals with SZ show abnormalities in multiple nodes of a concurrently activated auditory network.

  10. Discrimination of Communication Vocalizations by Single Neurons and Groups of Neurons in the Auditory Midbrain

    OpenAIRE

    Schneider, David M.; Woolley, Sarah M. N.

    2010-01-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic...

  11. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements...

  12. Activations of human auditory cortex to phonemic and nonphonemic vowels during discrimination and memory tasks.

    Science.gov (United States)

    Harinen, Kirsi; Rinne, Teemu

    2013-08-15

    We used fMRI to investigate activations within human auditory cortex (AC) to vowels during vowel discrimination, vowel (categorical n-back) memory, and visual tasks. Based on our previous studies, we hypothesized that the vowel discrimination task would be associated with increased activations in the anterior superior temporal gyrus (STG), while the vowel memory task would enhance activations in the posterior STG and inferior parietal lobule (IPL). In particular, we tested the hypothesis that activations in the IPL during vowel memory tasks are associated with categorical processing. Namely, activations due to categorical processing should be higher during tasks performed on nonphonemic (hard to categorize) than on phonemic (easy to categorize) vowels. As expected, we found distinct activation patterns during vowel discrimination and vowel memory tasks. Further, these task-dependent activations were different during tasks performed on phonemic or nonphonemic vowels. However, activations in the IPL associated with the vowel memory task were not stronger during nonphonemic than phonemic vowel blocks. Together these results demonstrate that activations in human AC to vowels depend on both the requirements of the behavioral task and the phonemic status of the vowels. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity

    NARCIS (Netherlands)

    Jansson-Verkasalo, E.; Eggers, K.; Järvenpää, A.; Suominen, K.; Van Den Bergh, B.R.H.; de Nil, L.; Kujala, T.

    2014-01-01

    Purpose Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are

  14. Visual Speech Fills in Both Discrimination and Identification of Non-Intact Auditory Speech in Children

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Herve

    2018-01-01

    To communicate, children must discriminate and identify speech sounds. Because visual speech plays an important role in this process, we explored how visual speech influences phoneme discrimination and identification by children. Critical items had intact visual speech (e.g. baez) coupled to non-intact (excised onsets) auditory speech (signified…

  15. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  16. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex.

    Science.gov (United States)

    Schicknick, Horst; Reichenbach, Nicole; Smalla, Karl-Heinz; Scheich, Henning; Gundelfinger, Eckart D; Tischmeyer, Wolfgang

    2012-03-01

    In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study

    OpenAIRE

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    PURPOSE: To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise - GIN) and IQ, attention, memory and age measurements. METHOD: Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and ...

  18. Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI.

    Science.gov (United States)

    Chyzhyk, Darya; Graña, Manuel; Öngür, Döst; Shinn, Ann K

    2015-05-01

    Auditory hallucinations (AH) are a symptom that is most often associated with schizophrenia, but patients with other neuropsychiatric conditions, and even a small percentage of healthy individuals, may also experience AH. Elucidating the neural mechanisms underlying AH in schizophrenia may offer insight into the pathophysiology associated with AH more broadly across multiple neuropsychiatric disease conditions. In this paper, we address the problem of classifying schizophrenia patients with and without a history of AH, and healthy control (HC) subjects. To this end, we performed feature extraction from resting state functional magnetic resonance imaging (rsfMRI) data and applied machine learning classifiers, testing two kinds of neuroimaging features: (a) functional connectivity (FC) measures computed by lattice auto-associative memories (LAAM), and (b) local activity (LA) measures, including regional homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF). We show that it is possible to perform classification within each pair of subject groups with high accuracy. Discrimination between patients with and without lifetime AH was highest, while discrimination between schizophrenia patients and HC participants was worst, suggesting that classification according to the symptom dimension of AH may be more valid than discrimination on the basis of traditional diagnostic categories. FC measures seeded in right Heschl's gyrus (RHG) consistently showed stronger discriminative power than those seeded in left Heschl's gyrus (LHG), a finding that appears to support AH models focusing on right hemisphere abnormalities. The cortical brain localizations derived from the features with strong classification performance are consistent with proposed AH models, and include left inferior frontal gyrus (IFG), parahippocampal gyri, the cingulate cortex, as well as several temporal and prefrontal cortical brain regions. Overall, the observed findings suggest that

  19. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  20. Young women do it better: sexual dimorphism in temporal discrimination.

    Directory of Open Access Journals (Sweden)

    Laura Jane Williams

    2015-07-01

    Full Text Available The temporal discrimination threshold is the shortest time interval at which two sensory stimuli presented sequentially are detected as asynchronous by the observer. Temporal discrimination thresholds are known to increase with age. Having previously observed shorter thresholds in young women than in men, in this work we sought to sytematically examine the effect of sex and age on temporal discrimination. The aims of this study were to examine, in a large group of men and women aged 20 to 65 years, the distribution of temporal discrimination thresholds with an analysis of the individual participant’s responses, assessing the point of subjective equality (PSE and the just noticeable difference (JND. These respectively assess sensitivity and accuracy of an individual’s response. In 175 participants (88 women aged 20-65 years, temporal discrimination was faster in women than in men under the age of 40 years by a mean of approximately 13ms. However age-related decline in temporal discrimination was three times faster in women so that, in the age group of 40-65 years, the female superiority was reversed. The point of subjective equality showed a similar advantage in younger women and more marked age-related decline in women than men, as the temporal discrimination threshold. Just noticeable difference values declined equally in both sexes showing no sexual dimorphism. This observed sexual dimorphism in temporal discrimination is important for both a future clinical research assessing disordered mid-brain covert attention in basal-ganglia disorders and b understanding the biology of this sexual dimorphism which may be genetic or hormonal.

  1. Dissociation of Detection and Discrimination of Pure Tones following Bilateral Lesions of Auditory Cortex

    Science.gov (United States)

    Dykstra, Andrew R.; Koh, Christine K.; Braida, Louis D.; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5±2.1 dB in the left ear and 6.5±1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6±0.22 dB; right ear: 1.7±0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed. PMID:22957087

  2. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Dykstra, Andrew R; Koh, Christine K; Braida, Louis D; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  3. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    Full Text Available It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB. The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  4. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.

    Science.gov (United States)

    Winn, Matthew B; Won, Jong Ho; Moon, Il Joon

    This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of

  5. Response properties of neurons in the cat's putamen during auditory discrimination.

    Science.gov (United States)

    Zhao, Zhenling; Sato, Yu; Qin, Ling

    2015-10-01

    The striatum integrates diverse convergent input and plays a critical role in the goal-directed behaviors. To date, the auditory functions of striatum are less studied. Recently, it was demonstrated that auditory cortico-striatal projections influence behavioral performance during a frequency discrimination task. To reveal the functions of striatal neurons in auditory discrimination, we recorded the single-unit spike activities in the putamen (dorsal striatum) of free-moving cats while performing a Go/No-go task to discriminate the sounds with different modulation rates (12.5 Hz vs. 50 Hz) or envelopes (damped vs. ramped). We found that the putamen neurons can be broadly divided into four groups according to their contributions to sound discrimination. First, 40% of neurons showed vigorous responses synchronized to the sound envelope, and could precisely discriminate different sounds. Second, 18% of neurons showed a high preference of ramped to damped sounds, but no preference for modulation rate. They could only discriminate the change of sound envelope. Third, 27% of neurons rapidly adapted to the sound stimuli, had no ability of sound discrimination. Fourth, 15% of neurons discriminated the sounds dependent on the reward-prediction. Comparing to passively listening condition, the activities of putamen neurons were significantly enhanced by the engagement of the auditory tasks, but not modulated by the cat's behavioral choice. The coexistence of multiple types of neurons suggests that the putamen is involved in the transformation from auditory representation to stimulus-reward association. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Single-trial multisensory memories affect later auditory and visual object discrimination.

    Science.gov (United States)

    Thelen, Antonia; Talsma, Durk; Murray, Micah M

    2015-05-01

    Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand. Copyright

  7. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  8. Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates.

    Science.gov (United States)

    Kimmich, Okka; Molloy, Anna; Whelan, Robert; Williams, Laura; Bradley, David; Balsters, Joshua; Molloy, Fiona; Lynch, Tim; Healy, Daniel G; Walsh, Cathal; O'Riordan, Seán; Reilly, Richard B; Hutchinson, Michael

    2014-05-01

    The pathogenesis of adult-onset primary dystonia remains poorly understood. There is variable age-related and gender-related expression of the phenotype, the commonest of which is cervical dystonia. Endophenotypes may provide insight into underlying genetic and pathophysiological mechanisms of dystonia. The temporal discrimination threshold (TDT)-the shortest time interval at which two separate stimuli can be detected as being asynchronous-is abnormal both in patients with cervical dystonia and in their unaffected first-degree relatives. Functional magnetic resonance imaging (fMRI) studies have shown that putaminal activation positively correlates with the ease of temporal discrimination between two stimuli in healthy individuals. We hypothesized that abnormal temporal discrimination would exhibit similar age-related and gender-related penetrance as cervical dystonia and that unaffected relatives with an abnormal TDT would have reduced putaminal activation during a temporal discrimination task. TDTs were examined in a group of 192 healthy controls and in 158 unaffected first-degree relatives of 84 patients with cervical dystonia. In 24 unaffected first-degree relatives, fMRI scanning was performed during a temporal discrimination task. The prevalence of abnormal TDTs in unaffected female relatives reached 50% after age 48 years; whereas, in male relatives, penetrance of the endophenotype was reduced. By fMRI, relatives who had abnormal TDTs, compared with relatives who had normal TDTs, had significantly less activation in the putamina and in the middle frontal and precentral gyri. Only the degree of reduction of putaminal activity correlated significantly with worsening of temporal discrimination. These findings further support abnormal temporal discrimination as an endophenotype of cervical dystonia involving disordered basal ganglia circuits. © 2014 International Parkinson and Movement Disorder Society.

  9. Intracranial auditory detection and discrimination potentials as substrates of echoic memory in children.

    Science.gov (United States)

    Liasis, A; Towell, A; Boyd, S

    1999-03-01

    In children, intracranial responses to auditory detection and discrimination processes have not been reported. We, therefore, recorded intracranial event-related potentials (ERPs) to both standard and deviant tones and/or syllables in 4 children undergoing pre-surgical evaluation for epilepsy. ERPs to detection (mean latency = 63 ms) and discrimination (mean latency = 334 ms) were highly localized to areas surrounding the Sylvian fissure (SF). These potentials reflect activation of different neuronal populations and are suggested to contribute to the scalp recorded auditory N1 and mismatch negativity (MMN).

  10. Present and past: Can writing abilities in school children be associated with their auditory discrimination capacities in infancy?

    Science.gov (United States)

    Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Friederici, Angela D

    2015-12-01

    Literacy acquisition is highly associated with auditory processing abilities, such as auditory discrimination. The event-related potential Mismatch Response (MMR) is an indicator for cortical auditory discrimination abilities and it has been found to be reduced in individuals with reading and writing impairments and also in infants at risk for these impairments. The goal of the present study was to analyze the relationship between auditory speech discrimination in infancy and writing abilities at school age within subjects, and to determine when auditory speech discrimination differences, relevant for later writing abilities, start to develop. We analyzed the MMR registered in response to natural syllables in German children with and without writing problems at two points during development, that is, at school age and at infancy, namely at age 1 month and 5 months. We observed MMR related auditory discrimination differences between infants with and without later writing problems, starting to develop at age 5 months-an age when infants begin to establish language-specific phoneme representations. At school age, these children with and without writing problems also showed auditory discrimination differences, reflected in the MMR, confirming a relationship between writing and auditory speech processing skills. Thus, writing problems at school age are, at least, partly grounded in auditory discrimination problems developing already during the first months of life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Spatial attention does improve temporal discrimination.

    Science.gov (United States)

    Chica, Ana B; Christie, John

    2009-02-01

    It has recently been stated that exogenous attention impairs temporal-resolution tasks (Hein, Rolke, & Ulrich, 2006; Rolke, Dinkelbach, Hein, & Ulrich, 2008; Yeshurun, 2004; Yeshurun & Levy, 2003). In comparisons of performance on spatially cued trials versus neutral cued trials, the results have suggested that spatial attention decreases temporal resolution. However, when performance on cued and uncued trials has been compared in order to equate for cue salience, typically speed-accuracy trade-offs (SATs) have been observed, making the interpretation of the results difficult. In the present experiments, we aimed at studying the effect of spatial attention in temporal resolution while using a procedure to control for SATs. We controlled reaction times (RTs) by constraining the time to respond, so that response decisions would be made within comparable time windows. The results revealed that when RT was controlled, performance was impaired for cued trials as compared with neutral trials, replicating previous findings. However, when cued and uncued trials were compared, performance was actually improved for cued trials as compared with uncued trials. These results suggest that SAT effects may have played an important role in the previous studies, because when they were controlled and measured, the results reversed, revealing that exogenous attention does improve performance on temporal-resolution tasks.

  12. Prediction of cognitive outcome based on the progression of auditory discrimination during coma.

    Science.gov (United States)

    Juan, Elsa; De Lucia, Marzia; Tzovara, Athina; Beaud, Valérie; Oddo, Mauro; Clarke, Stephanie; Rossetti, Andrea O

    2016-09-01

    To date, no clinical test is able to predict cognitive and functional outcome of cardiac arrest survivors. Improvement of auditory discrimination in acute coma indicates survival with high specificity. Whether the degree of this improvement is indicative of recovery remains unknown. Here we investigated if progression of auditory discrimination can predict cognitive and functional outcome. We prospectively recorded electroencephalography responses to auditory stimuli of post-anoxic comatose patients on the first and second day after admission. For each recording, auditory discrimination was quantified and its evolution over the two recordings was used to classify survivors as "predicted" when it increased vs. "other" if not. Cognitive functions were tested on awakening and functional outcome was assessed at 3 months using the Cerebral Performance Categories (CPC) scale. Thirty-two patients were included, 14 "predicted survivors" and 18 "other survivors". "Predicted survivors" were more likely to recover basic cognitive functions shortly after awakening (ability to follow a standardized neuropsychological battery: 86% vs. 44%; p=0.03 (Fisher)) and to show a very good functional outcome at 3 months (CPC 1: 86% vs. 33%; p=0.004 (Fisher)). Moreover, progression of auditory discrimination during coma was strongly correlated with cognitive performance on awakening (phonemic verbal fluency: rs=0.48; p=0.009 (Spearman)). Progression of auditory discrimination during coma provides early indication of future recovery of cognitive functions. The degree of improvement is informative of the degree of functional impairment. If confirmed in a larger cohort, this test would be the first to predict detailed outcome at the single-patient level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study.

    Science.gov (United States)

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise--GIN) and IQ, attention, memory and age measurements. Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and intelligence tests (RAVEN test of Progressive Matrices) were applied. Significant and positive correlation between the Frequency Pattern test and age variable were found, which was considered good (p<0.01, 75.6%). There were no significant correlations between the GIN test and the variables tested. Auditory temporal skills seem to be influenced by different factors: while the performance in temporal ordering skill seems to be influenced by maturational processes, the performance in temporal resolution was not influenced by any of the aspects investigated.

  14. Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy.

    Science.gov (United States)

    Gonzálvez, Gloria G; Trimmel, Karin; Haag, Anja; van Graan, Louis A; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S

    2016-12-01

    Verbal fluency functional MRI (fMRI) is used for predicting language deficits after anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), but primarily engages frontal lobe areas. In this observational study we investigated fMRI paradigms using visual and auditory stimuli, which predominately involve language areas resected during ATLR. Twenty-three controls and 33 patients (20 left (LTLE), 13 right (RTLE)) were assessed using three fMRI paradigms: verbal fluency, auditory naming with a contrast of auditory reversed speech; picture naming with a contrast of scrambled pictures and blurred faces. Group analysis showed bilateral temporal activations for auditory naming and picture naming. Correcting for auditory and visual input (by subtracting activations resulting from auditory reversed speech and blurred pictures/scrambled faces respectively) resulted in left-lateralised activations for patients and controls, which was more pronounced for LTLE compared to RTLE patients. Individual subject activations at a threshold of T>2.5, extent >10 voxels, showed that verbal fluency activated predominantly the left inferior frontal gyrus (IFG) in 90% of LTLE, 92% of RTLE, and 65% of controls, compared to right IFG activations in only 15% of LTLE and RTLE and 26% of controls. Middle temporal (MTG) or superior temporal gyrus (STG) activations were seen on the left in 30% of LTLE, 23% of RTLE, and 52% of controls, and on the right in 15% of LTLE, 15% of RTLE, and 35% of controls. Auditory naming activated temporal areas more frequently than did verbal fluency (LTLE: 93%/73%; RTLE: 92%/58%; controls: 82%/70% (left/right)). Controlling for auditory input resulted in predominantly left-sided temporal activations. Picture naming resulted in temporal lobe activations less frequently than did auditory naming (LTLE 65%/55%; RTLE 53%/46%; controls 52%/35% (left/right)). Controlling for visual input had left-lateralising effects. Auditory and picture naming activated

  15. Concentrated pitch discrimination modulates auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2010-03-31

    This study examined a notion that auditory discrimination is a requisite for attention-related modulation of the auditory brainstem response (ABR) during contralateral noise exposure. Given that the right ear was exposed continuously with white noise at an intensity of 60-80 dB sound pressure level, tone pips at 80 dB sound pressure level were delivered to the left ear through either single-stimulus or oddball procedures. Participants conducted reading (ignoring task) and counting target tones (attentive task) during stimulation. The oddball but not the single-stimulus procedures elicited task-related modulations in both early (ABR) and late (processing negativity) event-related potentials simultaneously. The elicitation of the attention-related ABR modulation during contralateral noise exposure is thus considered to require auditory discrimination and have the corticofugal nature evidently.

  16. A Further Evaluation of Picture Prompts during Auditory-Visual Conditional Discrimination Training

    Science.gov (United States)

    Carp, Charlotte L.; Peterson, Sean P.; Arkel, Amber J.; Petursdottir, Anna I.; Ingvarsson, Einar T.

    2012-01-01

    This study was a systematic replication and extension of Fisher, Kodak, and Moore (2007), in which a picture prompt embedded into a least-to-most prompting sequence facilitated acquisition of auditory-visual conditional discriminations. Participants were 4 children who had been diagnosed with autism; 2 had limited prior receptive skills, and 2 had…

  17. Learning Auditory Discrimination with Computer-Assisted Instruction: A Comparison of Two Different Performance Objectives.

    Science.gov (United States)

    Steinhaus, Kurt A.

    A 12-week study of two groups of 14 college freshmen music majors was conducted to determine which group demonstrated greater achievement in learning auditory discrimination using computer-assisted instruction (CAI). The method employed was a pre-/post-test experimental design using subjects randomly assigned to a control group or an experimental…

  18. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.

    Science.gov (United States)

    Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger

    2008-08-01

    A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated. (c) 2008 APA, all rights reserved

  19. Temporal Discrimination: Mechanisms and Relevance to Adult-Onset Dystonia

    Directory of Open Access Journals (Sweden)

    Antonella Conte

    2017-11-01

    Full Text Available Temporal discrimination is the ability to determine that two sequential sensory stimuli are separated in time. For any individual, the temporal discrimination threshold (TDT is the minimum interval at which paired sequential stimuli are perceived as being asynchronous; this can be assessed, with high test–retest and inter-rater reliability, using a simple psychophysical test. Temporal discrimination is disordered in a number of basal ganglia diseases including adult-onset dystonia, of which the two most common phenotypes are cervical dystonia and blepharospasm. The causes of adult-onset focal dystonia are unknown; genetic, epigenetic, and environmental factors are relevant. Abnormal TDTs in adult-onset dystonia are associated with structural and neurophysiological changes considered to reflect defective inhibitory interneuronal processing within a network which includes the superior colliculus, basal ganglia, and primary somatosensory cortex. It is hypothesized that abnormal temporal discrimination is a mediational endophenotype and, when present in unaffected relatives of patients with adult-onset dystonia, indicates non-manifesting gene carriage. Using the mediational endophenotype concept, etiological factors in adult-onset dystonia may be examined including (i the role of environmental exposures in disease penetrance and expression; (ii sexual dimorphism in sex ratios at age of onset; (iii the pathogenesis of non-motor symptoms of adult-onset dystonia; and (iv subcortical mechanisms in disease pathogenesis.

  20. A Temporal Discriminability Account of Children's Eyewitness Suggestibility

    Science.gov (United States)

    Bright-Paul, Alexandra; Jarrold, Christopher

    2009-01-01

    Children's suggestibility is typically measured using a three-stage "event-misinformation-test" procedure. We examined whether suggestibility is influenced by the time delays imposed between these stages, and in particular whether the temporal discriminability of sources (event and misinformation) predicts performance. In a novel approach, the…

  1. Young Women do it Better: Sexual Dimorphism in Temporal Discrimination.

    Science.gov (United States)

    Williams, Laura Jane; Butler, John S; Molloy, Anna; McGovern, Eavan; Beiser, Ines; Kimmich, Okka; Quinlivan, Brendan; O'Riordan, Sean; Hutchinson, Michael; Reilly, Richard B

    2015-01-01

    The temporal discrimination threshold (TDT) is the shortest time interval at which two sensory stimuli presented sequentially are detected as asynchronous by the observer. TDTs are known to increase with age. Having previously observed shorter thresholds in young women than in men, in this work we sought to systematically examine the effect of sex and age on temporal discrimination. The aims of this study were to examine, in a large group of men and women aged 20-65 years, the distribution of TDTs with an analysis of the individual participant's responses, assessing the "point of subjective equality" and the "just noticeable difference" (JND). These respectively assess sensitivity and accuracy of an individual's response. In 175 participants (88 women) aged 20-65 years, temporal discrimination was faster in women than in men under the age of 40 years by a mean of approximately 13 ms. However, age-related decline in temporal discrimination was three times faster in women so that, in the age group of 40-65 years, the female superiority was reversed. The point of subjective equality showed a similar advantage in younger women and more marked age-related decline in women than men, as the TDT. JND values declined equally in both sexes, showing no sexual dimorphism. This observed sexual dimorphism in temporal discrimination is important for both (a) future clinical research assessing disordered mid-brain covert attention in basal-ganglia disorders, and (b) understanding the biology of this sexual dimorphism which may be genetic or hormonal.

  2. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    Science.gov (United States)

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  3. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    Science.gov (United States)

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Temporal Information Processing as a Basis for Auditory Comprehension: Clinical Evidence from Aphasic Patients

    Science.gov (United States)

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Background: Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap…

  6. The Role of Visual and Auditory Temporal Processing for Chinese Children with Developmental Dyslexia

    Science.gov (United States)

    Chung, Kevin K. H.; McBride-Chang, Catherine; Wong, Simpson W. L.; Cheung, Him; Penney, Trevor B.; Ho, Connie S. -H.

    2008-01-01

    This study examined temporal processing in relation to Chinese reading acquisition and impairment. The performances of 26 Chinese primary school children with developmental dyslexia on tasks of visual and auditory temporal order judgement, rapid naming, visual-orthographic knowledge, morphological, and phonological awareness were compared with…

  7. Temporal integration of sequential auditory events: silent period in sound pattern activates human planum temporale.

    Science.gov (United States)

    Mustovic, Henrietta; Scheffler, Klaus; Di Salle, Francesco; Esposito, Fabrizio; Neuhoff, John G; Hennig, Jürgen; Seifritz, Erich

    2003-09-01

    Temporal integration is a fundamental process that the brain carries out to construct coherent percepts from serial sensory events. This process critically depends on the formation of memory traces reconciling past with present events and is particularly important in the auditory domain where sensory information is received both serially and in parallel. It has been suggested that buffers for transient auditory memory traces reside in the auditory cortex. However, previous studies investigating "echoic memory" did not distinguish between brain response to novel auditory stimulus characteristics on the level of basic sound processing and a higher level involving matching of present with stored information. Here we used functional magnetic resonance imaging in combination with a regular pattern of sounds repeated every 100 ms and deviant interspersed stimuli of 100-ms duration, which were either brief presentations of louder sounds or brief periods of silence, to probe the formation of auditory memory traces. To avoid interaction with scanner noise, the auditory stimulation sequence was implemented into the image acquisition scheme. Compared to increased loudness events, silent periods produced specific neural activation in the right planum temporale and temporoparietal junction. Our findings suggest that this area posterior to the auditory cortex plays a critical role in integrating sequential auditory events and is involved in the formation of short-term auditory memory traces. This function of the planum temporale appears to be fundamental in the segregation of simultaneous sound sources.

  8. Phonological, temporal and spectral processing in vowel length discrimination is impaired in German primary school children with developmental dyslexia.

    Science.gov (United States)

    Steinbrink, Claudia; Klatte, Maria; Lachmann, Thomas

    2014-11-01

    It is still unclear whether phonological processing deficits are the underlying cause of developmental dyslexia, or rather a consequence of basic auditory processing impairments. To avoid methodological confounds, in the current study the same task and stimuli of comparable complexity were used to investigate both phonological and basic auditory (temporal and spectral) processing in dyslexia. German dyslexic children (Grades 3 and 4) were compared to age- and grade-matched controls in a vowel length discrimination task with three experimental conditions: In a phonological condition, natural vowels were used, differing both with respect to temporal and spectral information (in German, vowel length is phonemic, and vowel length differences are characterized by both temporal and spectral information). In a temporal condition, spectral information differentiating between the two vowels of a pair was eliminated, whereas in a spectral condition, temporal differences were removed. As performance measure, the sensitivity index d' was computed. At the group level, dyslexic children's performance was inferior to that of controls for phonological as well as temporal and spectral vowel length discrimination. At an individual level, nearly half of the dyslexic sample was characterized by deficits in all three conditions, but there were also some children showing no deficits at all. These results reveal on the one hand that phonological processing deficits in dyslexia may stem from impairments in processing temporal and spectral information in the speech signal. On the other hand they indicate, however, that not all dyslexic children might be characterized by phonological or auditory processing deficits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Intelligence and P3 Components of the Event-Related Potential Elicited during an Auditory Discrimination Task with Masking

    Science.gov (United States)

    De Pascalis, V.; Varriale, V.; Matteoli, A.

    2008-01-01

    The relationship between fluid intelligence (indexed by scores on Raven Progressive Matrices) and auditory discrimination ability was examined by recording event-related potentials from 48 women during the performance of an auditory oddball task with backward masking. High ability (HA) subjects exhibited shorter response times, greater response…

  10. Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.

    Science.gov (United States)

    Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter

    2018-05-01

    Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.

  11. Effects of Temporal Congruity Between Auditory and Visual Stimuli Using Rapid Audio-Visual Serial Presentation.

    Science.gov (United States)

    An, Xingwei; Tang, Jiabei; Liu, Shuang; He, Feng; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2016-10-01

    Combining visual and auditory stimuli in event-related potential (ERP)-based spellers gained more attention in recent years. Few of these studies notice the difference of ERP components and system efficiency caused by the shifting of visual and auditory onset. Here, we aim to study the effect of temporal congruity of auditory and visual stimuli onset on bimodal brain-computer interface (BCI) speller. We designed five visual and auditory combined paradigms with different visual-to-auditory delays (-33 to +100 ms). Eleven participants attended in this study. ERPs were acquired and aligned according to visual and auditory stimuli onset, respectively. ERPs of Fz, Cz, and PO7 channels were studied through the statistical analysis of different conditions both from visual-aligned ERPs and audio-aligned ERPs. Based on the visual-aligned ERPs, classification accuracy was also analyzed to seek the effects of visual-to-auditory delays. The latencies of ERP components depended mainly on the visual stimuli onset. Auditory stimuli onsets influenced mainly on early component accuracies, whereas visual stimuli onset determined later component accuracies. The latter, however, played a dominate role in overall classification. This study is important for further studies to achieve better explanations and ultimately determine the way to optimize the bimodal BCI application.

  12. Visual Temporal Acuity Is Related to Auditory Speech Perception Abilities in Cochlear Implant Users.

    Science.gov (United States)

    Jahn, Kelly N; Stevenson, Ryan A; Wallace, Mark T

    Despite significant improvements in speech perception abilities following cochlear implantation, many prelingually deafened cochlear implant (CI) recipients continue to rely heavily on visual information to develop speech and language. Increased reliance on visual cues for understanding spoken language could lead to the development of unique audiovisual integration and visual-only processing abilities in these individuals. Brain imaging studies have demonstrated that good CI performers, as indexed by auditory-only speech perception abilities, have different patterns of visual cortex activation in response to visual and auditory stimuli as compared with poor CI performers. However, no studies have examined whether speech perception performance is related to any type of visual processing abilities following cochlear implantation. The purpose of the present study was to provide a preliminary examination of the relationship between clinical, auditory-only speech perception tests, and visual temporal acuity in prelingually deafened adult CI users. It was hypothesized that prelingually deafened CI users, who exhibit better (i.e., more acute) visual temporal processing abilities would demonstrate better auditory-only speech perception performance than those with poorer visual temporal acuity. Ten prelingually deafened adult CI users were recruited for this study. Participants completed a visual temporal order judgment task to quantify visual temporal acuity. To assess auditory-only speech perception abilities, participants completed the consonant-nucleus-consonant word recognition test and the AzBio sentence recognition test. Results were analyzed using two-tailed partial Pearson correlations, Spearman's rho correlations, and independent samples t tests. Visual temporal acuity was significantly correlated with auditory-only word and sentence recognition abilities. In addition, proficient CI users, as assessed via auditory-only speech perception performance, demonstrated

  13. Relation between temporal envelope coding, pitch discrimination, and compression estimates in listeners with sensorineural hearing loss

    DEFF Research Database (Denmark)

    Bianchi, Federica; Santurette, Sébastien; Fereczkowski, Michal

    2015-01-01

    Recent physiological studies in animals showed that noise-induced sensorineural hearing loss (SNHL) increased the amplitude of envelope coding in single auditory-nerve fibers. The present study investigated whether SNHL in human listeners was associated with enhanced temporal envelope coding...... resolvability. For the unresolved conditions, all five HI listeners performed as good as or better than NH listeners with matching musical experience. Two HI listeners showed lower amplitude-modulation detection thresholds than NH listeners for low modulation rates, and one of these listeners also showed a loss......, whether this enhancement affected pitch discrimination performance, and whether loss of compression following SNHL was a potential factor in envelope coding enhancement. Envelope processing was assessed in normal-hearing (NH) and hearing-impaired (HI) listeners in a behavioral amplitude...

  14. Discrimination of timbre in early auditory responses of the human brain.

    Directory of Open Access Journals (Sweden)

    Jaeho Seol

    Full Text Available BACKGROUND: The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG. METHODOLOGY/PRINCIPAL FINDINGS: Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1-testing (S2 paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2 for both same and different conditions in the both hemispheres. CONCLUSIONS/SIGNIFICANCES: Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre.

  15. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  16. Speech discrimination difficulties in High-Functioning Autism Spectrum Disorder are likely independent of auditory hypersensitivity.

    Directory of Open Access Journals (Sweden)

    William Andrew Dunlop

    2016-08-01

    Full Text Available Autism Spectrum Disorder (ASD, characterised by impaired communication skills and repetitive behaviours, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants.

  17. Psychophysical Estimates of Frequency Discrimination: More than Just Limitations of Auditory Processing

    Directory of Open Access Journals (Sweden)

    Beate Sabisch

    2013-07-01

    Full Text Available Efficient auditory processing is hypothesized to support language and literacy development. However, behavioral tasks used to assess this hypothesis need to be robust to non-auditory specific individual differences. This study compared frequency discrimination abilities in a heterogeneous sample of adults using two different psychoacoustic task designs, referred to here as: 2I_6A_X and 3I_2AFC designs. The role of individual differences in nonverbal IQ (NVIQ, socioeconomic status (SES and musical experience in predicting frequency discrimination thresholds on each task were assessed using multiple regression analyses. The 2I_6A_X task was more cognitively demanding and hence more susceptible to differences specifically in SES and musical training. Performance on this task did not, however, relate to nonword repetition ability (a measure of language learning capacity. The 3I_2AFC task, by contrast, was only susceptible to musical training. Moreover, thresholds measured using it predicted some variance in nonword repetition performance. This design thus seems suitable for use in studies addressing questions regarding the role of auditory processing in supporting language and literacy development.

