WorldWideScience

Sample records for auditory signals requires

  1. Preferred levels of auditory danger signals.

    Science.gov (United States)

    Zera, J; Nagórski, A

    2000-01-01

    An important issue at the design stage of the auditory danger signal for a safety system is the signal audibility under various conditions of background noise. The auditory danger signal should be clearly audible but it should not be too loud to avoid fright, startling effects, and nuisance complaints. Criteria for designing auditory danger signals are the subject of the ISO 7731 (International Organization for Standardization [ISO], 1986) international standard and the EN 457 European standard (European Committee for Standardization [CEN], 1992). It is required that the A-weighted sound pressure level of the auditory danger signal is higher in level than the background noise by 15 dB. In this paper, the results of an experiment are reported, in which listeners adjusted most preferred levels of 3 danger signals (tone, sweep, complex sound) in the presence of a noise background (pink noise and industrial noise). The measurements were done for 60-, 70-, 80-, and 90-dB A-weighted levels of noise. Results show that for 60-dB level of noise the most preferred level of the danger signal is 10 to 20 dB above the noise level. However, for 90-dB level of noise, listeners selected a level of the danger signal that was equal to the noise level. Results imply that the criterion in the existing standards is conservative as it requires the level of the danger signal to be higher than the level of noise regardless of the noise level. PMID:10828157

  2. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel

    A loudspeaker-based virtual auditory environment (VAE) has been developed to provide a realistic versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room reverberation. The VAE allows a full control of...... the acoustic scenario in order to systematically study the auditory processing of reverberant sounds. It is based on the ODEON software, which is state-of-the-art software for room acoustic simulations developed at Acoustic Technology, DTU. First, a MATLAB interface to the ODEON software has been...

  3. Auditory Signal Processing in Communication: Perception and Performance of Vocal Sounds

    Science.gov (United States)

    Prather, Jonathan F.

    2013-01-01

    Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal of systems neuroscience, and insights into the mechanisms of those processes will profoundly enhance clinical therapies for communication disorders. Gaining the high-resolution insight necessary to define the circuits and cellular mechanisms underlying human vocal communication is presently impractical. Songbirds are the best animal model of human speech, and this review highlights recent insights into the neural basis of auditory perception and feedback-dependent imitation in those animals. Neural correlates of song perception are present in auditory areas, and those correlates are preserved in the auditory responses of downstream neurons that are also active when the bird sings. Initial tests indicate that singing-related activity in those downstream neurons is associated with vocal-motor performance as opposed to the bird simply hearing itself sing. Therefore, action potentials related to auditory perception and action potentials related to vocal performance are co-localized in individual neurons. Conceptual models of song learning involve comparison of vocal commands and the associated auditory feedback to compute an error signal that is used to guide refinement of subsequent song performances, yet the sites of that comparison remain unknown. Convergence of sensory and motor activity onto individual neurons points to a possible mechanism through which auditory and vocal-motor signals may be linked to enable learning and maintenance of the sounds used in vocal communication. PMID:23827717

  4. A computational model of human auditory signal processing and perception

    DEFF Research Database (Denmark)

    Jepsen, Morten Løve; Ewert, Stephan D.; Dau, Torsten

    2008-01-01

    A model of computational auditory signal-processing and perception that accounts for various aspects of simultaneous and nonsimultaneous masking in human listeners is presented. The model is based on the modulation filterbank model described by Dau et al. [J. Acoust. Soc. Am. 102, 2892 (1997......)] but includes major changes at the peripheral and more central stages of processing. The model contains outer- and middle-ear transformations, a nonlinear basilar-membrane processing stage, a hair-cell transduction stage, a squaring expansion, an adaptation stage, a 150-Hz lowpass modulation filter, a bandpass...... modulation filterbank, a constant-variance internal noise, and an optimal detector stage. The model was evaluated in experimental conditions that reflect, to a different degree, effects of compression as well as spectral and temporal resolution in auditory processing. The experiments include intensity...

  5. A Transient Auditory Signal Shifts the Perceived Offset Position of a Moving Visual Object

    Directory of Open Access Journals (Sweden)

    Sung-EnChien

    2013-02-01

    Full Text Available Information received from different sensory modalities profoundly influences human perception. For example, changes in the auditory flutter rate induce changes in the apparent flicker rate of a flashing light (Shipley, 1964. In the present study, we investigated whether auditory information would affect the perceived offset position of a moving object. In Experiment 1, a visual object moved toward the center of the computer screen and disappeared abruptly. A transient auditory signal was presented at different times relative to the moment when the object disappeared. The results showed that if the auditory signal was presented before the abrupt offset of the moving object, the perceived final position was shifted backward, implying that the perceived offset position was affected by the transient auditory information. In Experiment 2, we presented the transient auditory signal to either the left or the right ear. The results showed that the perceived offset shifted backward more strongly when the auditory signal was presented to the same side from which the moving object originated. In Experiment 3, we found that the perceived timing of the visual offset was not affected by the spatial relation between the auditory signal and the visual offset. The present results are interpreted as indicating that an auditory signal may influence the offset position of a moving object through both spatial and temporal processes.

  6. A transient auditory signal shifts the perceived offset position of a moving visual object.

    Science.gov (United States)

    Chien, Sung-En; Ono, Fuminori; Watanabe, Katsumi

    2013-01-01

    Information received from different sensory modalities profoundly influences human perception. For example, changes in the auditory flutter rate induce changes in the apparent flicker rate of a flashing light (Shipley, 1964). In the present study, we investigated whether auditory information would affect the perceived offset position of a moving object. In Experiment 1, a visual object moved toward the center of the computer screen and disappeared abruptly. A transient auditory signal was presented at different times relative to the moment when the object disappeared. The results showed that if the auditory signal was presented before the abrupt offset of the moving object, the perceived final position was shifted backward, implying that the perceived visual offset position was affected by the transient auditory information. In Experiment 2, we presented the transient auditory signal to either the left or the right ear. The results showed that the perceived visual offset shifted backward more strongly when the auditory signal was presented to the same side from which the moving object originated. In Experiment 3, we found that the perceived timing of the visual offset was not affected by the spatial relation between the auditory signal and the visual offset. The present results are interpreted as indicating that an auditory signal may influence the offset position of a moving object through both spatial and temporal processes. PMID:23439729

  7. A Transient Auditory Signal Shifts the Perceived Offset Position of a Moving Visual Object

    OpenAIRE

    Chien, Sung-en; Ono, Fuminori; Watanabe, Katsumi

    2013-01-01

    Information received from different sensory modalities profoundly influences human perception. For example, changes in the auditory flutter rate induce changes in the apparent flicker rate of a flashing light (Shipley, 1964). In the present study, we investigated whether auditory information would affect the perceived offset position of a moving object. In Experiment 1, a visual object moved toward the center of the computer screen and disappeared abruptly. A transient auditory signal was pre...

  8. Neural interactions in unilateral colliculus and between bilateral colliculi modulate auditory signal processing

    Science.gov (United States)

    Mei, Hui-Xian; Cheng, Liang; Chen, Qi-Cai

    2013-01-01

    In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral integration of auditory information. There are widespread neural interactions in unilateral (one) IC and between bilateral (two) ICs that could modulate auditory signal processing such as the amplitude and frequency selectivity of IC neurons. These neural interactions are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA) and glutamate, respectively. However, the majority of interactions are inhibitory while excitatory interactions are in the minority. Such unbalanced properties between excitatory and inhibitory projections have an important role in the formation of unilateral auditory dominance and sound location, and the neural interaction in one IC and between two ICs provide an adjustable and plastic modulation pattern for auditory signal processing. PMID:23626523

  9. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    Science.gov (United States)

    Wang, Avery Li-Chun

    which require a small fraction of the computational power of conventional FIR implementations. This design strategy is based on truncated and stabilized IIR filters. These signal-processing methods have been applied to the problem of auditory source separation, resulting in voice separation from complex music that is significantly better than previous results at far lower computational cost.

  10. Speech motor learning changes the neural response to both auditory and somatosensory signals

    Science.gov (United States)

    Ito, Takayuki; Coppola, Joshua H.; Ostry, David J.

    2016-01-01

    In the present paper, we present evidence for the idea that speech motor learning is accompanied by changes to the neural coding of both auditory and somatosensory stimuli. Participants in our experiments undergo adaptation to altered auditory feedback, an experimental model of speech motor learning which like visuo-motor adaptation in limb movement, requires that participants change their speech movements and associated somatosensory inputs to correct for systematic real-time changes to auditory feedback. We measure the sensory effects of adaptation by examining changes to auditory and somatosensory event-related responses. We find that adaptation results in progressive changes to speech acoustical outputs that serve to correct for the perturbation. We also observe changes in both auditory and somatosensory event-related responses that are correlated with the magnitude of adaptation. These results indicate that sensory change occurs in conjunction with the processes involved in speech motor adaptation. PMID:27181603

  11. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    reverberation. The environment is based on the ODEON room acoustic simulation software to render the acoustical scene. ODEON outputs are processed using a combination of different order Ambisonic techniques to calculate multichannel room impulse responses (mRIR). Auralization is then obtained by the convolution....... Throughout the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  12. ROS signalling - specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian M; Sweetlove, Lee J

    2010-01-01

    the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g. in chloroplasts or mitochondria. Here we argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS...... messengers and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. Likewise, unmodified peptides deriving from the breakdown of redundant proteins could help coordinate organellar and nuclear gene expression...

  13. A psychophysiological evaluation of the perceived urgency of auditory warning signals

    Science.gov (United States)

    Burt, J. L.; Bartolome, D. S.; Burdette, D. W.; Comstock, J. R. Jr

    1995-01-01

    One significant concern that pilots have about cockpit auditory warnings is that the signals presently used lack a sense of priority. The relationship between auditory warning sound parameters and perceived urgency is, therefore, an important topic of enquiry in aviation psychology. The present investigation examined the relationship among subjective assessments of urgency, reaction time, and brainwave activity with three auditory warning signals. Subjects performed a tracking task involving automated and manual conditions, and were presented with auditory warnings having various levels of perceived and situational urgency. Subjective assessments revealed that subjects were able to rank warnings on an urgency scale, but rankings were altered after warnings were mapped to a situational urgency scale. Reaction times differed between automated and manual tracking task conditions, and physiological data showed attentional differences in response to perceived and situational warning urgency levels. This study shows that the use of physiological measures sensitive to attention and arousal, in conjunction with behavioural and subjective measures, may lead to the design of auditory warnings that produce a sense of urgency in an operator that matches the urgency of the situation.

  14. Differential maturation of brain signal complexity in the human auditory and visual system

    Directory of Open Access Journals (Sweden)

    Sarah Lippe

    2009-11-01

    Full Text Available Brain development carries with it a large number of structural changes at the local level which impact on the functional interactions of distributed neuronal networks for perceptual processing. Such changes enhance information processing capacity, which can be indexed by estimation of neural signal complexity. Here, we show that during development, EEG signal complexity increases from one month to 5 years of age in response to auditory and visual stimulation. However, the rates of change in complexity were not equivalent for the two responses. Infants’ signal complexity for the visual condition was greater than auditory signal complexity, whereas adults showed the same level of complexity to both types of stimuli. The differential rates of complexity change may reflect a combination of innate and experiential factors on the structure and function of the two sensory systems.

  15. Differential maturation of brain signal complexity in the human auditory and visual system

    OpenAIRE

    Sarah Lippe; Randy McIntosh

    2009-01-01

    Brain development carries with it a large number of structural changes at the local level which impact on the functional interactions of distributed neuronal networks for perceptual processing. Such changes enhance information processing capacity, which can be indexed by estimation of neural signal complexity. Here, we show that during development, EEG signal complexity increases from one month to 5 years of age in response to auditory and visual stimulation. However, the rates of change in...

  16. Differential Maturation of Brain Signal Complexity in the Human Auditory and Visual System

    OpenAIRE

    Lippé, Sarah; Kovacevic, Natasa; McIntosh, Anthony Randal

    2009-01-01

    Brain development carries with it a large number of structural changes at the local level which impact on the functional interactions of distributed neuronal networks for perceptual processing. Such changes enhance information processing capacity, which can be indexed by estimation of neural signal complexity. Here, we show that during development, EEG signal complexity increases from one month to 5 years of age in response to auditory and visual stimulation. However, the rates of change in c...

  17. Temporally selective processing of communication signals by auditory midbrain neurons

    DEFF Research Database (Denmark)

    Elliott, Taffeta M; Christensen-Dalsgaard, Jakob; Kelley, Darcy B

    2011-01-01

    Perception of the temporal structure of acoustic signals contributes critically to vocal signaling. In the aquatic clawed frog Xenopus laevis, calls differ primarily in the temporal parameter of click rate, which conveys sexual identity and reproductive state. We show here that an ensemble of aud...... compute temporally selective receptive fields are described....

  18. Effect of noise on reaction time for auditory signals

    Directory of Open Access Journals (Sweden)

    M.S. Prakash Rao

    1958-10-01

    Full Text Available The effect of noise on the time taken to react to pure tone signals was studied. The reaction time was found to increase with rise in the level of noise. Individual differences become more prominent at the higher noise levels. Greater fluctuation in the same individual was also observed with increase in the noise level.

  19. Increased Signal Complexity Improves the Breadth of Generalization in Auditory Perceptual Learning

    OpenAIRE

    Brown, David J.; Proulx, Michael J.

    2013-01-01

    Perceptual learning can be specific to a trained stimulus or optimally generalized to novel stimuli with the breadth of generalization being imperative for how we structure perceptual training programs. Adapting an established auditory interval discrimination paradigm to utilise complex signals, we trained human adults on a standard interval for either 2, 4, or 10 days. We then tested the standard, alternate frequency, interval, and stereo input conditions to evaluate the rapidity of specifi...

  20. Coordinated Eph-ephrin signaling guides migration and axon targeting in the avian auditory system

    Directory of Open Access Journals (Sweden)

    Allen-Sharpley Michelle R

    2012-08-01

    Full Text Available Abstract Background In the avian sound localization circuit, nucleus magnocellularis (NM projects bilaterally to nucleus laminaris (NL, with ipsilateral and contralateral NM axon branches directed to dorsal and ventral NL dendrites, respectively. We previously showed that the Eph receptor EphB2 is expressed in NL neuropil and NM axons during development. Here we tested whether EphB2 contributes to NM-NL circuit formation. Results We found that misexpression of EphB2 in embryonic NM precursors significantly increased the number of axon targeting errors from NM to contralateral NL in a cell-autonomous manner when forward signaling was impaired. We also tested the effects of inhibiting forward signaling of different Eph receptor subclasses by injecting soluble unclustered Fc-fusion proteins at stages when NM axons are approaching their NL target. Again we found an increase in axon targeting errors compared to controls when forward signaling was impaired, an effect that was significantly increased when both Eph receptor subclasses were inhibited together. In addition to axon targeting errors, we also observed morphological abnormalities of the auditory nuclei when EphB2 forward signaling was increased by E2 transfection, and when Eph-ephrin forward signaling was inhibited by E6-E8 injection of Eph receptor fusion proteins. Conclusions These data suggest that EphB signaling has distinct functions in axon guidance and morphogenesis. The results provide evidence that multiple Eph receptors work synergistically in the formation of precise auditory circuitry.

  1. What you see isn't always what you get: Auditory word signals trump consciously perceived words in lexical access.

    Science.gov (United States)

    Ostrand, Rachel; Blumstein, Sheila E; Ferreira, Victor S; Morgan, James L

    2016-06-01

    Human speech perception often includes both an auditory and visual component. A conflict in these signals can result in the McGurk illusion, in which the listener perceives a fusion of the two streams, implying that information from both has been integrated. We report two experiments investigating whether auditory-visual integration of speech occurs before or after lexical access, and whether the visual signal influences lexical access at all. Subjects were presented with McGurk or Congruent primes and performed a lexical decision task on related or unrelated targets. Although subjects perceived the McGurk illusion, McGurk and Congruent primes with matching real-word auditory signals equivalently primed targets that were semantically related to the auditory signal, but not targets related to the McGurk percept. We conclude that the time course of auditory-visual integration is dependent on the lexicality of the auditory and visual input signals, and that listeners can lexically access one word and yet consciously perceive another. PMID:27011021

  2. Neural Processing of Auditory Signals and Modular Neural Control for Sound Tropism of Walking Machines

    Directory of Open Access Journals (Sweden)

    Hubert Roth

    2008-11-01

    Full Text Available The specialized hairs and slit sensillae of spiders (Cupiennius salei can sense the airflow and auditory signals in a low-frequency range. They provide the sensor information for reactive behavior, like e.g. capturing a prey. In analogy, in this paper a setup is described where two microphones and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right. The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it.

  3. The relationship between acceptable noise level and electrophysiologic auditory brainstem and cortical signal to noise ratios

    Directory of Open Access Journals (Sweden)

    Hemanth N. Shetty

    2014-03-01

    Full Text Available The following objectives of the study were formulated: i to investigate differences in measured signal to noise ratios while recording speech-evoked auditory brainstem response (cABR and cortical late latency response (LLR in low and high acceptable noise level (ANL groups; and ii to compare peak to peak amplitude of cABR (V-A and LLR (N1-P2 in low and high ANL groups. A total of 23 normal hearing participants was included in the study. One shot replicative and partly exploratory research design was utilized to study the effect of signal to noise ratio in a recorded waveform on afferent mechanism, assessed by cABR and LLR on participants having values of ANL of ≤7 (low ANL group and ≥13 (high ANL group. There were no differences in signal to noise ratio in the recorded waveforms of cABR and LLR between low and high ANL groups at both brainstem and cortical levels. However, the peak to peak amplitude of V-A of cABR and N1-P2 of LLR were both statistically larger in the high ANL group compared to their counterpart. The signal to noise ratio in recorded waveforms did not differentiated cABR (V-A or LLR (N1-P2 in low and high ANL groups. However, Larger peak to peak amplitudes in the high ANL group suggests differences higher processing centers in the upper brainstem to the auditory cortex. The findings of the study may be useful in determining the patient acceptability of noise.

  4. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery.

    Science.gov (United States)

    Reijntjes, Daniël O J; Pyott, Sonja J

    2016-06-01

    The spiral ganglion neurons (SGNs) are the first action potential generating neurons in the auditory pathway. The type I SGNs contact the sensory inner hair cells via their peripheral dendrites and relay auditory information to the brainstem via their central axon fibers. Individual afferent fibers show differences in response properties that are essential for normal hearing. The mechanisms that give rise to the heterogeneity of afferent responses are very poorly understood but are likely already in place at the peripheral dendrites where synapses are formed and action potentials are generated. To identify these molecular mechanisms, this review synthesizes a variety of literature and comprehensively outlines the cellular and molecular components positioned to regulate SGN afferent dendrite excitability, especially following glutamate release. These components include 1) proteins of the SGN postsynapses and neighboring supporting cells that together shape glutamatergic signaling, 2) the ion channels and transporters that determine the intrinsic excitability of the SGN afferent dendrites, and 3) the neurotransmitter receptors that extrinsically modify this excitability via synaptic input from the lateral olivocochlear efferents. This cellular and molecular machinery, together with presynaptic specializations of the inner hair cells, can be collectively referred to as the type I afferent signaling complex. As this review underscores, interactions of this signaling complex determine excitability of the SGN afferent dendrites and the afferent fiber responses. Moreover, this complex establishes the environmental milieu critical for the development and maintenance of the SGN afferent dendrites and synapses. Motivated by these important functions, this review also indicates areas of future research to elucidate the contributions of the afferent signaling complex to both normal hearing and also hearing loss. PMID:27018296

  5. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats

    OpenAIRE

    Choi, June-Seek; Cain, Christopher K.; LeDoux, Joseph E.

    2010-01-01

    Using a two-way signaled active avoidance (2-AA) learning procedure, where rats were trained in a shuttle box to avoid a footshock signaled by an auditory stimulus, we tested the contributions of the lateral (LA), basal (B), and central (CE) nuclei of the amygdala to the expression of instrumental active avoidance conditioned responses (CRs). Discrete or combined lesions of the LA and B, performed after the rats had reached an asymptotic level of avoidance performance, produced deficits in th...

  6. Hear no evil: The effect of auditory warning signals on avian innate avoidance, learned avoidance and memory

    Directory of Open Access Journals (Sweden)

    Emma C. SIDDALL, Nicola M. MARPLES

    2011-04-01

    Full Text Available Many aposematic insect species advertise their toxicity to potential predators using olfactory and auditory signals, in addition to visual signals, to produce a multimodal warning display. The olfactory signals in these displays may have interesting effects, such as eliciting innate avoidance against novel colored prey, or improving learning and memory of defended prey. However, little is known about the effects of such ancillary signals when they are auditory rather than olfactory. The few studies that have investigated this question have provided conflicting results. The current study sought to clarify and extend understanding of the effects of prey auditory signals on avian predator responses. The domestic chick Gallus gallus domesticus was used as a model avian predator to examine how the defensive buzzing sound of a bumblebee Bombus terrestris affected the chick’s innate avoidance behavior, and the learning and memory of prey avoidance. The results demonstrate that the buzzing sound had no effect on the predator’s responses to unpalatable aposematically colored crumbs, suggesting that the agitated buzzing of B. terrestris may provide no additional protection from avian predators [Current Zoology 57 (2: 197–207, 2011].

  7. Hear no evil:The effect of auditory warning signals on avian innate avoidance,learned avoidance and memory

    Institute of Scientific and Technical Information of China (English)

    Emma C.SIDDALL; Nicola M.MARPLES

    2011-01-01

    Many aposematic insect species advertise their toxicity to potential predators using olfactory and auditory signals,in addition to visual signals,to produce a multimodal warning display.The olfactory signals in these displays may have interesting effects,such as eliciting innate avoidance against novel colored prey,or improving learning and memory of defended prey.However,little is known about the effects of such ancillary signals when they are auditory rather than olfactory.The few studies that have investigated this question have provided confficting results.The current study sought to clarify and extend understanding of the effects of prey auditory signals on avian predator responses.The domestic chick Gallus gallus domesticus was used as a model avian predator to examine how the defensive buzzing sound of a bumblebee Bombus terrestris affected the chick's innate avoidance behavior,and the learning and memory of prey avoidance.The resuits demonstrate that the buzzing sound had no effect on the predator's responses to unpalalable aposematically colored crumbs,suggesting that the agitated buzzing of B.terrestris may provide no additional protection from avian predators.

  8. To modulate and be modulated: estrogenic influences on auditory processing of communication signals within a socio-neuro-endocrine framework.

    Science.gov (United States)

    Yoder, Kathleen M; Vicario, David S

    2012-02-01

    Gonadal hormones modulate behavioral responses to sexual stimuli, and communication signals can also modulate circulating hormone levels. In several species, these combined effects appear to underlie a two-way interaction between circulating gonadal hormones and behavioral responses to socially salient stimuli. Recent work in songbirds has shown that manipulating local estradiol levels in the auditory forebrain produces physiological changes that affect discrimination of conspecific vocalizations and can affect behavior. These studies provide new evidence that estrogens can directly alter auditory processing and indirectly alter the behavioral response to a stimulus. These studies show that: 1) Local estradiol action within an auditory area is necessary for socially relevant sounds to induce normal physiological responses in the brains of both sexes; 2) These physiological effects occur much more quickly than predicted by the classical time-frame for genomic effects; 3) Estradiol action within the auditory forebrain enables behavioral discrimination among socially relevant sounds in males; and 4) Estradiol is produced locally in the male brain during exposure to particular social interactions. The accumulating evidence suggests a socio-neuro-endocrinology framework in which estradiol is essential to auditory processing, is increased by a socially relevant stimulus, acts rapidly to shape perception of subsequent stimuli experienced during social interactions, and modulates behavioral responses to these stimuli. Brain estrogens are likely to function similarly in both songbird sexes because aromatase and estrogen receptors are present in both male and female forebrain. Estrogenic modulation of perception in songbirds and perhaps other animals could fine-tune male advertising signals and female ability to discriminate them, facilitating mate selection by modulating behaviors. PMID:22201281

  9. Increased Signal Complexity Improves the Breadth of Generalization in Auditory Perceptual Learning

    Directory of Open Access Journals (Sweden)

    David J. Brown

    2013-01-01

    Full Text Available Perceptual learning can be specific to a trained stimulus or optimally generalized to novel stimuli with the breadth of generalization being imperative for how we structure perceptual training programs. Adapting an established auditory interval discrimination paradigm to utilise complex signals, we trained human adults on a standard interval for either 2, 4, or 10 days. We then tested the standard, alternate frequency, interval, and stereo input conditions to evaluate the rapidity of specific learning and breadth of generalization over the time course. In comparison with previous research using simple stimuli, the speed of perceptual learning and breadth of generalization were more rapid and greater in magnitude, including novel generalization to an alternate temporal interval within stimulus type. We also investigated the long term maintenance of learning and found that specific and generalized learning was maintained over 3 and 6 months. We discuss these findings regarding stimulus complexity in perceptual learning and how they can inform the development of effective training protocols.

  10. Operator Auditory Perception and Spectral Quantification of Umbilical Artery Doppler Ultrasound Signals

    Science.gov (United States)

    Thuring, Ann; Brännström, K. Jonas; Ewerlöf, Maria; Hernandez-Andrade, Edgar; Ley, David; Lingman, Göran; Liuba, Karina; Maršál, Karel; Jansson, Tomas

    2013-01-01

    Objective An experienced sonographer can by listening to the Doppler audio signals perceive various timbres that distinguish different types of umbilical artery flow despite an unchanged pulsatility index (PI). Our aim was to develop an objective measure of the Doppler audio signals recorded from fetoplacental circulation in a sheep model. Methods Various degrees of pathological flow velocity waveforms in the umbilical artery, similar to those in human complicated pregnancies, were induced by microsphere embolization of the placental bed (embolization model, 7 lamb fetuses, 370 Doppler recordings) or by fetal hemodilution (anemia model, 4 lamb fetuses, 184 recordings). A subjective 11-step operator auditory scale (OAS) was related to conventional Doppler parameters, PI and time average mean velocity (TAM), and to sound frequency analysis of Doppler signals (sound frequency with the maximum energy content [MAXpeak] and frequency band at maximum level minus 15 dB [MAXpeak-15 dB] over several heart cycles). Results We found a negative correlation between the OAS and PI: median Rho −0.73 (range −0.35– −0.94) and −0.68 (range −0.57– −0.78) in the two lamb models, respectively. There was a positive correlation between OAS and TAM in both models: median Rho 0.80 (range 0.58–0.95) and 0.90 (range 0.78–0.95), respectively. A strong correlation was found between TAM and the results of sound spectrum analysis; in the embolization model the median r was 0.91 (range 0.88–0.97) for MAXpeak and 0.91 (range 0.82–0.98) for MAXpeak-15 dB. In the anemia model, the corresponding values were 0.92 (range 0.78–0.96) and 0.96 (range 0.89–0.98), respectively. Conclusion Audio-spectrum analysis reflects the subjective perception of Doppler sound signals in the umbilical artery and has a strong correlation to TAM-velocity. This information might be of importance for clinical management of complicated pregnancies as an addition to conventional Doppler parameters

  11. Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons.

    Science.gov (United States)

    Svirskis, Gytis; Kotak, Vibhakar; Sanes, Dan H; Rinzel, John

    2002-12-15

    Neurons possess multiple voltage-dependent conductances specific for their function. To investigate how low-threshold outward currents improve the detection of small signals in a noisy background, we recorded from gerbil medial superior olivary (MSO) neurons in vitro. MSO neurons responded phasically, with a single spike to a step current injection. When bathed in dendrotoxin (DTX), most cells switched to tonic firing, suggesting that low-threshold potassium currents (I(KLT)) participated in shaping these phasic responses. Neurons were stimulated with a computer-generated steady barrage of random inputs, mimicking weak synaptic conductance transients (the "noise"), together with a larger but still subthreshold postsynaptic conductance, EPSG (the "signal"). DTX reduced the signal-to-noise ratio (SNR), defined as the ratio of probability to fire in response to the EPSG and the probability to fire spontaneously in response to noise. The reduction was mainly attributable to the increase of spontaneous firing in DTX. The spike-triggered reverse correlation indicated that, for spike generation, the neuron with I(KLT) required faster inward current transients. This narrow temporal integration window contributed to superior phase locking of firing to periodic stimuli before application of DTX. A computer model including Hodgkin-Huxley type conductances for spike generation and for I(KLT) (Rathouz and Trussell, 1998) showed similar response statistics. The dynamic low-threshold outward current increased SNR and the temporal precision of integration of weak subthreshold signals in auditory neurons by suppressing false positives. PMID:12486197

  12. Retrosplenial Cortex Is Required for the Retrieval of Remote Memory for Auditory Cues

    Science.gov (United States)

    Todd, Travis P.; Mehlman, Max L.; Keene, Christopher S.; DeAngeli, Nicole E.; Bucci, David J.

    2016-01-01

    The retrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of…

  13. Engineered deafness reveals that mouse courtship vocalizations do not require auditory experience.

    Science.gov (United States)

    Mahrt, Elena J; Perkel, David J; Tong, Ling; Rubel, Edwin W; Portfors, Christine V

    2013-03-27

    Auditory experience during development is necessary for normal language acquisition in humans. Although songbirds, some cetaceans, and maybe bats may also be vocal learners, vocal learning has yet to be well established for a laboratory mammal. Mice are potentially an excellent model organism for studying mechanisms underlying vocal communication. Mice vocalize in different social contexts, yet whether they learn their vocalizations remains unresolved. To address this question, we compared ultrasonic courtship vocalizations emitted by chronically deaf and normal hearing adult male mice. We deafened CBA/CaJ male mice, engineered to express diphtheria toxin (DT) receptors in hair cells, by systemic injection of DT at postnatal day 2 (P2). By P9, almost all inner hair cells were absent and by P16 all inner and outer hair cells were absent in DTR mice. These mice did not show any auditory brainstem responses as adults. Wild-type littermates, also treated with DT at P2, had normal hair cells and normal auditory brainstem responses. We compared the temporal structure of vocalization bouts, the types of vocalizations, the patterns of syllables, and the acoustic features of each syllable type emitted by hearing and deaf males in the presence of a female. We found that almost all of the vocalization features we examined were similar in hearing and deaf animals. These findings indicate that mice do not need auditory experience during development to produce normal ultrasonic vocalizations in adulthood. We conclude that mouse courtship vocalizations are not acquired through auditory feedback-dependent learning. PMID:23536072

  14. Habituation of Auditory Steady State Responses Evoked by Amplitude-Modulated Acoustic Signals in Rats

    Science.gov (United States)

    Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo

    2015-01-01

    Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360

  15. Habituation of auditory steady state responses evoked by amplitudemodulated acoustic signals in rats

    Directory of Open Access Journals (Sweden)

    Pavel Prado-Gutierrez

    2015-01-01

    Full Text Available Generation of the auditory steady state responses (ASSR is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials.

  16. ROS signalling – Specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian Max; Sweetlove, Lee J

    2011-01-01

    The production of reactive oxygen species (ROS) increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 may induce a general stress response, but it does not...

  17. Effects of Lengthening the Speech Signal on Auditory Word Discrimination in Kindergartners with SLI

    Science.gov (United States)

    Segers, Eliane; Verhoeven, Ludo

    2005-01-01

    In the present study, it was investigated whether kindergartners with specific language impairment (SLI) and normal language achieving (NLA) kindergartners can benefit from slowing down the entire speech signal or part of the speech signal in a synthetic speech discrimination task. Subjects were 19 kindergartners with SLI and 24 NLA controls.…

  18. Operator Auditory Perception and Spectral Quantification of Umbilical Artery Doppler Ultrasound Signals

    OpenAIRE

    Thuring, Ann; Brännström, Jonas; Ewerlöf, Maria; Hernandez-Andrade, Edgar; Ley, David; Lingman, Göran; Liuba, Karina; Marsal, Karel; Jansson, Tomas

    2013-01-01

    Objective An experienced sonographer can by listening to the Doppler audio signals perceive various timbres that distinguish different types of umbilical artery flow despite an unchanged pulsatility index (PI). Our aim was to develop an objective measure of the Doppler audio signals recorded from fetoplacental circulation in a sheep model. Methods Various degrees of pathological flow velocity waveforms in the umbilical artery, similar to those in human complicated pregnancies, were induced by...

  19. Synaptic Plasticity and NO-cGMP-PKG Signaling Coordinately Regulate ERK-Driven Gene Expression in the Lateral Amygdala and in the Auditory Thalamus Following Pavlovian Fear Conditioning

    Science.gov (United States)

    Ota, Kristie T.; Monsey, Melissa S.; Wu, Melissa S.; Young, Grace J.; Schafe, Glenn E.

    2010-01-01

    We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the…

  20. Auditory Processing Disorders

    Science.gov (United States)

    Auditory Processing Disorders Auditory processing disorders (APDs) are referred to by many names: central auditory processing disorders , auditory perceptual disorders , and central auditory disorders . APDs ...

  1. Primate Auditory Recognition Memory Performance Varies With Sound Type

    OpenAIRE

    Chi-Wing, Ng; Bethany, Plakke; Amy, Poremba

    2009-01-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g. social status, kinship, environment),have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition, and/or memory. The present study employs a de...

  2. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern; Roth, Hubert

    2005-01-01

    a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the...... right. The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  3. Low Power Adder Based Auditory Filter Architecture

    OpenAIRE

    2014-01-01

    Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT) based auditory filter is implemented. Power aware adder archite...

  4. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...

  5. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. PMID:25726291

  6. Wnt Signaling Is Required for Long-Term Memory Formation

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-09-01

    Full Text Available Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with β-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type β-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.

  7. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    Science.gov (United States)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  8. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  9. Auditory Neuropathy

    Science.gov (United States)

    ... field differ in their opinions about the potential benefits of hearing aids, cochlear implants, and other technologies for people with auditory neuropathy. Some professionals report that hearing aids and personal listening devices such as frequency modulation (FM) systems are ...

  10. Auditory Neuropathy: Findings of Behavioral, Physiological and Neurophysiological Tests

    Directory of Open Access Journals (Sweden)

    Mohammad Farhadi

    2006-12-01

    Full Text Available Background and Aim: Auditory neuropathy (AN can be diagnosed by abnormal auditory brainstem response (ABR, in the presence of normal cochlear microphonic (CM and otoacoustic emissions (OAEs.The aim of this study was to investigate the ABR and other electrodiagnostic test results of 6 patients suspicious to AN with problems in speech recognition. Materials and Methods: this cross sectional study was conducted on 6 AN patients with different ages evaluated by pure tone audiometry, speech discrimination score (SDS , immittance audiometry. ElectroCochleoGraphy , ABR, middle latency response (MLR, Late latency response (LLR, and OAEs. Results: Behavioral pure tone audiometric tests showed moderate to profound hearing loss. SDS was so poor which is not in accordance with pure tone thresholds. All patients had normal tympanogram but absent acoustic reflexes. CMs and OAEs were within normal limits. There was no contra lateral suppression of OAEs. None of cases had normal ABR or MLR although LLR was recorded in 4. Conclusion: All patients in this study are typical cases of auditory neuropathy. Despite having abnormal input, LLR remains normal that indicates differences in auditory evoked potentials related to required neural synchrony. These findings show that auditory cortex may play a role in regulating presentation of deficient signals along auditory pathways in primary steps.

  11. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  12. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Science.gov (United States)

    Mossbridge, Julia A; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  13. Signaled two-way avoidance learning using electrical stimulation of the inferior colliculus as negative reinforcement: effects of visual and auditory cues as warning stimuli

    Directory of Open Access Journals (Sweden)

    A.C. Troncoso

    1998-03-01

    Full Text Available The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P0.05 in both cases. Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala

  14. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    OpenAIRE

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it i...

  15. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise

    Directory of Open Access Journals (Sweden)

    Dana L Strait

    2011-06-01

    Full Text Available Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker’s voice amidst others. Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and nonmusicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not nonmusicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work from our laboratory documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development of language-related skills, musical training may aid in the prevention, habilitation and remediation of children with a wide range of attention-based language and learning impairments.

  16. RNA Type III Secretion Signals that require Hfq

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, George; Brown, Roslyn N.; Mushamiri, Ivy T.; Nguyen, Nhu T.; Taiwo, Rukayat; Stufkens, Afke; Smith, Richard D.; Adkins, Joshua N.; McDermott, Jason E.; Heffron, Fred

    2013-05-01

    effector proteins from the bacterium to a host cell; however, the secretion signal is poorly defined. Effector N-termini are thought to contain the signal, but they lack homology, possess no identifiable motif, and adopt intrinsically disordered structures. We identified a panel of RNA secretion signals that facilitated reporter translocation into host cells via a mechanism dependent upon the RNA chaperone Hfq. Each of these signals was localized to an RNA leader sequence preceding the translational start codon. To obtain this panel of RNA signals, we fused untranslated leader sequences from 42 different Salmonella effector proteins to the adenylate cyclase reporter (CyaA'), and tested each of them for translocation into J774 macrophages. RNA sequences derived from five effectors, gtgA, cigR, gogB, sseL, and steD were sufficient for CyaA' injection into host cells. The gtgA RNA also directed translocation of the β-lactamase reporter. To determine the mechanism of signal recognition, we identified proteins that bound specifically to the gtgA RNA. One of the unique proteins identified was Hfq. Translocation of all five UTR fusions was abolished in the Hfq mutant, confirming the importance of Hfq. Our results suggest that Hfq may direct a subset of RNA transcripts to the T3S apparatus for translation and secretion. Signal diversity may explain why the T3S signal has been difficult to define.

  17. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26541581

  18. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    OpenAIRE

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory corti...

  19. A Model of Auditory-Cognitive Processing and Relevance to Clinical Applicability.

    Science.gov (United States)

    Edwards, Brent

    2016-01-01

    Hearing loss and cognitive function interact in both a bottom-up and top-down relationship. Listening effort is tied to these interactions, and models have been developed to explain their relationship. The Ease of Language Understanding model in particular has gained considerable attention in its explanation of the effect of signal distortion on speech understanding. Signal distortion can also affect auditory scene analysis ability, however, resulting in a distorted auditory scene that can affect cognitive function, listening effort, and the allocation of cognitive resources. These effects are explained through an addition to the Ease of Language Understanding model. This model can be generalized to apply to all sounds, not only speech, representing the increased effort required for auditory environmental awareness and other nonspeech auditory tasks. While the authors have measures of speech understanding and cognitive load to quantify these interactions, they are lacking measures of the effect of hearing aid technology on auditory scene analysis ability and how effort and attention varies with the quality of an auditory scene. Additionally, the clinical relevance of hearing aid technology on cognitive function and the application of cognitive measures in hearing aid fittings will be limited until effectiveness is demonstrated in real-world situations. PMID:27355775

  20. Auditory issues in handheld land mine detectors

    Science.gov (United States)

    Vause, Nancy L.; Letowski, Tomasz R.; Ferguson, Larry G.; Mermagen, Timothy J.

    1999-08-01

    Most handled landmine detection systems use tones or other simple acoustic signals to provide detector information to the operator. Such signals are not necessarily the best carriers of information about the characteristics of hidden objects. To be effective, the auditory signals must present the information in a manner that the operator can comfortably and efficiently, the auditory signals must present the information in a manner that the operator can comfortably and efficiently interpret under stress and high mental load. The signals must also preserve their audibility and specific properties in various adverse acoustic environments. This paper will present several issues on optimizing the audio display interface between the operator and machine.

  1. Frequency band-importance functions for auditory and auditory-visual speech recognition

    Science.gov (United States)

    Grant, Ken W.

    2005-04-01

    In many everyday listening environments, speech communication involves the integration of both acoustic and visual speech cues. This is especially true in noisy and reverberant environments where the speech signal is highly degraded, or when the listener has a hearing impairment. Understanding the mechanisms involved in auditory-visual integration is a primary interest of this work. Of particular interest is whether listeners are able to allocate their attention to various frequency regions of the speech signal differently under auditory-visual conditions and auditory-alone conditions. For auditory speech recognition, the most important frequency regions tend to be around 1500-3000 Hz, corresponding roughly to important acoustic cues for place of articulation. The purpose of this study is to determine the most important frequency region under auditory-visual speech conditions. Frequency band-importance functions for auditory and auditory-visual conditions were obtained by having subjects identify speech tokens under conditions where the speech-to-noise ratio of different parts of the speech spectrum is independently and randomly varied on every trial. Point biserial correlations were computed for each separate spectral region and the normalized correlations are interpreted as weights indicating the importance of each region. Relations among frequency-importance functions for auditory and auditory-visual conditions will be discussed.

  2. How Does Auditory Training Work? Joined-Up Thinking and Listening.

    Science.gov (United States)

    Ferguson, Melanie; Henshaw, Helen

    2015-11-01

    Auditory training aims to compensate for degradation in the auditory signal and is offered as an intervention to help alleviate the most common complaint in people with hearing loss, understanding speech in a background noise. Yet there remain many unanswered questions. This article reviews some of the key pieces of evidence that assess the evidence for whether, and how, auditory training benefits adults with hearing loss. The evidence supports that improvements occur on the trained task; however, transfer of that learning to generalized real-world benefit is much less robust. For more than a decade, there has been an increasing awareness of the role that cognition plays in listening. But more recently in the auditory training literature, there has been an increased focus on assessing how cognitive performance relevant for listening may improve with training. We argue that this is specifically the case for measures that index executive processes, such as monitoring, attention switching, and updating of working memory, all of which are required for successful listening and communication in challenging or adverse listening conditions. We propose combined auditory-cognitive training approaches, where training interventions develop cognition embedded within auditory tasks, which are most likely to offer generalized benefits to the real-world listening abilities of people with hearing loss. PMID:27587911

  3. Auditory processing efficiency deficits in children with developmental language impairments

    Science.gov (United States)

    Hartley, Douglas E. H.; Moore, David R.

    2002-12-01

    The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.

  4. Sustainable land use requires attention to ecological signals.

    Science.gov (United States)

    Halvorson, William L; Castellanos, Alejandro E; Murrieta-Saldivar, Joaquin

    2003-11-01

    This case study details the difficulties of landscape management, highlighting the challenges inherent in managing natural resources when multiple agencies are involved, when the land users have no incentive for conservation, and when government agencies have too few resources for effective management. Pumping of groundwater from the aquifer of La Costa de Hermosillo in the state of Sonora, Mexico, began in 1945 and developed so quickly that by the late 1950s salinity intrusion from the Gulf of California was occurring in the wells. In the 1970s, the irrigatable land in La Costa peaked at 132,516 ha and the extracted volume of water from the aquifer peaked at around 1.14 billion cubic meters annually. By the 1980s, 105 wells of the total of 498 were contaminated with seawater and, therefore, identified for closure. At present La Costa de Hermosillo still represents 15% of the total harvested land, 16% of the total annual production, and 23% of the gross agricultural production of the state of Sonora. However, there are approximately 80,000 ha of abandoned fields due to salt water intension, lack of water and/or lack of credit available to individual farmers. This unstable situation resulted from the interplay of water management policies and practices, and farm-land policies and practices. While government agencies have been able to enforce better water use for agricultural production, there remains a significant area that requires restoration from its degraded state. For this piece of the ecosystem management puzzle, government agencies have thus far been unable to affect a solution. PMID:15015694

  5. Characterization of auditory synaptic inputs to gerbil perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Vibhakar C Kotak

    2015-08-01

    Full Text Available The representation of acoustic cues involves regions downstream from the auditory cortex (ACx. One such area, the perirhinal cortex (PRh, processes sensory signals containing mnemonic information. Therefore, our goal was to assess whether PRh receives auditory inputs from the auditory thalamus (MG and ACx in an auditory thalamocortical brain slice preparation and characterize these afferent-driven synaptic properties. When the MG or ACx was electrically stimulated, synaptic responses were recorded from the PRh neurons. Blockade of GABA-A receptors dramatically increased the amplitude of evoked excitatory potentials. Stimulation of the MG or ACx also evoked calcium transients in most PRh neurons. Separately, when fluoro ruby was injected in ACx in vivo, anterogradely labeled axons and terminals were observed in the PRh. Collectively, these data show that the PRh integrates auditory information from the MG and ACx and that auditory driven inhibition dominates the postsynaptic responses in a non-sensory cortical region downstream from the auditory cortex.

