WorldWideScience

Sample records for auditory perceptual learning

  1. Asymmetric transfer of auditory perceptual learning

    Directory of Open Access Journals (Sweden)

    Sygal eAmitay

    2012-11-01

    Full Text Available Perceptual skills can improve dramatically even with minimal practice. A major and practical benefit of learning, however, is in transferring the improvement on the trained task to untrained tasks or stimuli, yet the mechanisms underlying this process are still poorly understood. Reduction of internal noise has been proposed as a mechanism of perceptual learning, and while we have evidence that frequency discrimination (FD learning is due to a reduction of internal noise, the source of that noise was not determined. In this study, we examined whether reducing the noise associated with neural phase locking to tones can explain the observed improvement in behavioural thresholds. We compared FD training between two tone durations (15 and 100 ms that straddled the temporal integration window of auditory nerve fibers upon which computational modeling of phase locking noise was based. Training on short tones resulted in improved FD on probe tests of both the long and short tones. Training on long tones resulted in improvement only on the long tones. Simulations of FD learning, based on the computational model and on signal detection theory, were compared with the behavioral FD data. We found that improved fidelity of phase locking accurately predicted transfer of learning from short to long tones, but also predicted transfer from long to short tones. The observed lack of transfer from long to short tones suggests the involvement of a second mechanism. Training may have increased the temporal integration window which could not transfer because integration time for the short tone is limited by its duration. Current learning models assume complex relationships between neural populations that represent the trained stimuli. In contrast, we propose that training-induced enhancement of the signal-to-noise ratio offers a parsimonious explanation of learning and transfer that easily accounts for asymmetric transfer of learning.

  2. Auditory-perceptual learning improves speech motor adaptation in children.

    Science.gov (United States)

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  3. Motivation and intelligence drive auditory perceptual learning.

    Directory of Open Access Journals (Sweden)

    Sygal Amitay

    Full Text Available BACKGROUND: Although feedback on performance is generally thought to promote perceptual learning, the role and necessity of feedback remain unclear. We investigated the effect of providing varying amounts of positive feedback while listeners attempted to discriminate between three identical tones on learning frequency discrimination. METHODOLOGY/PRINCIPAL FINDINGS: Using this novel procedure, the feedback was meaningless and random in relation to the listeners' responses, but the amount of feedback provided (or lack thereof affected learning. We found that a group of listeners who received positive feedback on 10% of the trials improved their performance on the task (learned, while other groups provided either with excess (90% or with no feedback did not learn. Superimposed on these group data, however, individual listeners showed other systematic changes of performance. In particular, those with lower non-verbal IQ who trained in the no feedback condition performed more poorly after training. CONCLUSIONS/SIGNIFICANCE: This pattern of results cannot be accounted for by learning models that ascribe an external teacher role to feedback. We suggest, instead, that feedback is used to monitor performance on the task in relation to its perceived difficulty, and that listeners who learn without the benefit of feedback are adept at self-monitoring of performance, a trait that also supports better performance on non-verbal IQ tests. These results show that 'perceptual' learning is strongly influenced by top-down processes of motivation and intelligence.

  4. Increased Signal Complexity Improves the Breadth of Generalization in Auditory Perceptual Learning

    OpenAIRE

    Brown, David J.; Proulx, Michael J.

    2013-01-01

    Perceptual learning can be specific to a trained stimulus or optimally generalized to novel stimuli with the breadth of generalization being imperative for how we structure perceptual training programs. Adapting an established auditory interval discrimination paradigm to utilise complex signals, we trained human adults on a standard interval for either 2, 4, or 10 days. We then tested the standard, alternate frequency, interval, and stereo input conditions to evaluate the rapidity of specifi...

  5. Increased Signal Complexity Improves the Breadth of Generalization in Auditory Perceptual Learning

    Directory of Open Access Journals (Sweden)

    David J. Brown

    2013-01-01

    Full Text Available Perceptual learning can be specific to a trained stimulus or optimally generalized to novel stimuli with the breadth of generalization being imperative for how we structure perceptual training programs. Adapting an established auditory interval discrimination paradigm to utilise complex signals, we trained human adults on a standard interval for either 2, 4, or 10 days. We then tested the standard, alternate frequency, interval, and stereo input conditions to evaluate the rapidity of specific learning and breadth of generalization over the time course. In comparison with previous research using simple stimuli, the speed of perceptual learning and breadth of generalization were more rapid and greater in magnitude, including novel generalization to an alternate temporal interval within stimulus type. We also investigated the long term maintenance of learning and found that specific and generalized learning was maintained over 3 and 6 months. We discuss these findings regarding stimulus complexity in perceptual learning and how they can inform the development of effective training protocols.

  6. Feedback valence affects auditory perceptual learning independently of feedback probability

    OpenAIRE

    Amitay, S.; Moore, D. R.; Molloy, K.; Halliday, L. F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they wer...

  7. Auditory perceptual learning in adults with and without age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Hanin eKarawani

    2016-02-01

    Full Text Available Introduction: Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL. Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL.Methods: 56 listeners (60-72 y/o, 35 participants with ARHL and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training and no-training group. Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1 Speech-in-noise (2 time compressed speech and (3 competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results: Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions: ARHL did not preclude auditory perceptual learning but there was little generalization to

  8. Specificity of auditory-guided visual perceptual learning suggests crossmodal plasticity in early visual cortex

    OpenAIRE

    Beer, Anton L.; Watanabe, Takeo

    2009-01-01

    Sounds modulate visual perception. Blind humans show altered brain activity in early visual cortex. However, it is still unclear whether crossmodal activity in visual cortex results from unspecific top-down feedback, a lack of visual input, or genuinely reflects crossmodal interactions at early sensory levels. We examined how sounds affect visual perceptual learning in sighted adults. Visual motion discrimination was tested prior to and following eight sessions in which observers were exposed...

  9. MECHANISMS OF PERCEPTUAL LEARNING

    OpenAIRE

    Lu, Zhong-Lin; Dosher, Barbara Anne

    2009-01-01

    What is learned in perceptual learning? How does perceptual learning change the perceptual system? We investigate these questions using a systems analysis of the perceptual system during the course of perceptual learning using psychophysical methods and models of the observer. Effects of perceptual learning on an observer’s performance are characterized by external noise tests within the framework of noisy observer models. We find evidence that two independent mechanisms, external noise exclu...

  10. Visual Perceptual Learning

    OpenAIRE

    Lu, Zhong-Lin; Hua, Tianmiao; Huang, Chang-Bing; Zhou, Yifeng; Dosher, Barbara Anne

    2010-01-01

    Perceptual learning refers to the phenomenon that practice or training in perceptual tasks often substantially improves perceptual performance. Often exhibiting stimulus or task specificities, perceptual learning differs from learning in the cognitive or motor domains. Research on perceptual learning reveals important plasticity in adult perceptual systems, and as well as the limitations in the information processing of the human observer. In this article, we review the behavioral results, me...

  11. Perceptual learning: top to bottom.

    Science.gov (United States)

    Amitay, Sygal; Zhang, Yu-Xuan; Jones, Pete R; Moore, David R

    2014-06-01

    Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students.

  12. Perceptual learning and generalization resulting from training on an auditory amplitude-modulation detection task.

    Science.gov (United States)

    Fitzgerald, Matthew B; Wright, Beverly A

    2011-02-01

    Fluctuations in sound amplitude provide important cues to the identity of many sounds including speech. Of interest here was whether the ability to detect these fluctuations can be improved with practice, and if so whether this learning generalizes to untrained cases. To address these issues, normal-hearing adults (n = 9) were trained to detect sinusoidal amplitude modulation (SAM; 80-Hz rate, 3-4 kHz bandpass carrier) 720 trials/day for 6-7 days and were tested before and after training on related SAM-detection and SAM-rate-discrimination conditions. Controls (n = 9) only participated in the pre- and post-tests. The trained listeners improved more than the controls on the trained condition between the pre- and post-tests, but different subgroups of trained listeners required different amounts of practice to reach asymptotic performance, ranging from 1 (n = 6) to 4-6 (n = 3) sessions. This training-induced learning did not generalize to detection with two untrained carrier spectra (5 kHz low-pass and 0.5-1.5 kHz bandpass) or to rate discrimination with the trained rate and carrier spectrum, but there was some indication that it generalized to detection with two untrained rates (30 and 150 Hz). Thus, practice improved the ability to detect amplitude modulation, but the generalization of this learning to untrained cases was somewhat limited.

  13. Development of auditory-vocal perceptual skills in songbirds.

    Directory of Open Access Journals (Sweden)

    Vanessa C Miller-Sims

    Full Text Available Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult "tutors", and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.

  14. Development of auditory-vocal perceptual skills in songbirds.

    Science.gov (United States)

    Miller-Sims, Vanessa C; Bottjer, Sarah W

    2012-01-01

    Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult "tutors", and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.

  15. Auditory perceptual simulation: Simulating speech rates or accents?

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. PMID:27177077

  16. Auditory perceptual simulation: Simulating speech rates or accents?

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects.

  17. The plastic ear and perceptual relearning in auditory spatial perception.

    Science.gov (United States)

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5-10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis. PMID:25147497

  18. The plastic ear and perceptual relearning in auditory spatial perception.

    Science.gov (United States)

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5-10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  19. The plastic ear and perceptual relearning in auditory spatial perception.