  18. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers

    Science.gov (United States)

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences. PMID:28450829

  19. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers.

    Science.gov (United States)

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences.

  20. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    Science.gov (United States)

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  1. Examination of the Relation between an Assessment of Skills and Performance on Auditory-Visual Conditional Discriminations for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; Paden, Amber R.; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A.

    2015-01-01

    The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The…

  2. Temporal Integration of Auditory Stimulation and Binocular Disparity Signals

    Directory of Open Access Journals (Sweden)

    Marina Zannoli

    2011-10-01

    Full Text Available Several studies using visual objects defined by luminance have reported that the auditory event must be presented 30 to 40 ms after the visual stimulus to perceive audiovisual synchrony. In the present study, we used visual objects defined only by their binocular disparity. We measured the optimal latency between visual and auditory stimuli for the perception of synchrony using a method introduced by Moutoussis & Zeki (1997. Visual stimuli were defined either by luminance and disparity or by disparity only. They moved either back and forth between 6 and 12 arcmin or from left to right at a constant disparity of 9 arcmin. This visual modulation was presented together with an amplitude-modulated 500 Hz tone. Both modulations were sinusoidal (frequency: 0.7 Hz. We found no difference between 2D and 3D motion for luminance stimuli: a 40 ms auditory lag was necessary for perceived synchrony. Surprisingly, even though stereopsis is often thought to be slow, we found a similar optimal latency in the disparity 3D motion condition (55 ms. However, when participants had to judge simultaneity for disparity 2D motion stimuli, it led to larger latencies (170 ms, suggesting that stereo motion detectors are poorly suited to track 2D motion.

  3. Opposite Distortions in Interval Timing Perception for Visual and Auditory Stimuli with Temporal Modulations.

    Science.gov (United States)

    Yuasa, Kenichi; Yotsumoto, Yuko

    2015-01-01

    When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.

  4. Temporal processing and long-latency auditory evoked potential in stutterers.

    Science.gov (United States)

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. Temporal processing and long-latency auditory evoked potential in stutterers

    Directory of Open Access Journals (Sweden)

    Raquel Prestes

    Full Text Available Abstract Introduction: Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. Objective: To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. Methods: The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n = 20 and non-stutters (n = 21, compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Results: Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Conclusion: Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components.

  6. Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  7. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains.

    Science.gov (United States)

    Dong, Chao; Qin, Ling; Liu, Yongchun; Zhang, Xinan; Sato, Yu

    2011-01-01

    Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1) neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz). As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.

  8. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains.

    Directory of Open Access Journals (Sweden)

    Chao Dong

    Full Text Available Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1 neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz. As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.

  9. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    Science.gov (United States)

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  10. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    Science.gov (United States)

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  11. Adaptation to Delayed Speech Feedback Induces Temporal Recalibration between Vocal Sensory and Auditory Modalities

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    2011-10-01

    Full Text Available We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. Participants read some sentences with specific delay times of DAF (0, 30, 75, 120 ms during three minutes to induce ‘Lag Adaptation’. After the adaptation, they then judged the simultaneity between motor sensation and vocal sound given feedback in producing simple voice but not speech. We found that speech production with lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  12. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  13. Spectro-Temporal Methods in Primary Auditory Cortex

    National Research Council Canada - National Science Library

    Klein, David; Depireux, Didier; Simon, Jonathan; Shamma, Shihab

    2006-01-01

    .... This briefing examines Spike-Triggered Averaging. Spike-Triggered Averaging is an effective method to measure the STRF, when used with Temporally Orthogonal Ripple Combinations (TORCs) as stimuli...

  14. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    Science.gov (United States)

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fibrous Dysplasia of the Temporal Bone with External Auditory Canal Stenosis and Secondary Cholesteatoma.

    Science.gov (United States)

    Liu, Yu-Hsi; Chang, Kuo-Ping

    2016-04-01

    Fibrous dysplasia is a slowly progressive benign fibro-osseous disease, rarely occurring in temporal bones. In these cases, most bony lesions developed from the bony part of the external auditory canals, causing otalgia, hearing impairment, otorrhea, and ear hygiene blockade and probably leading to secondary cholesteatoma. We presented the medical history of a 24-year-old woman with temporal monostotic fibrous dysplasia with secondary cholesteatoma. The initial presentation was unilateral conductive hearing loss. A hard external canal tumor contributing to canal stenosis and a near-absent tympanic membrane were found. Canaloplasty and type I tympanoplasty were performed, but the symptoms recurred after 5 years. She received canal wall down tympanomastoidectomy with ossciculoplasty at the second time, and secondary cholesteatoma in the middle ear was diagnosed. Fifteen years later, left otorrhea recurred again and transcanal endoscopic surgery was performed for middle ear clearance. Currently, revision surgeries provide a stable auditory condition, but her monostotic temporal fibrous dysplasia is still in place.

  16. Effects of tonotopicity, adaptation, modulation tuning, and temporal coherence in “primitive” auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt; Jepsen, Morten Løve; Dau, Torsten

    2014-01-01

    ., Neuron 61, 317–329 (2009)]. Two experimental paradigms were considered: (i) Stream segregation as a function of tone repetition time (TRT) and frequency separation (Df) and (ii) grouping of distant spectral components based on onset/offset synchrony. The simulated and experimental results of the present...... asynchrony of spectral components, facilitating the listeners’ ability to segregate temporally overlapping sounds into separate auditory objects. Overall, the modeling framework may be useful to study the contributions of bottom-up auditory features on “primitive” grouping, also in more complex acoustic...

  17. Temporally selective processing of communication signals by auditory midbrain neurons

    DEFF Research Database (Denmark)

    Elliott, Taffeta M; Christensen-Dalsgaard, Jakob; Kelley, Darcy B

    2011-01-01

    click rates ranged from 4 to 50 Hz, the rate at which the clicks begin to overlap. Frequency selectivity and temporal processing were characterized using response-intensity curves, temporal-discharge patterns, and autocorrelations of reduplicated responses to click trains. Characteristic frequencies...... of the rate of clicks in calls. The majority of neurons (85%) were selective for click rates, and this selectivity remained unchanged over sound levels 10 to 20 dB above threshold. Selective neurons give phasic, tonic, or adapting responses to tone bursts and click trains. Some algorithms that could compute...

  18. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    Science.gov (United States)

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Local field potential correlates of auditory working memory in primate dorsal temporal pole.

    Science.gov (United States)

    Bigelow, James; Ng, Chi-Wing; Poremba, Amy

    2016-06-01

    Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special

  1. Large cross-sectional study of presbycusis reveals rapid progressive decline in auditory temporal acuity.

    Science.gov (United States)

    Ozmeral, Erol J; Eddins, Ann C; Frisina, D Robert; Eddins, David A

    2016-07-01

    The auditory system relies on extraordinarily precise timing cues for the accurate perception of speech, music, and object identification. Epidemiological research has documented the age-related progressive decline in hearing sensitivity that is known to be a major health concern for the elderly. Although smaller investigations indicate that auditory temporal processing also declines with age, such measures have not been included in larger studies. Temporal gap detection thresholds (TGDTs; an index of auditory temporal resolution) measured in 1071 listeners (aged 18-98 years) were shown to decline at a minimum rate of 1.05 ms (15%) per decade. Age was a significant predictor of TGDT when controlling for audibility (partial correlation) and when restricting analyses to persons with normal-hearing sensitivity (n = 434). The TGDTs were significantly better for males (3.5 ms; 51%) than females when averaged across the life span. These results highlight the need for indices of temporal processing in diagnostics, as treatment targets, and as factors in models of aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2014-01-01

    In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  3. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available In humans, theta phase (4–8 Hz synchronization observed on electroencephalography (EEG plays an important role in the manipulation of mental representations during working memory (WM tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  4. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.

    Science.gov (United States)

    Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier

    2016-02-03

    Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole

  5. Auditory, Visual and Audiovisual Speech Processing Streams in Superior Temporal Sulcus.

    Science.gov (United States)

    Venezia, Jonathan H; Vaden, Kenneth I; Rong, Feng; Maddox, Dale; Saberi, Kourosh; Hickok, Gregory

    2017-01-01

    The human superior temporal sulcus (STS) is responsive to visual and auditory information, including sounds and facial cues during speech recognition. We investigated the functional organization of STS with respect to modality-specific and multimodal speech representations. Twenty younger adult participants were instructed to perform an oddball detection task and were presented with auditory, visual, and audiovisual speech stimuli, as well as auditory and visual nonspeech control stimuli in a block fMRI design. Consistent with a hypothesized anterior-posterior processing gradient in STS, auditory, visual and audiovisual stimuli produced the largest BOLD effects in anterior, posterior and middle STS (mSTS), respectively, based on whole-brain, linear mixed effects and principal component analyses. Notably, the mSTS exhibited preferential responses to multisensory stimulation, as well as speech compared to nonspeech. Within the mid-posterior and mSTS regions, response preferences changed gradually from visual, to multisensory, to auditory moving posterior to anterior. Post hoc analysis of visual regions in the posterior STS revealed that a single subregion bordering the mSTS was insensitive to differences in low-level motion kinematics yet distinguished between visual speech and nonspeech based on multi-voxel activation patterns. These results suggest that auditory and visual speech representations are elaborated gradually within anterior and posterior processing streams, respectively, and may be integrated within the mSTS, which is sensitive to more abstract speech information within and across presentation modalities. The spatial organization of STS is consistent with processing streams that are hypothesized to synthesize perceptual speech representations from sensory signals that provide convergent information from visual and auditory modalities.

  6. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Importance of the left auditory areas in chord discrimination in music experts as demonstrated by MEG.

    Science.gov (United States)

    Tervaniemi, Mari; Sannemann, Christian; Noyranen, Maiju; Salonen, Johanna; Pihko, Elina

    2011-08-01

    The brain basis behind musical competence in its various forms is not yet known. To determine the pattern of hemispheric lateralization during sound-change discrimination, we recorded the magnetic counterpart of the electrical mismatch negativity (MMNm) responses in professional musicians, musical participants (with high scores in the musicality tests but without professional training in music) and non-musicians. While watching a silenced video, they were presented with short sounds with frequency and duration deviants and C major chords with C minor chords as deviants. MMNm to chord deviants was stronger in both musicians and musical participants than in non-musicians, particularly in their left hemisphere. No group differences were obtained in the MMNm strength in the right hemisphere in any of the conditions or in the left hemisphere in the case of frequency or duration deviants. Thus, in addition to professional training in music, musical aptitude (combined with lower-level musical training) is also reflected in brain functioning related to sound discrimination. The present magnetoencephalographic evidence therefore indicates that the sound discrimination abilities may be differentially distributed in the brain in musically competent and naïve participants, especially in a musical context established by chord stimuli: the higher forms of musical competence engage both auditory cortices in an integrative manner. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Gay- and Lesbian-Sounding Auditory Cues Elicit Stereotyping and Discrimination.

    Science.gov (United States)

    Fasoli, Fabio; Maass, Anne; Paladino, Maria Paola; Sulpizio, Simone

    2017-07-01

    The growing body of literature on the recognition of sexual orientation from voice ("auditory gaydar") is silent on the cognitive and social consequences of having a gay-/lesbian- versus heterosexual-sounding voice. We investigated this issue in four studies (overall N = 276), conducted in Italian language, in which heterosexual listeners were exposed to single-sentence voice samples of gay/lesbian and heterosexual speakers. In all four studies, listeners were found to make gender-typical inferences about traits and preferences of heterosexual speakers, but gender-atypical inferences about those of gay or lesbian speakers. Behavioral intention measures showed that listeners considered lesbian and gay speakers as less suitable for a leadership position, and male (but not female) listeners took distance from gay speakers. Together, this research demonstrates that having a gay/lesbian rather than heterosexual-sounding voice has tangible consequences for stereotyping and discrimination.

  9. Increased discriminability of authenticity from multimodal laughter is driven by auditory information.

    Science.gov (United States)

    Lavan, Nadine; McGettigan, Carolyn

    2017-10-01

    We present an investigation of the perception of authenticity in audiovisual laughter, in which we contrast spontaneous and volitional samples and examine the contributions of unimodal affective information to multimodal percepts. In a pilot study, we demonstrate that listeners perceive spontaneous laughs as more authentic than volitional ones, both in unimodal (audio-only, visual-only) and multimodal contexts (audiovisual). In the main experiment, we show that the discriminability of volitional and spontaneous laughter is enhanced for multimodal laughter. Analyses of relationships between affective ratings and the perception of authenticity show that, while both unimodal percepts significantly predict evaluations of audiovisual laughter, it is auditory affective cues that have the greater influence on multimodal percepts. We discuss differences and potential mismatches in emotion signalling through voices and faces, in the context of spontaneous and volitional behaviour, and highlight issues that should be addressed in future studies of dynamic multimodal emotion processing.

  10. A Rapid Assessment of Instructional Strategies to Teach Auditory-Visual Conditional Discriminations to Children with Autism

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; LeBlanc, Brittany

    2013-01-01

    The purpose of the present investigation was to evaluate a rapid assessment procedure to identify effective instructional strategies to teach auditory-visual conditional discriminations to children diagnosed with autism. We replicated and extended previous rapid skills assessments (Lerman, Vorndran, Addison, & Kuhn, 2004) by evaluating the effects…

  11. Identification enhancement of auditory evoked potentials in EEG by epoch concatenation and temporal decorrelation.

    Science.gov (United States)

    Zavala-Fernandez, H; Orglmeister, R; Trahms, L; Sander, T H

    2012-12-01

    Event-related potentials (ERP) recorded by electroencephalography (EEG) are brain responses following an external stimulus, e.g., a sound or an image. They are used in fundamental cognitive research and neurological and psychiatric clinical research. ERPs are weaker than spontaneous brain activity and therefore it is difficult or even impossible to identify an ERP in the brain activity following an individual stimulus. For this reason, a blind source separation method relying on statistical information is proposed for the isolation of ERP after auditory stimulation. In this paper it is suggested to integrate epoch concatenation into the popular temporal decorrelation algorithm SOBI/TDSEP relying on time shifted correlations. With the proposed epoch concatenation temporal decorrelation (ecTD) algorithm a component representing the auditory evoked potential (AEP) is found in electroencephalographic data from an auditory stimulation experiment lasting 3min. The ecTD result is compared with the averaged AEP and it is superior to the result from the SOBI/TDSEP algorithm. Furthermore the ecTD processing leads to significant increases in the signal-to-noise ratio (shape SNR) of the AEP and reduces the computation time by 50% if compared to the SOBI/TDSEP calculation. It can be concluded that data concatenation in combination with temporal decorrelation is useful for isolating and improving the properties of an AEP especially in a short duration stimulation experiment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  13. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  14. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  15. Neural correlates of auditory recognition memory in the primate dorsal temporal pole.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2014-02-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.

  16. The role of the temporal pole in modulating primitive auditory memory.

    Science.gov (United States)

    Liu, Zhiliang; Wang, Qian; You, Yu; Yin, Peng; Ding, Hu; Bao, Xiaohan; Yang, Pengcheng; Lu, Hao; Gao, Yayue; Li, Liang

    2016-04-21

    Primitive auditory memory (PAM), which is recognized as the early point in the chain of the transient auditory memory system, faithfully maintains raw acoustic fine-structure signals for up to 20-30 milliseconds. The neural mechanisms underlying PAM have not been reported in the literature. Previous anatomical, brain-imaging, and neurophysiological studies have suggested that the temporal pole (TP), part of the parahippocampal region in the transitional area between perirhinal cortex and superior/inferior temporal gyri, is involved in auditory memories. This study investigated whether the TP plays a role in mediating/modulating PAM. The longest interaural interval (the interaural-delay threshold) for detecting a break in interaural correlation (BIC) embedded in interaurally correlated wideband noises was used to indicate the temporal preservation of PAM and examined in both healthy listeners and patients receiving unilateral anterior temporal lobectomy (ATL, centered on the TP) for treating their temporal lobe epilepsy (TLE). The results showed that patients with ATL were still able to detect the BIC even when an interaural interval was introduced, regardless of which ear was the leading one. However, in patient participants, the group-mean interaural-delay threshold for detecting the BIC under the contralateral-ear-leading (relative to the side of ATL) condition was significantly shorter than that under the ipsilateral-ear-leading condition. The results suggest that although the TP is not essential for integrating binaural signals and mediating the PAM, it plays a role in top-down modulating the PAM of raw acoustic fine-structure signals from the contralateral ear. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus.

    Science.gov (United States)

    Zhu, Lin L; Beauchamp, Michael S

    2017-03-08

    Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of

  18. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    Science.gov (United States)

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  19. Auditory stimulus discrimination recorded in dogs, as indicated by mismatch negativity (MMN).

    Science.gov (United States)

    Howell, Tiffani J; Conduit, Russell; Toukhsati, Samia; Bennett, Pauleen

    2012-01-01

    Dog cognition research tends to rely on behavioural response, which can be confounded by obedience or motivation, as the primary means of indexing dog cognitive abilities. A physiological method of measuring dog cognitive processing would be instructive and could complement behavioural response. Electroencephalogram (EEG) has been used in humans to study stimulus processing, which results in waveforms called event-related potentials (ERPs). One ERP component, mismatch negativity (MMN), is a negative deflection approximately 160-200 ms after stimulus onset, which may be related to change detection from echoic sensory memory. We adapted a minimally invasive technique to record MMN in dogs. Dogs were exposed to an auditory oddball paradigm in which deviant tones (10% probability) were pseudo-randomly interspersed throughout an 8 min sequence of standard tones (90% probability). A significant difference in MMN ERP amplitude was observed after the deviant tone in comparison to the standard tone, t5 = -2.98, p = 0.03. This difference, attributed to discrimination of an unexpected stimulus in a series of expected stimuli, was not observed when both tones occurred 50% of the time, t1 = -0.82, p > 0.05. Dogs showed no evidence of pain or distress at any point. We believe this is the first illustration of MMN in a group of dogs and anticipate that this technique may provide valuable insights in cognitive tasks such as object discrimination. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Prepulse Inhibition of Auditory Cortical Responses in the Caudolateral Superior Temporal Gyrus in Macaca mulatta.

    Science.gov (United States)

    Chen, Zuyue; Parkkonen, Lauri; Wei, Jingkuan; Dong, Jin-Run; Ma, Yuanye; Carlson, Synnöve

    2018-04-01

    Prepulse inhibition (PPI) refers to a decreased response to a startling stimulus when another weaker stimulus precedes it. Most PPI studies have focused on the physiological startle reflex and fewer have reported the PPI of cortical responses. We recorded local field potentials (LFPs) in four monkeys and investigated whether the PPI of auditory cortical responses (alpha, beta, and gamma oscillations and evoked potentials) can be demonstrated in the caudolateral belt of the superior temporal gyrus (STGcb). We also investigated whether the presence of a conspecific, which draws attention away from the auditory stimuli, affects the PPI of auditory cortical responses. The PPI paradigm consisted of Pulse-only and Prepulse + Pulse trials that were presented randomly while the monkey was alone (ALONE) and while another monkey was present in the same room (ACCOMP). The LFPs to the Pulse were significantly suppressed by the Prepulse thus, demonstrating PPI of cortical responses in the STGcb. The PPI-related inhibition of the N1 amplitude of the evoked responses and cortical oscillations to the Pulse were not affected by the presence of a conspecific. In contrast, gamma oscillations and the amplitude of the N1 response to Pulse-only were suppressed in the ACCOMP condition compared to the ALONE condition. These findings demonstrate PPI in the monkey STGcb and suggest that the PPI of auditory cortical responses in the monkey STGcb is a pre-attentive inhibitory process that is independent of attentional modulation.

  1. Temporal precision and the capacity of auditory-verbal short-term memory.

    Science.gov (United States)

    Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom

    2017-12-01

    The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.

  2. Visual speech alters the discrimination and identification of non-intact auditory speech in children with hearing loss.

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F; McAlpine, Rachel P; Abdi, Hervé

    2017-03-01

    Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/-B/aa or/-B/az). The items started with an easy-to-speechread/B/or difficult-to-speechread/G/onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/-B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same-as opposed to different-responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g.,/-B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz-as opposed to az- responses in the audiovisual than auditory mode. Performance in the audiovisual mode showed more same

  3. Visual Speech Alters the Discrimination and Identification of Non-Intact Auditory Speech in Children with Hearing Loss

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Hervé

    2017-01-01

    Objectives Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Methods Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/–B/aa or /–B/az). The items started with an easy-to-speechread /B/ or difficult-to-speechread /G/ onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/–B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same—as opposed to different—responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g., /–B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz—as opposed to az— responses in the audiovisual than auditory mode. Results

  4. Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions.

    Science.gov (United States)

    van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean

    2017-04-15

    A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Persian version of auditory word discrimination test (P-AWDT) for children: Development, validity, and reliability.

    Science.gov (United States)

    Hashemi, Nassim; Ghorbani, Ali; Soleymani, Zahra; Kamali, Mohmmad; Ahmadi, Zohreh Ziatabar; Mahmoudian, Saeid

    2018-07-01

    Auditory discrimination of speech sounds is an important perceptual ability and a precursor to the acquisition of language. Auditory information is at least partially necessary for the acquisition and organization of phonological rules. There are few standardized behavioral tests to evaluate phonemic distinctive features in children with or without speech and language disorders. The main objective of the present study was the development, validity, and reliability of the Persian version of auditory word discrimination test (P-AWDT) for 4-8-year-old children. A total of 120 typical children and 40 children with speech sound disorder (SSD) participated in the present study. The test comprised of 160 monosyllabic paired-words distributed in the Forms A-1 and the Form A-2 for the initial consonants (80 words) and the Forms B-1 and the Form B-2 for the final consonants (80 words). Moreover, the discrimination of vowels was randomly included in all forms. Content validity was calculated and 50 children repeated the test twice with two weeks of interval (test-retest reliability). Further analysis was also implemented including validity, intraclass correlation coefficient (ICC), Cronbach's alpha (internal consistency), age groups, and gender. The content validity index (CVI) and the test-retest reliability of the P-AWDT were achieved 63%-86% and 81%-96%, respectively. Moreover, the total Cronbach's alpha for the internal consistency was estimated relatively high (0.93). Comparison of the mean scores of the P-AWDT in the typical children and the children with SSD revealed a significant difference. The results revealed that the group with SSD had greater severity of deficit than the typical group in auditory word discrimination. In addition, the difference between the age groups was statistically significant, especially in 4-4.11-year-old children. The performance of the two gender groups was relatively same. The comparison of the P-AWDT scores between the typical children

  7. The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex.

    Science.gov (United States)

    Leodori, Giorgio; Formica, Alessandra; Zhu, Xiaoying; Conte, Antonella; Belvisi, Daniele; Cruccu, Giorgio; Hallett, Mark; Berardelli, Alfredo

    2017-10-01

    The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information, but little is known about the physiological correlates of somatosensory temporal discrimination. The objective of this study was to investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the third-stimulus temporal discrimination threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus following a pair of stimuli delivered at the STDT. The STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1 continuous theta-burst stimulation (S1-cTBS) on the STDT and ThirdDT. Results show that ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, although the latter was affected to a greater extent and for a longer period of time. We conclude that the interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1, probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination. NEW & NOTEWORTHY To investigate whether the time interval required to discriminate between stimuli varies according to changes in the stimulation pattern, we used the third-stimulus temporal discrimination threshold (ThirdDT). We found that the somatosensory temporal discrimination acuity varies according to the number of stimuli in the

  8. Auditory-somatosensory temporal sensitivity improves when the somatosensory event is caused by voluntary body movement

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2016-12-01

    Full Text Available When we actively interact with the environment, it is crucial that we perceive a precise temporal relationship between our own actions and sensory effects to guide our body movements.Thus, we hypothesized that voluntary movements improve perceptual sensitivity to the temporal disparity between auditory and movement-related somatosensory events compared to when they are delivered passively to sensory receptors. In the voluntary condition, participants voluntarily tapped a button, and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either 'sound-first' or 'touch-first' responses. We found that the performance of temporal order judgment (TOJ in the voluntary condition (as indexed by the just noticeable difference was significantly better (M=42.5 ms ±3.8 s.e.m than that when their finger was passively stimulated (passive condition: M=66.8 ms ±6.3 s.e.m. We further examined whether the performance improvement with voluntary action can be attributed to the prediction of the timing of the stimulation from sensory cues (sensory-based prediction, kinesthetic cues contained in voluntary action, and/or to the prediction of stimulation timing from the efference copy of the motor command (motor-based prediction. When the participant’s finger was moved passively to press the button (involuntary condition and when three noise bursts were presented before the target burst with regular intervals (predictable condition, the TOJ performance was not improved from that in the passive condition. These results suggest that the improvement in sensitivity to temporal disparity between somatosensory and auditory events caused by the voluntary action cannot be attributed to sensory-based prediction and kinesthetic cues. Rather, the prediction from the efference copy of the motor command would be crucial for improving the temporal sensitivity.

  9. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria

    2016-09-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.

  10. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  11. Auditory processing, speech perception and phonological ability in pre-school children at high-risk for dyslexia: a longitudinal study of the auditory temporal processing theory

    OpenAIRE

    Boets, Bart; Wouters, Jan; Van Wieringen, Astrid; Ghesquière, Pol

    2007-01-01

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school children at high-family risk for dyslexia, compared to a group of well-matched low-risk control children. Based on family risk status and first gra...

  12. Visual form Cues, Biological Motions, Auditory Cues, and Even Olfactory Cues Interact to Affect Visual Sex Discriminations

    OpenAIRE

    Rick Van Der Zwan; Anna Brooks; Duncan Blair; Coralia Machatch; Graeme Hacker

    2011-01-01

    Johnson and Tassinary (2005) proposed that visually perceived sex is signalled by structural or form cues. They suggested also that biological motion cues signal sex, but do so indirectly. We previously have shown that auditory cues can mediate visual sex perceptions (van der Zwan et al., 2009). Here we demonstrate that structural cues to body shape are alone sufficient for visual sex discriminations but that biological motion cues alone are not. Interestingly, biological motions can resolve ...

  13. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    Science.gov (United States)

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Evidence for a neurophysiologic auditory deficit in children with benign epilepsy with centro-temporal spikes.

    Science.gov (United States)

    Liasis, A; Bamiou, D E; Boyd, S; Towell, A

    2006-07-01

    Benign focal epilepsy in childhood with centro-temporal spikes (BECTS) is one of the most common forms of epilepsy. Recent studies have questioned the benign nature of BECTS, as they have revealed neuropsychological deficits in many domains including language. The aim of this study was to investigate whether the epileptic discharges during the night have long-term effects on auditory processing, as reflected on electrophysiological measures, during the day, which could underline the language deficits. In order to address these questions we recorded base line electroencephalograms (EEG), sleep EEG and auditory event related potentials in 12 children with BECTS and in age- and gender-matched controls. In the children with BECTS, 5 had unilateral and 3 had bilateral spikes. In the 5 patients with unilateral spikes present during sleep, an asymmetry of the auditory event related component (P85-120) was observed contralateral to the side of epileptiform activity compared to the normal symmetrical vertex distribution that was noted in all controls and in 3 the children with bilateral spikes. In all patients the peak to peak amplitude of this event related potential component was statistically greater compared to the controls. Analysis of subtraction waveforms (deviant - standard) revealed no evidence of a mismatch negativity component in any of the children with BECTS. We propose that the abnormality of P85-120 and the absence of mismatch negativity during wake recordings in this group may arise in response to the long-term effects of spikes occurring during sleep, resulting in disruption of the evolution and maintenance of echoic memory traces. These results may indicate that patients with BECTS have abnormal processing of auditory information at a sensory level ipsilateral to the hemisphere evoking spikes during sleep.

  15. Congenital external auditory canal atresia and stenosis: temporal bone CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hoon; Kim, Bum Soo; Jung, So Lyung; Kim, Young Joo; Chun, Ho Jong; Choi, Kyu Ho; Park, Shi Nae [College of Medicine, Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2002-04-01

    To determine the computed tomographic (CT) findings of atresia and stenosis of the external auditory canal (EAC), and to describe associated abnormalities in surrounding structures. We retrospectively reviewed the axial and coronal CT images of the temporal bone in 15 patients (M:F=8:7;mean age, 15.8 years) with 16 cases of EAC atresia (unilateral n=11, bilateral n=1) and EAC stenosis (unilateral n=3). Associated abnormalities of the EAC, tympanic cavity, ossicles, mastoid air cells, eustachian tube, facial nerve course, mandibular condyle and condylar fossa, sigmoid sinus and jugular bulb, and the base of the middle cranial fossa were evaluated. Thirteen cases of bony EAC atresia (one bilateral), with an atretic bony plate, were noted, and one case of unilateral membranous atresia, in which a soft tissue the EAC. A unilateral lesion occurred more frequently on the right temporal bone (n=8, 73%). Associated abnormalities included a small tympanic cavity (n=8, 62%), decreased mastoid pneumatization (n=8, 62%), displacement of the mandibular condyle and the posterior wall of the condylar fossa (n=7, 54%), dilatation of the Eustachian tube (n=7, 54%), and inferior displacement of the temporal fossa base (n=8, 62%). Abnormalities of ossicles were noted in the malleolus (n=12, 92%), incus (n=10, 77%) and stapes (n=6, 46%). The course of the facial nerve was abnormal in four cases, and abnormality of the auditory canal was noted in one. Among three cases of EAC stenosis, ossicular aplasia was observed in one, and in another the location of the mandibular condyle and condylar fossa was abnormal. In the remaining case there was no associated abnormality. Atresia of the EAC is frequently accompanied by abnormalities of the middle ear cavity, ossicles, and adjacent structures other than the inner ear. For patients with atresia and stenosis of this canal, CT of the temporal bone is essentially helpful in evaluating these associated abnormalities.

  16. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  17. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  18. Infants Discriminate Voicing and Place of Articulation with Reduced Spectral and Temporal Modulation Cues

    Science.gov (United States)

    Cabrera, Laurianne; Lorenzi, Christian; Bertoncini, Josiane

    2015-01-01

    Purpose: This study assessed the role of spectro-temporal modulation cues in the discrimination of 2 phonetic contrasts (voicing and place) for young infants. Method: A visual-habituation procedure was used to assess the ability of French-learning 6-month-old infants with normal hearing to discriminate voiced versus unvoiced (/aba/-/apa/) and…

  19. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.

    Science.gov (United States)

    Liberman, Tamara; Velluti, Ricardo A; Pedemonte, Marisa

    2009-11-17

    The hippocampal theta rhythm is associated with the processing of sensory systems such as touch, smell, vision and hearing, as well as with motor activity, the modulation of autonomic processes such as cardiac rhythm, and learning and memory processes. The discovery of temporal correlation (phase locking) between the theta rhythm and both visual and auditory neuronal activity has led us to postulate the participation of such rhythm in the temporal processing of sensory information. In addition, changes in attention can modify both the theta rhythm and the auditory and visual sensory activity. The present report tested the hypothesis that the temporal correlation between auditory neuronal discharges in the inferior colliculus central nucleus (ICc) and the hippocampal theta rhythm could be enhanced by changes in sensory stimulation. We presented chronically implanted guinea pigs with auditory stimuli that varied over time, and recorded the auditory response during wakefulness. It was observed that the stimulation shifts were capable of producing the temporal phase correlations between the theta rhythm and the ICc unit firing, and they differed depending on the stimulus change performed. Such correlations disappeared approximately 6 s after the change presentation. Furthermore, the power of the hippocampal theta rhythm increased in half of the cases presented with a stimulation change. Based on these data, we propose that the degree of correlation between the unitary activity and the hippocampal theta rhythm varies with--and therefore may signal--stimulus novelty.