  6. Pump linewidth requirements for processing dispersion-altered DQPSK signals using FWM

    Science.gov (United States)

    Dúill, Seán P. Ó.; Naimi, Sepideh T.; Barry, Liam P.

    2016-05-01

    We report on a potentially deleterious issue regarding the four-wave mixing (FWM)-based processing of dispersion-altered signals. We estimate the baudrate-dependent pump linewidth tolerances by calculating the extra optical signal to noise ratio (OSNR) penalty with respect to the propagation distance. We find that the issue is not important for 10 Gbaud differential quadrature phase shift keying (DQPSK) signals, though for 28 Gbaud (and 56 Gbaud) DQPSK signals we find that the pump linewidth requirements to implement FWM based optical signal processing needs to be in the sub-MHz range in order to avoid excessive OSNR penalties for the case of dispersion-altered signals. These results are pertinent for systems employing FWM, which could be all-optical wavelength converters for packet switching or mid-span spectral inversion techniques.

  7. Pump Linewidth Requirements for Processing Dispersion-Altered DQPSK Signals using FWM

    CERN Document Server

    Dúill, Séan Ó; Barry, Liam P

    2015-01-01

    We report on a potentially deleterious issue regarding the four-wave mixing based processing of dispersion-altered signals. We estimate the baudrate-dependent pump linewidth tolerances by calculating the extra optical signal to noise ratio (OSNR) penalty with respect to the propagation distance. We find that the issue is not important for 10 Gbaud differential quadrature phase shift keying (DQPSK) signals, though for 28 Gbaud (and 56 Gbaud) DQPSK signals we find that the pump linewidth requirements to implement FWM based optical signal processing needs to be in the sub-MHz range in order to avoid excessive OSNR penalties for the case of dispersion-altered signals. These results are pertinent for systems employing FWM, which could be all-optical wavelength converters for packet switching or mid-span spectral inversion techniques.

  8. Neuroglobin Expression in the Mammalian Auditory System.

    Science.gov (United States)

    Reuss, Stefan; Banica, Ovidiu; Elgurt, Mirra; Mitz, Stephanie; Disque-Kaiser, Ursula; Riemann, Randolf; Hill, Marco; Jaquish, Dawn V; Koehrn, Fred J; Burmester, Thorsten; Hankeln, Thomas; Woolf, Nigel K

    2016-04-01

    The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells. PMID:25636685

  9. Speech Perception Within an Auditory Cognitive Science Framework

    OpenAIRE

    Holt, Lori L.; Lotto, Andrew J.

    2008-01-01

    The complexities of the acoustic speech signal pose many significant challenges for listeners. Although perceiving speech begins with auditory processing, investigation of speech perception has progressed mostly independently of study of the auditory system. Nevertheless, a growing body of evidence demonstrates that cross-fertilization between the two areas of research can be productive. We briefly describe research bridging the study of general auditory processing and speech perception, show...

  10. Pre-LTP requires extracellular signal-regulated kinase in the ACC

    Science.gov (United States)

    Yamanaka, Manabu; Tian, Zhen; Darvish-Ghane, Soroush

    2016-01-01

    The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of extracellular signal-regulated kinase to mood disorders. PMID:27178245

  11. Auditory imagery: empirical findings.

    Science.gov (United States)

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  12. Requirement of Wnt/beta-catenin signaling in pronephric kidney development.

    Science.gov (United States)

    Lyons, Jon P; Miller, Rachel K; Zhou, Xiaolan; Weidinger, Gilbert; Deroo, Tom; Denayer, Tinneke; Park, Jae-Il; Ji, Hong; Hong, Ji Yeon; Li, Annette; Moon, Randall T; Jones, Elizabeth A; Vleminckx, Kris; Vize, Peter D; McCrea, Pierre D

    2009-01-01

    The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/beta-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/beta-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/beta-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/beta-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/beta-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/beta-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation. PMID:19100832

  13. Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development

    Science.gov (United States)

    Basson, M. Albert; Echevarria, Diego; Ahn, Christina Petersen; Sudarov, Anamaria; Joyner, Alexandra L.; Mason, Ivor J.; Martinez, Salvador; Martin, Gail R.

    2008-01-01

    SUMMARY Development of the prospective midbrain and cerebellum are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that the midbrain and cerebellum require different levels of FGF signaling for their development. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. In this study, we have explored the effects of inhibiting FGF signaling within the embryonic midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing Sprouty2 (Spry2) specifically in the mouse mesencephalon and rhombomere 1 from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes the death of cells in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining cells in the posterior mesencephalon develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the medial part of the cerebellum that spans the midline. We found that whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dosage, resulted in loss of the entire vermis. We provide evidence that cell death is not responsible for this tissue loss. Instead, our data suggest that the vermis fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development. PMID:18216176

  14. Deactivation of the Parahippocampal Gyrus Preceding Auditory Hallucinations in Schizophrenia

    NARCIS (Netherlands)

    Diederen, Kelly M. J.; Neggers, Sebastiaan F. W.; Daalman, Kirstin; Blom, Jan Dirk; Goekoop, Rutger; Kahn, Rene S.; Sommer, Iris E. C.

    2010-01-01

    Objective: Activation in a network of language-related regions has been reported during auditory verbal hallucinations. It remains unclear, however, how this activation is triggered. Identifying brain regions that show significant signal changes preceding auditory hallucinations might reveal the ori

  15. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    Science.gov (United States)

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches.

  16. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    When an early wall reflection is added to a direct sound, a spectral modulation is introduced to the signal's power spectrum. This spectral modulation typically produces an auditory sensation of coloration or pitch. Throughout this study, auditory spectral-integration effects involved in coloration...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...... filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high...

  17. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    Science.gov (United States)

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells. PMID:27341758

  18. Notch-signalling is required for head regeneration and tentacle patterning in Hydra.

    Science.gov (United States)

    Münder, Sandra; Tischer, Susanne; Grundhuber, Maresa; Büchels, Nathalie; Bruckmeier, Nadine; Eckert, Stefanie; Seefeldt, Carolin A; Prexl, Andrea; Käsbauer, Tina; Böttger, Angelika

    2013-11-01

    Local self-activation and long ranging inhibition provide a mechanism for setting up organising regions as signalling centres for the development of structures in the surrounding tissue. The adult hydra hypostome functions as head organiser. After hydra head removal it is newly formed and complete heads can be regenerated. The molecular components of this organising region involve Wnt-signalling and β-catenin. However, it is not known how correct patterning of hypostome and tentacles are achieved in the hydra head and whether other signals in addition to HyWnt3 are needed for re-establishing the new organiser after head removal. Here we show that Notch-signalling is required for re-establishing the organiser during regeneration and that this is due to its role in restricting tentacle activation. Blocking Notch-signalling leads to the formation of irregular head structures characterised by excess tentacle tissue and aberrant expression of genes that mark the tentacle boundaries. This indicates a role for Notch-signalling in defining the tentacle pattern in the hydra head. Moreover, lateral inhibition by HvNotch and its target HyHes are required for head regeneration and without this the formation of the β-catenin/Wnt dependent head organiser is impaired. Work on prebilaterian model organisms has shown that the Wnt-pathway is important for setting up signalling centres for axial patterning in early multicellular animals. Our data suggest that the integration of Wnt-signalling with Notch-Delta activity was also involved in the evolution of defined body plans in animals. PMID:24012879

  19. Mismatch negativity in children with specific language impairment and auditory processing disorder

    OpenAIRE

    Caroline Nunes Rocha-Muniz; Débora Maria Befi-Lopes; Eliane Schochat

    2015-01-01

    INTRODUCTION: Mismatch negativity, an electrophysiological measure, evaluates the brain's capacity to discriminate sounds, regardless of attentional and behavioral capacity. Thus, this auditory event-related potential is promising in the study of the neurophysiological basis underlying auditory processing.OBJECTIVE: To investigate complex acoustic signals (speech) encoded in the auditory nervous system of children with specific language impairment and compare with children with auditory proce...

  20. Fine functional organization of auditory cortex revealed by Fourier optical imaging

    OpenAIRE

    Kalatsky, Valery A.; Polley, Daniel B.; Merzenich, Michael M.; Schreiner, Christoph E.; Stryker, Michael P.

    2005-01-01

    We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with ...

  1. In search of an auditory engram

    Science.gov (United States)

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory. PMID:15967995

  2. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    Prediction and assessment of low-frequency noise problems requires information about the auditory filter characteristics at low-frequencies. Unfortunately, data at low-frequencies is scarce and practically no results have been published for frequencies below 100 Hz. Extrapolation of ERB results...... from previous studies suggests the filter bandwidth keeps decreasing below 100 Hz, although at a relatively lower rate than at higher frequencies. Main characteristics of the auditory filter were studied from below 100 Hz up to 1000 Hz. Center frequencies evaluated were 50, 63, 125, 250, 500, and 1000......-ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...

  3. SNMP is a signaling component required for pheromone sensitivity in Drosophila.

    Science.gov (United States)

    Jin, Xin; Ha, Tal Soo; Smith, Dean P

    2008-08-01

    The only known volatile pheromone in Drosophila, 11-cis-vaccenyl acetate (cVA), mediates a variety of behaviors including aggregation, mate recognition, and sexual behavior. cVA is detected by a small set of olfactory neurons located in T1 trichoid sensilla on the antennae of males and females. Two components known to be required for cVA reception are the odorant receptor Or67d and the extracellular pheromone-binding protein LUSH. Using a genetic screen for cVA-insensitive mutants, we have identified a third component required for cVA reception: sensory neuron membrane protein (SNMP). SNMP is a homolog of CD36, a scavenger receptor important for lipoprotein binding and uptake of cholesterol and lipids in vertebrates. In humans, loss of CD36 is linked to a wide range of disorders including insulin resistance, dyslipidemia, and atherosclerosis, but how CD36 functions in lipid transport and signal transduction is poorly understood. We show that SNMP is required in pheromone-sensitive neurons for cVA sensitivity but is not required for sensitivity to general odorants. Using antiserum to SNMP infused directly into the sensillum lymph, we show that SNMP function is required on the dendrites of cVA-sensitive neurons; this finding is consistent with a direct role in cVA signal transduction. Therefore, pheromone perception in Drosophila should serve as an excellent model to elucidate the role of CD36 members in transmembrane signaling. PMID:18653762

  4. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex.

    Science.gov (United States)

    Xing, Lei; Larsen, Rylan S; Bjorklund, George Reed; Li, Xiaoyan; Wu, Yaohong; Philpot, Benjamin D; Snider, William D; Newbern, Jason M

    2016-01-01

    Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2(+) neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. PMID:26848828

  5. Ets2-dependent trophoblast signalling is required for gastrulation progression after primitive streak initiation.

    Science.gov (United States)

    Polydorou, Christiana; Georgiades, Pantelis

    2013-01-01

    Although extraembryonic ectoderm trophoblast signals the embryo for primitive streak initiation, a prerequisite for gastrulation, it is unknown whether it also signals for the progression of gastrulation after primitive streak initiation. Here, using Ets2-/- mice, we show that trophoblast signalling is also required in vivo for primitive streak elongation, completion of intraembryonic mesoderm epithelial-mesenchymal transition and the development of anterior primitive streak derivatives such as the node. We show that Ets2-dependent trophoblast signalling is required for the maintenance of high levels of Nodal and Wnt3 expression in the epiblast and for the induction of Snail expression in the primitive streak, between embryonic day 6.3 and 6.7. Within extraembryonic ectoderm trophoblast, Ets2 maintains the expression of the transcription factors Elf5, Cdx2 and Eomes, and that of the signalling molecule Bmp4. We propose a model that provides a genetic explanation as to how Ets2 in trophoblast mediates the progression of gastrulation within the epiblast. PMID:23552073

  6. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor.

    Directory of Open Access Journals (Sweden)

    Melinda Roberts

    Full Text Available Plants react to pathogen attack via recognition of, and response to, pathogen-specific molecules at the cell surface and inside the cell. Pathogen effectors (virulence factors are monitored by intracellular nucleotide-binding leucine-rich repeat (NB-LRR sensor proteins in plants and mammals. Here, we study the genetic requirements for defense responses of an autoactive mutant of ADR1-L2, an Arabidopsis coiled-coil (CC-NB-LRR protein. ADR1-L2 functions upstream of salicylic acid (SA accumulation in several defense contexts, and it can act in this context as a "helper" to transduce specific microbial activation signals from "sensor" NB-LRRs. This helper activity does not require an intact P-loop. ADR1-L2 and another of two closely related members of this small NB-LRR family are also required for propagation of unregulated runaway cell death (rcd in an lsd1 mutant. We demonstrate here that, in this particular context, ADR1-L2 function is P-loop dependent. We generated an autoactive missense mutation, ADR1-L2D484V, in a small homology motif termed MHD. Expression of ADR1-L2D848V leads to dwarfed plants that exhibit increased disease resistance and constitutively high SA levels. The morphological phenotype also requires an intact P-loop, suggesting that these ADR1-L2D484V phenotypes reflect canonical activation of this NB-LRR protein. We used ADR1-L2D484V to define genetic requirements for signaling. Signaling from ADR1-L2D484V does not require NADPH oxidase and is negatively regulated by EDS1 and AtMC1. Transcriptional regulation of ADR1-L2D484V is correlated with its phenotypic outputs; these outputs are both SA-dependent and -independent. The genetic requirements for ADR1-L2D484V activity resemble those that regulate an SA-gradient-dependent signal amplification of defense and cell death signaling initially observed in the absence of LSD1. Importantly, ADR1-L2D484V autoactivation signaling is controlled by both EDS1 and SA in separable, but linked

  7. Auditory learning: a developmental method.

    Science.gov (United States)

    Zhang, Yilu; Weng, Juyang; Hwang, Wey-Shiuan

    2005-05-01

    Motivated by the human autonomous development process from infancy to adulthood, we have built a robot that develops its cognitive and behavioral skills through real-time interactions with the environment. We call such a robot a developmental robot. In this paper, we present the theory and the architecture to implement a developmental robot and discuss the related techniques that address an array of challenging technical issues. As an application, experimental results on a real robot, self-organizing, autonomous, incremental learner (SAIL), are presented with emphasis on its audition perception and audition-related action generation. In particular, the SAIL robot conducts the auditory learning from unsegmented and unlabeled speech streams without any prior knowledge about the auditory signals, such as the designated language or the phoneme models. Neither available before learning starts are the actions that the robot is expected to perform. SAIL learns the auditory commands and the desired actions from physical contacts with the environment including the trainers. PMID:15940990

  8. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development

    Directory of Open Access Journals (Sweden)

    Schwend Tyler

    2009-11-01

    Full Text Available Abstract Background The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC. Genetic studies in zebrafish and mice have established that the Hedgehog (Hh-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE, which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia 12. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1 for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study chameleon mutants, lacking a functional disp1(con/disp1. Results con/disp1 mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in con/disp1 mutants, however disp1 is necessary for post-migratory CNCC patterning and differentiation. We show that disp1 is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, sox9a and dlx2a, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to

  9. Vitamin D Signaling in the Bovine Immune System: A Model for Understanding Human Vitamin D Requirements

    Directory of Open Access Journals (Sweden)

    Corwin D. Nelson

    2012-03-01

    Full Text Available The endocrine physiology of vitamin D in cattle has been rigorously investigated and has yielded information on vitamin D requirements, endocrine function in health and disease, general metabolism, and maintenance of calcium homeostasis in cattle. These results are relevant to human vitamin D endocrinology. The current debate regarding vitamin D requirements is centered on the requirements for proper intracrine and paracrine vitamin D signaling. Studies in adult and young cattle can provide valuable insight for understanding vitamin D requirements as they relate to innate and adaptive immune responses during infectious disease. In cattle, toll-like receptor recognition activates intracrine and paracrine vitamin D signaling mechanism in the immune system that regulates innate and adaptive immune responses in the presence of adequate 25-hydroxyvitamin D. Furthermore, experiments with mastitis in dairy cattle have provided in vivo evidence for the intracrine vitamin D signaling mechanism in macrophages as well as vitamin D mediated suppression of infection. Epidemiological evidence indicates that circulating concentrations above 32 ng/mL of 25-hydroxyvitamin D are necessary for optimal vitamin D signaling in the immune system, but experimental evidence is lacking for that value. Experiments in cattle can provide that evidence as circulating 25-hydroxyvitamin D concentrations can be experimentally manipulated within ranges that are normal for humans and cattle. Additionally, young and adult cattle can be experimentally infected with bacteria and viruses associated with significant diseases in both cattle and humans. Utilizing the bovine model to further delineate the immunomodulatory role of vitamin D will provide potentially valuable insights into the vitamin D requirements of both humans and cattle, especially as they relate to immune response capacity and infectious disease resistance.

  10. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  11. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  12. Psychology of auditory perception.

    Science.gov (United States)

    Lotto, Andrew; Holt, Lori

    2011-09-01

    Audition is often treated as a 'secondary' sensory system behind vision in the study of cognitive science. In this review, we focus on three seemingly simple perceptual tasks to demonstrate the complexity of perceptual-cognitive processing involved in everyday audition. After providing a short overview of the characteristics of sound and their neural encoding, we present a description of the perceptual task of segregating multiple sound events that are mixed together in the signal reaching the ears. Then, we discuss the ability to localize the sound source in the environment. Finally, we provide some data and theory on how listeners categorize complex sounds, such as speech. In particular, we present research on how listeners weigh multiple acoustic cues in making a categorization decision. One conclusion of this review is that it is time for auditory cognitive science to be developed to match what has been done in vision in order for us to better understand how humans communicate with speech and music. WIREs Cogni Sci 2011 2 479-489 DOI: 10.1002/wcs.123 For further resources related to this article, please visit the WIREs website. PMID:26302301

  13. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  14. Encoding frequency contrast in primate auditory cortex

    OpenAIRE

    Malone, Brian J.; Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM...

  15. Acquisition of heroin conditioned immunosuppression requires IL-1 signaling in the dorsal hippocampus.

    Science.gov (United States)

    Lebonville, Christina L; Jones, Meghan E; Hutson, Lee W; Cooper, Letty B; Fuchs, Rita A; Lysle, Donald T

    2016-08-01

    Opioid users experience increased incidence of infection, which may be partially attributable to both direct opiate-immune interactions and conditioned immune responses. Previous studies have investigated the neural circuitry governing opioid conditioned immune responses, but work remains to elucidate the mechanisms mediating this effect. Our laboratory has previously shown that hippocampal IL-1 signaling, specifically, is required for the expression of heroin conditioned immunosuppression following learning. The current studies were designed to further characterize the role of hippocampal IL-1 in this phenomenon by manipulating IL-1 during learning. Experiment 1 tested whether hippocampal IL-1 is also required for the acquisition of heroin conditioned immunosuppression, while Experiment 2 tested whether hippocampal IL-1 is required for the expression of unconditioned heroin immunosuppression. We found that blocking IL-1 signaling in the dorsal hippocampus with IL-1RA during each conditioning session, but not on interspersed non-conditioning days, significantly attenuated the acquisition of heroin conditioned immunosuppression. Strikingly, we found that the same IL-1RA treatment did not alter unconditioned immunosuppression to a single dose of heroin. Thus, IL-1 signaling is not a critical component of the response to heroin but rather may play a role in the formation of the association between heroin and the context. Collectively, these studies suggest that IL-1 signaling, in addition to being involved in the expression of a heroin conditioned immune response, is also involved in the acquisition of this effect. Importantly, this effect is likely not due to blocking the response to the unconditioned stimulus since IL-1RA did not affect heroin's immunosuppressive effects. PMID:27072068

  16. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.

    Science.gov (United States)

    Chater, Caspar; Peng, Kai; Movahedi, Mahsa; Dunn, Jessica A; Walker, Heather J; Liang, Yun-Kuan; McLachlan, Deirdre H; Casson, Stuart; Isner, Jean Charles; Wilson, Ian; Neill, Steven J; Hedrich, Rainer; Gray, Julie E; Hetherington, Alistair M

    2015-10-19

    An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral. PMID:26455301

  17. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.

  18. Applied research in auditory data representation

    Science.gov (United States)

    Frysinger, Steve P.

    1990-08-01

    A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.

  19. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  20. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  1. Auditory Model Identification Using REVCOR Method

    Directory of Open Access Journals (Sweden)

    Lamia Bouafif

    2014-08-01

    Full Text Available Auditory models are very useful in many applications such as speech coding and compression, cochlea prosthesis, and audio watermarking. In this paper we will develop a new auditory model based on the REVCOR method. This technique is based on the estimation of the impulse response of a suitable filter characterizing the auditory neuron and the cochlea. The first step of our study is focused on the development of a mathematical model based on the gammachirp system. This model is then programmed, implemented and simulated under Matlab. The obtained results are compared with the experimental values (REVCOR experiments for the validation and a better optimization of the model parameters. Two objective criteria are used in order to optimize the audio model estimation which are the SNR (signal to noise ratio and the MQE (mean quadratic error. The simulation results demonstrated that for the auditory model, only a reduced number of channels are excited (from 3 to 6. This result is very interesting for auditory implants because only significant channels will be stimulated. Besides, this simplifies the electronic implementation and medical intervention.

  2. Spectrotemporal resolution tradeoff in auditory processing as revealed by human auditory brainstem responses and psychophysical indices.

    Science.gov (United States)

    Bidelman, Gavin M; Syed Khaja, Ameenuddin

    2014-06-20

    Auditory filter theory dictates a physiological compromise between frequency and temporal resolution of cochlear signal processing. We examined neurophysiological correlates of these spectrotemporal tradeoffs in the human auditory system using auditory evoked brain potentials and psychophysical responses. Temporal resolution was assessed using scalp-recorded auditory brainstem responses (ABRs) elicited by paired clicks. The inter-click interval (ICI) between successive pulses was parameterized from 0.7 to 25 ms to map ABR amplitude recovery as a function of stimulus spacing. Behavioral frequency difference limens (FDLs) and auditory filter selectivity (Q10 of psychophysical tuning curves) were obtained to assess relations between behavioral spectral acuity and electrophysiological estimates of temporal resolvability. Neural responses increased monotonically in amplitude with increasing ICI, ranging from total suppression (0.7 ms) to full recovery (25 ms) with a temporal resolution of ∼3-4 ms. ABR temporal thresholds were correlated with behavioral Q10 (frequency selectivity) but not FDLs (frequency discrimination); no correspondence was observed between Q10 and FDLs. Results suggest that finer frequency selectivity, but not discrimination, is associated with poorer temporal resolution. The inverse relation between ABR recovery and perceptual frequency tuning demonstrates a time-frequency tradeoff between the temporal and spectral resolving power of the human auditory system. PMID:24793771

  3. Overriding auditory attentional capture

    OpenAIRE

    Dalton, Polly; Lavie, Nilli

    2007-01-01

    Attentional capture by color singletons during shape search can be eliminated when the target is not a feature singleton (Bacon & Egeth, 1994). This suggests that a "singleton detection" search strategy must be adopted for attentional capture to occur. Here we find similar effects on auditory attentional capture. Irrelevant high-intensity singletons interfered with an auditory search task when the target itself was also a feature singleton. However, singleton interference was eliminated when ...

  4. Automatically detecting auditory P300 in several trials

    Institute of Scientific and Technical Information of China (English)

    莫少锋; 汤井田; 陈洪波

    2015-01-01

    A method was demonstrated based on Infomax independent component analysis (Infomax ICA) for automatically extracting auditory P300 signals within several trials. A signaling equilibrium algorithm was proposed to enhance the effectiveness of the Infomax ICA decomposition. After the mixed signal was decomposed by Infomax ICA, the independent component (IC) used in auditory P300 reconstruction was automatically chosen by using the standard deviation of the fixed temporal pattern. And the result of auditory P300 was reconstructed using the selected ICs. The experimental results show that the auditory P300 can be detected automatically within five trials. The Pearson correlation coefficient between the standard signal and the signal detected using the proposed method is significantly greater than that between the standard signal and the signal detected using the average method within five trials. The wave pattern result obtained using the proposed algorithm is better and more similar to the standard signal than that obtained by the average method for the same number of trials. Therefore, the proposed method can automatically detect the effective auditory P300 within several trials.

  5. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    Directory of Open Access Journals (Sweden)

    Stock David W

    2010-11-01

    Full Text Available Abstract Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.

  6. [Central auditory prosthesis].

    Science.gov (United States)

    Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M

    2009-06-01

    Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084

  7. Sbds is required for Rac2-mediated monocyte migration and signaling downstream of RANK during osteoclastogenesis.

    Science.gov (United States)

    Leung, Roland; Cuddy, Karl; Wang, Yongqiang; Rommens, Johanna; Glogauer, Michael

    2011-02-10

    Shwachman-Diamond syndrome (SDS) results from mutations in the SBDS gene, characterized by exocrine pancreatic insufficiency and hematologic and skeletal abnormalities. Neutropenia and neutrophil dysfunction are hallmark features of SDS; however, causes for the bone defects are unknown. Dysfunction of bone-resorbing osteoclasts, formed by the fusion of monocytic progenitors derived from the same granulocytic precursors as neutrophils, could be responsible. We report that Sbds is required for in vitro and in vivo osteoclastogenesis (OCG). Sbds-null murine monocytes formed osteoclasts of reduced number and size because of impaired migration and fusion required for OCG. Phenotypically, Sbds-null mice exhibited low-turnover osteoporosis consistent with findings in SDS patients. Western blotting of Rho GTPases that control actin dynamics and migration showed a 5-fold decrease in Rac2, whereas Rac1, Cdc42, and RhoA were unchanged or only mildly reduced. Although migration was rescued on Rac2 supplementation, OCG was not. This was attributed to impaired signaling downstream of receptor activator of nuclear factor-κB (RANK) and reduced expression of the RANK-ligand-dependent fusion receptor DC-STAMP. We conclude that Sbds is required for OCG by regulating monocyte migration via Rac2 and osteoclast differentiation signaling downstream of RANK. Impaired osteoclast formation could disrupt bone homeostasis, resulting in skeletal abnormalities seen in SDS patients. PMID:21084708

  8. Evidence for auditory localization ability in the turtle.

    Science.gov (United States)

    Lenhardt, M L

    1981-10-01

    Evidence is presented that the semiaquatic turtle Chrysemys scripta and the terrestrial turtle Terrapene carolina major can detect the direction of a tone within their sensitive area of hearing. It is further suggested that not only can these species respond behaviorally to sound without extensive manipulation but can use limited hearing in a problem-solving situation of maze learning. Adult emydid turtles (5 C. scripta, 3 T. carolina) learned a Y-maze with a 500-c/s signal to an invisible open goal box to avoid bright light. All animals performed above chance levels, but it required over 240 trials on the average to reach 60%-correct performance. Computations suggest that binaural cues used by mammals would not be adequately encoded by the primitive auditory systems of the species studied. It is further suggested that these turtles use bone conduction by coupling their ears to the substrate to hear vibrations in the immediate area. This would appear to be a carryover from the ancient reptile stem stock. The poor middle-ear impedance system relegates air-borne sound processing to be a somewhat insensitive limited low-pass system, depending heavily on monaural cues derived from head scanning. vocal output in these species appears to be spectrally imbalanced with their auditory sensitivity. The role of species-specific vocal signalling is unclear from the present data. PMID:7186502

  9. Auditory-model-based Feature Extraction Method for Mechanical Faults Diagnosis

    Institute of Scientific and Technical Information of China (English)

    LI Yungong; ZHANG Jinping; DAI Li; ZHANG Zhanyi; LIU Jie

    2010-01-01

    It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect.

  10. The Basal Forebrain and Motor Cortex Provide Convergent yet Distinct Movement-Related Inputs to the Auditory Cortex.

    Science.gov (United States)

    Nelson, Anders; Mooney, Richard

    2016-05-01

    Cholinergic inputs to the auditory cortex from the basal forebrain (BF) are important to auditory processing and plasticity, but little is known about the organization of these synapses onto different auditory cortical neuron types, how they influence auditory responsiveness, and their activity patterns during various behaviors. Using intersectional tracing, optogenetic circuit mapping, and in vivo calcium imaging, we found that cholinergic axons arising from the caudal BF target major excitatory and inhibitory auditory cortical cell types, rapidly modulate auditory cortical tuning, and display fast movement-related activity. Furthermore, the BF and the motor cortex-another source of movement-related activity-provide convergent input onto some of the same auditory cortical neurons. Cholinergic and motor cortical afferents to the auditory cortex display distinct activity patterns and presynaptic partners, indicating that the auditory cortex integrates bottom-up cholinergic signals related to ongoing movements and arousal with top-down information concerning impending movements and motor planning. PMID:27112494

  11. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  12. Dynamin II is required for 17β-estradiol signaling and autophagy-based ERα degradation

    Science.gov (United States)

    Totta, Pierangela; Busonero, Claudia; Leone, Stefano; Marino, Maria; Acconcia, Filippo

    2016-01-01

    17β-estradiol (E2) regulates diverse physiological effects, including cell proliferation, by binding to estrogen receptor α (ERα). ERα is both a transcription factor that drives E2-sensitive gene expression and an extra-nuclear localized receptor that triggers the activation of diverse kinase cascades. While E2 triggers cell proliferation, it also induces ERα degradation in a typical hormone-dependent feedback loop. Although ERα breakdown proceeds through the 26S proteasome, a role for lysosomes and for some endocytic proteins in controlling ERα degradation has been reported. Here, we studied the role of the endocytic protein dynamin II in E2-dependent ERα signaling and degradation. The results indicate that dynamin II siRNA-mediated knock-down partially prevents E2-induced ERα degradation through the inhibition of an autophagy-based pathway and impairs E2-induced cell proliferation signaling. Altogether, these data demonstrate that dynamin II is required for the E2:ERα signaling of physiological functions and uncovers a role for autophagy in the control of ERα turnover. PMID:27009360

  13. Spatial auditory processing in pinnipeds

    Science.gov (United States)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study

  14. Local field potential correlates of auditory working memory in primate dorsal temporal pole.

    Science.gov (United States)

    Bigelow, James; Ng, Chi-Wing; Poremba, Amy

    2016-06-01

    Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special

  15. A loudspeaker-based room auralisation (LoRA) system for auditory perception research

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Favrot, Sylvain Emmanuel

    Most research on understanding the signal processing of the auditory system has been realized in anechoic or almost anechoic environments. The knowledge derived from these experiments cannot be directly transferred to reverberant environments. In order to investigate the auditory signal processin...... cross correlation coefficient) were considered. The subject evaluation included speech intelligibility and distance perception measures....

  16. Dehydroepiandrosterone Stimulation of Osteoblastogenesis in Human MSCs Requires IGF-I Signaling.

    Science.gov (United States)

    Liang, Xiaonan; Glowacki, Julie; Hahne, Jochen; Xie, Li; LeBoff, Meryl S; Zhou, Shuanhu

    2016-08-01

    Dehydroepiandrosterone (DHEA) is an adrenal steroid that circulates in high concentrations in humans in its sulfated form, DHEAS. Clinical and epidemiological studies suggested that low DHEAS levels may be associated with low bone mass. Previously, we and others showed that the effects of DHEA on the skeleton may be conferred partly by their ability to inhibit skeletal catabolic agents, for example, bone resorptive cytokine IL-6. In this study, we tested the hypothesis that the anabolic effects of DHEA on osteoblastogenesis require IGF-I signaling pathways. Using both primary cultures and a cell line of human bone marrow-derived mesenchymal stem cells (hMSCs), we show that DHEA and other steroids stimulate osteoblastogenesis as shown by alkaline phosphatase activity and osteoblast gene induction. The stimulation by DHEA on both IGF-I gene expression and osteoblastogenesis in hMSCs requires IGF-I receptor, PI3K, p38 MAPK, or p42/44 MAPK signaling pathways. This study adds information to indicate that DHEA may be useful for treating bone diseases through its inhibition of skeletal catabolic IL-6 and stimulation of anabolic IGF-I-mediated mechanisms. J. Cell. Biochem. 117: 1769-1774, 2016. © 2015 Wiley Periodicals, Inc. PMID:26682953

  17. Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals.

    Science.gov (United States)

    Monsoro-Burq, Anne-Hélène; Fletcher, Russell B; Harland, Richard M

    2003-07-01

    At the border of the neural plate, the induction of the neural crest can be achieved by interactions with the epidermis, or with the underlying mesoderm. Wnt signals are required for the inducing activity of the epidermis in chick and amphibian embryos. Here, we analyze the molecular mechanisms of neural crest induction by the mesoderm in Xenopus embryos. Using a recombination assay, we show that prospective paraxial mesoderm induces a panel of neural crest markers (Slug, FoxD3, Zic5 and Sox9), whereas the future axial mesoderm only induces a subset of these genes. This induction is blocked by a dominant negative (dn) form of FGFR1. However, neither dnFGFR4a nor inhibition of Wnt signaling prevents neural crest induction in this system. Among the FGFs, FGF8 is strongly expressed by the paraxial mesoderm. FGF8 is sufficient to induce the neural crest markers FoxD3, Sox9 and Zic5 transiently in the animal cap assay. In vivo, FGF8 injections also expand the Slug expression domain. This suggests that FGF8 can initiate neural crest formation and cooperates with other DLMZ-derived factors to maintain and complete neural crest induction. In contrast to Wnts, eFGF or bFGF, FGF8 elicits neural crest induction in the absence of mesoderm induction and without a requirement for BMP antagonists. In vivo, it is difficult to dissociate the roles of FGF and WNT factors in mesoderm induction and neural patterning. We show that, in most cases, effects on neural crest formation were parallel to altered mesoderm or neural development. However, neural and neural crest patterning can be dissociated experimentally using different dominant-negative manipulations: while Nfz8 blocks both posterior neural plate formation and neural crest formation, dnFGFR4a blocks neural patterning without blocking neural crest formation. These results suggest that different signal transduction mechanisms may be used in neural crest induction, and anteroposterior neural patterning. PMID:12783784

  18. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging?

    Science.gov (United States)

    Schimmang, T; Durán Alonso, B; Zimmermann, U; Knipper, M

    2014-12-26

    Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. Using adult mouse mutants defective in BDNF signaling, it could be shown that a tonotopical gradient of BDNF expression within cochlear neurons is required for maintenance of a specific spatial innervation pattern of outer hair cells and inner hair cells. Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system. PMID:25064058

  19. Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction

    OpenAIRE

    Gleason, Julie E.; Korswagen, Hendrik C.; Eisenmann, David M

    2002-01-01

    During Caenorhabditis elegans vulval development, activation of receptor tyrosine kinase/Ras and Notch signaling pathways causes three vulval precursor cells (VPCs) to adopt induced cell fates. A Wnt signaling pathway also acts in cell fate specification by the VPCs, via regulation of the Hox gene lin-39. We show here that either mutation of pry-1 or expression of an activated BAR-1 β-catenin protein causes an Overinduced phenotype, in which greater than three VPCs adopt induced cell fates. T...

  20. Audiovisual training is better than auditory-only training for auditory-only speech-in-noise identification

    OpenAIRE

    Lidestam, Björn; Moradi, Shahram; Pettersson, Rasmus; Ricklefs, Theodor

    2014-01-01

    The effects of audiovisual versus auditory training for speech-in-noise identification were examined in 60 young participants. The training conditions were audiovisual training, auditory-only training, and no training (n = 20 each). In the training groups, gated consonants and words were presented at 0 dB signal-to-noise ratio; stimuli were either audiovisual or auditory-only. The no-training group watched a movie clip without performing a speech identification task. Speech-in-noise identific...

  1. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination

    OpenAIRE

    Ishii, A.; Fyffe-Maricich, S.L.; Furusho, M.; Miller, R. H.; Bansal, R.

    2012-01-01

    Wrapping of the myelin sheath around axons by oligodendrocytes is critical for the rapid conduction of electrical signals, required for the normal functioning of the central nervous system (CNS). Myelination is a multistep process where oligodendrocytes progress through a well-coordinated differentiation program regulated by multiple extracellular growth and differentiation signals. The intracellular-transduction of the extracellular signals that regulate myelination is poorly understood. Her...

  2. Overriding auditory attentional capture.

    Science.gov (United States)

    Dalton, Polly; Lavie, Nilli

    2007-02-01

    Attentional capture by color singletons during shape search can be eliminated when the target is not a feature singleton (Bacon & Egeth, 1994). This suggests that a "singleton detection" search strategy must be adopted for attentional capture to occur. Here we find similar effects on auditory attentional capture. Irrelevant high-intensity singletons interfered with an auditory search task when the target itself was also a feature singleton. However, singleton interference was eliminated when the target was not a singleton (i.e., when nontargets were made heterogeneous, or when more than one target sound was presented). These results suggest that auditory attentional capture depends on the observer's attentional set, as does visual attentional capture. The suggestion that hearing might act as an early warning system that would always be tuned to unexpected unique stimuli must therefore be modified to accommodate these strategy-dependent capture effects. PMID:17557587

  3. Functional requirements for inhibitory signal transmission by the immunomodulatory receptor CD300a

    Directory of Open Access Journals (Sweden)

    DeBell Karen E

    2012-04-01

    Full Text Available Abstract Background Activation signals can be negatively regulated by cell surface receptors bearing immunoreceptor tyrosine-based inhibitory motifs (ITIMs. CD300a, an ITIM bearing type I transmembrane protein, is expressed on many hematopoietic cells, including subsets of lymphocytes. Results We have taken two approaches to further define the mechanism by which CD300a acts as an inhibitor of immune cell receptor signaling. First, we have expressed in Jurkat T cells a chimeric receptor consisting of the extracellular domains of killer-cell immunoglobulin-like receptor (KIR2DL2 fused to the transmembrane and cytoplasmic segments of CD300a (KIR-CD300a to explore surrogate ligand-stimulated inhibition of superantigen stimulated T cell receptor (TCR mediated cell signaling. We found that intact CD300a ITIMs were essential for inhibition and that the tyrosine phosphorylation of these ITIMs required the src tyrosine kinase Lck. Tyrosine phosphorylation of the CD300a ITIMs created docking sites for both src homology 2 domain containing protein tyrosine phosphatase (SHP-1 and SHP-2. Suppression of SHP-1 and SHP-2 expression in KIR-CD300a Jurkat T cells with siRNA and the use of DT40 chicken B cell lines expressing CD300a and deficient in several phosphatases revealed that SHP-1, but not SHP-2 or the src homology 2 domain containing inositol 5’ phosphatase SHIP, was utilized by CD300a for its inhibitory activity. Conclusion These studies provide new insights into the function of CD300a in tuning T and B cell responses.

  4. Does murine spermatogenesis require WNT signalling? A lesson from Gpr177 conditional knockout mouse models.

    Science.gov (United States)

    Chen, Su-Ren; Tang, J-X; Cheng, J-M; Hao, X-X; Wang, Y-Q; Wang, X-X; Liu, Y-X

    2016-01-01

    Wingless-related MMTV integration site (WNT) proteins and several other components of the WNT signalling pathway are expressed in the murine testes. However, mice mutant for WNT signalling effector β-catenin using different Cre drivers have phenotypes that are inconsistent with each other. The complexity and overlapping expression of WNT signalling cascades have prevented researchers from dissecting their function in spermatogenesis. Depletion of the Gpr177 gene (the mouse orthologue of Drosophila Wntless), which is required for the secretion of various WNTs, makes it possible to genetically dissect the overall effect of WNTs in testis development. In this study, the Gpr177 gene was conditionally depleted in germ cells (Gpr177(flox/flox), Mvh-Cre; Gpr177(flox/flox), Stra8-Cre) and Sertoli cells (Gpr177(flox/flox), Amh-Cre). No obvious defects in fertility and spermatogenesis were observed in these three Gpr177 conditional knockout (cKO) mice at 8 weeks. However, late-onset testicular atrophy and fertility decline in two germ cell-specific Gpr177 deletion mice were noted at 8 months. In contrast, we did not observe any abnormalities of spermatogenesis and fertility, even in 8-month-old Gpr177(flox/flox), Amh-Cre mice. Elevation of reactive oxygen species (ROS) was detected in Gpr177 cKO germ cells and Sertoli cells and exhibited an age-dependent manner. However, significant increase in the activity of Caspase 3 was only observed in germ cells from 8-month-old germ cell-specific Gpr177 knockout mice. In conclusion, GPR177 in Sertoli cells had no apparent influence on spermatogenesis, whereas loss of GPR177 in germ cells disrupted spermatogenesis in an age-dependent manner via elevating ROS levels and triggering germ cell apoptosis. PMID:27362799

  5. Lysophosphatidic Acid Signaling through the Lysophosphatidic Acid-1 Receptor Is Required for Alveolarization.

    Science.gov (United States)

    Funke, Manuela; Knudsen, Lars; Lagares, David; Ebener, Simone; Probst, Clemens K; Fontaine, Benjamin A; Franklin, Alicia; Kellner, Manuela; Kühnel, Mark; Matthieu, Stephanie; Grothausmann, Roman; Chun, Jerold; Roberts, Jesse D; Ochs, Matthias; Tager, Andrew M

    2016-07-01

    Lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, contributes to both the development and the pathological remodeling after injury of many organs. Because we found previously that LPA-LPA1 signaling contributes to pulmonary fibrosis, here we investigated whether this pathway is also involved in lung development. Quantitative assessment of lung architecture of LPA1-deficient knock-out (KO) and wild-type (WT) mice at 3, 12, and 24 weeks of age using design-based stereology suggested the presence of an alveolarization defect in LPA1 KO mice at 3 weeks, which persisted as alveolar numbers increased in WT mice into adulthood. Across the ages examined, the lungs of LPA1 KO mice exhibited decreased alveolar numbers, septal tissue volumes, and surface areas, and increased volumes of the distal airspaces. Elastic fibers, critical to the development of alveolar septa, appeared less organized and condensed and more discontinuous in KO alveoli starting at P4. Tropoelastin messenger RNA expression was decreased in KO lungs, whereas expression of matrix metalloproteinases degrading elastic fibers was either decreased or unchanged. These results are consistent with the abnormal lung phenotype of LPA1 KO mice, being attributable to reduced alveolar septal formation during development, rather than to increased septal destruction as occurs in the emphysema of chronic obstructive pulmonary disease. Peripheral septal fibroblasts and myofibroblasts, which direct septation in late alveolarization, demonstrated reduced production of tropoelastin and matrix metalloproteinases, and diminished LPA-induced migration, when isolated from LPA1 KO mice. Taken together, our data suggest that LPA-LPA1 signaling is critically required for septation during alveolarization. PMID:27082727

  6. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...... of sound as an active component in shaping urban environments. As urban conditions spreads globally, new scales, shapes and forms of communities appear and call for new distinctions and models in the study and representation of sonic environments. Particularly so, since urban environments...

  7. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  8. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses.