    Directory of Open Access Journals (Sweden)

    Simon eCarlile

    2014-08-01

    Full Text Available The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear moulds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localisation, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear moulds or through virtual auditory space stimulation using non-individualised spectral cues. The work with ear moulds demonstrates that a relatively short period of training involving sensory-motor feedback (5 – 10 days significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide a spatial code but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  20. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  1. Perceptual learning and human expertise

    Science.gov (United States)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  2. Perceptual learning in speech

    OpenAIRE

    D. Norris; McQueen, J; Cutler, A.

    2003-01-01

    This study demonstrates that listeners use lexical knowledge in perceptual learning of speech sounds. Dutch listeners first made lexical decisions on Dutch words and nonwords. The final fricative of 20 critical words had been replaced by an ambiguous sound, between [f] and [s]. One group of listeners heard ambiguous [f]-final words (e.g., [WI tlo?], from witlof, chicory) and unambiguous [s]-final words (e.g., naaldbos, pine forest). Another group heard the reverse (e.g., ambiguous [na:ldbo?],...

  3. Subcortical correlates of auditory perceptual organization in humans.

    Science.gov (United States)

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2016-09-01

    To make sense of complex auditory scenes, the auditory system sequentially organizes auditory components into perceptual objects or streams. In the conventional view of this process, the cortex plays a major role in perceptual organization, and subcortical mechanisms merely provide the cortex with acoustical features. Here, we show that the neural activities of the brainstem are linked to perceptual organization, which alternates spontaneously for human listeners without any stimulus change. The stimulus used in the experiment was an unchanging sequence of repeated triplet tones, which can be interpreted as either one or two streams. Listeners were instructed to report the perceptual states whenever they experienced perceptual switching between one and two streams throughout the stimulus presentation. Simultaneously, we recorded event related potentials with scalp electrodes. We measured the frequency-following response (FFR), which is considered to originate from the brainstem. We also assessed thalamo-cortical activity through the middle-latency response (MLR). The results demonstrate that the FFR and MLR varied with the state of auditory stream perception. In addition, we found that the MLR change precedes the FFR change with perceptual switching from a one-stream to a two-stream percept. This suggests that there are top-down influences on brainstem activity from the thalamo-cortical pathway. These findings are consistent with the idea of a distributed, hierarchical neural network for perceptual organization and suggest that the network extends to the brainstem level. PMID:27371867

  4. Perceptual learning in sensorimotor adaptation.

    Science.gov (United States)

    Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J

    2013-11-01

    Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.

  5. Few juvenile auditory perceptual skills correlate with adult performance.

    Science.gov (United States)

    Sarro, Emma C; Sanes, Dan H

    2014-02-01

    Measures of human mental development suggest that behavioral skills displayed during early life can predict an individual's subsequent cognitive performance. Support for this draws from longitudinal studies that reveal compelling within-subject correlations during childhood. If this idea applies across the life span, then correlations in performance should persist into adulthood. Here, we address this prediction in juvenile and adult gerbils by evaluating within-subject measures of auditory learning and perception. Animals were trained and tested as juveniles on either an amplitude modulation (AM) or a frequency modulation (FM) detection task. Measures of learning and perception obtained from juveniles were then compared to similar measures obtained when each subject was tested in adulthood on either the same task or the untrained task. For animals trained and tested on the AM detection task as juveniles and adults, there was no correlation between juvenile and adult learning metrics, or perceptual sensitivity. For animals trained and tested on FM detection as juveniles, we observed a significant relationship to their adult performance. Juveniles that performed the best on FM detection were the poorest at AM detection, and the best at FM detection, when tested as adults. Thus, across-age correlations for sensory and cognitive measures, obtained during development and in adulthood, depend heavily on the specific type of developmental experience and the outcome measure.

  6. Listener Agreement for Auditory-Perceptual Ratings of Dysarthria

    Science.gov (United States)

    Bunton, Kate; Kent, Raymond D.; Duffy, Joseph R.; Rosenbek, John C.; Kent, Jane F.

    2007-01-01

    Purpose: Darley, Aronson, and Brown (1969a, 1969b) detailed methods and results of auditory-perceptual assessment for speakers with dysarthrias of varying etiology. They reported adequate listener reliability for use of the rating system as a tool for differential diagnosis, but several more recent studies have raised concerns about listener…

  7. Perceptual Learning of Acoustic Noise by Individuals with Dyslexia

    Science.gov (United States)

    Agus, Trevor R.; Carrión-Castillo, Amaia; Pressnitzer, Daniel; Ramus, Franck

    2014-01-01

    Purpose: A phonological deficit is thought to affect most individuals with developmental dyslexia. The present study addresses whether the phonological deficit is caused by difficulties with perceptual learning of fine acoustic details. Method: A demanding test of nonverbal auditory memory, "noise learning," was administered to both…

  8. Perceptual Learning via Decoded-EEG Neurofeedback

    NARCIS (Netherlands)

    Brandmeyer, A.; Sadakata, M.; Spyrou, L.; McQueen, J.M.; Desain, P.W.M.

    2013-01-01

    An experiment was conducted to determine whether decoding auditory evoked potentials during passive listening and providing the classifier output as a neurofeedback signal leads to the enhancement of auditory perceptual discrimination and/or brain responses related to auditory perception. Results in

  9. Linking perceptual learning with identical stimuli to imagery perceptual learning

    OpenAIRE

    Grzeczkowski, Lukasz; Tartaglia, Elisa; Mast, Fred W.; Herzog, Michael

    2015-01-01

    Perceptual learning is usually thought to be exclusively driven by the stimuli presented during training (and the underlying synaptic learning rules). In some way, we are slaves of our visual experiences. However, learning can occur even when no stimuli are presented at all. For example, Gabor contrast detection improves when only a blank screen is presented and observers are asked to imagine Gabor patches. Likewise, performance improves when observers are asked to imagine the non-existing ce...

  10. Prolonged maturation of auditory perception and learning in gerbils

    OpenAIRE

    Sarro, Emma C.; Sanes, Dan H.

    2010-01-01

    In humans, auditory perception reaches maturity over a broad age range, extending through adolescence. Despite this slow maturation, children are considered to be outstanding learners, suggesting that immature perceptual skills might actually be advantageous to improvement on an acoustic task as a result of training (perceptual learning). Previous non-human studies have not employed an identical task when comparing perceptual performance of young and mature subjects, making it difficult to as...

  11. Perceptual hysteresis in the judgment of auditory pitch shift.

    Science.gov (United States)

    Chambers, Claire; Pressnitzer, Daniel

    2014-07-01

    Perceptual hysteresis can be defined as the enduring influence of the recent past on current perception. Here, hysteresis was investigated in a basic auditory task: pitch comparisons between successive tones. On each trial, listeners were presented with pairs of tones and asked to report the direction of subjective pitch shift, as either "up" or "down." All tones were complexes known as Shepard tones (Shepard, 1964), which comprise several frequency components at octave multiples of a base frequency. The results showed that perceptual judgments were determined both by stimulus-related factors (the interval ratio between the base frequencies within a pair) and by recent context (the intervals in the two previous trials). When tones were presented in ordered sequences, for which the frequency interval between tones was varied in a progressive manner, strong hysteresis was found. In particular, ambiguous stimuli that led to equal probabilities of "up" and "down" responses within a randomized context were almost fully determined within an ordered context. Moreover, hysteresis did not act on the direction of the reported pitch shift, but rather on the perceptual representation of each tone. Thus, hysteresis could be observed within sequences in which listeners varied between "up" and "down" responses, enabling us to largely rule out confounds related to response bias. The strength of the perceptual hysteresis observed suggests that the ongoing context may have a substantial influence on fundamental aspects of auditory perception, such as how we perceive the changes in pitch between successive sounds.

  12. Auditory-Visual System Interactions: Perinatal Visual Experience Affects Auditory Learning and Memory in Bobwhite Quail Chicks (Colinus virginianus)

    OpenAIRE

    Columbus, Rebecca Foushee

    1998-01-01

    Early perceptual learning capacity has been shown to correspond with the relative status of emergent sensory systems throughout prenatal and postnatal development. It has also been shown that young infants can learn perceptual information during perinatal development. However, the exact nature of the relationship between prenatal and postnatal perceptual development and the role of early experience on learning ability have yet to be examined. The present study examined how auditory learnin...

  13. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-01

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.

  14. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  15. Auditory training during development mitigates a hearing loss-induced perceptual deficit.

    OpenAIRE

    Emma Sarro; Dan Sanes

    2014-01-01

    Sensory experience during early development can shape the central nervous system and this is thought to influence adult perceptual skills. In the auditory system, early induction of conductive hearing loss (CHL) leads to deficits in central auditory coding properties in adult animals, and this is accompanied by diminished perceptual thresholds. In contrast, a brief regimen of auditory training during development can enhance the perceptual skills of animals when tested in adulthood. Here, we a...