  20. Quantifying auditory temporal stability in a large database of recorded music.

    Science.gov (United States)

    Ellis, Robert J; Duan, Zhiyan; Wang, Ye

    2014-01-01

    "Moving to the beat" is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical "energy") in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file's temporal structure (e.g., "average tempo", "time signature"), none has sought to quantify the temporal stability of a series of detected beats. Such a method--a "Balanced Evaluation of Auditory Temporal Stability" (BEATS)--is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications.

  1. A system for the assessment and training of temporal-order discrimination

    Czech Academy of Sciences Publication Activity Database

    Mates, Jiří; von Steinbüchel, N.; Wittman, M.; Treutwein, B.

    2001-01-01

    Roč. 64, č. 2 (2001), s. 125-131 ISSN 0169-2607 R&D Projects: GA ČR GA406/96/1314 Institutional research plan: CEZ:AV0Z5011922 Keywords : temporal-order judgement * training of temporal-order discrimination * computer-aided measurement Subject RIV: ED - Physiology Impact factor: 0.559, year: 2001

  2. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test.

    LENUS (Irish Health Repository)

    Kimmich, Okka

    2012-02-01

    Adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance; patients with sporadic adult-onset primary torsion dystonia are much more prevalent than familial. The temporal discrimination threshold is the shortest time interval at which two stimuli are detected to be asynchronous and has been shown to be abnormal in adult-onset primary torsion dystonia. The aim was to determine the frequency of abnormal temporal discrimination thresholds in patients with sporadic adult-onset primary torsion dystonia and their first-degree relatives. We hypothesized that abnormal temporal discrimination thresholds in first relatives would be compatible with an autosomal dominant endophenotype. Temporal discrimination thresholds were examined in 61 control subjects (39 subjects <50 years of age; 22 subjects >50 years of age), 32 patients with sporadic adult-onset primary torsion dystonia (cervical dystonia n = 30, spasmodic dysphonia n = 1 and Meige\\'s syndrome n = 1) and 73 unaffected first-degree relatives (36 siblings, 36 offspring and one parent) using visual and tactile stimuli. Z-scores were calculated for all subjects; a Z > 2.5 was considered abnormal. Abnormal temporal discrimination thresholds were found in 1\\/61 (2%) control subjects, 27\\/32 (84%) patients with adult-onset primary torsion dystonia and 32\\/73 (44%) unaffected relatives [siblings (20\\/36; 56%), offspring (11\\/36; 31%) and one parent]. When two or more relatives were tested in any one family, 22 of 24 families had at least one first-degree relative with an abnormal temporal discrimination threshold. The frequency of abnormal temporal discrimination thresholds in first-degree relatives of patients with sporadic adult-onset primary torsion dystonia is compatible with an autosomal dominant disorder and supports the hypothesis that apparently sporadic adult-onset primary torsion dystonia is genetic in origin.

  3. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test.

    Science.gov (United States)

    Kimmich, Okka; Bradley, David; Whelan, Robert; Mulrooney, Nicola; Reilly, Richard B; Hutchinson, Siobhan; O'Riordan, Sean; Hutchinson, Michael

    2011-09-01

    Adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance; patients with sporadic adult-onset primary torsion dystonia are much more prevalent than familial. The temporal discrimination threshold is the shortest time interval at which two stimuli are detected to be asynchronous and has been shown to be abnormal in adult-onset primary torsion dystonia. The aim was to determine the frequency of abnormal temporal discrimination thresholds in patients with sporadic adult-onset primary torsion dystonia and their first-degree relatives. We hypothesized that abnormal temporal discrimination thresholds in first relatives would be compatible with an autosomal dominant endophenotype. Temporal discrimination thresholds were examined in 61 control subjects (39 subjects 50 years of age), 32 patients with sporadic adult-onset primary torsion dystonia (cervical dystonia n = 30, spasmodic dysphonia n = 1 and Meige's syndrome n = 1) and 73 unaffected first-degree relatives (36 siblings, 36 offspring and one parent) using visual and tactile stimuli. Z-scores were calculated for all subjects; a Z > 2.5 was considered abnormal. Abnormal temporal discrimination thresholds were found in 1/61 (2%) control subjects, 27/32 (84%) patients with adult-onset primary torsion dystonia and 32/73 (44%) unaffected relatives [siblings (20/36; 56%), offspring (11/36; 31%) and one parent]. When two or more relatives were tested in any one family, 22 of 24 families had at least one first-degree relative with an abnormal temporal discrimination threshold. The frequency of abnormal temporal discrimination thresholds in first-degree relatives of patients with sporadic adult-onset primary torsion dystonia is compatible with an autosomal dominant disorder and supports the hypothesis that apparently sporadic adult-onset primary torsion dystonia is genetic in origin.

  4. Auditory training changes temporal lobe connectivity in 'Wernicke's aphasia': a randomised trial.

    Science.gov (United States)

    Woodhead, Zoe Vj; Crinion, Jennifer; Teki, Sundeep; Penny, Will; Price, Cathy J; Leff, Alexander P

    2017-07-01

    Aphasia is one of the most disabling sequelae after stroke, occurring in 25%-40% of stroke survivors. However, there remains a lack of good evidence for the efficacy or mechanisms of speech comprehension rehabilitation. This within-subjects trial tested two concurrent interventions in 20 patients with chronic aphasia with speech comprehension impairment following left hemisphere stroke: (1) phonological training using 'Earobics' software and (2) a pharmacological intervention using donepezil, an acetylcholinesterase inhibitor. Donepezil was tested in a double-blind, placebo-controlled, cross-over design using block randomisation with bias minimisation. The primary outcome measure was speech comprehension score on the comprehensive aphasia test. Magnetoencephalography (MEG) with an established index of auditory perception, the mismatch negativity response, tested whether the therapies altered effective connectivity at the lower (primary) or higher (secondary) level of the auditory network. Phonological training improved speech comprehension abilities and was particularly effective for patients with severe deficits. No major adverse effects of donepezil were observed, but it had an unpredicted negative effect on speech comprehension. The MEG analysis demonstrated that phonological training increased synaptic gain in the left superior temporal gyrus (STG). Patients with more severe speech comprehension impairments also showed strengthening of bidirectional connections between the left and right STG. Phonological training resulted in a small but significant improvement in speech comprehension, whereas donepezil had a negative effect. The connectivity results indicated that training reshaped higher order phonological representations in the left STG and (in more severe patients) induced stronger interhemispheric transfer of information between higher levels of auditory cortex.Clinical trial registrationThis trial was registered with EudraCT (2005-004215-30, https

  5. Comparison of auditory temporal resolution between monolingual Persian and bilingual Turkish-Persian individuals.

    Science.gov (United States)

    Omidvar, Shaghayegh; Jafari, Zahra; Tahaei, Ali Akbar; Salehi, Masoud

    2013-04-01

    The aims of this study were to prepare a Persian version of the temporal resolution test using the method of Phillips et al (1994) and Stuart and Phillips (1996), and to compare the word-recognition performance in the presence of continuous and interrupted noise as well as the temporal resolution abilities between monolingual (ML) Persian and bilingual (BL) Turkish-Persian young adults. Word-recognition scores (WRSs) were obtained in quiet and in the presence of background competing continuous and interrupted noise at signal-to-noise ratios (SNRs) of -20, -10, 0, and 10 dB. Two groups of 33 ML Persian and 36 BL Turkish-Persian volunteers participated. WRSs significantly differed between ML and BL subjects at four sensation levels in the presence of continuous and interrupted noise. However, the difference in the release from masking between ML and BL subjects was not significant at the studied SNRs. BL Turkish-Persian listeners seem to show poorer performance when responding to Persian words in continuous and interrupted noise. However, bilingualism may not affect auditory temporal resolution ability.

  6. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system

    DEFF Research Database (Denmark)

    Dicke, Ulrike; Ewert, Stephan D.; Dau, Torsten

    2007-01-01

    Periodic amplitude modulations AMs of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathw...... accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds....

  7. Computer-based auditory phoneme discrimination training improves speech recognition in noise in experienced adult cochlear implant listeners.

    Science.gov (United States)

    Schumann, Annette; Serman, Maja; Gefeller, Olaf; Hoppe, Ulrich

    2015-03-01

    Specific computer-based auditory training may be a useful completion in the rehabilitation process for cochlear implant (CI) listeners to achieve sufficient speech intelligibility. This study evaluated the effectiveness of a computerized, phoneme-discrimination training programme. The study employed a pretest-post-test design; participants were randomly assigned to the training or control group. Over a period of three weeks, the training group was instructed to train in phoneme discrimination via computer, twice a week. Sentence recognition in different noise conditions (moderate to difficult) was tested pre- and post-training, and six months after the training was completed. The control group was tested and retested within one month. Twenty-seven adult CI listeners who had been using cochlear implants for more than two years participated in the programme; 15 adults in the training group, 12 adults in the control group. Besides significant improvements for the trained phoneme-identification task, a generalized training effect was noted via significantly improved sentence recognition in moderate noise. No significant changes were noted in the difficult noise conditions. Improved performance was maintained over an extended period. Phoneme-discrimination training improves experienced CI listeners' speech perception in noise. Additional research is needed to optimize auditory training for individual benefit.

  8. Auditory and visual modulation of temporal lobe neurons in voice-sensitive and association cortices.

    Science.gov (United States)

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I

    2014-02-12

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies.

  9. Auditory and Visual Modulation of Temporal Lobe Neurons in Voice-Sensitive and Association Cortices

    Science.gov (United States)

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.

    2014-01-01

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies. PMID:24523543

  10. Morphometrical Study of the Temporal Bone and Auditory Ossicles in Guinea Pig

    Directory of Open Access Journals (Sweden)

    Ahmadali Mohammadpour

    2011-03-01

    Full Text Available In this research, anatomical descriptions of the structure of the temporal bone and auditory ossicles have been performed based on dissection of ten guinea pigs. The results showed that, in guinea pig temporal bone was similar to other animals and had three parts; squamous, tympanic and petrous .The tympanic part was much better developed and consisted of oval shaped tympanic bulla with many recesses in tympanic cavity. The auditory ossicles of guinea pig concluded of three small bones; malleus, incus and stapes but the head of the malleus and the body of incus were fused and forming a malleoincudal complex. The average of morphometric parameters showed that the malleus was 3.53 ± 0.22 mm in total length. In addition to head and handle, the malleus had two distinct process; lateral and muscular. The incus had a total length 1.23 ± 0.02mm. It had long and short crus although the long crus was developed better than short crus. The lenticular bone was a round bone that articulated with the long crus of incus. The stapes had a total length 1.38 ± 0.04mm. The anterior crus(0.86 ± 0.08mm was larger than posterior crus (0.76 ± 0.08mm. It is concluded that, in the guinea pig, the malleus and the incus are fused, forming a junction called incus-malleus, while in the other animals these are separate bones. The stapes is larger and has a triangular shape and the anterior and posterior crus are thicker than other rodents. Therefore, for otological studies, the guinea pig is a good lab animal.

  11. Opaque Selling: Static or Inter-Temporal Price Discrimination?

    OpenAIRE

    Courty, Pascal; Liu, Wenyu

    2013-01-01

    We study opaque selling in the hotel industry using data from Hotwire.com. An opaque room discloses only the star level and general location of the hotel at the time of booking. The exact identity of the hotel is disclosed after the booking is completed. Opaque rooms sell at a discount of 40 percent relative to regular rooms. The discount increases when hotels are more differentiated. This finding is consistent with static models of price discrimination. No support was found for predictions s...

  12. Decreased middle temporal gyrus connectivity in the language network in schizophrenia patients with auditory verbal hallucinations.

    Science.gov (United States)

    Zhang, Linchuan; Li, Baojuan; Wang, Huaning; Li, Liang; Liao, Qimei; Liu, Yang; Bao, Xianghong; Liu, Wenlei; Yin, Hong; Lu, Hongbing; Tan, Qingrong

    2017-07-13

    As the most common symptoms of schizophrenia, the long-term persistence of obstinate auditory verbal hallucinations (AVHs) brings about great mental pain to patients. Neuroimaging studies of schizophrenia have indicated that AVHs were associated with altered functional and structural connectivity within the language network. However, effective connectivity that could reflect directed information flow within this network and is of great importance to understand the neural mechanisms of the disorder remains largely unknown. In this study, we utilized stochastic dynamic causal modeling (DCM) to investigate directed connections within the language network in schizophrenia patients with and without AVHs. Thirty-six patients with schizophrenia (18 with AVHs and 18 without AVHs), and 37 healthy controls participated in the current resting-state functional magnetic resonance imaging (fMRI) study. The results showed that the connection from the left inferior frontal gyrus (LIFG) to left middle temporal gyrus (LMTG) was significantly decreased in patients with AVHs compared to those without AVHs. Meanwhile, the effective connection from the left inferior parietal lobule (LIPL) to LMTG was significantly decreased compared to the healthy controls. Our findings suggest aberrant pattern of causal interactions within the language network in patients with AVHs, indicating that the hypoconnectivity or disrupted connection from frontal to temporal speech areas might be critical for the pathological basis of AVHs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    Science.gov (United States)

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  14. Auditory temporal processing tests – Normative data for Polish-speaking adults

    Directory of Open Access Journals (Sweden)

    Joanna Majak

    2015-04-01

    Full Text Available Introduction: Several subjects exposed to neurotoxins in the workplace need to be assessed for central auditory deficit. Although central auditory processing tests are widely used in other countries, they have not been standardized for the Polish population. The aim of the study has been to evaluate the range of reference values for 3 temporal processing tests: the duration pattern test (DPT, the frequency pattern test (FPT and the gaps in noise test (GIN. Material and Methods: The study included 76 normal hearing individuals (38 women, 38 men at the age of 18 to 54 years old (mean ± standard deviation: 39.4±9.1. All study participants had no history of any chronic disease and underwent a standard ENT examination. Results: The reference range for the DPT was established at 55.3% or more of correct answers, while for the FPT it stood at 56.7% or more of correct answers. The mean threshold for both ears in the GIN test was defined as 6 ms. In this study there were no significant associations between the DPT, FPT and GIN results and age or gender. Symmetry between the ears in the case of the DPT, FPT and GIN was found. Conclusions: Reference ranges obtained in this study for the DPT and FPT in the Polish population are lower than reference ranges previously published for other nations while the GIN test results correspond to those published in the related literature. Further investigations are needed to explain the discrepancies between normative values in Poland and other countries and adapt tests for occupational medicine purposes. Med Pr 2015;66(2:145–152

  15. Auditory Time-Frequency Masking for Spectrally and Temporally Maximally-Compact Stimuli.

    Directory of Open Access Journals (Sweden)

    Thibaud Necciari

    Full Text Available Many audio applications perform perception-based time-frequency (TF analysis by decomposing sounds into a set of functions with good TF localization (i.e. with a small essential support in the TF domain using TF transforms and applying psychoacoustic models of auditory masking to the transform coefficients. To accurately predict masking interactions between coefficients, the TF properties of the model should match those of the transform. This involves having masking data for stimuli with good TF localization. However, little is known about TF masking for mathematically well-localized signals. Most existing masking studies used stimuli that are broad in time and/or frequency and few studies involved TF conditions. Consequently, the present study had two goals. The first was to collect TF masking data for well-localized stimuli in humans. Masker and target were 10-ms Gaussian-shaped sinusoids with a bandwidth of approximately one critical band. The overall pattern of results is qualitatively similar to existing data for long maskers. To facilitate implementation in audio processing algorithms, a dataset provides the measured TF masking function. The second goal was to assess the potential effect of auditory efferents on TF masking using a modeling approach. The temporal window model of masking was used to predict present and existing data in two configurations: (1 with standard model parameters (i.e. without efferents, (2 with cochlear gain reduction to simulate the activation of efferents. The ability of the model to predict the present data was quite good with the standard configuration but highly degraded with gain reduction. Conversely, the ability of the model to predict existing data for long maskers was better with than without gain reduction. Overall, the model predictions suggest that TF masking can be affected by efferent (or other effects that reduce cochlear gain. Such effects were avoided in the experiment of this study by using

  16. Auditory Time-Frequency Masking for Spectrally and Temporally Maximally-Compact Stimuli.

    Science.gov (United States)

    Necciari, Thibaud; Laback, Bernhard; Savel, Sophie; Ystad, Sølvi; Balazs, Peter; Meunier, Sabine; Kronland-Martinet, Richard

    2016-01-01

    Many audio applications perform perception-based time-frequency (TF) analysis by decomposing sounds into a set of functions with good TF localization (i.e. with a small essential support in the TF domain) using TF transforms and applying psychoacoustic models of auditory masking to the transform coefficients. To accurately predict masking interactions between coefficients, the TF properties of the model should match those of the transform. This involves having masking data for stimuli with good TF localization. However, little is known about TF masking for mathematically well-localized signals. Most existing masking studies used stimuli that are broad in time and/or frequency and few studies involved TF conditions. Consequently, the present study had two goals. The first was to collect TF masking data for well-localized stimuli in humans. Masker and target were 10-ms Gaussian-shaped sinusoids with a bandwidth of approximately one critical band. The overall pattern of results is qualitatively similar to existing data for long maskers. To facilitate implementation in audio processing algorithms, a dataset provides the measured TF masking function. The second goal was to assess the potential effect of auditory efferents on TF masking using a modeling approach. The temporal window model of masking was used to predict present and existing data in two configurations: (1) with standard model parameters (i.e. without efferents), (2) with cochlear gain reduction to simulate the activation of efferents. The ability of the model to predict the present data was quite good with the standard configuration but highly degraded with gain reduction. Conversely, the ability of the model to predict existing data for long maskers was better with than without gain reduction. Overall, the model predictions suggest that TF masking can be affected by efferent (or other) effects that reduce cochlear gain. Such effects were avoided in the experiment of this study by using maximally

  17. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    Science.gov (United States)

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  18. How Auditory Experience Differentially Influences the Function of Left and Right Superior Temporal Cortices.

    Science.gov (United States)

    Twomey, Tae; Waters, Dafydd; Price, Cathy J; Evans, Samuel; MacSweeney, Mairéad

    2017-09-27

    To investigate how hearing status, sign language experience, and task demands influence functional responses in the human superior temporal cortices (STC) we collected fMRI data from deaf and hearing participants (male and female), who either acquired sign language early or late in life. Our stimuli in all tasks were pictures of objects. We varied the linguistic and visuospatial processing demands in three different tasks that involved decisions about (1) the sublexical (phonological) structure of the British Sign Language (BSL) signs for the objects, (2) the semantic category of the objects, and (3) the physical features of the objects.Neuroimaging data revealed that in participants who were deaf from birth, STC showed increased activation during visual processing tasks. Importantly, this differed across hemispheres. Right STC was consistently activated regardless of the task whereas left STC was sensitive to task demands. Significant activation was detected in the left STC only for the BSL phonological task. This task, we argue, placed greater demands on visuospatial processing than the other two tasks. In hearing signers, enhanced activation was absent in both left and right STC during all three tasks. Lateralization analyses demonstrated that the effect of deafness was more task-dependent in the left than the right STC whereas it was more task-independent in the right than the left STC. These findings indicate how the absence of auditory input from birth leads to dissociable and altered functions of left and right STC in deaf participants. SIGNIFICANCE STATEMENT Those born deaf can offer unique insights into neuroplasticity, in particular in regions of superior temporal cortex (STC) that primarily respond to auditory input in hearing people. Here we demonstrate that in those deaf from birth the left and the right STC have altered and dissociable functions. The right STC was activated regardless of demands on visual processing. In contrast, the left STC was

  19. High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects.

    Science.gov (United States)

    Erro, Roberto; Rocchi, Lorenzo; Antelmi, Elena; Palladino, Raffaele; Tinazzi, Michele; Rothwell, John; Bhatia, Kailash P

    2016-01-01

    High frequency electrical stimulation of an area of skin on a finger improves two-point spatial discrimination in the stimulated area, likely depending on plastic changes in the somatosensory cortex. However, it is unknown whether improvement also applies to temporal discrimination. Twelve young and ten elderly volunteers underwent the stimulation protocol onto the palmar skin of the right index finger. Somatosensory temporal discrimination threshold (STDT) was evaluated before and immediately after stimulation as well as 2.5h and 24h later. There was a significant reduction in somatosensory temporal threshold only on the stimulated finger. The effect was reversible, with STDT returning to the baseline values within 24h, and was smaller in the elderly than in the young participants. High frequency stimulation of the skin focally improves temporal discrimination in the area of stimulation. Given previous suggestions that the perceptual effects rely on plastic changes in the somatosensory cortex, our results are consistent with the idea that the timing of sensory stimuli is, at least partially, encoded in the primary somatosensory cortex. Such a protocol could potentially be used as a therapeutic intervention to ameliorate physiological decline in the elderly or in other disorders of sensorimotor integration. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Auditory Pattern Memory: Mechanisms of Tonal Sequence Discrimination by Human Observers

    Science.gov (United States)

    1988-10-30

    and Creelman (1977) in a study of categorical perception. Tanner’s model included a short-term decaying memory for the acoustic input to the system plus...auditory pattern components, J. &Coust. Soc. 91 Am., 76, 1037- 1044. Macmillan, N. A., Kaplan H. L., & Creelman , C. D. (1977). The psychophysics of

  1. Effects of damage to auditory cortex on the discrimination of speech sounds by rats

    Czech Academy of Sciences Publication Activity Database

    Floody, O. R.; Ouda, Ladislav; Porter, B. A.; Kilgard, M. P.

    2010-01-01

    Roč. 101, č. 2 (2010), s. 260-268 ISSN 0031-9384 R&D Projects: GA ČR GA309/07/1336 Institutional research plan: CEZ:AV0Z50390703 Keywords : auditory cortex * brain lesions * prepulse inhibition Subject RIV: FH - Neurology Impact factor: 2.891, year: 2010

  2. A Headset Method for Measuring the Visual Temporal Discrimination Threshold in Cervical Dystonia

    Directory of Open Access Journals (Sweden)

    Anna Molloy

    2014-07-01

    Full Text Available Background: The visual temporal discrimination threshold (TDT is the shortest time interval at which one can determine two stimuli to be asynchronous and meets criteria for a valid endophenotype in adult‐onset idiopathic focal dystonia, a poorly penetrant disorder. Temporal discrimination is assessed in the hospital laboratory; in unaffected relatives of multiplex adult‐onset dystonia patients distance from the hospital is a barrier to data acquisition. We devised a portable headset method for visual temporal discrimination determination and our aim was to validate this portable tool against the traditional laboratory‐based method in a group of patients and in a large cohort of healthy controls. Methods: Visual TDTs were examined in two groups 1 in 96 healthy control participants divided by age and gender, and 2 in 33 cervical dystonia patients, using two methods of data acquisition, the traditional table‐top laboratory‐based system, and the novel portable headset method. The order of assessment was randomized in the control group. The results obtained by each technique were compared. Results: Visual temporal discrimination in healthy control participants demonstrated similar age and gender effects by the headset method as found by the table‐top examination. There were no significant differences between visual TDTs obtained using the two methods, both for the control participants and for the cervical dystonia patients. Bland–Altman testing showed good concordance between the two methods in both patients and in controls.Discussion: The portable headset device is a reliable and accurate method for visual temporal discrimination testing for use outside the laboratory, and will facilitate increased TDT data collection outside of the hospital setting. This is of particular importance in multiplex families where data collection in all available members of the pedigree is important for exome sequencing studies.

  3. Temporal auditory processing at 17 months of age is associated with preliterate language comprehension and later word reading fluency : An ERP study

    NARCIS (Netherlands)

    van Zuijen, Titia L.; Plakas, Anna; Maassen, Ben A. M.; Been, Pieter; Maurits, Natasha M.; Krikhaar, Evelien; van Driel, Joram; van der Leij, Aryan

    2012-01-01

    Dyslexia is heritable and associated with auditory processing deficits. We investigate whether temporal auditory processing is compromised in young children at-risk for dyslexia and whether it is associated with later language and reading skills. We recorded EEG from 17 months-old children with or

  4. Temporal auditory processing at 17 months of age is associated with preliterate language comprehension and later word reading fluency: An ERP study

    NARCIS (Netherlands)

    Van Zuijen, Titia L.; Plakas, Anna; Maassen, Ben A M; Been, Pieter; Maurits, Natasha M.; Krikhaar, Evelien; van Driel, Joram; van der Leij, Aryan

    2012-01-01

    Dyslexia is heritable and associated with auditory processing deficits. We investigate whether temporal auditory processing is compromised in young children at-risk for dyslexia and whether it is associated with later language and reading skills. We recorded EEG from 17 months-old children with or

  5. The Effect of Auditory Cueing on the Spatial and Temporal Gait Coordination in Healthy Adults.

    Science.gov (United States)

    Almarwani, Maha; Van Swearingen, Jessie M; Perera, Subashan; Sparto, Patrick J; Brach, Jennifer S

    2017-12-27

    Walk ratio, defined as step length divided by cadence, indicates the coordination of gait. During free walking, deviation from the preferential walk ratio may reveal abnormalities of walking patterns. The purpose of this study was to examine the impact of rhythmic auditory cueing (metronome) on the neuromotor control of gait at different walking speeds. Forty adults (mean age 26.6 ± 6.0 years) participated in the study. Gait characteristics were collected using a computerized walkway. In the preferred walking speed, there was no significant difference in walk ratio between uncued (walk ratio = .0064 ± .0007 m/steps/min) and metronome-cued walking (walk ratio = .0064 ± .0007 m/steps/min; p = .791). A higher value of walk ratio at the slower speed was observed with metronome-cued (walk ratio = .0071 ± .0008 m/steps/min) compared to uncued walking (walk ratio = .0068 ± .0007 m/steps/min; p metronome-cued (walk ratio = .0060 ± .0009 m/steps/min) compared to uncued walking (walk ratio = .0062 ± .0009 m/steps/min; p = .005). In healthy adults, the metronome cues may become an attentional demanding task, and thereby disrupt the spatial and temporal integration of gait at nonpreferred speeds.

  6. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    OpenAIRE

    Masahiro eKawasaki; Masahiro eKawasaki; Masahiro eKawasaki; Keiichi eKitajo; Keiichi eKitajo; Yoko eYamaguchi

    2014-01-01

    In humans, theta phase (4–8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from...

  7. Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex

    Science.gov (United States)

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction. PMID:23029483

  8. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    Science.gov (United States)

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  9. Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination.

    Science.gov (United States)

    Wiemers, Michael; Fischer, Martin H

    2016-01-01

    Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.

  10. Reorganization of auditory map and pitch discrimination in adult rats chronically exposed to low-level ambient noise

    Directory of Open Access Journals (Sweden)

    Weimin eZheng

    2012-09-01

    Full Text Available Behavioral adaption to a changing environment is critical for an animal’s survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment.

  11. Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss

    Science.gov (United States)

    Koravand, Amineh; Jutras, Benoit

    2013-01-01

    Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…

  12. Visual and auditory socio-cognitive perception in unilateral temporal lobe epilepsy in children and adolescents: a prospective controlled study.

    Science.gov (United States)

    Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania

    2014-12-01

    A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re

  13. The internal auditory clock: what can evoked potentials reveal about the analysis of temporal sound patterns, and abnormal states of consciousness?

    Science.gov (United States)

    Jones, S J

    2002-09-01

    internal "clocks"? Abnormal mismatch potentials may provide a manifestation of a disordered auditory time-sense, sometimes being abolished in comatose patients while the C-potentials and similar responses to the onset of tones are preserved. Both C- and M-potentials were usually found to be preserved, however, in patients who had emerged from coma and were capable of discriminating sounds. Substantially intact responses were also recorded from three patients who were functionally in a "vegetative" state. The C- and M-potentials were once again dissociated in a group of patients with multiple sclerosis, only the mismatch potentials being found to be significantly delayed. This subclinical impairment of a memory-based process responsible for the detection of change in temporal sound patterns may be related to defects in other memory domains such as working memory.

  14. Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex.

    Science.gov (United States)

    Centanni, T M; Booker, A B; Sloan, A M; Chen, F; Maher, B J; Carraway, R S; Khodaparast, N; Rennaker, R; LoTurco, J J; Kilgard, M P

    2014-07-01

    One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain's ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation.

    Science.gov (United States)

    van der Steen, M C Marieke; Jacoby, Nori; Fairhurst, Merle T; Keller, Peter E

    2015-11-11

    The current study investigated the human ability to synchronize movements with event sequences containing continuous tempo changes. This capacity is evident, for example, in ensemble musicians who maintain precise interpersonal coordination while modulating the performance tempo for expressive purposes. Here we tested an ADaptation and Anticipation Model (ADAM) that was developed to account for such behavior by combining error correction processes (adaptation) with a predictive temporal extrapolation process (anticipation). While previous computational models of synchronization incorporate error correction, they do not account for prediction during tempo-changing behavior. The fit between behavioral data and computer simulations based on four versions of ADAM was assessed. These versions included a model with adaptation only, one in which adaptation and anticipation act in combination (error correction is applied on the basis of predicted tempo changes), and two models in which adaptation and anticipation were linked in a joint module that corrects for predicted discrepancies between the outcomes of adaptive and anticipatory processes. The behavioral experiment required participants to tap their finger in time with three auditory pacing sequences containing tempo changes that differed in the rate of change and the number of turning points. Behavioral results indicated that sensorimotor synchronization accuracy and precision, while generally high, decreased with increases in the rate of tempo change and number of turning points. Simulations and model-based parameter estimates showed that adaptation mechanisms alone could not fully explain the observed precision of sensorimotor synchronization. Including anticipation in the model increased the precision of simulated sensorimotor synchronization and improved the fit of model to behavioral data, especially when adaptation and anticipation mechanisms were linked via a joint module based on the notion of joint internal

  16. A phenomenological model of the electrically stimulated auditory nerve fiber: temporal and biphasic response properties

    Directory of Open Access Journals (Sweden)

    Colin eHorne

    2016-02-01

    Full Text Available We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs. The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability under both monophasic and cathodic-anodic biphasic stimulation, without changing the model’s parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions.Our work extends the stochastic leaky integrate and fire (SLIF neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  17. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  18. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  20. Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease

    Directory of Open Access Journals (Sweden)

    Alexis eFaure

    2013-09-01

    Full Text Available Huntington’s disease (HD is characterized by triad of motor, cognitive and emotional symptoms along with neuropathology in fronto-striatal circuit and limbic system including amygdala. Emotional alterations, which have a negative impact on patient well-being, represent some of the earliest symptoms of HD and might be related to the onset of the neurodegenerative process. In the transgenic rat model (tgHD rats, evidence suggest emotional alterations at the symptomatic stage along with neuropathology of the central nucleus of amygdala (CE. Studies in humans and animals demonstrate that emotion can modulate time perception. The impact of emotion on time perception has never been tested in HD, nor is it known if that impact could be part of the presymptomatic emotional phenotype of the pathology. The aim of this paper was to characterize the effect of emotion on temporal discrimination in presymptomatic tgHD animals. In the first experiment, we characterized the acute effect of an emotion (fear conditioned stimulus on temporal discrimination using a bisection procedure, and tested its dependency upon an intact central amygdala. The second experiment was aimed at comparing presymptomatic homozygous transgenic animals at 7-months of age and their wild-type littermates (WT in their performance on the modulation of temporal discrimination by emotion. Our principal findings show that (1 a fear cue produces a short-lived decrease of temporal precision after its termination, and (2 animals with medial CE lesion and presymptomatic tgHD animals demonstrate an alteration of this emotion-evoked temporal distortion. The results contribute to our knowledge about the presymptomatic phenotype of this HD rat model, showing susceptibility to emotion that may be related to dysfunction of the central nucleus of amygdala.

  1. Auditory Discrimination of Anisochrony: Influence of the Tempo and Musical Backgrounds of Listeners

    Science.gov (United States)

    Ehrle, N.; Samson, S.