    Science.gov (United States)

    Garcia, Kevin; Delaux, Pierre-Marc; Cope, Kevin R; Ané, Jean-Michel

    2015-10-01

    Ectomycorrhizal (ECM) symbioses are among the most widespread associations between roots of woody plants and soil fungi in forest ecosystems. These associations contribute significantly to the sustainability and sustainagility of these ecosystems through nutrient cycling and carbon sequestration. Unfortunately, the molecular mechanisms controlling the mutual recognition between both partners are still poorly understood. Elegant work has demonstrated that effector proteins from ECM and arbuscular mycorrhizal (AM) fungi regulate host defenses by manipulating plant hormonal pathways. In parallel, genetic and evolutionary studies in legumes showed that a 'common symbiosis pathway' is required for the establishment of the ancient AM symbiosis and has been recruited for the rhizobia-legume association. Given that genes of this pathway are present in many angiosperm trees that develop ectomycorrhizas, we propose their potential involvement in some but not all ECM associations. The maintenance of a successful long-term relationship seems strongly regulated by resource allocation between symbiotic partners, suggesting that nutrients themselves may serve as signals. This review summarizes our current knowledge on the early and late signal exchanges between woody plants and ECM fungi, and we suggest future directions for decoding the molecular basis of the underground dance between trees and their favorite fungal partners. PMID:25982949

  9. Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions.

    Science.gov (United States)

    Vandenberg, Laura N; Blackiston, Douglas J; Rea, Adam C; Dore, Timothy M; Levin, Michael

    2014-01-01

    A number of processes operating during the first cell cleavages enable the left-right (LR) axis to be consistently oriented during Xenopus laevis development. Prior work showed that secondary organizers induced in frog embryos after cleavage stages (i.e. conjoined twins arising from ectopic induced primary axes) correctly pattern their own LR axis only when a primary (early) organizer is also present. This instructive effect confirms the unique LR patterning functions that occur during early embryogenesis, but leaves open the question: which mechanisms that operate during early stages are also involved in the orientation of later-induced organizers? We sought to distinguish the two phases of LR patterning in secondary organizers (LR patterning of the primary twin and the later transfer of this information to the secondary twin) by perturbing only the latter process. Here, we used reagents that do not affect primary LR patterning at the time secondary organizers form to inhibit each of 4 mechanisms in the induced twin. Using pharmacological, molecular-genetic, and photo-chemical tools, we show that serotonergic and gap-junctional signaling, but not proton or potassium flows, are required for the secondary organizer to appropriately pattern its LR axis in a multicellular context. We also show that consistently-asymmetric gene expression begins prior to ciliary flow. Together, our data highlight the importance of physiological signaling in the propagation of cleavage-derived LR orientation to multicellular cell fields. PMID:25896280

  10. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  11. Auditory spatial perception dynamically realigns with changing eye position.

    Science.gov (United States)

    Razavi, Babak; O'Neill, William E; Paige, Gary D

    2007-09-19

    Audition and vision both form spatial maps of the environment in the brain, and their congruency requires alignment and calibration. Because audition is referenced to the head and vision is referenced to movable eyes, the brain must accurately account for eye position to maintain alignment between the two modalities as well as perceptual space constancy. Changes in eye position are known to variably, but inconsistently, shift sound localization, suggesting subtle shortcomings in the accuracy or use of eye position signals. We systematically and directly quantified sound localization across a broad spatial range and over time after changes in eye position. A sustained fixation task addressed the spatial (steady-state) attributes of eye position-dependent effects on sound localization. Subjects continuously fixated visual reference spots straight ahead (center), to the left (20 degrees), or to the right (20 degrees) of the midline in separate sessions while localizing auditory targets using a laser pointer guided by peripheral vision. An alternating fixation task focused on the temporal (dynamic) aspects of auditory spatial shifts after changes in eye position. Localization proceeded as in sustained fixation, except that eye position alternated between the three fixation references over multiple epochs, each lasting minutes. Auditory space shifted by approximately 40% toward the new eye position and dynamically over several minutes. We propose that this spatial shift reflects an adaptation mechanism for aligning the "straight-ahead" of perceived sensory-motor maps, particularly during early childhood when normal ocular alignment is achieved, but also resolving challenges to normal spatial perception throughout life. PMID:17881531

  12. Physiological Measures of Auditory Function

    Science.gov (United States)

    Kollmeier, Birger; Riedel, Helmut; Mauermann, Manfred; Uppenkamp, Stefan

    When acoustic signals enter the ears, they pass several processing stages of various complexities before they will be perceived. The auditory pathway can be separated into structures dealing with sound transmission in air (i.e. the outer ear, ear canal, and the vibration of tympanic membrane), structures dealing with the transformation of sound pressure waves into mechanical vibrations of the inner ear fluids (i.e. the tympanic membrane, ossicular chain, and the oval window), structures carrying mechanical vibrations in the fluid-filled inner ear (i.e. the cochlea with basilar membrane, tectorial membrane, and hair cells), structures that transform mechanical oscillations into a neural code, and finally several stages of neural processing in the brain along the pathway from the brainstem to the cortex.

  13. Interface Design Implications for Recalling the Spatial Configuration of Virtual Auditory Environments

    Science.gov (United States)

    McMullen, Kyla A.

    Although the concept of virtual spatial audio has existed for almost twenty-five years, only in the past fifteen years has modern computing technology enabled the real-time processing needed to deliver high-precision spatial audio. Furthermore, the concept of virtually walking through an auditory environment did not exist. The applications of such an interface have numerous potential uses. Spatial audio has the potential to be used in various manners ranging from enhancing sounds delivered in virtual gaming worlds to conveying spatial locations in real-time emergency response systems. To incorporate this technology in real-world systems, various concerns should be addressed. First, to widely incorporate spatial audio into real-world systems, head-related transfer functions (HRTFs) must be inexpensively created for each user. The present study further investigated an HRTF subjective selection procedure previously developed within our research group. Users discriminated auditory cues to subjectively select their preferred HRTF from a publicly available database. Next, the issue of training to find virtual sources was addressed. Listeners participated in a localization training experiment using their selected HRTFs. The training procedure was created from the characterization of successful search strategies in prior auditory search experiments. Search accuracy significantly improved after listeners performed the training procedure. Next, in the investigation of auditory spatial memory, listeners completed three search and recall tasks with differing recall methods. Recall accuracy significantly decreased in tasks that required the storage of sound source configurations in memory. To assess the impacts of practical scenarios, the present work assessed the performance effects of: signal uncertainty, visual augmentation, and different attenuation modeling. Fortunately, source uncertainty did not affect listeners' ability to recall or identify sound sources. The present

  14. Reciprocal requirements for Eda/Edar/NF-κB and Wnt/β-catenin signaling pathways in hair follicle induction

    Science.gov (United States)

    Zhang, Yuhang; Tomann, Philip; Andl, Thomas; Gallant, Natalie M.; Huelsken, Joerg; Jerchow, Boris; Birchmeier, Walter; Paus, Ralf; Piccolo, Stefano; Mikkola, Marja L.; Morrisey, Edward E.; Overbeek, Paul A.; Scheidereit, Claus; Millar, Sarah E.; Schmidt-Ullrich, Ruth

    2009-01-01

    SUMMARY Wnt/β-catenin and NF-κB signaling mechanisms provide central controls in development and disease, but how these pathways intersect is unclear. Using hair follicle induction as a model system, we show that patterning of dermal Wnt/β-catenin signaling requires epithelial β-catenin activity. We find that Wnt/β-catenin signaling is absolutely required for NF-κB activation, and that Edar is a direct Wnt target gene. Wnt/β-catenin signaling is initially activated independently of Eda/Edar/NF-κB activity in primary hair follicle primordia. However, Eda/Edar/NF-κB signaling is required to refine the pattern of Wnt/β-catenin activity, and to maintain this activity at later stages of placode development. We show that maintenance of localized expression of Wnt10b and Wnt10a requires NF-κB signaling, providing a molecular explanation for the latter observation, and identify Wnt10b as a direct NF-κB target. These data reveal a complex interplay and inter-dependence of Wnt/β-catenin and Eda/Edar/NF-κB signaling pathways in initiation and maintenance of primary hair follicle placodes. PMID:19619491

  15. Maternal Mga is required for Wnt signaling and organizer formation in the early Xenopus embryo

    Institute of Scientific and Technical Information of China (English)

    Fei Gu; Huijuan Shi; Li Gao; Haiyan Zhang; Qinghua Tao

    2012-01-01

    Maternal Wnt11 is both necessary and sufficient for the formation of Spemann organizer in Xenopus embryo.Xnr3 and Siamois have been identified as the direct target genes of maternal Wnt11/β-catenin during organizer induction.The depletion of maternal XTcf3 resulted in the ectopic expression of Xnr3 and Siamois,suggesting the activity of β-catenin/XTcf3 is strictly regulated in the early Xenopus embryos.Here,we show that Xenopus mga (Xmga) is a maternal gene required for dorsal axis formation.Overexpression experiments indicate that mouse Mga potentiates the activity of β-catenin in the induction of organizer-specific genes.Depletion of maternal Xmga results in the dramatic decrease of the expression of organizer genes and ventralization phenotype,indicating that Xmga is required for β-catenin function and organizer formation.Depletion of XTcf3 cannot rescue organizer gene expression and axis formation in Xmga-depleted embryos,suggesting Xmga is downstream of XTcf3 during organizer induction.We conclude that maternal Xmga is critical for the function of β-catenin during organizer formation and dorsal development of Xenopus embryo.To our knowledge,this is a report for the first time to implicate Mga in regulating Wnt signaling.

  16. Maternal Mga is required for Wnt signaling and organizer formation in the early Xenopus embryo.

    Science.gov (United States)

    Gu, Fei; Shi, Huijuan; Gao, Li; Zhang, Haiyan; Tao, Qinghua

    2012-11-01

    Maternal Wnt11 is both necessary and sufficient for the formation of Spemann organizer in Xenopus embryo. Xnr3 and Siamois have been identified as the direct target genes of maternal Wnt11/β-catenin during organizer induction. The depletion of maternal XTcf3 resulted in the ectopic expression of Xnr3 and Siamois, suggesting the activity of β-catenin/XTcf3 is strictly regulated in the early Xenopus embryos. Here, we show that Xenopus mga (Xmga) is a maternal gene required for dorsal axis formation. Overexpression experiments indicate that mouse Mga potentiates the activity of β-catenin in the induction of organizer-specific genes. Depletion of maternal Xmga results in the dramatic decrease of the expression of organizer genes and ventralization phenotype, indicating that Xmga is required for β-catenin function and organizer formation. Depletion of XTcf3 cannot rescue organizer gene expression and axis formation in Xmga-depleted embryos, suggesting Xmga is downstream of XTcf3 during organizer induction. We conclude that maternal Xmga is critical for the function of β-catenin during organizer formation and dorsal development of Xenopus embryo. To our knowledge, this is a report for the first time to implicate Mga in regulating Wnt signaling. PMID:23070227

  17. Efficient Maturation and Cytokine Production of Neonatal DCs Requires Combined Proinflammatory Signals

    Directory of Open Access Journals (Sweden)

    Claudius U. Meyer

    2005-01-01

    Full Text Available Specific functional properties of dendritic cells (DCs have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs. Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNγ, CD40L, TNFα, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86. Combinations of proinflammatory mediators also increased cytokine secretion by neonatal DCs. Especially combined stimulation with LPS and IFNγ proved to be very efficient in inducing maturation and cytokine synthesis of neonatal DCs. In conclusion, neonatal DCs can be stimulated to express maturation as well as costimulatory surface molecules. However, induction of maturation requires combined stimulation with multiple proinflammatory signals.

  18. Transcription-dependent nuclear localization of DAZAP1 requires an N-terminal signal

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Tzu; Wen, Wan-Ching [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Yen, Pauline H., E-mail: pyen@ibms.sinica.edu.tw [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer DAZAP1 shuttles between the nucleus and the cytoplasm. Black-Right-Pointing-Pointer DAZAP1 accumulates in the cytoplasm when the nuclear transcription is inhibited. Black-Right-Pointing-Pointer DAZAP1's transcription-dependent nuclear localization requires N-terminal N42. Black-Right-Pointing-Pointer SLIRP binds to N42 and may be involved in the process. -- Abstract: Deleted in Azoospermia Associated Protein 1 (DAZAP1) is a ubiquitous hnRNP protein required for normal development and spermatogenesis. It resides predominantly in the nucleus and moves between the nucleus and the cytoplasm via a ZNS shuttling signal at its C-terminus. DAZAP1 accumulates in the cytoplasm when RNA polymerase II activity is inhibited by actinomycin D. Here we report the mapping of a 42-amino acid segment (N42) at the N-terminus of DAZAP1 that is both necessary and sufficient for its transcription-dependent nuclear localization. In addition, using a yeast two-hybrid system, we have identified SLIRP as a N42-binding protein which may regulate DAZAP1 subcellular localization.

  19. Wnt/β-catenin signaling is required for development of the exocrine pancreas

    Directory of Open Access Journals (Sweden)

    Sklenka Angela

    2007-01-01

    conclude that β-catenin expression is required for development of the exocrine pancreas, but is not required for development of the endocrine compartment. In contrast, β-catenin/Wnt signaling appears to be critical for proliferation of PTF1+ nascent acinar cells and may also function, in part, to maintain an undifferentiated state in exocrine/acinar cell precursors. Finally, β-catenin may be required to maintain positional identity of the pancreatic endoderm along the anterior-posterior axis. This data is consistent with the findings of frequent β-catenin mutations in carcinomas of acinar cell lineage seen in humans.

  20. Use of the Kalman filter in signal processing to reduce beam requirements for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    Several techniques proposed for diagnosing the velocity distribution of fast alpha-particles in a burning plasma require the injection of a beam of fast neutral atoms as probes. The author discusses how improving signal detection techniques is a high leverage factor in reducing the cost of the diagnostic beam. Optimal estimation theory provides a computational algorithm, the Kalman filter, that can optimally estimate the amplitude of a signal with arbitrary (but known) time dependence in the presence of noise. In one example presented, based on a square-wave signal and assumed noise levels, the Kalman filter achieves an enhancement of signal detection efficiency of about a factor of 10 (as compared with the straightforward observation of the signal superimposed on noise) with an observation time of 100 signal periods

  1. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  2. Online contributions of auditory feedback to neural activity in avian song control circuitry

    OpenAIRE

    Sakata, Jon T.; Michael S. Brainard

    2008-01-01

    Birdsong, like human speech, relies critically on auditory feedback to provide information about the quality of vocalizations. Although the importance of auditory feedback to vocal learning is well established, whether and how feedback signals influence vocal premotor circuitry has remained obscure. Previous studies in singing birds have not detected changes to vocal premotor activity following perturbations of auditory feedback, leading to the hypothesis that contributions of feedback to voc...

  3. Visual-auditory integration for visual search: a behavioral study in barn owls

    OpenAIRE

    Yael eHazan; Inna eYarin; Yonatan eKra; Hermann eWagner; Yoram eGutfreund

    2015-01-01

    Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual- auditory integration at the neuronal level. However, behavioral data on visual- auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention towards salient st...

  4. The Essential Complexity of Auditory Receptive Fields.

    Science.gov (United States)

    Thorson, Ivar L; Liénard, Jean; David, Stephen V

    2015-12-01

    Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models. PMID:26683490

  5. Vocoder analysis based on properties of the human auditory system

    Science.gov (United States)

    Gold, B.; Tierney, J.

    1983-12-01

    When a person listens to speech corrupted by noise or other adverse environmental factors, speech intelligibility may be impaired slightly or not at all. The same corrupted speech, after being vocoded, often causes drastic intelligibility loss. The loss is due to the fact that the human peripheral auditory system is a superior signal processor to that of the vocoder. This report is based on the premise that a vocoder analyzer that better resembles the peripheral auditory system would function in a superior manner to present-day vocoders. Topics include reviews of speech enhancement techniques, perceptual analysis of diagnostic rhyme test data, a brief description of the peripheral auditory system and an outline of proposed psychophysical tests. The final section is devoted to a discussion of some preliminary work on computer simulation of an auditory model.

  6. Prospects for replacement of auditory neurons by stem cells.

    Science.gov (United States)

    Shi, Fuxin; Edge, Albert S B

    2013-03-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457

  7. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    Science.gov (United States)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  8. Auditory pitch imagery and its relationship to musical synchronization.

    Science.gov (United States)

    Pecenka, Nadine; Keller, Peter E

    2009-07-01

    Musical ensemble performance requires precise coordination of action. To play in synchrony, ensemble musicians presumably anticipate the sounds that will be produced by their co-performers. These predictions may be based on auditory images in working memory. This study examined the contribution of auditory imagery abilities to sensorimotor synchronization (SMS) in 20 musicians. The acuity of single-tone pitch images was measured by an adjustment method and by adaptive threshold estimation. Different types of finger tapping tasks were administered to assess SMS. Auditory imagery and SMS abilities were found to be positively correlated with one another and with musical experience. PMID:19673794

  9. Robust speech features representation based on computational auditory model

    Institute of Scientific and Technical Information of China (English)

    LU Xugang; JIA Chuan; DANG Jianwu

    2004-01-01

    A speech signal processing and features extracting method based on computational auditory model is proposed. The computational model is based on psychological, physiological knowledge and digital signal processing methods. In each stage of a hearing perception system, there is a corresponding computational model to simulate its function. Based on this model, speech features are extracted. In each stage, the features in different kinds of level are extracted. A further processing for primary auditory spectrum based on lateral inhibition is proposed to extract much more robust speech features. All these features can be regarded as the internal representations of speech stimulation in hearing system. The robust speech recognition experiments are conducted to test the robustness of the features. Results show that the representations based on the proposed computational auditory model are robust representations for speech signals.

  10. Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    John Paul Christianson

    2014-10-01

    Full Text Available Behaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed behavioral immunization. Recent data implicate neuroplasticity within the ventromedial prefrontal cortex (mPFC as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and one week later to uncontrollable tailshocks, followed 24h later by social exploration and shuttlebox escape tests. To test the involvement of N-methyl-D-aspartate receptors (NMDAR and the extracellular signal-regulated kinase (ERK cascade in behavioral immunization, either D-AP5 or the MEK inhibitor U0126 was injected to the prelimbic (PL or infralimbic (IL mPFC prior to controllable stress exposure. Phosphorylated ERK and P70S6K, regulators of transcription and translation, were quantified by Western blot or immunohistochemistry after controllable or uncontrollable tailshocks. Prior controllable stress prevented the social exploration and shuttlebox performance deficits caused by the later uncontrollable stressor, and this effect was blocked by injections of D-AP5 into mPFC. A significant increase in phosphorylated ERK1 and ERK2, but not P70S6K, occurred within the PL and IL in rats exposed to controllable stress, but not to uncontrollable stress. However, U0126 only prevented behavioral immunization when injected to the PL. We provide evidence that NMDAR and ERK dependent plasticity within the PL region is required for behavioral immunization, a learned form of stressor resistance.

  11. A network for sensory-motor integration: what happens in the auditory cortex during piano playing without acoustic feedback?

    Science.gov (United States)

    Baumann, Simon; Koeneke, Susan; Meyer, Martin; Lutz, Kai; Jäncke, Lutz

    2005-12-01

    Playing a musical instrument requires efficient auditory as well as motor processing. We provide evidence for the existence of a neuronal network of secondary and higher-order areas belonging to the auditory and motor modality that is important in the integration of auditory and motor domains. PMID:16597763

  12. Attention to sound improves auditory reliability in audio-tactile spatial optimal integration

    Directory of Open Access Journals (Sweden)

    Tiziana eVercillo

    2015-05-01

    Full Text Available The role of attention on multisensory processing is still poorly understood. In particular, it is unclear whether directing attention toward a sensory cue dynamically reweights cue reliability during integration of multiple sensory signals. In this study, we investigated the impact of attention in combining audio-tactile signals in an optimal fashion. We used the Maximum Likelihood Estimation (MLE model to predict audio-tactile spatial localization on the body surface. We developed a new audio-tactile device composed by several small units, each one consisting of a speaker and a tactile vibrator independently controllable by external software. We tested subjects in an attentional and a non-attentional condition. In the attention experiment participants performed a dual task paradigm: they were required to evaluate the duration of a sound while performing an audio-tactile spatial task. Three unisensory or multisensory stimuli (conflictual or not conflictual sounds and vibrations arranged along the horizontal axis were presented sequentially. In the primary task subjects had to evaluate the position of the second stimulus (the probe with respect to the others (in a space bisection task. In the secondary task they had to report occasionally changes in duration of the second auditory stimulus. In the non-attentional task participants had only to perform the primary task (space bisection. Our results showed enhanced auditory precision (and auditory weights in the auditory attentional condition with respect to the control non-attentional condition. Interestingly in both conditions the multisensory results are well predicted by the MLE model. The results of this study support the idea that modality-specific attention modulates multisensory integration.

  13. Auditory Learning. Dimensions in Early Learning Series.

    Science.gov (United States)

    Zigmond, Naomi K.; Cicci, Regina

    The monograph discusses the psycho-physiological operations for processing of auditory information, the structure and function of the ear, the development of auditory processes from fetal responses through discrimination, language comprehension, auditory memory, and auditory processes related to written language. Disorders of auditory learning…

  14. Visual–auditory spatial processing in auditory cortical neurons

    OpenAIRE

    Bizley, Jennifer K.; King, Andrew J

    2008-01-01

    Neurons responsive to visual stimulation have now been described in the auditory cortex of various species, but their functions are largely unknown. Here we investigate the auditory and visual spatial sensitivity of neurons recorded in 5 different primary and non-primary auditory cortical areas of the ferret. We quantified the spatial tuning of neurons by measuring the responses to stimuli presented across a range of azimuthal positions and calculating the mutual information (MI) between the ...

  15. Central Interleukin-1 (IL1) Signaling is Required For Pharmacological, but not Physiological, Effects of Leptin on Energy Balance

    OpenAIRE

    Wisse, Brent E.; Ogimoto, Kayoko; Morton, Gregory J.; Williams, Diana L.; Schwartz, Michael W.

    2007-01-01

    Hypothalamic IL1 is suggested to be a critical mediator of the central effects of the adipocyte hormone leptin on energy balance. We hypothesized that IL1 receptor signaling is required for exogenously administered leptin to cause anorexia and weight loss, but not for physiological effects of endogenous leptin signaling on energy balance. To test this hypothesis, we investigated whether chronic hypothalamic over-expression of an IL1 receptor antagonist (AdV-IL1ra) alters food intake and weigh...

  16. Development of Receiver Stimulator for Auditory Prosthesis

    Directory of Open Access Journals (Sweden)

    K. Raja Kumar

    2010-05-01

    Full Text Available The Auditory Prosthesis (AP is an electronic device that can provide hearing sensations to people who are profoundly deaf by stimulating the auditory nerve via an array of electrodes with an electric current allowing them to understand the speech. The AP system consists of two hardware functional units such as Body Worn Speech Processor (BWSP and Receiver Stimulator. The prototype model of Receiver Stimulator for Auditory Prosthesis (RSAP consists of Speech Data Decoder, DAC, ADC, constant current generator, electrode selection logic, switch matrix and simulated electrode resistance array. The laboratory model of speech processor is designed to implement the Continuous Interleaved Sampling (CIS speech processing algorithm which generates the information required for electrode stimulation based on the speech / audio data. Speech Data Decoder receives the encoded speech data via an inductive RF transcutaneous link from speech processor. Twelve channels of auditory Prosthesis with selectable eight electrodes for stimulation of simulated electrode resistance array are used for testing. The RSAP is validated by using the test data generated by the laboratory prototype of speech processor. The experimental results are obtained from specific speech/sound tests using a high-speed data acquisition system and found satisfactory.

  17. Auditory confrontation naming in Alzheimer's disease.

    Science.gov (United States)

    Brandt, Jason; Bakker, Arnold; Maroof, David Aaron

    2010-11-01

    Naming is a fundamental aspect of language and is virtually always assessed with visual confrontation tests. Tests of the ability to name objects by their characteristic sounds would be particularly useful in the assessment of visually impaired patients, and may be particularly sensitive in Alzheimer's disease (AD). We developed an auditory naming task, requiring the identification of the source of environmental sounds (i.e., animal calls, musical instruments, vehicles) and multiple-choice recognition of those not identified. In two separate studies mild-to-moderate AD patients performed more poorly than cognitively normal elderly on the auditory naming task. This task was also more difficult than two versions of a comparable visual naming task, and correlated more highly with Mini-Mental State Exam score. Internal consistency reliability was acceptable, although ROC analysis revealed auditory naming to be slightly less successful than visual confrontation naming in discriminating AD patients from normal participants. Nonetheless, our auditory naming task may prove useful in research and clinical practice, especially with visually impaired patients. PMID:20981630

  18. Communication and control by listening: towards optimal design of a two-class auditory streaming brain-computer interface

    Directory of Open Access Journals (Sweden)

    N. Jeremy Hill

    2012-12-01

    Full Text Available Most brain-computer interface (BCI systems require users to modulate brain signals in response to visual stimuli. Thus, they may not be useful to people with limited vision, such as those with severe paralysis. One important approach for overcoming this issue is auditory streaming, an approach whereby a BCI system is driven by shifts of attention between two dichotically presented auditory stimulus streams. Motivated by the long-term goal of translating such a system into a reliable, simple yes-no interface for clinical usage, we aim to answer two main questions. First, we asked which of two previously-published variants provides superior performance: a fixed-phase (FP design in which the streams have equal period and opposite phase, or a drifting-phase (DP design where the periods are unequal. We found FP to be superior to DP (p = 0.002: average performance levels were 80% and 72% correct, respectively. We were also able to show, in a pilot with one subject, that auditory streaming can support continuous control and neurofeedback applications: by shifting attention between ongoing left and right auditory streams, the subject was able to control the position of a paddle in a computer game. Second, we examined whether the system is dependent on eye movements, since it is known that eye movements and auditory attention may influence each other, and any dependence on the ability to move one’s eyes would be a barrier to translation to paralyzed users. We discovered that, despite instructions, some subjects did make eye movements that were indicative of the direction of attention. However, there was no correlation, across subjects, between the reliability of the eye movement signal and the reliability of the BCI system, indicating that our system was configured to work independently of eye movement. Together, these findings are an encouraging step forward toward BCIs that provide practical communication and control options for the most severely

  19. The auditory characteristics of children with inner auditory canal stenosis.

    Science.gov (United States)

    Ai, Yu; Xu, Lei; Li, Li; Li, Jianfeng; Luo, Jianfen; Wang, Mingming; Fan, Zhaomin; Wang, Haibo

    2016-07-01

    Conclusions This study shows that the prevalence of auditory neuropathy spectrum disorder (ANSD) in the children with inner auditory canal (IAC) stenosis is much higher than those without IAC stenosis, regardless of whether they have other inner ear anomalies. In addition, the auditory characteristics of ANSD with IAC stenosis are significantly different from those of ANSD without any middle and inner ear malformations. Objectives To describe the auditory characteristics in children with IAC stenosis as well as to examine whether the narrow inner auditory canal is associated with ANSD. Method A total of 21 children, with inner auditory canal stenosis, participated in this study. A series of auditory tests were measured. Meanwhile, a comparative study was conducted on the auditory characteristics of ANSD, based on whether the children were associated with isolated IAC stenosis. Results Wave V in the ABR was not observed in all the patients, while cochlear microphonic (CM) response was detected in 81.1% ears with stenotic IAC. Sixteen of 19 (84.2%) ears with isolated IAC stenosis had CM response present on auditory brainstem responses (ABR) waveforms. There was no significant difference in ANSD characteristics between the children with and without isolated IAC stenosis. PMID:26981851

  20. Anatomy and Physiology of the Auditory Tracts

    Directory of Open Access Journals (Sweden)

    Mohammad hosein Hekmat Ara

    1999-03-01

    Full Text Available Hearing is one of the excel sense of human being. Sound waves travel through the medium of air and enter the ear canal and then hit the tympanic membrane. Middle ear transfer almost 60-80% of this mechanical energy to the inner ear by means of “impedance matching”. Then, the sound energy changes to traveling wave and is transferred based on its specific frequency and stimulates organ of corti. Receptors in this organ and their synapses transform mechanical waves to the neural waves and transfer them to the brain. The central nervous system tract of conducting the auditory signals in the auditory cortex will be explained here briefly.

  1. Sindbis viral vector induced apoptosis requires translational inhibition and signaling through Mcl-1 and Bak

    Directory of Open Access Journals (Sweden)

    Meruelo Daniel

    2010-02-01

    Full Text Available Abstract Background Sindbis viral vectors are able to efficiently target and kill tumor cells in vivo, as shown using pancreatic and ovarian cancer models. Infection results in apoptosis both in vitro and in vivo. Sindbis vector uptake is mediated by the LAMR, which is upregulated on a number of different tumor types, thus conferring specificity of the vector to a wide range of cancers. In this study we elucidate the mechanism of apoptosis in two tumor cell lines, MOSEC, derived from the ovarian epithelium and Pan02, derived from a pancreatic adenocarcinoma. A comprehensive understanding of the mechanism of apoptosis would facilitate the design of more effective vectors for cancer therapy. Results The initial phase of Sindbis vector induced apoptosis in MOSEC and Pan02 models reconfirms that viral infection is sensed by PKR due to double-stranded RNA intermediates associated with genomic replication. PKR activation results in translation inhibition through eIF2α phosphorylation and initiation of the stress response. Our studies indicate that the roles of two proteins, Mcl-1 and JNK, intimately link Sindbis induced translational arrest and cellular stress. Translational arrest inhibits the synthesis of anti-apoptotic Bcl-2 protein, Mcl-1. JNK activation triggers the release of Bad from 14-3-3, which ultimately results in apoptosis. These signals from translational arrest and cellular stress are propagated to the mitochondria where Bad and Bik bind to Bcl-xl and Mcl-1 respectively. Formation of these heterodimers displaces Bak, which results in caspase 9 cleavage and signaling through the mitochondrial pathway of apoptosis. Conclusion The host cell response to Sindbis is triggered through PKR activation. Our studies demonstrate that PKR activation and subsequent translational arrest is linked to both cellular stress and apoptosis. We have also found the linkage point between translational arrest and apoptosis to be Mcl-1, a protein whose constant

  2. Auditory and Visual Differences in Time Perception? An Investigation from a Developmental Perspective with Neuropsychological Tests

    Science.gov (United States)

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2012-01-01

    Adults and children (5- and 8-year-olds) performed a temporal bisection task with either auditory or visual signals and either a short (0.5-1.0s) or long (4.0-8.0s) duration range. Their working memory and attentional capacities were assessed by a series of neuropsychological tests administered in both the auditory and visual modalities. Results…

  3. Pediatric central auditory processing disorder showing elevated threshold on pure tone audiogram.

    Science.gov (United States)

    Maeda, Yukihide; Nakagawa, Atsuko; Nagayasu, Rie; Sugaya, Akiko; Omichi, Ryotaro; Kariya, Shin; Fukushima, Kunihiro; Nishizaki, Kazunori

    2016-10-01

    Central auditory processing disorder (CAPD) is a condition in which dysfunction in the central auditory system causes difficulty in listening to conversations, particularly under noisy conditions, despite normal peripheral auditory function. Central auditory testing is generally performed in patients with normal hearing on the pure tone audiogram (PTA). This report shows that diagnosis of CAPD is possible even in the presence of an elevated threshold on the PTA, provided that the normal function of the peripheral auditory pathway was verified by distortion product otoacoustic emission (DPOAE), auditory brainstem response (ABR), and auditory steady state response (ASSR). Three pediatric cases (9- and 10-year-old girls and an 8-year-old boy) of CAPD with elevated thresholds on PTAs are presented. The chief complaint was difficulty in listening to conversations. PTA showed elevated thresholds, but the responses and thresholds for DPOAE, ABR, and ASSR were normal, showing that peripheral auditory function was normal. Significant findings of central auditory testing such as dichotic speech tests, time compression of speech signals, and binaural interaction tests confirmed the diagnosis of CAPD. These threshold shifts in PTA may provide a new concept of a clinical symptom due to central auditory dysfunction in CAPD. PMID:26922127

  4. Conformational requirement of signal sequences functioning in yeast: Circular dichroism and 1H nuclear magnetic resonance studies of synthetic peptides

    International Nuclear Information System (INIS)

    Recently, the authors have designed a series of simplified artificial signal sequences and have shown that a proline residue in the signal sequence plays an important role in the secretion of human lysozyme in yeast, presumably by altering the conformation of the signal sequence. To elucidate the conformational requirement of the signal sequence in more detail, functional and nonfunctional signal sequences connected to the N-terminal five residues of mature human lysozyme were chemically synthesized and their conformations in a lipophilic environment analyzed by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) spectroscopy. The helix content of the peptides, including functional (L8, CL10) and nonfunctional (L8PL, L8PG, L8PL2) signal sequences, was estimated from CD spectra to be 40-50% and 60-70%, respectively, indicating that the helical structure is more abundant in the nonfunctional signal sequences. Two-dimensional NMR analyses in 50% TFE/H2O revealed that each peptide adopted a helical conformation throughout the sequence except for a few residues at the N- and C-termini. Furthermore, H-D exchange experiments indicated that the helical structure of the C-terminal region of the functional signal sequences (L8 and CL10) was less stable than that of the nonfunctional signal sequences (L8PL and L8PL2). On the basis of these results, a model was developed in which the functional signal sequence is inserted in the membrane with a helical conformation and the C-terminal helix unraveled in an extended conformational form through an interaction with the signal peptidase

  5. Rice Rab11 is required for JA-mediated defense signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji [Department of Molecular Biotechnology, Dong-A University, Busan 604-714 (Korea, Republic of); BK21 Center for Silver-Bio Industrialization, Dong-A University, Busan 604-714 (Korea, Republic of); Lee, Yun mi [Department of Molecular Biotechnology, Dong-A University, Busan 604-714 (Korea, Republic of); Son, Young Sim [Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Im, Chak Han [Eco-Friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360 (Korea, Republic of); Yi, Young Byung [Department of Molecular Biotechnology, Dong-A University, Busan 604-714 (Korea, Republic of); Rim, Yeong Gil [Systems and Synthetic Agrobiotech Center, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Bahk, Jeong Dong, E-mail: jdbahk@gnu.ac.kr [Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Heo, Jae Bok, E-mail: jbheo72@dau.ac.kr [Department of Molecular Biotechnology, Dong-A University, Busan 604-714 (Korea, Republic of); BK21 Center for Silver-Bio Industrialization, Dong-A University, Busan 604-714 (Korea, Republic of)

    2013-05-17

    Highlights: •OsRab11 interacts with OsOPR8. •OsOPR8 is localized in the cytosol and peroxisome. •OsRab11 enhances the NADPH consumption by OsOPR8. •Transgenic Arabidopsis overexpressing OsRab11 represents a pathogen-resistant phenotype. -- Abstract: Rab proteins play an essential role in regulating vesicular transport in eukaryotic cells. Previously, we characterized OsRab11, which in concert with OsGAP1 and OsGDI3 regulates vesicular trafficking from the trans-Golgi network (TGN) to the plasma membrane or vacuole. To further elucidate the physiological function of OsRab11 in plants, we performed yeast two-hybrid screens using OsRab11 as bait. OsOPR8 was isolated and shown to interact with OsRab11. A co-immunoprecipitation assay confirmed this interaction. The green fluorescent protein-OsOPR8 fusion product was targeted to the cytoplasm and peroxisomes of protoplasts from Arabidopsis thaliana. OsOPR8 exhibited NADPH-dependent reduction activity when 2-cyclohexen-1-one (CyHE) and 12-oxo-phytodienoic acid (OPDA) were supplied as possible substrates. Interestingly, NADPH oxidation by OsOPR8 was increased when wild-type OsRab11 or the constitutively active form of OsRab11 (Q78L) were included in the reaction mix, but not when the dominant negative form of OsRab11 (S28N) was included. OsRab11 was expressed broadly in plants and both OsRab11 and OsOPR8 were induced by jasmonic acid (JA) and elicitor treatments. Overexpressed OsRab11 transgenic plants showed resistance to pathogens through induced expression of JA-responsive genes. In conclusion, OsRab11 may be required for JA-mediated defense signaling by activating the reducing activity of OsOPR8.

  6. A novel 9-class auditory ERP paradigm driving a predictive text entry system

    Directory of Open Access Journals (Sweden)

    Johannes eHöhne

    2011-08-01

    Full Text Available Brain-Computer Interfaces (BCIs based on Event Related Potentials (ERPs strive for offering communication pathways which are independent of muscle activity. While most visual ERP-based BCI paradigms require good control of the user's gaze direction, auditory BCI paradigms overcome this restriction. The present work proposes a novel approach using Auditory Evoked Potentials (AEP for the example of a multiclass text spelling application. To control the ERP speller, BCI users focus their attention to two-dimensional auditory stimuli that vary in both, pitch (high/medium/low and direction (left/middle/right and that are presented via headphones. The resulting nine different control signals are exploited to drive a predictive text entry system. It enables the user to spell a letter by a single 9-class decision plus two additional decisions to confirm a spelled word.This paradigm - called PASS2D - was investigated in an online study with twelve healthy participants. Users spelled with more than 0.8 characters per minute on average (3.4 bits per minute which makes PASS2D a competitive method. It could enrich the toolbox of existing ERP paradigms for BCI end users like late-stage ALS patients.

  7. The early component of middle latency auditory-evoked potentials in the process of deviance detection.

    Science.gov (United States)

    Li, Linfeng; Gong, Qin

    2016-07-01

    The aim of the present study was to investigate both the encoding mechanism and the process of deviance detection when deviant stimuli were presented in various patterns in an environment featuring repetitive sounds. In adults with normal hearing, middle latency responses were recorded within an oddball paradigm containing complex tones or speech sounds, wherein deviant stimuli featured different change patterns. For both complex tones and speech sounds, the Na and Pa components of middle latency responses showed an increase in the mean amplitude and a reduction in latency when comparing rare deviant stimuli with repetitive standard stimuli in a stimulation block. However, deviant stimuli with a rising frequency induced signals with smaller amplitudes than other deviant stimuli. The present findings indicate that deviant stimuli with different change patterns induce differing responses in the primary auditory cortex. In addition, the Pa components of speech sounds typically feature a longer latency and similar mean amplitude compared with complex tones, which suggests that the auditory system requires more complex processing for the analysis of speech sounds before processing in the auditory cortex. PMID:27203294

  8. Using an auditory sensory substitution device to augment vision: evidence from eye movements.

    Science.gov (United States)

    Wright, Thomas D; Margolis, Aaron; Ward, Jamie

    2015-03-01

    Sensory substitution devices convert information normally associated with one sense into another sense (e.g. converting vision into sound). This is often done to compensate for an impaired sense. The present research uses a multimodal approach in which both natural vision and sound-from-vision ('soundscapes') are simultaneously presented. Although there is a systematic correspondence between what is seen and what is heard, we introduce a local discrepancy between the signals (the presence of a target object that is heard but not seen) that the participant is required to locate. In addition to behavioural responses, the participants' gaze is monitored with eye-tracking. Although the target object is only presented in the auditory channel, behavioural performance is enhanced when visual information relating to the non-target background is presented. In this instance, vision may be used to generate predictions about the soundscape that enhances the ability to detect the hidden auditory object. The eye-tracking data reveal that participants look for longer in the quadrant containing the auditory target even when they subsequently judge it to be located elsewhere. As such, eye movements generated by soundscapes reveal the knowledge of the target location that does not necessarily correspond to the actual judgment made. The results provide a proof of principle that multimodal sensory substitution may be of benefit to visually impaired people with some residual vision and, in normally sighted participants, for guiding search within complex scenes. PMID:25511162

  9. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    Science.gov (United States)

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  10. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mec

  11. STIM1-dependent Ca2+ microdomains are required for myofilament remodeling and signaling in the heart

    OpenAIRE

    Parks, Cory; Alam, Mohammad Afaque; Sullivan, Ryan; Mancarella, Salvatore

    2016-01-01

    In non-excitable cells stromal interaction molecule 1 (STIM1) is a key element in the generation of Ca2+ signals that lead to gene expression, migration and cell proliferation. A growing body of literature suggests that STIM1 plays a key role in the development of pathological cardiac hypertrophy. However, the precise mechanisms involving STIM-dependent Ca2+ signaling in the heart are not clearly established. Here, we have investigated the STIM1-associated Ca2+ signals in cardiomyocytes and t...

  12. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  13. The Effects of Auditory Contrast Tuning upon Speech Intelligibility

    Science.gov (United States)

    Killian, Nathan J.; Watkins, Paul V.; Davidson, Lisa S.; Barbour, Dennis L.

    2016-01-01

    We have previously identified neurons tuned to spectral contrast of wideband sounds in auditory cortex of awake marmoset monkeys. Because additive noise alters the spectral contrast of speech, contrast-tuned neurons, if present in human auditory cortex, may aid in extracting speech from noise. Given that this cortical function may be underdeveloped in individuals with sensorineural hearing loss, incorporating biologically-inspired algorithms into external signal processing devices could provide speech enhancement benefits to cochlear implantees. In this study we first constructed a computational signal processing algorithm to mimic auditory cortex contrast tuning. We then manipulated the shape of contrast channels and evaluated the intelligibility of reconstructed noisy speech using a metric to predict cochlear implant user perception. Candidate speech enhancement strategies were then tested in cochlear implantees with a hearing-in-noise test. Accentuation of intermediate contrast values or all contrast values improved computed intelligibility. Cochlear implant subjects showed significant improvement in noisy speech intelligibility with a contrast shaping procedure.

  14. Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production.

    Science.gov (United States)

    Titchenell, Paul M; Quinn, William J; Lu, Mingjian; Chu, Qingwei; Lu, Wenyun; Li, Changhong; Chen, Helen; Monks, Bobby R; Chen, Julia; Rabinowitz, Joshua D; Birnbaum, Morris J

    2016-06-14

    During insulin-resistant states such as type II diabetes mellitus (T2DM), insulin fails to suppress hepatic glucose production (HGP) yet promotes lipid synthesis. This metabolic state has been termed "selective insulin resistance" to indicate a defect in one arm of the insulin-signaling cascade, potentially downstream of Akt. Here we demonstrate that Akt-dependent activation of mTORC1 and inhibition of Foxo1 are required and sufficient for de novo lipogenesis, suggesting that hepatic insulin signaling is likely to be intact in insulin-resistant states. Moreover, cell-nonautonomous suppression of HGP by insulin depends on a reduction of adipocyte lipolysis and serum FFAs but is independent of vagal efferents or glucagon signaling. These data are consistent with a model in which, during T2DM, intact liver insulin signaling drives enhanced lipogenesis while excess circulating FFAs become a dominant inducer of nonsuppressible HGP. PMID:27238637

  15. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole;

    2002-01-01

    Signaling between osteoblasts and osteoclasts is important in bone homeostasis. We previously showed that human osteoblasts propagate intercellular calcium signals via two mechanisms: autocrine activation of P2Y receptors, and gap junctional communication. In the current work we identified...... mechanically induced intercellular calcium signaling between osteoblasts and osteoclasts and among osteoclasts. Intercellular calcium responses in osteoclasts required P2 receptor activation but not gap junctional communication. Pharmacological studies and reverse transcriptase-PCR amplification demonstrated...... that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium...

  16. The plastic ear and perceptual relearning in auditory spatial perception.

    Science.gov (United States)

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5-10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis. PMID:25147497

  17. The plastic ear and perceptual relearning in auditory spatial perception.

    Directory of Open Access Journals (Sweden)

    Simon eCarlile

    2014-08-01

    Full Text Available The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear moulds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localisation, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear moulds or through virtual auditory space stimulation using non-individualised spectral cues. The work with ear moulds demonstrates that a relatively short period of training involving sensory-motor feedback (5 – 10 days significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide a spatial code but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  18. Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin

    OpenAIRE

    Xie, Yang; Zamponi, Raffaella; Charlat, Olga; Ramones, Melissa; Swalley, Susanne; Jiang, Xiaomo; Rivera, Daniel; Tschantz, William; Lu, Bo; Quinn, Lisa; Dimitri, Chris; Parker, Jefferson; Jeffery, Doug; Wilcox, Sheri K; Watrobka, Mike

    2013-01-01

    This study shows that both ZNRF3- and LGR4-binding motifs of R-spondin are required for its Wnt-promoting activity. These results support a dual receptor model of R-spondin signalling, where LGR4 serves as the engagement receptor while ZNRF3 functions as the effector receptor.