  16. Perceptual and cognitive spatial learning.

    Science.gov (United States)

    Bedford, F L

    1993-06-01

    Ss were taught novel mappings between visual space and motor space with either a variant on a prism adaptation paradigm (Experiments 1 and 2) or a nonperceptual cognitive task (Experiments 3 and 4). First, discrimination training specified that 1 visual location required a new pointing response but another location did not. This led to unusual generalization unlike typical generalization decrement. Second, training at 9 locations specified that 1 location required a new response but that the remaining 8 did not. This simple isolation mapping was unlearnable and instead a flat function fit through all of space. In contrast, for the cognitive paradigm, not only was isolation of one region of space easily learned, it was the preferred pattern of generalization. Implications for perceptual learning, as well as the qualitative distinctions between perceptual and cognitive learning, are discussed.

  17. Perceptual learning, roving and the unsupervised bias

    OpenAIRE

    Herzog, Michael H.; Aberg, Kristoffer C.; Frémaux, Nicolas; Gerstner, Wulfram; Sprekeler, Henning

    2012-01-01

    Perceptual learning improves perception through training. Perceptual learning improves with most stimulus types but fails when certain stimulus types are mixed during training (roving). This result is surprising because classical supervised and unsupervised neural network models can cope easily with roving conditions. What makes humans so inferior compared to these models? As experimental and conceptual work has shown, human perceptual learning is neither supervised nor unsupervised but rewar...

  18. The effect of generation on long-term repetition priming in auditory and visual perceptual identification.

    Science.gov (United States)

    Mulligan, Neil W

    2011-05-01

    Perceptual implicit memory is typically most robust when the perceptual processing at encoding matches the perceptual processing required during retrieval. A consistent exception is the robust priming that semantic generation produces on the perceptual identification test (Masson & MacLeod, 2002), a finding which has been attributed to either (1) conceptual influences in this nominally perceptual task, or (2) covert orthographic processing during generative encoding. The present experiments assess these possibilities using both auditory and visual perceptual identification, tests in which participants identify auditory words in noise or rapidly-presented visual words. During the encoding phase of the experiments, participants generated some words and perceived others in an intermixed study list. The perceptual control condition was visual (reading) or auditory (hearing), and varied across participants. The reading and hearing conditions exhibited the expected modality-specificity, producing robust intra-modal priming and non-significant cross-modal priming. Priming in the generate condition depended on the perceptual control condition. With a read control condition, semantic generation produced robust visual priming but no auditory priming. With a hear control condition, the results were reversed: semantic generation produced robust auditory priming but not visual priming. This set of results is not consistent with a straightforward application of either the conceptual-influence or covert-orthography account, and implies that the nature of encoding in the generate condition is influenced by the broader list context. PMID:21388613

  19. Perceptual learning of degraded speech by minimizing prediction error.

    Science.gov (United States)

    Sohoglu, Ediz; Davis, Matthew H

    2016-03-22

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech.

  20. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    Full Text Available BACKGROUND: An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. METHODOLOGY/PRINCIPAL FINDINGS: Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. CONCLUSIONS/SIGNIFICANCE: The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns

  1. Modelling the emergence and dynamics of perceptual organisation in auditory streaming.

    Science.gov (United States)

    Mill, Robert W; Bőhm, Tamás M; Bendixen, Alexandra; Winkler, István; Denham, Susan L

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives-a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the dynamics

  2. Modelling the emergence and dynamics of perceptual organisation in auditory streaming.

    Directory of Open Access Journals (Sweden)

    Robert W Mill

    Full Text Available Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives-a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual

  3. Perceptual Constraints in Phonotactic Learning

    Science.gov (United States)

    Endress, Ansgar D.; Mehler, Jacques

    2010-01-01

    Structural regularities in language have often been attributed to symbolic or statistical general purpose computations, whereas perceptual factors influencing such generalizations have received less interest. Here, we use phonotactic-like constraints as a case study to ask whether the structural properties of specific perceptual and memory…

  4. Relationship between perceptual learning in speech and statistical learning in younger and older adults

    Directory of Open Access Journals (Sweden)

    Thordis Marisa Neger

    2014-09-01

    Full Text Available Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech.In the present study, 73 older adults (aged over 60 years and 60 younger adults (aged between 18 and 30 years performed a visual artificial grammar learning task and were presented with sixty meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory and processing speed. Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

  5. Relationship between perceptual learning in speech and statistical learning in younger and older adults.

    Science.gov (United States)

    Neger, Thordis M; Rietveld, Toni; Janse, Esther

    2014-01-01

    Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly. PMID:25225475

  6. Testing an auditory illusion in frogs: Perceptual restoration or sensory bias?

    OpenAIRE

    Seeba, Folkert; Schwartz, Joshua J.; Bee, Mark A.

    2010-01-01

    The human auditory system perceptually restores short deleted segments of speech and other sounds (e.g. tones) when the resulting silent gaps are filled by a potential masking noise. When this phenomenon, known as ‘auditory induction’, occurs, listeners experience the illusion of hearing an ongoing sound continuing through the interrupting noise even though the perceived sound is not physically present. Such illusions suggest that a key function of the auditory system is to allow listeners to...

  7. Auditory Learning Using a Portable Real-Time Vocoder: Preliminary Findings

    Science.gov (United States)

    Casserly, Elizabeth D.; Pisoni, David B.

    2015-01-01

    Purpose: Although traditional study of auditory training has been in controlled laboratory settings, interest has been increasing in more interactive options. The authors examine whether such interactive training can result in short-term perceptual learning, and the range of perceptual skills it impacts. Method: Experiments 1 (N = 37) and 2 (N =…

  8. Velopharyngeal dysfunction: a systematic review of major instrumental and auditory-perceptual assessments

    Directory of Open Access Journals (Sweden)

    Paniagua, Lauren Medeiros

    2014-01-01

    Full Text Available Introduction: Velopharyngeal dysfunction may cause impaired verbal communication skills in individuals with cleft lip and palate; thus, patients with this disorder need to undergo both instrumental and auditory-perceptual assessments. Objective: To investigate the main methods used to evaluate velopharyngeal function in individuals with cleft lip and palate and to determine whether there is an association between videonasoendoscopy results and auditory-perceptual assessments. Method: We conducted a systematic review of the literature on instrumental and auditory-perceptual assessments. We searched the PubMed, Medline, Lilacs, Cochrane, and SciELO databases from October to November 2012. Summary of findings: We found 1,300 studies about the topic of interest published between 1990 and 2012. Of these, 56 studies focused on velopharyngeal physiology; 29 studies presented data on velopharyngeal physiology using at least 1 instrumental assessment and/or 1 auditory-perceptual assessment, and 12 studies associated the results of both types of assessments. Only 3 studies described in detail the analysis of both methods of evaluating velopharyngeal function; however, associations between these findings were not analyzed. Conclusion: We found few studies clearly addressing the criteria chosen to investigate velopharyngeal dysfunction and associations between videonasoendoscopy results and auditory-perceptual assessments.

  9. Auditory training during development mitigates a hearing loss-induced perceptual deficit.

    Science.gov (United States)

    Kang, Ramanjot; Sarro, Emma C; Sanes, Dan H

    2014-01-01

    Sensory experience during early development can shape the central nervous system and this is thought to influence adult perceptual skills. In the auditory system, early induction of conductive hearing loss (CHL) leads to deficits in central auditory coding properties in adult animals, and this is accompanied by diminished perceptual thresholds. In contrast, a brief regimen of auditory training during development can enhance the perceptual skills of animals when tested in adulthood. Here, we asked whether a brief period of training during development could compensate for the perceptual deficits displayed by adult animals reared with CHL. Juvenile gerbils with CHL, and age-matched controls, were trained on a frequency modulation (FM) detection task for 4 or 10 days. The performance of each group was subsequently assessed in adulthood, and compared to adults with normal hearing (NH) or adults raised with CHL that did not receive juvenile training. We show that as juveniles, both CHL and NH animals display similar FM detection thresholds that are not immediately impacted by the perceptual training. However, as adults, detection thresholds and psychometric function slopes of these animals were significantly improved. Importantly, CHL adults with juvenile training displayed thresholds that approached NH adults. Additionally, we found that hearing impaired animals trained for 10 days displayed adult thresholds closer to untrained adults than those trained for 4 days. Thus, a relatively brief period of auditory training may compensate for the deleterious impact of hearing deprivation on auditory perception on the trained task.

  10. Perceptual demand modulates activation of human auditory cortex in response to task-irrelevant sounds.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Mangalathu, Jain; Desai, Anjali; Binder, Jeffrey R; Liebenthal, Einat

    2013-09-01

    In the visual modality, perceptual demand on a goal-directed task has been shown to modulate the extent to which irrelevant information can be disregarded at a sensory-perceptual stage of processing. In the auditory modality, the effect of perceptual demand on neural representations of task-irrelevant sounds is unclear. We compared simultaneous ERPs and fMRI responses associated with task-irrelevant sounds across parametrically modulated perceptual task demands in a dichotic-listening paradigm. Participants performed a signal detection task in one ear (Attend ear) while ignoring task-irrelevant syllable sounds in the other ear (Ignore ear). Results revealed modulation of syllable processing by auditory perceptual demand in an ROI in middle left superior temporal gyrus and in negative ERP activity 130-230 msec post stimulus onset. Increasing the perceptual demand in the Attend ear was associated with a reduced neural response in both fMRI and ERP to task-irrelevant sounds. These findings are in support of a selection model whereby ongoing perceptual demands modulate task-irrelevant sound processing in auditory cortex.