    2005-01-01

    This study explored the influence of several factors, physical and human, on anisochrony's thresholds measured with an adaptive two alternative forced choice paradigm. The effect of the number and duration of sounds on anisochrony discrimination was tested in the first experiment as well as potential interactions between each of these factors and…

  2. A Novel Functional Magnetic Resonance Imaging Paradigm for the Preoperative Assessment of Auditory Perception in a Musician Undergoing Temporal Lobe Surgery.

    Science.gov (United States)

    Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J

    2018-03-01

    Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Age and education adjusted normative data and discriminative validity for Rey's Auditory Verbal Learning Test in the elderly Greek population.

    Science.gov (United States)

    Messinis, Lambros; Nasios, Grigorios; Mougias, Antonios; Politis, Antonis; Zampakis, Petros; Tsiamaki, Eirini; Malefaki, Sonia; Gourzis, Phillipos; Papathanasopoulos, Panagiotis

    2016-01-01

    Rey's Auditory Verbal Learning Test (RAVLT) is a widely used neuropsychological test to assess episodic memory. In the present study we sought to establish normative and discriminative validity data for the RAVLT in the elderly population using previously adapted learning lists for the Greek adult population. We administered the test to 258 cognitively healthy elderly participants, aged 60-89 years, and two patient groups (192 with amnestic mild cognitive impairment, aMCI, and 65 with Alzheimer's disease, AD). From the statistical analyses, we found that age and education contributed significantly to most trials of the RAVLT, whereas the influence of gender was not significant. Younger elderly participants with higher education outperformed the older elderly with lower education levels. Moreover, both clinical groups performed significantly worse on most RAVLT trials and composite measures than matched cognitively healthy controls. Furthermore, the AD group performed more poorly than the aMCI group on most RAVLT variables. Receiver operating characteristic (ROC) analysis was used to examine the utility of the RAVLT trials to discriminate cognitively healthy controls from aMCI and AD patients. Area under the curve (AUC), an index of effect size, showed that most of the RAVLT measures (individual and composite) included in this study adequately differentiated between the performance of healthy elders and aMCI/AD patients. We also provide cutoff scores in discriminating cognitively healthy controls from aMCI and AD patients, based on the sensitivity and specificity of the prescribed scores. Moreover, we present age- and education-specific normative data for individual and composite scores for the Greek adapted RAVLT in elderly subjects aged between 60 and 89 years for use in clinical and research settings.

  4. The role of auditory temporal cues in the fluency of stuttering adults

    OpenAIRE

    Furini, Juliana; Picoloto, Luana Altran; Marconato, Eduarda; Bohnen, Anelise Junqueira; Cardoso, Ana Claudia Vieira; Oliveira, Cristiane Moço Canhetti de

    2017-01-01

    ABSTRACT Purpose: to compare the frequency of disfluencies and speech rate in spontaneous speech and reading in adults with and without stuttering in non-altered and delayed auditory feedback (NAF, DAF). Methods: participants were 30 adults: 15 with Stuttering (Research Group - RG), and 15 without stuttering (Control Group - CG). The procedures were: audiological assessment and speech fluency evaluation in two listening conditions, normal and delayed auditory feedback (100 milliseconds dela...

  5. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    Science.gov (United States)

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-06

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.

  6. The role of diffusive architectural surfaces on auditory spatial discrimination in performance venues.

    Science.gov (United States)

    Robinson, Philip W; Pätynen, Jukka; Lokki, Tapio; Jang, Hyung Suk; Jeon, Jin Yong; Xiang, Ning

    2013-06-01

    In musical or theatrical performance, some venues allow listeners to individually localize and segregate individual performers, while others produce a well blended ensemble sound. The room acoustic conditions that make this possible, and the psycho-acoustic effects at work are not fully understood. This research utilizes auralizations from measured and simulated performance venues to investigate spatial discrimination of multiple acoustic sources in rooms. Signals were generated from measurements taken in a small theater, and listeners in the audience area were asked to distinguish pairs of speech sources on stage with various spatial separations. This experiment was repeated with the proscenium splay walls treated to be flat, diffusive, or absorptive. Similar experiments were conducted in a simulated hall, utilizing 11 early reflections with various characteristics, and measured late reverberation. The experiments reveal that discriminating the lateral arrangement of two sources is possible at narrower separation angles when reflections come from flat or absorptive rather than diffusive surfaces.

  7. Spectro-temporal analysis of complex tones: two cortical processes dependent on retention of sounds in the long auditory store.

    Science.gov (United States)

    Jones, S J; Vaz Pato, M; Sprague, L

    2000-09-01

    To examine whether two cortical processes concerned with spectro-temporal analysis of complex tones, a 'C-process' generating CN1 and CP2 potentials at cf. 100 and 180 ms after sudden change of pitch or timbre, and an 'M-process' generating MN1 and MP2 potentials of similar latency at the sudden cessation of repeated changes, are dependent on accumulation of a sound image in the long auditory store. The durations of steady (440 Hz) and rapidly oscillating (440-494 Hz, 16 changes/s) pitch of a synthesized 'clarinet' tone were reciprocally varied between 0.5 and 4.5 s within a duty cycle of 5 s. Potentials were recorded at the beginning and end of the period of oscillation in 10 non-attending normal subjects. The CN1 at the beginning of pitch oscillation and the MN1 at the end were both strongly influenced by the duration of the immediately preceding stimulus pattern, mean amplitudes being 3-4 times larger after 4.5 s as compared with 0.5 s. The processes responsible for both CN1 and MN1 are influenced by the duration of the preceding sound pattern over a period comparable to that of the 'echoic memory' or long auditory store. The store therefore appears to occupy a key position in spectro-temporal sound analysis. The C-process is concerned with the spectral structure of complex sounds, and may therefore reflect the 'grouping' of frequency components underlying auditory stream segregation. The M-process (mismatch negativity) is concerned with the temporal sound structure, and may play an important role in the extraction of information from sequential sounds.

  8. Spectral-Temporal Modulated Ripple Discrimination by Children With Cochlear Implants.

    Science.gov (United States)

    Landsberger, David M; Padilla, Monica; Martinez, Amy S; Eisenberg, Laurie S

    A postlingually implanted adult typically develops hearing with an intact auditory system, followed by periods of deafness (or near deafness) and adaptation to the implant. For an early implanted child whose brain is highly plastic, the auditory system matures with consistent input from a cochlear implant. It is likely that the auditory system of early implanted cochlear implant users is fundamentally different than postlingually implanted adults. The purpose of this study is to compare the basic psychophysical capabilities and limitations of these two populations on a spectral resolution task to determine potential effects of early deprivation and plasticity. Performance on a spectral resolution task (Spectral-temporally Modulated Ripple Test [SMRT]) was measured for 20 bilaterally implanted, prelingually deafened children (between 5 and 13 years of age) and 20 hearing children within the same age range. Additionally, 15 bilaterally implanted, postlingually deafened adults, and 10 hearing adults were tested on the same task. Cochlear implant users (adults and children) were tested bilaterally, and with each ear alone. Hearing listeners (adults and children) were tested with the unprocessed SMRT and with a vocoded version that simulates an 8-channel cochlear implant. For children with normal hearing, a positive correlation was found between age and SMRT score for both the unprocessed and vocoded versions. Older hearing children performed similarly to hearing adults in both the unprocessed and vocoded test conditions. However, for children with cochlear implants, no significant relationship was found between SMRT score and chronological age, age at implantation, or years of implant experience. Performance by children with cochlear implants was poorer than performance by cochlear implanted adults. It was also found that children implanted sequentially tended to have better scores with the first implant compared with the second implant. This difference was not

  9. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  10. Low-level neural auditory discrimination dysfunctions in specific language impairment—A review on mismatch negativity findings

    Directory of Open Access Journals (Sweden)

    Teija Kujala

    2017-12-01

    Full Text Available In specific language impairment (SLI, there is a delay in the child’s oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Keywords: Specific language impairment, Auditory processing, Mismatch negativity (MMN

  11. The role of auditory spectro-temporal modulation filtering and the decision metric for speech intelligibility prediction

    DEFF Research Database (Denmark)

    Chabot-Leclerc, Alexandre; Jørgensen, Søren; Dau, Torsten

    2014-01-01

    Speech intelligibility models typically consist of a preprocessing part that transforms stimuli into some internal (auditory) representation and a decision metric that relates the internal representation to speech intelligibility. The present study analyzed the role of modulation filtering...... in the preprocessing of different speech intelligibility models by comparing predictions from models that either assume a spectro-temporal (i.e., two-dimensional) or a temporal-only (i.e., one-dimensional) modulation filterbank. Furthermore, the role of the decision metric for speech intelligibility was investigated...... subtraction. The results suggested that a decision metric based on the SNRenv may provide a more general basis for predicting speech intelligibility than a metric based on the MTF. Moreover, the one-dimensional modulation filtering process was found to be sufficient to account for the data when combined...

  12. Nerve canals at the fundus of the internal auditory canal on high-resolution temporal bone CT

    International Nuclear Information System (INIS)

    Ji, Yoon Ha; Youn, Eun Kyung; Kim, Seung Chul

    2001-01-01

    To identify and evaluate the normal anatomy of nerve canals in the fundus of the internal auditory canal which can be visualized on high-resolution temporal bone CT. We retrospectively reviewed high-resolution (1 mm thickness and interval contiguous scan) temporal bone CT images of 253 ears in 150 patients who had not suffered trauma or undergone surgery. Those with a history of uncomplicated inflammatory disease were included, but those with symptoms of vertigo, sensorineural hearing loss, or facial nerve palsy were excluded. Three radiologists determined the detectability and location of canals for the labyrinthine segment of the facial, superior vestibular and cochlear nerve, and the saccular branch and posterior ampullary nerve of the inferior vestibular nerve. Five bony canals in the fundus of the internal auditory canal were identified as nerve canals. Four canals were identified on axial CT images in 100% of cases; the so-called singular canal was identified in only 68%. On coronal CT images, canals for the labyrinthine segment of the facial and superior vestibular nerve were seen in 100% of cases, but those for the cochlear nerve, the saccular branch of the inferior vestibular nerve, and the singular canal were seen in 90.1%, 87.4% and 78% of cases, respectiveIy. In all detectable cases, the canal for the labyrinthine segment of the facial nerve was revealed as one which traversed anterolateralIy, from the anterosuperior portion of the fundus of the internal auditory canal. The canal for the cochlear nerve was located just below that for the labyrinthine segment of the facial nerve, while that canal for the superior vestibular nerve was seen at the posterior aspect of these two canals. The canal for the saccular branch of the inferior vestibular nerve was located just below the canal for the superior vestibular nerve, and that for the posterior ampullary nerve, the so-called singular canal, ran laterally or posteolateralIy from the posteroinferior aspect of

  13. Nerve canals at the fundus of the internal auditory canal on high-resolution temporal bone CT

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yoon Ha; Youn, Eun Kyung; Kim, Seung Chul [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-12-01

    To identify and evaluate the normal anatomy of nerve canals in the fundus of the internal auditory canal which can be visualized on high-resolution temporal bone CT. We retrospectively reviewed high-resolution (1 mm thickness and interval contiguous scan) temporal bone CT images of 253 ears in 150 patients who had not suffered trauma or undergone surgery. Those with a history of uncomplicated inflammatory disease were included, but those with symptoms of vertigo, sensorineural hearing loss, or facial nerve palsy were excluded. Three radiologists determined the detectability and location of canals for the labyrinthine segment of the facial, superior vestibular and cochlear nerve, and the saccular branch and posterior ampullary nerve of the inferior vestibular nerve. Five bony canals in the fundus of the internal auditory canal were identified as nerve canals. Four canals were identified on axial CT images in 100% of cases; the so-called singular canal was identified in only 68%. On coronal CT images, canals for the labyrinthine segment of the facial and superior vestibular nerve were seen in 100% of cases, but those for the cochlear nerve, the saccular branch of the inferior vestibular nerve, and the singular canal were seen in 90.1%, 87.4% and 78% of cases, respectiveIy. In all detectable cases, the canal for the labyrinthine segment of the facial nerve was revealed as one which traversed anterolateralIy, from the anterosuperior portion of the fundus of the internal auditory canal. The canal for the cochlear nerve was located just below that for the labyrinthine segment of the facial nerve, while that canal for the superior vestibular nerve was seen at the posterior aspect of these two canals. The canal for the saccular branch of the inferior vestibular nerve was located just below the canal for the superior vestibular nerve, and that for the posterior ampullary nerve, the so-called singular canal, ran laterally or posteolateralIy from the posteroinferior aspect of

  14. Binding ‘when’ and ‘where’ impairs temporal, but not spatial recall in auditory and visual working memory

    Directory of Open Access Journals (Sweden)

    Franco eDelogu

    2012-03-01

    Full Text Available Information about where and when events happened seem naturally linked to each other, but only few studies have investigated whether and how they are associated in working memory. We tested whether the location of items and their temporal order are jointly or independently encoded. We also verified if spatio-temporal binding is influenced by the sensory modality of items. Participants were requested to memorize the location and/or the serial order of five items (environmental sounds or pictures sequentially presented from five different locations. Next, they were asked to recall either the item location or their order of presentation within the sequence. Attention during encoding was manipulated by contrasting blocks of trials in which participants were requested to encode only one feature, to blocks of trials where they had to encode both features. Results show an interesting interaction between task and attention. Accuracy in the serial order recall was affected by the simultaneous encoding of item location, whereas the recall of item location was unaffected by the concurrent encoding of the serial order of items. This asymmetric influence of attention on the two tasks was similar for the auditory and visual modality. Together, these data indicate that item location is processed in a relatively automatic fashion, whereas maintaining serial order is more demanding in terms of attention. The remarkably analogous results for auditory and visual memory performance, suggest that the binding of serial order and location in working memory is not modality-dependent, and may involve common intersensory mechanisms.

  15. Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus

    DEFF Research Database (Denmark)

    Sweet, Robert A; Dorph-Petersen, Karl-Anton; Lewis, David A

    2005-01-01

    The goal of the present study was to determine whether the architectonic criteria used to identify the core, lateral belt, and parabelt auditory cortices in macaque monkeys (Macaca fascicularis) could be used to identify homologous regions in humans (Homo sapiens). Current evidence indicates...

  16. Spatio-temporal features for tracking and quadruped/biped discrimination

    Science.gov (United States)

    Rickman, Rick; Copsey, Keith; Bamber, David C.; Page, Scott F.

    2012-05-01

    Techniques such as SIFT and SURF facilitate efficient and robust image processing operations through the use of sparse and compact spatial feature descriptors and show much potential for defence and security applications. This paper considers the extension of such techniques to include information from the temporal domain, to improve utility in applications involving moving imagery within video data. In particular, the paper demonstrates how spatio-temporal descriptors can be used very effectively as the basis of a target tracking system and as target discriminators which can distinguish between bipeds and quadrupeds. Results using sequences of video imagery of walking humans and dogs are presented, and the relative merits of the approach are discussed.

  17. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.

    Science.gov (United States)

    Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein

    2017-08-01

    Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of

  18. Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey.

    Science.gov (United States)

    Kajikawa, Yoshinao; Frey, Stephen; Ross, Deborah; Falchier, Arnaud; Hackett, Troy A; Schroeder, Charles E

    2015-03-11

    The superior temporal gyrus (STG) is on the inferior-lateral brain surface near the external ear. In macaques, 2/3 of the STG is occupied by an auditory cortical region, the "parabelt," which is part of a network of inferior temporal areas subserving communication and social cognition as well as object recognition and other functions. However, due to its location beneath the squamous temporal bone and temporalis muscle, the STG, like other inferior temporal regions, has been a challenging target for physiological studies in awake-behaving macaques. We designed a new procedure for implanting recording chambers to provide direct access to the STG, allowing us to evaluate neuronal properties and their topography across the full extent of the STG in awake-behaving macaques. Initial surveys of the STG have yielded several new findings. Unexpectedly, STG sites in monkeys that were listening passively responded to tones with magnitudes comparable to those of responses to 1/3 octave band-pass noise. Mapping results showed longer response latencies in more rostral sites and possible tonotopic patterns parallel to core and belt areas, suggesting the reversal of gradients between caudal and rostral parabelt areas. These results will help further exploration of parabelt areas. Copyright © 2015 the authors 0270-6474/15/354140-11$15.00/0.

  19. Processamento temporal, localização e fechamento auditivo em portadores de perda auditiva unilateral Temporal processing, localization and auditory closure in individuals with unilateral hearing loss

    Directory of Open Access Journals (Sweden)

    Regiane Nishihata

    2012-01-01

    , sound localization, and auditory closure, and to investigate possible associations with complaints of learning, communication and language difficulties in individuals with unilateral hearing loss. METHODS: Participants were 26 individuals with ages between 8 and 15 years, divided into two groups: Unilateral hearing loss group; and Normal hearing group. Each group was composed of 13 individuals, matched by gender, age and educational level. All subjects were submitted to anamnesis, peripheral hearing evaluation, and auditory processing evaluation through behavioral tests of sound localization, sequential memory, Random Detection Gap test, and speech-in-noise test. Nonparametric statistical tests were used to compare the groups, considering the presence or absence of hearing loss and the ear with hearing loss. RESULTS: Unilateral hearing loss started during preschool, and had unknown or identified etiologies, such as meningitis, traumas or mumps. Most individuals reported delays in speech, language and learning developments, especially those with hearing loss in the right ear. The group with hearing loss had worse responses in the abilities of temporal ordering and resolution, sound localization and auditory closure. Individuals with hearing loss in the left ear showed worse results than those with hearing loss in the right ear in all abilities, except in sound localization. CONCLUSION: The presence of unilateral hearing loss causes sound localization, auditory closure, temporal ordering and temporal resolution difficulties. Individuals with unilateral hearing loss in the right ear have more complaints than those with unilateral hearing loss in the left ear. Individuals with hearing loss in the left ear have more difficulties in auditory closure, temporal resolution, and temporal ordering.

  20. Theta oscillation and neuronal activity in rat hippocampus areinvolved in temporal discrimination of time in seconds

    Directory of Open Access Journals (Sweden)

    Tomoaki eNakazono

    2015-06-01

    Full Text Available The discovery of time cells revealed that the rodent hippocampus has information of time.Previous studies have suggested that a role of hippocampal time cells is to integratetemporally segregated events into a sequence using working memory with time perception.However, it is unclear that hippocampal cells contribute to time perception itself becausemost previous studies employed delayed matching-to-sample tasks that did not evaluatetime perception separately from working memory processes. Here, we investigated thefunction of the rat hippocampus in time perception using a temporal discrimination task. Inthe task, rats had to discriminate between durations of 1 and 3 sec to get a reward, andmaintaining task-related information as working memory was not required. We found thatsome hippocampal neurons showed firing rate modulation similar to that of time cells.Moreover, theta oscillation of local field potentials (LFPs showed a transient enhancementof power during time discrimination periods. However, there were little relationshipsbetween the neuronal activities and theta oscillations. These results suggest that both theindividual neuronal activities and theta oscillations of LFPs in the hippocampus have a possibility to be engaged in seconds order time perception; however, they participate in different ways.

  1. The Role of Temporal Envelope and Fine Structure in Mandarin Lexical Tone Perception in Auditory Neuropathy Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Temporal information in a signal can be partitioned into temporal envelope (E and fine structure (FS. Fine structure is important for lexical tone perception for normal-hearing (NH listeners, and listeners with sensorineural hearing loss (SNHL have an impaired ability to use FS in lexical tone perception due to the reduced frequency resolution. The present study was aimed to assess which of the acoustic aspects (E or FS played a more important role in lexical tone perception in subjects with auditory neuropathy spectrum disorder (ANSD and to determine whether it was the deficit in temporal resolution or frequency resolution that might lead to more detrimental effects on FS processing in pitch perception. Fifty-eight native Mandarin Chinese-speaking subjects (27 with ANSD, 16 with SNHL, and 15 with NH were assessed for (1 their ability to recognize lexical tones using acoustic E or FS cues with the "auditory chimera" technique, (2 temporal resolution as measured with temporal gap detection (TGD threshold, and (3 frequency resolution as measured with the Q(10dB values of the psychophysical tuning curves. Overall, 26.5%, 60.2%, and 92.1% of lexical tone responses were consistent with FS cues for tone perception for listeners with ANSD, SNHL, and NH, respectively. The mean TGD threshold was significantly higher for listeners with ANSD (11.9 ms than for SNHL (4.0 ms; p < 0.001 and NH (3.9 ms; p < 0.001 listeners, with no significant difference between SNHL and NH listeners. In contrast, the mean Q(10dB for listeners with SNHL (1.8 ± 0.4 was significantly lower than that for ANSD (3.5 ± 1.0; p < 0.001 and NH (3.4 ± 0.9; p < 0.001 listeners, with no significant difference between ANSD and NH listeners. These results suggest that reduced temporal resolution, as opposed to reduced frequency selectivity, in ANSD subjects leads to greater degradation of FS processing for pitch perception.

  2. Logarithmic temporal axis manipulation and its application for measuring auditory contributions in F0 control using a transformed auditory feedback procedure

    Science.gov (United States)

    Yanaga, Ryuichiro; Kawahara, Hideki

    2003-10-01

    A new parameter extraction procedure based on logarithmic transformation of the temporal axis was applied to investigate auditory effects on voice F0 control to overcome artifacts due to natural fluctuations and nonlinearities in speech production mechanisms. The proposed method may add complementary information to recent findings reported by using frequency shift feedback method [Burnett and Larson, J. Acoust. Soc. Am. 112 (2002)], in terms of dynamic aspects of F0 control. In a series of experiments, dependencies of system parameters in F0 control on subjects, F0 and style (musical expressions and speaking) were tested using six participants. They were three male and three female students specialized in musical education. They were asked to sustain a Japanese vowel /a/ for about 10 s repeatedly up to 2 min in total while hearing F0 modulated feedback speech, that was modulated using an M-sequence. The results replicated qualitatively the previous finding [Kawahara and Williams, Vocal Fold Physiology, (1995)] and provided more accurate estimates. Relations with designing an artificial singer also will be discussed. [Work partly supported by the grant in aids in scientific research (B) 14380165 and Wakayama University.

  3. Echoic Memory: Investigation of Its Temporal Resolution by Auditory Offset Cortical Responses

    OpenAIRE

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temp...

  4. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    Science.gov (United States)

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  5. The role of auditory temporal cues in the fluency of stuttering adults

    Directory of Open Access Journals (Sweden)

    Juliana Furini

    Full Text Available ABSTRACT Purpose: to compare the frequency of disfluencies and speech rate in spontaneous speech and reading in adults with and without stuttering in non-altered and delayed auditory feedback (NAF, DAF. Methods: participants were 30 adults: 15 with Stuttering (Research Group - RG, and 15 without stuttering (Control Group - CG. The procedures were: audiological assessment and speech fluency evaluation in two listening conditions, normal and delayed auditory feedback (100 milliseconds delayed by Fono Tools software. Results: the DAF caused a significant improvement in the fluency of spontaneous speech in RG when compared to speech under NAF. The effect of DAF was different in CG, because it increased the common disfluencies and the total of disfluencies in spontaneous speech and reading, besides showing an increase in the frequency of stuttering-like disfluencies in reading. The intergroup analysis showed significant differences in the two speech tasks for the two listening conditions in the frequency of stuttering-like disfluencies and in the total of disfluencies, and in the flows of syllable and word-per-minute in the NAF. Conclusion: the results demonstrated that delayed auditory feedback promoted fluency in spontaneous speech of adults who stutter, without interfering in the speech rate. In non-stuttering adults an increase occurred in the number of common disfluencies and total of disfluencies as well as reduction of speech rate in spontaneous speech and reading.

  6. Primate Auditory Recognition Memory Performance Varies With Sound Type

    OpenAIRE

    Chi-Wing, Ng; Bethany, Plakke; Amy, Poremba

    2009-01-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g. social status, kinship, environment),have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition, and/or memory. The present study employs a de...

  7. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users.

    Science.gov (United States)

    Fu, Qian-Jie; Chinchilla, Sherol; Galvin, John J

    2004-09-01

    The present study investigated the relative importance of temporal and spectral cues in voice gender discrimination and vowel recognition by normal-hearing subjects listening to an acoustic simulation of cochlear implant speech processing and by cochlear implant users. In the simulation, the number of speech processing channels ranged from 4 to 32, thereby varying the spectral resolution; the cutoff frequencies of the channels' envelope filters ranged from 20 to 320 Hz, thereby manipulating the available temporal cues. For normal-hearing subjects, results showed that both voice gender discrimination and vowel recognition scores improved as the number of spectral channels was increased. When only 4 spectral channels were available, voice gender discrimination significantly improved as the envelope filter cutoff frequency was increased from 20 to 320 Hz. For all spectral conditions, increasing the amount of temporal information had no significant effect on vowel recognition. Both voice gender discrimination and vowel recognition scores were highly variable among implant users. The performance of cochlear implant listeners was similar to that of normal-hearing subjects listening to comparable speech processing (4-8 spectral channels). The results suggest that both spectral and temporal cues contribute to voice gender discrimination and that temporal cues are especially important for cochlear implant users to identify the voice gender when there is reduced spectral resolution.

  8. Reorganization in processing of spectral and temporal input in the rat posterior auditory field induced by environmental enrichment

    Science.gov (United States)

    Jakkamsetti, Vikram; Chang, Kevin Q.

    2012-01-01

    Environmental enrichment induces powerful changes in the adult cerebral cortex. Studies in primary sensory cortex have observed that environmental enrichment modulates neuronal response strength, selectivity, speed of response, and synchronization to rapid sensory input. Other reports suggest that nonprimary sensory fields are more plastic than primary sensory cortex. The consequences of environmental enrichment on information processing in nonprimary sensory cortex have yet to be studied. Here we examine physiological effects of enrichment in the posterior auditory field (PAF), a field distinguished from primary auditory cortex (A1) by wider receptive fields, slower response times, and a greater preference for slowly modulated sounds. Environmental enrichment induced a significant increase in spectral and temporal selectivity in PAF. PAF neurons exhibited narrower receptive fields and responded significantly faster and for a briefer period to sounds after enrichment. Enrichment increased time-locking to rapidly successive sensory input in PAF neurons. Compared with previous enrichment studies in A1, we observe a greater magnitude of reorganization in PAF after environmental enrichment. Along with other reports observing greater reorganization in nonprimary sensory cortex, our results in PAF suggest that nonprimary fields might have a greater capacity for reorganization compared with primary fields. PMID:22131375

  9. The effect of a concurrent working memory task and temporal offsets on the integration of auditory and visual speech information.

    Science.gov (United States)

    Buchan, Julie N; Munhall, Kevin G

    2012-01-01

    Audiovisual speech perception is an everyday occurrence of multisensory integration. Conflicting visual speech information can influence the perception of acoustic speech (namely the McGurk effect), and auditory and visual speech are integrated over a rather wide range of temporal offsets. This research examined whether the addition of a concurrent cognitive load task would affect the audiovisual integration in a McGurk speech task and whether the cognitive load task would cause more interference at increasing offsets. The amount of integration was measured by the proportion of responses in incongruent trials that did not correspond to the audio (McGurk response). An eye-tracker was also used to examine whether the amount of temporal offset and the presence of a concurrent cognitive load task would influence gaze behavior. Results from this experiment show a very modest but statistically significant decrease in the number of McGurk responses when subjects also perform a cognitive load task, and that this effect is relatively constant across the various temporal offsets. Participant's gaze behavior was also influenced by the addition of a cognitive load task. Gaze was less centralized on the face, less time was spent looking at the mouth and more time was spent looking at the eyes, when a concurrent cognitive load task was added to the speech task.

  10. A Comparative Study of Feature Selection Methods for the Discriminative Analysis of Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Chunren Lai

    2017-12-01

    Full Text Available It is crucial to differentiate patients with temporal lobe epilepsy (TLE from the healthy population and determine abnormal brain regions in TLE. The cortical features and changes can reveal the unique anatomical patterns of brain regions from structural magnetic resonance (MR images. In this study, structural MR images from 41 patients with left TLE, 34 patients with right TLE, and 58 normal controls (NC were acquired, and four kinds of cortical measures, namely cortical thickness, cortical surface area, gray matter volume (GMV, and mean curvature, were explored for discriminative analysis. Three feature selection methods including the independent sample t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM, and the support vector machine-recursive feature elimination (SVM-RFE were investigated to extract dominant features among the compared groups for classification using the support vector machine (SVM classifier. The results showed that the SVM-RFE achieved the highest performance (most classifications with more than 84% accuracy, followed by the SCDRM, and the t-test. Especially, the surface area and GMV exhibited prominent discriminative ability, and the performance of the SVM was improved significantly when the four cortical measures were combined. Additionally, the dominant regions with higher classification weights were mainly located in the temporal and the frontal lobe, including the entorhinal cortex, rostral middle frontal, parahippocampal cortex, superior frontal, insula, and cuneus. This study concluded that the cortical features provided effective information for the recognition of abnormal anatomical patterns and the proposed methods had the potential to improve the clinical diagnosis of TLE.

  11. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    Science.gov (United States)

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear

  12. Stimulus repetition and the perception of time: the effects of prior exposure on temporal discrimination, judgment, and production.

    Directory of Open Access Journals (Sweden)

    William J Matthews

    Full Text Available It has been suggested that repeated stimuli have shorter subjective duration than novel items, perhaps because of a reduction in the neural response to repeated presentations of the same object. Five experiments investigated the effects of repetition on time perception and found further evidence that immediate repetition reduces apparent duration, consistent with the idea that subjective duration is partly based on neural coding efficiency. In addition, the experiments found (a no effect of repetition on the precision of temporal discrimination, (b that the effects of repetition disappeared when there was a modest lag between presentations, (c that, across participants, the size of the repetition effect correlated with temporal discrimination, and (d that the effects of repetition suggested by a temporal production task were the opposite of those suggested by temporal judgments. The theoretical and practical implications of these results are discussed.

  13. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    Science.gov (United States)

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  14. Temporal stability of otolith elemental fingerprints discriminates among lagoon nursery habitats

    Science.gov (United States)

    Tournois, Jennifer; Ferraton, Franck; Velez, Laure; McKenzie, David J.; Aliaume, Catherine; Mercier, Lény; Darnaude, Audrey M.

    2013-10-01

    The chemical composition of fish otoliths reflects that of the water masses that they inhabit. Otolith elemental compositions can, therefore, be used as natural tags to discriminate among habitats. However, for retrospective habitat identification to be valid and reliable for any adult, irrespective of its age, significant differences in environmental conditions, and therefore otolith signatures, must be temporally stable within each habitat, otherwise connectivity studies have to be carried out by matching year-classes to the corresponding annual fingerprints. This study investigated how various different combinations of chemical elements in otoliths could distinguish, over three separate years, between four coastal lagoon habitats used annually as nurseries by gilthead sea bream (Sparus aurata L.) in the Gulf of Lions (NW Mediterranean). A series of nine elements were measured in otoliths of 301 S. aurata juveniles collected in the four lagoons in 2008, 2010 and 2011. Percentages of correct re-assignment of juveniles to their lagoon of origin were calculated with the Random Forest classification method, considering every possible combination of elements. This revealed both spatial and temporal variations in accuracy of habitat identification, with correct re-assignment to each lagoon ranging from 44 to 99% depending on the year and the lagoon. There were also annual differences in the combination of elements that provided the best discrimination among the lagoons. Despite this, when the data from the three years were pooled, a combination of eight elements (B, Ba, Cu, Li, Mg, Rb, Sr and Y) provided greater than 70% correct re-assignment to each single lagoon, with a multi-annual global accuracy of 79%. When considering the years separately, discrimination accuracy with these elemental fingerprints was above 90% for 2008 and 2010. It decreased to 61% in 2011, when unusually heavy rainfall occurred, which presumably reduced chemical differences among several of the

  15. Temporal Lobe Lesions and Perception of Species-Specific Vocalizations by Macaques

    Science.gov (United States)

    Heffner, Henry E.; Heffner, Rickye S.