  19. Retinoic Acid Stimulates Regeneration of Mammalian Auditory Hair Cells

    Science.gov (United States)

    Lefebvre, Philippe P.; Malgrange, Brigitte; Staecker, Hinrich; Moonen, Gustave; van de Water, Thomas R.

    1993-04-01

    Sensorineural hearing loss resulting from the loss of auditory hair cells is thought to be irreversible in mammals. This study provides evidence that retinoic acid can stimulate the regeneration in vitro of mammalian auditory hair cells in ototoxic-poisoned organ of Corti explants in the rat. In contrast, treatment with retinoic acid does not stimulate the formation of extra hair cells in control cultures of Corti's organ. Retinoic acid-stimulated hair cell regeneration can be blocked by cytosine arabinoside, which suggests that a period of mitosis is required for the regeneration of auditory hair cells in this system. These results provide hope for a recovery of hearing function in mammals after auditory hair cell damage.

  20. Listening to another sense: somatosensory integration in the auditory system.

    Science.gov (United States)

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698

  1. Extraembryonic signals under the control of MGA, Max, and Smad4 are required for dorsoventral patterning.

    Science.gov (United States)

    Sun, Yuhua; Tseng, Wei-Chia; Fan, Xiang; Ball, Rebecca; Dougan, Scott T

    2014-02-10

    In vertebrates, extraembryonic tissues can act as signaling centers that impose a reproducible pattern of cell types upon the embryo. Here, we show that the zebrafish yolk syncytial layer (YSL) secretes a ventralizing signal during gastrulation. This activity is mediated by Bmp2b/Swirl (Swr) expressed under the control of Max's giant associated protein (MGA) and its binding partners, Max and Smad4. MGA coimmunoprecipitates with both Max and Smad4 in embryo extracts, and the three proteins form a complex in vitro. Furthermore, all three proteins bind to a DNA fragment upstream of the bmp2b transcription start site. Targeted depletion of MGA, its binding partners, or Bmp2b/Swr from the YSL reduces BMP signaling throughout the embryo, resulting in a mildly dorsalized phenotype. We conclude that MGA, Max, and Smad4 act in the extraembryonic YSL to initiate a positive feedback loop of Bmp signaling within the embryo. PMID:24525188

  2. Cranial Nerve Development Requires Co-Ordinated Shh and Canonical Wnt Signaling

    OpenAIRE

    Kurosaka, Hiroshi; Paul A Trainor; Leroux-Berger, Margot; Iulianella, Angelo

    2015-01-01

    Cranial nerves govern sensory and motor information exchange between the brain and tissues of the head and neck. The cranial nerves are derived from two specialized populations of cells, cranial neural crest cells and ectodermal placode cells. Defects in either cell type can result in cranial nerve developmental defects. Although several signaling pathways are known to regulate cranial nerve formation our understanding of how intercellular signaling between neural crest cells and placode cell...

  3. The Acute Effects of Leptin Require PI3K Signaling in the Hypothalamic Ventral Premammillary Nucleus

    OpenAIRE

    Williams, Kevin W; Sohn, Jong-Woo; Donato, Jose; Lee, Charlotte E.; Zhao, Jean J.; Elmquist, Joel K.; Elias, Carol F.

    2011-01-01

    Evidence suggests that the role played by the adipocyte-derived hormone leptin in female reproductive physiologyis mediated in part by neurons located within the ventral premammillary nucleus (PMV). Leptin activates PMV neurons; however, the intracellular signaling pathway and channel(s) involved remain undefined. Notably, leptin's excitatory and inhibitory effects within hypothalamic and brainstem nuclei share the intracellular signaling cascade phosphoinositide 3 kinase (PI3K). Therefore, w...

  4. Intrahepatic Bile Duct Regeneration in Mice Does Not Require Hnf6 or Notch Signaling through Rbpj

    OpenAIRE

    Walter, Teagan J.; Vanderpool, Charles; Cast, Ashley E.; Huppert, Stacey S.

    2014-01-01

    The potential for intrahepatic bile duct (IHBD) regeneration in patients with bile duct insufficiency diseases is poorly understood. Notch signaling and Hnf6 have each been shown to be important for the morphogenesis of IHBDs in mice. One congenital pediatric liver disease characterized by reduced numbers of IHBDs, Alagille syndrome, is associated with mutations in Notch signaling components. Therefore, we investigated whether liver cell plasticity could contribute to IHBD regeneration in mic...

  5. Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development

    OpenAIRE

    Skouloudaki, Kassiani; Puetz, Michael; Simons, Matias; Courbard, Jean-Remy; Boehlke, Christopher; Hartleben, Björn; Engel, Christina; Moeller, Marcus J.; Englert, Christoph; Bollig, Frank; Schäfer, Tobias; Ramachandran, Haribaskar; Mlodzik, Marek; Huber, Tobias B.; Kuehn, E. Wolfgang

    2009-01-01

    Spatial organization of cells and their appendages is controlled by the planar cell polarity pathway, a signaling cascade initiated by the protocadherin Fat in Drosophila. Vertebrates express 4 Fat molecules, Fat1–4. We found that depletion of Fat1 caused cyst formation in the zebrafish pronephros. Knockdown of the PDZ domain containing the adaptor protein Scribble intensified the cyst-promoting phenotype of Fat1 depletion, suggesting that Fat1 and Scribble act in overlapping signaling cascad...

  6. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.

    Directory of Open Access Journals (Sweden)

    Ketty Bacallao

    Full Text Available Isolated Schwann cells (SCs respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1. To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC agonists and antagonists revealed that selective transmembrane AC (tmAC activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC, a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the

  7. Hypermnesia using auditory input.

    Science.gov (United States)

    Allen, J

    1992-07-01

    The author investigated whether hypermnesia would occur with auditory input. In addition, the author examined the effects of subjects' knowledge that they would later be asked to recall the stimuli. Two groups of 26 subjects each were given three successive recall trials after they listened to an audiotape of 59 high-imagery nouns. The subjects in the uninformed group were not told that they would later be asked to remember the words; those in the informed group were. Hypermnesia was evident, but only in the uninformed group. PMID:1447564

  8. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  9. The Perception of Auditory Motion.

    Science.gov (United States)

    Carlile, Simon; Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  10. The Tetraspanin CD151 Is Required for Met-dependent Signaling and Tumor Cell Growth*

    Science.gov (United States)

    Franco, Mélanie; Muratori, Claudia; Corso, Simona; Tenaglia, Enrico; Bertotti, Andrea; Capparuccia, Lorena; Trusolino, Livio; Comoglio, Paolo M.; Tamagnone, Luca

    2010-01-01

    CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that β4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and β4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of β4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through β4 integrin-mediated pathways, independent of cell-substrate adhesion. PMID:20937830

  11. Idealized computational models for auditory receptive fields.

    Directory of Open Access Journals (Sweden)

    Tony Lindeberg

    Full Text Available We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i enable invariance of receptive field responses under natural sound transformations and (ii ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC and primary auditory cortex (A1 of mammals.

  12. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration.

    Science.gov (United States)

    Huang, Wendong; Ma, Ke; Zhang, Jun; Qatanani, Mohammed; Cuvillier, James; Liu, Jun; Dong, Bingning; Huang, Xiongfei; Moore, David D

    2006-04-14

    Liver mass depends on one or more unidentified humoral signals that drive regeneration when liver functional capacity is diminished. Bile acids are important liver products, and their levels are tightly regulated. Here, we identify a role for nuclear receptor-dependent bile acid signaling in normal liver regeneration. Elevated bile acid levels accelerate regeneration, and decreased levels inhibit liver regrowth, as does the absence of the primary nuclear bile acid receptor FXR. We propose that FXR activation by increased bile acid flux is a signal of decreased functional capacity of the liver. FXR, and possibly other nuclear receptors, may promote homeostasis not only by regulating expression of appropriate metabolic target genes but also by driving homeotrophic liver growth. PMID:16614213

  13. Requirements of transcription factor Smad-dependent and -independent TGF-β signaling to control discrete T-cell functions

    OpenAIRE

    Gu, Ai-di; Wang, Yunqi; Lin, Lin; Zhang, Song S.; Wan, Yisong Y.

    2012-01-01

    TGF-β modulates immune response by suppressing non-regulatory T (Treg) function and promoting Treg function. The question of whether TGF-β achieves distinct effects on non-Treg and Treg cells through discrete signaling pathways remains outstanding. In this study, we investigated the requirements of Smad-dependent and -independent TGF-β signaling for T-cell function. Smad2 and Smad3 double deficiency in T cells led to lethal inflammatory disorder in mice. Non-Treg cells were spontaneously acti...

  14. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  15. Biological Impact of Music and Software-Based Auditory Training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals--both young and old--encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in…

  16. APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development.

    NARCIS (Netherlands)

    Goessling, W.; North, T.E.; Lord, A.M.; Ceol, C.; Lee, S.; Weidinger, G.; Bourque, C.; Strijbosch, R.; Haramis, A.P.; Puder, M.; Clevers, H.; Moon, R.T.; Zon, L.I.

    2008-01-01

    Developmental signaling pathways hold the keys to unlocking the promise of adult tissue regeneration, and to inhibiting carcinogenesis. Patients with mutations in the Adenomatous Polyposis Coli (APC) gene are at increased risk of developing hepatoblastoma, an embryonal form of liver cancer, suggesti

  17. Assessment and Preservation of Auditory Nerve Integrity in the Deafened Guinea Pig

    OpenAIRE

    Ramekers, D.

    2014-01-01

    Profound hearing loss is often caused by cochlear hair cell loss. Cochlear implants (CIs) essentially replace hair cells by encoding sound and conveying the signal by means of pulsatile electrical stimulation to the spiral ganglion cells (SGCs) which form the auditory nerve. SGCs progressively degenerate following hair cell loss, as a result of lost neurotrophic signaling from the hair cells. Degeneration of the auditory nerve may compromise the ability to hear with a CI. Therefore, the first...

  18. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  19. AUDITORY REACTION TIME IN BASKETBALL PLAYERS AND HEALTHY CONTROLS

    Directory of Open Access Journals (Sweden)

    Ghuntla Tejas P.

    2013-08-01

    Full Text Available Reaction is purposeful voluntary response to different stimuli as visual or auditory stimuli. Auditory reaction time is time required to response to auditory stimuli. Quickness of response is very important in games like basketball. This study was conducted to compare auditory reaction time of basketball players and healthy controls. The auditory reaction time was measured by the reaction time instrument in healthy controls and basketball players. Simple reaction time and choice reaction time measured. During the reaction time testing, auditory stimuli were given for three times and minimum reaction time was taken as the final reaction time for that sensory modality of that subject. The results were statistically analyzed and were recorded as mean + standard deviation and student’s unpaired t-test was applied to check the level of significance. The study shows that basketball players have shorter reaction time than healthy controls. As reaction time gives the information how fast a person gives a response to sensory stimuli, it is a good indicator of performance in reactive sports like basketball. Sportsman should be trained to improve their reaction time to improve their performance.

  20. A unique cellular scaling rule in the avian auditory system.

    Science.gov (United States)

    Corfield, Jeremy R; Long, Brendan; Krilow, Justin M; Wylie, Douglas R; Iwaniuk, Andrew N

    2016-06-01

    Although it is clear that neural structures scale with body size, the mechanisms of this relationship are not well understood. Several recent studies have shown that the relationship between neuron numbers and brain (or brain region) size are not only different across mammalian orders, but also across auditory and visual regions within the same brains. Among birds, similar cellular scaling rules have not been examined in any detail. Here, we examine the scaling of auditory structures in birds and show that the scaling rules that have been established in the mammalian auditory pathway do not necessarily apply to birds. In galliforms, neuronal densities decrease with increasing brain size, suggesting that auditory brainstem structures increase in size faster than neurons are added; smaller brains have relatively more neurons than larger brains. The cellular scaling rules that apply to auditory brainstem structures in galliforms are, therefore, different to that found in primate auditory pathway. It is likely that the factors driving this difference are associated with the anatomical specializations required for sound perception in birds, although there is a decoupling of neuron numbers in brain structures and hair cell numbers in the basilar papilla. This study provides significant insight into the allometric scaling of neural structures in birds and improves our understanding of the rules that govern neural scaling across vertebrates. PMID:26002617

  1. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling.

    Science.gov (United States)

    Liu, Jessica A J; Wu, Ming-Hoi; Yan, Carol H; Chau, Bolton K H; So, Henry; Ng, Alvis; Chan, Alan; Cheah, Kathryn S E; Briscoe, James; Cheung, Martin

    2013-02-19

    Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination. PMID:23382206

  2. A songbird forebrain area potentially involved in auditory discrimination and memory formation

    Indian Academy of Sciences (India)

    Raphael Pinaud; Thomas A Terleph

    2008-03-01

    Songbirds rely on auditory processing of natural communication signals for a number of social behaviors, including mate selection, individual recognition and the rare behavior of vocal learning – the ability to learn vocalizations through imitation of an adult model, rather than by instinct. Like mammals, songbirds possess a set of interconnected ascending and descending auditory brain pathways that process acoustic information and that are presumably involved in the perceptual processing of vocal communication signals. Most auditory areas studied to date are located in the caudomedial forebrain of the songbird and include the thalamo-recipient field L (subfields L1, L2 and L3), the caudomedial and caudolateral mesopallium (CMM and CLM, respectively) and the caudomedial nidopallium (NCM). This review focuses on NCM, an auditory area previously proposed to be analogous to parts of the primary auditory cortex in mammals. Stimulation of songbirds with auditory stimuli drives vigorous electrophysiological responses and the expression of several activity-regulated genes in NCM. Interestingly, NCM neurons are tuned to species-specific songs and undergo some forms of experience-dependent plasticity in-vivo. These activity-dependent changes may underlie long-term modifications in the functional performance of NCM and constitute a potential neural substrate for auditory discrimination. We end this review by discussing evidence that suggests that NCM may be a site of auditory memory formation and/or storage.

  3. Effects of multitasking on operator performance using computational and auditory tasks.

    Science.gov (United States)

    Fasanya, Bankole K

    2016-09-01

    This study investigated the effects of multiple cognitive tasks on human performance. Twenty-four students at North Carolina A&T State University participated in the study. The primary task was auditory signal change perception and the secondary task was a computational task. Results showed that participants' performance in a single task was statistically significantly different from their performance in combined tasks: (a) algebra problems (algebra problem primary and auditory perception secondary); (b) auditory perception tasks (auditory perception primary and algebra problems secondary); and (c) mean false-alarm score in auditory perception (auditory detection primary and algebra problems secondary). Using signal detection theory (SDT), participants' performance measured in terms of sensitivity was calculated as -0.54 for combined tasks (algebra problems the primary task) and -0.53 auditory perceptions the primary task. During auditory perception tasks alone, SDT was found to be 2.51. Performance was 83% in a single task compared to 17% when combined tasks. PMID:26886505

  4. A loudspeaker-based room auralization system for auditory research

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel

    systematically study the signal processing of realistic sounds by normal-hearing and hearing-impaired listeners, a flexible, reproducible and fully controllable auditory environment is needed. A loudspeaker-based room auralization (LoRA) system was developed in this thesis to provide virtual auditory...... investigated the perception of distance in VAEs generated by the LoRA system. These results showed that the distance of far field sources are similarly perceived in these VAEs as in real environments. For close sources (<1 m), a comprehensive study about the near field compensated HOA method was presented and...

  5. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    Full Text Available BACKGROUND: Using human brain microvascular endothelial cells (HBMECs as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain. In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs known as protease activated receptors (PARs that might be implicated in calcium signaling by African trypanosomes. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference (RNAi we found that in vitro PAR-2 gene (F2RL1 expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49% and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q with Pasteurella multocida toxin (PMT. PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. CONCLUSIONS/SIGNIFICANCE: Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.

  6. Requirement of JIP scaffold proteins for NMDA-mediated signal transduction

    OpenAIRE

    Kennedy, Norman J.; Martin, Gilles; Ehrhardt, Anka G.; Cavanagh-Kyros, Julie; Kuan, Chia-Yi; Rakic, Pasko; Richard A Flavell; Treistman, Steven N.; Davis, Roger J

    2007-01-01

    JIP scaffold proteins are implicated in the regulation of protein kinase signal transduction pathways. To test the physiological role of these scaffold proteins, we examined the phenotype of compound mutant mice that lack expression of JIP proteins. These mice were found to exhibit severe defects in N-methyl-D-aspartic acid (NMDA) receptor function, including decreased NMDA-evoked current amplitude, cytoplasmic Ca++, and gene expression. The decreased NMDA receptor activity in JIP-deficient n...

  7. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    OpenAIRE

    Stock David W; Yoo James J; Jackman William R

    2010-01-01

    Abstract Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the he...

  8. Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling

    OpenAIRE

    Hines, D J; Schmitt, L I; Hines, R. M.; Moss, S J; Haydon, P. G.

    2013-01-01

    Major depressive disorder is a debilitating condition with a lifetime risk of ten percent. Most treatments take several weeks to achieve clinical efficacy, limiting the ability to bring instant relief needed in psychiatric emergencies. One intervention that rapidly alleviates depressive symptoms is sleep deprivation; however, its mechanism of action is unknown. Astrocytes regulate responses to sleep deprivation, raising the possibility that glial signaling mediates antidepressive-like actions...

  9. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    KAUST Repository

    Muraro, D.

    2013-12-31

    As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.

  10. Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling

    Science.gov (United States)

    Chou, Chung-Hsing; Modo, Michel

    2016-01-01

    Transplanted neural stem cells (NSC) interact with the host brain microenvironment. A neovascularization is commonly observed in the vicinity of the cell deposit, which is correlated with behavioral improvements. To elucidate the signaling mechanisms between human NSCs and endothelial cells (ECs), these were cocultured in an in vitro model in which NSC-induced endothelial morphogenesis produced a neurovascular environment. Soluble (autocrine/paracrine) and contact–mediated (juxtacrine) signaling molecules were evaluated for two conditionally immortalized fetal NSC lines derived from the cortical anlage (CTXOE03) and ganglionic eminence (STROC05), as well as an adult EC line (D3) derived from the cerebral microvasculature of a hippocampal biopsy. STROC05 were 4 times as efficient to induce endothelial morphogenesis compared to CTXOE03. The cascade of reciprocal interactions between NSCs and ECs in this process was determined by quantifying soluble factors, receptor mapping, and immunocytochemistry for extracellular matrix molecules. The mechanistic significance of these was further evaluated by pharmacological blockade. The sequential cell-specific regulation of autocrine/paracrine and juxtacrine signaling accounted for the differential efficiency of NSCs to induce endothelial morphogenesis. These in vitro studies shed new light on the reciprocal interactions between NSCs and ECs, which are pivotal for our mechanistic understanding of the efficacy of NSC transplantation. PMID:27374240

  11. Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs

    Directory of Open Access Journals (Sweden)

    Damir Jacob Illich

    2016-04-01

    Full Text Available It has previously been reported that mouse epiblast stem cell (EpiSC lines comprise heterogeneous cell populations that are functionally equivalent to cells of either early- or late-stage postimplantation development. So far, the establishment of the embryonic stem cell (ESC pluripotency gene regulatory network through the widely known chemical inhibition of MEK and GSK3beta has been impractical in late-stage EpiSCs. Here, we show that chemical inhibition of casein kinase 1alpha (CK1alpha induces the conversion of recalcitrant late-stage EpiSCs into ESC pluripotency. CK1alpha inhibition directly results in the simultaneous activation of the WNT signaling pathway, together with inhibition of the TGFbeta/SMAD2 signaling pathway, mediating the rewiring of the gene regulatory network in favor of an ESC-like state. Our findings uncover a molecular mechanism that links CK1alpha to ESC pluripotency through the direct modulation of WNT and TGFbeta signaling.

  12. Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease.

    Science.gov (United States)

    Rodiuc, Natalia; Barlet, Xavier; Hok, Sophie; Perfus-Barbeoch, Laetitia; Allasia, Valérie; Engler, Gilbert; Séassau, Aurélie; Marteu, Nathalie; de Almeida-Engler, Janice; Panabières, Franck; Abad, Pierre; Kemmerling, Birgit; Marco, Yves; Favery, Bruno; Keller, Harald

    2016-07-01

    Secreted peptides and their specific receptors frequently orchestrate cell-to-cell communication in plants. Phytosulfokines (PSKs) are secreted tyrosine-sulphated peptide hormones, which trigger cellular dedifferentiation and redifferentiation upon binding to their membrane receptor. Biotrophic plant pathogens frequently trigger the differentiation of host cells into specialized feeding structures, which are essential for successful infection. We found that oomycete and nematode infections were characterized by the tissue-specific transcriptional regulation of genes encoding Arabidopsis PSKs and the PSK receptor 1 (PSKR1). Subcellular analysis of PSKR1 distribution showed that the plasma membrane-bound receptor internalizes after binding of PSK-α. Arabidopsis pskr1 knockout mutants were impaired in their susceptibility to downy mildew infection. Impaired disease susceptibility depends on functional salicylic acid (SA) signalling, but not on the massive up-regulation of SA-associated defence-related genes. Knockout pskr1 mutants also displayed a major impairment of root-knot nematode reproduction. In the absence of functional PSKR1, giant cells arrested their development and failed to fully differentiate. Our findings indicate that the observed restriction of PSK signalling to cells surrounding giant cells contributes to the isotropic growth and maturation of nematode feeding sites. Taken together, our data suggest that PSK signalling in Arabidopsis promotes the differentiation of host cells into specialized feeding cells. PMID:26290138

  13. The Vitamin D Receptor Is Required for Activation of cWnt and Hedgehog Signaling in Keratinocytes

    OpenAIRE

    Lisse, Thomas S.; Saini, Vaibhav; Zhao, Hengguang; Luderer, Hilary F; Gori, Francesca; Demay, Marie B.

    2014-01-01

    Alopecia (hair loss) in vitamin D receptor (VDR)-null mice is due to absence of ligand-independent actions of the VDR that are required for initiation of postmorphogenic hair cycles. Investigations were undertaken to determine whether the VDR is required for the induction of signaling pathways that play an important role in this process. The induction of cWnt and hedgehog target genes that characterizes early anagen was found to be dramatically attenuated in VDR−/− mice, relative to wild-type...

  14. Sounds, signals and space maps

    OpenAIRE

    Carr, Catherine

    2002-01-01

    The auditory system transforms information from one frame of reference into another to create a map of space in the brain. The source of a visual signal that guides this transformation in barn owls has now been found.

  15. Auditory perspective taking.

    Science.gov (United States)

    Martinson, Eric; Brock, Derek

    2013-06-01

    Effective communication with a mobile robot using speech is a difficult problem even when you can control the auditory scene. Robot self-noise or ego noise, echoes and reverberation, and human interference are all common sources of decreased intelligibility. Moreover, in real-world settings, these problems are routinely aggravated by a variety of sources of background noise. Military scenarios can be punctuated by high decibel noise from materiel and weaponry that would easily overwhelm a robot's normal speaking volume. Moreover, in nonmilitary settings, fans, computers, alarms, and transportation noise can cause enough interference to make a traditional speech interface unusable. This work presents and evaluates a prototype robotic interface that uses perspective taking to estimate the effectiveness of its own speech presentation and takes steps to improve intelligibility for human listeners. PMID:23096077

  16. Compression of auditory space during forward self-motion.

    Directory of Open Access Journals (Sweden)

    Wataru Teramoto

    shifts in the auditory receptive field locations driven by afferent signals from vestibular system.

  17. Tactile feedback improves auditory spatial localization

    OpenAIRE

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds b...

  18. Tactile feedback improves auditory spatial localization

    OpenAIRE

    Monica eGori; Tiziana eVercillo; Giulio eSandini; David eBurr

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds b...

  19. Auditory and non-auditory effects of noise on health

    OpenAIRE

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-aud...

  20. Spontaneous activity in the developing auditory system.

    Science.gov (United States)

    Wang, Han Chin; Bergles, Dwight E

    2015-07-01

    Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits. PMID:25296716

  1. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis

    OpenAIRE

    Chen, Qian; Zhang, Nailing; Gray, Ryan S.; Li, Huili; Ewald, Andrew J.; Zahnow, Cynthia A.; Pan, Duojia

    2014-01-01

    In this study, Chen et al. discover that the Hippo pathway is functionally dispensable in virgin mammary glands but specifically required during pregnancy. YAP hyperactivation in mammary epithelia leads to defects in terminal differentiation. Loss of YAP causes no obvious defects in virgin mammary glands but potently suppresses oncogene-induced mammary tumors. This selective requirement for YAP in oncogenic growth suggests YAP inhibitors as targeted therapies against breast cancers.

  2. Intact spectral but abnormal temporal processing of auditory stimuli in autism.

    NARCIS (Netherlands)

    Groen, W.B.; Orsouw, L. van; Huurne, N.; Swinkels, S.H.N.; Gaag, R.J. van der; Buitelaar, J.K.; Zwiers, M.P.

    2009-01-01

    The perceptual pattern in autism has been related to either a specific localized processing deficit or a pathway-independent, complexity-specific anomaly. We examined auditory perception in autism using an auditory disembedding task that required spectral and temporal integration. 23 children with h

  3. The Wnt Signaling Antagonist Kremen1 is Required for Development of Thymic Architecture

    Directory of Open Access Journals (Sweden)

    Masako Osada

    2006-01-01

    Full Text Available Wnt signaling has been reported to regulate thymocyte proliferation and selection at several stages during T cell ontogeny, as well as the expression of FoxN1 in thymic epithelial cells (TECs. Kremen1 (Krm1 is a negative regulator of the canonical Wnt signaling pathway, and functions together with the secreted Wnt inhibitor Dickkopf (Dkk by competing for the lipoprotein receptor-related protein (LRP-6 co-receptor for Wnts. Here krm1 knockout mice were used to examine krm1 expression in the thymus and its function in thymocyte and TEC development. krm1 expression was detected in both cortical and medullary TEC subsets, as well as in immature thymocyte subsets, beginning at the CD25+CD44+ (DN2 stage and continuing until the CD4+CD8+(DP stage. Neonatal mice show elevated expression of krm1 in all TEC subsets. krm1− / − mice exhibit a severe defect in thymic cortical architecture, including large epithelial free regions. Much of the epithelial component remains at an immature Keratin 5+ (K5 Keratin 8+(K8 stage, with a loss of defined cortical and medullary regions. A TOPFlash assay revealed a 2-fold increase in canonical Wnt signaling in TEC lines derived from krm1− / − mice, when compared with krm1+ / + derived TEC lines. Fluorescence activated cell sorting (FACS analysis of dissociated thymus revealed a reduced frequency of both cortical (BP1+EpCAM+ and medullary (UEA-1+ EpCAMhi epithelial subsets, within the krm1− / − thymus. Surprisingly, no change in thymus size, total thymocyte number or the frequency of thymocyte subsets was detected in krm1− / − mice. However, our data suggest that a loss of Krm1 leads to a severe defect in thymic architecture. Taken together, this study revealed a new role for Krm1 in proper development of thymic epithelium.

  4. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins.

    Science.gov (United States)

    Tang, Chi-Hui; Hill, Marla L; Brumwell, Alexis N; Chapman, Harold A; Wei, Ying

    2008-11-15

    The urokinase receptor (uPAR) is upregulated upon tumor cell invasion and correlates with poor lung cancer survival. Although a cis-interaction with integrins has been ascribed to uPAR, whether this interaction alone is critical to urokinase (uPA)- and uPAR-dependent signaling and tumor promotion is unclear. Here we report the functional consequences of point mutations of uPAR (H249A-D262A) that eliminate beta1 integrin interactions but maintain uPA binding, vitronectin attachment and association with alphaV integrins, caveolin and epidermal growth factor receptor. Disruption of uPAR interactions with beta1 integrins recapitulated previously reported findings with beta1-integrin-derived peptides that attenuated matrix-dependent ERK activation, MMP expression and in vitro migration by human lung adenocarcinoma cell lines. The uPAR mutant cells acquired enhanced capacity to adhere to vitronectin via uPAR-alphaVbeta5-integrin, rather than through the uPAR-alpha3beta1-integrin complex and they were unable to initiate uPA signaling to activate ERK, Akt or Stat1. In an orthotopic lung cancer model, uPAR mutant cells exhibited reduced tumor size compared with cells expressing wild-type uPAR. Taken together, the results indicate that uPAR-beta1-integrin interactions are essential to signals induced by integrin matrix ligands or uPA that support lung cancer cell invasion in vitro and progression in vivo. PMID:18940913

  5. Mapping the Structural Requirements in the CB1 Cannabinoid Receptor Transmembrane Helix II for Signal Transduction

    OpenAIRE

    Kapur, Ankur; Samaniego, Patrick; Thakur, Ganesh A.; Makriyannis, Alexandros; Abood, Mary E.

    2008-01-01

    Amino acid residues in the transmembrane domains of the CB1 receptor are important for ligand recognition and signal transduction. We used site-directed mutagenesis to identify the role of two novel and adjacent residues in the transmembrane helix II domain, Ile2.62 and Asp2.63. We investigated the role of the conserved, negatively charged aspartate at position 2.63 in cannabinoid receptor (CB1) function by substituting it with asparagine (D2.63N) and glutamate (D2.63E). In addition, the effe...

  6. CCN2 is required for the TGF-β induced activation of Smad1-Erk1/2 signaling network.

    Directory of Open Access Journals (Sweden)

    Sashidhar S Nakerakanti

    Full Text Available Connective tissue growth factor (CCN2 is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β(3 integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the α(vβ(3 integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/α(vβ(3 integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis.

  7. Listener orientation and spatial judgments of elevated auditory percepts

    Science.gov (United States)

    Parks, Anthony J.

    How do listener head rotations affect auditory perception of elevation? This investi-. gation addresses this in the hopes that perceptual judgments of elevated auditory. percepts may be more thoroughly understood in terms of dynamic listening cues. engendered by listener head rotations and that this phenomenon can be psychophys-. ically and computationally modeled. Two listening tests were conducted and a. psychophysical model was constructed to this end. The frst listening test prompted. listeners to detect an elevated auditory event produced by a virtual noise source. orbiting the median plane via 24-channel ambisonic spatialization. Head rotations. were tracked using computer vision algorithms facilitated by camera tracking. The. data were used to construct a dichotomous criteria model using factorial binary. logistic regression model. The second auditory test investigated the validity of the. historically supported frequency dependence of auditory elevation perception using. narrow-band noise for continuous and brief stimuli with fxed and free-head rotation. conditions. The data were used to construct a multinomial logistic regression model. to predict categorical judgments of above, below, and behind. Finally, in light. of the psychophysical data found from the above studies, a functional model of. elevation perception for point sources along the cone of confusion was constructed. using physiologically-inspired signal processing methods along with top-down pro-. cessing utilizing principles of memory and orientation. The model is evaluated using. white noise bursts for 42 subjects' head-related transfer functions. The investigation. concludes with study limitations, possible implications, and speculation on future. research trajectories.

  8. The role of auditory feedback in sustaining vocal vibrato

    Science.gov (United States)

    Leydon, Ciara; Bauer, Jay J.; Larson, Charles R.

    2003-09-01

    Vocal vibrato and tremor are characterized by oscillations in voice fundamental frequency (F0). These oscillations may be sustained by a control loop within the auditory system. One component of the control loop is the pitch-shift reflex (PSR). The PSR is a closed loop negative feedback reflex that is triggered in response to discrepancies between intended and perceived pitch with a latency of ~100 ms. Consecutive compensatory reflexive responses lead to oscillations in pitch every ~200 ms, resulting in ~5-Hz modulation of F0. Pitch-shift reflexes were elicited experimentally in six subjects while they sustained /you/ vowels at a comfortable pitch and loudness. Auditory feedback was sinusoidally modulated at discrete integer frequencies (1 to 10 Hz) with +/-25 cents amplitude. Modulated auditory feedback induced oscillations in voice F0 output of all subjects at rates consistent with vocal vibrato and tremor. Transfer functions revealed peak gains at 4 to 7 Hz in all subjects, with an average peak gain at 5 Hz. These gains occurred in the modulation frequency region where the voice output and auditory feedback signals were in phase. A control loop in the auditory system may sustain vocal vibrato and tremorlike oscillations in voice F0.

  9. Neuromagnetic evidence for early auditory restoration of fundamental pitch.

    Directory of Open Access Journals (Sweden)

    Philip J Monahan

    Full Text Available BACKGROUND: Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset. METHODOLOGY: Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz, while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz, such that the restored fundamental (also knows as "virtual pitch" changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component. PRINCIPAL FINDINGS: We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies. CONCLUSIONS: Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex.

  10. Auditory Processing Disorder in Children

    Science.gov (United States)

    ... free publications Find organizations Related Topics Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick ... NIH… Turning Discovery Into Health ® National Institute on Deafness and Other Communication Disorders 31 Center Drive, MSC ...

  11. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... and school. A positive, realistic attitude and healthy self-esteem in a child with APD can work wonders. And kids with APD can go on to ... Parents MORE ON THIS TOPIC Auditory Processing Disorder Special ...

  12. Xbp1-Independent Ire1 Signaling Is Required for Photoreceptor Differentiation and Rhabdomere Morphogenesis in Drosophila

    Directory of Open Access Journals (Sweden)

    Dina S. Coelho

    2013-11-01

    Full Text Available The unfolded protein response (UPR is composed by homeostatic signaling pathways that are activated by excessive protein misfolding in the endoplasmic reticulum. Ire1 signaling is an important mediator of the UPR, leading to the activation of the transcription factor Xbp1. Here, we show that Drosophila Ire1 mutant photoreceptors have defects in the delivery of rhodopsin-1 to the rhabdomere and in the secretion of Spacemaker/Eyes Shut into the interrhabdomeral space. However, these defects are not observed in Xbp1 mutant photoreceptors. Ire1 mutant retinas have higher mRNA levels for targets of regulated Ire1-dependent decay (RIDD, including for the fatty acid transport protein (fatp. Importantly, the downregulation of fatp by RNAi rescues the rhodopsin-1 delivery defects observed in Ire1 mutant photoreceptors. Our results show that the role of Ire1 during photoreceptor differentiation is independent of Xbp1 function and demonstrate the physiological relevance of the RIDD mechanism in this specific paradigm.

  13. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  14. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Directory of Open Access Journals (Sweden)

    Ghania Ramdani

    2015-05-01

    Full Text Available Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.

  15. Musical experience, auditory perception and reading-related skills in children.

    Directory of Open Access Journals (Sweden)

    Karen Banai

    Full Text Available BACKGROUND: The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. METHODOLOGY/PRINCIPAL FINDINGS: Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. CONCLUSIONS/SIGNIFICANCE: Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and

  16. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme.

    Science.gov (United States)

    Nik, Ali M; Johansson, Jeanette A; Ghiami, Mozhgan; Reyahi, Azadeh; Carlsson, Peter

    2016-07-01

    The secondary palate separates the oral from the nasal cavity and its closure during embryonic development is sensitive to genetic perturbations. Mice with deleted Foxf2, encoding a forkhead transcription factor, are born with cleft palate, and an abnormal tongue morphology has been proposed as the underlying cause. Here, we show that Foxf2(-/-) maxillary explants cultured in vitro, in the absence of tongue and mandible, failed to close the secondary palate. Proliferation and collagen content were decreased in Foxf2(-/-) palatal shelf mesenchyme. Phosphorylation of Smad2/3 was reduced in mutant palatal shelf, diagnostic of attenuated canonical Tgfβ signaling, whereas phosphorylation of p38 was increased. The amount of Tgfβ2 protein was diminished, whereas the Tgfb2 mRNA level was unaltered. Expression of several genes encoding extracellular proteins important for Tgfβ signaling were reduced in Foxf2(-)(/)(-) palatal shelves: a fibronectin splice-isoform essential for formation of extracellular Tgfβ latency complexes; Tgfbr3 - or betaglycan - which acts as a co-receptor and an extracellular reservoir of Tgfβ; and integrins αV and β1, which are both Tgfβ targets and required for activation of latent Tgfβ. Decreased proliferation and reduced extracellular matrix content are consistent with diminished Tgfβ signaling. We therefore propose that gene expression changes in palatal shelf mesenchyme that lead to reduced Tgfβ signaling contribute to cleft palate in Foxf2(-)(/)(-) mice. PMID:27180663

  17. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    Science.gov (United States)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  18. Perlecan is required for FGF-2 signaling in the neural stem cell niche

    Directory of Open Access Journals (Sweden)

    Aurelien Kerever

    2014-03-01

    Full Text Available In the adult subventricular zone (neurogenic niche, neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis.

  19. Neural Induction in Xenopus: Requirement for Ectodermal and Endomesodermal Signals via Chordin, Noggin, beta-Catenin, and Cerberus

    Directory of Open Access Journals (Sweden)

    Kuroda Hiroki

    2004-01-01

    Full Text Available The origin of the signals that induce the differentiation of the central nervous system (CNS is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early beta-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer. We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA required Chordin (Chd, Noggin (Nog, and their upstream regulator beta-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO into prospective neuroectoderm and Cerberus

  20. Sexual differentiation of the brain requires perinatal kisspeptin-GnRH neuron signaling.

    Science.gov (United States)

    Clarkson, Jenny; Busby, Ellen R; Kirilov, Milen; Schütz, Günther; Sherwood, Nancy M; Herbison, Allan E

    2014-11-12

    Sex differences in brain function underlie robust differences between males and females in both normal and disease states. Although alternative mechanisms exist, sexual differentiation of the male mammalian brain is initiated predominantly by testosterone secreted by the testes during the perinatal period. Despite considerable advances in understanding how testosterone and its metabolite estradiol sexually differentiate the brain, little is known about the mechanism that generates the male-specific perinatal testosterone surge. In mice, we show that a male-specific activation of GnRH neurons occurs 0-2 h following birth and that this correlates with the male-specific surge of testosterone occurring up to 5 h after birth. The necessity of GnRH signaling for the sexually differentiating effects of the perinatal testosterone surge was demonstrated by the persistence of female-like brain characteristics in adult male, GnRH receptor knock-out mice. Kisspeptin neurons have recently been identified to be potent, direct activators of GnRH neurons. We demonstrate that a population of kisspeptin neurons appears in the preoptic area of only the male between E19 and P1. The importance of kisspeptin inputs to GnRH neurons for the process of sexual differentiation was demonstrated by the lack of a normal neonatal testosterone surge, and disordered brain sexual differentiation of male mice in which the kisspeptin receptor was deleted selectively from GnRH neurons. These observations demonstrate the necessity of perinatal GnRH signaling for driving brain sexual differentiation and indicate that kisspeptin inputs to GnRH neurons are essential for this process to occur. PMID:25392497

  1. On Optimality in Auditory Information Processing

    CERN Document Server

    Karlsson, M

    2000-01-01

    We study limits for the detection and estimation of weak sinusoidal signals in the primary part of the mammalian auditory system using a stochastic Fitzhugh-Nagumo (FHN) model and an action-reaction model for synaptic plasticity. Our overall model covers the chain from a hair cell to a point just after the synaptic connection with a cell in the cochlear nucleus. The information processing performance of the system is evaluated using so called phi-divergences from statistics which quantify a dissimilarity between probability measures and are intimately related to a number of fundamental limits in statistics and information theory (IT). We show that there exists a set of parameters that can optimize several important phi-divergences simultaneously and that this set corresponds to a constant quiescent firing rate (QFR) of the spiral ganglion neuron. The optimal value of the QFR is frequency dependent but is essentially independent of the amplitude of the signal (for small amplitudes). Consequently, optimal proce...

  2. FAAH inhibitor OL-135 disrupts contextual, but not auditory, fear conditioning in rats.

    Science.gov (United States)

    Burman, Michael A; Szolusha, Kerribeth; Bind, Rebecca; Kerney, Kristen; Boger, Dale L; Bilsky, Edward J

    2016-07-15

    Anxiety disorders are among the most prevalent psychological disorders, have significant negative impacts on quality of life and the healthcare system, and yet effective treatments remain elusive. Manipulating the endocannabinoid system has demonstrated potential for treating anxiety, although the side effects of direct manipulations of cannabinoid receptors keeps them from widespread clinical use. Disrupting the degradation enzyme fatty acid amide hydrolase (FAAH) enhances endogenous signaling and may produce similar efficacy without the side effects. The current experiments examine the effects of low (5.6mg/kg) or moderate (10.0mg/kg) doses of OL-135, a FAAH inhibitor, on the acquisition and consolidation of classical fear conditioning, a common model of trauma-induced anxiety. The acquisition of contextual, but not auditory, fear conditioning was disrupted by both doses of OL-135. Shock reactivity was not affected. Due to the additional neural circuitry required for contextual, but not auditory, fear conditioning, these data suggest that endocannabinoid signaling outside the amygdala may be critical for a subset of fearful memories. PMID:27083303

  3. Calcineurin/Nfat signaling is required for perinatal lung maturation and function

    OpenAIRE

    Davé, Vrushank; Childs, Tawanna; Xu, Yan; Ikegami, Machiko; Besnard, Valérie; Maeda, Yutaka; Wert, Susan E.; Neilson, Joel R.; Crabtree, Gerald R.; Whitsett, Jeffrey A.

    2006-01-01

    Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respi...

  4. Frequency-specific disruptions of neuronal oscillations reveal aberrant auditory processing in schizophrenia.

    Science.gov (United States)

    Hayrynen, Lauren K; Hamm, Jordan P; Sponheim, Scott R; Clementz, Brett A

    2016-06-01

    Individuals with schizophrenia exhibit abnormalities in evoked brain responses in oddball paradigms. These could result from (a) insufficient salience-related cortical signaling (P300), (b) insufficient suppression of irrelevant aspects of the auditory environment, or (c) excessive neural noise. We tested whether disruption of ongoing auditory steady-state responses at predetermined frequencies informed which of these issues contribute to auditory stimulus relevance processing abnormalities in schizophrenia. Magnetoencephalography data were collected for 15 schizophrenia and 15 healthy subjects during an auditory oddball paradigm (25% targets; 1-s interstimulus interval). Auditory stimuli (pure tones: 1 kHz standards, 2 kHz targets) were administered during four continuous background (auditory steady-state) stimulation conditions: (1) no stimulation, (2) 24 Hz, (3) 40 Hz, and (4) 88 Hz. The modulation of the auditory steady-state response (aSSR) and the evoked responses to the transient stimuli were quantified and compared across groups. In comparison to healthy participants, the schizophrenia group showed greater disruption of the ongoing aSSR by targets regardless of steady-state frequency, and reduced amplitude of both M100 and M300 event-related field components. During the no-stimulation condition, schizophrenia patients showed accentuation of left hemisphere 40 Hz response to both standard and target stimuli, indicating an effort to enhance local stimulus processing. Together, these findings suggest abnormalities in auditory stimulus relevance processing in schizophrenia patients stem from insufficient amplification of salient stimuli. PMID:26933842

  5. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  6. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  7. ST2 negatively regulates TLR2 signaling, but is not required for bacterial lipoprotein-induced tolerance.