  11. Stimulus coding rules for perceptual learning.

    OpenAIRE

    Jun-Yun Zhang; Shu-Guang Kuai; Lu-Qi Xiao; Klein, Stanley A.; Levi, Dennis M.; Cong Yu

    2008-01-01

    Perceptual learning of visual features occurs when multiple stimuli are presented in a fixed sequence (temporal patterning), but not when they are presented in random order (roving). This points to the need for proper stimulus coding in order for learning of multiple stimuli to occur. We examined the stimulus coding rules for learning with multiple stimuli. Our results demonstrate that: (1) stimulus rhythm is necessary for temporal patterning to take effect during practice; (2) learning conso...

  12. Stimulus Coding Rules for Perceptual Learning

    OpenAIRE

    Yotsumoto, Yuko; Watanabe, Takeo

    2008-01-01

    Takeo Watanabe and Yuko Yotsumoto explore the implications of a new study that shows that for perceptual learning of visual features involving multiple stimuli to occur, the brain needs to temporally "tag" the features, a learning process that requires paying attention.

  13. Category and perceptual learning in subjects with treated Wilson's disease.

    Directory of Open Access Journals (Sweden)

    Pengjing Xu

    Full Text Available To explore the relationship between category and perceptual learning, we examined both category and perceptual learning in patients with treated Wilson's disease (WD, whose basal ganglia, known to be important in category learning, were damaged by the disease. We measured their learning rate and accuracy in rule-based and information-integration category learning, and magnitudes of perceptual learning in a wide range of external noise conditions, and compared the results with those of normal controls. The WD subjects exhibited deficits in both forms of category learning and in perceptual learning in high external noise. However, their perceptual learning in low external noise was relatively spared. There was no significant correlation between the two forms of category learning, nor between perceptual learning in low external noise and either form of category learning. Perceptual learning in high external noise was, however, significantly correlated with information-integration but not with rule-based category learning. The results suggest that there may be a strong link between information-integration category learning and perceptual learning in high external noise. Damage to brain structures that are important for information-integration category learning may lead to poor perceptual learning in high external noise, yet spare perceptual learning in low external noise. Perceptual learning in high and low external noise conditions may involve separate neural substrates.

  14. Multisensory Perceptual Learning of Temporal Order: Audiovisual Learning Transfers to Vision but Not Audition

    OpenAIRE

    David Alais; John Cass

    2010-01-01

    BACKGROUND: An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. METHODOLOGY/PRINCIPAL FINDINGS: Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group ...

  15. Experience-dependent learning of auditory temporal resolution: evidence from Carnatic-trained musicians.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manasa R

    2014-01-22

    Musical training and experience greatly enhance the cortical and subcortical processing of sounds, which may translate to superior auditory perceptual acuity. Auditory temporal resolution is a fundamental perceptual aspect that is critical for speech understanding in noise in listeners with normal hearing, auditory disorders, cochlear implants, and language disorders, yet very few studies have focused on music-induced learning of temporal resolution. This report demonstrates that Carnatic musical training and experience have a significant impact on temporal resolution assayed by gap detection thresholds. This experience-dependent learning in Carnatic-trained musicians exhibits the universal aspects of human perception and plasticity. The present work adds the perceptual component to a growing body of neurophysiological and imaging studies that suggest plasticity of the peripheral auditory system at the level of the brainstem. The present work may be intriguing to researchers and clinicians alike interested in devising cross-cultural training regimens to alleviate listening-in-noise difficulties. PMID:24264076

  16. Data Collection and Analysis Techniques for Evaluating the Perceptual Qualities of Auditory Stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Bonebright, T.L.; Caudell, T.P.; Goldsmith, T.E.; Miner, N.E.

    1998-11-17

    This paper describes a general methodological framework for evaluating the perceptual properties of auditory stimuli. The framework provides analysis techniques that can ensure the effective use of sound for a variety of applications including virtual reality and data sonification systems. Specifically, we discuss data collection techniques for the perceptual qualities of single auditory stimuli including identification tasks, context-based ratings, and attribute ratings. In addition, we present methods for comparing auditory stimuli, such as discrimination tasks, similarity ratings, and sorting tasks. Finally, we discuss statistical techniques that focus on the perceptual relations among stimuli, such as Multidimensional Scaling (MDS) and Pathfinder Analysis. These methods are presented as a starting point for an organized and systematic approach for non-experts in perceptual experimental methods, rather than as a complete manual for performing the statistical techniques and data collection methods. It is our hope that this paper will help foster further interdisciplinary collaboration among perceptual researchers, designers, engineers, and others in the development of effective auditory displays.

  17. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  18. Music Lessons Improve Auditory Perceptual and Cognitive Performance in Deaf Children

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5–4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes. PMID:25071518

  19. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes. PMID:25071518

  20. The role of culture in perceptual learning styles

    Directory of Open Access Journals (Sweden)

    حسینی فاطمی ، پیشقدم حسینی فاطمی ، پیشقدم

    2009-01-01

    Full Text Available The major aim of this article is to determine the role of culture in perceptual learning style (PLS preferences of Iranian English learners, in order to minimize teacher-student style conflict in the classroom. To do this, 400 university students from different fields of study were selected from Allameh Tabatabaee University in Tehran, Ferdowsi University of Mashhad and Mashhad University of Medical Sciences. The subjects were asked to answer Reid’s questionnaire (1987 which was designed to specify 6 types of learning styles including: visual, auditory, tactile, kinesthetic, individual and group. The results indicated that: (a the subjects mostly drew on tactile and kinesthetic styles and had the least preference for the individual style of learning. (b No meaningful association was found between gender, age, proficiency and preference for certain style.

  1. Establishing Validity of the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V)

    Science.gov (United States)

    Zraick, Richard I.; Kempster, Gail B.; Connor, Nadine P.; Thibeault, Susan; Klaben, Bernice K.; Bursac, Zoran; Thrush, Carol R.; Glaze, Leslie E.

    2011-01-01

    Purpose: The Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) was developed to provide a protocol and form for clinicians to use when assessing the voice quality of adults with voice disorders (Kempster, Gerratt, Verdolini Abbott, Barkmeier-Kramer, & Hillman, 2009). This study examined the reliability and the empirical validity of the…

  2. Prolonged maturation of auditory perception and learning in gerbils.

    Science.gov (United States)

    Sarro, Emma C; Sanes, Dan H

    2010-08-01

    In humans, auditory perception reaches maturity over a broad age range, extending through adolescence. Despite this slow maturation, children are considered to be outstanding learners, suggesting that immature perceptual skills might actually be advantageous to improvement on an acoustic task as a result of training (perceptual learning). Previous non-human studies have not employed an identical task when comparing perceptual performance of young and mature subjects, making it difficult to assess learning. Here, we used an identical procedure on juvenile and adult gerbils to examine the perception of amplitude modulation (AM), a stimulus feature that is an important component of most natural sounds. On average, Adult animals could detect smaller fluctuations in amplitude (i.e., smaller modulation depths) than Juveniles, indicating immature perceptual skills in Juveniles. However, the population variance was much greater for Juveniles, a few animals displaying adult-like AM detection. To determine whether immature perceptual skills facilitated learning, we compared naïve performance on the AM detection task with the amount of improvement following additional training. The amount of improvement in Adults correlated with naïve performance: those with the poorest naïve performance improved the most. In contrast, the naïve performance of Juveniles did not predict the amount of learning. Those Juveniles with immature AM detection thresholds did not display greater learning than Adults. Furthermore, for several of the Juveniles with adult-like thresholds, AM detection deteriorated with repeated testing. Thus, immature perceptual skills in young animals were not associated with greater learning. PMID:20506133

  3. Category and Perceptual Learning in Subjects with Treated Wilson's Disease

    OpenAIRE

    Xu, Pengjing; Lu, Zhong-Lin; Wang, Xiaoping; Dosher, Barbara; Zhou, Jiangning; Zhang, Daren; Zhou, Yifeng

    2010-01-01

    To explore the relationship between category and perceptual learning, we examined both category and perceptual learning in patients with treated Wilson's disease (WD), whose basal ganglia, known to be important in category learning, were damaged by the disease. We measured their learning rate and accuracy in rule-based and information-integration category learning, and magnitudes of perceptual learning in a wide range of external noise conditions, and compared the results with those of normal...

  4. Advances in visual perceptual learning and plasticity

    OpenAIRE

    Sasaki, Yuka; Nanez, Jose E.; Watanabe, Takeo

    2009-01-01

    Visual perceptual learning (VPL) is defined as a long-term improvement in performance on a visual task. In recent years, the idea that conscious effort is necessary for VPL to occur has been challenged by research suggesting the involvement of more implicit processing mechanisms, such as reinforcement-driven processing and consolidation. In addition, we have learnt much about the neural substrates of VPL and it has become evident that changes in visual areas and regions beyond the visual cort...

  5. Auditory Processing Disorders

    Science.gov (United States)

    Auditory Processing Disorders Auditory processing disorders (APDs) are referred to by many names: central auditory processing disorders , auditory perceptual disorders , and central auditory disorders . APDs ...