    1984-10-01

    Japanese macaques were trained to discriminate two forms of their coo vocalization before and after unilateral and bilateral ablation of the temporal cortex. Unilateral ablation of the left superior temporal gyrus, including auditory cortex, resulted in an initial impairment in the discrimination, but similar unilateral ablation of the right superior temporal gyrus had no effect. Bilateral temporal lesions including auditory cortex completely abolished the ability of the animals to discriminate their coos. Neither unilateral nor bilateral ablation of cortex dorsal to and sparing the auditory cortex had any effect on the discrimination. The perception of species-specific vocalizations by Japanese macaques seems to be mediated by the temporal cortex, with the left hemisphere playing a predominant role.

  16. Auditory temporal-order processing of vowel sequences by young and elderly listeners.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E; Kewley-Port, Diane

    2010-04-01

    This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18-31 years) and older (N=151; 60-88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners' SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age.

  17. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  18. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  19. Repeated measurements of cerebral blood flow in the left superior temporal gyrus reveal tonic hyperactivity in patients with auditory verbal hallucinations: A possible trait marker

    Directory of Open Access Journals (Sweden)

    Philipp eHoman

    2013-06-01

    Full Text Available Background: The left superior temporal gyrus (STG has been suggested to play a key role in auditory verbal hallucinations in patients with schizophrenia. Methods: Eleven medicated subjects with schizophrenia and medication-resistant auditory verbal hallucinations and 19 healthy controls underwent perfusion magnetic resonance imaging with arterial spin labeling. Three additional repeated measurements were conducted in the patients. Patients underwent a treatment with transcranial magnetic stimulation (TMS between the first 2 measurements. The main outcome measure was the pooled cerebral blood flow (CBF, which consisted of the regional CBF measurement in the left superior temporal gyrus (STG and the global CBF measurement in the whole brain.Results: Regional CBF in the left STG in patients was significantly higher compared to controls (p < 0.0001 and to the global CBF in patients (p < 0.004 at baseline. Regional CBF in the left STG remained significantly increased compared to the global CBF in patients across time (p < 0.0007, and it remained increased in patients after TMS compared to the baseline CBF in controls (p < 0.0001. After TMS, PANSS (p = 0.003 and PSYRATS (p = 0.01 scores decreased significantly in patients.Conclusions: This study demonstrated tonically increased regional CBF in the left STG in patients with schizophrenia and auditory hallucinations despite a decrease in symptoms after TMS. These findings were consistent with what has previously been termed a trait marker of auditory verbal hallucinations in schizophrenia.

  20. Response-Retrieval in Identity Negative Priming is Modulated by Temporal Discriminability

    Directory of Open Access Journals (Sweden)

    Matthias eMittner

    2014-06-01

    Full Text Available Reaction times to previously ignored information are often delayed, a phenomenon referred to as negative priming (NP. Rothermund, Wentura & De Houwer (2005 proposed that negative priming is caused by the retrieval of incidental stimulus-response associations when consecutive displays share visual features but require different responses. In two experiments we examined whether the features (color, shape that reappear in consecutive displays, or their level of processing (early-perceptual, late-semantic moderate the likelihood that stimulus-response associations are retrieved. Using a perceptual matching task (experiment 1, negative priming occurred independently of whether responses were repeated or switched. Only when implementing a semantic-matching task (experiment 2, negative priming was determined by response-repetition as predicted by response-retrieval theory. The results can be explained in terms of a task-dependent temporal discrimination process (Milliken et al., 1998: Response-relevant features are encoded more strongly and/or are more likely to be retrieved than irrelevant features.

  1. Sentence Syntax and Content in the Human Temporal Lobe: An fMRI Adaptation Study in Auditory and Visual Modalities

    Energy Technology Data Exchange (ETDEWEB)

    Devauchelle, A.D.; Dehaene, S.; Pallier, C. [INSERM, Gif sur Yvette (France); Devauchelle, A.D.; Dehaene, S.; Pallier, C. [CEA, DSV, I2BM, NeuroSpin, F-91191 Gif Sur Yvette (France); Devauchelle, A.D.; Pallier, C. [Univ. Paris 11, Orsay (France); Oppenheim, C. [Univ Paris 05, Ctr Hosp St Anne, Paris (France); Rizzi, L. [Univ Siena, CISCL, I-53100 Siena (Italy); Dehaene, S. [Coll France, F-75231 Paris (France)

    2009-07-01

    Priming effects have been well documented in behavioral psycho-linguistics experiments: The processing of a word or a sentence is typically facilitated when it shares lexico-semantic or syntactic features with a previously encountered stimulus. Here, we used fMRI priming to investigate which brain areas show adaptation to the repetition of a sentence's content or syntax. Participants read or listened to sentences organized in series which could or not share similar syntactic constructions and/or lexico-semantic content. The repetition of lexico-semantic content yielded adaptation in most of the temporal and frontal sentence processing network, both in the visual and the auditory modalities, even when the same lexico-semantic content was expressed using variable syntactic constructions. No fMRI adaptation effect was observed when the same syntactic construction was repeated. Yet behavioral priming was observed at both syntactic and semantic levels in a separate experiment where participants detected sentence endings. We discuss a number of possible explanations for the absence of syntactic priming in the fMRI experiments, including the possibility that the conglomerate of syntactic properties defining 'a construction' is not an actual object assembled during parsing. (authors)

  2. Sentence Syntax and Content in the Human Temporal Lobe: An fMRI Adaptation Study in Auditory and Visual Modalities

    International Nuclear Information System (INIS)

    Devauchelle, A.D.; Dehaene, S.; Pallier, C.; Devauchelle, A.D.; Dehaene, S.; Pallier, C.; Devauchelle, A.D.; Pallier, C.; Oppenheim, C.; Rizzi, L.; Dehaene, S.

    2009-01-01

    Priming effects have been well documented in behavioral psycho-linguistics experiments: The processing of a word or a sentence is typically facilitated when it shares lexico-semantic or syntactic features with a previously encountered stimulus. Here, we used fMRI priming to investigate which brain areas show adaptation to the repetition of a sentence's content or syntax. Participants read or listened to sentences organized in series which could or not share similar syntactic constructions and/or lexico-semantic content. The repetition of lexico-semantic content yielded adaptation in most of the temporal and frontal sentence processing network, both in the visual and the auditory modalities, even when the same lexico-semantic content was expressed using variable syntactic constructions. No fMRI adaptation effect was observed when the same syntactic construction was repeated. Yet behavioral priming was observed at both syntactic and semantic levels in a separate experiment where participants detected sentence endings. We discuss a number of possible explanations for the absence of syntactic priming in the fMRI experiments, including the possibility that the conglomerate of syntactic properties defining 'a construction' is not an actual object assembled during parsing. (authors)

  3. Auditory verbal hallucinations are related to cortical thinning in the left middle temporal gyrus of patients with schizophrenia.

    Science.gov (United States)

    Cui, Y; Liu, B; Song, M; Lipnicki, D M; Li, J; Xie, S; Chen, Y; Li, P; Lu, L; Lv, L; Wang, H; Yan, H; Yan, J; Zhang, H; Zhang, D; Jiang, T

    2018-01-01

    Auditory verbal hallucinations (AVHs) are one of the most common and severe symptoms of schizophrenia, but the neuroanatomical abnormalities underlying AVHs are not well understood. The present study aims to investigate whether AVHs are associated with cortical thinning. Participants were schizophrenia patients from four centers across China, 115 with AVHs and 93 without AVHs, as well as 261 healthy controls. All received 3 T T1-weighted brain scans, and whole brain vertex-wise cortical thickness was compared across groups. Correlations between AVH severity and cortical thickness were also determined. The left middle part of the middle temporal gyrus (MTG) was significantly thinner in schizophrenia patients with AVHs than in patients without AVHs and healthy controls. Inferences were made using a false discovery rate approach with a threshold at p < 0.05. Left MTG thickness did not differ between patients without AVHs and controls. These results were replicated by a meta-analysis showing them to be consistent across the four centers. Cortical thickness of the left MTG was also found to be inversely correlated with hallucination severity across all schizophrenia patients. The results of this multi-center study suggest that an abnormally thin left MTG could be involved in the pathogenesis of AVHs in schizophrenia.

  4. Visual and auditory perception in preschool children at risk for dyslexia.

    Science.gov (United States)

    Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina

    2014-11-01

    Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  6. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  7. Spatial localization deficits and auditory cortical dysfunction in schizophrenia

    Science.gov (United States)

    Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.

    2014-01-01

    Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608

  8. Screening LGI1 in a cohort of 26 lateral temporal lobe epilepsy patients with auditory aura from Turkey detects a novel de novo mutation.

    Science.gov (United States)

    Kesim, Yesim F; Uzun, Gunes Altiokka; Yucesan, Emrah; Tuncer, Feyza N; Ozdemir, Ozkan; Bebek, Nerses; Ozbek, Ugur; Iseri, Sibel A Ugur; Baykan, Betul

    2016-02-01

    Autosomal dominant lateral temporal lobe epilepsy (ADLTE) is an autosomal dominant epileptic syndrome characterized by focal seizures with auditory or aphasic symptoms. The same phenotype is also observed in a sporadic form of lateral temporal lobe epilepsy (LTLE), namely idiopathic partial epilepsy with auditory features (IPEAF). Heterozygous mutations in LGI1 account for up to 50% of ADLTE families and only rarely observed in IPEAF cases. In this study, we analysed a cohort of 26 individuals with LTLE diagnosed according to the following criteria: focal epilepsy with auditory aura and absence of cerebral lesions on brain MRI. All patients underwent clinical, neuroradiological and electroencephalography examinations and afterwards they were screened for mutations in LGI1 gene. The single LGI1 mutation identified in this study is a novel missense variant (NM_005097.2: c.1013T>C; p.Phe338Ser) observed de novo in a sporadic patient. This is the first study involving clinical analysis of a LTLE cohort from Turkey and genetic contribution of LGI1 to ADLTE phenotype. Identification of rare LGI1 gene mutations in sporadic cases supports diagnosis as ADTLE and draws attention to potential familial clustering of ADTLE in suggestive generations, which is especially important for genetic counselling. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Temporal discrimination threshold: VBM evidence for an endophenotype in adult onset primary torsion dystonia.

    LENUS (Irish Health Repository)

    Bradley, D

    2012-02-01

    Familial adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance. Most adult-onset primary torsion dystonia patients are sporadic cases. Disordered sensory processing is found in adult-onset primary torsion dystonia patients; if also present in their unaffected relatives this abnormality may indicate non-manifesting gene carriage. Temporal discrimination thresholds (TDTs) are abnormal in adult-onset primary torsion dystonia, but their utility as a possible endophenotype has not been examined. We examined 35 adult-onset primary torsion dystonia patients (17 familial, 18 sporadic), 42 unaffected first-degree relatives of both familial and sporadic adult-onset primary torsion dystonia patients, 32 unaffected second-degree relatives of familial adult-onset primary torsion dystonia (AOPTD) patients and 43 control subjects. TDT was measured using visual and tactile stimuli. In 33 unaffected relatives, voxel-based morphometry was used to compare putaminal volumes between relatives with abnormal and normal TDTs. The mean TDT in 26 control subjects under 50 years of age was 22.85 ms (SD 8.00; 95% CI: 19.62-26.09 ms). The mean TDT in 17 control subjects over 50 years was 30.87 ms (SD 5.48; 95% CI: 28.05-33.69 ms). The upper limit of normal, defined as control mean + 2.5 SD, was 42.86 ms in the under 50 years group and 44.58 ms in the over 50 years group. Thirty out of thirty-five (86%) AOPTD patients had abnormal TDTs with similar frequencies of abnormalities in sporadic and familial patients. Twenty-two out of forty-two (52%) unaffected first-degree relatives had abnormal TDTs with similar frequencies in relatives of sporadic and familial AOPTD patients. Abnormal TDTs were found in 16\\/32 (50%) of second-degree relatives. Voxel-based morphometry analysis comparing 13 unaffected relatives with abnormal TDTs and 20 with normal TDTs demonstrated a bilateral increase in putaminal grey matter in unaffected relatives with abnormal

  10. Auditory-model based assessment of the effects of hearing loss and hearing-aid compression on spectral and temporal resolution

    DEFF Research Database (Denmark)

    Kowalewski, Borys; MacDonald, Ewen; Strelcyk, Olaf

    2016-01-01

    . However, due to the complexity of speech and its robustness to spectral and temporal alterations, the effects of DRC on speech perception have been mixed and controversial. The goal of the present study was to obtain a clearer understanding of the interplay between hearing loss and DRC by means......Most state-of-the-art hearing aids apply multi-channel dynamic-range compression (DRC). Such designs have the potential to emulate, at least to some degree, the processing that takes place in the healthy auditory system. One way to assess hearing-aid performance is to measure speech intelligibility....... Outcomes were simulated using the auditory processing model of Jepsen et al. (2008) with the front end modified to include effects of hearing impairment and DRC. The results were compared to experimental data from normal-hearing and hearing-impaired listeners....

  11. Evaluation of temporal bone pneumatization on high resolution CT (HRCT) measurements of the temporal bone in normal and otitis media group and their correlation to measurements of internal auditory meatus, vestibular or cochlear aqueduct

    International Nuclear Information System (INIS)

    Nakamura, Miyako

    1988-01-01

    High resolution CT axial scans were made at the three levels of the temoral bone 91 cases. These cases consisted of 109 sides of normal pneumatization (NR group) and 73 of poor pneumatization resulted by chronic otitis (OM group). NR group included sensorineural hearing loss cases and/or sudden deafness on the side. Three levels of continuous slicing were chosen at the internal auditory meatus, the vestibular and the cochlear aqueduct, respectively. In each slice two sagittal and two horizontal measurements were done on the outer contour of the temporal bone. At the proper level, diameter as well as length of the internal acoustic meatus, the vestibular or the cochlear aqueduct were measured. Measurements of the temporal bone showed statistically significant difference between NR and OM groups. Correlation of both diameter and length of the internal auditory meatus to the temporal bone measurements were statistically significant. Neither of measurements on the vestibular or the cochlear aqueduct showed any significant correlation to that of the temporal bone. (author)

  12. Temporal and spectral contributions to musical instrument identification and discrimination among cochlear implant users.

    Science.gov (United States)

    Prentiss, Sandra M; Friedland, David R; Fullmer, Tanner; Crane, Alison; Stoddard, Timothy; Runge, Christina L

    2016-09-01

    To investigate the contributions of envelope and fine-structure to the perception of timbre by cochlear implant (CI) users as compared to normal hearing (NH) listeners. This was a prospective cohort comparison study. Normal hearing and cochlear implant patients were tested. Three experiments were performed in sound field using musical notes altered to affect the characteristic pitch of an instrument and the acoustic envelope. Experiment 1 assessed the ability to identify the instrument playing each note, while experiments 2 and 3 assessed the ability to discriminate the different stimuli. Normal hearing subjects performed better than CI subjects in all instrument identification tasks, reaching statistical significance for 4 of 5 stimulus conditions. Within the CI population, acoustic envelope modifications did not significantly affect instrument identification or discrimination. With envelope and pitch cues removed, fine structure discrimination performance was similar between normal hearing and CI users for the majority of conditions, but some specific instrument comparisons were significantly more challenging for CI users. Cochlear implant users perform significantly worse than normal hearing listeners on tasks of instrument identification. However, cochlear implant listeners can discriminate differences in envelope and some fine structure components of musical instrument sounds as well as normal hearing listeners. The results indicated that certain fine structure cues are important for cochlear implant users to make discrimination judgments, and therefore may affect interpretation toward associating with a specific instrument for identification.

  13. Temporal and spectral contributions to musical instrument identification and discrimination among cochlear implant users

    Institute of Scientific and Technical Information of China (English)

    Sandra M. Prentiss; David R. Friedland; Tanner Fullmer; Alison Crane; Timothy Stoddard; Christina L. Runge

    2016-01-01

    Objective:To investigate the contributions of envelope and fine-structure to the perception of timbre by cochlear implant (CI) users as compared to normal hearing (NH) lis-teners. Methods: This was a prospective cohort comparison study. Normal hearing and cochlear implant patients were tested. Three experiments were performed in sound field using musical notes altered to affect the characteristic pitch of an instrument and the acoustic envelope. Experiment 1 assessed the ability to identify the instrument playing each note, while experi-ments 2 and 3 assessed the ability to discriminate the different stimuli. Results:Normal hearing subjects performed better than CI subjects in all instrument identifi-cation tasks, reaching statistical significance for 4 of 5 stimulus conditions. Within the CI pop-ulation, acoustic envelope modifications did not significantly affect instrument identification or discrimination. With envelope and pitch cues removed, fine structure discrimination perfor-mance was similar between normal hearing and CI users for the majority of conditions, but some specific instrument comparisons were significantly more challenging for CI users. Conclusions:Cochlear implant users perform significantly worse than normal hearing listeners on tasks of instrument identification. However, cochlear implant listeners can discriminate differences in envelope and some fine structure components of musical instrument sounds as well as normal hearing listeners. The results indicated that certain fine structure cues are important for cochlear implant users to make discrimination judgments, and therefore may affect interpretation toward associating with a specific instrument for identification.

  14. Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters

    Science.gov (United States)

    Smith, Nicholas A.; Trainor, Laurel J.

    2011-01-01

    This study examined the role of auditory stream segregation in the selective attention to target tones in infancy. Using a task adapted from Bregman and Rudnicky's 1975 study and implemented in a conditioned head-turn procedure, infant and adult listeners had to discriminate the temporal order of 2,200 and 2,400 Hz target tones presented alone,…

  15. The effects of incidentally learned temporal and spatial predictability on response times and visual fixations during target detection and discrimination.

    Directory of Open Access Journals (Sweden)

    Melissa R Beck

    Full Text Available Responses are quicker to predictable stimuli than if the time and place of appearance is uncertain. Studies that manipulate target predictability often involve overt cues to speed up response times. However, less is known about whether individuals will exhibit faster response times when target predictability is embedded within the inter-trial relationships. The current research examined the combined effects of spatial and temporal target predictability on reaction time (RT and allocation of overt attention in a sustained attention task. Participants responded as quickly as possible to stimuli while their RT and eye movements were measured. Target temporal and spatial predictability were manipulated by altering the number of: 1 different time intervals between a response and the next target; and 2 possible spatial locations of the target. The effects of target predictability on target detection (Experiment 1 and target discrimination (Experiment 2 were tested. For both experiments, shorter RTs as target predictability increased across both space and time were found. In addition, the influences of spatial and temporal target predictability on RT and the overt allocation of attention were task dependent; suggesting that effective orienting of attention relies on both spatial and temporal predictability. These results indicate that stimulus predictability can be increased without overt cues and detected purely through inter-trial relationships over the course of repeated stimulus presentations.

  16. A deafening flash! Visual interference of auditory signal detection.

    Science.gov (United States)

    Fassnidge, Christopher; Cecconi Marcotti, Claudia; Freeman, Elliot

    2017-03-01

    In some people, visual stimulation evokes auditory sensations. How prevalent and how perceptually real is this? 22% of our neurotypical adult participants responded 'Yes' when asked whether they heard faint sounds accompanying flash stimuli, and showed significantly better ability to discriminate visual 'Morse-code' sequences. This benefit might arise from an ability to recode visual signals as sounds, thus taking advantage of superior temporal acuity of audition. In support of this, those who showed better visual relative to auditory sequence discrimination also had poorer auditory detection in the presence of uninformative visual flashes, though this was independent of awareness of visually-evoked sounds. Thus a visually-evoked auditory representation may occur subliminally and disrupt detection of real auditory signals. The frequent natural correlation between visual and auditory stimuli might explain the surprising prevalence of this phenomenon. Overall, our results suggest that learned correspondences between strongly correlated modalities may provide a precursor for some synaesthetic abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Effect of Delayed Auditory Feedback on Activity in the Temporal Lobe while Speaking: A Positron Emission Tomography Study

    Science.gov (United States)

    Takaso, Hideki; Eisner, Frank; Wise, Richard J. S.; Scott, Sophie K.

    2010-01-01

    Purpose: Delayed auditory feedback is a technique that can improve fluency in stutterers, while disrupting fluency in many nonstuttering individuals. The aim of this study was to determine the neural basis for the detection of and compensation for such a delay, and the effects of increases in the delay duration. Method: Positron emission…

  18. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    Science.gov (United States)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  19. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans.

    Directory of Open Access Journals (Sweden)

    Antonella Conte

    Full Text Available BACKGROUND: The somatosensory temporal discrimination threshold (STDT measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. METHODOLOGY/PRINCIPAL FINDINGS: To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS on the right primary somatosensory area (S1, pre-supplementary motor area (pre-SMA, right dorsolateral prefrontal cortex (DLPFC and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. CONCLUSIONS/SIGNIFICANCE: Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease.

  20. Theta-Burst Stimulation-Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal Discrimination in Healthy Humans

    Science.gov (United States)

    Conte, Antonella; Rocchi, Lorenzo; Nardella, Andrea; Dispenza, Sabrina; Scontrini, Alessandra; Khan, Nashaba; Berardelli, Alfredo

    2012-01-01

    Background The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. Methodology/Principal Findings To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. Conclusions/Significance Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease. PMID:22412964

  1. The Effects of Static and Dynamic Visual Representations as Aids for Primary School Children in Tasks of Auditory Discrimination of Sound Patterns. An Intervention-based Study.

    Directory of Open Access Journals (Sweden)

    Jesus Tejada

    2018-02-01

    Full Text Available It has been proposed that non-conventional presentations of visual information could be very useful as a scaffolding strategy in the learning of Western music notation. As a result, this study has attempted to determine if there is any effect of static and dynamic presentation modes of visual information in the recognition of sound patterns. An intervention-based quasi-experimental design was adopted with two groups of fifth-grade students in a Spanish city. Students did tasks involving discrimination, auditory recognition and symbolic association of the sound patterns with non-musical representations, either static images (S group, or dynamic images (D group. The results showed neither statistically significant differences in the scores of D and S, nor influence of the covariates on the dependent variable, although statistically significant intra-group differences were found for both groups. This suggests that both types of graphic formats could be effective as digital learning mediators in the learning of Western musical notation.

  2. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  3. Time computations in anuran auditory systems

    Directory of Open Access Journals (Sweden)

    Gary J Rose

    2014-05-01

    Full Text Available Temporal computations are important in the acoustic communication of anurans. In many cases, calls between closely related species are nearly identical spectrally but differ markedly in temporal structure. Depending on the species, calls can differ in pulse duration, shape and/or rate (i.e., amplitude modulation, direction and rate of frequency modulation, and overall call duration. Also, behavioral studies have shown that anurans are able to discriminate between calls that differ in temporal structure. In the peripheral auditory system, temporal information is coded primarily in the spatiotemporal patterns of activity of auditory-nerve fibers. However, major transformations in the representation of temporal information occur in the central auditory system. In this review I summarize recent advances in understanding how temporal information is represented in the anuran midbrain, with particular emphasis on mechanisms that underlie selectivity for pulse duration and pulse rate (i.e., intervals between onsets of successive pulses. Two types of neurons have been identified that show selectivity for pulse rate: long-interval cells respond well to slow pulse rates but fail to spike or respond phasically to fast pulse rates; conversely, interval-counting neurons respond to intermediate or fast pulse rates, but only after a threshold number of pulses, presented at optimal intervals, have occurred. Duration-selectivity is manifest as short-pass, band-pass or long-pass tuning. Whole-cell patch recordings, in vivo, suggest that excitation and inhibition are integrated in diverse ways to generate temporal selectivity. In many cases, activity-related enhancement or depression of excitatory or inhibitory processes appear to contribute to selective responses.

  4. Temporal integration of loudness, loudness discrimination, and the form of the loudness function

    DEFF Research Database (Denmark)

    Buus, Søren; Florentine, Mary; Poulsen, Torben

    1997-01-01

    Temporal integration for loudness of 5-kHz tones was measured as a function of level between 2 and 60 dB SL. Absolute thresholds and levels required to produce equal loudness were measured for 2-, 10-, 50- and 250-ms tones using adaptive, two interval, two alternative forced choice procedures....... The procedure for loudness balances is new and obtained concurrent measurements for ten tone pairs in ten interleaved tracks. Each track converged at the level required to make the variable stimulus just louder than the fixed stimulus. Thus, the data yield estimates of the just noticeable difference...... for loudness level andtemporal integration for loudness. Results for four listeners show that the amount of temporal integration, defined as the level difference between equally loud short and long tones, varies markedly with level and is largest at moderate levels. The effect of level increases...

  5. Temporal code in the vibrissal system-Part II: Roughness surface discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, Postal Code CP 4000 (Argentina); AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, Postal Code CP 4000 (Argentina)

    2007-11-15

    Previous works have purposed hypotheses about the neural code of the tactile system in the rat. One of them is based on the physical characteristics of vibrissae, such as frequency of resonance; another is based on discharge patterns on the trigeminal ganglion. In this work, the purpose is to find a temporal code analyzing the afferent signals of two vibrissal nerves while vibrissae sweep surfaces of different roughness. Two levels of pressure were used between the vibrissa and the contact surface. We analyzed the afferent discharge of DELTA and GAMMA vibrissal nerves. The vibrissae movements were produced using electrical stimulation of the facial nerve. The afferent signals were analyzed using an event detection algorithm based on Continuous Wavelet Transform (CWT). The algorithm was able to detect events of different duration. The inter-event times detected were calculated for each situation and represented in box plot. This work allowed establishing the existence of a temporal code at peripheral level.

  6. Temporal code in the vibrissal system-Part II: Roughness surface discrimination

    International Nuclear Information System (INIS)

    Farfan, F D; AlbarracIn, A L; Felice, C J

    2007-01-01

    Previous works have purposed hypotheses about the neural code of the tactile system in the rat. One of them is based on the physical characteristics of vibrissae, such as frequency of resonance; another is based on discharge patterns on the trigeminal ganglion. In this work, the purpose is to find a temporal code analyzing the afferent signals of two vibrissal nerves while vibrissae sweep surfaces of different roughness. Two levels of pressure were used between the vibrissa and the contact surface. We analyzed the afferent discharge of DELTA and GAMMA vibrissal nerves. The vibrissae movements were produced using electrical stimulation of the facial nerve. The afferent signals were analyzed using an event detection algorithm based on Continuous Wavelet Transform (CWT). The algorithm was able to detect events of different duration. The inter-event times detected were calculated for each situation and represented in box plot. This work allowed establishing the existence of a temporal code at peripheral level

  7. Discrimination of Dynamic Tactile Contact by Temporally Precise Event Sensing in Spiking Neuromorphic Networks.

    Science.gov (United States)

    Lee, Wang Wei; Kukreja, Sunil L; Thakor, Nitish V

    2017-01-01

    This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications.

  8. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  9. Temporal discrimination thresholds in adult-onset primary torsion dystonia: an analysis by task type and by dystonia phenotype.

    LENUS (Irish Health Repository)

    Bradley, D

    2012-01-01

    Adult-onset primary torsion dystonia (AOPTD) is an autosomal dominant disorder with markedly reduced penetrance. Sensory abnormalities are present in AOPTD and also in unaffected relatives, possibly indicating non-manifesting gene carriage (acting as an endophenotype). The temporal discrimination threshold (TDT) is the shortest time interval at which two stimuli are detected to be asynchronous. We aimed to compare the sensitivity and specificity of three different TDT tasks (visual, tactile and mixed\\/visual-tactile). We also aimed to examine the sensitivity of TDTs in different AOPTD phenotypes. To examine tasks, we tested TDT in 41 patients and 51 controls using visual (2 lights), tactile (non-painful electrical stimulation) and mixed (1 light, 1 electrical) stimuli. To investigate phenotypes, we examined 71 AOPTD patients (37 cervical dystonia, 14 writer\\'s cramp, 9 blepharospasm, 11 spasmodic dysphonia) and 8 musician\\'s dystonia patients. The upper limit of normal was defined as control mean +2.5 SD. In dystonia patients, the visual task detected abnormalities in 35\\/41 (85%), the tactile task in 35\\/41 (85%) and the mixed task in 26\\/41 (63%); the mixed task was less sensitive than the other two (p = 0.04). Specificity was 100% for the visual and tactile tasks. Abnormal TDTs were found in 36 of 37 (97.3%) cervical dystonia, 12 of 14 (85.7%) writer\\'s cramp, 8 of 9 (88.8%) blepharospasm, 10 of 11 (90.1%) spasmodic dysphonia patients and 5 of 8 (62.5%) musicians. The visual and tactile tasks were found to be more sensitive than the mixed task. Temporal discrimination threshold results were comparable across common adult-onset primary torsion dystonia phenotypes, with lower sensitivity in the musicians.

  10. Automatic interpretation of F-18-FDG brain PET using artificial neural network: discrimination of medial and lateral temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Seok Ki; Park, Kwang Suk; Lee, Sang Kun; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-06-01

    We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). We studied brain F-18-FDG PET images of 113 epilepsy patients surgically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptions (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 81 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier. Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

  11. Automatic interpretation of F-18-FDG brain PET using artificial neural network: discrimination of medial and lateral temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Seok Ki; Park, Kwang Suk; Lee, Sang Kun; Chung, June Key; Lee, Myung Chul

    2004-01-01

    We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). We studied brain F-18-FDG PET images of 113 epilepsy patients surgically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptions (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 81 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier. Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE

  12. Discriminating bot accounts based solely on temporal features of microblog behavior

    Science.gov (United States)

    Pan, Junshan; Liu, Ying; Liu, Xiang; Hu, Hanping

    2016-05-01

    As the largest microblog service in China, Sina Weibo has attracted numerous automated applications (known as bots) due to its popularity and open architecture. We classify the active users from Sina Weibo into human, bot-based and hybrid groups based solely on the study of temporal features of their posting behavior. The anomalous burstiness parameter and time-interval entropy value are exploited to characterize automation. We also reveal different behavior patterns among the three types of users regarding their reposting ratio, daily rhythm and active days. Our findings may help Sina Weibo manage a better community and should be considered for dynamic models of microblog behaviors.

  13. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  14. Magnetic resonance imaging of anterior temporal lobe cysts in children: discriminating special imaging features in a particular group of diseases

    International Nuclear Information System (INIS)

    Hoffmann Nunes, Renato; Torres Pacheco, Felipe; Rocha, Antonio Jose da

    2014-01-01

    We hypothesized that disorders with anterior temporal lobe (ATL) cysts might exhibit common peculiarities and distinguishable imaging features that could be useful for diagnosis. We reviewed a series of patients for neuroimaging contributions to specific diagnoses. A literature search was conducted, and institutional imaging files were reviewed to identify MR examinations with ATL cysts in children. Patients were divided according to head size, calcifications, white matter and cortical abnormalities. Unsupervised hierarchical clustering of patients on the basis of their MR and CT items was performed. We identified 23 patients in our database in whom MR revealed ATL cysts. Our series included five patients with congenital muscular dystrophy (05/23 = 21.7 %), six with megalencephalic leukoencephalopathy with subcortical cysts (06/23 = 26.1 %), three with non-megalencephalic leukoencephalopathy with subcortical cysts (03/23 = 13.1 %), seven with congenital cytomegalovirus disease (07/23 = 30.4 %) and two with Aicardi-Goutieres syndrome (02/23 = 8.7 %). After analysis, 11 clusters resulted in the highest discriminative indices. Thereafter, patients' clusters were linked to their underlying diseases. The features that best discriminated between clusters included brainstem abnormalities, cerebral calcifications and some peculiar grey and white matter abnormalities. A flow chart was drafted to guide the radiologist in these diagnoses. The authors encourage the combined interpretation of these features in the herein proposed approach that confidently predicted the final diagnosis in this particular group of disorders associated with ATL cysts. (orig.)