    LENUS (Irish Health Repository)

    Liu, Jinghua

    2010-05-15

    Activation of TLR signaling is critical for host innate immunity against bacterial infection. Previous studies reported that the ST2 receptor, a member of the Toll\\/IL-1 receptor superfamily, functions as a negative regulator of TLR4 signaling and maintains LPS tolerance. However, it is undetermined whether ST2 negatively regulates TLR2 signaling and furthermore, whether a TLR2 agonist, bacterial lipoprotein (BLP)-induced tolerance is dependent on ST2. In this study, we show that BLP stimulation-induced production of proinflammatory cytokines and immunocomplex formation of TLR2-MyD88 and MyD88-IL-1R-associated kinase (IRAK) were significantly enhanced in ST2-deficient macrophages compared with those in wild-type controls. Furthermore, overexpression of ST2 dose-dependently attenuated BLP-induced NF-kappaB activation, suggesting a negative regulatory role of ST2 in TLR2 signaling. A moderate but significantly attenuated production of TNF-alpha and IL-6 on a second BLP stimulation was observed in BLP-pretreated, ST2-deficient macrophages, which is associated with substantially reduced IRAK-1 protein expression and downregulated TLR2-MyD88 and MyD88-IRAK immunocomplex formation. ST2-deficient mice, when pretreated with a nonlethal dose of BLP, benefitted from an improved survival against a subsequent lethal BLP challenge, indicating BLP tolerance develops in the absence of the ST2 receptor. Taken together, our results demonstrate that ST2 acts as a negative regulator of TLR2 signaling, but is not required for BLP-induced tolerance.

  8. The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren's syndrome.

    Science.gov (United States)

    Enger, Tone B; Samad-Zadeh, Arman; Bouchie, Meghan P; Skarstein, Kathrine; Galtung, Hilde K; Mera, Toshiyuki; Walker, Janice; Menko, A Sue; Varelas, Xaralabos; Faustman, Denise L; Jensen, Janicke L; Kukuruzinska, Maria A

    2013-11-01

    Sjogren's syndrome (SS) is a complex autoimmune disease that primarily affects salivary and lacrimal glands and is associated with high morbidity. Although the prevailing dogma is that immune system pathology drives SS, increasing evidence points to structural defects, including defective E-cadherin adhesion, to be involved in its etiology. We have shown that E-cadherin has pivotal roles in the development of the mouse salivary submandibular gland (SMG) by organizing apical-basal polarity in acinar and ductal progenitors and by signaling survival for differentiating duct cells. Recently, E-cadherin junctions have been shown to interact with effectors of the Hippo signaling pathway, a core pathway regulating the organ size, cell proliferation, and differentiation. We now show that Hippo signaling is required for SMG-branching morphogenesis and is involved in the pathophysiology of SS. During SMG development, a Hippo pathway effector, TAZ, becomes increasingly phosphorylated and associated with E-cadherin and α-catenin, consistent with the activation of Hippo signaling. Inhibition of Lats2, an upstream kinase that promotes TAZ phosphorylation, results in dysmorphogenesis of the SMG and impaired duct formation. SMGs from non-obese diabetic mice, a mouse model for SS, phenocopy the Lats2-inhibited SMGs and exhibit a reduction in E-cadherin junctional components, including TAZ. Importantly, labial specimens from human SS patients display mislocalization of TAZ from junctional regions to the nucleus, coincident with accumulation of extracellular matrix components, fibronectin and connective tissue growth factor, known downstream targets of TAZ. Our studies show that Hippo signaling has a crucial role in SMG-branching morphogenesis and provide evidence that defects in this pathway are associated with SS in humans. PMID:24080911

  9. The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren's-like disease

    Science.gov (United States)

    Enger, Tone Berge; Samad-Zadeh, Arman; Bouchie, Meghan; Skarstein, Kathrine; Galtung, Hilde Kanli; Mera, Toshiyuki; Walker, Janice; Menko, A. Sue; Varelas, Xaralabos; Faustman, Denise L.; Jensen, Janicke Liaaen; Kukuruzinska, Maria

    2013-01-01

    Sjogren's syndrome (SS) is a complex autoimmune disease that primarily affects salivary and lacrimal glands and is associated with high morbidity. Although the prevailing dogma is that immune system pathology drives SS, increasing evidence points to structural defects, including defective E-cadherin adhesion, to be involved in its etiology. We have shown that E-cadherin plays pivotal roles in the development of the mouse salivary submandibular gland (SMG) by organizing apical-basal polarity in acinar and ductal progenitors and by signaling survival for differentiating duct cells. Recently, E-cadherin junctions have been shown to interact with effectors of the Hippo signaling pathway, a core pathway regulating organ size, cell proliferation and differentiation. We now show that Hippo signaling is required for SMG branching morphogenesis and is involved in the pathophysiology of SS. During SMG development, a Hippo pathway effector, TAZ, becomes increasingly phosphorylated and associated with E-cadherin and α-catenin, consistent with the activation of Hippo signaling. Inhibition of Lats2, an upstream kinase that promotes TAZ phosphorylation, results in dysmorphogenesis of the SMG and impaired duct formation. SMGs from NOD mice, a mouse model for SS, phenocopy the Lats2-inhibited SMGs and exhibit a reduction in E-cadherin junctional components, including TAZ. Importantly, labial specimens from human SS patients display mislocalization of TAZ from junctional regions to the nucleus, coincident with accumulation of extracellular matrix components, fibronectin and CTGF, known downstream targets of TAZ. Our studies show that Hippo signaling plays a crucial role in SMG branching morphogenesis and provide evidence that defects in this pathway are associated with SS in humans. PMID:24080911

  10. Dissecting and circumventing the requirement for RAM in CSL-dependent Notch signaling.

    Directory of Open Access Journals (Sweden)

    Scott E Johnson

    Full Text Available The Notch signaling pathway is an intercellular communication network vital to metazoan development. Notch activation leads to the nuclear localization of the intracellular portion (NICD of the Notch receptor. Once in the nucleus, NICD binds the transcription factor CSL through a bivalent interaction involving the high-affinity RAM region and the lower affinity ANK domain, converting CSL from a transcriptionally-repressed to an active state. This interaction is believed to directly displace co-repressor proteins from CSL and recruit co-activator proteins. Here we investigate the consequences of this bivalent organization in converting CSL from the repressed to active form. One proposed function of RAM is to promote the weak ANK:CSL interaction; thus, fusion of CSL-ANK should bypass this function of RAM. We find that a CSL-ANK fusion protein is transcriptionally active in reporter assays, but that the addition of RAM in trans further increases transcriptional activity, suggesting another role of RAM in activation. A single F235L point substitution, which disrupts co-repressor binding to CSL, renders the CSL-ANK fusion fully active and refractory to further stimulation by RAM in trans. These results suggest that in the context of a mammalian CSL-ANK fusion protein, the main role of RAM is to displace co-repressor proteins from CSL.

  11. Vitamin D receptor signaling is required for heart development in zebrafish embryo.

    Science.gov (United States)

    Kwon, Hye-Joo

    2016-02-12

    Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects. Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development. PMID:26797277

  12. Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts

    Institute of Scientific and Technical Information of China (English)

    Xiaojia Ge; Ravi Kambadur; Craig McFarlane; Anuradha Vajjala; Sudarsanareddy Lokireddy; Zhi Hui Ng; Chek Kun Tan; Nguan Soon Tan; Walter Wahli; Mridula Sharma

    2011-01-01

    TGF-β and myostatin are the two most important regulators of muscle growth.Both growth factors have been shown to signal through a Smad3-dependent pathway.However to date,the role of Smad3 in muscle growth and differentiation is not investigated.Here,we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy.Consistent with this,we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice.Loss of Smad3 also led to defective satellite cell (SC) functionality.Smad3-null SCs showed reduced propensity for self-renewal,which may lead to a progressive loss of SC number.Indeed,decreased SC number was observed in skeletal muscle from Smad3- null mice showing signs of severe muscle wasting.Further in vitro analysis of primary myoblast cultures identified that Smad3-nuil myoblasts exhibit impaired proliferation,differentiation and fusion,resulting in the formation of atrophied myotubes.A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts.Given that myostatin is a negative regulator,we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice.Consistent with this theory,inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.

  13. Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana.

    Science.gov (United States)

    Galvão, Vinicius Costa; Collani, Silvio; Horrer, Daniel; Schmid, Markus

    2015-12-01

    Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process. PMID:26466761

  14. Auditory processing models

    DEFF Research Database (Denmark)

    Dau, Torsten

    2008-01-01

    present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  15. SNMP is a signaling component required for pheromone sensitivity in Drosophila

    OpenAIRE

    Jin, Xin; Ha, Tal soo; Smith, Dean P.

    2008-01-01

    The only known volatile pheromone in Drosophila, 11-cis-vaccenyl acetate (cVA), mediates a variety of behaviors including aggregation, mate recognition, and sexual behavior. cVA is detected by a small set of olfactory neurons located in T1 trichoid sensilla on the antennae of males and females. Two components known to be required for cVA reception are the odorant receptor Or67d and the extracellular pheromone-binding protein LUSH. Using a genetic screen for cVA-insensitive mutants, we have id...

  16. Auditory and non-auditory effects of noise on health.

    Science.gov (United States)

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-04-12

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105

  17. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Rannar Airik

    Full Text Available Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1, of the endosomal sorting complex (RABEP2, ERC1, and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14 at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure.

  18. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling

    Science.gov (United States)

    Schueler, Markus; Airik, Merlin; Cho, Jang; Ulanowicz, Kelsey A.; Porath, Jonathan D.; Hurd, Toby W.; Bekker-Jensen, Simon; Schrøder, Jacob M.; Andersen, Jens S.; Hildebrandt, Friedhelm

    2016-01-01

    Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC1), and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14) at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure. PMID:27224062

  19. Association between language development and auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha-Muniz

    2014-06-01

    Full Text Available INTRODUCTION: It is crucial to understand the complex processing of acoustic stimuli along the auditory pathway ;comprehension of this complex processing can facilitate our understanding of the processes that underlie normal and altered human communication. AIM: To investigate the performance and lateralization effects on auditory processing assessment in children with specific language impairment (SLI, relating these findings to those obtained in children with auditory processing disorder (APD and typical development (TD. MATERIAL AND METHODS: Prospective study. Seventy-five children, aged 6-12 years, were separated in three groups: 25 children with SLI, 25 children with APD, and 25 children with TD. All went through the following tests: speech-in-noise test, Dichotic Digit test and Pitch Pattern Sequencing test. RESULTS: The effects of lateralization were observed only in the SLI group, with the left ear presenting much lower scores than those presented to the right ear. The inter-group analysis has shown that in all tests children from APD and SLI groups had significantly poorer performance compared to TD group. Moreover, SLI group presented worse results than APD group. CONCLUSION: This study has shown, in children with SLI, an inefficient processing of essential sound components and an effect of lateralization. These findings may indicate that neural processes (required for auditory processing are different between auditory processing and speech disorders.

  20. Auditory Short-Term Memory Activation during Score Reading

    OpenAIRE

    Simoens, Veerle L; Mari Tervaniemi

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during ...

  1. Individual differences in auditory abilities.

    Science.gov (United States)

    Kidd, Gary R; Watson, Charles S; Gygi, Brian

    2007-07-01

    Performance on 19 auditory discrimination and identification tasks was measured for 340 listeners with normal hearing. Test stimuli included single tones, sequences of tones, amplitude-modulated and rippled noise, temporal gaps, speech, and environmental sounds. Principal components analysis and structural equation modeling of the data support the existence of a general auditory ability and four specific auditory abilities. The specific abilities are (1) loudness and duration (overall energy) discrimination; (2) sensitivity to temporal envelope variation; (3) identification of highly familiar sounds (speech and nonspeech); and (4) discrimination of unfamiliar simple and complex spectral and temporal patterns. Examination of Scholastic Aptitude Test (SAT) scores for a large subset of the population revealed little or no association between general or specific auditory abilities and general intellectual ability. The findings provide a basis for research to further specify the nature of the auditory abilities. Of particular interest are results suggestive of a familiar sound recognition (FSR) ability, apparently specialized for sound recognition on the basis of limited or distorted information. This FSR ability is independent of normal variation in both spectral-temporal acuity and of general intellectual ability. PMID:17614500

  2. Lexical and Sublexical Feedback in Auditory Word Recognition.

    Science.gov (United States)

    Pitt, Mark A.; Samuel, Arthur G.

    1995-01-01

    Results from 3 experiments in auditory word recognition involving a total of 266 undergraduates supported interactive models of lexical processing, but required additional sublexical processes. The hypothesized sublexical mechanism is fast acting and frequency sensitive and produces top-down effects, but its operation has not yet been fully…

  3. Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal.

    Directory of Open Access Journals (Sweden)

    Sung-Ho Huh

    2012-01-01

    Full Text Available A large proportion of age-related hearing loss is caused by loss or damage to outer hair cells in the organ of Corti. The organ of Corti is the mechanosensory transducing apparatus in the inner ear and is composed of inner hair cells, outer hair cells, and highly specialized supporting cells. The mechanisms that regulate differentiation of inner and outer hair cells are not known. Here we report that fibroblast growth factor 20 (FGF20 is required for differentiation of cells in the lateral cochlear compartment (outer hair and supporting cells within the organ of Corti during a specific developmental time. In the absence of FGF20, mice are deaf and lateral compartment cells remain undifferentiated, postmitotic, and unresponsive to Notch-dependent lateral inhibition. These studies identify developmentally distinct medial (inner hair and supporting cells and lateral compartments in the developing organ of Corti. The viability and hearing loss in Fgf20 knockout mice suggest that FGF20 may also be a deafness-associated gene in humans.

  4. A nuclear export signal within the structural Gag protein is required for prototype foamy virus replication

    Directory of Open Access Journals (Sweden)

    Coiffic Audrey

    2011-01-01

    Full Text Available Abstract Background The Gag polyproteins play distinct roles during the replication cycle of retroviruses, hijacking many cellular machineries to fulfill them. In the case of the prototype foamy virus (PFV, Gag structural proteins undergo transient nuclear trafficking after their synthesis, returning back to the cytoplasm for capsid assembly and virus egress. The functional role of this nuclear stage as well as the molecular mechanism(s responsible for Gag nuclear export are not understood. Results We have identified a leptomycin B (LMB-sensitive nuclear export sequence (NES within the N-terminus of PFV Gag that is absolutely required for the completion of late stages of virus replication. Point mutations of conserved residues within this motif lead to nuclear redistribution of Gag, preventing subsequent virus egress. We have shown that a NES-defective PFV Gag acts as a dominant negative mutant by sequestrating its wild-type counterpart in the nucleus. Trans-complementation experiments with the heterologous NES of HIV-1 Rev allow the cytoplasmic redistribution of FV Gag, but fail to restore infectivity. Conclusions PFV Gag-Gag interactions are finely tuned in the cytoplasm to regulate their functions, capsid assembly, and virus release. In the nucleus, we have shown Gag-Gag interactions which could be involved in the nuclear export of Gag and viral RNA. We propose that nuclear export of unspliced and partially spliced PFV RNAs relies on two complementary mechanisms, which take place successively during the replication cycle.

  5. Neural Correlates of an Auditory Afterimage in Primary Auditory Cortex

    OpenAIRE

    Noreña, A. J.; Eggermont, J. J.

    2003-01-01

    The Zwicker tone (ZT) is defined as an auditory negative afterimage, perceived after the presentation of an appropriate inducer. Typically, a notched noise (NN) with a notch width of 1/2 octave induces a ZT with a pitch falling in the frequency range of the notch. The aim of the present study was to find potential neural correlates of the ZT in the primary auditory cortex of ketamine-anesthetized cats. Responses of multiunits were recorded simultaneously with two 8-electrode arrays during 1 s...

  6. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    International Nuclear Information System (INIS)

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-κB and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-κB activity and phosphorylation of the inhibitor of kappa B (IκBα) increased in ischemic brains, but IRF3, inhibitor of κB kinase complex-ε (IKKε), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-κB activity or p-IκBα induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-κB signaling and brain injury after acute cerebral I/R.

  7. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Fang, E-mail: fhua2@emory.edu [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States); Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G. [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States)

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  8. Sensory Responses during Sleep in Primate Primary and Secondary Auditory Cortex

    OpenAIRE

    Issa, Elias B.; Wang, Xiaoqin

    2008-01-01

    Most sensory stimuli do not reach conscious perception during sleep. It has been thought that the thalamus prevents the relay of sensory information to cortex during sleep, but the consequences for cortical responses to sensory signals in this physiological state remain unclear. We recorded from two auditory cortical areas downstream of the thalamus in naturally sleeping marmoset monkeys. Single neurons in primary auditory cortex either increased or decreased their responses during sleep comp...

  9. Auditory Evoked Fields Elicited by Spectral, Temporal, and Spectral–Temporal Changes in Human Cerebral Cortex

    OpenAIRE

    ChristoPantev; HidehikoOkamoto

    2012-01-01

    Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral-temporal sound changes by means of magnetoe...

  10. Long-latency auditory evoked potentials with verbal and nonverbal stimuli,

    OpenAIRE

    Sheila Jacques Oppitz; Dayane Domeneghini Didoné; Débora Durigon da Silva; Marjana Gois; Jordana Folgearini; Geise Corrêa Ferreira; Michele Vargas Garcia

    2015-01-01

    ABSTRACT INTRODUCTION: Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. OBJECTIVE: To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and...

  11. Auditory Speech Perception Tests in Relation to the Coding Strategy in Cochlear Implant

    OpenAIRE

    Bazon, Aline Cristine; Mantello, Erika Barioni; Gonçales, Alina Sanches; Isaac, Myriam de Lima; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa

    2015-01-01

    Introduction  The objective of the evaluation of auditory perception of cochlear implant users is to determine how the acoustic signal is processed, leading to the recognition and understanding of sound. Objective  To investigate the differences in the process of auditory speech perception in individuals with postlingual hearing loss wearing a cochlear implant, using two different speech coding strategies, and to analyze speech perception and handicap perception in relation to the strategy us...

  12. Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly

    OpenAIRE

    Appler, Jessica M; Goodrich, Lisa V.

    2011-01-01

    Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory c...

  13. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  14. Adaptation in the auditory system: an overview

    OpenAIRE

    David ePérez-González; Malmierca, Manuel S.

    2014-01-01

    The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the s...

  15. Grasping the sound: Auditory pitch influences size processing in motor planning.

    Science.gov (United States)

    Rinaldi, Luca; Lega, Carlotta; Cattaneo, Zaira; Girelli, Luisa; Bernardi, Nicolò Francesco

    2016-01-01

    Growing evidence shows that individuals consistently match auditory pitch with visual size. For instance, high-pitched sounds are perceptually associated with smaller visual stimuli, whereas low-pitched sounds with larger ones. The present study explores whether this crossmodal correspondence, reported so far for perceptual processing, also modulates motor planning. To address this issue, we carried out a series of kinematic experiments to verify whether actions implying size processing are affected by auditory pitch. Experiment 1 showed that grasping movements toward small/large objects were initiated faster in response to high/low pitches, respectively, thus extending previous findings in the literature to more complex motor behavior. Importantly, auditory pitch influenced the relative scaling of the hand preshaping, with high pitches associated with smaller grip aperture compared with low pitches. Notably, no effect of auditory pitch was found in case of pointing movements (no grasp implied, Experiment 2), as well as when auditory pitch was irrelevant to the programming of the grip aperture, that is, in case of grasping an object of uniform size (Experiment 3). Finally, auditory pitch influenced also symbolic manual gestures expressing "small" and "large" concepts (Experiment 4). In sum, our results are novel in revealing the impact of auditory pitch on motor planning when size processing is required, and shed light on the role of auditory information in driving actions. (PsycINFO Database Record PMID:26280267

  16. Minimal effects of visual memory training on auditory performance of adult cochlear implant users

    Directory of Open Access Journals (Sweden)

    Sandra I. Oba, MS

    2013-02-01

    Full Text Available Auditory training has been shown to significantly improve cochlear implant (CI users’ speech and music perception. However, it is unclear whether posttraining gains in performance were due to improved auditory perception or to generally improved attention, memory, and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory, were assessed in 10 CI users before, during, and after training with a nonauditory task. A visual digit span (VDS task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise, except for small (but significant improvements in vocal emotion recognition and melodic contour identification. Posttraining gains were much smaller with the nonauditory VDS training than observed in previous auditory training studies with CI users. The results suggest that posttraining gains observed in previous studies were not solely attributable to improved attention or memory and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception.

  17. Higher dietary diversity is related to better visual and auditory sustained attention.

    Science.gov (United States)

    Shiraseb, Farideh; Siassi, Fereydoun; Qorbani, Mostafa; Sotoudeh, Gity; Rostami, Reza; Narmaki, Elham; Yavari, Parvaneh; Aghasi, Mohadeseh; Shaibu, Osman Mohammed

    2016-04-01

    Attention is a complex cognitive function that is necessary for learning, for following social norms of behaviour and for effective performance of responsibilities and duties. It is especially important in sensitive occupations requiring sustained attention. Improvement of dietary diversity (DD) is recognised as an important factor in health promotion, but its association with sustained attention is unknown. The aim of this study was to determine the association between auditory and visual sustained attention and DD. A cross-sectional study was carried out on 400 women aged 20-50 years who attended sports clubs at Tehran Municipality. Sustained attention was evaluated on the basis of the Integrated Visual and Auditory Continuous Performance Test using Integrated Visual and Auditory software. A single 24-h dietary recall questionnaire was used for DD assessment. Dietary diversity scores (DDS) were determined using the FAO guidelines. The mean visual and auditory sustained attention scores were 40·2 (sd 35·2) and 42·5 (sd 38), respectively. The mean DDS was 4·7 (sd 1·5). After adjusting for age, education years, physical activity, energy intake and BMI, mean visual and auditory sustained attention showed a significant increase as the quartiles of DDS increased (P=0·001). In addition, the mean subscales of attention, including auditory consistency and vigilance, visual persistence, visual and auditory focus, speed, comprehension and full attention, increased significantly with increasing DDS (Phigher DDS is associated with better visual and auditory sustained attention. PMID:26902532

  18. The impact of educational level on performance on auditory processing tests

    Directory of Open Access Journals (Sweden)

    Cristina F.B. Murphy

    2016-03-01

    Full Text Available Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor years of schooling was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  19. Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia.

    Science.gov (United States)

    Goller, Aviva I; Otten, Leun J; Ward, Jamie

    2009-10-01

    In auditory-visual synesthesia, sounds automatically elicit conscious and reliable visual experiences. It is presently unknown whether this reflects early or late processes in the brain. It is also unknown whether adult audiovisual synesthesia resembles auditory-induced visual illusions that can sometimes occur in the general population or whether it resembles the electrophysiological deflection over occipital sites that has been noted in infancy and has been likened to synesthesia. Electrical brain activity was recorded from adult synesthetes and control participants who were played brief tones and required to monitor for an infrequent auditory target. The synesthetes were instructed to attend either to the auditory or to the visual (i.e., synesthetic) dimension of the tone, whereas the controls attended to the auditory dimension alone. There were clear differences between synesthetes and controls that emerged early (100 msec after tone onset). These differences tended to lie in deflections of the auditory-evoked potential (e.g., the auditory N1, P2, and N2) rather than the presence of an additional posterior deflection. The differences occurred irrespective of what the synesthetes attended to (although attention had a late effect). The results suggest that differences between synesthetes and others occur early in time, and that synesthesia is qualitatively different from similar effects found in infants and certain auditory-induced visual illusions in adults. In addition, we report two novel cases of synesthesia in which colors elicit sounds, and vice versa. PMID:18823243

  20. Auditory Perception of Self-Similarity in Water Sounds

    OpenAIRE

    Geffen, Maria N.; Gervain, Judit; Werker, Janet F.; Magnasco, Marcelo O.

    2011-01-01

    Many natural signals, including environmental sounds, exhibit scale-invariant statistics: their structure is repeated at multiple scales. Such scale-invariance has been identified separately across spectral and temporal correlations of natural sounds (Clarke and Voss, 1975; Attias and Schreiner, 1997; Escabi et al., 2003; Singh and Theunissen, 2003). Yet the role of scale-invariance across overall spectro-temporal structure of the sound has not been explored directly in auditory perception. H...

  1. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J;

    2011-01-01

    order of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed...... cellular study of auditory thalamocortical circuit organization and plasticity in the genetically tractable mouse model....

  2. Auditory Evoked Potential Response and Hearing Loss: A Review

    OpenAIRE

    Paulraj, M. P; Subramaniam, Kamalraj; Yaccob, Sazali Bin; Adom, Abdul H. Bin; Hema, C.R.

    2015-01-01

    Hypoacusis is the most prevalent sensory disability in the world and consequently, it can lead to impede speech in human beings. One best approach to tackle this issue is to conduct early and effective hearing screening test using Electroencephalogram (EEG). EEG based hearing threshold level determination is most suitable for persons who lack verbal communication and behavioral response to sound stimulation. Auditory evoked potential (AEP) is a type of EEG signal emanated from the brain scalp...

  3. Biological impact of music and software-based auditory training

    OpenAIRE

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based ...

  4. A loudspeaker-based room auralization system for auditory research

    OpenAIRE

    Favrot, Sylvain Emmanuel; Buchholz, Jörg; Dau, Torsten

    2010-01-01

    In complex acoustic environments, such as a train station or a café, hearing-impaired people often experience difficulties to communicate even when wearing hearing instruments, whereas normal-hearing people are typically able to communicate without effort in such conditions. In order to systematically study the signal processing of realistic sounds by normal-hearing and hearing-impaired listeners, a flexible, reproducible and fully controllable auditory environment is needed. A loudspeaker-ba...

  5. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    Science.gov (United States)

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. PMID:23664946

  6. Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis.

    Science.gov (United States)

    Fletcher, Phillip D; Downey, Laura E; Golden, Hannah L; Clark, Camilla N; Slattery, Catherine F; Paterson, Ross W; Schott, Jonathan M; Rohrer, Jonathan D; Rossor, Martin N; Warren, Jason D

    2015-06-01

    Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music ('musicophilia') occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease. PMID:25929717

  7. Auditory Scene Analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    Directory of Open Access Journals (Sweden)

    David J Brown

    2015-10-01

    Full Text Available A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don’t yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36 performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio-visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this.

  8. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    Science.gov (United States)

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26874071

  9. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.

    Science.gov (United States)

    Zhou, Xiaoying; Zhao, Xinhua; Xue, Chaoyang; Dai, Yafeng; Xu, Jin-Rong

    2014-09-01

    Magnaporthe oryzae forms a highly specialized infection structure called an appressorium for plant penetration. In M. oryzae and many other plant-pathogenic fungi, surface attachment and surface recognition are two essential requirements for appressorium formation. Development of appressoria in the air has not been reported. In this study, we found that expression of a dominant active MoRAS2(G18V) allele in M. oryzae resulted in the formation of morphologically abnormal appressoria on nonconducive surfaces, in liquid suspensions, and on aerial hyphae without attachment to hard surfaces. Both the Pmk1 mitogen-activated protein kinase cascade and cAMP signaling pathways that regulate surface recognition and appressorium morphogenesis in M. oryzae were overactivated in the MoRAS2(G18V) transformant. In mutants deleted of PMK1 or CPKA, expression of MoRAS2(G18V) had no significant effects on appressorium morphogenesis. Furthermore, expression of dominant MoRAS2 in Colletotrichum graminicola and C. gloeosporioides also caused the formation of appressorium-like structures in aerial hyphae. Overall, our data indicate that MoRas2 functions upstream from both the cAMP-PKA and Pmk1 pathways and overactive Ras signaling leads to improper activation of these two pathways and appressorium formation without surface attachment in appressorium-forming pathogens. PMID:24835254

  10. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Directory of Open Access Journals (Sweden)

    James Bigelow

    Full Text Available Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s. However, at longer retention intervals (8-32 s, accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  11. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    Science.gov (United States)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  12. Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications

    Science.gov (United States)

    Vassilakis, Pantelis N.; Kendall, Roger A.

    2010-02-01

    The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.

  13. Cortical contributions to the auditory frequency-following response revealed by MEG.

    Science.gov (United States)

    Coffey, Emily B J; Herholz, Sibylle C; Chepesiuk, Alexander M P; Baillet, Sylvain; Zatorre, Robert J

    2016-01-01

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation. PMID:27009409

  14. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration.

    Science.gov (United States)

    Haley, Krystal; Igyártó, Botond Z; Ortner, Daniela; Bobr, Aleh; Kashem, Sakeen; Schenten, Dominik; Kaplan, Daniel H

    2012-05-01

    Langerhans cells (LC) are a subset of skin-resident dendritic cells (DC) that reside in the epidermis as immature DC, where they acquire Ag. A key step in the life cycle of LC is their activation into mature DC in response to various stimuli, including epicutaneous sensitization with hapten and skin infection with Candida albicans. Mature LC migrate to the skin-draining LN, where they present Ag to CD4 T cells and modulate the adaptive immune response. LC migration is thought to require the direct action of IL-1β and IL-18 on LC. In addition, TLR ligands are present in C. albicans, and hapten sensitization produces endogenous TLR ligands. Both could contribute to LC activation. We generated Langerin-Cre MyD88(fl) mice in which LC are insensitive to IL-1 family members and most TLR ligands. LC migration in the steady state, after hapten sensitization and postinfection with C. albicans, was unaffected. Contact hypersensitivity in Langerin-Cre MyD88(fl) mice was similarly unaffected. Interestingly, in response to C. albicans infection, these mice displayed reduced proliferation of Ag-specific CD4 T cells and defective Th17 subset differentiation. Surface expression of costimulatory molecules was intact on LC, but expression of IL-1β, IL-6, and IL-23 was reduced. Thus, sensitivity to MyD88-dependent signals is not required for LC migration, but is required for the full activation and function of LC in the setting of fungal infection. PMID:22442445

  15. Modelling the emergence and dynamics of perceptual organisation in auditory streaming.

    Science.gov (United States)

    Mill, Robert W; Bőhm, Tamás M; Bendixen, Alexandra; Winkler, István; Denham, Susan L

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives-a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the dynamics

  16. Modelling the emergence and dynamics of perceptual organisation in auditory streaming.

    Directory of Open Access Journals (Sweden)

    Robert W Mill

    Full Text Available Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives-a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual

  17. Adapting the Theory of Visual Attention (TVA) to model auditory attention

    DEFF Research Database (Denmark)

    Roberts, Katherine L.; Andersen, Tobias; Kyllingsbæk, Søren;

    2014-01-01

    Mathematical and computational models have provided useful insights into normal and impaired visual attention, but less progress has been made in modelling auditory attention. We are developing a Theory of Auditory Attention (TAA), based on an influential visual model, the Theory of Visual...... model the auditory data, producing good estimates of the rate at which information is encoded (C), the minimum exposure duration required for processing to begin (t0), and the relative attentional weight to targets versus distractors (α). Future work will address the issue of target-distractor confusion...

  18. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis.

    Directory of Open Access Journals (Sweden)

    Allison L Speer

    Full Text Available The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10 and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b, in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22 except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.

  19. A novel population of local pericyte precursor cells in tumor stroma that require Notch signaling for differentiation.

    Science.gov (United States)

    Patenaude, Alexandre; Woerher, Stefan; Umlandt, Patricia; Wong, Fred; Ibrahim, Rawa; Kyle, Alastair; Unger, Sandy; Fuller, Megan; Parker, Jeremy; Minchinton, Andrew; Eaves, Connie J; Karsan, Aly

    2015-09-01

    Pericytes are perivascular support cells, the origin of which in tumor tissue is not clear. Recently, we identified a Tie1(+) precursor cell that differentiates into vascular smooth muscle, in a Notch-dependent manner. To understand the involvement of Notch in the ontogeny of tumor pericytes we used a novel flow immunophenotyping strategy to define CD146(+)/CD45(-)/CD31(-/lo) pericytes in the tumor stroma. This strategy combined with ex vivo co-culture experiments identified a novel pericyte progenitor cell population defined as Sca1(hi)/CD146(-)/CD45(-)/CD31(-). The differentiation of these progenitor cells was stimulated by co-culture with endothelial cells. Overexpression of the Notch ligand Jagged1 in endothelial cells further stimulated the differentiation of Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells into pericytes, while inhibition of Notch signaling with a γ-secretase inhibitor reduced this differentiation. However, Notch inhibition specifically in Tie1-expressing cells did not change the abundance of pericytes in tumors, suggesting that the pericyte precursor is distinct from the vascular smooth muscle cell precursor. Transplant experiments showed that the bone marrow contributes minimally to tumor pericytes. Immunophenotyping revealed that Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells have greater potential to differentiate into pericytes and have increased expression of classic mesenchymal stem cell markers (CD13, CD44, Nt5e and Thy-1) compared to Sca1(-/lo)/CD146(-)/CD45(-)/CD31(-) cells. Our results suggest that a local Sca1(hi)/CD146(-)/CD45(-)/CD31(-) pericyte progenitor resides in the tumor microenvironment and requires Notch signaling for differentiation into mature pericytes. PMID:26092680

  20. Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance

    Science.gov (United States)

    Mizutani, Tatsuaki; Neugebauer, Nina; Putz, Eva M.; Moritz, Nadine; Simma, Olivia; Zebedin-Brandl, Eva; Gotthardt, Dagmar; Warsch, Wolfgang; Eckelhart, Eva; Kantner, Hans-Peter; Kalinke, Ulrich; Lienenklaus, Stefan; Weiss, Siegfried; Strobl, Birgit; Müller, Mathias; Sexl, Veronika; Stoiber, Dagmar

    2012-01-01

    Mice with an impaired Type I interferon (IFN) signaling (IFNAR1- and IFNβ-deficient mice) display an increased susceptibility toward v-ABL-induced B-cell leukemia/lymphoma. The enhanced leukemogenesis in the absence of an intact Type I IFN signaling is caused by alterations within the tumor environment. Deletion of Ifnar1 in tumor cells (as obtained in Ifnar1f/f CD19-Cre mice) failed to impact on disease latency or type. In line with this observation, the initial transformation and proliferative capacity of tumor cells were unaltered irrespective of whether the cells expressed IFNAR1 or not. v-ABL-induced leukemogenesis is mainly subjected to natural killer (NK) cell-mediated tumor surveillance. Thus, we concentrated on NK cell functions in IFNAR1 deficient animals. Ifnar1-/- NK cells displayed maturation defects as well as an impaired cytolytic activity. When we deleted Ifnar1 selectively in mature NK cells (by crossing Ncr1-iCre mice to Ifnar1f/f animals), maturation was not altered. However, NK cells derived from Ifnar1f/f Ncr1-iCre mice showed a significant cytolytic defect in vitro against the hematopoietic cell lines YAC-1 and RMA-S, but not against the melanoma cell line B16F10. Interestingly, this defect was not related to an in vivo phenotype as v-ABL-induced leukemogenesis was unaltered in Ifnar1f/f Ncr1-iCre compared with Ifnar1f/f control mice. Moreover, the ability of Ifnar1f/f Ncr1-iCre NK cells to kill B16F10 melanoma cells was unaltered, both in vitro and in vivo. Our data reveal that despite the necessity for Type I IFN in NK cell maturation the expression of IFNAR1 on mature murine NK cells is not required for efficient tumor surveillance. PMID:23170251

  1. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David Pérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  2. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. PMID:24378910

  3. The Effects of Auditory Contrast Tuning upon Speech Intelligibility.

    Science.gov (United States)

    Killian, Nathan J; Watkins, Paul V; Davidson, Lisa S; Barbour, Dennis L

    2016-01-01

    We have previously identified neurons tuned to spectral contrast of wideband sounds in auditory cortex of awake marmoset monkeys. Because additive noise alters the spectral contrast of speech, contrast-tuned neurons, if present in human auditory cortex, may aid in extracting speech from noise. Given that this cortical function may be underdeveloped in individuals with sensorineural hearing loss, incorporating biologically-inspired algorithms into external signal processing devices could provide speech enhancement benefits to cochlear implantees. In this study we first constructed a computational signal processing algorithm to mimic auditory cortex contrast tuning. We then manipulated the shape of contrast channels and evaluated the intelligibility of reconstructed noisy speech using a metric to predict cochlear implant user perception. Candidate speech enhancement strategies were then tested in cochlear implantees with a hearing-in-noise test. Accentuation of intermediate contrast values or all contrast values improved computed intelligibility. Cochlear implant subjects showed significant improvement in noisy speech intelligibility with a contrast shaping procedure. PMID:27555826

  4. Implications of blast exposure for central auditory function: A review

    Directory of Open Access Journals (Sweden)

    Frederick J. Gallun, PhD

    2012-10-01

    Full Text Available Auditory system functions, from peripheral sensitivity to central processing capacities, are all at risk from a blast event. Accurate encoding of auditory patterns in time, frequency, and space are required for a clear understanding of speech and accurate localization of sound sources in environments with background noise, multiple sound sources, and/or reverberation. Further work is needed to refine the battery of clinical tests sensitive to the sorts of central auditory dysfunction observed in individuals with blast exposure. Treatment options include low-gain hearing aids, remote-microphone technology, and auditory-training regimens, but clinical evidence does not yet exist for recommending one or more of these options. As this population ages, the natural aging process and other potential brain injuries (such as stroke and blunt trauma may combine with blast-related brain changes to produce a population for which the current clinical diagnostic and treatment tools may prove inadequate. It is important to maintain an updated understanding of the scope of the issues present in this population and to continue to identify those solutions that can provide measurable improvements in the lives of Veterans who have been exposed to high-intensity blasts during the course of their military service.

  5. Making and monitoring errors based on altered auditory feedback

    Directory of Open Access Journals (Sweden)

    Peter ePfordresher

    2014-08-01

    Full Text Available Previous research has demonstrated that altered auditory feedback (AAF disrupts music performance and causes disruptions in both action planning and the perception of feedback events. It has been proposed that this disruption occurs because of interference within a shared representation for perception and action (Pfordresher, 2006. Studies reported here address this claim from the standpoint of error monitoring. In Experiment 1 participants performed short melodies on a keyboard while hearing no auditory feedback, normal auditory feedback, or alterations to feedback pitch on some subset of events. Participants overestimated error frequency when AAF was present but not for normal feedback. Experiment 2 introduced a concurrent load task to determine whether error monitoring requires executive resources. Although the concurrent task enhanced the effect of AAF, it did not alter participants’ tendency to overestimate errors when AAF was present. A third correlational study addressed whether effects of AAF are reduced for a subset of the population who may lack the kind of perception/action associations that lead to AAF disruption: poor-pitch singers. Effects of manipulations similar to those presented in Experiments 1 and 2 were reduced for these individuals. We propose that these results are consistent with the notion that AAF interference is based on associations between perception and action within a forward internal model of auditory-motor relationships.

  6. Psychophysiological responses to auditory change.

    Science.gov (United States)

    Chuen, Lorraine; Sears, David; McAdams, Stephen

    2016-06-01

    A comprehensive characterization of autonomic and somatic responding within the auditory domain is currently lacking. We studied whether simple types of auditory change that occur frequently during music listening could elicit measurable changes in heart rate, skin conductance, respiration rate, and facial motor activity. Participants heard a rhythmically isochronous sequence consisting of a repeated standard tone, followed by a repeated target tone that changed in pitch, timbre, duration, intensity, or tempo, or that deviated momentarily from rhythmic isochrony. Changes in all parameters produced increases in heart rate. Skin conductance response magnitude was affected by changes in timbre, intensity, and tempo. Respiratory rate was sensitive to deviations from isochrony. Our findings suggest that music researchers interpreting physiological responses as emotional indices should consider acoustic factors that may influence physiology in the absence of induced emotions. PMID:26927928

  7. Spectral parameters and signal-to-noise ratio requirement for TANSAT hyper spectral remote sensor of atmospheric CO2

    Science.gov (United States)

    Wang, Qian; Yang, Zhong-Dong; Bi, Yan-Meng

    2014-11-01

    , the results indicate that sampling ratio should exceed 2 pixels/FWHM to ensure the accuracy of CO2 spectrum. Signal-to-noise ratio is one of the most important parameters of hyper spectral CO2 detectors to ensure the reliability of CO2 signal. SNR requirements of CO2 detector to different detection precisions are explored based on the radiance sensitivity factors. The results show that it is difficult to achieve the SNR to detect 1×10-6-4×10-6 CO2 concentration change in the boundary layer by solar shortwave infrared passive remote sensing, limited by the instrument development at present. However, the instrument SNR to detect 1% change in the CO2 column concentration is attainable. The results of this study are not only conductive to universal applications and guides on developing grating spectrometer, but also helpful to have a better understanding of the complexity of CO2 retrieval.

  8. Plasticidade do sistema auditivo Auditory system plasticity

    Directory of Open Access Journals (Sweden)

    Maria Cristina L. C. Féres

    2001-09-01

    Full Text Available O sistema sensorial auditivo tem sido alvo de estudos sobre sua capacidade de desenvolver respostas plásticas a diferentes tipos de lesão. Fenômenos regenerativos se fazem observar no segmento periférico do sistema, com a constatação da neogênese de células ciliadas em aves, em alguns casos acompanhada de recuperação funcional comprovada eletrofisiologicamente. Alterações em estruturas centrais da via auditiva, secundárias a uma lesão do órgão periférico, têm sido freqüentemente relatadas, significando uma provável resposta plástica à perturbação do sinal aferente. Exemplo extremo dessas alterações é encontrado em roedores que desenvolvem, secundariamente à indução de perda auditiva parcial, comportamento motor anômalo em resposta ao som intenso, denominado epilepsia audiogênica. Os autores fazem uma revisão sobre o assunto.The auditory system has been subject of studies that evaluated its capability to develop plastic responses to different kinds of lesions. Regeneration has been observed in the peripheral portions of the system, with neogenesis of the hair cells in avian, sometimes followed by functional rehabilitation as confirmed by electrophysiological testing. The occurrence of central auditory pathway disorders, secondary to peripheral damage, has been frequently noticed, probably due to a plastic reaction to the lack of afferent signal. A great example of these alterations is found in rodents that develop anomalous motor response to loud sounds, secondary to induced partial deafness, named audiogenic seizures. The authors presented a review about the theme.

  9. Acquisition, Analyses and Interpretation of fMRI Data: A Study on the Effective Connectivity in Human Primary Auditory Cortices

    International Nuclear Information System (INIS)

    A study on the effective connectivity characteristics in auditory cortices was conducted on five healthy Malay male subjects with the age of 20 to 40 years old using functional magnetic resonance imaging (fMRI), statistical parametric mapping (SPM5) and dynamic causal modelling (DCM). A silent imaging paradigm was used to reduce the scanner sound artefacts on functional images. The subjects were instructed to pay attention to the white noise stimulus binaurally given at intensity level of 70 dB higher than the hearing level for normal people. Functional specialisation was studied using Matlab-based SPM5 software by means of fixed effects (FFX), random effects (RFX) and conjunction analyses. Individual analyses on all subjects indicate asymmetrical bilateral activation between the left and right auditory cortices in Brodmann areas (BA)22, 41 and 42 involving the primary and secondary auditory cortices. The three auditory areas in the right and left auditory cortices are selected for the determination of the effective connectivity by constructing 9 network models. The effective connectivity is determined on four out of five subjects with the exception of one subject who has the BA22 coordinates located too far from BA22 coordinates obtained from group analysis. DCM results showed the existence of effective connectivity between the three selected auditory areas in both auditory cortices. In the right auditory cortex, BA42 is identified as input centre with unidirectional parallel effective connectivities of BA42→BA41and BA42→BA22. However, for the left auditory cortex, the input is BA41 with unidirectional parallel effective connectivities of BA41→BA42 and BA41→BA22. The connectivity between the activated auditory areas suggests the existence of signal pathway in the auditory cortices even when the subject is listening to noise. (author)

  10. Auditory distraction and serial memory

    OpenAIRE

    Jones, D M; Hughes, Rob; Macken, W.J.