  6. Auditory-perceptual analysis of voice in abused children and adolescents

    OpenAIRE

    Luciene Stivanin; Fernanda Pontes dos Santos; Christian César Cândido de Oliveira; Bernardo dos Santos; Simone Tozzini Ribeiro; Sandra Scivoletto

    2015-01-01

    Introduction: Abused children and adolescents are exposed to factors that can trigger vocal changes. Objective: This study aimed to analyze the prevalence of vocal changes in abused children and adolescents, through auditory-perceptual analysis of voice and the study of the association between vocal changes, communication disorders, psychiatric disorders, and global functioning. Methods: This was an observational and transversal study of 136 children and adolescents (mean age 10.2 years, 78 m...

  7. A Comparison of Perceptual Motor Skill with Auditory Comprehension as Correlates of Word Recognition, Oral Reading, and Silent Reading.

    Science.gov (United States)

    Tillman, Chester E.

    A study was conducted to examine the relationship of perceptual motor skills as measured by the Bender Visual Motor Gestalt Test to word recognition, oral reading, and silent reading. In addition, perceptual motor skill and auditory comprehension were compared as correlates of the three reading variables. Subjects were 60 primary grade students in…

  8. Spatial Shifts of Audio-Visual Interactions by Perceptual Learning are Specific to the Trained Orientation and Eye *

    OpenAIRE

    Batson, Melissa A.; Beer, Anton L.; Aaron R Seitz; Watanabe, Takeo

    2011-01-01

    A large proportion of the human cortex is devoted to visual processing. Contrary to the traditional belief that multimodal integration takes place in multimodal processing areas separate from visual cortex, several studies have found that sounds may directly alter processing in visual brain areas. Furthermore, recent findings show that perceptual learning can change the perceptual mechanisms that relate auditory and visual senses. However, there is still a debate about the systems involved in...

  9. Ambiguity Tolerance and Perceptual Learning Styles of Chinese EFL Learners

    Science.gov (United States)

    Li, Haishan; He, Qingshun

    2016-01-01

    Ambiguity tolerance and perceptual learning styles are the two influential elements showing individual differences in EFL learning. This research is intended to explore the relationship between Chinese EFL learners' ambiguity tolerance and their preferred perceptual learning styles. The findings include (1) the learners are sensitive to English…

  10. Perceptual grouping over time within and across auditory and tactile modalities.

    Directory of Open Access Journals (Sweden)

    I-Fan Lin

    Full Text Available In auditory scene analysis, population separation and temporal coherence have been proposed to explain how auditory features are grouped together and streamed over time. The present study investigated whether these two theories can be applied to tactile streaming and whether temporal coherence theory can be applied to crossmodal streaming. The results show that synchrony detection between two tones/taps at different frequencies/locations became difficult when one of the tones/taps was embedded in a perceptual stream. While the taps applied to the same location were streamed over time, the taps applied to different locations were not. This observation suggests that tactile stream formation can be explained by population-separation theory. On the other hand, temporally coherent auditory stimuli at different frequencies were streamed over time, but temporally coherent tactile stimuli applied to different locations were not. When there was within-modality streaming, temporally coherent auditory stimuli and tactile stimuli were not streamed over time, either. This observation suggests the limitation of temporal coherence theory when it is applied to perceptual grouping over time.

  11. Auditory-motor learning during speech production in 9-11-year-old children.

    Directory of Open Access Journals (Sweden)

    Douglas M Shiller

    Full Text Available BACKGROUND: Hearing ability is essential for normal speech development, however the precise mechanisms linking auditory input and the improvement of speaking ability remain poorly understood. Auditory feedback during speech production is believed to play a critical role by providing the nervous system with information about speech outcomes that is used to learn and subsequently fine-tune speech motor output. Surprisingly, few studies have directly investigated such auditory-motor learning in the speech production of typically developing children. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we manipulated auditory feedback during speech production in a group of 9-11-year old children, as well as in adults. Following a period of speech practice under conditions of altered auditory feedback, compensatory changes in speech production and perception were examined. Consistent with prior studies, the adults exhibited compensatory changes in both their speech motor output and their perceptual representations of speech sound categories. The children exhibited compensatory changes in the motor domain, with a change in speech output that was similar in magnitude to that of the adults, however the children showed no reliable compensatory effect on their perceptual representations. CONCLUSIONS: The results indicate that 9-11-year-old children, whose speech motor and perceptual abilities are still not fully developed, are nonetheless capable of auditory-feedback-based sensorimotor adaptation, supporting a role for such learning processes in speech motor development. Auditory feedback may play a more limited role, however, in the fine-tuning of children's perceptual representations of speech sound categories.

  12. Perceptual Learning and Dynamic Changes in Primary Visual Cortex

    OpenAIRE

    Carmel, David; Carrasco, Marisa

    2008-01-01

    Perceptual learning is the improved performance that follows practice in a perceptual task. In this issue of Neuron, Yotsumoto et al. use fMRI to show that stimuli presented at the location used in training initially evoke greater activation in primary visual cortex than stimuli presented elsewhere, but this difference disappears once learning asymptotes.

  13. The neural basis of implicit perceptual sequence learning

    Directory of Open Access Journals (Sweden)

    Freja eGheysen

    2011-11-01

    Full Text Available The present fMRI study investigated the neural areas involved in implicit perceptual sequence learning. To obtain more insight in the functional contributions of the brain areas, we tracked both the behavioral and neural time course of the learning process, using a perceptual serial color matching task. Next, to investigate whether the neural time course was specific for perceptual information, imaging results were compared to the results of implicit motor sequence learning, previously investigated using an identical serial color matching task. Results indicated that implicit sequences can be acquired by at least two neural systems: the caudate nucleus and the hippocampus, having different operating principles. The caudate nucleus contributed to the implicit sequence learning process for perceptual as well as motor information in a similar and gradual way. The hippocampus, on the other hand, was engaged in a much faster learning process which was more pronounced for the motor compared to the perceptual task. Interestingly, the perceptual and motor learning process occurred on a comparable implicit level, suggesting that consciousness is not the main determinant factor dissociating the hippocampal from the caudate learning system. This study is not only the first to successfully and unambiguously compare brain activation between perceptual and motor levels of implicit sequence learning, it also provides new insights into the specific hippocampal and caudate learning function.

  14. Exogenous attention facilitates location transfer of perceptual learning.

    Science.gov (United States)

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.

  15. Perceptual Templates Improvement through Action Video Game Playing and Comparison to Perceptual Learning

    Directory of Open Access Journals (Sweden)

    Ruyuan Zhang

    2011-05-01

    Full Text Available Action video game playing substantially improves visual performance; however, the source of this improvement remains unclear. Here we use the equivalent external noise technique to characterize the mechanism by which action video games may facilitate performance (Lu & Dosher, 1998. In first study, Action Video Game Players (VGPs and Non-Action Video Game Players (NVGPs performed a foveal orientation identification task at different external noise levels. VGPs showed lower thresholds than NVGPs with a marked difference at different noise levels. Perceptual Template Model fitting indicated that there were an 11% additive noise reduction and a 25% external noise exclusion. The causal effect of action video game playing was confirmed in a following 50 hour training study, This work establishes that playing action video games leads to robust internal addictive and external noise exclusion, consistent with the use of better matched perceptual templates. To investigate the discrepancy between our results and previous fovea perceptual learning research (Lu et al, 2004, same stimuli in previous experiment were used in perceptual learning experiment and we find same perceptual template improvement pattern. This suggest both action video game playing and perceptual learning could lead to better perceptual template.

  16. The rapid emergence of stimulus specific perceptual learning

    OpenAIRE

    ZahraHussain; AllisonBSekuler

    2012-01-01

    Is stimulus specific perceptual learning the result of extended practice or does it emerge early in the time course of learning? We examined this issue by manipulating the amount of practice given on a face identification task on Day 1, and altering the familiarity of stimuli on Day 2. We found that a small number of trials was sufficient to produce stimulus specific perceptual learning of faces: on Day 2, response accuracy decreased by the same amount for novel stimuli regardless of whether ...

  17. High Resolution, High Capacity, Spatial Specificity in Perceptual Learning

    OpenAIRE

    Le Dantec, Christophe C.; Seitz, Aaron R.

    2012-01-01

    Research of perceptual learning has received significant interest due to findings that training on perceptual tasks can yield learning effects that are specific to the stimulus features of that task. However, recent studies have demonstrated that while training a single stimulus at a single location can yield a high-degree of stimulus specificity, training multiple features, or at multiple locations can reveal a broad transfer of learning to untrained features or stimulus locations. We devise...

  18. Perceptual Organization of Visual Structure Requires a Flexible Learning Mechanism

    Science.gov (United States)

    Aslin, Richard N.

    2011-01-01

    Bhatt and Quinn (2011) provide a compelling and comprehensive review of empirical evidence that supports the operation of principles of perceptual organization in young infants. They also have provided a comprehensive list of experiences that could serve to trigger the learning of at least some of these principles of perceptual organization, and…

  19. Is the auditory evoked P2 response a biomarker of learning?

    Science.gov (United States)

    Tremblay, Kelly L; Ross, Bernhard; Inoue, Kayo; McClannahan, Katrina; Collet, Gregory

    2014-01-01

    Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography (EEG) and magnetoencephalography (MEG) have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP), as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What's more, these effects are retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN) wave 600-900 ms post-stimulus onset, post-training exclusively for the group that learned to identify the pre-voiced contrast

  20. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  1. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    Directory of Open Access Journals (Sweden)

    Guang-Di Chen

    2014-01-01

    Full Text Available Previous studies have shown that sodium salicylate (SS activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus. The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.