  15. Magnetic resonance imaging of anterior temporal lobe cysts in children: discriminating special imaging features in a particular group of diseases

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann Nunes, Renato; Torres Pacheco, Felipe; Rocha, Antonio Jose da [Fleury Medicina e Saude, Division of Neuroradiology, Sao Paulo (Brazil); Servico de Diagnostico por Imagem, Division of Neuroradiology, Santa Casa de Misericordia de Sao Paulo Paulo, Sao Paulo (Brazil)

    2014-07-15

    We hypothesized that disorders with anterior temporal lobe (ATL) cysts might exhibit common peculiarities and distinguishable imaging features that could be useful for diagnosis. We reviewed a series of patients for neuroimaging contributions to specific diagnoses. A literature search was conducted, and institutional imaging files were reviewed to identify MR examinations with ATL cysts in children. Patients were divided according to head size, calcifications, white matter and cortical abnormalities. Unsupervised hierarchical clustering of patients on the basis of their MR and CT items was performed. We identified 23 patients in our database in whom MR revealed ATL cysts. Our series included five patients with congenital muscular dystrophy (05/23 = 21.7 %), six with megalencephalic leukoencephalopathy with subcortical cysts (06/23 = 26.1 %), three with non-megalencephalic leukoencephalopathy with subcortical cysts (03/23 = 13.1 %), seven with congenital cytomegalovirus disease (07/23 = 30.4 %) and two with Aicardi-Goutieres syndrome (02/23 = 8.7 %). After analysis, 11 clusters resulted in the highest discriminative indices. Thereafter, patients' clusters were linked to their underlying diseases. The features that best discriminated between clusters included brainstem abnormalities, cerebral calcifications and some peculiar grey and white matter abnormalities. A flow chart was drafted to guide the radiologist in these diagnoses. The authors encourage the combined interpretation of these features in the herein proposed approach that confidently predicted the final diagnosis in this particular group of disorders associated with ATL cysts. (orig.)

  16. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    Science.gov (United States)

    Matusz, Pawel J; Thelen, Antonia; Amrein, Sarah; Geiser, Eveline; Anken, Jacques; Murray, Micah M

    2015-03-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Comparison of capacity for diagnosis and visuality of auditory ossicles at different scanning angles in the computed tomography of temporal bone

    International Nuclear Information System (INIS)

    Ogura, Akio; Nakayama, Yoshiki

    1992-01-01

    Computed tomographic (CT) scanning has made significant contributions to the diagnosis and evaluation of temporal bone lesions by the thin-section, high-resolution techniques. However, these techniques involve greater radiation exposure to the lens of patients. A mean was thus sought for reducing the radiation exposure at different scanning angles such as +15 degrees and -10 degrees to the Reid's base line. Purposes of this study were to measure radiation exposure to the lens using the two tomographic planes and to compare the ability to visualize auditory ossicles and labyrinthine structures. Visual evaluation of tomographic images on auditory ossicles was made by blinded methods using four rankings by six radiologists. The statistical significance of the intergroup difference in the visualization of tomographic planes was assessed for a significance level of 0.01. Thermoluminescent dosimeter chips were placed on the cornea of tissue equivalent to the skull phantom to evaluate radiation exposure for two separate tomographic planes. As the result, tomographic plane at an angle of -10 degrees to Reid's base line allowed better visualization than the other plane for the malleus, incus, facial nerve canal, and tuba auditiva (p<0.01). Scannings at an angle of -10 degrees to Reid's base line reduced radiation exposure to approximately one-fiftieth (1/50) that with the scans at the other angle. (author)

  18. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  19. The Context-Dependency of the Experience of Auditory Succession and Prospects for Embodying Philosophical Models of Temporal Experience

    OpenAIRE

    Maria Kon

    2015-01-01

    Recent philosophical work on temporal experience offers generic models that are often assumed to apply to all sensory modalities. I show that the models serve as broad frameworks in which different aspects of cognitive science can be slotted and, thus, are beneficial to furthering research programs in embodied music cognition. Here I discuss a particular feature of temporal experience that plays a key role in such philosophical work: a distinction between the experience of succession and the ...

  20. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  1. Predators or prey? Spatio-temporal discrimination of human-derived risk by brown bears.

    Science.gov (United States)

    Ordiz, Andrés; Støen, Ole-Gunnar; Delibes, Miguel; Swenson, Jon E

    2011-05-01

    Prey usually adjust anti-predator behavior to subtle variations in perceived risk. However, it is not clear whether adult large carnivores that are virtually free of natural predation adjust their behavior to subtle variations in human-derived risk, even when living in human-dominated landscapes. As a model, we studied resting-site selection by a large carnivore, the brown bear (Ursus arctos), under different spatial and temporal levels of human activity. We quantified horizontal and canopy cover at 440 bear beds and 439 random sites at different distances from human settlements, seasons, and times of the day. We hypothesized that beds would be more concealed than random sites and that beds would be more concealed in relation to human-derived risk. Although human densities in Scandinavia are the lowest within bear ranges in Western Europe, we found an effect of human activity; bears chose beds with higher horizontal and canopy cover during the day (0700-1900 hours), especially when resting closer to human settlements, than at night (2200-0600 hours). In summer/fall (the berry season), with more intensive and dispersed human activity, including hunting, bears rested further from human settlements during the day than in spring (pre-berry season). Additionally, day beds in the summer/fall were the most concealed. Large carnivores often avoid humans at a landscape scale, but total avoidance in human-dominated areas is not possible. Apparently, bears adjust their behavior to avoid human encounters, which resembles the way prey avoid their predators. Bears responded to fine-scale variations in human-derived risk, both on a seasonal and a daily basis.

  2. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  3. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    than the normal control group. Approximately one-third of our participants with tune deafness displayed evidence of attention deficit with hyperactivity disorder on the Test of Variables of Attention. Test of Variables of Attention scores were significantly correlated with gap-detection scores, but not significantly correlated with any of the other experimental measures, including the DTT, DLF, and auditory pattern discrimination tests. Short- and long-term memory was not significantly related to any of the experimental measures. Individuals with tune deafness identified by the DTT have poor performance on many tests of auditory function. These include pure-tone frequency discrimination, pitch and duration pattern discrimination, and temporal resolution. Overall, reduction in performance does not seem to derive from deficits in memory or attention. However, because of the prevalence of attention deficit with hyperactivity disorder in those with tune deafness, this variable should be considered as a potentially confounding factor in future studies of tune deafness and its characteristics. Pure-tone frequency discrimination varied widely in individuals with tune deafness, and the high degree of intertrial variability suggests that frequency discrimination may be unstable in tune-deaf individuals.

  4. Perceiving temporal regularity in music: The role of auditory event-related potentials (ERPs) in probing beat perception

    NARCIS (Netherlands)

    Honing, H.; Bouwer, F.L.; Háden, G.P.; Merchant, H.; de Lafuente, V.

    2014-01-01

    The aim of this chapter is to give an overview of how the perception of a regular beat in music can be studied in humans adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). Next to a review of the recent literature on the perception of temporal regularity in

  5. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils.

    Directory of Open Access Journals (Sweden)

    Markus K Schaefer

    Full Text Available In mammals, acoustic communication plays an important role during social behaviors. Despite their ethological relevance, the mechanisms by which the auditory cortex represents different communication call properties remain elusive. Recent studies have pointed out that communication-sound encoding could be based on discharge patterns of neuronal populations. Following this idea, we investigated whether the activity of local neuronal networks, such as those occurring within individual cortical columns, is sufficient for distinguishing between sounds that differed in their spectro-temporal properties. To accomplish this aim, we analyzed simple pure-tone and complex communication call elicited multi-unit activity (MUA as well as local field potentials (LFP, and current source density (CSD waveforms at the single-layer and columnar level from the primary auditory cortex of anesthetized Mongolian gerbils. Multi-dimensional scaling analysis was used to evaluate the degree of "call-specificity" in the evoked activity. The results showed that whole laminar profiles segregated 1.8-2.6 times better across calls than single-layer activity. Also, laminar LFP and CSD profiles segregated better than MUA profiles. Significant differences between CSD profiles evoked by different sounds were more pronounced at mid and late latencies in the granular and infragranular layers and these differences were based on the absence and/or presence of current sinks and on sink timing. The stimulus-specific activity patterns observed within cortical columns suggests that the joint activity of local cortical populations (as local as single columns could indeed be important for encoding sounds that differ in their acoustic attributes.

  6. Representations of temporal information in short-term memory: Are they modality-specific?

    Science.gov (United States)

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Context effects in a temporal discrimination task" further tests of the Scalar Expectancy Theory and Learning-to-Time models.

    Science.gov (United States)

    Arantes, Joana; Machado, Armando

    2008-07-01

    Pigeons were trained on two temporal bisection tasks, which alternated every two sessions. In the first task, they learned to choose a red key after a 1-s signal and a green key after a 4-s signal; in the second task, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. Then the pigeons were exposed to a series of test trials in order to contrast two timing models, Learning-to-Time (LeT) and Scalar Expectancy Theory (SET). The models made substantially different predictions particularly for the test trials in which the sample duration ranged from 1 s to 16 s and the choice keys were Green and Blue, the keys associated with the same 4-s samples: LeT predicted that preference for Green should increase with sample duration, a context effect, but SET predicted that preference for Green should not vary with sample duration. The results were consistent with LeT. The present study adds to the literature the finding that the context effect occurs even when the two basic discriminations are never combined in the same session.

  8. Auditory Memory for Timbre

    Science.gov (United States)

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  9. The Context-Dependency of the Experience of Auditory Succession and Prospects for Embodying Philosophical Models of Temporal Experience

    Directory of Open Access Journals (Sweden)

    Maria Kon

    2015-05-01

    Full Text Available Recent philosophical work on temporal experience offers generic models that are often assumed to apply to all sensory modalities. I show that the models serve as broad frameworks in which different aspects of cognitive science can be slotted and, thus, are beneficial to furthering research programs in embodied music cognition. Here I discuss a particular feature of temporal experience that plays a key role in such philosophical work: a distinction between the experience of succession and the mere succession of experiences. I question the presupposition that there is such an evident, clear distinction and suggest that, instead, how the distinction is drawn is context-dependent. After suggesting a way to modify the philosophical models of temporal experience to accommodate this context-dependency, I illustrate that these models can fruitfully incorporate features of research projects in embodied musical cognition. To do so I supplement a modified retentionalist model with aspects of recent work that links bodily movement with musical perception (Godøy, 2006; 2010a; Jensenius, Wanderley, Godøy, and Leman, 2010. The resulting model is shown to facilitate novel hypotheses, refine the notion of context-dependency and point towards means of extending the philosophical model and an existent research program.

  10. Speaker-Sex Discrimination for Voiced and Whispered Vowels at Short Durations

    OpenAIRE

    Smith, David R. R.

    2016-01-01

    Whispered vowels, produced with no vocal fold vibration, lack the periodic temporal fine structure which in voiced vowels underlies the perceptual attribute of pitch (a salient auditory cue to speaker sex). Voiced vowels possess no temporal fine structure at very short durations (below two glottal cycles). The prediction was that speaker-sex discrimination performance for whispered and voiced vowels would be similar for very short durations but, as stimulus duration increases, voiced vowel pe...

  11. Perceiving temporal regularity in music: the role of auditory event-related potentials (ERPs) in probing beat perception.

    Science.gov (United States)

    Honing, Henkjan; Bouwer, Fleur L; Háden, Gábor P

    2014-01-01

    The aim of this chapter is to give an overview of how the perception of a regular beat in music can be studied in humans adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). Next to a review of the recent literature on the perception of temporal regularity in music, we will discuss in how far ERPs, and especially the component called mismatch negativity (MMN), can be instrumental in probing beat perception. We conclude with a discussion on the pitfalls and prospects of using ERPs to probe the perception of a regular beat, in which we present possible constraints on stimulus design and discuss future perspectives.

  12. Perception of non-verbal auditory stimuli in Italian dyslexic children.

    Science.gov (United States)

    Cantiani, Chiara; Lorusso, Maria Luisa; Valnegri, Camilla; Molteni, Massimo

    2010-01-01

    Auditory temporal processing deficits have been proposed as the underlying cause of phonological difficulties in Developmental Dyslexia. The hypothesis was tested in a sample of 20 Italian dyslexic children aged 8-14, and 20 matched control children. Three tasks of auditory processing of non-verbal stimuli, involving discrimination and reproduction of sequences of rapidly presented short sounds were expressly created. Dyslexic subjects performed more poorly than control children, suggesting the presence of a deficit only partially influenced by the duration of the stimuli and of inter-stimulus intervals (ISIs).

  13. Auditory Discrimination of Lexical Stress Patterns in Hearing-Impaired Infants with Cochlear Implants Compared with Normal Hearing: Influence of Acoustic Cues and Listening Experience to the Ambient Language.

    Science.gov (United States)

    Segal, Osnat; Houston, Derek; Kishon-Rabin, Liat

    2016-01-01

    To assess discrimination of lexical stress pattern in infants with cochlear implant (CI) compared with infants with normal hearing (NH). While criteria for cochlear implantation have expanded to infants as young as 6 months, little is known regarding infants' processing of suprasegmental-prosodic cues which are known to be important for the first stages of language acquisition. Lexical stress is an example of such a cue, which, in hearing infants, has been shown to assist in segmenting words from fluent speech and in distinguishing between words that differ only the stress pattern. To date, however, there are no data on the ability of infants with CIs to perceive lexical stress. Such information will provide insight to the speech characteristics that are available to these infants in their first steps of language acquisition. This is of particular interest given the known limitations that the CI device has in transmitting speech information that is mediated by changes in fundamental frequency. Two groups of infants participated in this study. The first group included 20 profoundly hearing-impaired infants with CI, 12 to 33 months old, implanted under the age of 2.5 years (median age of implantation = 14.5 months), with 1 to 6 months of CI use (mean = 2.7 months) and no known additional problems. The second group of infants included 48 NH infants, 11 to 14 months old with normal development and no known risk factors for developmental delays. Infants were tested on their ability to discriminate between nonsense words that differed on their stress pattern only (/dóti/ versus /dotí/ and /dotí/ versus /dóti/) using the visual habituation procedure. The measure for discrimination was the change in looking time between the last habituation trial (e.g., /dóti/) and the novel trial (e.g., /dotí/). (1) Infants with CI showed discrimination between lexical stress pattern with only limited auditory experience with their implant device, (2) discrimination of stress

  14. The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke

    OpenAIRE

    Leff, Alexander P.; Schofield, Thomas M.; Crinion, Jennifer T.; Seghier, Mohamed L.; Grogan, Alice; Green, David W.; Price, Cathy J.

    2009-01-01

    Competing theories of short-term memory function make specific predictions about the functional anatomy of auditory short-term memory and its role in language comprehension. We analysed high-resolution structural magnetic resonance images from 210 stroke patients and employed a novel voxel based analysis to test the relationship between auditory short-term memory and speech comprehension. Using digit span as an index of auditory short-term memory capacity we found that the structural integrit...

  15. Children with speech sound disorder: Comparing a non-linguistic auditory approach with a phonological intervention approach to improve phonological skills

    Directory of Open Access Journals (Sweden)

    Cristina eMurphy

    2015-02-01

    Full Text Available This study aimed to compare the effects of a non-linguistic auditory intervention approach with a phonological intervention approach on the phonological skills of children with speech sound disorder. A total of 17 children, aged 7-12 years, with speech sound disorder were randomly allocated to either the non-linguistic auditory temporal intervention group (n = 10, average age 7.7 ± 1.2 or phonological intervention group (n = 7, average age 8.6 ± 1.2. The intervention outcomes included auditory-sensory measures (auditory temporal processing skills and cognitive measures (attention, short-term memory, speech production and phonological awareness skills. The auditory approach focused on non-linguistic auditory training (eg. backward masking and frequency discrimination, whereas the phonological approach focused on speech sound training (eg. phonological organisation and awareness. Both interventions consisted of twelve 45-minute sessions delivered twice per week, for a total of nine hours. Intra-group analysis demonstrated that the auditory intervention group showed significant gains in both auditory and cognitive measures, whereas no significant gain was observed in the phonological intervention group. No significant improvement on phonological skills was observed in any of the groups. Inter-group analysis demonstrated significant differences between the improvement following training for both groups, with a more pronounced gain for the non-linguistic auditory temporal intervention in one of the visual attention measures and both auditory measures. Therefore, both analyses suggest that although the non-linguistic auditory intervention approach appeared to be the most effective intervention approach, it was not sufficient to promote the enhancement of phonological skills.

  16. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  17. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Directory of Open Access Journals (Sweden)

    James Bigelow

    Full Text Available Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s. However, at longer retention intervals (8-32 s, accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  18. Achilles’ Ear? Inferior Human Short-Term and Recognition Memory in the Auditory Modality

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects’ retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1–4 s). However, at longer retention intervals (8–32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices. PMID:24587119

  19. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.

  20. Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data

    Science.gov (United States)

    Hagensieker, Ron; Roscher, Ribana; Rosentreter, Johannes; Jakimow, Benjamin; Waske, Björn

    2017-12-01

    Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial-temporal variability is a challenging task. We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain. The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.

  1. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.

    Science.gov (United States)

    Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab

    2005-08-01

    Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

  2. EFFECTS OF PHYSICAL REHABILITATION INTEGRATED WITH RHYTHMIC AUDITORY STIMULATION ON SPATIO-TEMPORAL AND KINEMATIC PARAMETERS OF GAIT IN PARKINSON’S DISEASE

    Directory of Open Access Journals (Sweden)

    Massimiliano Pau

    2016-08-01

    Full Text Available Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson’s disease (PD. In this context, the use of Rhythmic Auditory Stimulation (RAS has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns scarce information is available from a kinematic viewpoint. In this study we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of intensive rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4±11.1, Hoehn & Yahr 1-3. Gait kinematics was assessed before and at the end of the rehabilitation period and after a three-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively, which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion-extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments.

  3. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study.

    Science.gov (United States)

    Orlov, Natasza D; Giampietro, Vincent; O'Daly, Owen; Lam, Sheut-Ling; Barker, Gareth J; Rubia, Katya; McGuire, Philip; Shergill, Sukhwinder S; Allen, Paul

    2018-02-12

    Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.

  4. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  5. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    Science.gov (United States)

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition

  6. Encoding of natural and artificial stimuli in the auditory midbrain

    Science.gov (United States)

    Lyzwa, Dominika

    How complex acoustic stimuli are encoded in the main center of convergence in the auditory midbrain is not clear. Here, the representation of neural spiking responses to natural and artificial sounds across this subcortical structure is investigated based on neurophysiological recordings from the mammalian midbrain. Neural and stimulus correlations of neuronal pairs are analyzed with respect to the neurons' distance, and responses to different natural communication sounds are discriminated. A model which includes linear and nonlinear neural response properties of this nucleus is presented and employed to predict temporal spiking responses to new sounds. Supported by BMBF Grant 01GQ0811.

  7. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    Science.gov (United States)

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the

  8. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    Directory of Open Access Journals (Sweden)

    Nicolas eGiret

    2015-10-01

    Full Text Available Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM, while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird’s own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of

  9. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  10. Category-specific responses to faces and objects in primate auditory cortex

    Directory of Open Access Journals (Sweden)

    Kari L Hoffman

    2008-03-01

    Full Text Available Auditory and visual signals often occur together, and the two sensory channels are known to infl uence each other to facilitate perception. The neural basis of this integration is not well understood, although other forms of multisensory infl uences have been shown to occur at surprisingly early stages of processing in cortex. Primary visual cortex neurons can show frequency-tuning to auditory stimuli, and auditory cortex responds selectively to certain somatosensory stimuli, supporting the possibility that complex visual signals may modulate early stages of auditory processing. To elucidate which auditory regions, if any, are responsive to complex visual stimuli, we recorded from auditory cortex and the superior temporal sulcus while presenting visual stimuli consisting of various objects, neutral faces, and facial expressions generated during vocalization. Both objects and conspecifi c faces elicited robust fi eld potential responses in auditory cortex sites, but the responses varied by category: both neutral and vocalizing faces had a highly consistent negative component (N100 followed by a broader positive component (P180 whereas object responses were more variable in time and shape, but could be discriminated consistently from the responses to faces. The face response did not vary within the face category, i.e., for expressive vs. neutral face stimuli. The presence of responses for both objects and neutral faces suggests that auditory cortex receives highly informative visual input that is not restricted to those stimuli associated with auditory components. These results reveal selectivity for complex visual stimuli in a brain region conventionally described as non-visual unisensory cortex.

  11. Speech Production and Speech Discrimination by Hearing-Impaired Children.

    Science.gov (United States)

    Novelli-Olmstead, Tina; Ling, Daniel

    1984-01-01

    Seven hearing impaired children (five to seven years old) assigned to the Speakers group made highly significant gains in speech production and auditory discrimination of speech, while Listeners made only slight speech production gains and no gains in auditory discrimination. Combined speech and auditory training was more effective than auditory…

  12. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  13. The Influence of Auditory Information on Visual Size Adaptation.

    Science.gov (United States)

    Tonelli, Alessia; Cuturi, Luigi F; Gori, Monica

    2017-01-01

    Size perception can be influenced by several visual cues, such as spatial (e.g., depth or vergence) and temporal contextual cues (e.g., adaptation to steady visual stimulation). Nevertheless, perception is generally multisensory and other sensory modalities, such as auditory, can contribute to the functional estimation of the size of objects. In this study, we investigate whether auditory stimuli at different sound pitches can influence visual size perception after visual adaptation. To this aim, we used an adaptation paradigm (Pooresmaeili et al., 2013) in three experimental conditions: visual-only, visual-sound at 100 Hz and visual-sound at 9,000 Hz. We asked participants to judge the size of a test stimulus in a size discrimination task. First, we obtained a baseline for all conditions. In the visual-sound conditions, the auditory stimulus was concurrent to the test stimulus. Secondly, we repeated the task by presenting an adapter (twice as big as the reference stimulus) before the test stimulus. We replicated the size aftereffect in the visual-only condition: the test stimulus was perceived smaller than its physical size. The new finding is that we found the auditory stimuli have an effect on the perceived size of the test stimulus after visual adaptation: low frequency sound decreased the effect of visual adaptation, making the stimulus perceived bigger compared to the visual-only condition, and contrarily, the high frequency sound had the opposite effect, making the test size perceived even smaller.

  14. Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations

    Directory of Open Access Journals (Sweden)

    Gabriella Musacchia

    2017-08-01

    Full Text Available Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx, over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx or maturation alone (Naïve Control, NC. Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD elicited greater Theta-band (4–6 Hz activity in Right Auditory Cortex (RAC, as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV elicited larger responses in Left Auditory Cortex (LAC. PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33–37 Hz activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.

  15. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Science.gov (United States)

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  16. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Directory of Open Access Journals (Sweden)

    Qingcui eWang

    2015-05-01

    Full Text Available Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ or ‘group motion’. In element motion, the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in group motion, both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside. Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of group motion as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps. The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  17. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Pencil Rescues Impaired Performance on a Visual Discrimination Task in Patients with Medial Temporal Lobe Lesions

    Science.gov (United States)

    Knutson, Ashley R.; Hopkins, Ramona O.; Squire, Larry R.

    2013-01-01

    We tested proposals that medial temporal lobe (MTL) structures support not just memory but certain kinds of visual perception as well. Patients with hippocampal lesions or larger MTL lesions attempted to identify the unique object among twin pairs of objects that had a high degree of feature overlap. Patients were markedly impaired under the more…

  19. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  20. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  1. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations.

    Science.gov (United States)

    Ćurčić-Blake, Branislava; Ford, Judith M; Hubl, Daniela; Orlov, Natasza D; Sommer, Iris E; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W; David, Olivier; Mulert, Christoph; Woodward, Todd S; Aleman, André

    2017-01-01

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. On the relations among temporal integration for loudness, loudness discrimination, and the form of the loudness function. (A)

    DEFF Research Database (Denmark)

    Poulsen, Torben; Buus, Søren; Florentine, M

    1996-01-01

    Temporal integration for loudness was measured as a function of level from 2 to 60 dB SL using 2-, 10-, 50-, and 250-ms tones at 5 kHz. The adaptive 2I,2AFC procedure converged at the level required to make the variable stimulus just louder than the fixed stimulus. Thus the data yield estimates...... of the levels required to make tones of different durations equally loud and of the just noticeable differences for loudness level. Results for four listeners with normal hearing show that the amount of temporal integration, defined as the level difference between equally loud short and long tones, varies...... markedly with level and is largest at moderate levels. The effect of level increases as the duration of the short stimulus decreases and is largest for comparisons between the 2- and 250-ms tones. The loudness-level jnds are also largest at moderate levels and, contrary to traditional jnds for the level...

  3. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  4. Task-specific reorganization of the auditory cortex in deaf humans.

    Science.gov (United States)

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  5. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  6. Bilateral duplication of the internal auditory canal

    International Nuclear Information System (INIS)

    Weon, Young Cheol; Kim, Jae Hyoung; Choi, Sung Kyu; Koo, Ja-Won

    2007-01-01

    Duplication of the internal auditory canal is an extremely rare temporal bone anomaly that is believed to result from aplasia or hypoplasia of the vestibulocochlear nerve. We report bilateral duplication of the internal auditory canal in a 28-month-old boy with developmental delay and sensorineural hearing loss. (orig.)

  7. Auditory Evoked Responses in Neonates by MEG

    International Nuclear Information System (INIS)

    Hernandez-Pavon, J. C.; Sosa, M.; Lutter, W. J.; Maier, M.; Wakai, R. T.

    2008-01-01

    Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age

  8. Auditory Pattern Memory and Group Signal Detection

    National Research Council Canada - National Science Library

    Sorkin, Robert

    1997-01-01

    .... The experiments with temporally-coded auditory patterns showed how listeners' attention is influenced by the position and the amount of information carried by different segments of the pattern...

  9. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss.

    Science.gov (United States)

    Brooks, Cassandra J; Chan, Yu Man; Anderson, Andrew J; McKendrick, Allison M

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information.

  10. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss

    Science.gov (United States)

    Brooks, Cassandra J.; Chan, Yu Man; Anderson, Andrew J.; McKendrick, Allison M.

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information. PMID:29867415

  11. In search of an auditory engram

    OpenAIRE

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that mo...

  12. Central auditory processing outcome after stroke in children

    Directory of Open Access Journals (Sweden)

    Karla M. I. Freiria Elias

    2014-09-01

    Full Text Available Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure; dichotic digit test and staggered spondaic word test (selective attention; pitch pattern and duration pattern sequence tests (temporal processing and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.

  13. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    Science.gov (United States)

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  14. Functional mapping of the primate auditory system.

    Science.gov (United States)

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  15. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  16. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  17. Web-based auditory self-training system for adult and elderly users of hearing aids.

    Science.gov (United States)

    Vitti, Simone Virginia; Blasca, Wanderléia Quinhoneiro; Sigulem, Daniel; Torres Pisa, Ivan

    2015-01-01

    THA portal, was finalized, rated by experts and hearing aid users and approved for use. The system comprised auditory skills training along five lines: discrimination; recognition; comprehension and temporal sequencing; auditory closure; and cognitive-linguistic and communication strategies. Users needed to undergo auditory training over a minimum period of 1 month: 5 times a week for 30 minutes a day. Comparisons were made between G1 and G2 and web system use by G3. The web system developed was approved for release to hearing aid users. It is expected that the self-training will help improve effective use of hearing aids, thereby decreasing their rejection.

  18. Laterality of basic auditory perception.

    Science.gov (United States)

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  19. Effects of cochlear compression and frequency selectivity on pitch discrimination of complex tones with unresolved harmonics

    DEFF Research Database (Denmark)

    Bianchi, Federica; Fereczkowski, Michal; Zaar, Johannes

    2015-01-01

    Physiological studies have shown that noise-induced sensorineural hearing loss (SNHL) enhances the amplitude of envelope coding in auditory-nerve fibers. As pitch coding of unresolved complex tones is assumed to rely on temporal envelope coding mechanisms, this study investigated...... for the RP condition. Overall, these findings suggest that both reduced cochlear compression and auditory filter broadening alter the envelope representation of unresolved complex tones, leading to changes in pitch-discrimination performance....... pitchdiscrimination performance in listeners with SNHL. Pitch-discrimination thresholds were obtained in 14 normal-hearing (NH) and 10 hearingimpaired (HI) listeners for sine-phase (SP) and random-phase (RP) unresolved complex tones. The HI listeners performed, on average, similarly as the NH listeners in the SP...

  20. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  1. The Phoneme Identification Test for Assessment of Spectral and Temporal Discrimination Skills in Children: Development, Normative Data, and Test-Retest Reliability Studies.

    Science.gov (United States)

    Cameron, Sharon; Chong-White, Nicky; Mealings, Kiri; Beechey, Tim; Dillon, Harvey; Young, Taegan

    2018-02-01

    Previous research suggests that a proportion of children experiencing reading and listening difficulties may have an underlying primary deficit in the way that the central auditory nervous system analyses the perceptually important, rapidly varying, formant frequency components of speech. The Phoneme Identification Test (PIT) was developed to investigate the ability of children to use spectro-temporal cues to perceptually categorize speech sounds based on their rapidly changing formant frequencies. The PIT uses an adaptive two-alternative forced-choice procedure whereby the participant identifies a synthesized consonant-vowel (CV) (/ba/ or /da/) syllable. CV syllables differed only in the second formant (F2) frequency along an 11-step continuum (between 0% and 100%-representing an ideal /ba/ and /da/, respectively). The CV syllables were presented in either quiet (PIT Q) or noise at a 0 dB signal-to-noise ratio (PIT N). Development of the PIT stimuli and test protocols, and collection of normative and test-retest reliability data. Twelve adults (aged 23 yr 10 mo to 50 yr 9 mo, mean 32 yr 5 mo) and 137 typically developing, primary-school children (aged 6 yr 0 mo to 12 yr 4 mo, mean 9 yr 3 mo). There were 73 males and 76 females. Data were collected using a touchscreen computer. Psychometric functions were automatically fit to individual data by the PIT software. Performance was determined by the width of the continuum for which responses were neither clearly /ba/ nor /da/ (referred to as the uncertainty region [UR]). A shallower psychometric function slope reflected greater uncertainty. Age effects were determined based on raw scores. Z scores were calculated to account for the effect of age on performance. Outliers, and individual data for which the confidence interval of the UR exceeded a maximum allowable value, were removed. Nonparametric tests were used as the data were skewed toward negative performance. Across participants, the median value of the F2 range

  2. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  3. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory.

    Science.gov (United States)

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  4. Improving Dorsal Stream Function in Dyslexics By Training Figure/Ground Motion Discrimination Improves Reading Fluency, Attention, and Working Memory

    Directory of Open Access Journals (Sweden)

    Teri Lawton

    2016-08-01

    Full Text Available There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average, two targeting the temporal dynamics (timing of either the auditory or visual pathways with a third reading intervention (control group using linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  5. Congenital amusia: a disorder of fine-grained pitch discrimination.

    Science.gov (United States)

    Peretz, Isabelle; Ayotte, Julie; Zatorre, Robert J; Mehler, Jacques; Ahad, Pierre; Penhune, Virginia B; Jutras, Benoît

    2002-01-17

    We report the first documented case of congenital amusia. This disorder refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive deficits, socioaffective disturbance, or lack of environmental stimulation. This musical impairment is diagnosed in a middle-aged woman, hereafter referred to as Monica, who lacks most basic musical abilities, including melodic discrimination and recognition, despite normal audiometry and above-average intellectual, memory, and language skills. The results of psychophysical tests show that Monica has severe difficulties with detecting pitch changes. The data suggest that music-processing difficulties may result from problems in fine-grained discrimination of pitch, much in the same way as many language-processing difficulties arise from deficiencies in auditory temporal resolution.

  6. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia.

    Science.gov (United States)

    Law, Jeremy M; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia.