    2010-01-01

    One mental activity that is very vulnerable to auditory distraction is serial recall. This review of the contemporary findings relating to serial recall charts the key determinants of distraction. It is evident that there is one form of distraction that is a joint product of the cognitive characteristics of the task and of the obligatory cognitive processing of the sound. For sequences of sound, distraction appears to be an ineluctable product of similarity-of-process, specifically, the seria...

  11. Melanocortin-4 receptor signaling is not required for short-term weight loss after sleeve gastrectomy in pediatric patients.

    Science.gov (United States)

    Jelin, E B; Daggag, H; Speer, A L; Hameed, N; Lessan, N; Barakat, M; Nadler, E P

    2016-03-01

    Homozygous or compound heterozygous melanocortin-4 receptor (MC4R) mutations are rare with fewer than 10 patients described in current literature. Here we report the short- and long-term outcomes for four children ages 4.5-14 who are homozygous for loss-of-function mutations in the MC4R and underwent laparoscopic sleeve gastrectomy. All four patients experienced significant weight loss and improvement in, or resolution of, their comorbidities in the short term. One patient, however, has had significant weight regain in the long term. We conclude that MC4R signaling is not required for short-term weight loss after laparoscopic sleeve gastrectomy in children. Behavior modification may be more important for long-term weight maintenance, but patients with homozygous MC4R deficiency should not be excluded from consideration for sleeve gastrectomy. However, as at least one copy of functional MC4R is necessary and sufficient to induce long-term postoperative weight loss benefits, patients with complete loss of MC4R functionality might be less likely to exhibit the same benefits resulting from bariatric surgery. PMID:26538186

  12. Auditory cortical processing: Binaural interaction in healthy and ROBO1-deficient subjects

    OpenAIRE

    LamminmÀki, Satu

    2012-01-01

    Two functioning ears provide clear advantages over monaural listening. During natural binaural listening, robust brain-level interaction occurs between the slightly different inputs from the left and the right ear. Binaural interaction requires convergence of inputs from the two ears somewhere in the auditory system, and it therefore relies on midline crossing of auditory pathways, a fundamental property of the mammalian central nervous system. Binaural interaction plays a significant ro...

  13. Auditory sequence analysis and phonological skill.

    Science.gov (United States)

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E; Turton, Stuart; Griffiths, Timothy D

    2012-11-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  14. Development of Receiver Stimulator for Auditory Prosthesis

    OpenAIRE

    K. Raja Kumar; P. Seetha Ramaiah

    2010-01-01

    The Auditory Prosthesis (AP) is an electronic device that can provide hearing sensations to people who are profoundly deaf by stimulating the auditory nerve via an array of electrodes with an electric current allowing them to understand the speech. The AP system consists of two hardware functional units such as Body Worn Speech Processor (BWSP) and Receiver Stimulator. The prototype model of Receiver Stimulator for Auditory Prosthesis (RSAP) consists of Speech Data Decoder, DAC, ADC, constant...

  15. Auditory stimulation and cardiac autonomic regulation

    OpenAIRE

    Vitor E Valenti; Guida, Heraldo L.; Frizzo, Ana C F; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M; Luiz Carlos de Abreu

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation bet...

  16. Behavioural and neural correlates of auditory attention

    OpenAIRE

    Roberts, Katherine Leonie

    2005-01-01

    The auditory attention skills of alterting, orienting, and executive control were assessed using behavioural and neuroimaging techniques. Initially, an auditory analgue of the visual attention network test (ANT) (FAN, McCandliss, Sommer, Raz, & Posner, 2002) was created and tested alongside the visual ANT in a group of 40 healthy subjects. The results from this study showed similarities between auditory and visual spatial orienting. An fMRI study was conducted to investigate whether the simil...

  17. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    Science.gov (United States)

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  18. Corticofugal modulation of peripheral auditory responses

    Directory of Open Access Journals (Sweden)

    Paul Hinckley Delano

    2015-09-01

    Full Text Available The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body, inferior colliculus, cochlear nucleus and superior olivary complex reaching the cochlea through olivocochlear fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i colliculo-thalamic-cortico-collicular, (ii cortico-(collicular-olivocochlear and (iii cortico-(collicular-cochlear nucleus pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the olivocochlear reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on cochlear nucleus, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed.

  19. Corticofugal modulation of peripheral auditory responses.

    Science.gov (United States)

    Terreros, Gonzalo; Delano, Paul H

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  20. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development

    OpenAIRE

    Mao, Yaopan; Mulvaney, Joanna; Zakaria, Sana; Yu, Tian; Morgan, Katherine Malanga; Allen, Steve; Basson, M. Albert; Francis-West, Philippa; Irvine, Kenneth D.

    2011-01-01

    The Drosophila Dachsous and Fat proteins function as ligand and receptor, respectively, for an intercellular signaling pathway that regulates Hippo signaling and planar cell polarity. Although gene-targeted mutations in two mammalian Fat genes have been described, whether mammals have a Fat signaling pathway equivalent to that in Drosophila, and what its biological functions might be, have remained unclear. Here, we describe a gene-targeted mutation in a murine Dachsous homolog, Dchs1. Analys...

  1. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling

    OpenAIRE

    Narazaki, Masashi; Fujimoto, Minoru; Matsumoto, Tomoshige; Morita, Yoshiaki; SAITO, HIROSHI; Kajita, Tadahiro; Yoshizaki, Kazuyuki; Naka, Tetsuji; Kishimoto, Tadamitsu

    1998-01-01

    Cytokine-inducible protein SSI-1 [signal transducers and activators of transcription (STAT)-induced STAT inhibitor 1, also referred to as SOCS-1 (suppressor of cytokine signaling 1) or JAB (Janus kinase-binding protein)] negatively regulates cytokine receptor signaling by inhibition of JAK kinases. The SSI family of proteins includes eight members that are structurally characterized by an SH2 domain and a C-terminal conserved region that we have called the SC-motif. In this study, we investig...

  2. Auditory Confrontation Naming in Alzheimer’s Disease

    OpenAIRE

    Brandt, Jason; Bakker, Arnold; Maroof, David Aaron

    2010-01-01

    Naming is a fundamental aspect of language and is virtually always assessed with visual confrontation tests. Tests of the ability to name objects by their characteristic sounds would be particularly useful in the assessment of visually impaired patients, and may be particularly sensitive in Alzheimer’s disease (AD). We developed an Auditory Naming Task, requiring the identification of the source of environmental sounds (i.e., animal calls, musical instruments, vehicles) and multiple-choice re...

  3. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events

    Directory of Open Access Journals (Sweden)

    Jeroen eStekelenburg

    2012-05-01

    Full Text Available In many natural audiovisual events (e.g., a clap of the two hands, the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have already reported that there are distinct neural correlates of temporal (when versus phonetic/semantic (which content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual part of the audiovisual stimulus. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical subadditive amplitude reductions (AV – V < A were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that the N1 suppression was larger for spatially congruent stimuli. A very early audiovisual interaction was also found at 30-50 ms in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  4. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    Science.gov (United States)

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  5. Proximal vocal threat recruits the right voice-sensitive auditory cortex.

    Science.gov (United States)

    Ceravolo, Leonardo; Frühholz, Sascha; Grandjean, Didier

    2016-05-01

    The accurate estimation of the proximity of threat is important for biological survival and to assess relevant events of everyday life. We addressed the question of whether proximal as compared with distal vocal threat would lead to a perceptual advantage for the perceiver. Accordingly, we sought to highlight the neural mechanisms underlying the perception of proximal vs distal threatening vocal signals by the use of functional magnetic resonance imaging. Although we found that the inferior parietal and superior temporal cortex of human listeners generally decoded the spatial proximity of auditory vocalizations, activity in the right voice-sensitive auditory cortex was specifically enhanced for proximal aggressive relative to distal aggressive voices as compared with neutral voices. Our results shed new light on the processing of imminent danger signaled by proximal vocal threat and show the crucial involvement of the right mid voice-sensitive auditory cortex in such processing. PMID:26746180

  6. Auditory hallucinations suppressed by etizolam in a patient with schizophrenia.

    Science.gov (United States)

    Benazzi, F; Mazzoli, M; Rossi, E

    1993-10-01

    A patient presented with a 15 year history of schizophrenia with auditory hallucinations. Though unresponsive to prolonged trials of neuroleptics, the auditory hallucinations disappeared with etizolam. PMID:7902201

  7. Stimulation of the human auditory nerve with optical radiation

    Science.gov (United States)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  8. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  9. Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing

    Science.gov (United States)

    Karak, Somdatta; Jacobs, Julie S.; Kittelmann, Maike; Spalthoff, Christian; Katana, Radoslaw; Sivan-Loukianova, Elena; Schon, Michael A.; Kernan, Maurice J.; Eberl, Daniel F.; Göpfert, Martin C.

    2015-01-01

    Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly’s ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility. PMID:26608786

  10. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  11. Auditory training can improve working memory, attention, and communication in adverse conditions for adults with hearing loss

    OpenAIRE

    Ferguson, Melanie A.; Henshaw, Helen

    2015-01-01

    Auditory training (AT) helps compensate for degradation in the auditory signal. A series of three high-quality training studies are discussed, which include, (i) a randomized controlled trial (RCT) of phoneme discrimination in quiet that trained adults with mild hearing loss (n = 44), (ii) a repeated measures study that trained phoneme discrimination in noise in hearing aid (HA) users (n = 30), and (iii) a double-blind RCT that directly trained working memory (WM) in HA users (n = 57). AT res...

  12. Auditory training can improve working memory, attention and communication in adverse conditions for adults with hearing loss

    OpenAIRE

    Melanie Ann Ferguson; Helen eHenshaw

    2015-01-01

    Auditory training (AT) helps compensate for degradation in the auditory signal. A series of three high-quality training studies are discussed, (i) a randomized controlled trial (RCT) of phoneme discrimination in quiet that trained adults with mild hearing loss (n=44), (ii) a repeated measures study that trained phoneme discrimination in noise in hearing aid (HA) users (n=30), and (iii) a double-blind RCT that directly trained working memory (WM) in HA users (n=57). AT resulted in generalized ...

  13. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms

    OpenAIRE

    Sipe, Conor W.; Lu, Xiaowei

    2011-01-01

    Auditory hair cells represent one of the most prominent examples of epithelial planar polarity. In the auditory sensory epithelium, planar polarity of individual hair cells is defined by their V-shaped hair bundle, the mechanotransduction organelle located on the apical surface. At the tissue level, all hair cells display uniform planar polarity across the epithelium. Although it is known that tissue planar polarity is controlled by non-canonical Wnt/planar cell polarity (PCP) signaling, the ...

  14. Heritability of non-speech auditory processing skills.

    Science.gov (United States)

    Brewer, Carmen C; Zalewski, Christopher K; King, Kelly A; Zobay, Oliver; Riley, Alison; Ferguson, Melanie A; Bird, Jonathan E; McCabe, Margaret M; Hood, Linda J; Drayna, Dennis; Griffith, Andrew J; Morell, Robert J; Friedman, Thomas B; Moore, David R

    2016-08-01

    Recent insight into the genetic bases for autism spectrum disorder, dyslexia, stuttering, and language disorders suggest that neurogenetic approaches may also reveal at least one etiology of auditory processing disorder (APD). A person with an APD typically has difficulty understanding speech in background noise despite having normal pure-tone hearing sensitivity. The estimated prevalence of APD may be as high as 10% in the pediatric population, yet the causes are unknown and have not been explored by molecular or genetic approaches. The aim of our study was to determine the heritability of frequency and temporal resolution for auditory signals and speech recognition in noise in 96 identical or fraternal twin pairs, aged 6-11 years. Measures of auditory processing (AP) of non-speech sounds included backward masking (temporal resolution), notched noise masking (spectral resolution), pure-tone frequency discrimination (temporal fine structure sensitivity), and nonsense syllable recognition in noise. We provide evidence of significant heritability, ranging from 0.32 to 0.74, for individual measures of these non-speech-based AP skills that are crucial for understanding spoken language. Identification of specific heritable AP traits such as these serve as a basis to pursue the genetic underpinnings of APD by identifying genetic variants associated with common AP disorders in children and adults. PMID:26883091

  15. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  16. Auditory brainstem response in dolphins.

    OpenAIRE

    Ridgway, S. H.; Bullock, T H; Carder, D.A.; Seeley, R L; Woods, D.; Galambos, R

    1981-01-01

    We recorded the auditory brainstem response (ABR) in four dolphins (Tursiops truncatus and Delphinus delphis). The ABR evoked by clicks consists of seven waves within 10 msec; two waves often contain dual peaks. The main waves can be identified with those of humans and laboratory mammals; in spite of a much longer path, the latencies of the peaks are almost identical to those of the rat. The dolphin ABR waves increase in latency as the intensity of a sound decreases by only 4 microseconds/dec...

  17. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  18. Large-Scale Analysis of Auditory Segregation Behavior Crowdsourced via a Smartphone App.

    Science.gov (United States)

    Teki, Sundeep; Kumar, Sukhbinder; Griffiths, Timothy D

    2016-01-01

    The human auditory system is adept at detecting sound sources of interest from a complex mixture of several other simultaneous sounds. The ability to selectively attend to the speech of one speaker whilst ignoring other speakers and background noise is of vital biological significance-the capacity to make sense of complex 'auditory scenes' is significantly impaired in aging populations as well as those with hearing loss. We investigated this problem by designing a synthetic signal, termed the 'stochastic figure-ground' stimulus that captures essential aspects of complex sounds in the natural environment. Previously, we showed that under controlled laboratory conditions, young listeners sampled from the university subject pool (n = 10) performed very well in detecting targets embedded in the stochastic figure-ground signal. Here, we presented a modified version of this cocktail party paradigm as a 'game' featured in a smartphone app (The Great Brain Experiment) and obtained data from a large population with diverse demographical patterns (n = 5148). Despite differences in paradigms and experimental settings, the observed target-detection performance by users of the app was robust and consistent with our previous results from the psychophysical study. Our results highlight the potential use of smartphone apps in capturing robust large-scale auditory behavioral data from normal healthy volunteers, which can also be extended to study auditory deficits in clinical populations with hearing impairments and central auditory disorders. PMID:27096165

  19. Large-Scale Analysis of Auditory Segregation Behavior Crowdsourced via a Smartphone App

    Science.gov (United States)

    Kumar, Sukhbinder; Griffiths, Timothy D.

    2016-01-01

    The human auditory system is adept at detecting sound sources of interest from a complex mixture of several other simultaneous sounds. The ability to selectively attend to the speech of one speaker whilst ignoring other speakers and background noise is of vital biological significance—the capacity to make sense of complex ‘auditory scenes’ is significantly impaired in aging populations as well as those with hearing loss. We investigated this problem by designing a synthetic signal, termed the ‘stochastic figure-ground’ stimulus that captures essential aspects of complex sounds in the natural environment. Previously, we showed that under controlled laboratory conditions, young listeners sampled from the university subject pool (n = 10) performed very well in detecting targets embedded in the stochastic figure-ground signal. Here, we presented a modified version of this cocktail party paradigm as a ‘game’ featured in a smartphone app (The Great Brain Experiment) and obtained data from a large population with diverse demographical patterns (n = 5148). Despite differences in paradigms and experimental settings, the observed target-detection performance by users of the app was robust and consistent with our previous results from the psychophysical study. Our results highlight the potential use of smartphone apps in capturing robust large-scale auditory behavioral data from normal healthy volunteers, which can also be extended to study auditory deficits in clinical populations with hearing impairments and central auditory disorders. PMID:27096165

  20. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava

    OpenAIRE

    Eric Röttinger; DuBuc, Timothy Q.; Aldine R. Amiel; Martindale, Mark Q.

    2015-01-01

    ABSTRACT Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized...

  1. Def6 Is Required for Convergent Extension Movements during Zebrafish Gastrulation Downstream of Wnt5b Signaling

    OpenAIRE

    Goudevenou, Katerina; Martin, Paul; Yeh, Yu-Jung; Jones, Peter; Sablitzky, Fred

    2011-01-01

    During gastrulation, convergent extension (CE) cell movements are regulated through the non-canonical Wnt signaling pathway. Wnt signaling results in downstream activation of Rho GTPases that in turn regulate actin cytoskeleton rearrangements essential for co-ordinated CE cell movement. Rho GTPases are bi-molecular switches that are inactive in their GDP-bound stage but can be activated to bind GTP through guanine nucleotide exchange factors (GEFs). Here we show that def6, a novel GEF, regula...

  2. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    OpenAIRE

    Ashton, Gabrielle H.; Morton, Jennifer P; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan

    2010-01-01

    The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein withi...

  3. Developmental stress impairs performance on an association task in male and female songbirds, but impairs auditory learning in females only.

    Science.gov (United States)

    Farrell, Tara M; Morgan, Amanda; MacDougall-Shackleton, Scott A

    2016-01-01

    In songbirds, early-life environments critically shape song development. Many studies have demonstrated that developmental stress impairs song learning and the development of song-control regions of the brain in males. However, song has evolved through signaller-receiver networks and the effect stress has on the ability to receive auditory signals is equally important, especially for females who use song as an indicator of mate quality. Female song preferences have been the metric used to evaluate how developmental stress affects auditory learning, but preferences are shaped by many non-cognitive factors and preclude the evaluation of auditory learning abilities in males. To determine whether developmental stress specifically affects auditory learning in both sexes, we subjected juvenile European starlings, Sturnus vulgaris, to either an ad libitum or an unpredictable food supply treatment from 35 to 115 days of age. In adulthood, we assessed learning of both auditory and visual discrimination tasks. Females reared in the experimental group were slower than females in the control group to acquire a relative frequency auditory task, and slower than their male counterparts to acquire an absolute frequency auditory task. There was no difference in auditory performance between treatment groups for males. However, on the colour association task, birds from the experimental group committed more errors per trial than control birds. There was no correlation in performance across the cognitive tasks. Developmental stress did not affect all cognitive processes equally across the sexes. Our results suggest that the male auditory system may be more robust to developmental stress than that of females. PMID:26238792

  4. Measuring the performance of visual to auditory information conversion.

    Directory of Open Access Journals (Sweden)

    Shern Shiou Tan

    Full Text Available BACKGROUND: Visual to auditory conversion systems have been in existence for several decades. Besides being among the front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy customizability, and universality. However, every system developed so far has its own set of strengths and weaknesses. In order to improve these systems further, we propose an automated and quantitative method to measure the performance of such systems. With these quantitative measurements, it is possible to gauge the relative strengths and weaknesses of different systems and rank the systems accordingly. METHODOLOGY: Performance is measured by both the interpretability and also the information preservation of visual to auditory conversions. Interpretability is measured by computing the correlation of inter image distance (IID and inter sound distance (ISD whereas the information preservation is computed by applying Information Theory to measure the entropy of both visual and corresponding auditory signals. These measurements provide a basis and some insights on how the systems work. CONCLUSIONS: With an automated interpretability measure as a standard, more image sonification systems can be developed, compared, and then improved. Even though the measure does not test systems as thoroughly as carefully designed psychological experiments, a quantitative measurement like the one proposed here can compare systems to a certain degree without incurring much cost. Underlying this research is the hope that a major breakthrough in image sonification systems will allow blind users to cost effectively regain enough visual functions to allow them to lead secure and productive lives.

  5. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling.

    Science.gov (United States)

    Aznar, Nicolas; Midde, Krishna K; Dunkel, Ying; Lopez-Sanchez, Inmaculada; Pavlova, Yelena; Marivin, Arthur; Barbazán, Jorge; Murray, Fiona; Nitsche, Ulrich; Janssen, Klaus-Peter; Willert, Karl; Goel, Ajay; Abal, Miguel; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2015-01-01

    Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis. PMID:26126266

  6. Subthreshold outward currents enhance temporal integration in auditory neurons.

    Science.gov (United States)

    Svirskis, Gytis; Dodla, Ramana; Rinzel, John

    2003-11-01

    Many auditory neurons possess low-threshold potassium currents ( I(KLT)) that enhance their responsiveness to rapid and coincident inputs. We present recordings from gerbil medial superior olivary (MSO) neurons in vitro and modeling results that illustrate how I(KLT) improves the detection of brief signals, of weak signals in noise, and of the coincidence of signals (as needed for sound localization). We quantify the enhancing effect of I(KLT) on temporal processing with several measures: signal-to-noise ratio (SNR), reverse correlation or spike-triggered averaging of input currents, and interaural time difference (ITD) tuning curves. To characterize how I(KLT), which activates below spike threshold, influences a neuron's voltage rise toward threshold, i.e., how it filters the inputs, we focus first on the response to weak and noisy signals. Cells and models were stimulated with a computer-generated steady barrage of random inputs, mimicking weak synaptic conductance transients (the "noise"), together with a larger but still subthreshold postsynaptic conductance, EPSG (the "signal"). Reduction of I(KLT) decreased the SNR, mainly due to an increase in spontaneous firing (more "false positive"). The spike-triggered reverse correlation indicated that I(KLT) shortened the integration time for spike generation. I(KLT) also heightened the model's timing selectivity for coincidence detection of simulated binaural inputs. Further, ITD tuning is shifted in favor of a slope code rather than a place code by precise and rapid inhibition onto MSO cells (Brand et al. 2002). In several ways, low-threshold outward currents are seen to shape integration of weak and strong signals in auditory neurons. PMID:14669013

  7. Dynamic Vibrotactile Signals for Forward Collision Avoidance Warning Systems

    OpenAIRE

    Meng, Fanxing; Gray, Rob; Ho, Cristy.; Ahtamad, Mujthaba; Spence, Charles

    2015-01-01

    Objective: Four experiments were conducted in order to assess the effectiveness of dynamic vibrotactile collision-warning signals in potentially enhancing safe driving. Background: Auditory neuroscience research has demonstrated that auditory signals that move toward a person are more salient than those that move away. If this looming effect were found to extend to the tactile modality, then it could be utilized in the context of in-car warning signal design. Method: The effectiveness of vari...

  8. Tactile feedback improves auditory spatial localization.

    Science.gov (United States)

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality. PMID:25368587

  9. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  10. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  11. Auditory Imagery Shapes Movement Timing and Kinematics: Evidence from a Musical Task

    Science.gov (United States)

    Keller, Peter E.; Dalla Bella, Simone; Koch, Iring

    2010-01-01

    The role of anticipatory auditory imagery in music-like sequential action was investigated by examining timing accuracy and kinematics using a motion capture system. Musicians responded to metronomic pacing signals by producing three unpaced taps on three vertically aligned keys at the given tempo. Taps triggered tones in two out of three blocked…

  12. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava

    Directory of Open Access Journals (Sweden)

    Eric Röttinger

    2015-07-01

    Full Text Available Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.

  13. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation. PMID:21413843

  14. The caenorhabditis elegans CDT-2 ubiquitin ligase is required for attenuation of EGFR signalling in vulva precursor cells

    Directory of Open Access Journals (Sweden)

    Ahringer Julie

    2010-10-01

    Full Text Available Abstract Background Attenuation of the EGFR (Epidermal Growth Factor Receptor signalling cascade is crucial to control cell fate during development. A candidate-based RNAi approach in C. elegans identified CDT-2 as an attenuator of LET-23 (EGFR signalling. Human CDT2 is a component of the conserved CDT2/CUL4/DDB1 ubiquitin ligase complex that plays a critical role in DNA replication and G2/M checkpoint. Within this complex, CDT2 is responsible for substrate recognition. This ubiquitin ligase complex has been shown in various organisms, including C. elegans, to target the replication-licensing factor CDT1, and the CDK inhibitor p21. However, no previous link to EGFR signalling has been identified. Results We have characterised CDT-2's role during vulva development and found that it is a novel attenuator of LET-23 signalling. CDT-2 acts redundantly with negative modulators of LET-23 signalling and CDT-2 or CUL-4 downregulation causes persistent expression of the egl-17::cfp transgene, a marker of LET-23 signalling during vulva development. In addition, we show that CDT-2 physically interacts with SEM-5 (GRB2, a known negative modulator of LET-23 signalling that directly binds LET-23, and provide genetic evidence consistent with CDT-2 functioning at or downstream of LET-23. Interestingly, both SEM-5 and CDT-2 were identified independently in a screen for genes involved in receptor-mediated endocytosis in oocytes, suggesting that attenuation of LET-23 by CDT-2 might be through regulation of endocytosis. Conclusions In this study, we have shown that CDT-2 and CUL-4, members of the CUL-4/DDB-1/CDT-2 E3 ubiquitin ligase complex attenuate LET-23 signalling in vulval precursor cells. In future, it will be interesting to investigate the potential link to endocytosis and to determine whether other signalling pathways dependent on endocytosis, e.g. LIN-12 (Notch could be regulated by this ubiquitin ligase complex. This work has uncovered a novel function

  15. MRI of unusual lesions in the internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Krainik, A.; Cyna-Gorse, F.; Vilgrain, V.; Denys, A.; Menu, Y. [Dept. of Radiology, Hopital Beaujon, Clichy (France); Bouccara, D.; Sterkers, O. [Dept. of Otorhinolaryngology, Hopital Beaujon, Clichy (France); Cazals-Hatem, D. [Dept. of Pathology, Hopital Beaujon, Clichy (France); Rey, A. [Dept. of Neurosurgery, Hopital Beaujon, Clichy (France)

    2001-01-01

    We report the MRI findings of six unusual lesions of the internal auditory canal: three haemangiomas, one lipoma, one metastasis and one traumatic neuroma. We compare the findings to those of 20 intracanalicular schwannomas. We noted the site and size of the tumour, its signal intensity, borders and the homogeneity of enhancement were studied on T1-weighted images before and after intravenous contrast medium and T2-weighted images. Most schwannomas were homogeneous lesions, isointense on T1- and T2-weighted images, and strongly enhancing. Spontaneous high signal on T1-weighted images, heterogeneous contrast enhancement and extranodular enhancement were helpful for recognising lesions other then schwannomas; site, size and signal on T2-weighted images were not. All the haemangiomas had a specific pattern of contrast enhancement, with an anterior core intensely enhancing portion and a posterior portion which enhanced moderately or not at all. (orig.)

  16. Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex.

    Science.gov (United States)

    Shepard, Kathryn N; Liles, L Cameron; Weinshenker, David; Liu, Robert C

    2015-02-11

    Critical periods are developmental windows during which the stimuli an animal encounters can reshape response properties in the affected system to a profound degree. Despite this window's importance, the neural mechanisms that regulate it are not completely understood. Pioneering studies in visual cortex initially indicated that norepinephrine (NE) permits ocular dominance column plasticity during the critical period, but later research has suggested otherwise. More recent work implicating NE in experience-dependent plasticity in the adult auditory cortex led us to re-examine the role of NE in critical period plasticity. Here, we exposed dopamine β-hydroxylase knock-out (Dbh(-/-)) mice, which lack NE completely from birth, to a biased acoustic environment during the auditory cortical critical period. This manipulation led to a redistribution of best frequencies (BFs) across auditory cortex in our control mice, consistent with prior work. By contrast, Dbh(-/-) mice failed to exhibit the expected redistribution of BFs, even though NE-deficient and NE-competent mice showed comparable auditory cortical organization when reared in a quiet colony environment. These data suggest that while intrinsic tonotopic patterning of auditory cortical circuitry occurs independently from NE, NE is required for critical period plasticity in auditory cortex. PMID:25673838

  17. The Experience of Patients with Schizophrenia Treated with Repetitive Transcranial Magnetic Stimulation for Auditory Hallucinations

    Directory of Open Access Journals (Sweden)

    Priya Subramanian

    2013-01-01

    Full Text Available Introduction. Auditory hallucinations are a common symptom experience of individuals with psychotic disorders and are often experienced as persistent, distressing, and disruptive. This case series examined the lived experiences of four individuals treated (successfully or unsuccessfully with low-frequency (1 Hz rTMS for auditory hallucinations. Methods. A phenomenological approach was used and modified to involve some predetermined data structuring to accommodate for expected cognitive impairments of participants and the impact of rTMS on auditory hallucinations. Data on thoughts and feelings in relation to the helpful, unhelpful, and other effects of rTMS on auditory hallucinations, on well-being, functioning, and the immediate environment were collected using semistructured interviews. Results. All four participants noted some improvements in their well-being following treatment and none reported a worsening of their symptoms. Only two participants noted an improvement in the auditory hallucinations and only one of them reported an improvement that was sustained after treatment completion. Conclusion. We suggest that there are useful findings in the study worth further exploration, specifically in relation to the role of an individual’s acceptance and ownership of the illness process in relation to this biomedical intervention. More mixed methods research is required to examine rTMS for auditory hallucinations.

  18. The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca(2+) as a secondary cytosolic messenger.

    Science.gov (United States)

    Chou, Hsuan; Zhu, Yingfang; Ma, Yi; Berkowitz, Gerald A

    2016-02-01

    CLAVATA1 (CLV1) is a receptor protein expressed in the shoot apical meristem (SAM) that translates perception of a non-cell-autonomous CLAVATA3 (CLV3) peptide signal into altered stem cell fate. CLV3 reduces expression of WUSCHEL (WUS) and FANTASTIC FOUR 2 (FAF2) in the SAM. Expression of WUS and FAF2 leads to maintenance of undifferentiated stem cells in the SAM. CLV3 binding to CLV1 inhibits expression of these genes and controls stem cell fate in the SAM through an unidentified signaling pathway. Cytosolic Ca(2+) elevations, cyclic nucleotide (cGMP)-activated Ca(2+) channels, and cGMP have been linked to signaling downstream of receptors similar to CLV1. Hence, we hypothesized that cytosolic Ca(2+) elevation mediates the CLV3 ligand/CLV1 receptor signaling that controls meristem stem cell fate. CLV3 application to Arabidopsis seedlings results in elevation of cytosolic Ca(2+) and cGMP. CLV3 control of WUS was prevented in a genotype lacking a functional cGMP-activated Ca(2+) channel. In wild-type plants, CLV3 inhibition of WUS and FAF2 expression was impaired by treatment with either a Ca(2+) channel blocker or a guanylyl cyclase inhibitor. When CLV3-dependent repression of WUS is blocked, altered control of stem cell fate leads to an increase in SAM size; we observed a larger SAM size in seedlings treated with the Ca(2+) channel blocker. These results suggest that the CLV3 ligand/CLV1 receptor system initiates a signaling cascade that elevates cytosolic Ca(2+) , and that this cytosolic secondary messenger is involved in the signal transduction cascade linking CLV3/CLV1 to control of gene expression and stem cell fate in the SAM. PMID:26756833

  19. Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning.

    Science.gov (United States)

    Matsushita, Reiko; Andoh, Jamila; Zatorre, Robert J

    2015-01-01

    Transcranial direct current stimulation (tDCS) is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioral outcomes, possibly due to differences in stimulation parameters, task-induced brain activity, or task measurements used in each study. Further research, using well-validated tasks is therefore required for clarification of behavioral effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for 3 days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold) over the 3 days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the 3 days. The results support a causal role for the right auditory cortex in pitch discrimination learning. PMID:26041982

  20. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  1. A Comparison of Three Auditory Discrimination-Perception Tests

    Science.gov (United States)

    Koenke, Karl

    1978-01-01

    Comparisons were made between scores of 52 third graders on three measures of auditory discrimination: Wepman's Auditory Discrimination Test, the Goldman-Fristoe Woodcock (GFW) Test of Auditory Discrimination, and the Kimmell-Wahl Screening Test of Auditory Perception (STAP). (CL)

  2. Auditory Efferent System Modulates Mosquito Hearing.

    Science.gov (United States)

    Andrés, Marta; Seifert, Marvin; Spalthoff, Christian; Warren, Ben; Weiss, Lukas; Giraldo, Diego; Winkler, Margret; Pauls, Stephanie; Göpfert, Martin C

    2016-08-01

    The performance of vertebrate ears is controlled by auditory efferents that originate in the brain and innervate the ear, synapsing onto hair cell somata and auditory afferent fibers [1-3]. Efferent activity can provide protection from noise and facilitate the detection and discrimination of sound by modulating mechanical amplification by hair cells and transmitter release as well as auditory afferent action potential firing [1-3]. Insect auditory organs are thought to lack efferent control [4-7], but when we inspected mosquito ears, we obtained evidence for its existence. Antibodies against synaptic proteins recognized rows of bouton-like puncta running along the dendrites and axons of mosquito auditory sensory neurons. Electron microscopy identified synaptic and non-synaptic sites of vesicle release, and some of the innervating fibers co-labeled with somata in the CNS. Octopamine, GABA, and serotonin were identified as efferent neurotransmitters or neuromodulators that affect auditory frequency tuning, mechanical amplification, and sound-evoked potentials. Mosquito brains thus modulate mosquito ears, extending the use of auditory efferent systems from vertebrates to invertebrates and adding new levels of complexity to mosquito sound detection and communication. PMID:27476597

  3. The Neurophysiology of Auditory Hallucinations – A Historic and Contemporary Review

    Directory of Open Access Journals (Sweden)

    Remko evan Lutterveld

    2011-05-01

    Full Text Available Electroencephalography (EEG and magnetoencephalography (MEG are two techniques that distinguish themselves from other neuroimaging methodologies through their ability to directly measure brain-related activity and their high temporal resolution. A large body of research has applied these techniques to study auditory hallucinations. Across a variety of approaches, the left superior temporal cortex is consistently reported to be involved in this symptom. Moreover, there is increasing evidence that a failure in corollary discharge, i.e. a neural signal originating in frontal speech areas that indicates to sensory areas that forthcoming thought is self-generated, may underlie the experience of auditory hallucinations

  4. A loudspeaker-based room auralization system for auditory perception research

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Favrot, Sylvain Emmanuel

    2009-01-01

    system provides a flexible research platform for conducting auditory experiments with normal-hearing, hearing-impaired, and aided hearing-impaired listeners in a fully controlled and realistic environment. This includes measures of basic auditory function (e.g., signal detection, distance perception) and...... measures of speech intelligibility. A battery of objective tests (e.g., reverberation time, clarity, interaural correlation coefficient) and subjective tests (e.g., speech reception thresholds) is presented that demonstrates the applicability of the LoRA system....

  5. Brain Networks of Novelty-Driven Involuntary and Cued Voluntary Auditory Attention Shifting

    OpenAIRE

    Tengshe, Chinmayi; Huang, Samantha; Belliveau, John William; Ahveninen, Jyrki Pekka

    2012-01-01

    In everyday life, we need a capacity to flexibly shift attention between alternative sound sources. However, relatively little work has been done to elucidate the mechanisms of attention shifting in the auditory domain. Here, we used a mixed event-related/sparse-sampling fMRI approach to investigate this essential cognitive function. In each 10-sec trial, subjects were instructed to wait for an auditory “cue” signaling the location where a subsequent “target” sound was likely to be presented....

  6. Auditory Neural Prostheses – A Window to the Future

    Directory of Open Access Journals (Sweden)

    Mohan Kameshwaran

    2015-06-01

    Full Text Available Hearing loss is one of the commonest congenital anomalies to affect children world-over. The incidence of congenital hearing loss is more pronounced in developing countries like the Indian sub-continent, especially with the problems of consanguinity. Hearing loss is a double tragedy, as it leads to not only deafness but also language deprivation. However, hearing loss is the only truly remediable handicap, due to remarkable advances in biomedical engineering and surgical techniques. Auditory neural prostheses help to augment or restore hearing by integration of an external circuitry with the peripheral hearing apparatus and the central circuitry of the brain. A cochlear implant (CI is a surgically implantable device that helps restore hearing in patients with severe-profound hearing loss, unresponsive to amplification by conventional hearing aids. CIs are electronic devices designed to detect mechanical sound energy and convert it into electrical signals that can be delivered to the coch­lear nerve, bypassing the damaged hair cells of the coch­lea. The only true prerequisite is an intact auditory nerve. The emphasis is on implantation as early as possible to maximize speech understanding and perception. Bilateral CI has significant benefits which include improved speech perception in noisy environments and improved sound localization. Presently, the indications for CI have widened and these expanded indications for implantation are related to age, additional handicaps, residual hearing, and special etiologies of deafness. Combined electric and acoustic stimulation (EAS / hybrid device is designed for individuals with binaural low-frequency hearing and severe-to-profound high-frequency hearing loss. Auditory brainstem implantation (ABI is a safe and effective means of hearing rehabilitation in patients with retrocochlear disorders, such as neurofibromatosis type 2 (NF2 or congenital cochlear nerve aplasia, wherein the cochlear nerve is damaged

  7. Nonlinear cochlear signal processing

    OpenAIRE

    Allen, Jont

    2001-01-01

    This chapter describes the mechanical function of the cochlea, or inner ear, the organ that converts signals from acoustical to neural. Many cochlear hearing disorders are still not well understood. If systematic progress is to be made in improved diagnostics and treatment of these disorders, a clear understanding of basic principles is essential. Models of the cochlea are useful because they succinctly describe auditory perception principles. Several topics will...

  8. Asymmetric transfer of auditory perceptual learning

    Directory of Open Access Journals (Sweden)

    SygalAmitay

    2012-11-01

    Full Text Available Perceptual skills can improve dramatically even with minimal practice. A major and practical benefit of learning, however, is in transferring the improvement on the trained task to untrained tasks or stimuli, yet the mechanisms underlying this process are still poorly understood. Reduction of internal noise has been proposed as a mechanism of perceptual learning, and while we have evidence that frequency discrimination (FD learning is due to a reduction of internal noise, the source of that noise was not determined. In this study, we examined whether reducing the noise associated with neural phase locking to tones can explain the observed improvement in behavioural thresholds. We compared FD training between two tone durations (15 and 100 ms that straddled the temporal integration window of auditory nerve fibers upon which computational modeling of phase locking noise was based. Training on short tones resulted in improved FD on probe tests of both the long and short tones. Training on long tones resulted in improvement only on the long tones. Simulations of FD learning, based on the computational model and on signal detection theory, were compared with the behavioral FD data. We found that improved fidelity of phase locking accurately predicted transfer of learning from short to long tones, but also predicted transfer from long to short tones. The observed lack of transfer from long to short tones suggests the involvement of a second mechanism. Training may have increased the temporal integration window which could not transfer because integration time for the short tone is limited by its duration. Current learning models assume complex relationships between neural populations that represent the trained stimuli. In contrast, we propose that training-induced enhancement of the signal-to-noise ratio offers a parsimonious explanation of learning and transfer that easily accounts for asymmetric transfer of learning.

  9. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    BethanyPlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  10. Requirement of Dopamine Signaling in the Amygdala and Striatum for Learning and Maintenance of a Conditioned Avoidance Response

    Science.gov (United States)

    Darvas, Martin; Fadok, Jonathan P.; Palmiter, Richard D.

    2011-01-01

    Two-way active avoidance (2WAA) involves learning Pavlovian (association of a sound cue with a foot shock) and instrumental (shock avoidance) contingencies. To identify regions where dopamine (DA) is involved in mediating 2WAA, we restored DA signaling in specific brain areas of dopamine-deficient (DD) mice by local reactivation of conditionally…

  11. Mechanical stimuli activation of calpain is required for myoblast differentiation and occurs via an ERK/MAP kinase signaling pathway

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    fusion, cell membrane and cytoskeleton component reorganization due to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signals, the MAPK pathway and calpain expression and activation is not known. Using a...

  12. Tenascin-C is required for normal Wnt/β-catenin signaling in the whisker follicle stem cell niche.

    Science.gov (United States)

    Hendaoui, Ismaïl; Tucker, Richard P; Zingg, Dominik; Bichet, Sandrine; Schittny, Johannes; Chiquet-Ehrismann, Ruth

    2014-11-01

    Whisker follicles have multiple stem cell niches, including epidermal stem cells in the bulge as well as neural crest-derived stem cells and mast cell progenitors in the trabecular region. The neural crest-derived stem cells are a pool of melanocyte precursors. Previously, we found that the extracellular matrix glycoproteins tenascin-C and tenascin-W are expressed near CD34-positive cells in the trabecular stem cell niche of mouse whisker follicles. Here, we analyzed whiskers from tenascin-C knockout mice and found intrafollicular adipocytes and supernumerary mast cells. As Wnt/β-catenin signaling promotes melanogenesis and suppresses the differentiation of adipocytes and mast cells, we analyzed β-catenin subcellular localization in the trabecular niche. We found cytoplasmic and nuclear β-catenin in wild-type mice reflecting active Wnt/β-catenin signaling, whereas β-catenin in tenascin-C knockout mice was mostly cell membrane-associated and thus transcriptionally inactive. Furthermore, cells expressing the Wnt/β-catenin target gene cyclin D1 were enriched in the CD34-positive niches of wild-type compared to tenascin-C knockout mice. We then tested the effects of tenascins on this signaling pathway. We found that tenascin-C and tenascin-W can be co-precipitated with Wnt3a. In vitro, substrate bound tenascins promoted β-catenin-mediated transcription in the presence of Wnt3a, presumably due to the sequestration and concentration of Wnt3a near the cell surface. We conclude that the presence of tenascin-C in whiskers assures active Wnt/β-catenin signaling in the niche thereby maintaining the stem cell pool and suppressing aberrant differentiation, while in the knockout mice with reduced Wnt/β-catenin signaling, stem cells from the trabecular niche can differentiate into ectopic adipocytes and mast cells. PMID:25196097

  13. Functional Neurochemistry of the Auditory System

    Directory of Open Access Journals (Sweden)

    Nourollah Agha Ebrahimi

    1993-03-01

    Full Text Available Functional Neurochemistry is one of the fields of studies in the auditory system which has had an outstanding development in the recent years. Many of the findings in the mentioned field had led not only the basic auditory researches but also the clinicians to new points of view in audiology.Here, we are aimed at discussing the latest investigations in the Functional Neurochemistry of the auditory system and have focused this review mainly on the researches which will arise flashes of hope for future clinical studies

  14. Auditory Neuropathy/Dyssynchrony in Biotinidase Deficiency

    Science.gov (United States)

    Yaghini, Omid

    2016-01-01

    Biotinidase deficiency is a disorder inherited autosomal recessively showing evidence of hearing loss and optic atrophy in addition to seizures, hypotonia, and ataxia. In the present study, a 2-year-old boy with Biotinidase deficiency is presented in which clinical symptoms have been reported with auditory neuropathy/auditory dyssynchrony (AN/AD). In this case, transient-evoked otoacoustic emissions showed bilaterally normal responses representing normal function of outer hair cells. In contrast, acoustic reflex test showed absent reflexes bilaterally, and visual reinforcement audiometry and auditory brainstem responses indicated severe to profound hearing loss in both ears. These results suggest AN/AD in patients with Biotinidase deficiency. PMID:27144235

  15. Functional Neurochemistry of the Auditory System

    OpenAIRE

    Nourollah Agha Ebrahimi

    1993-01-01

    Functional Neurochemistry is one of the fields of studies in the auditory system which has had an outstanding development in the recent years. Many of the findings in the mentioned field had led not only the basic auditory researches but also the clinicians to new points of view in audiology.Here, we are aimed at discussing the latest investigations in the Functional Neurochemistry of the auditory system and have focused this review mainly on the researches which will arise flashes of hope f...