  2. Relationship between perceptual learning in speech and statistical learning in younger and older adults

    OpenAIRE

    Thordis Marisa Neger; Esther Janse

    2014-01-01

    Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) dr...

  3. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  4. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  5. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  6. Learning to produce speech with an altered vocal tract: The role of auditory feedback

    Science.gov (United States)

    Jones, Jeffery A.; Munhall, K. G.

    2003-01-01

    Modifying the vocal tract alters a speaker's previously learned acoustic-articulatory relationship. This study investigated the contribution of auditory feedback to the process of adapting to vocal-tract modifications. Subjects said the word /tas/ while wearing a dental prosthesis that extended the length of their maxillary incisor teeth. The prosthesis affected /s/ productions and the subjects were asked to learn to produce ``normal'' /s/'s. They alternately received normal auditory feedback and noise that masked their natural feedback during productions. Acoustic analysis of the speakers' /s/ productions showed that the distribution of energy across the spectra moved toward that of normal, unperturbed production with increased experience with the prosthesis. However, the acoustic analysis did not show any significant differences in learning dependent on auditory feedback. By contrast, when naive listeners were asked to rate the quality of the speakers' utterances, productions made when auditory feedback was available were evaluated to be closer to the subjects' normal productions than when feedback was masked. The perceptual analysis showed that speakers were able to use auditory information to partially compensate for the vocal-tract modification. Furthermore, utterances produced during the masked conditions also improved over a session, demonstrating that the compensatory articulations were learned and available after auditory feedback was removed.

  7. Prolonged perceptual learning of positional acuity in adult amblyopia: perceptual template retuning dynamics.

    Science.gov (United States)

    Li, Roger W; Klein, Stanley A; Levi, Dennis M

    2008-12-24

    Amblyopia is a developmental abnormality that results in physiological alterations in the visual cortex and impairs form vision. It is often successfully treated by patching the sound eye in infants and young children, but is generally considered to be untreatable in adults. However, a number of recent studies suggest that repetitive practice of a visual task using the amblyopic eye results in improved performance in both children and adults with amblyopia. These perceptual learning studies have used relatively brief periods of practice; however, clinical studies have shown that the time-constant for successful patching is long. The time-constant for perceptual learning in amblyopia is still unknown. Here we show that the time-constant for perceptual learning depends on the degree of amblyopia. Severe amblyopia requires >50 h (approximately equal to 35,000 trials) to reach plateau, yielding as much as a five-fold improvement in performance at a rate of approximately equal to 1.5%/h. There is significant transfer of learning from the amblyopic to the dominant eye, suggesting that the learning reflects alterations in higher decision stages of processing. Using a reverse correlation technique, we document, for the first time, a dynamic retuning of the amblyopic perceptual decision template and a substantial reduction in internal spatial distortion. These results show that the mature amblyopic brain is surprisingly malleable, and point to more intensive treatment methods for amblyopia.

  8. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  9. Perceptual Learning in the Absence of Task or Stimulus Specificity

    OpenAIRE

    Webb, Ben S.; Neil W. Roach; McGraw, Paul V.

    2007-01-01

    Performance on most sensory tasks improves with practice. When making particularly challenging sensory judgments, perceptual improvements in performance are tightly coupled to the trained task and stimulus configuration. The form of this specificity is believed to provide a strong indication of which neurons are solving the task or encoding the learned stimulus. Here we systematically decouple task- and stimulus-mediated components of trained improvements in perceptual performance and show th...

  10. Learning viewpoint invariant perceptual representations from cluttered images

    OpenAIRE

    M. W. Spratling

    2005-01-01

    In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalise across changes in location, rotation and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli are prese...

  11. Defining a Link between Perceptual Learning and Attention

    OpenAIRE

    Zhang, Jun-Yun; Kuai, Shu-Guang; Xiao, Lu-Qi; Stanley A Klein; Levi, Dennis M.; Yu, Cong

    2008-01-01

    Perceptual learning of visual features occurs when multiple stimuli are presented in a fixed sequence (temporal patterning), but not when they are presented in random order (roving). This points to the need for proper stimulus coding in order for learning of multiple stimuli to occur. We examined the stimulus coding rules for learning with multiple stimuli. Our results demonstrate that: (1) stimulus rhythm is necessary for temporal patterning to take effect during practice; (2) learning conso...

  12. Perceptual Learning Style Preferences among Iranian Graduate Students

    Science.gov (United States)

    Naserieh, Farid; Sarab, Mohammad Reza Anani

    2013-01-01

    Research suggests that a host of cognitive, affective, and perceptual variables are at work when individuals go about the task of second or foreign language learning. Among these variables are learning styles that are habitual ways of perceiving, processing, and storing information. This study was conducted as a response to Isemonger and…

  13. Relationship between perceptual learning in speech and statistical learning in younger and older adults

    NARCIS (Netherlands)

    Neger, T.M.; Rietveld, A.C.M.; Janse, E.

    2014-01-01

    Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech re

  14. Role of bimodal stimulation for auditory-perceptual skills development in children with a unilateral cochlear implant.

    Science.gov (United States)

    Marsella, P; Giannantonio, S; Scorpecci, A; Pianesi, F; Micardi, M; Resca, A

    2015-12-01

    This is a prospective randomised study that evaluated the differences arising from a bimodal stimulation compared to a monaural electrical stimulation in deaf children, particularly in terms of auditory-perceptual skills development. We enrolled 39 children aged 12 to 36 months, suffering from severe-to-profound bilateral sensorineural hearing loss with residual hearing on at least one side. All were unilaterally implanted: 21 wore only the cochlear implant (CI) (unilateral CI group), while the other 18 used the CI and a contralateral hearing aid at the same time (bimodal group). They were assessed with a test battery designed to appraise preverbal and verbal auditory-perceptual skills immediately before and 6 and 12 months after implantation. No statistically significant differences were observed between groups at time 0, while at 6 and 12 months children in the bimodal group had better scores in each test than peers in the unilateral CI group. Therefore, although unilateral deafness/hearing does not undermine hearing acuity in normal listening, the simultaneous use of a CI and a contralateral hearing aid (binaural hearing through a bimodal stimulation) provides an advantage in terms of acquisition of auditory-perceptual skills, allowing children to achieve the basic milestones of auditory perception faster and in greater number than children with only one CI. Thus, "keeping awake" the contralateral auditory pathway, albeit not crucial in determining auditory acuity, guarantees benefits compared with the use of the implant alone. These findings provide initial evidence to establish shared guidelines for better rehabilitation of patients undergoing unilateral cochlear implantation, and add more evidence regarding the correct indications for bilateral cochlear implantation. PMID:26900251

  15. Role of bimodal stimulation for auditory-perceptual skills development in children with a unilateral cochlear implant.

    Science.gov (United States)

    Marsella, P; Giannantonio, S; Scorpecci, A; Pianesi, F; Micardi, M; Resca, A

    2015-12-01

    This is a prospective randomised study that evaluated the differences arising from a bimodal stimulation compared to a monaural electrical stimulation in deaf children, particularly in terms of auditory-perceptual skills development. We enrolled 39 children aged 12 to 36 months, suffering from severe-to-profound bilateral sensorineural hearing loss with residual hearing on at least one side. All were unilaterally implanted: 21 wore only the cochlear implant (CI) (unilateral CI group), while the other 18 used the CI and a contralateral hearing aid at the same time (bimodal group). They were assessed with a test battery designed to appraise preverbal and verbal auditory-perceptual skills immediately before and 6 and 12 months after implantation. No statistically significant differences were observed between groups at time 0, while at 6 and 12 months children in the bimodal group had better scores in each test than peers in the unilateral CI group. Therefore, although unilateral deafness/hearing does not undermine hearing acuity in normal listening, the simultaneous use of a CI and a contralateral hearing aid (binaural hearing through a bimodal stimulation) provides an advantage in terms of acquisition of auditory-perceptual skills, allowing children to achieve the basic milestones of auditory perception faster and in greater number than children with only one CI. Thus, "keeping awake" the contralateral auditory pathway, albeit not crucial in determining auditory acuity, guarantees benefits compared with the use of the implant alone. These findings provide initial evidence to establish shared guidelines for better rehabilitation of patients undergoing unilateral cochlear implantation, and add more evidence regarding the correct indications for bilateral cochlear implantation.