  7. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    Science.gov (United States)

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  8. Auditory stimulus timing influences perceived duration of co-occurring visual stimuli

    Directory of Open Access Journals (Sweden)

    Vincenzo eRomei

    2011-09-01

    Full Text Available There is increasing interest in multisensory influences upon sensory-specific judgements, such as when auditory stimuli affect visual perception. Here we studied whether the duration of an auditory event can objectively affect the perceived duration of a co-occurring visual event. On each trial, participants were presented with a pair of successive flashes and had to judge whether the first or second was longer. Two beeps were presented with the flashes. The order of short and long stimuli could be the same across audition and vision (audiovisual congruent or reversed, so that the longer flash was accompanied by the shorter beep and vice versa (audiovisual incongruent; or the two beeps could have the same duration as each other. Beeps and flashes could onset synchronously or asynchronously. In a further control experiment, the beep durations were much longer (tripled than the flashes. Results showed that visual duration-discrimination sensitivity (d' was significantly higher for congruent (and significantly lower for incongruent audiovisual synchronous combinations, relative to the visual only presentation. This effect was abolished when auditory and visual stimuli were presented asynchronously, or when sound durations tripled those of flashes. We conclude that the temporal properties of co-occurring auditory stimuli influence the perceived duration of visual stimuli and that this can reflect genuine changes in visual sensitivity rather than mere response bias.

  9. Visual and Auditory Sensitivities and Discriminations

    National Research Council Canada - National Science Library

    Regan, David

    2003-01-01

    .... A new equation gives TTC from binocular information without involving distance. The human visual system contains a mechanism that rapidly compares contours at two distant sites so as to encode the location size and shape of an object...

  10. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  11. Auditory changes in acromegaly.

    Science.gov (United States)

    Tabur, S; Korkmaz, H; Baysal, E; Hatipoglu, E; Aytac, I; Akarsu, E

    2017-06-01

    The aim of this study is to determine the changes involving auditory system in cases with acromegaly. Otological examinations of 41 cases with acromegaly (uncontrolled n = 22, controlled n = 19) were compared with those of age and gender-matched 24 healthy subjects. Whereas the cases with acromegaly underwent examination with pure tone audiometry (PTA), speech audiometry for speech discrimination (SD), tympanometry, stapedius reflex evaluation and otoacoustic emission tests, the control group did only have otological examination and PTA. Additionally, previously performed paranasal sinus-computed tomography of all cases with acromegaly and control subjects were obtained to measure the length of internal acoustic canal (IAC). PTA values were higher (p acromegaly group was narrower compared to that in control group (p = 0.03 for right ears and p = 0.02 for left ears). When only cases with acromegaly were taken into consideration, PTA values in left ears had positive correlation with growth hormone and insulin-like growth factor-1 levels (r = 0.4, p = 0.02 and r = 0.3, p = 0.03). Of all cases with acromegaly 13 (32%) had hearing loss in at least one ear, 7 (54%) had sensorineural type and 6 (46%) had conductive type hearing loss. Acromegaly may cause certain changes in the auditory system in cases with acromegaly. The changes in the auditory system may be multifactorial causing both conductive and sensorioneural defects.

  12. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  13. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  14. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    Science.gov (United States)

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  15. Effects of Multimodal Presentation and Stimulus Familiarity on Auditory and Visual Processing

    Science.gov (United States)

    Robinson, Christopher W.; Sloutsky, Vladimir M.

    2010-01-01

    Two experiments examined the effects of multimodal presentation and stimulus familiarity on auditory and visual processing. In Experiment 1, 10-month-olds were habituated to either an auditory stimulus, a visual stimulus, or an auditory-visual multimodal stimulus. Processing time was assessed during the habituation phase, and discrimination of…

  16. Auditory conflict and congruence in frontotemporal dementia.

    Science.gov (United States)

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Effect of conductive hearing loss on central auditory function.

    Science.gov (United States)

    Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher

    It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: phearing for both sides (phearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. The use of listening devices to ameliorate auditory deficit in children with autism.

    Science.gov (United States)

    Rance, Gary; Saunders, Kerryn; Carew, Peter; Johansson, Marlin; Tan, Johanna

    2014-02-01

    To evaluate both monaural and binaural processing skills in a group of children with autism spectrum disorder (ASD) and to determine the degree to which personal frequency modulation (radio transmission) (FM) listening systems could ameliorate their listening difficulties. Auditory temporal processing (amplitude modulation detection), spatial listening (integration of binaural difference cues), and functional hearing (speech perception in background noise) were evaluated in 20 children with ASD. Ten of these subsequently underwent a 6-week device trial in which they wore the FM system for up to 7 hours per day. Auditory temporal processing and spatial listening ability were poorer in subjects with ASD than in matched controls (temporal: P = .014 [95% CI -6.4 to -0.8 dB], spatial: P = .003 [1.0 to 4.4 dB]), and performance on both of these basic processing measures was correlated with speech perception ability (temporal: r = -0.44, P = .022; spatial: r = -0.50, P = .015). The provision of FM listening systems resulted in improved discrimination of speech in noise (P listening devices can enhance speech perception in noise, aid social interaction, and improve educational outcomes in children with ASD. Copyright © 2014 Mosby, Inc. All rights reserved.

  19. Language processing of auditory cortex revealed by functional magnetic resonance imaging in presbycusis patients.

    Science.gov (United States)

    Chen, Xianming; Wang, Maoxin; Deng, Yihong; Liang, Yonghui; Li, Jianzhong; Chen, Shiyan

    2016-01-01

    Contralateral temporal lobe activation decreases with aging, regardless of hearing status, with elderly individuals showing reduced right ear advantage. Aging and hearing loss possibly lead to presbycusis speech discrimination decline. To evaluate presbycusis patients' auditory cortex activation under verbal stimulation. Thirty-six patients were enrolled: 10 presbycusis patients (mean age = 64 years, range = 60-70), 10 in the healthy aged group (mean age = 66 years, range = 60-70), and 16 young healthy volunteers (mean age = 25 years, range = 23-28). These three groups underwent simultaneous 1 kHz and 90 dB single-syllable word stimuli and (blood-oxygen-level-dependent functional magnetic resonance imaging) BOLD fMRI examinations. The main activation regions were superior temporal and middle temporal gyrus. For all aged subjects, the right region of interest (ROI) activation volume was decreased compared with the young group. With left ear stimulation, bilateral ROI activation intensity held. With right ear stimulation, the aged group's activation intensity was higher. Using monaural stimulation in the young group, contralateral temporal lobe activation volume and intensity were higher vs ipsilateral, while they were lower in the aged and presbycusis groups. On left and right ear auditory tasks, the young group showed right ear advantage, while the aged and presbycusis groups showed reduced right ear advantage.

  20. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    Science.gov (United States)

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra

  1. Recurrence of task set-related MEG signal patterns during auditory working memory.

    Science.gov (United States)

    Peters, Benjamin; Bledowski, Christoph; Rieder, Maria; Kaiser, Jochen

    2016-06-01

    Processing of auditory spatial and non-spatial information in working memory has been shown to rely on separate cortical systems. While previous studies have demonstrated differences in spatial versus non-spatial processing from the encoding of to-be-remembered stimuli onwards, here we investigated whether such differences would be detectable already prior to presentation of the sample stimulus. We analyzed broad-band magnetoencephalography data from 15 healthy adults during an auditory working memory paradigm starting with a visual cue indicating the task-relevant stimulus feature for a given trial (lateralization or pitch) and a subsequent 1.5-s pre-encoding phase. This was followed by a sample sound (0.2s), the delay phase (0.8s) and a test stimulus (0.2s) after which participants made a match/non-match decision. Linear discriminant functions were trained to decode task-specific signal patterns throughout the task, and temporal generalization was used to assess whether the neural codes discriminating between the tasks during the pre-encoding phase would recur during later task periods. The spatial versus non-spatial tasks could indeed be discriminated after the onset of the cue onwards, and decoders trained during the pre-encoding phase successfully discriminated the tasks during both sample stimulus encoding and during the delay phase. This demonstrates that task-specific neural codes are established already before the memorandum is presented and that the same patterns are reestablished during stimulus encoding and maintenance. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Neural circuits in auditory and audiovisual memory.

    Science.gov (United States)

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Processamento auditivo: comparação entre potenciais evocados auditivos de média latência e testes de padrões temporais Auditory processing: comparision between auditory middle latency response and temporal pattern tests

    Directory of Open Access Journals (Sweden)

    Eliane Schochat

    2009-06-01

    Full Text Available OBJETIVO: verificar a concordância entre os resultados da avaliação do Potencial Evocado Auditivo de Média Latência e testes de padrões temporais. MÉTODOS: foram avaliados 155 sujeitos de ambos os sexos, idade entre sete e 16 anos, com audição periférica normal. Os sujeitos foram submetidos aos testes de Padrão de Frequência e Duração e Potenciais Evocados auditivos de Média Latência. RESULTADOS: os sujeitos foram distribuídos em dois grupos: normal ou alterado para o processamento auditivo. O índice de alteração foi em torno de 30%, exceto para Potencial Evocado Auditivo de Média Latência que foi pouco menor (17,4%. Os padrões de frequência e duração foram concordantes até 12 anos. A partir dos 13 anos, observou-se maior ocorrência de alteração no padrão de frequência que no padrão de duração. Os padrões de frequência e duração (orelhas direita e esquerda e Potencial Evocado Auditivo de Média Latência não foram concordantes. Para 7 e 8 anos a combinação padrão de frequência e duração normal / Média Latência alterado tem maior ocorrência que a combinação padrão de frequência e duração alterada / Média Latência normal. Nas demais idades, ocorreu o contrário. Não houve diferença estatística entre as faixas etárias quanto à distribuição de normal e alterado no padrão de frequência (orelhas direita e esquerda, nem para o Potencial Evocado Auditivo de Média Latência, com exceção do padrão de duração para o grupo de 9 e 10 anos. CONCLUSÃO: não houve concordância entre os resultados do Potencial Evocado Auditivo de Média Latência e os testes de padrões temporais aplicados.PURPOSE: to check the concordance between the Middle Latency Response and temporal processing tests. METHODS: 155 normal hearing subjects of both genders (age group range between 7 to 16 years were evaluated with the Pitch and Duration Pattern Tests (behavioral and Middle Latency Response

  4. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    Science.gov (United States)

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  5. Long term memory for noise: evidence of robust encoding of very short temporal acoustic patterns.

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Viswanathan

    2016-11-01

    Full Text Available Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs (the two halves of the noise were identical or 1-s plain random noises (Ns. Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin and scrambled (chopping sounds into 10- and 20-ms bits before shuffling versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant’s discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities.

  6. Auditory Training for Children with Processing Disorders.

    Science.gov (United States)

    Katz, Jack; Cohen, Carolyn F.

    1985-01-01

    The article provides an overview of central auditory processing (CAP) dysfunction and reviews research on approaches to improve perceptual skills; to provide discrimination training for communicative and reading disorders; to increase memory and analysis skills and dichotic listening; to provide speech-in-noise training; and to amplify speech as…

  7. Subcortical plasticity following perceptual learning in a pitch discrimination task

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pi...

  8. Electrophysiological and auditory behavioral evaluation of individuals with left temporal lobe epilepsy Avaliação eletrofisiológica e comportamental da audição em individuos com epilepsia em lobo temporal esquerdo

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha

    2010-02-01

    Full Text Available The purpose of this study was to determine the repercussions of left temporal lobe epilepsy (TLE for subjects with left mesial temporal sclerosis (LMTS in relation to the behavioral test-Dichotic Digits Test (DDT, event-related potential (P300, and to compare the two temporal lobes in terms of P300 latency and amplitude. We studied 12 subjects with LMTS and 12 control subjects without LMTS. Relationships between P300 latency and P300 amplitude at sites C3A1,C3A2,C4A1, and C4A2, together with DDT results, were studied in inter-and intra-group analyses. On the DDT, subjects with LMTS performed poorly in comparison to controls. This difference was statistically significant for both ears. The P300 was absent in 6 individuals with LMTS. Regarding P300 latency and amplitude, as a group, LMTS subjects presented trend toward greater P300 latency and lower P300 amplitude at all positions in relation to controls, difference being statistically significant for C3A1 and C4A2. However, it was not possible to determine laterality effect of P300 between affected and unaffected hemispheres.O objetivo deste estudo foi determinar a repercussão da epilepsia de lobo temporal esquerdo (LTE em indivíduos com esclerose mesial temporal esquerda (EMTE em relação à avaliação auditiva comportamental-Teste Dicótico de Dígitos (TDD, ao Potencial Evocado Auditivo de Longa Latência (P300 e comparar o P300 do lobo temporal esquerdo e direito. Estudamos 12 indivíduos com EMTE (grupo estudo e 12 indivíduos controle com desenvolvimento típico. Analisamos as relações entre a latência e amplitude do P300, obtidos nas posições C3A1,C3A2,C4A1 e C4A2 e os resultados obtidos no TDD. No TDD, o grupo estudo apresentou pior desempenho em relação ao grupo controle, sendo esta diferença estatisticamente significante em ambas as orelhas. Para o P300, observamos que em seis indivíduos com EMTE o potencial foi ausente. Para a latência e amplitude, verificamos que estes

  9. Improvement of auditory hallucinations and reduction of primary auditory area's activation following TMS

    International Nuclear Information System (INIS)

    Giesel, Frederik L.; Mehndiratta, Amit; Hempel, Albrecht; Hempel, Eckhard; Kress, Kai R.; Essig, Marco; Schröder, Johannes

    2012-01-01

    Background: In the present case study, improvement of auditory hallucinations following transcranial magnetic stimulation (TMS) therapy was investigated with respect to activation changes of the auditory cortices. Methods: Using functional magnetic resonance imaging (fMRI), activation of the auditory cortices was assessed prior to and after a 4-week TMS series of the left superior temporal gyrus in a schizophrenic patient with medication-resistant auditory hallucinations. Results: Hallucinations decreased slightly after the third and profoundly after the fourth week of TMS. Activation in the primary auditory area decreased, whereas activation in the operculum and insula remained stable. Conclusions: Combination of TMS and repetitive fMRI is promising to elucidate the physiological changes induced by TMS.

  10. Audiovisual Integration Delayed by Stimulus Onset Asynchrony Between Auditory and Visual Stimuli in Older Adults.

    Science.gov (United States)

    Ren, Yanna; Yang, Weiping; Nakahashi, Kohei; Takahashi, Satoshi; Wu, Jinglong

    2017-02-01

    Although neuronal studies have shown that audiovisual integration is regulated by temporal factors, there is still little knowledge about the impact of temporal factors on audiovisual integration in older adults. To clarify how stimulus onset asynchrony (SOA) between auditory and visual stimuli modulates age-related audiovisual integration, 20 younger adults (21-24 years) and 20 older adults (61-80 years) were instructed to perform an auditory or visual stimuli discrimination experiment. The results showed that in younger adults, audiovisual integration was altered from an enhancement (AV, A ± 50 V) to a depression (A ± 150 V). In older adults, the alterative pattern was similar to that for younger adults with the expansion of SOA; however, older adults showed significantly delayed onset for the time-window-of-integration and peak latency in all conditions, which further demonstrated that audiovisual integration was delayed more severely with the expansion of SOA, especially in the peak latency for V-preceded-A conditions in older adults. Our study suggested that audiovisual facilitative integration occurs only within a certain SOA range (e.g., -50 to 50 ms) in both younger and older adults. Moreover, our results confirm that the response for older adults was slowed and provided empirical evidence that integration ability is much more sensitive to the temporal alignment of audiovisual stimuli in older adults.

  11. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  14. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  15. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  16. The role of multisensory interplay in enabling temporal expectations.

    Science.gov (United States)

    Ball, Felix; Michels, Lara E; Thiele, Carsten; Noesselt, Toemme

    2018-01-01

    Temporal regularities can guide our attention to focus on a particular moment in time and to be especially vigilant just then. Previous research provided evidence for the influence of temporal expectation on perceptual processing in unisensory auditory, visual, and tactile contexts. However, in real life we are often exposed to a complex and continuous stream of multisensory events. Here we tested - in a series of experiments - whether temporal expectations can enhance perception in multisensory contexts and whether this enhancement differs from enhancements in unisensory contexts. Our discrimination paradigm contained near-threshold targets (subject-specific 75% discrimination accuracy) embedded in a sequence of distractors. The likelihood of target occurrence (early or late) was manipulated block-wise. Furthermore, we tested whether spatial and modality-specific target uncertainty (i.e. predictable vs. unpredictable target position or modality) would affect temporal expectation (TE) measured with perceptual sensitivity (d ' ) and response times (RT). In all our experiments, hidden temporal regularities improved performance for expected multisensory targets. Moreover, multisensory performance was unaffected by spatial and modality-specific uncertainty, whereas unisensory TE effects on d ' but not RT were modulated by spatial and modality-specific uncertainty. Additionally, the size of the temporal expectation effect, i.e. the increase in perceptual sensitivity and decrease of RT, scaled linearly with the likelihood of expected targets. Finally, temporal expectation effects were unaffected by varying target position within the stream. Together, our results strongly suggest that participants quickly adapt to novel temporal contexts, that they benefit from multisensory (relative to unisensory) stimulation and that multisensory benefits are maximal if the stimulus-driven uncertainty is highest. We propose that enhanced informational content (i.e. multisensory

  17. The right planum temporale is involved in stimulus-driven, auditory attention--evidence from transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Marco Hirnstein

    Full Text Available It is well known that the planum temporale (PT area in the posterior temporal lobe carries out spectro-temporal analysis of auditory stimuli, which is crucial for speech, for example. There are suggestions that the PT is also involved in auditory attention, specifically in the discrimination and selection of stimuli from the left and right ear. However, direct evidence is missing so far. To examine the role of the PT in auditory attention we asked fourteen participants to complete the Bergen Dichotic Listening Test. In this test two different consonant-vowel syllables (e.g., "ba" and "da" are presented simultaneously, one to each ear, and participants are asked to verbally report the syllable they heard best or most clearly. Thus attentional selection of a syllable is stimulus-driven. Each participant completed the test three times: after their left and right PT (located with anatomical brain scans had been stimulated with repetitive transcranial magnetic stimulation (rTMS, which transiently interferes with normal brain functioning in the stimulated sites, and after sham stimulation, where participants were led to believe they had been stimulated but no rTMS was applied (control. After sham stimulation the typical right ear advantage emerged, that is, participants reported relatively more right than left ear syllables, reflecting a left-hemispheric dominance for language. rTMS over the right but not left PT significantly reduced the right ear advantage. This was the result of participants reporting more left and fewer right ear syllables after right PT stimulation, suggesting there was a leftward shift in stimulus selection. Taken together, our findings point to a new function of the PT in addition to auditory perception: particularly the right PT is involved in stimulus selection and (stimulus-driven, auditory attention.

  18. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  19. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex.

    Science.gov (United States)

    Norman-Haignere, Sam; Kanwisher, Nancy; McDermott, Josh H

    2013-12-11

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.

  20. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  1. Neurogenetics and auditory processing in developmental dyslexia.

    Science.gov (United States)

    Giraud, Anne-Lise; Ramus, Franck

    2013-02-01

    Dyslexia is a polygenic developmental reading disorder characterized by an auditory/phonological deficit. Based on the latest genetic and neurophysiological studies, we propose a tentative model in which phonological deficits could arise from genetic anomalies of the cortical micro-architecture in the temporal lobe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Discrimination task reveals differences in neural bases of tinnitus and hearing impairment.

    Directory of Open Access Journals (Sweden)

    Fatima T Husain

    Full Text Available We investigated auditory perception and cognitive processing in individuals with chronic tinnitus or hearing loss using functional magnetic resonance imaging (fMRI. Our participants belonged to one of three groups: bilateral hearing loss and tinnitus (TIN, bilateral hearing loss without tinnitus (HL, and normal hearing without tinnitus (NH. We employed pure tones and frequency-modulated sweeps as stimuli in two tasks: passive listening and active discrimination. All subjects had normal hearing through 2 kHz and all stimuli were low-pass filtered at 2 kHz so that all participants could hear them equally well. Performance was similar among all three groups for the discrimination task. In all participants, a distributed set of brain regions including the primary and non-primary auditory cortices showed greater response for both tasks compared to rest. Comparing the groups directly, we found decreased activation in the parietal and frontal lobes in the participants with tinnitus compared to the HL group and decreased response in the frontal lobes relative to the NH group. Additionally, the HL subjects exhibited increased response in the anterior cingulate relative to the NH group. Our results suggest that a differential engagement of a putative auditory attention and short-term memory network, comprising regions in the frontal, parietal and temporal cortices and the anterior cingulate, may represent a key difference in the neural bases of chronic tinnitus accompanied by hearing loss relative to hearing loss alone.

  3. Predictors of auditory performance in hearing-aid users: The role of cognitive function and auditory lifestyle (A)

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2006-01-01

    no objective benefit can be measured. It has been suggested that lack of agreement between various hearing-aid outcome components can be explained by individual differences in cognitive function and auditory lifestyle. We measured speech identification, self-report outcome, spectral and temporal resolution...... of hearing, cognitive skills, and auditory lifestyle in 25 new hearing-aid users. The purpose was to assess the predictive power of the nonauditory measures while looking at the relationships between measures from various auditory-performance domains. The results showed that only moderate correlation exists...... between objective and subjective hearing-aid outcome. Different self-report outcome measures showed a different amount of correlation with objective auditory performance. Cognitive skills were found to play a role in explaining speech performance and spectral and temporal abilities, and auditory lifestyle...

  4. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  5. Structural Discrimination

    DEFF Research Database (Denmark)

    Thorsen, Mira Skadegård

    discrimination as two ways of articulating particular, opaque forms of racial discrimination that occur in everyday Danish (and other) contexts, and have therefore become normalized. I present and discuss discrimination as it surfaces in data from my empirical studies of discrimination in Danish contexts...

  6. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  7. Video game players show more precise multisensory temporal processing abilities.

    Science.gov (United States)

    Donohue, Sarah E; Woldorff, Marty G; Mitroff, Stephen R

    2010-05-01

    Recent research has demonstrated enhanced visual attention and visual perception in individuals with extensive experience playing action video games. These benefits manifest in several realms, but much remains unknown about the ways in which video game experience alters perception and cognition. In the present study, we examined whether video game players' benefits generalize beyond vision to multisensory processing by presenting auditory and visual stimuli within a short temporal window to video game players and non-video game players. Participants performed two discrimination tasks, both of which revealed benefits for video game players: In a simultaneity judgment task, video game players were better able to distinguish whether simple visual and auditory stimuli occurred at the same moment or slightly offset in time, and in a temporal-order judgment task, they revealed an enhanced ability to determine the temporal sequence of multisensory stimuli. These results suggest that people with extensive experience playing video games display benefits that extend beyond the visual modality to also impact multisensory processing.

  8. Auditory agnosia as a clinical symptom of childhood adrenoleukodystrophy.

    Science.gov (United States)

    Furushima, Wakana; Kaga, Makiko; Nakamura, Masako; Gunji, Atsuko; Inagaki, Masumi

    2015-08-01

    To investigate detailed auditory features in patients with auditory impairment as the first clinical symptoms of childhood adrenoleukodystrophy (CSALD). Three patients who had hearing difficulty as the first clinical signs and/or symptoms of ALD. Precise examination of the clinical characteristics of hearing and auditory function was performed, including assessments of pure tone audiometry, verbal sound discrimination, otoacoustic emission (OAE), and auditory brainstem response (ABR), as well as an environmental sound discrimination test, a sound lateralization test, and a dichotic listening test (DLT). The auditory pathway was evaluated by MRI in each patient. Poor response to calling was detected in all patients. Two patients were not aware of their hearing difficulty, and had been diagnosed with normal hearing by otolaryngologists at first. Pure-tone audiometry disclosed normal hearing in all patients. All patients showed a normal wave V ABR threshold. Three patients showed obvious difficulty in discriminating verbal sounds, environmental sounds, and sound lateralization and strong left-ear suppression in a dichotic listening test. However, once they discriminated verbal sounds, they correctly understood the meaning. Two patients showed elongation of the I-V and III-V interwave intervals in ABR, but one showed no abnormality. MRIs of these three patients revealed signal changes in auditory radiation including in other subcortical areas. The hearing features of these subjects were diagnosed as auditory agnosia and not aphasia. It should be emphasized that when patients are suspected to have hearing impairment but have no abnormalities in pure tone audiometry and/or ABR, this should not be diagnosed immediately as psychogenic response or pathomimesis, but auditory agnosia must also be considered. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Multivariate sensitivity to voice during auditory categorization.

    Science.gov (United States)

    Lee, Yune Sang; Peelle, Jonathan E; Kraemer, David; Lloyd, Samuel; Granger, Richard

    2015-09-01

    Past neuroimaging studies have documented discrete regions of human temporal cortex that are more strongly activated by conspecific voice sounds than by nonvoice sounds. However, the mechanisms underlying this voice sensitivity remain unclear. In the present functional MRI study, we took a novel approach to examining voice sensitivity, in which we applied a signal detection paradigm to the assessment of multivariate pattern classification among several living and nonliving categories of auditory stimuli. Within this framework, voice sensitivity can be interpreted as a distinct neural representation of brain activity that correctly distinguishes human vocalizations from other auditory object categories. Across a series of auditory categorization tests, we found that bilateral superior and middle temporal cortex consistently exhibited robust sensitivity to human vocal sounds. Although the strongest categorization was in distinguishing human voice from other categories, subsets of these regions were also able to distinguish reliably between nonhuman categories, suggesting a general role in auditory object categorization. Our findings complement the current evidence of cortical sensitivity to human vocal sounds by revealing that the greatest sensitivity during categorization tasks is devoted to distinguishing voice from nonvoice categories within human temporal cortex. Copyright © 2015 the American Physiological Society.

  10. Auditory and cognitive performance in elderly musicians and nonmusicians.

    Directory of Open Access Journals (Sweden)

    Massimo Grassi

    Full Text Available Musicians represent a model for examining brain and behavioral plasticity in terms of cognitive and auditory profile, but few studies have investigated whether elderly musicians have better auditory and cognitive abilities than nonmusicians. The aim of the present study was to examine whether being a professional musician attenuates the normal age-related changes in hearing and cognition. Elderly musicians still active in their profession were compared with nonmusicians on auditory performance (absolute threshold, frequency intensity, duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detection, and on simple (short-term memory and more complex and higher-order (working memory [WM] and visuospatial abilities cognitive tasks. The sample consisted of adults at least 65 years of age. The results showed that older musicians had similar absolute thresholds but better supra-threshold discrimination abilities than nonmusicians in four of the six auditory tasks administered. They also had a better WM performance, and stronger visuospatial abilities than nonmusicians. No differences were found between the two groups' short-term memory. Frequency discrimination and gap detection for the auditory measures, and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved to be very good classifiers of the musicians. These findings suggest that life-long music training may be associated with enhanced auditory and cognitive performance, including complex cognitive skills, in advanced age. However, whether this music training represents a protective factor or not needs further investigation.

  11. Genetics Home Reference: autosomal dominant partial epilepsy with auditory features

    Science.gov (United States)

    ... for This Condition ADLTE ADPEAF Autosomal dominant lateral temporal lobe epilepsy Epilepsy, partial, with auditory features ETL1 Related Information ... W, Nakken KO, Fischer C, Steinlein OK. Familial temporal lobe epilepsy with aphasic seizures and linkage to chromosome 10q22- ...

  12. Human detection and discrimination of tactile repeatability, mechanical backlash, and temporal delay in a combined tactile-kinesthetic haptic display system.

    Science.gov (United States)

    Doxon, Andrew J; Johnson, David E; Tan, Hong Z; Provancher, William R

    2013-01-01

    Many of the devices used in haptics research are over-engineered for the task and are designed with capabilities that go far beyond human perception levels. Designing devices that more closely match the limits of human perception will make them smaller, less expensive, and more useful. However, many device-centric perception thresholds have yet to be evaluated. To this end, three experiments were conducted, using one degree-of-freedom contact location feedback device in combination with a kinesthetic display, to provide a more explicit set of specifications for similar tactile-kinesthetic haptic devices. The first of these experiments evaluated the ability of humans to repeatedly localize tactile cues across the fingerpad. Subjects could localize cues to within 1.3 mm and showed bias toward the center of the fingerpad. The second experiment evaluated the minimum perceptible difference of backlash at the tactile element. Subjects were able to discriminate device backlash in excess of 0.46 mm on low-curvature models and 0.93 mm on high-curvature models. The last experiment evaluated the minimum perceptible difference of system delay between user action and device reaction. Subjects were able to discriminate delays in excess of 61 ms. The results from these studies can serve as the maximum (i.e., most demanding) device specifications for most tactile-kinesthetic haptic systems.

  13. Visual form predictions facilitate auditory processing at the N1.

    Science.gov (United States)

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  14. Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis.

    Science.gov (United States)

    Martin del Campo, H N; Measor, K R; Razak, K A

    2012-12-01

    Age-related hearing loss (presbycusis) affects ∼35% of humans older than sixty-five years. Symptoms of presbycusis include impaired discrimination of sounds with fast temporal features, such as those present in speech. Such symptoms likely arise because of central auditory system plasticity, but the underlying components are incompletely characterized. The rapid spiking inhibitory interneurons that co-express the calcium binding protein Parvalbumin (PV) are involved in shaping neural responses to fast spectrotemporal modulations. Here, we examined cortical PV expression in the C57bl/6 (C57) mouse, a strain commonly studied as a presbycusis model. We examined if PV expression showed auditory cortical field- and layer-specific susceptibilities with age. The percentage of PV-expressing cells relative to Nissl-stained cells was counted in the anterior auditory field (AAF) and primary auditory cortex (A1) in three age groups: young (1-2 months), middle-aged (6-8 months) and old (14-20 months). There were significant declines in the percentage of cells expressing PV at a detectable level in layers I-IV of both A1 and AAF in the old mice compared to young mice. In layers V-VI, there was an increase in the percentage of PV-expressing cells in the AAF of the old group. There were no changes in percentage of PV-expressing cells in layers V-VI of A1. These data suggest cortical layer(s)- and field-specific susceptibility of PV+ cells with presbycusis. The results are consistent with the hypothesis that a decline in inhibitory neurotransmission, particularly in the superficial cortical layers, occurs with presbycusis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [A case of transient auditory agnosia and schizophrenia].

    Science.gov (United States)

    Kanzaki, Jin; Harada, Tatsuhiko; Kanzaki, Sho

    2011-03-01

    We report a case of transient functional auditory agnosia and schizophrenia and discuss their relationship. A 30-year-old woman with schizophrenia reporting bilateral hearing loss was found in history taking to be able to hear but could neither understand speech nor discriminate among environmental sounds. Audiometry clarified normal but low speech discrimination. Otoacoustic emission and auditory brainstem response were normal. Magnetic resonance imaging (MRI) elsewhere evidenced no abnormal findings. We assumed that taking care of her grandparents who had been discharged from the hospital had unduly stressed her, and her condition improved shortly after she stopped caring for them, returned home and started taking a minor tranquilizer.

  17. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  18. Hierarchical processing of auditory objects in humans.

    Directory of Open Access Journals (Sweden)

    Sukhbinder Kumar

    2007-06-01

    Full Text Available This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG, containing the primary auditory cortex, planum temporale (PT, and superior temporal sulcus (STS, and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

  19. Speaker-Sex Discrimination for Voiced and Whispered Vowels at Short Durations.

    Science.gov (United States)

    Smith, David R R

    2016-01-01

    Whispered vowels, produced with no vocal fold vibration, lack the periodic temporal fine structure which in voiced vowels underlies the perceptual attribute of pitch (a salient auditory cue to speaker sex). Voiced vowels possess no temporal fine structure at very short durations (below two glottal cycles). The prediction was that speaker-sex discrimination performance for whispered and voiced vowels would be similar for very short durations but, as stimulus duration increases, voiced vowel performance would improve relative to whispered vowel performance as pitch information becomes available. This pattern of results was shown for women's but not for men's voices. A whispered vowel needs to have a duration three times longer than a voiced vowel before listeners can reliably tell whether it's spoken by a man or woman (∼30 ms vs. ∼10 ms). Listeners were half as sensitive to information about speaker-sex when it is carried by whispered compared with voiced vowels.

  20. Cerebrospinal otorrhoea--a temporal bone report.

    Science.gov (United States)

    Walby, A P

    1988-05-01

    Spontaneous cerebrospinal otorrhoea is a rare complication of a cholesteatoma. The histological findings in a temporal bone from such a case are reported. The cholesteatoma had eroded deeply through the vestibule into the internal auditory meatus.