  16. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  17. Agonist-Driven Development of CD4+CD25+Foxp3+Regulatory T Cells Requires a Second Signal Mediated by Stat6

    DEFF Research Database (Denmark)

    Sanchez-Guajardo, Vanesa Maria; Tanshot, C.; O'Malley, J.T.;

    2007-01-01

    The factors that induce Foxp3 expression and regulatory T (Treg) cell development remain unknown. In this study, we investigated the role of STAT4 and STAT6 in agonist-driven generation of Ag-specific Foxp3-expressing Treg cells. Our findings indicate that fully efficient induction of Foxp3...... expression and development of Ag-specific Treg cells requires the synergistic action of two signals: a TCR-mediated signal and a second signal mediated by STAT6. Indeed, by comparing the development of wild-type and STAT4- and STAT6-deficient hemagglutinin-specific T cells in the presence of hemagglutinin Ag...... a role for the STAT6 pathway in Treg cell development and maintenance....

  18. Comparing timbre estimation using auditory models with and without hearing loss

    OpenAIRE

    Friedrichs, Klaus; Weihs, Claus

    2012-01-01

    We propose a concept for evaluating signal transformations for music signals with respect to an individual hearing deficit by using an auditory model. This deficit is simulated in the model by changing specific model parameters. Our idea is extracting the musical attributes rhythm, pitch, loudness and timbre and comparing the modified model output to the original one. While rhythm, pitch, and loudness estimation are studied in previous works the focus in this paper concentrates...

  19. Modulation of auditory cortex response to pitch variation following training with microtonal melodies.

    Science.gov (United States)

    Zatorre, Robert J; Delhommeau, Karine; Zarate, Jean Mary

    2012-01-01

    We tested changes in cortical functional response to auditory patterns in a configural learning paradigm. We trained 10 human listeners to discriminate micromelodies (consisting of smaller pitch intervals than normally used in Western music) and measured covariation in blood oxygenation signal to increasing pitch interval size in order to dissociate global changes in activity from those specifically associated with the stimulus feature that was trained. A psychophysical staircase procedure with feedback was used for training over a 2-week period. Behavioral tests of discrimination ability performed before and after training showed significant learning on the trained stimuli, and generalization to other frequencies and tasks; no learning occurred in an untrained control group. Before training the functional MRI data showed the expected systematic increase in activity in auditory cortices as a function of increasing micromelody pitch interval size. This function became shallower after training, with the maximal change observed in the right posterior auditory cortex. Global decreases in activity in auditory regions, along with global increases in frontal cortices also occurred after training. Individual variation in learning rate was related to the hemodynamic slope to pitch interval size, such that those who had a higher sensitivity to pitch interval variation prior to learning achieved the fastest learning. We conclude that configural auditory learning entails modulation in the response of auditory cortex to the trained stimulus feature. Reduction in blood oxygenation response to increasing pitch interval size suggests that fewer computational resources, and hence lower neural recruitment, is associated with learning, in accord with models of auditory cortex function, and with data from other modalities. PMID:23227019

  20. Modulation of auditory cortex response to pitch variation following training with microtonal melodies

    Directory of Open Access Journals (Sweden)

    Robert J Zatorre

    2012-12-01

    Full Text Available We tested changes in cortical functional response to auditory configural learning by training ten human listeners to discriminate micromelodies (consisting of smaller pitch intervals than normally used in Western music. We measured covariation in blood oxygenation signal to increasing pitch-interval size in order to dissociate global changes in activity from those specifically associated with the stimulus feature of interest. A psychophysical staircase procedure with feedback was used for training over a two-week period. Behavioral tests of discrimination ability performed before and after training showed significant learning on the trained stimuli, and generalization to other frequencies and tasks; no learning occurred in an untrained control group. Before training the functional MRI data showed the expected systematic increase in activity in auditory cortices as a function of increasing micromelody pitch-interval size. This function became shallower after training, with the maximal change observed in the right posterior auditory cortex. Global decreases in activity in auditory regions, along with global increases in frontal cortices also occurred after training. Individual variation in learning rate was related to the hemodynamic slope to pitch-interval size, such that those who had a higher sensitivity to pitch-interval variation prior to learning achieved the fastest learning. We conclude that configural auditory learning entails modulation in the response of auditory cortex specifically to the trained stimulus feature. Reduction in blood oxygenation response to increasing pitch-interval size suggests that fewer computational resources, and hence lower neural recruitment, is associated with learning, in accord with models of auditory cortex function, and with data from other modalities.

  1. Enhanced audio-visual interactions in the auditory cortex of elderly cochlear-implant users.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Schulte, Svenja; Hauthal, Nadine; Kantzke, Christoph; Rach, Stefan; Büchner, Andreas; Dengler, Reinhard; Sandmann, Pascale

    2015-10-01

    Auditory deprivation and the restoration of hearing via a cochlear implant (CI) can induce functional plasticity in auditory cortical areas. How these plastic changes affect the ability to integrate combined auditory (A) and visual (V) information is not yet well understood. In the present study, we used electroencephalography (EEG) to examine whether age, temporary deafness and altered sensory experience with a CI can affect audio-visual (AV) interactions in post-lingually deafened CI users. Young and elderly CI users and age-matched NH listeners performed a speeded response task on basic auditory, visual and audio-visual stimuli. Regarding the behavioral results, a redundant signals effect, that is, faster response times to cross-modal (AV) than to both of the two modality-specific stimuli (A, V), was revealed for all groups of participants. Moreover, in all four groups, we found evidence for audio-visual integration. Regarding event-related responses (ERPs), we observed a more pronounced visual modulation of the cortical auditory response at N1 latency (approximately 100 ms after stimulus onset) in the elderly CI users when compared with young CI users and elderly NH listeners. Thus, elderly CI users showed enhanced audio-visual binding which may be a consequence of compensatory strategies developed due to temporary deafness and/or degraded sensory input after implantation. These results indicate that the combination of aging, sensory deprivation and CI facilitates the coupling between the auditory and the visual modality. We suggest that this enhancement in multisensory interactions could be used to optimize auditory rehabilitation, especially in elderly CI users, by the application of strong audio-visually based rehabilitation strategies after implant switch-on. PMID:26302946

  2. Speaking Two Languages Enhances an Auditory but Not a Visual Neural Marker of Cognitive Inhibition

    Directory of Open Access Journals (Sweden)

    Mercedes Fernandez

    2014-09-01

    Full Text Available The purpose of the present study was to replicate and extend our original findings of enhanced neural inhibitory control in bilinguals. We compared English monolinguals to Spanish/English bilinguals on a non-linguistic, auditory Go/NoGo task while recording event-related brain potentials. New to this study was the visual Go/NoGo task, which we included to investigate whether enhanced neural inhibition in bilinguals extends from the auditory to the visual modality. Results confirmed our original findings and revealed greater inhibition in bilinguals compared to monolinguals. As predicted, compared to monolinguals, bilinguals showed increased N2 amplitude during the auditory NoGo trials, which required inhibitory control, but no differences during the Go trials, which required a behavioral response and no inhibition. Interestingly, during the visual Go/NoGo task, event related brain potentials did not distinguish the two groups, and behavioral responses were similar between the groups regardless of task modality. Thus, only auditory trials that required inhibitory control revealed between-group differences indicative of greater neural inhibition in bilinguals. These results show that experience-dependent neural changes associated with bilingualism are specific to the auditory modality and that the N2 event-related brain potential is a sensitive marker of this plasticity.

  3. Hand proximity facilitates spatial discrimination of auditory tones

    Directory of Open Access Journals (Sweden)

    Philip eTseng

    2014-06-01

    Full Text Available The effect of hand proximity on vision and visual attention has been well documented. In this study we tested whether such effect(s would also be present in the auditory modality. With hands placed either near or away from the audio sources, participants performed an auditory-spatial discrimination (Exp 1: left or right side, pitch discrimination (Exp 2: high, med, or low tone, and spatial-plus-pitch (Exp 3: left or right; high, med, or low discrimination task. In Exp 1, when hands were away from the audio source, participants consistently responded faster with their right hand regardless of stimulus location. This right hand advantage, however, disappeared in the hands-near condition because of a significant improvement in left hand’s reaction time. No effect of hand proximity was found in Exp 2 or 3, where a choice reaction time task requiring pitch discrimination was used. Together, these results suggest that the effect of hand proximity is not exclusive to vision alone, but is also present in audition, though in a much weaker form. Most important, these findings provide evidence from auditory attention that supports the multimodal account originally raised by Reed et al. in 2006.

  4. AUDITORY CORTICAL PLASTICITY: DOES IT PROVIDE EVIDENCE FOR COGNITIVE PROCESSING IN THE AUDITORY CORTEX?

    OpenAIRE

    Irvine, Dexter R. F.

    2007-01-01

    The past 20 years have seen substantial changes in our view of the nature of the processing carried out in auditory cortex. Some processing of a cognitive nature, previously attributed to higher order “association” areas, is now considered to take place in auditory cortex itself. One argument adduced in support of this view is the evidence indicating a remarkable degree of plasticity in the auditory cortex of adult animals. Such plasticity has been demonstrated in a wide range of paradigms, i...

  5. Test of a motor theory of long-term auditory memory.

    Science.gov (United States)

    Schulze, Katrin; Vargha-Khadem, Faraneh; Mishkin, Mortimer

    2012-05-01

    Monkeys can easily form lasting central representations of visual and tactile stimuli, yet they seem unable to do the same with sounds. Humans, by contrast, are highly proficient in auditory long-term memory (LTM). These mnemonic differences within and between species raise the question of whether the human ability is supported in some way by speech and language, e.g., through subvocal reproduction of speech sounds and by covert verbal labeling of environmental stimuli. If so, the explanation could be that storing rapidly fluctuating acoustic signals requires assistance from the motor system, which is uniquely organized to chain-link rapid sequences. To test this hypothesis, we compared the ability of normal participants to recognize lists of stimuli that can be easily reproduced, labeled, or both (pseudowords, nonverbal sounds, and words, respectively) versus their ability to recognize a list of stimuli that can be reproduced or labeled only with great difficulty (reversed words, i.e., words played backward). Recognition scores after 5-min delays filled with articulatory-suppression tasks were relatively high (75-80% correct) for all sound types except reversed words; the latter yielded scores that were not far above chance (58% correct), even though these stimuli were discriminated nearly perfectly when presented as reversed-word pairs at short intrapair intervals. The combined results provide preliminary support for the hypothesis that participation of the oromotor system may be essential for laying down the memory of speech sounds and, indeed, that speech and auditory memory may be so critically dependent on each other that they had to coevolve. PMID:22511719

  6. Jumpstarting auditory learning in children with cochlear implants through music experiences.

    Science.gov (United States)

    Barton, Christine; Robbins, Amy McConkey

    2015-09-01

    Musical experiences are a valuable part of the lives of children with cochlear implants (CIs). In addition to the pleasure, relationships and emotional outlet provided by music, it serves to enhance or 'jumpstart' other auditory and cognitive skills that are critical for development and learning throughout the lifespan. Musicians have been shown to be 'better listeners' than non-musicians with regard to how they perceive and process sound. A heuristic model of music therapy is reviewed, including six modulating factors that may account for the auditory advantages demonstrated by those who participate in music therapy. The integral approach to music therapy is described along with the hybrid approach to pediatric language intervention. These approaches share the characteristics of placing high value on ecologically valid therapy experiences, i.e., engaging in 'real' music and 'real' communication. Music and language intervention techniques used by the authors are presented. It has been documented that children with CIs consistently have lower music perception scores than do their peers with normal hearing (NH). On the one hand, this finding matters a great deal because it provides parameters for setting reasonable expectations and highlights the work still required to improve signal processing with the devices so that they more accurately transmit music to CI listeners. On the other hand, the finding might not matter much if we assume that music, even in its less-than-optimal state, functions for CI children, as for NH children, as a developmental jumpstarter, a language-learning tool, a cognitive enricher, a motivator, and an attention enhancer. PMID:26561888

  7. Efficacy of the LiSN & Learn Auditory Training Software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-01-01

    Full Text Available Background: Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Materials and methods: Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise – Sentences Test (LISN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program – Earobics - for approximately 15 minutes per day for twelve weeks. Results: There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (p=0.03 to 0.0008, η2=0.75 to 0.95, n=5, but not for the Earobics group (p=0.5 to 0.7, η2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. Conclusions: LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  8. Efficacy of the LiSN & Learn auditory training software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-09-01

    Full Text Available Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise - Sentences test (LiSN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program - Earobics - for approximately 15 min per day for twelve weeks. There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (P=0.03 to 0.0008, η 2=0.75 to 0.95, n=5, but not for the Earobics group (P=0.5 to 0.7, η 2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  9. The Wellcome Prize Lecture. A map of auditory space in the mammalian brain: neural computation and development.

    Science.gov (United States)

    King, A J

    1993-09-01

    The experiments described in this review have demonstrated that the SC contains a two-dimensional map of auditory space, which is synthesized within the brain using a combination of monaural and binaural localization cues. There is also an adaptive fusion of auditory and visual space in this midbrain nucleus, providing for a common access to the motor pathways that control orientation behaviour. This necessitates a highly plastic relationship between the visual and auditory systems, both during postnatal development and in adult life. Because of the independent mobility of difference sense organs, gating mechanisms are incorporated into the auditory representation to provide up-to-date information about the spatial orientation of the eyes and ears. The SC therefore provides a valuable model system for studying a number of important issues in brain function, including the neural coding of sound location, the co-ordination of spatial information between different sensory systems, and the integration of sensory signals with motor outputs. PMID:8240794

  10. Auditory evoked fields elicited by spectral, temporal, and spectral-temporal changes in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    ChristoPantev

    2012-05-01

    Full Text Available Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral-temporal sound changes by means of magnetoencephalography (MEG. The auditory evoked responses elicited by the spectral-temporal change were very similar to those elicited by the spectral change, but those elicited by the temporal change were delayed by 30 – 50 ms and differed from the others in morphology. The results suggest that human brain responses corresponding to spectral sound changes precede those corresponding to temporal sound changes, even when the spectral and temporal changes occur simultaneously.

  11. Amplification in the auditory periphery: The effect of coupling tuning mechanisms

    Science.gov (United States)

    Montgomery, K. A.; Silber, M.; Solla, S. A.

    2007-05-01

    A mathematical model describing the coupling between two independent amplification mechanisms in auditory hair cells is proposed and analyzed. Hair cells are cells in the inner ear responsible for translating sound-induced mechanical stimuli into an electrical signal that can then be recorded by the auditory nerve. In nonmammals, two separate mechanisms have been postulated to contribute to the amplification and tuning properties of the hair cells. Models of each of these mechanisms have been shown to be poised near a Hopf bifurcation. Through a weakly nonlinear analysis that assumes weak periodic forcing, weak damping, and weak coupling, the physiologically based models of the two mechanisms are reduced to a system of two coupled amplitude equations describing the resonant response. The predictions that follow from an analysis of the reduced equations, as well as performance benefits due to the coupling of the two mechanisms, are discussed and compared with published experimental auditory nerve data.

  12. Vibration-induced auditory-cortex activation in a congenitally deaf adult.

    Science.gov (United States)

    Levänen, S; Jousmäki, V; Hari, R

    1998-07-16

    Considerable changes take place in the number of cerebral neurons, synapses and axons during development, mainly as a result of competition between different neural activities [1-4]. Studies using animals suggest that when input from one sensory modality is deprived early in development, the affected neural structures have the potential to mediate functions for the remaining modalities [5-8]. We now show that similar potential exists in the human auditory system: vibrotactile stimuli, applied on the palm and fingers of a congenitally deaf adult, activated his auditory cortices. The recorded magnetoencephalographic (MEG) signals also indicated that the auditory cortices were able to discriminate between the applied 180 Hz and 250 Hz vibration frequencies. Our findings suggest that human cortical areas, normally subserving hearing, may process vibrotactile information in the congenitally deaf. PMID:9705933

  13. A late requirement for Wnt and FGF signalling during activin-induced formation of foregut endoderm from mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Hansson, Mattias; Petersen, Dorthe Rønn; Peterslund, Janny M.L.;

    2009-01-01

    found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin......-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17(+) endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17(+) cells more effectively than activin-mediated induction...... requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro....

  14. Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland

    OpenAIRE

    Mallepell, Sonia; Krust, Andrée; Chambon, Pierre; Brisken, Cathrin

    2006-01-01

    Estradiol is a major regulator of postnatal mammary gland development and thought to exert its effects through estrogen receptor α (ERα) expressed in the mammary gland stroma and epithelium. Previous studies, however, were confounded by the use of an ERα mutant strain that retains some of the protein with transactivation activity. Here, we use an ERα−/− mouse strain in which no ERα transcript can be detected to analyze mammary gland development in the complete absence of ERα signaling. The ER...

  15. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    International Nuclear Information System (INIS)

    Highlights: ► Deep study the FGF signaling role during DE specification in the context of hESCs. ► DE differentiation from hESCs has an early dependence on FGF signaling. ► A serum-free DE protocol is developed based on the findings. ► The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  16. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Lina, E-mail: linasui@vub.ac.be [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Mfopou, Josue K. [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Geens, Mieke; Sermon, Karen [Department of Embryology and Genetics, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Bouwens, Luc [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Deep study the FGF signaling role during DE specification in the context of hESCs. Black-Right-Pointing-Pointer DE differentiation from hESCs has an early dependence on FGF signaling. Black-Right-Pointing-Pointer A serum-free DE protocol is developed based on the findings. Black-Right-Pointing-Pointer The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  17. Schizosaccharomyces pombe Git7p, a Member of the Saccharomyces cerevisiae Sgt1p Family, Is Required for Glucose and Cyclic AMP Signaling, Cell Wall Integrity, and Septation

    OpenAIRE

    Schadick, Kevin; Fourcade, H. Matthew; Boumenot, Peter; Seitz, Jeffrey J.; Morrell, Jennifer L.; Chang, Louise; Gould, Kathleen L.; Partridge, Janet F.; Allshire, Robin C.; Kitagawa, Katsumi; Hieter, Phil; Hoffman, Charles S.

    2002-01-01

    The Schizosaccharomyces pombe fbp1 gene, encoding fructose-1,6-bisphosphatase, is transcriptionally repressed by glucose. Mutations that confer constitutive fbp1 transcription identify git (glucose-insensitive transcription) genes that encode components of a cyclic AMP (cAMP) signaling pathway required for adenylate cyclase activation. Four of these genes encode the three subunits of a heterotrimeric G protein (gpa2, git5, and git11) and a G protein-coupled receptor (git3). Three additional g...

  18. A DNA Damage Response Screen Identifies RHINO: a 9-1-1 and TopBP1 interacting protein required for ATR signaling

    OpenAIRE

    Cotta-Ramusino, Cecilia; 3, E. Robert McDonald; Hurov, Kristen; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.

    2011-01-01

    The DNA damage response (DDR) is a protein kinase cascade that orchestrates DNA repair processes via transcriptional and post-translational mechanisms. Cell cycle arrest is a hallmark of the DDR. We performed a damage-induced cell cycle arrest screen and uncovered a critical role for Fanconi anemia (FA) and homologous recombination (HR) proteins in ATR signaling. HR was required to maintain prolonged cell cycle arrest and to prevent massive genomic instability. Over 100 high scoring DDR candi...

  19. NF-κB transcriptional activation by TNFα requires phospholipase C, extracellular signal-regulated kinase 2 and poly(ADP-ribose) polymerase-1

    OpenAIRE

    Vuong, Billy; Hogan-Cann, Adam D. J.; Alano, Conrad C.; Stevenson, Mackenzie; Chan, Wai Yee; Anderson, Christopher M.; Swanson, Raymond A.; Kauppinen, Tiina M

    2015-01-01

    Background The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is required for pro-inflammatory effects of TNFα. Our previous studies demonstrated that PARP-1 mediates TNFα-induced NF-κB activation in glia. Here, we evaluated the mechanisms by which TNFα activates PARP-1 and PARP-1 mediates NF-κB activation. Methods Primary cultures of mouse cortical astrocytes and microglia were treated with TNFα and suitable signaling pathway modulators (pharmacological and molecular). Outcome measure...

  20. 2-O Heparan Sulfate Sulfation by Hs2st Is Required for Erk/Mapk Signalling Activation at the Mid-Gestational Mouse Telencephalic Midline.

    Directory of Open Access Journals (Sweden)

    Wai Kit Chan

    Full Text Available Heparan sulfate (HS is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral

  1. Hearing Mechanisms and Noise Metrics Related to Auditory Masking in Bottlenose Dolphins (Tursiops truncatus).

    Science.gov (United States)

    Branstetter, Brian K; Bakhtiari, Kimberly L; Trickey, Jennifer S; Finneran, James J

    2016-01-01

    Odontocete cetaceans are acoustic specialists that depend on sound to hunt, forage, navigate, detect predators, and communicate. Auditory masking from natural and anthropogenic sound sources may adversely affect these fitness-related capabilities. The ability to detect a tone in a broad range of natural, anthropogenic, and synthesized noise was tested with bottlenose dolphins using a psychophysical, band-widening procedure. Diverging masking patterns were found for noise bandwidths greater than the width of an auditory filter. Despite different noise types having equal-pressure spectral-density levels (95 dB re 1 μPa(2)/Hz), masked detection threshold differences were as large as 22 dB. Consecutive experiments indicated that noise types with increased levels of amplitude modulation resulted in comodulation masking release due to within-channel and across-channel auditory mechanisms. The degree to which noise types were comodulated (comodulation index) was assessed by calculating the magnitude-squared coherence between the temporal envelope from an auditory filter centered on the signal and temporal envelopes from flanking filters. Statistical models indicate that masked thresholds in a variety of noise types, at a variety of levels, can be explained with metrics related to the comodulation index in addition to the pressure spectral-density level of noise. This study suggests that predicting auditory masking from ocean noise sources depends on both spectral and temporal properties of the noise. PMID:26610950

  2. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  3. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  4. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    ArjenAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  5. Effect of omega-3 on auditory system

    Directory of Open Access Journals (Sweden)

    Vida Rahimi

    2014-01-01

    Full Text Available Background and Aim: Omega-3 fatty acid have structural and biological roles in the body 's various systems . Numerous studies have tried to research about it. Auditory system is affected a s well. The aim of this article was to review the researches about the effect of omega-3 on auditory system.Methods: We searched Medline , Google Scholar, PubMed, Cochrane Library and SID search engines with the "auditory" and "omega-3" keywords and read textbooks about this subject between 19 70 and 20 13.Conclusion: Both excess and deficient amounts of dietary omega-3 fatty acid can cause harmful effects on fetal and infant growth and development of brain and central nervous system esspesially auditory system. It is important to determine the adequate dosage of omega-3.

  6. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm.

    Science.gov (United States)

    Jenson, David; Harkrider, Ashley W; Thornton, David; Bowers, Andrew L; Saltuklaroglu, Tim

    2015-01-01

    Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required "active" discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral "auditory" alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique. PMID:26500519

  7. The effect of auditory memory load on intensity resolution in individuals with Parkinson's disease

    Science.gov (United States)

    Richardson, Kelly C.

    Purpose: The purpose of the current study was to investigate the effect of auditory memory load on intensity resolution in individuals with Parkinson's disease (PD) as compared to two groups of listeners without PD. Methods: Nineteen individuals with Parkinson's disease, ten healthy age- and hearing-matched adults, and ten healthy young adults were studied. All listeners participated in two intensity discrimination tasks differing in auditory memory load; a lower memory load, 4IAX task and a higher memory load, ABX task. Intensity discrimination performance was assessed using a bias-free measurement of signal detectability known as d' (d-prime). Listeners further participated in a continuous loudness scaling task where they were instructed to rate the loudness level of each signal intensity using a computerized 150mm visual analogue scale. Results: Group discrimination functions indicated significantly lower intensity discrimination sensitivity (d') across tasks for the individuals with PD, as compared to the older and younger controls. No significant effect of aging on intensity discrimination was observed for either task. All three listeners groups demonstrated significantly lower intensity discrimination sensitivity for the higher auditory memory load, ABX task, compared to the lower auditory memory load, 4IAX task. Furthermore, a significant effect of aging was identified for the loudness scaling condition. The younger controls were found to rate most stimuli along the continuum as significantly louder than the older controls and the individuals with PD. Conclusions: The persons with PD showed evidence of impaired auditory perception for intensity information, as compared to the older and younger controls. The significant effect of aging on loudness perception may indicate peripheral and/or central auditory involvement.

  8. Corticofugal modulation of peripheral auditory responses

    OpenAIRE

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstr...

  9. Corticofugal modulation of peripheral auditory responses

    OpenAIRE

    Paul Hinckley Delano

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body, inferior colliculus, cochlear nucleus and superior olivary complex reaching the cochlea through olivocochlear fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular, (ii) cortico-(collicular)-olivocochlear and (iii) cortico-(collicular)-cochlear nucleus pathways. Recent experiments demonstrate...

  10. Auditory memory function in expert chess players

    OpenAIRE

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Background: Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert...

  11. Music perception, pitch, and the auditory system

    OpenAIRE

    McDermott, Josh H.; Oxenham, Andrew J.

    2008-01-01

    The perception of music depends on many culture-specific factors, but is also constrained by properties of the auditory system. This has been best characterized for those aspects of music that involve pitch. Pitch sequences are heard in terms of relative, as well as absolute, pitch. Pitch combinations give rise to emergent properties not present in the component notes. In this review we discuss the basic auditory mechanisms contributing to these and other perceptual effects in music.

  12. Auditory brain-stem responses in syphilis.

    OpenAIRE

    Rosenhall, U; Roupe, G

    1981-01-01

    Analysis of auditory brain-stem electrical responses (BSER) provides an effective means of detecting lesions in the auditory pathways. In the present study the wave patterns were analysed in 11 patients with secondary or latent syphilis with no clinical symptoms referrable to the central nervous system and in two patients with congenital syphilis and general paralysis. Decreased amplitudes and prolonged latencies occurred frequently in patients with secondary and with advanced syphilis. This ...

  13. Auditory sequence analysis and phonological skill

    OpenAIRE

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E.; Turton, Stuart; Griffiths, Timothy D

    2012-01-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between ...

  14. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys. PMID:26041980

  15. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    Science.gov (United States)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  16. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice.

    Science.gov (United States)

    Nai, Antonella; Rubio, Aude; Campanella, Alessandro; Gourbeyre, Ophélie; Artuso, Irene; Bordini, Jessica; Gineste, Aurélie; Latour, Chloé; Besson-Fournier, Céline; Lin, Herbert Y; Coppin, Hélène; Roth, Marie-Paule; Camaschella, Clara; Silvestri, Laura; Meynard, Delphine

    2016-05-12

    Hepcidin, the main regulator of iron homeostasis, is repressed when erythropoiesis is acutely stimulated by erythropoietin (EPO) to favor iron supply to maturing erythroblasts. Erythroferrone (ERFE) has been identified as the erythroid regulator that inhibits hepcidin in stress erythropoiesis. A powerful hepcidin inhibitor is the serine protease matriptase-2, encoded by TMPRSS6, whose mutations cause iron refractory iron deficiency anemia. Because this condition has inappropriately elevated hepcidin in the presence of high EPO levels, a role is suggested for matriptase-2 in EPO-mediated hepcidin repression. To investigate the relationship between EPO/ERFE and matriptase-2, we show that EPO injection induces Erfe messenger RNA expression but does not suppress hepcidin in Tmprss6 knockout (KO) mice. Similarly, wild-type (WT) animals, in which the bone morphogenetic protein-mothers against decapentaplegic homolog (Bmp-Smad) pathway is upregulated by iron treatment, fail to suppress hepcidin in response to EPO. To further investigate whether the high level of Bmp-Smad signaling of Tmprss6 KO mice counteracts hepcidin suppression by EPO, we generated double KO Bmp6-Tmprss6 KO mice. Despite having Bmp-Smad signaling and hepcidin levels that are similar to WT mice under basal conditions, double KO mice do not suppress hepcidin in response to EPO. However, pharmacologic downstream inhibition of the Bmp-Smad pathway by dorsomorphin, which targets the BMP receptors, improves the hepcidin responsiveness to EPO in Tmprss6 KO mice. We concluded that the function of matriptase-2 is dominant over that of ERFE and is essential in facilitating hepcidin suppression by attenuating the BMP-SMAD signaling. PMID:26755707

  17. Integrin α PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hsiao-Han Hsieh

    Full Text Available Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2-mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180/CED-12 (ELMO or CED-6 (GULP respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.

  18. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  19. Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins.

    OpenAIRE

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra; Tijssen, Peter

    2014-01-01

    Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic b...

  20. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation

    OpenAIRE

    Hayes, Matthew R.; Skibicka, Karolina P; Leichner, Theresa M.; Guarnieri, Douglas J; DiLeone, Ralph J; Bence, Kendra K.; Grill, Harvey J.

    2010-01-01

    Medial nucleus tractus solitarius (mNTS) neurons express leptin receptors (LepR) and intramNTS delivery of leptin reduces food intake and body weight. Here, the contribution of endogenous LepR signaling in mNTS neurons to energy balance control was examined. Knockdown of LepR in mNTS and area postrema (AP) neurons of rats (LepRKD) via adeno-associated virus short hairpin RNA-interference (AAV-shRNAi) resulted in significant hyperphagia for chow, high-fat and sucrose diets, yielding increased ...

  1. Requirement for SAPK-JNK signaling in the induction of apoptosis by ribosomal stress in REH lymphoid leukemia cells.

    Science.gov (United States)

    Johnson, C R; Jiffar, T; Fischer, U M; Ruvolo, P P; Jarvis, W D

    2003-11-01

    The present studies examined performance of SAPK cascades and apoptotic commitment following ribosomal trauma in REH lymphoid leukemia cells. Ribostatic insults included disruption of ribosomal activity by mechanistically dissimilar agents such as blasticidin-S (BCS) (which binds 28S-rRNA to block peptidyl bond formation), kasugamycin (KSM) (which binds 18S-rRNA to prevent translational initiation), and cycloheximide (CHX) (which blocks A-site to P-site translocation of peptidyl-tRNA). Exposure of REH cells to BCS elicited DNA degradation and apoptotic cytolysis. BCS stimulated JNK1/JNK2 and p38, and their shared targets c-Jun and ATF2. Inhibition of JNK1/JNK2 (but not of p38) antagonized blasticidin-induced apoptosis, whereas targeting alternative ribosomal sites with KSM or CHX limited translation, but failed to activate the SAPK cascade or initiate apoptosis. Our findings indicate that interference with 28S-rRNA by BCS initiates apoptosis in REH cells through recruitment of SAPK-JNK signaling. Disparities between the lethal actions of BCS, KSM, and CHX appear to reflect established differences in the subribosomal targets of these agents. We propose that the SAPK cascade comprises an essential mechanism for the transduction of specific lethal stress signals emanating from active ribosomes, and that interference with the 28S-rRNA, rather than the peptidyl transfer center of the large subunit, is critical to apoptotic commitment. PMID:12970763

  2. Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway

    Science.gov (United States)

    Gao, Jun; Joseph, Nadine; Xie, Zhigang; Zhou, Ying; Durak, Omer; Zhang, Lei; Zhu, J. Julius; Clauser, Karl R.; Carr, Steven A.; Tsai, Li-Huei

    2011-01-01

    Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation. PMID:21984943

  3. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  4. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.

    Science.gov (United States)

    Bourien, Jérôme; Tang, Yong; Batrel, Charlène; Huet, Antoine; Lenoir, Marc; Ladrech, Sabine; Desmadryl, Gilles; Nouvian, Régis; Puel, Jean-Luc; Wang, Jing

    2014-09-01

    Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude. PMID:24848461

  5. Diffusible signal factor (DSF) synthase RpfF of Xylella fastidiosa is a multifunction protein also required for response to DSF.

    Science.gov (United States)

    Ionescu, Michael; Baccari, Clelia; Da Silva, Aline Maria; Garcia, Angelica; Yokota, Kenji; Lindow, Steven E

    2013-12-01

    Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communication system consisting of a diffusible signal factor (DSF) synthase, RpfF, and a DSF sensor, RpfC, to coordinate expression of virulence genes. While phenotypes of a ΔrpfF strain in Xanthomonas campestris could be complemented by its own DSF, the DSF produced by X. fastidiosa (XfDSF) did not restore expression of the XfDSF-dependent genes hxfA and hxfB to a ΔrpfF strain of X. fastidiosa, suggesting that RpfF is involved in XfDSF sensing or XfDSF-dependent signaling. To test this conjecture, rpfC and rpfF of X. campestris were replaced by those of X. fastidiosa, and the contribution of each gene to the induction of a X. campestris DSF-dependent gene was assessed. As in X. fastidiosa, XfDSF-dependent signaling required both X. fastidiosa proteins RpfF and RpfC. RpfF repressed RpfC signaling activity, which in turn was derepressed by XfDSF. A mutated X. fastidiosa RpfF protein with two substitutions of glutamate to alanine in its active site was incapable of XfDSF production yet enabled a response to XfDSF, indicating that XfDSF production and the response to XfDSF are two separate functions in which RpfF is involved. This mutant was also hypervirulent to grape, demonstrating the antivirulence effects of XfDSF itself in X. fastidiosa. The Rpf system of X. fastidiosa is thus a novel example of a quorum-sensing signal synthase that is also involved in the response to the signal molecule that it synthesizes. PMID:24056101

  6. Mutational analysis of the vacuolar sorting signal of procarboxypeptidase Y in yeast shows a low requirement for sequence conservation

    DEFF Research Database (Denmark)

    van Voorst, F; Kielland-Brandt, Morten; Winther, Jakob R.

    1996-01-01

    be exchanged with the other hydrophobic amino acid residues, isoleucine, valine, and phenylalanine. Tolerance toward various substitutions for Arg25 is fairly high, while substitution of Pro26 for uncharged amino acid residues also resulted in only weak missorting. In addition to the low requirement...

  7. WNT/β-Catenin Signaling Is Required for Integration of CD24+ Renal Progenitor Cells into Glycerol-Damaged Adult Renal Tubules

    Directory of Open Access Journals (Sweden)

    Zhao Zhang

    2015-01-01

    Full Text Available During development, nephron progenitor cells (NPC are induced to differentiate by WNT9b signals from the ureteric bud. Although nephrogenesis ends in the perinatal period, acute kidney injury (AKI elicits repopulation of damaged nephrons. Interestingly, embryonic NPC infused into adult mice with AKI are incorporated into regenerating tubules. Since WNT/β-catenin signaling is crucial for primary nephrogenesis, we reasoned that it might also be needed for the endogenous repair mechanism and for integration of exogenous NPC. When we examined glycerol-induced AKI in adult mice bearing a β-catenin/TCF reporter transgene, endogenous tubular cells reexpressed the NPC marker, CD24, and showed widespread β-catenin/TCF signaling. We isolated CD24+ cells from E15 kidneys of mice with the canonical WNT signaling reporter. 40% of cells responded to WNT3a in vitro and when infused into glycerol-injured adult, the cells exhibited β-catenin/TCF reporter activity when integrated into damaged tubules. When embryonic CD24+ cells were treated with a β-catenin/TCF pathway inhibitor (IWR-1 prior to infusion into glycerol-injured mice, tubular integration of cells was sharply reduced. Thus, the endogenous canonical β-catenin/TCF pathway is reactivated during recovery from AKI and is required for integration of exogenous embryonic renal progenitor cells into damaged tubules. These events appear to recapitulate the WNT-dependent inductive process which drives primary nephrogenesis.

  8. Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans.

    Science.gov (United States)

    Lehrbach, Nicolas J; Castro, Cecilia; Murfitt, Kenneth J; Abreu-Goodger, Cei; Griffin, Julian L; Miska, Eric A

    2012-12-01

    Regulation of gene expression by microRNAs (miRNAs) is essential for normal development, but the roles of miRNAs in the physiology of adult animals are poorly understood. We have isolated a conditional allele of DGCR8/pash-1, which allows reversible and rapid inactivation of miRNA synthesis in vivo in Caenorhabditis elegans. This is a powerful new tool that allows dissection of post-developmental miRNA functions. We demonstrate that continuous synthesis of miRNAs is dispensable for cellular viability but critical for the physiology of adult animals. Loss of miRNA synthesis in the adult reduces lifespan and results in rapid aging. The insulin/IGF-1 signaling pathway is a critical determinant of lifespan, and is modulated by miRNAs. We find that although miRNA expression is required for some mechanisms of lifespan extension, it is not essential for the longevity of animals lacking insulin/IGF-1 signaling. Further, misregulated insulin/IGF-1 signaling cannot account for the reduced lifespan caused by disruption of miRNA synthesis. We show that miRNAs act in parallel with insulin/IGF-1 signaling to regulate a shared set of downstream genes important for physiological processes that determine lifespan. We conclude that coordinated transcriptional and post-transcriptional regulation of gene expression promotes longevity. PMID:23097426

  9. Improvement of auditory hallucinations and reduction of primary auditory area's activation following TMS

    International Nuclear Information System (INIS)

    Background: In the present case study, improvement of auditory hallucinations following transcranial magnetic stimulation (TMS) therapy was investigated with respect to activation changes of the auditory cortices. Methods: Using functional magnetic resonance imaging (fMRI), activation of the auditory cortices was assessed prior to and after a 4-week TMS series of the left superior temporal gyrus in a schizophrenic patient with medication-resistant auditory hallucinations. Results: Hallucinations decreased slightly after the third and profoundly after the fourth week of TMS. Activation in the primary auditory area decreased, whereas activation in the operculum and insula remained stable. Conclusions: Combination of TMS and repetitive fMRI is promising to elucidate the physiological changes induced by TMS.

  10. External auditory canal carcinoma treatment

    International Nuclear Information System (INIS)

    External auditory canal (EAC) carcinomas are relatively rare conditions lack on established treatment strategy. We analyzed a treatment modalities and outcome in 32 cases of EAC squamous cell carcinoma treated between 1980 and 2008. Subjects-17 men and 15 women ranging from 33 to 92 years old (average: 66) were divided by Arriaga's tumor staging into 12 T1, 5 T2, 6 T3, and 9 T4. Survival was calculated by the Kaplan-Meier method. Disease-specific 5-year survival was 100% for T1, T2, 44% for T3, and 33% for T4. In contrast to 100% 5-year survival for T1+T2 cancer, the 5-year survival for T3+T4 cancer was 37% with high recurrence due to positive surgical margins. The first 22 years of the 29 years surveyed, we performed surgery mainly, and irradiation or chemotherapy was selected for early disease or cases with positive surgical margins as postoperative therapy. During the 22-years, 5-year survival with T3+T4 cancer was 20%. After we started superselective intra-arterial (IA) rapid infusion chemotherapy combined with radiotherapy in 2003, we achieved negative surgical margins for advanced disease, and 5-year survival for T3+T4 cancer rise to 80%. (author)

  11. Psychophysical and neural correlates of noised-induced tinnitus in animals: Intra- and inter-auditory and non-auditory brain structure studies.

    Science.gov (United States)

    Zhang, Jinsheng; Luo, Hao; Pace, Edward; Li, Liang; Liu, Bin

    2016-04-01

    Tinnitus, a ringing in the ear or head without an external sound source, is a prevalent health problem. It is often associated with a number of limbic-associated disorders such as anxiety, sleep disturbance, and emotional distress. Thus, to investigate tinnitus, it is important to consider both auditory and non-auditory brain structures. This paper summarizes the psychophysical, immunocytochemical and electrophysiological evidence found in rats or hamsters with behavioral evidence of tinnitus. Behaviorally, we tested for tinnitus using a conditioned suppression/avoidance paradigm, gap detection acoustic reflex behavioral paradigm, and our newly developed conditioned licking suppression paradigm. Our new tinnitus behavioral paradigm requires relatively short baseline training, examines frequency specification of tinnitus perception, and achieves sensitive tinnitus testing at an individual level. To test for tinnitus-related anxiety and cognitive impairment, we used the elevated plus maze and Morris water maze. Our results showed that not all animals with tinnitus demonstrate anxiety and cognitive impairment. Immunocytochemically, we found that animals with tinnitus manifested increased Fos-like immunoreactivity (FLI) in both auditory and non-auditory structures. The manner in which FLI appeared suggests that lower brainstem structures may be involved in acute tinnitus whereas the midbrain and cortex are involved in more chronic tinnitus. Meanwhile, animals with tinnitus also manifested increased FLI in non-auditory brain structures that are involved in autonomic reactions, stress, arousal and attention. Electrophysiologically, we found that rats with tinnitus developed increased spontaneous firing in the auditory cortex (AC) and amygdala (AMG), as well as intra- and inter-AC and AMG neurosynchrony, which demonstrate that tinnitus may be actively produced and maintained by the interactions between the AC and AMG. PMID:26299842

  12. Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus).

    Science.gov (United States)

    Hall, Ian C; Woolley, Sarah M N; Kwong-Brown, Ursula; Kelley, Darcy B

    2016-01-01

    Mating depends on the accurate detection of signals that convey species identity and reproductive state. In African clawed frogs, Xenopus, this information is conveyed by vocal signals that differ in temporal patterns and spectral features between sexes and across species. We characterized spectral sensitivity using auditory-evoked potentials (AEPs), commonly known as the auditory brainstem response, in males and females of four Xenopus species. In female X. amieti, X. petersii, and X. laevis, peripheral auditory sensitivity to their species own dyad-two, species-specific dominant frequencies in the male advertisement call-is enhanced relative to males. Males were most sensitive to lower frequencies including those in the male-directed release calls. Frequency sensitivity was influenced by endocrine state; ovariectomized females had male-like auditory tuning while dihydrotestosterone-treated, ovariectomized females maintained female-like tuning. Thus, adult, female Xenopus demonstrate an endocrine-dependent sensitivity to the spectral features of conspecific male advertisement calls that could facilitate mating. Xenopus AEPs resemble those of other species in stimulus and level dependence, and in sensitivity to anesthetic (MS222). AEPs were correlated with body size and sex within some species. A frequency following response, probably encoded by the amphibian papilla, might facilitate dyad source localization via interaural time differences. PMID:26572136

  13. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  14. Efficacy of auditory training in elderly subjects

    Directory of Open Access Journals (Sweden)

    Aline Albuquerque Morais

    2015-05-01

    Full Text Available Auditory training (AT  has been used for auditory rehabilitation in elderly individuals and is an effective tool for optimizing speech processing in this population. However, it is necessary to distinguish training-related improvements from placebo and test-retest effects. Thus, we investigated the efficacy of short-term auditory training (acoustically controlled auditory training - ACAT in elderly subjects through behavioral measures and P300. Sixteen elderly individuals with APD received an initial evaluation (evaluation 1 - E1 consisting of behavioral and electrophysiological tests (P300 evoked by tone burst and speech sounds to evaluate their auditory processing. The individuals were divided into two groups. The Active Control Group [ACG (n=8] underwent placebo training. The Passive Control Group [PCG (n=8] did not receive any intervention. After 12 weeks, the subjects were  revaluated (evaluation 2 - E2. Then, all of the subjects underwent ACAT. Following another 12 weeks (8 training sessions, they underwent the final evaluation (evaluation 3 – E3. There was no significant difference between E1 and E2 in the behavioral test [F(9.6=0,.6 p=0.92, λ de Wilks=0.65] or P300 [F(8.7=2.11, p=0.17, λ de Wilks=0.29] (discarding the presence of placebo effects and test-retest. A significant improvement was observed between the pre- and post-ACAT conditions (E2 and E3 for all auditory skills according to the behavioral methods [F(4.27=0.18, p=0.94, λ de Wilks=0.97]. However, the same result was not observed for P300 in any condition. There was no significant difference between P300 stimuli. The ACAT improved the behavioral performance of the elderly for all auditory skills and was an effective method for hearing rehabilitation.

  15. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne;

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in...... extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx......43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium....