  16. AN EVALUATION OF AUDITORY LEARNING IN FILIAL IMPRINTING

    NARCIS (Netherlands)

    BOLHUIS, JJ; VANKAMPEN, HS

    1992-01-01

    The characteristics of auditory learning in filial imprinting in precocial birds are reviewed. Numerous studies have demonstrated that the addition of an auditory stimulus improves following of a visual stimulus. This paper evaluates whether there is genuine auditory imprinting, i.e. the formation o

  17. The Perceptual Basis of the Modality Effect in Multimedia Learning

    Science.gov (United States)

    Rummer, Ralf; Schweppe, Judith; Furstenberg, Anne; Scheiter, Katharina; Zindler, Antje

    2011-01-01

    Various studies have demonstrated an advantage of auditory over visual text modality when learning with texts and pictures. To explain this modality effect, two complementary assumptions are proposed by cognitive theories of multimedia learning: first, the visuospatial load hypothesis, which explains the modality effect in terms of visuospatial…

  18. Students Preference on Perceptual Learning Style

    Science.gov (United States)

    Obralic, Nudžejma; Akbarov, Azamat

    2012-01-01

    This paper explores a spectrum of problems and challenges students face while learning second language. Many educators and researchers have claimed that learning styles are insignificant component in the learning process. However, the study points out the significance of learning the students' learning style preference. The purpose of the study is…

  19. Comparison of videonasoendoscopy and auditory-perceptual evaluation of speech in individuals with cleft lip/palate

    Directory of Open Access Journals (Sweden)

    Paniagua, Lauren Medeiros

    2014-01-01

    Full Text Available Introduction: The velopharyngeal sphincter (VPS is a muscle belt located between the oropharynx and the nasopharynx. Investigations of velopharyngeal function should include an auditory-perceptual evaluation and at least 1 instrument-based evaluation such as videonasoendoscopy. Aim:To compare the findings of auditory-perceptual evaluation (hypernasality and videonasoendoscopy (gap size in individuals with cleft lip/palate. Method: This was a retrospective, cross-sectional study assessing 49 subjects, of both sexes, with cleft lip/palate followed up at the Otorhinolaryngology Service and the Speech Therapy outpatient clinic of Hospital de Clínicas de Porto Alegre (HCPA. The results from the auditory-perceptual evaluation and the videonasoendoscopy test were compared with respect to the VPS gap size. Results: Subjects with moderate/severe hypernasality had more severe velopharyngeal closure impairment than those with a less severe condition. The interaction between hypernasality severity and the presence of other speech disorders (p = 0.035, whether compensatory and/or obligatory, increased the likelihood of having a moderate-to-large gap in the velopharyngeal closure. Conclusions: We observed an association between the findings of these 2 evaluation methods.

  20. The rapid emergence of stimulus specific perceptual learning

    Directory of Open Access Journals (Sweden)

    Zahra eHussain

    2012-07-01

    Full Text Available Is stimulus specific perceptual learning the result of extended practice or does it emerge early in the time course of learning? We examined this issue by manipulating the amount of practice given on a face identification task on Day 1, and altering the familiarity of stimuli on Day 2. We found that a small number of trials was sufficient to produce stimulus specific perceptual learning of faces: on Day 2, response accuracy decreased by the same amount for novel stimuli regardless of whether observers practiced 105 or 840 trials on Day 1. Current models of learning assume early procedural improvements followed by late stimulus specific gains. Our results show that stimulus specific and procedural improvements are distributed throughout the time course of learning

  1. Simultaneous Stimulus Preexposure Enhances Human Tactile Perceptual Learning

    Science.gov (United States)

    Rodríguez, Gabriel; Angulo, Rocío

    2014-01-01

    An experiment with human participants established a novel procedure to assess perceptual learning with tactile stimuli. Participants received unsupervised exposure to two sandpaper surfaces differing in roughness (A and B). The ability of the participants to discriminate between the stimuli was subsequently assessed on a same/different test. It…

  2. Switching off perceptual learning: Anodal transcranial direct current stimulation (tDCS) at Fp3 eliminates perceptual learning in humans.

    Science.gov (United States)

    Civile, Ciro; Verbruggen, Frederick; McLaren, Rossy; Zhao, Di; Ku, Yixuan; McLaren, I P L

    2016-07-01

    Perceptual learning can be acquired as a result of experience with stimuli that would otherwise be difficult to tell apart, and is often explained in terms of the modulation of feature salience by an error signal based on how well that feature can be predicted by the others that make up the stimulus. In this article we show that anodal transcranial Direct Current Stimulation (tDCS) at Fp3 directly influences this modulation process so as to eliminate and possibly reverse perceptual learning. In 2 experiments, anodal stimulation disrupted perceptual learning (indexed by an inversion effect) compared with sham (Experiment 1) or cathodal (Experiment 2) stimulation. Our findings can be interpreted as showing that anodal tDCS severely reduced or even abolished the modulation of salience based on error, greatly increasing generalization between stimuli. This result supports accounts of perceptual learning based on variations in salience as a consequence of pre-exposure, and opens up the possibility of controlling this phenomenon. (PsycINFO Database Record PMID:27379720

  3. It does belong together: Cross-modal correspondences influence cross-modal integration during perceptual learning

    Directory of Open Access Journals (Sweden)

    Lionel eBrunel

    2015-04-01

    Full Text Available Experiencing a stimulus in one sensory modality is often associated with an experience in another sensory modality. For instance, seeing a lemon might produce a sensation of sourness. This might indicate some kind of cross-modal correspondence between vision and gustation. The aim of the current study was to provide explore whether such cross-modal correspondences influence cross-modal integration during perceptual learning. To that end, we conducted 2 experiments. Using a speeded classification task, Experiment 1 established a cross-modal correspondence between visual lightness and the frequency of an auditory tone. Using a short-term priming procedure, Experiment 2 showed that manipulation of such cross-modal correspondences led to the creation of a crossmodal unit regardless of the nature of the correspondence (i.e., congruent, Experiment 2a or incongruent, Experiment 2b. However, a comparison of priming-effects sizes suggested that cross-modal correspondences modulate cross-modal integration during learning and thus leading to new learned units that have different stability over time. We discuss the implications of our results for the relation between cross-modal correspondence and perceptual learning in the context of a Bayesian explanation of cross-modal correspondences.

  4. SELECTIVENESS OF THE EXPOSURE-BASED PERCEPTUAL LEARNING: WHAT TO LEARN AND WHAT NOT TO LEARN

    OpenAIRE

    Choi, Hoon; Watanabe, Takeo

    2009-01-01

    How does the brain determine what to learn and what not to learn? Previous studies showed that a feature or stimulus on which subjects performed a task was learned, while the features or stimuli that were irrelevant to the task were not learned. This led some researchers to conclude that attention to a stimulus was necessary for the stimulus to be learned. This thought was challenged by the discovery of a task-irrelevant perceptual learning, in which learning occurred by mere exposure to the ...

  5. Predicting perceptual learning from higher-order cortical processing.

    Science.gov (United States)

    Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan

    2016-01-01

    Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making.

  6. Roles of attention in perceptual learning from perspectives of psychophysics and animal learning

    OpenAIRE

    Tsushima, Yoshiaki; Watanabe, Takeo

    2009-01-01

    The role of attention in perceptual learning has been a topic of controversy. Sensory psychophysicists/physiologists and animal learning psychologists have conducted numerous studies to examine this role; but because these two types of researchers use two very different lines of approach, their findings have never been effectively integrated. In the present article, we review studies from both lines and use exposure-based learning experiments to discuss the role of attention in perceptual lea...

  7. Rule-Based Learning Explains Visual Perceptual Learning and Its Specificity and Transfer

    OpenAIRE

    Zhang, Jun-Yun; Zhang, Gong-Liang; Xiao, Lu-Qi; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong

    2010-01-01

    Visual perceptual learning models, as constrained by orientation and location specificities, propose that learning either reflects changes in V1 neuronal tuning or reweighting specific V1 inputs in either the visual cortex or higher areas. Here we demonstrate that, with a training-plus-exposure procedure, in which observers are trained at one orientation and either simultaneously or subsequently passively exposed to a second transfer orientation, perceptual learning can completely transfer to...

  8. Making Experts: Optimizing Perceptual Learning in Complex, Real-World Learning Domains

    OpenAIRE

    Thai, Khanh-Phuong

    2015-01-01

    How do we accelerate the process of gaining expertise? Recent research suggests that advanced pattern recognition and fluency can be developed in a short period of time using adaptive and perceptual learning technology (e.g., Kellman & Kaiser, 1994; Kellman, Massey, and Son, 2009). Much is still unknown, however, about the connections between perceptual learning and adaptive learning technology that allow for the efficient development of such expertise effects. In six experiments, I examined ...

  9. Dissociation of Neural Networks for Predisposition and for Training-Related Plasticity in Auditory-Motor Learning.

    Science.gov (United States)

    Herholz, Sibylle C; Coffey, Emily B J; Pantev, Christo; Zatorre, Robert J

    2016-07-01

    Skill learning results in changes to brain function, but at the same time individuals strongly differ in their abilities to learn specific skills. Using a 6-week piano-training protocol and pre- and post-fMRI of melody perception and imagery in adults, we dissociate learning-related patterns of neural activity from pre-training activity that predicts learning rates. Fronto-parietal and cerebellar areas related to storage of newly learned auditory-motor associations increased their response following training; in contrast, pre-training activity in areas related to stimulus encoding and motor control, including right auditory cortex, hippocampus, and caudate nuclei, was predictive of subsequent learning rate. We discuss the implications of these results for models of perceptual and of motor learning. These findings highlight the importance of considering individual predisposition in plasticity research and applications. PMID:26139842

  10. Perceptual learning in the absence of task or stimulus specificity.

    Directory of Open Access Journals (Sweden)

    Ben S Webb

    Full Text Available Performance on most sensory tasks improves with practice. When making particularly challenging sensory judgments, perceptual improvements in performance are tightly coupled to the trained task and stimulus configuration. The form of this specificity is believed to provide a strong indication of which neurons are solving the task or encoding the learned stimulus. Here we systematically decouple task- and stimulus-mediated components of trained improvements in perceptual performance and show that neither provides an adequate description of the learning process. Twenty-four human subjects trained on a unique combination of task (three-element alignment or bisection and stimulus configuration (vertical or horizontal orientation. Before and after training, we measured subjects' performance on all four task-configuration combinations. What we demonstrate for the first time is that learning does actually transfer across both task and configuration provided there is a common spatial axis to the judgment. The critical factor underlying the transfer of learning effects is not the task or stimulus arrangements themselves, but rather the recruitment of commons sets of neurons most informative for making each perceptual judgment.