  1. Differential discriminator

    International Nuclear Information System (INIS)

    Dukhanov, V.I.; Mazurov, I.B.

    1981-01-01

    A principal flowsheet of a differential discriminator intended for operation in a spectrometric circuit with statistical time distribution of pulses is described. The differential discriminator includes four integrated discriminators and a channel of piled-up signal rejection. The presence of the rejection channel enables the discriminator to operate effectively at loads of 14x10 3 pulse/s. The temperature instability of the discrimination thresholds equals 250 μV/ 0 C. The discrimination level changes within 0.1-5 V, the level shift constitutes 0.5% for the filling ratio of 1:10. The rejection coefficient is not less than 90%. Alpha spectrum of the 228 Th source is presented to evaluate the discriminator operation with the rejector. The rejector provides 50 ns time resolution

  2. Auditory Processing, Linguistic Prosody Awareness, and Word Reading in Mandarin-Speaking Children Learning English

    Science.gov (United States)

    Chung, Wei-Lun; Jarmulowicz, Linda; Bidelman, Gavin M.

    2017-01-01

    This study examined language-specific links among auditory processing, linguistic prosody awareness, and Mandarin (L1) and English (L2) word reading in 61 Mandarin-speaking, English-learning children. Three auditory discrimination abilities were measured: pitch contour, pitch interval, and rise time (rate of intensity change at tone onset).…

  3. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.

    Science.gov (United States)

    Atilgan, Huriye; Town, Stephen M; Wood, Katherine C; Jones, Gareth P; Maddox, Ross K; Lee, Adrian K C; Bizley, Jennifer K

    2018-02-07

    How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. The role of auditory abilities in basic mechanisms of cognition in older adults

    Directory of Open Access Journals (Sweden)

    Massimo eGrassi

    2013-10-01

    Full Text Available The aim of this study was to assess age-related differences between young and older adults in auditory abilities and to investigate the relationship between auditory abilities and basic mechanisms of cognition in older adults. Although there is a certain consensus that the participant’s sensitivity to the absolute intensity of sounds (such as that measured via pure tone audiometry explains his/her cognitive performance, there is not yet much evidence that the participant’s auditory ability (i.e., the whole supra-threshold processing of sounds explains his/her cognitive performance. Twenty-eight young adults (age < 35, 26 young-old adults (65 ≤ age ≤75 and 28 old-old adults (age > 75 were presented with a set of tasks estimating several auditory abilities (i.e., frequency discrimination, intensity discrimination, duration discrimination, timbre discrimination, gap detection, amplitude modulation detection, and the absolute threshold for a 1 kHz pure tone and the participant’s working memory, cognitive inhibition, and processing speed. Results showed an age-related decline in both auditory and cognitive performance. Moreover, regression analyses showed that a subset of the auditory abilities (i.e., the ability to discriminate frequency, duration, timbre, and the ability to detect amplitude modulation explained a significant part of the variance observed in processing speed in older adults. Overall, the present results highlight the relationship between auditory abilities and basic mechanisms of cognition.

  5. Musical Scales in Tone Sequences Improve Temporal Accuracy.

    Science.gov (United States)

    Li, Min S; Di Luca, Massimiliano

    2018-01-01

    Predicting the time of stimulus onset is a key component in perception. Previous investigations of perceived timing have focused on the effect of stimulus properties such as rhythm and temporal irregularity, but the influence of non-temporal properties and their role in predicting stimulus timing has not been exhaustively considered. The present study aims to understand how a non-temporal pattern in a sequence of regularly timed stimuli could improve or bias the detection of temporal deviations. We presented interspersed sequences of 3, 4, 5, and 6 auditory tones where only the timing of the last stimulus could slightly deviate from isochrony. Participants reported whether the last tone was 'earlier' or 'later' relative to the expected regular timing. In two conditions, the tones composing the sequence were either organized into musical scales or they were random tones. In one experiment, all sequences ended with the same tone; in the other experiment, each sequence ended with a different tone. Results indicate higher discriminability of anisochrony with musical scales and with longer sequences, irrespective of the knowledge of the final tone. Such an outcome suggests that the predictability of non-temporal properties, as enabled by the musical scale pattern, can be a factor in determining the sensitivity of time judgments.

  6. Distraction by deviance: comparing the effects of auditory and visual deviant stimuli on auditory and visual target processing.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-01-01

    We report the results of oddball experiments in which an irrelevant stimulus (standard, deviant) was presented before a target stimulus and the modality of these stimuli was manipulated orthogonally (visual/auditory). Experiment 1 showed that auditory deviants yielded distraction irrespective of the target's modality while visual deviants did not impact on performance. When participants were forced to attend the distractors in order to detect a rare target ("target-distractor"), auditory deviants yielded distraction irrespective of the target's modality and visual deviants yielded a small distraction effect when targets were auditory (Experiments 2 & 3). Visual deviants only produced distraction for visual targets when deviant stimuli were not visually distinct from the other distractors (Experiment 4). Our results indicate that while auditory deviants yield distraction irrespective of the targets' modality, visual deviants only do so when attended and under selective conditions, at least when irrelevant and target stimuli are temporally and perceptually decoupled.

  7. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  8. The Role of Visual and Auditory Stimuli in Continuous Performance Tests: Differential Effects on Children With ADHD.

    Science.gov (United States)

    Simões, Eunice N; Carvalho, Ana L Novais; Schmidt, Sergio L

    2018-04-01

    Continuous performance tests (CPTs) usually utilize visual stimuli. A previous investigation showed that inattention is partially independent of modality, but response inhibition is modality-specific. Here we aimed to compare performance on visual and auditory CPTs in ADHD and in healthy controls. The sample consisted of 160 elementary and high school students (43 ADHD, 117 controls). For each sensory modality, five variables were extracted: commission errors (CEs) and omission errors (OEs), reaction time (RT), variability of reaction time (VRT), and coefficient of variability (CofV = VRT / RT). The ADHD group exhibited higher rates for all test variables. The discriminant analysis indicated that auditory OE was the most reliable variable for discriminating between groups, followed by visual CE, auditory CE, and auditory CofV. Discriminant equation classified ADHD with 76.3% accuracy. Auditory parameters in the inattention domain (OE and VRT) can discriminate ADHD from controls. For the hyperactive/impulsive domain (CE), the two modalities are equally important.

  9. Presentation of dynamically overlapping auditory messages in user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Papp, III, Albert Louis [Univ. of California, Davis, CA (United States)

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  10. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  11. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.

    Science.gov (United States)

    Zheng, Yi; Escabí, Monty; Litovsky, Ruth Y

    2017-08-01

    Although speech understanding is highly variable amongst cochlear implants (CIs) subjects, the remarkably high speech recognition performance of many CI users is unexpected and not well understood. Numerous factors, including neural health and degradation of the spectral information in the speech signal of CIs, likely contribute to speech understanding. We studied the ability to use spectro-temporal modulations, which may be critical for speech understanding and discrimination, and hypothesize that CI users adopt a different perceptual strategy than normal-hearing (NH) individuals, whereby they rely more heavily on joint spectro-temporal cues to enhance detection of auditory cues. Modulation detection sensitivity was studied in CI users and NH subjects using broadband "ripple" stimuli that were modulated spectrally, temporally, or jointly, i.e., spectro-temporally. The spectro-temporal modulation transfer functions of CI users and NH subjects was decomposed into spectral and temporal dimensions and compared to those subjects' spectral-only and temporal-only modulation transfer functions. In CI users, the joint spectro-temporal sensitivity was better than that predicted by spectral-only and temporal-only sensitivity, indicating a heightened spectro-temporal sensitivity. Such an enhancement through the combined integration of spectral and temporal cues was not observed in NH subjects. The unique use of spectro-temporal cues by CI patients can yield benefits for use of cues that are important for speech understanding. This finding has implications for developing sound processing strategies that may rely on joint spectro-temporal modulations to improve speech comprehension of CI users, and the findings of this study may be valuable for developing clinical assessment tools to optimize CI processor performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users

    Science.gov (United States)

    Zheng, Yi; Escabí, Monty; Litovsky, Ruth Y.

    2018-01-01

    Although speech understanding is highly variable amongst cochlear implants (CIs) subjects, the remarkably high speech recognition performance of many CI users is unexpected and not well understood. Numerous factors, including neural health and degradation of the spectral information in the speech signal of CIs, likely contribute to speech understanding. We studied the ability to use spectro-temporal modulations, which may be critical for speech understanding and discrimination, and hypothesize that CI users adopt a different perceptual strategy than normal-hearing (NH) individuals, whereby they rely more heavily on joint spectro-temporal cues to enhance detection of auditory cues. Modulation detection sensitivity was studied in CI users and NH subjects using broadband “ripple” stimuli that were modulated spectrally, temporally, or jointly, i.e., spectro-temporally. The spectro-temporal modulation transfer functions of CI users and NH subjects was decomposed into spectral and temporal dimensions and compared to those subjects’ spectral-only and temporal-only modulation transfer functions. In CI users, the joint spectro-temporal sensitivity was better than that predicted by spectral-only and temporal-only sensitivity, indicating a heightened spectro-temporal sensitivity. Such an enhancement through the combined integration of spectral and temporal cues was not observed in NH subjects. The unique use of spectro-temporal cues by CI patients can yield benefits for use of cues that are important for speech understanding. This finding has implications for developing sound processing strategies that may rely on joint spectro-temporal modulations to improve speech comprehension of CI users, and the findings of this study may be valuable for developing clinical assessment tools to optimize CI processor performance. PMID:28601530

  13. The perception of prosody and associated auditory cues in early-implanted children: the role of auditory working memory and musical activities.

    Science.gov (United States)

    Torppa, Ritva; Faulkner, Andrew; Huotilainen, Minna; Järvikivi, Juhani; Lipsanen, Jari; Laasonen, Marja; Vainio, Martti

    2014-03-01

    To study prosodic perception in early-implanted children in relation to auditory discrimination, auditory working memory, and exposure to music. Word and sentence stress perception, discrimination of fundamental frequency (F0), intensity and duration, and forward digit span were measured twice over approximately 16 months. Musical activities were assessed by questionnaire. Twenty-one early-implanted and age-matched normal-hearing (NH) children (4-13 years). Children with cochlear implants (CIs) exposed to music performed better than others in stress perception and F0 discrimination. Only this subgroup of implanted children improved with age in word stress perception, intensity discrimination, and improved over time in digit span. Prosodic perception, F0 discrimination and forward digit span in implanted children exposed to music was equivalent to the NH group, but other implanted children performed more poorly. For children with CIs, word stress perception was linked to digit span and intensity discrimination: sentence stress perception was additionally linked to F0 discrimination. Prosodic perception in children with CIs is linked to auditory working memory and aspects of auditory discrimination. Engagement in music was linked to better performance across a range of measures, suggesting that music is a valuable tool in the rehabilitation of implanted children.

  14. Magnetoencephalographic signatures of numerosity discrimination in fetuses and neonates.

    Science.gov (United States)

    Schleger, Franziska; Landerl, Karin; Muenssinger, Jana; Draganova, Rossitza; Reinl, Maren; Kiefer-Schmidt, Isabelle; Weiss, Magdalene; Wacker-Gußmann, Annette; Huotilainen, Minna; Preissl, Hubert

    2014-01-01

    Numerosity discrimination has been demonstrated in newborns, but not in fetuses. Fetal magnetoencephalography allows non-invasive investigation of neural responses in neonates and fetuses. During an oddball paradigm with auditory sequences differing in numerosity, evoked responses were recorded and mismatch responses were quantified as an indicator for auditory discrimination. Thirty pregnant women with healthy fetuses (last trimester) and 30 healthy term neonates participated. Fourteen adults were included as a control group. Based on measurements eligible for analysis, all adults, all neonates, and 74% of fetuses showed numerical mismatch responses. Numerosity discrimination appears to exist in the last trimester of pregnancy.

  15. Automatic detection of frequency changes depends on auditory stimulus intensity.

    Science.gov (United States)

    Salo, S; Lang, A H; Aaltonen, O; Lertola, K; Kärki, T

    1999-06-01

    A cortical cognitive auditory evoked potential, mismatch negativity (MMN), reflects automatic discrimination and echoic memory functions of the auditory system. For this study, we examined whether this potential is dependent on the stimulus intensity. The MMN potentials were recorded from 10 subjects with normal hearing using a sine tone of 1000 Hz as the standard stimulus and a sine tone of 1141 Hz as the deviant stimulus, with probabilities of 90% and 10%, respectively. The intensities were 40, 50, 60, 70, and 80 dB HL for both standard and deviant stimuli in separate blocks. Stimulus intensity had a statistically significant effect on the mean amplitude, rise time parameter, and onset latency of the MMN. Automatic auditory discrimination seems to be dependent on the sound pressure level of the stimuli.

  16. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  17. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  18. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    Science.gov (United States)

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  19. Anteverted internal auditory canal as an inner ear anomaly in patients with craniofacial microsomia.

    Science.gov (United States)

    L'Heureux-Lebeau, Bénédicte; Saliba, Issam

    2014-09-01

    Craniofacial microsomia involves structure of the first and second branchial arches. A wide range of ear anomalies, affecting external, middle and inner ear, has been described in association with this condition. We report three cases of anteverted internal auditory canal in patients presenting craniofacial microsomia. This unique internal auditory canal orientation was found on high-resolution computed tomography of the temporal bones. This internal auditory canal anomaly is yet unreported in craniofacial anomalies. Copyright © 2014. Published by Elsevier Ireland Ltd.

  20. The human brain maintains contradictory and redundant auditory sensory predictions.

    Directory of Open Access Journals (Sweden)

    Marika Pieszek

    Full Text Available Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants' task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound as well as violations of the visual-auditory prediction (i.e., an incongruent sound elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]. Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events.

  1. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  2. Integration of auditory and tactile inputs in musical meter perception.

    Science.gov (United States)

    Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin; Hsiao, Steven

    2013-01-01

    Musicians often say that they not only hear but also "feel" music. To explore the contribution of tactile information to "feeling" music, we investigated the degree that auditory and tactile inputs are integrated in humans performing a musical meter-recognition task. Subjects discriminated between two types of sequences, "duple" (march-like rhythms) and "triple" (waltz-like rhythms), presented in three conditions: (1) unimodal inputs (auditory or tactile alone); (2) various combinations of bimodal inputs, where sequences were distributed between the auditory and tactile channels such that a single channel did not produce coherent meter percepts; and (3) bimodal inputs where the two channels contained congruent or incongruent meter cues. We first show that meter is perceived similarly well (70-85 %) when tactile or auditory cues are presented alone. We next show in the bimodal experiments that auditory and tactile cues are integrated to produce coherent meter percepts. Performance is high (70-90 %) when all of the metrically important notes are assigned to one channel and is reduced to 60 % when half of these notes are assigned to one channel. When the important notes are presented simultaneously to both channels, congruent cues enhance meter recognition (90 %). Performance dropped dramatically when subjects were presented with incongruent auditory cues (10 %), as opposed to incongruent tactile cues (60 %), demonstrating that auditory input dominates meter perception. These observations support the notion that meter perception is a cross-modal percept with tactile inputs underlying the perception of "feeling" music.

  3. Translation and adaptation of functional auditory performance indicators (FAPI

    Directory of Open Access Journals (Sweden)

    Karina Ferreira

    2011-12-01

    Full Text Available Work with deaf children has gained new attention since the expectation and goal of therapy has expanded to language development and subsequent language learning. Many clinical tests were developed for evaluation of speech sound perception in young children in response to the need for accurate assessment of hearing skills that developed from the use of individual hearing aids or cochlear implants. These tests also allow the evaluation of the rehabilitation program. However, few of these tests are available in Portuguese. Evaluation with the Functional Auditory Performance Indicators (FAPI generates a child's functional auditory skills profile, which lists auditory skills in an integrated and hierarchical order. It has seven hierarchical categories, including sound awareness, meaningful sound, auditory feedback, sound source localizing, auditory discrimination, short-term auditory memory, and linguistic auditory processing. FAPI evaluation allows the therapist to map the child's hearing profile performance, determine the target for increasing the hearing abilities, and develop an effective therapeutic plan. Objective: Since the FAPI is an American test, the inventory was adapted for application in the Brazilian population. Material and Methods: The translation was done following the steps of translation and back translation, and reproducibility was evaluated. Four translated versions (two originals and two back-translated were compared, and revisions were done to ensure language adaptation and grammatical and idiomatic equivalence. Results: The inventory was duly translated and adapted. Conclusion: Further studies about the application of the translated FAPI are necessary to make the test practicable in Brazilian clinical use.

  4. Auditory cortical processing in real-world listening: the auditory system going real.

    Science.gov (United States)

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  5. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    Science.gov (United States)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  6. Spatial discrimination and visual discrimination

    DEFF Research Database (Denmark)

    Haagensen, Annika M. J.; Grand, Nanna; Klastrup, Signe

    2013-01-01

    Two methods investigating learning and memory in juvenile Gottingen minipigs were evaluated for potential use in preclinical toxicity testing. Twelve minipigs were tested using a spatial hole-board discrimination test including a learning phase and two memory phases. Five minipigs were tested...... in a visual discrimination test. The juvenile minipigs were able to learn the spatial hole-board discrimination test and showed improved working and reference memory during the learning phase. Performance in the memory phases was affected by the retention intervals, but the minipigs were able to remember...... the concept of the test in both memory phases. Working memory and reference memory were significantly improved in the last trials of the memory phases. In the visual discrimination test, the minipigs learned to discriminate between the three figures presented to them within 9-14 sessions. For the memory test...

  7. Auditory and Visual Differences in Time Perception? An Investigation from a Developmental Perspective with Neuropsychological Tests

    Science.gov (United States)

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2012-01-01

    Adults and children (5- and 8-year-olds) performed a temporal bisection task with either auditory or visual signals and either a short (0.5-1.0s) or long (4.0-8.0s) duration range. Their working memory and attentional capacities were assessed by a series of neuropsychological tests administered in both the auditory and visual modalities. Results…

  8. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    Directory of Open Access Journals (Sweden)

    Mark eLaing

    2015-10-01

    Full Text Available The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we use amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only or auditory-visual (AV trials in the scanner. On AV trials, the auditory and visual signal could have the same (AV congruent or different modulation rates (AV incongruent. Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for auditory-visual integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  9. Formal auditory training in adult hearing aid users

    Directory of Open Access Journals (Sweden)

    Daniela Gil

    2010-01-01

    Full Text Available INTRODUCTION: Individuals with sensorineural hearing loss are often able to regain some lost auditory function with the help of hearing aids. However, hearing aids are not able to overcome auditory distortions such as impaired frequency resolution and speech understanding in noisy environments. The coexistence of peripheral hearing loss and a central auditory deficit may contribute to patient dissatisfaction with amplification, even when audiological tests indicate nearly normal hearing thresholds. OBJECTIVE: This study was designed to validate the effects of a formal auditory training program in adult hearing aid users with mild to moderate sensorineural hearing loss. METHODS: Fourteen bilateral hearing aid users were divided into two groups: seven who received auditory training and seven who did not. The training program was designed to improve auditory closure, figure-to-ground for verbal and nonverbal sounds and temporal processing (frequency and duration of sounds. Pre- and post-training evaluations included measuring electrophysiological and behavioral auditory processing and administration of the Abbreviated Profile of Hearing Aid Benefit (APHAB self-report scale. RESULTS: The post-training evaluation of the experimental group demonstrated a statistically significant reduction in P3 latency, improved performance in some of the behavioral auditory processing tests and higher hearing aid benefit in noisy situations (p-value < 0,05. No changes were noted for the control group (p-value <0,05. CONCLUSION: The results demonstrated that auditory training in adult hearing aid users can lead to a reduction in P3 latency, improvements in sound localization, memory for nonverbal sounds in sequence, auditory closure, figure-to-ground for verbal sounds and greater benefits in reverberant and noisy environments.

  10. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  11. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  12. How do auditory cortex neurons represent communication sounds?

    Science.gov (United States)

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  13. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  14. Mass discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Broeckman, A. [Rijksuniversiteit Utrecht (Netherlands)

    1978-12-15

    In thermal ionization mass spectrometry the phenomenon of mass discrimination has led to the use of a correction factor for isotope ratio-measurements. The correction factor is defined as the measured ratio divided by the true or accepted value of this ratio. In fact this factor corrects for systematic errors of the whole procedure; however mass discrimination is often associated just with the mass spectrometer.

  15. How discriminating are discriminative instruments?

    Science.gov (United States)

    Hankins, Matthew

    2008-05-27

    The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  16. How discriminating are discriminative instruments?

    Directory of Open Access Journals (Sweden)

    Hankins Matthew

    2008-05-01

    Full Text Available Abstract The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL. The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness, but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  17. Temporal Processing in Audition: Insights from Music.

    Science.gov (United States)

    Rajendran, Vani G; Teki, Sundeep; Schnupp, Jan W H

    2017-11-03

    Music is a curious example of a temporally patterned acoustic stimulus, and a compelling pan-cultural phenomenon. This review strives to bring some insights from decades of music psychology and sensorimotor synchronization (SMS) literature into the mainstream auditory domain, arguing that musical rhythm perception is shaped in important ways by temporal processing mechanisms in the brain. The feature that unites these disparate disciplines is an appreciation of the central importance of timing, sequencing, and anticipation. Perception of musical rhythms relies on an ability to form temporal predictions, a general feature of temporal processing that is equally relevant to auditory scene analysis, pattern detection, and speech perception. By bringing together findings from the music and auditory literature, we hope to inspire researchers to look beyond the conventions of their respective fields and consider the cross-disciplinary implications of studying auditory temporal sequence processing. We begin by highlighting music as an interesting sound stimulus that may provide clues to how temporal patterning in sound drives perception. Next, we review the SMS literature and discuss possible neural substrates for the perception of, and synchronization to, musical beat. We then move away from music to explore the perceptual effects of rhythmic timing in pattern detection, auditory scene analysis, and speech perception. Finally, we review the neurophysiology of general timing processes that may underlie aspects of the perception of rhythmic patterns. We conclude with a brief summary and outlook for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Xingwei An

    Full Text Available For Brain-Computer Interface (BCI systems that are designed for users with severe impairments of the oculomotor system, an appropriate mode of presenting stimuli to the user is crucial. To investigate whether multi-sensory integration can be exploited in the gaze-independent event-related potentials (ERP speller and to enhance BCI performance, we designed a visual-auditory speller. We investigate the possibility to enhance stimulus presentation by combining visual and auditory stimuli within gaze-independent spellers. In this study with N = 15 healthy users, two different ways of combining the two sensory modalities are proposed: simultaneous redundant streams (Combined-Speller and interleaved independent streams (Parallel-Speller. Unimodal stimuli were applied as control conditions. The workload, ERP components, classification accuracy and resulting spelling speed were analyzed for each condition. The Combined-speller showed a lower workload than uni-modal paradigms, without the sacrifice of spelling performance. Besides, shorter latencies, lower amplitudes, as well as a shift of the temporal and spatial distribution of discriminative information were observed for Combined-speller. These results are important and are inspirations for future studies to search the reason for these differences. For the more innovative and demanding Parallel-Speller, where the auditory and visual domains are independent from each other, a proof of concept was obtained: fifteen users could spell online with a mean accuracy of 87.7% (chance level <3% showing a competitive average speed of 1.65 symbols per minute. The fact that it requires only one selection period per symbol makes it a good candidate for a fast communication channel. It brings a new insight into the true multisensory stimuli paradigms. Novel approaches for combining two sensory modalities were designed here, which are valuable for the development of ERP-based BCI paradigms.

  19. The spectrotemporal filter mechanism of auditory selective attention

    Science.gov (United States)

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  20. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  1. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    Science.gov (United States)

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  2. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  3. Quantifying temporal ventriloquism in audiovisual synchrony perception

    NARCIS (Netherlands)

    Kuling, I.A.; Kohlrausch, A.G.; Juola, J.F.

    2013-01-01

    The integration of visual and auditory inputs in the human brain works properly only if the components are perceived in close temporal proximity. In the present study, we quantified cross-modal interactions in the human brain for audiovisual stimuli with temporal asynchronies, using a paradigm from

  4. Functional magnetic resonance imaging measure of automatic and controlled auditory processing

    OpenAIRE

    Mitchell, Teresa V.; Morey, Rajendra A.; Inan, Seniha; Belger, Aysenil

    2005-01-01

    Activity within fronto-striato-temporal regions during processing of unattended auditory deviant tones and an auditory target detection task was investigated using event-related functional magnetic resonance imaging. Activation within the middle frontal gyrus, inferior frontal gyrus, anterior cingulate gyrus, superior temporal gyrus, thalamus, and basal ganglia were analyzed for differences in activity patterns between the two stimulus conditions. Unattended deviant tones elicited robust acti...

  5. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Bleichner, Martin G; Debener, Stefan

    2016-01-01

    Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  6. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS

    Directory of Open Access Journals (Sweden)

    Ling-Chia Chen

    2016-01-01

    Full Text Available Cochlear implant (CI users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users’ speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS. Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  7. An Auditory Model with Hearing Loss

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    An auditory model based on the psychophysics of hearing has been developed and tested. The model simulates the normal ear or an impaired ear with a given hearing loss. Based on reviews of the current literature, the frequency selectivity and loudness growth as functions of threshold and stimulus...... level have been found and implemented in the model. The auditory model was verified against selected results from the literature, and it was confirmed that the normal spread of masking and loudness growth could be simulated in the model. The effects of hearing loss on these parameters was also...... in qualitative agreement with recent findings. The temporal properties of the ear have currently not been included in the model. As an example of a real-world application of the model, loudness spectrograms for a speech utterance were presented. By introducing hearing loss, the speech sounds became less audible...

  8. Statistical learning and auditory processing in children with music training: An ERP study.

    Science.gov (United States)

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne

    2017-07-01

    The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. A Neural Circuit for Auditory Dominance over Visual Perception.

    Science.gov (United States)

    Song, You-Hyang; Kim, Jae-Hyun; Jeong, Hye-Won; Choi, Ilsong; Jeong, Daun; Kim, Kwansoo; Lee, Seung-Hee

    2017-02-22

    When conflicts occur during integration of visual and auditory information, one modality often dominates the other, but the underlying neural circuit mechanism remains unclear. Using auditory-visual discrimination tasks for head-fixed mice, we found that audition dominates vision in a process mediated by interaction between inputs from the primary visual (VC) and auditory (AC) cortices in the posterior parietal cortex (PTLp). Co-activation of the VC and AC suppresses VC-induced PTLp responses, leaving AC-induced responses. Furthermore, parvalbumin-positive (PV+) interneurons in the PTLp mainly receive AC inputs, and muscimol inactivation of the PTLp or optogenetic inhibition of its PV+ neurons abolishes auditory dominance in the resolution of cross-modal sensory conflicts without affecting either sensory perception. Conversely, optogenetic activation of PV+ neurons in the PTLp enhances the auditory dominance. Thus, our results demonstrate that AC input-specific feedforward inhibition of VC inputs in the PTLp is responsible for the auditory dominance during cross-modal integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    Science.gov (United States)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  11. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  12. [Performance of normal young adults in two temporal resolution tests].

    Science.gov (United States)

    Zaidan, Elena; Garcia, Adriana Pontin; Tedesco, Maria Lucy Fraga; Baran, Jane A

    2008-01-01

    temporal auditory processing is defined as the perception of sound or of sound alteration within a restricted time interval and is considered a fundamental ability for the auditory perception of verbal and non verbal sounds, for the perception of music, rhythm, periodicity and in the discrimination of pitch, duration and of phonemes. to compare the performance of normal Brazilian adults in two temporal resolution tests: the Gaps-in-Noise Test (GIN) and the Random Gap Detection Test (RGDT), and to analyze potential differences of performance in these two tests. twenty-five college students with normal hearing (11 males and 14 females) and no history of educational, neurological and/or language problems, underwent the GIN and RGDT at 40dB SL. statistically significant gender effects for both tests were found, with female participants showing poorer performance on both temporal processing tests. In addition, a comparative analysis of the results obtained in the GIN and RGDT revealed significant differences in the threshold measures derived for these two tests. In general, significantly better gap detection thresholds were observed for both male and female participants on the GIN test when compared to the results obtained for the RGDT. male participants presented better performances on both RGDT and GIN, when compared to the females. There were no differences in performance between right and left ears on the GIN test. Participants of the present investigation, males and females, performed better on the GIN when compared to the RGDT. The GIN presented advantages over the RGDT, not only in terms of clinical validity and sensibility, but also in terms of application and scoring.

  13. Temporal Reference, Attentional Modulation, and Crossmodal Assimilation

    Directory of Open Access Journals (Sweden)

    Yingqi Wan

    2018-06-01

    Full Text Available Crossmodal assimilation effect refers to the prominent phenomenon by which ensemble mean extracted from a sequence of task-irrelevant distractor events, such as auditory intervals, assimilates/biases the perception (such as visual interval of the subsequent task-relevant target events in another sensory modality. In current experiments, using visual Ternus display, we examined the roles of temporal reference, materialized as the time information accumulated before the onset of target event, as well as the attentional modulation in crossmodal temporal interaction. Specifically, we examined how the global time interval, the mean auditory inter-intervals and the last interval in the auditory sequence assimilate and bias the subsequent percept of visual Ternus motion (element motion vs. group motion. We demonstrated that both the ensemble (geometric mean and the last interval in the auditory sequence contribute to bias the percept of visual motion. Longer mean (or last interval elicited more reports of group motion, whereas the shorter mean (or last auditory intervals gave rise to more dominant percept of element motion. Importantly, observers have shown dynamic adaptation to the temporal reference of crossmodal assimilation: when the target visual Ternus stimuli were separated by a long gap interval after the preceding sound sequence, the assimilation effect by ensemble mean was reduced. Our findings suggested that crossmodal assimilation relies on a suitable temporal reference on adaptation level, and revealed a general temporal perceptual grouping principle underlying complex audio-visual interactions in everyday dynamic situations.

  14. Neuromechanistic Model of Auditory Bistability.

    Directory of Open Access Journals (Sweden)

    James Rankin

    2015-11-01

    Full Text Available Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1. Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept-a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.

  15. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    Science.gov (United States)

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  16. Smaller superior temporal gyrus volume specificity in schizotypal personality disorder

    Science.gov (United States)

    Goldstein, Kim E.; Hazlett, Erin A.; New, Antonia S.; Haznedar, M. Mehmet; Newmark, Randall E.; Zelmanova, Yuliya; Passarelli, Vincent; Weinstein, Shauna R.; Canfield, Emily L.; Meyerson, David A.; Tang, Cheuk Y.; Buchsbaum, Monte S.; Siever, Larry J.

    2009-01-01

    Background Superior temporal gyrus (STG/BA22) volume is reduced in schizophrenia and to a milder degree in schizotypal personality disorder (SPD), representing a less severe disorder in the schizophrenia-spectrum. SPD and Borderline personality disorder (BPD) are severe personality disorders characterized by social and cognitive dysfunction. However, while SPD is characterized by social withdrawal/anhedonia, BPD is marked by hyper-reactivity to interpersonal stimuli and hyper-emotionality. This is the first morphometric study to directly compare SPD and BPD patients in temporal volume. Methods We compared three age-gender- and education-matched groups: 27 unmedicated SPD individuals with no BPD traits, 52 unmedicated BPD individuals with no SPD traits, and 45 healthy controls. We examined gray matter volume of frontal and temporal lobe Brodmann areas (BAs), and dorsal/ventral amygdala from 3T magnetic resonance imaging. Results In the STG, an auditory association area reported to be dysfunctional in SPD and BPD, the SPD patients had significantly smaller volume than healthy controls and BPD patients. No group differences were found between BPD patients and controls. Smaller BA22 volume was associated with greater symptom severity in SPD patients. Reduced STG volume may be an important endophenotype for schizophrenia-spectrum disorders. SPD is distinct from BPD in terms of STG volume abnormalities which may reflect different underlying p