  16. Temporal and Spatial Regulation of Epsin Abundance and VEGFR3 Signaling are Required for Lymphatic Valve Formation and Function

    OpenAIRE

    Liu, Xiaolei; Pasula, Satish; Song, Hoogeun; Tessneer, Kandice L.; Dong, Yunzhou; Hahn, Scott; Yago, Tadayuki; Brophy, Megan; Chang, Baojun; Cai, Xiaofeng; Wu, Hao; McManus, John; Ichise, Hirotake; Georgescu, Constantin; Wren, Jonathan D

    2014-01-01

    Lymphatic valves prevent the backflow of the lymph fluid and ensure proper lymphatic drainage throughout the body. Local accumulation of lymphatic fluid in tissues, a condition called lymphedema, is common in individuals with malformed lymphatic valves. The vascular endothelial growth factor receptor 3 (VEGFR3) is required for the development of lymphatic vascular system. The abundance of VEGFR3 in collecting lymphatic trunks is high before valve formation and, except at valve regions, decrea...

  17. Peripheral, but not central, GLP-1 receptor signaling is required for improvement in glucose tolerance after Roux-en-Y gastric bypass in mice.

    Science.gov (United States)

    Carmody, Jill S; Muñoz, Rodrigo; Yin, Huali; Kaplan, Lee M

    2016-05-15

    Roux-en-Y gastric bypass (RYGB) causes profound weight loss and remission of diabetes by influencing metabolic physiology, yet the mechanisms behind these clinical improvements remain undefined. After RYGB, levels of glucagon-like peptide-1 (GLP-1), a hormone that enhances insulin secretion and promotes satiation, are substantially elevated. Because GLP-1 signals in both the periphery and the brain to influence energy balance and glucose regulation, we aimed to determine the relative requirements of these systems to weight loss and improved glucose tolerance following RYGB surgery in mice. By pharmacologically blocking peripheral or central GLP-1R signaling, we examined whether GLP-1 action is necessary for the metabolic improvements observed after RYGB. Diet-induced obese mice underwent RYGB or sham operation and were implanted with osmotic pumps delivering the GLP-1R antagonist exendin-(9-39) (2 pmol·kg(-1)·min(-1) peripherally; 0.5 pmol·kg(-1)·min(-1) centrally) for up to 10 wk. Blockade of peripheral GLP-1R signaling partially reversed the improvement in glucose tolerance after RYGB. In contrast, fasting glucose and insulin sensitivity, as well as body weight, were unaffected by GLP-1R antagonism. Central GLP-1R signaling did not appear to be required for any of the metabolic improvements seen after this operation. Collectively, these results suggest a detectable but only modest role for GLP-1 in mediating the effects of RYGB and that this role is limited to its well-described action on glucose regulation. PMID:27026085

  18. Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins.

    Science.gov (United States)

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra; Tijssen, Peter

    2014-10-01

    Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. Importance: Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid

  19. Effects of auditory enhancement on the loudness of masker and target components.

    Science.gov (United States)

    Wang, Ningyuan; Oxenham, Andrew J

    2016-03-01

    Auditory enhancement refers to the observation that the salience of one spectral region (the "signal") of a broadband sound can be enhanced and can "pop out" from the remainder of the sound (the "masker") if it is preceded by the broadband sound without the signal. The present study investigated auditory enhancement as an effective change in loudness, to determine whether it reflects a change in the loudness of the signal, the masker, or both. In the first experiment, the 500-ms precursor, an inharmonic complex with logarithmically spaced components, was followed after a 50-ms gap by the 100-ms signal or masker alone, the loudness of which was compared with that of the same signal or masker presented 2 s later. In the second experiment, the loudness of the signal embedded in the masker was assessed with and without a precursor using the same method, as was the loudness of the entire signal-plus-masker complex. The results suggest that the precursor does not affect the loudness of the signal or the masker alone, but enhances the loudness of the signal in the presence of the masker, while leaving the loudness of the surrounding masker unaffected. The results are consistent with an explanation based on "adaptation of inhibition" [Viemeister and Bacon (1982). J. Acoust. Soc. Am. 71, 1502-1507]. PMID:26805025

  20. Induction of Proinflammatory Responses in Macrophages by the Glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum: CELL SIGNALING RECEPTORS, GPI STRUCTURAL REQUIREMENT, AND REGULATION OF GPI ACTIVITY*

    Science.gov (United States)

    Krishnegowda, Gowdahalli; Hajjar, Adeline M.; Zhu, Jianzhong; Douglass, Erika J.; Uematsu, Satoshi; Akira, Shizuo; Woods, Amina S.; Gowda, D. Channe

    2016-01-01

    SUMMARY The proinflammatory cytokines produced by the innate immune system in response to pathogenic infection protect the host by controlling microbial growth. However, excessive proinflammatory responses could disrupt the host’s vital physiological functions, causing severe pathological conditions. In the case of Plasmodium falciparum, the protozoan parasite that causes fatal malaria in man, the glycosylphosphatidylinositol (GPI) anchors are thought to be the major factors that contribute to malaria pathogenesis through their ability to induce proinflammatory responses. In this study, we identified the receptors for P. falciparum GPI-induced cell signaling that leads to proinflammatory responses, and studied the GPI structure-activity relationship. The data show that GPI-signaling is mediated mainly through recognition by TLR2 and to a lesser extent by TLR4. The activity of sn-2 lyso GPIs is comparable to that of the intact GPIs, whereas the activity of Man3-GPIs is about 80% that of the intact GPIs. The GPIs with three (intact GPIs and Man3-GPIs) and two fatty acids (sn-2 lyso GPIs) appear to differ considerably in the requirement of the auxiliary receptor, TLR1 or TLR6, for recognition by TLR2. The former are preferentially recognized by TLR2/TLR1, whereas the latter are favored by TLR2/TLR6. However, the signaling pathways initiated by all three GPI types are similar, involving the MyD88-dependent activation of ERK, JNK and p38, and NF-κB signaling pathways. The signaling molecules of these pathways differentially contribute to the production of various cytokines and nitric oxide (Zhu, J., et al. (2004) J. Biol. Chem., accompanying manuscript). Our data also show that GPIs are degraded by the macrophage surface phospholipases, predominantly into inactive species, indicating that the host can regulate GPI activity, at least in part, by this mechanism. These results imply that macrophage surface phospholipases play important roles in the GPI-induced innate

  1. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  2. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  3. Functional mapping of the auditory tract in rodent tinnitus model using manganese-enhanced magnetic resonance imaging.

    Science.gov (United States)

    Jung, Da Jung; Han, Mun; Jin, Seong-Uk; Lee, Sang Heun; Park, Ilyong; Cho, Hyun-Ju; Kwon, Tae-Jun; Lee, Hui Joong; Cho, Jin Ho; Lee, Kyu-Yup; Chang, Yongmin

    2014-10-15

    Animal models of salicylate-induced tinnitus have demonstrated that salicylate modulates neuronal activity in several brain structures leading to neuronal hyperactivity in auditory and non-auditory brain areas. In addition, these animal tinnitus models indicate that tinnitus can be a perceptual consequence of altered spontaneous neural activity along the auditory pathway. Peripheral and/or central effects of salicylate can account for neuronal activity changes in salicylate-induced tinnitus. Because of this ambiguity, an in vivo imaging study would be able to address the peripheral and/or central involvement of salicylate-induced tinnitus. Therefore, in the present study, we developed a novel manganese-enhanced magnetic resonance imaging (MEMRI) method to map the in vivo functional auditory tract in a salicylate-induced tinnitus animal model by administrating manganese through the round window. We found that acute salicylate-induced tinnitus resulted in higher manganese uptake in the cochlea and in the central auditory structures. Furthermore, serial MRI scans demonstrated that the manganese signal increased in an anterograde fashion from the cochlea to the cochlear nucleus. Therefore, our in vivo MEMRI data suggest that acute salicylate-induced tinnitus is associated with higher spontaneous neural activity both in peripheral and central auditory pathways. PMID:24983712

  4. Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin alpha(9)beta(1).

    Science.gov (United States)

    Majumdar, Mousumi; Tarui, Takehiko; Shi, Biao; Akakura, Nobuaki; Ruf, Wolfram; Takada, Yoshikazu

    2004-09-01

    Plasmin is a major extracellular protease that elicits intracellular signals to mediate platelet aggregation, chemotaxis of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types in a G protein-dependent manner. Angiostatin, a fragment of plasmin(ogen), is a ligand and an antagonist for integrin alpha(9)beta(1). Here we report that plasmin specifically interacts with alpha(9)beta(1) and that plasmin induces of cells expressing migration recombinant alpha(9)beta(1) (alpha(9)-Chinese hamster ovary (CHO) cells). Migration was dependent on an interaction of the kringle domains of plasmin with alpha(9)beta(1) as well as the catalytic activity of plasmin. Angiostatin, representing the kringle domains of plasmin, alone did not induce the migration of alpha(9)-CHO cells, but simultaneous activation of the G protein-coupled protease-activated receptor (PAR)-1 with an agonist peptide induced the migration on angiostatin, whereas PAR-2 or PAR-4 agonist peptides were without effect. Furthermore, a small chemical inhibitor of PAR-1 (RWJ 58259) and a palmitoylated PAR-1-blocking peptide inhibited plasmin-induced migration of alpha(9)-CHO cells. These results suggest that plasmin induces migration by kringle-mediated binding to alpha(9)beta(1) and simultaneous proteolytic activation of PAR-1. PMID:15247268

  5. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu [Department of Anatomy, Cell Biology, and Physiology, School of Veterinary Medicine, University of California, Davis, CA (United States); Karin, Norman J. [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States); Geist, Derik J. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Donahue, Henry J. [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States); Duncan, Randall L. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  6. The RhoG/ELMO1/Dock180 signaling module is required for spine morphogenesis in hippocampal neurons.

    Science.gov (United States)

    Kim, Jeong-Yoon; Oh, Mi Hee; Bernard, Laura P; Macara, Ian G; Zhang, Huaye

    2011-10-28

    Dendritic spines are actin-rich structures, the formation and plasticity of which are regulated by the Rho GTPases in response to synaptic input. Although several guanine nucleotide exchange factors (GEFs) have been implicated in spine development and plasticity in hippocampal neurons, it is not known how many different Rho GEFs contribute to spine morphogenesis or how they coordinate the initiation, establishment, and maintenance of spines. In this study, we screened 70 rat Rho GEFs in cultured hippocampal neurons by RNA interference and identified a number of candidates that affected spine morphogenesis. Of these, Dock180, which plays a pivotal role in a variety of cellular processes including cell migration and phagocytosis, was further investigated. We show that depletion of Dock180 inhibits spine morphogenesis, whereas overexpression of Dock180 promotes spine morphogenesis. ELMO1, a protein necessary for in vivo functions of Dock180, functions in a complex with Dock180 in spine morphogenesis through activating the Rac GTPase. Moreover, RhoG, which functions upstream of the ELMO1/Dock180 complex, is also important for spine formation. Together, our findings uncover a role for the RhoG/ELMO1/Dock180 signaling module in spine morphogenesis in hippocampal neurons. PMID:21900250

  7. Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca2+ signalling in glutamatergic interneurons

    Science.gov (United States)

    Jayakumar, Siddharth; Richhariya, Shlesha; Reddy, O Venkateswara; Texada, Michael J; Hasan, Gaiti

    2016-01-01

    Neuronal circuits are known to integrate nutritional information, but the identity of the circuit components is not completely understood. Amino acids are a class of nutrients that are vital for the growth and function of an organism. Here, we report a neuronal circuit that allows Drosophila larvae to overcome amino acid deprivation and pupariate. We find that nutrient stress is sensed by the class IV multidendritic cholinergic neurons. Through live calcium imaging experiments, we show that these cholinergic stimuli are conveyed to glutamatergic neurons in the ventral ganglion through mAChR. We further show that IP3R-dependent calcium transients in the glutamatergic neurons convey this signal to downstream medial neurosecretory cells (mNSCs). The circuit ultimately converges at the ring gland and regulates expression of ecdysteroid biosynthetic genes. Activity in this circuit is thus likely to be an adaptation that provides a layer of regulation to help surpass nutritional stress during development. DOI: http://dx.doi.org/10.7554/eLife.17495.001 PMID:27494275

  8. Voluntary running depreciates the requirement of Ca2+-stimulated cAMP signaling in synaptic potentiation and memory formation.

    Science.gov (United States)

    Zheng, Fei; Zhang, Ming; Ding, Qi; Sethna, Ferzin; Yan, Lily; Moon, Changjong; Yang, Miyoung; Wang, Hongbing

    2016-08-01

    Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term potentiation (LTP) and memory formation in mice lacking type 1 adenylyl cyclase (AC1), a neurospecific synaptic enzyme that contributes to Ca(2+)-stimulated cAMP production. Following 1 mo of voluntary running-wheel exercise, the impaired LTP and object recognition memory in AC1 knockout (KO) mice were significantly attenuated. Running up-regulated exon II mRNA level of BDNF (brain-derived neurotrophic factor), though it failed to increase exon I and IV mRNAs in the hippocampus of AC1 KO mice. Intrahippocampal infusion of recombinant BDNF was sufficient to rescue LTP and object recognition memory defects in AC1 KO mice. Therefore, voluntary running and exogenous BDNF application overcome the defective Ca(2+)-stimulated cAMP signaling. Our results also demonstrate that alteration in Ca(2+)-stimulated cAMP can affect the molecular outcome of physical exercise. PMID:27421897

  9. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling.

    Science.gov (United States)

    Yang, Bao-Jun; Han, Xin-Xin; Yin, Lin-Lin; Xing, Mei-Qing; Xu, Zhi-Hong; Xue, Hong-Wei

    2016-01-01

    The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. PMID:27109828

  10. Purinergic Signaling is Required for Fluid Shear Stress-Induced NF-kB Translocation in Osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C.; Karin, Norman J.; Geist, Derik J.; Donahue, Henry J.; Duncan, Randall L.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-kB. We examined whether this process was under control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-kB inhibitory protein IkB alpha and exhibited cytosolic localization of NF-kB. Under fluid shear stress, IκBα levels decreased, and concomitant nuclear localization of NF-kB was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in IκBα, and NF-kB remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X7 receptor antagonists, indicating that the P2X7 receptor is responsible for fluid shear-stress-induced IκBα degradation and nuclear accumulation of NF-kB. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced IkB alpha degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X7-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-kB activity through the P2Y6 and P2X7 receptor.

  11. Attentional demands influence vocal compensations to pitch errors heard in auditory feedback.

    Science.gov (United States)

    Tumber, Anupreet K; Scheerer, Nichole E; Jones, Jeffery A

    2014-01-01

    Auditory feedback is required to maintain fluent speech. At present, it is unclear how attention modulates auditory feedback processing during ongoing speech. In this event-related potential (ERP) study, participants vocalized/a/, while they heard their vocal pitch suddenly shifted downward a ½ semitone in both single and dual-task conditions. During the single-task condition participants passively viewed a visual stream for cues to start and stop vocalizing. In the dual-task condition, participants vocalized while they identified target stimuli in a visual stream of letters. The presentation rate of the visual stimuli was manipulated in the dual-task condition in order to produce a low, intermediate, and high attentional load. Visual target identification accuracy was lowest in the high attentional load condition, indicating that attentional load was successfully manipulated. Results further showed that participants who were exposed to the single-task condition, prior to the dual-task condition, produced larger vocal compensations during the single-task condition. Thus, when participants' attention was divided, less attention was available for the monitoring of their auditory feedback, resulting in smaller compensatory vocal responses. However, P1-N1-P2 ERP responses were not affected by divided attention, suggesting that the effect of attentional load was not on the auditory processing of pitch altered feedback, but instead it interfered with the integration of auditory and motor information, or motor control itself. PMID:25303649

  12. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    Science.gov (United States)

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  13. The effect of generation on long-term repetition priming in auditory and visual perceptual identification.

    Science.gov (United States)

    Mulligan, Neil W

    2011-05-01

    Perceptual implicit memory is typically most robust when the perceptual processing at encoding matches the perceptual processing required during retrieval. A consistent exception is the robust priming that semantic generation produces on the perceptual identification test (Masson & MacLeod, 2002), a finding which has been attributed to either (1) conceptual influences in this nominally perceptual task, or (2) covert orthographic processing during generative encoding. The present experiments assess these possibilities using both auditory and visual perceptual identification, tests in which participants identify auditory words in noise or rapidly-presented visual words. During the encoding phase of the experiments, participants generated some words and perceived others in an intermixed study list. The perceptual control condition was visual (reading) or auditory (hearing), and varied across participants. The reading and hearing conditions exhibited the expected modality-specificity, producing robust intra-modal priming and non-significant cross-modal priming. Priming in the generate condition depended on the perceptual control condition. With a read control condition, semantic generation produced robust visual priming but no auditory priming. With a hear control condition, the results were reversed: semantic generation produced robust auditory priming but not visual priming. This set of results is not consistent with a straightforward application of either the conceptual-influence or covert-orthography account, and implies that the nature of encoding in the generate condition is influenced by the broader list context. PMID:21388613

  14. Phonological working memory and auditory processing speed in children with specific language impairment

    Directory of Open Access Journals (Sweden)

    Fatemeh Haresabadi

    2015-02-01

    Full Text Available Background and Aim: Specific language impairment (SLI, one variety of developmental language disorder, has attracted much interest in recent decades. Much research has been conducted to discover why some children have a specific language impairment. So far, research has failed to identify a reason for this linguistic deficiency. Some researchers believe language disorder causes defects in phonological working memory and affects auditory processing speed. Therefore, this study reviews the results of research investigating these two factors in children with specific language impairment.Recent Findings: Studies have shown that children with specific language impairment face constraints in phonological working memory capacity. Memory deficit is one possible cause of linguistic disorder in children with specific language impairment. However, in these children, disorder in information processing speed is observed, especially regarding the auditory aspect.Conclusion: Much more research is required to adequately explain the relationship between phonological working memory and auditory processing speed with language. However, given the role of phonological working memory and auditory processing speed in language acquisition, a focus should be placed on phonological working memory capacity and auditory processing speed in the assessment and treatment of children with a specific language impairment.

  15. The maximal area of superconducting tunneling junction X-ray detectors determined by the required signal-to-noise ratio

    International Nuclear Information System (INIS)

    The intrinsically high energy resolution of superconducting tunneling junctions (STJ) requires a low noise charge sensitive amplifier circuit. The noise sources of such a junction + amplifier circuit are discussed. The dominant noise sources are the series noise and the 1/f flicker noise of the FET input stage, amplified by the large input capacitance of the STJ-detector. Means to reduce this capacitance are discussed. Reducing the preamplifier noise by a factor of two and the height of the potential barrier of the insulating layer by two orders of magnitude, by keeping the large conductance of the junction constant, would allow an increase in junction area by a factor of 15. (orig.)

  16. Indirect scaling methods applied to the identification and quantification of auditory attributes

    DEFF Research Database (Denmark)

    Wickelmaier, Florian

    Auditory attributes, like for example loudness, pitch, sharpness, or tonal prominence, reflect how human listeners perceive their acoustical environment. The identification and of relevant auditory attributes and their quantification are therefore of major concern for different applications of...... sound quality research: be it in product-sound design or in the assessment of sound reproduction systems. In this Ph.D. thesis, so-called indirect scaling methods were developed and analyzed for their usefulness in sound quality evaluation. Such methods are characterized by requiring only simple...

  17. Auditory implant research at the House Ear Institute 1989-2013.

    Science.gov (United States)

    Shannon, Robert V

    2015-04-01

    The House Ear Institute (HEI) had a long and distinguished history of auditory implant innovation and development. Early clinical innovations include being one of the first cochlear implant (CI) centers, being the first center to implant a child with a cochlear implant in the US, developing the auditory brainstem implant, and developing multiple surgical approaches and tools for Otology. This paper reviews the second stage of auditory implant research at House - in-depth basic research on perceptual capabilities and signal processing for both cochlear implants and auditory brainstem implants. Psychophysical studies characterized the loudness and temporal perceptual properties of electrical stimulation as a function of electrical parameters. Speech studies with the noise-band vocoder showed that only four bands of tonotopically arrayed information were sufficient for speech recognition, and that most implant users were receiving the equivalent of 8-10 bands of information. The noise-band vocoder allowed us to evaluate the effects of the manipulation of the number of bands, the alignment of the bands with the original tonotopic map, and distortions in the tonotopic mapping, including holes in the neural representation. Stimulation pulse rate was shown to have only a small effect on speech recognition. Electric fields were manipulated in position and sharpness, showing the potential benefit of improved tonotopic selectivity. Auditory training shows great promise for improving speech recognition for all patients. And the Auditory Brainstem Implant was developed and improved and its application expanded to new populations. Overall, the last 25 years of research at HEI helped increase the basic scientific understanding of electrical stimulation of hearing and contributed to the improved outcomes for patients with the CI and ABI devices. This article is part of a Special Issue entitled . PMID:25449009

  18. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathway

    Science.gov (United States)

    Darrow, Keith N.; Slama, Michaël C. C.; Owoc, Maryanna; Kozin, Elliott; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M. Christian; Lee, Daniel J.

    2016-01-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway, and it measured the evoked response to optical stimulation. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL acoustic click stimulus. This broad pattern of activity was consistent with histological confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics will be necessary to convey information in rates typical of many auditory signals. PMID:25481416

  19. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  20. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  1. Basal but not luminal mammary epithelial cells require PI3K/mTOR signaling for Ras-driven overgrowth.

    Science.gov (United States)

    Plichta, Kristin A; Mathers, Jessica L; Gestl, Shelley A; Glick, Adam B; Gunther, Edward J

    2012-11-15

    The mammary ducts of humans and mice are comprised of two main mammary epithelial cell (MEC) subtypes: a surrounding layer of basal MECs and an inner layer of luminal MECs. Breast cancer subtypes show divergent clinical behavior that may reflect properties inherent in their MEC compartment of origin. How the response to a cancer-initiating genetic event is shaped by MEC subtype remains largely unexplored. Using the mouse mammary gland, we designed organotypic three-dimensional culture models that permit challenge of discrete MEC compartments with the same oncogenic insult. Mammary organoids were prepared from mice engineered for compartment-restricted coexpression of oncogenic H-RAS(G12V) together with a nuclear fluorescent reporter. Monitoring of H-RAS(G12V)-expressing MECs during extended live cell imaging permitted visualization of Ras-driven phenotypes via video microscopy. Challenging either basal or luminal MECs with H-RAS(G12V) drove MEC proliferation and survival, culminating in aberrant organoid overgrowth. In each compartment, Ras activation triggered modes of collective MEC migration and invasion that contrasted with physiologic modes used during growth factor-initiated branching morphogenesis. Although basal and luminal Ras activation produced similar overgrowth phenotypes, inhibitor studies revealed divergent use of Ras effector pathways. Blocking either the phosphoinositide 3-kinase or the mammalian target of rapamycin pathway completely suppressed Ras-driven invasion and overgrowth of basal MECs, but only modestly attenuated Ras-driven phenotypes in luminal MECs. We show that MEC subtype defines signaling pathway dependencies downstream of Ras. Thus, cells-of-origin may critically determine the drug sensitivity profiles of mammary neoplasia. PMID:23010075

  2. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    International Nuclear Information System (INIS)

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca2+ ([Ca2+]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca2+]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca2+]i chelator; KN-93, a Ca2+/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca2+]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca2+]i elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth

  3. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  4. The shape of ears to come: dynamic coding of auditory space.

    Science.gov (United States)

    King, A J.; Schnupp, J W.H.; Doubell, T P.

    2001-06-01

    In order to pinpoint the location of a sound source, we make use of a variety of spatial cues that arise from the direction-dependent manner in which sounds interact with the head, torso and external ears. Accurate sound localization relies on the neural discrimination of tiny differences in the values of these cues and requires that the brain circuits involved be calibrated to the cues experienced by each individual. There is growing evidence that the capacity for recalibrating auditory localization continues well into adult life. Many details of how the brain represents auditory space and of how those representations are shaped by learning and experience remain elusive. However, it is becoming increasingly clear that the task of processing auditory spatial information is distributed over different regions of the brain, some working hierarchically, others independently and in parallel, and each apparently using different strategies for encoding sound source location. PMID:11390297

  5. Estimating individual listeners’ auditory-filter bandwidth in simultaneous and non-simultaneous masking

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Caminade, Sabine; Strelcyk, Olaf;

    2010-01-01

    Frequency selectivity in the human auditory system is often measured using simultaneous masking of tones presented in notched noise. Based on such masking data, the equivalent rectangular bandwidth (ERB) of the auditory filters can be derived by applying the power spectrum model of masking...... and assuming a rounded-exponential filter shape. If a forward masking paradigm is used instead of simultaneous masking, filter estimates typically show significantly sharper tuning. This difference in frequency selectivity has commonly been related to spectral suppression mechanisms observed in the cochlea...... the reliability of the individual estimates, a statistical resampling method is applied. It is demonstrated that a rather large set of experimental data is required to reliably estimate auditory filter bandwidth, particularly in the case of simultaneous masking. The poor overall reliability of the filter...

  6. Hierarchical emergence of sequence sensitivity in the songbird auditory forebrain.

    Science.gov (United States)

    Ono, Satoko; Okanoya, Kazuo; Seki, Yoshimasa

    2016-03-01

    Bengalese finches (Lonchura striata var. domestica) generate more complex sequences in their songs than zebra finches. Because of this, we chose this species to explore the signal processing of sound sequence in the primary auditory forebrain area, field L, and in a secondary area, the caudomedial nidopallium (NCM). We simultaneously recorded activity from multiple single units in urethane-anesthetized birds. We successfully replicated the results of a previous study in awake zebra finches examining stimulus-specific habituation of NCM neurons to conspecific songs. Then, we used an oddball paradigm and compared the neural response to deviant sounds that were presented infrequently, with the response to standard sounds, which were presented frequently. In a single sound oddball task, two different song elements were assigned for the deviant and standard sounds. The response bias to deviant elements was larger in NCM than in field L. In a triplet sequence oddball task, two triplet sequences containing elements ABC and ACB were assigned as the deviant and standard. Only neurons in NCM that displayed broad-shaped spike waveforms had sensitivity to the difference in element order. Our results suggest the hierarchical processing of complex sound sequences in the songbird auditory forebrain. PMID:26864094

  7. The effect of background music in auditory health persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2013-01-01

    In auditory health persuasion, threatening information regarding health is communicated by voice only. One relevant context of auditory persuasion is the addition of background music. There are different mechanisms through which background music might influence persuasion, for example through mood (

  8. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. PMID:20018234

  9. Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes.

    Science.gov (United States)

    Puschmann, Sebastian; Sandmann, Pascale; Ahrens, Janina; Thorne, Jeremy; Weerda, Riklef; Klump, Georg; Debener, Stefan; Thiel, Christiane M

    2013-07-15

    Change deafness describes the failure to perceive even intense changes within complex auditory input, if the listener does not attend to the changing sound. Remarkably, previous psychophysical data provide evidence that this effect occurs independently of successful stimulus encoding, indicating that undetected changes are processed to some extent in auditory cortex. Here we investigated cortical representations of detected and undetected auditory changes using electroencephalographic (EEG) recordings and a change deafness paradigm. We applied a one-shot change detection task, in which participants listened successively to three complex auditory scenes, each of them consisting of six simultaneously presented auditory streams. Listeners had to decide whether all scenes were identical or whether the pitch of one stream was changed between the last two presentations. Our data show significantly increased middle-latency Nb responses for both detected and undetected changes as compared to no-change trials. In contrast, only successfully detected changes were associated with a later mismatch response in auditory cortex, followed by increased N2, P3a and P3b responses, originating from hierarchically higher non-sensory brain regions. These results strengthen the view that undetected changes are successfully encoded at sensory level in auditory cortex, but fail to trigger later change-related cortical responses that lead to conscious perception of change. PMID:23466938

  10. Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes’ hearing problem: an innovation in multi-channel-array skin-hearing technology

    OpenAIRE

    Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

    2014-01-01

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different...

  11. DEVELOPING ‘STANDARD NOVEL ‘VAD’ TECHNIQUE’ AND ‘NOISE FREE SIGNALS’ FOR SPEECH AUDITORY BRAINSTEM RESPONSES FOR HUMAN SUBJECTS

    OpenAIRE

    Ranganadh Narayanam*

    2016-01-01

    In this research as a first step we have concentrated on collecting non-intra cortical EEG data of Brainstem Speech Evoked Potentials from human subjects in an Audiology Lab in University of Ottawa. The problems we have considered are the most advanced and most essential problems of interest in Auditory Neural Signal Processing area in the world: The first problem is the Voice Activity Detection (VAD) in Speech Auditory Brainstem Responses (ABR); The second problem is to identify the best De-...

  12. Modification of T cell responses by stem cell mobilization requires direct signaling of the T cell by G-CSF and IL-10

    DEFF Research Database (Denmark)

    MacDonald, Kelli P.A.; Le Texier, Laetitia; Zhang, Ping;

    2014-01-01

    The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which...... the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio......-resistant tissue, and was not required to be produced by T cells. G-CSF mobilization significantly modulated the transcription profile of CD4(+)CD25(+) regulatory T cells, promoted their expansion in the donor and recipient and their depletion significantly increased graft-versus-host disease (GVHD). In contrast...

  13. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  14. What Determines Auditory Distraction? On the Roles of Local Auditory Changes and Expectation Violations

    Science.gov (United States)

    Röer, Jan P.; Bell, Raoul; Buchner, Axel

    2014-01-01

    Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1) and speech distractors (Experiment 2). Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3), indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4). Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes. PMID:24400081

  15. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  16. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    OpenAIRE

    Golden, Hannah L.; Jennifer L. Agustus; Johanna C. Goll; Downey, Laura E; Mummery, Catherine J.; Jonathan M Schott; Crutch, Sebastian J.; Jason D Warren

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘back...

  17. Behavioral correlates of auditory streaming in rhesus macaques

    OpenAIRE

    Christison-Lagay, Kate L.; Cohen, Yale E.

    2013-01-01

    Perceptual representations of auditory stimuli (i.e., sounds) are derived from the auditory system’s ability to segregate and group the spectral, temporal, and spatial features of auditory stimuli—a process called “auditory scene analysis”. Psychophysical studies have identified several of the principles and mechanisms that underlie a listener’s ability to segregate and group acoustic stimuli. One important psychophysical task that has illuminated many of these principles and mechanisms is th...

  18. Auditory ERP response to successive stimuli in infancy

    OpenAIRE

    Chen, Ao; Peter, Varghese; Burnham, Denis

    2016-01-01

    Background. Auditory Event-Related Potentials (ERPs) are useful for understanding early auditory development among infants, as it allows the collection of a relatively large amount of data in a short time. So far, studies that have investigated development in auditory ERPs in infancy have mainly used single sounds as stimuli. Yet in real life, infants must decode successive rather than single acoustic events. In the present study, we tested 4-, 8-, and 12-month-old infants’ auditory ERPs to m...

  19. Auditory Neuropathy Spectrum Disorder Masquerading as Social Anxiety

    OpenAIRE

    Behere, Rishikesh V.; Rao, Mukund G.; Mishra, Shree; Varambally, Shivarama; Nagarajarao, Shivashankar; Bangalore N Gangadhar

    2015-01-01

    The authors report a case of a 47-year-old man who presented with treatment-resistant anxiety disorder. Behavioral observation raised clinical suspicion of auditory neuropathy spectrum disorder. The presence of auditory neuropathy spectrum disorder was confirmed on audiological investigations. The patient was experiencing extreme symptoms of anxiety, which initially masked the underlying diagnosis of auditory neuropathy spectrum disorder. Challenges in diagnosis and treatment of auditory neur...

  20. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4 reveals a requirement for MAPK signalling in mouse sex determination.

    Directory of Open Access Journals (Sweden)

    Debora Bogani

    2009-09-01

    Full Text Available Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY gonad, sex-determining region of the Y (SRY protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4, a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas. These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and

  1. Auditory Brainstem Response Improvements in Hyperbillirubinemic Infants

    Science.gov (United States)

    Abdollahi, Farzaneh Zamiri; Manchaiah, Vinaya; Lotfi, Yones

    2016-01-01

    Background and Objectives Hyperbillirubinemia in infants have been associated with neuronal damage including in the auditory system. Some researchers have suggested that the bilirubin-induced auditory neuronal damages may be temporary and reversible. This study was aimed at investigating the auditory neuropathy and reversibility of auditory abnormalities in hyperbillirubinemic infants. Subjects and Methods The study participants included 41 full term hyperbilirubinemic infants (mean age 39.24 days) with normal birth weight (3,200-3,700 grams) that admitted in hospital for hyperbillirubinemia and 39 normal infants (mean age 35.54 days) without any hyperbillirubinemia or other hearing loss risk factors for ruling out maturational changes. All infants in hyperbilirubinemic group had serum bilirubin level more than 20 milligram per deciliter and undergone one blood exchange transfusion. Hearing evaluation for each infant was conducted twice: the first one after hyperbilirubinemia treatment and before leaving hospital and the second one three months after the first hearing evaluation. Hearing evaluations included transient evoked otoacoustic emission (TEOAE) screening and auditory brainstem response (ABR) threshold tracing. Results The TEOAE and ABR results of control group and TEOAE results of the hyperbilirubinemic group did not change significantly from the first to the second evaluation. However, the ABR results of the hyperbilirubinemic group improved significantly from the first to the second assessment (p=0.025). Conclusions The results suggest that the bilirubin induced auditory neuronal damage can be reversible over time so we suggest that infants with hyperbilirubinemia who fail the first hearing tests should be reevaluated after 3 months of treatment. PMID:27144228

  2. The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation

    KAUST Repository

    Chen, Hao

    2010-09-28

    The Arabidopsis FIERY1 (FRY1) locus was originally identified as a negative regulator of stress-responsive gene expression and later shown to be required for suppression of RNA silencing. In this study we discovered that the FRY1 locus also regulates lateral root formation. Compared with the wild type, fry1 mutant seedlings generated significantly fewer lateral roots under normal growth conditions and also exhibited a dramatically reduced sensitivity to auxin in inducing lateral root initiation. Using transgenic plants that overexpress a yeast homolog of FRY1 that possesses only the 3\\', 5\\'-bisphosphate nucleotidase activity but not the inositol 1-phosphatase activity, we demonstrated that the lateral root phenotypes in fry1 result from loss of the nucleotidase activity. Furthermore, a T-DNA insertion mutant of another RNA silencing suppressor, XRN4 (but not XRN2 or XRN3), which is an exoribonuclease that is inhibited by the substrate of the FRY1 3\\', 5\\'-bisphosphate nucleotidase, exhibits similar lateral root defects. Although fry1 and xrn4 exhibited reduced sensitivity to ethylene, our experiments demonstrated that restoration of ethylene sensitivity in the fry1 mutant is not sufficient to rescue the lateral root phenotypes of fry1. Our results indicate that RNA silencing modulated by FRY1 and XRN4 plays an important role in shaping root architecture. © 2010 Blackwell Publishing Ltd.

  3. Auditory Hypersensitivity in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Lucker, Jay R.

    2013-01-01

    A review of records was completed to determine whether children with auditory hypersensitivities have difficulty tolerating loud sounds due to auditory-system factors or some other factors not directly involving the auditory system. Records of 150 children identified as not meeting autism spectrum disorders (ASD) criteria and another 50 meeting…

  4. AN EVALUATION OF AUDITORY LEARNING IN FILIAL IMPRINTING

    NARCIS (Netherlands)

    BOLHUIS, JJ; VANKAMPEN, HS

    1992-01-01

    The characteristics of auditory learning in filial imprinting in precocial birds are reviewed. Numerous studies have demonstrated that the addition of an auditory stimulus improves following of a visual stimulus. This paper evaluates whether there is genuine auditory imprinting, i.e. the formation o

  5. Auditory Stream Biasing in Children with Reading Impairments

    Science.gov (United States)

    Ouimet, Tialee; Balaban, Evan

    2010-01-01

    Reading impairments have previously been associated with auditory processing differences. We examined "auditory stream biasing", a global aspect of auditory temporal processing. Children with reading impairments, control children and adults heard a 10 s long stream-bias-inducing sound sequence (a repeating 1000 Hz tone) and a test sequence (eight…

  6. Phosphoinositide-3-kinase/akt - dependent signaling is required for maintenance of [Ca2+]i,ICa, and Ca2+ transients in HL-1 cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Graves Bridget M

    2012-06-01

    Full Text Available Abstract The phosphoinositide 3-kinases (PI3K/Akt dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM, a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM; β (TGX-221; 100 nM and γ (AS-252424; 100 nM, to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM, which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.

  7. Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythm

    Directory of Open Access Journals (Sweden)

    David E Jenson

    2015-10-01

    Full Text Available Sensorimotor integration within the dorsal stream enables online monitoring of speech. Jenson et al. (2014 used independent component analysis (ICA and event related spectral perturbation (ERSP analysis of EEG data to describe anterior sensorimotor (e.g., premotor cortex; PMC activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory regions of the dorsal stream in the same tasks. Perception tasks required ‘active’ discrimination of syllable pairs (/ba/ and /da/ in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral ‘auditory’ alpha (α components in 15 of 29 participants localized to pSTG (left and pMTG (right. ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < .05 concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions also temporally aligned with PMC activity reported in Jenson et al. (2014. These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique.

  8. Auditory Perception of Statistically Blurred Sound Textures

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; MacDonald, Ewen; Dau, Torsten

    Sound textures have been identified as a category of sounds which are processed by the peripheral auditory system and captured with running timeaveraged statistics. Although sound textures are temporally homogeneous, they offer a listener with enough information to identify and differentiate...... sources. This experiment investigated the ability of the auditory system to identify statistically blurred sound textures and the perceptual relationship between sound textures. Identification performance of statistically blurred sound textures presented at a fixed blur increased over those presented as a...... gradual blur. The results suggests that the correct identification of sound textures is influenced by the preceding blurred stimulus. These findings draw parallels to the recognition of blurred images....

  9. Binaural processing by the gecko auditory periphery

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Tang, Ye Zhong; Carr, Catherine E

    2011-01-01

    Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (around 1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted...... from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al., 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions...

  10. EEG phase reset due to auditory attention: an inverse time-scale approach

    International Nuclear Information System (INIS)

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6–10 Hz, termed as theta–alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta–alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis

  11. SoundView: an auditory guidance system based on environment understanding for the visually impaired people.

    Science.gov (United States)

    Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2009-01-01

    Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization. PMID:19965094

  12. Effect of signal to noise ratio on the speech perception ability of older adults

    Science.gov (United States)

    Shojaei, Elahe; Ashayeri, Hassan; Jafari, Zahra; Zarrin Dast, Mohammad Reza; Kamali, Koorosh

    2016-01-01

    Background: Speech perception ability depends on auditory and extra-auditory elements. The signal- to-noise ratio (SNR) is an extra-auditory element that has an effect on the ability to normally follow speech and maintain a conversation. Speech in noise perception difficulty is a common complaint of the elderly. In this study, the importance of SNR magnitude as an extra-auditory effect on speech perception in noise was examined in the elderly. Methods: The speech perception in noise test (SPIN) was conducted on 25 elderly participants who had bilateral low–mid frequency normal hearing thresholds at three SNRs in the presence of ipsilateral white noise. These participants were selected by available sampling method. Cognitive screening was done using the Persian Mini Mental State Examination (MMSE) test. Results: Independent T- test, ANNOVA and Pearson Correlation Index were used for statistical analysis. There was a significant difference in word discrimination scores at silence and at three SNRs in both ears (p≤0.047). Moreover, there was a significant difference in word discrimination scores for paired SNRs (0 and +5, 0 and +10, and +5 and +10 (p≤0.04)). No significant correlation was found between age and word recognition scores at silence and at three SNRs in both ears (p≥0.386). Conclusion: Our results revealed that decreasing the signal level and increasing the competing noise considerably reduced the speech perception ability in normal hearing at low–mid thresholds in the elderly. These results support the critical role of SNRs for speech perception ability in the elderly. Furthermore, our results revealed that normal hearing elderly participants required compensatory strategies to maintain normal speech perception in challenging acoustic situations. PMID:27390712

  13. Coevolution in communication senders and receivers: vocal behavior and auditory processing in multiple songbird species

    OpenAIRE

    Woolley, Sarah M. N.; Moore, Jordan M.

    2011-01-01

    Communication is a strong selective pressure on brain evolution because the exchange of information between individuals is crucial for fitness-related behaviors, such as mating. Given the importance of communication, the brains of signal senders and receivers are likely to be functionally coordinated. We study vocal behavior and auditory processing in multiple species of estrildid finches with the goal of understanding how species identity and early experience interact to shape the neural sys...

  14. Relating Pupil Dilation and Metacognitive Confidence during Auditory Decision-Making

    OpenAIRE

    Lempert, Karolina M.; Chen, Yu Lin; Stephen M. Fleming

    2015-01-01

    The sources of evidence contributing to metacognitive assessments of confidence in decision-making remain unclear. Previous research has shown that pupil dilation is related to the signaling of uncertainty in a variety of decision tasks. Here we ask whether pupil dilation is also related to metacognitive estimates of confidence. Specifically, we measure the relationship between pupil dilation and confidence during an auditory decision task using a general linear model approach to take into ac...

  15. Audible pedestrian signals :a feasibility study

    OpenAIRE

    Oliver, Morris Bernard

    1989-01-01

    This report represents a concentrated effort that determines the feasibility of audible pedestrian signals. These signals are devices which give auditory cues to help the visually impaired cross safely at difficult intersections. Surveys were sent out to over 100 organizations, audible signal manufacturers, and cities who have knowledge of the devices, and responses were analyzed. The devices were found to be feasible but only at certain complex and confusing intersect...

  16. Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis

    Directory of Open Access Journals (Sweden)

    Allegro Silvia

    2005-01-01

    Full Text Available A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.

  17. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  18. Auditory evoked field measurement using magneto-impedance sensors

    International Nuclear Information System (INIS)

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement

  19. Functional and effective connectivity in an fMRI study of an auditory-related task.

    Science.gov (United States)

    Caclin, Anne; Fonlupt, Pierre

    2006-05-01

    This study investigates the sets of brain areas that are functionally connected during an auditory goal-directed task. We used a paradigm including a resting state condition and an active condition, which consisted in active listening to the footsteps of walking humans. The regional brain activity was measured using fMRI and the adjusted values of activity in brain regions involved in the task were analysed using both principal component analysis and structural equation modelling. A first set of connected areas includes regions located in Heschl's gyrus, planum temporale, posterior superior temporal sulcus (in the so-called 'social cognition' area), and parietal lobe. This network could be responsible for the perceptual integration of the auditory signal. A second set encompassing frontal regions is related to attentional control. Dorsolateral- and medial-prefrontal cortex have mutual negative influences which are similar to those described during a visual goal-directed task [T. Chaminade & P. Fonlupt (2003) Eur. J. Neurosci., 18, 675-679.]. Moreover, the dorsolateral prefrontal cortex (DLPFC) exerts a positive influence on the auditory areas during the task, as well as a strong negative influence on the visual areas. These results show that: (i) the negative influence between the medial and lateral parts of the frontal cortex during a goal-directed task is not dependent on the input modality (visual or auditory), and (ii) the DLPFC activates the pathway of the relevant sensory modality and inhibits the nonrelevant sensory modality pathway. PMID:16706860

  20. Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis

    Science.gov (United States)

    Fletcher, Phillip D.; Downey, Laura E.; Golden, Hannah L.; Clark, Camilla N.; Slattery, Catherine F.; Paterson, Ross W.; Schott, Jonathan M.; Rohrer, Jonathan D.; Rossor, Martin N.; Warren, Jason D.

    2015-01-01

    Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music (‘musicophilia’) occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease. PMID:25929717