  11. The role of vowel perceptual cues in compensatory responses to perturbations of speech auditory feedback

    OpenAIRE

    Reilly, Kevin J.; Dougherty, Kathleen E.

    2013-01-01

    The perturbation of acoustic features in a speaker's auditory feedback elicits rapid compensatory responses that demonstrate the importance of auditory feedback for control of speech output. The current study investigated whether responses to a perturbation of speech auditory feedback vary depending on the importance of the perturbed feature to perception of the vowel being produced. Auditory feedback of speakers' first formant frequency (F1) was shifted upward by 130 mels in randomly selecte...

  12. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  13. Template optimization and transfer in perceptual learning.

    Science.gov (United States)

    Kurki, Ilmari; Hyvärinen, Aapo; Saarinen, Jussi

    2016-08-01

    We studied how learning changes the processing of a low-level Gabor stimulus, using a classification-image method (psychophysical reverse correlation) and a task where observers discriminated between slight differences in the phase (relative alignment) of a target Gabor in visual noise. The method estimates the internal "template" that describes how the visual system weights the input information for decisions. One popular idea has been that learning makes the template more like an ideal Bayesian weighting; however, the evidence has been indirect. We used a new regression technique to directly estimate the template weight change and to test whether the direction of reweighting is significantly different from an optimal learning strategy. The subjects trained the task for six daily sessions, and we tested the transfer of training to a target in an orthogonal orientation. Strong learning and partial transfer were observed. We tested whether task precision (difficulty) had an effect on template change and transfer: Observers trained in either a high-precision (small, 60° phase difference) or a low-precision task (180°). Task precision did not have an effect on the amount of template change or transfer, suggesting that task precision per se does not determine whether learning generalizes. Classification images show that training made observers use more task-relevant features and unlearn some irrelevant features. The transfer templates resembled partially optimized versions of templates in training sessions. The template change direction resembles ideal learning significantly but not completely. The amount of template change was highly correlated with the amount of learning. PMID:27559720

  14. Perceptual Learning via Modification of Cortical Top-Down Signals

    OpenAIRE

    Schäfer, Roland; Vasilaki, Eleni; Senn, Walter

    2007-01-01

    Author Summary Perceptual learning improves sensory stimulus discrimination by repeated practicing. The improved stimulus discrimination is often thought to arise either from modified stimulus representation in the sensory cortex, or from modified readout from the sensory cortex by higher cortical units. Both explanations, the modified sensory representation and the modified readout, have their advantages and disadvantages. Modifying the stimulus representation within the early sensory cortex...

  15. Auditory Processing Learning Disability, Suicidal Ideation, and Transformational Faith

    Science.gov (United States)

    Bailey, Frank S.; Yocum, Russell G.

    2015-01-01

    The purpose of this personal experience as a narrative investigation is to describe how an auditory processing learning disability exacerbated--and how spirituality and religiosity relieved--suicidal ideation, through the lived experiences of an individual born and raised in the United States. The study addresses: (a) how an auditory processing…

  16. Conditions of Practice in Perceptual Skill Learning

    Science.gov (United States)

    Memmert, D.; Hagemann, N.; Althoetmar, R.; Geppert, S.; Seiler, D.

    2009-01-01

    This study uses three experiments with different kinds of training conditions to investigate the "easy-to-hard" principle, context interference conditions, and feedback effects for learning anticipatory skills in badminton. Experiment 1 (N = 60) showed that a training program that gradually increases the difficulty level has no advantage over the…

  17. The time course of perceptual learning

    OpenAIRE

    Poellmann, K.; McQueen, J; Mitterer, H.

    2011-01-01

    Two groups of participants were trained to perceive an ambiguous sound [s/f] as either /s/ or /f/ based on lexical bias: One group heard the ambiguous fricative in /s/-final words, the other in /f/-final words. This kind of exposure leads to a recalibration of the /s/-/f/ contrast [e.g., 4]. In order to investigate when and how this recalibration emerges, test trials were interspersed among training and filler trials. The learning effect needed at least 10 clear training items to arise. Its e...

  18. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function. PMID:23988583

  19. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.

  20. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    OpenAIRE

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; van Rens, G. H M B; Cillessen, A.H.N.

    2013-01-01

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children with visual impairment were divided into three groups: a magnifier group (n = 12), a crowded perceptual learning group (n = 18), and an uncrowded perceptual learning group (n = 15). Children with no...

  1. Manipulation gesture effect in visual and auditory presentations: the link between tools in perceptual and motor tasks.

    Directory of Open Access Journals (Sweden)

    Amandine E Rey

    2015-07-01

    Full Text Available There is much behavioral and neurophysiological evidence in support of the idea that seeing a tool activates motor components of action related to the perceived object (e.g., grasping, use manipulation. However, the question remains as to whether the processing of the motor components associated with the tool is automatic or depends on the situation, including the task and the modality of tool presentation. The present study investigated whether the activation of motor components involved in tool use in response to the simple perception of a tool is influenced by the link between prime and target tools, as well as by the modality of presentation, in perceptual or motor tasks. To explore this issue, we manipulated the similarity of gesture involved in the use of the prime and target (identical, similar, different with two tool presentation modalities of the presentation tool (visual or auditory in perceptual and motor tasks. Across the experiments, we also manipulated the relevance of the prime (i.e., associated or not with the current task. The participants saw a first tool (or heard the sound it makes, which was immediately followed by a second tool on which they had to perform a perceptual task (i.e., indicate whether the second tool was identical to or different from the first tool or a motor task (i.e., manipulate the second tool as if it were the first tool. In both tasks, the similarity between the gestures employed for the first and the second tool was manipulated (Identical, Similar or Different gestures. The results showed that responses were faster when the manipulation gestures for the two tools were identical or similar, but only in the motor task. This effect was observed irrespective of the modality of presentation of the first tool, i.e. visual or auditory. We suggest that the influence of manipulation gesture on response time depends on the relevance of the first tool in motor tasks.

  2. Trait anxiety and post-learning stress do not affect perceptual learning

    OpenAIRE

    Aberg, Kristoffer C.; Clarke, Aaron M.; Sandi, Carmen; Herzog, Michael H.

    2012-01-01

    While it is well established that stress can modulate declarative learning, very few studies have investigated the influence of stress on non-declarative learning. Here, we studied the influence of post-learning stress, which effectively modulates declarative learning, on perceptual learning of a visual texture discrimination task (TDT). On day one, participants trained for one session with TDT and were instructed that they, at any time, could be exposed to either a high stressor (ice–water; ...

  3. Learning of arbitrary association between visual and auditory novel stimuli in adults: the "bond effect" of haptic exploration.

    Directory of Open Access Journals (Sweden)

    Benjamin Fredembach

    Full Text Available BACKGROUND: It is well-known that human beings are able to associate stimuli (novel or not perceived in their environment. For example, this ability is used by children in reading acquisition when arbitrary associations between visual and auditory stimuli must be learned. The studies tend to consider it as an "implicit" process triggered by the learning of letter/sound correspondences. The study described in this paper examined whether the addition of the visuo-haptic exploration would help adults to learn more effectively the arbitrary association between visual and auditory novel stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Adults were asked to learn 15 new arbitrary associations between visual stimuli and their corresponding sounds using two learning methods which differed according to the perceptual modalities involved in the exploration of the visual stimuli. Adults used their visual modality in the "classic" learning method and both their visual and haptic modalities in the "multisensory" learning one. After both learning methods, participants showed a similar above-chance ability to recognize the visual and auditory stimuli and the audio-visual associations. However, the ability to recognize the visual-auditory associations was better after the multisensory method than after the classic one. CONCLUSION/SIGNIFICANCE: This study revealed that adults learned more efficiently the arbitrary association between visual and auditory novel stimuli when the visual stimuli were explored with both vision and touch. The results are discussed from the perspective of how they relate to the functional differences of the manual haptic modality and the hypothesis of a "haptic bond" between visual and auditory stimuli.

  4. The differential consolidation of perceptual and motor learning in skill acquisition.

    Science.gov (United States)

    Hallgató, Emese; Győri-Dani, Dóra; Pekár, Judit; Janacsek, Karolina; Nemeth, Dezso

    2013-04-01

    Implicit skill learning is an unconscious way of learning which underlies not only motor but also cognitive and social skills. This form of learning is based on both motor and perceptual information. Although many studies have investigated the perceptual and motor components of "online" skill learning, the effect of consolidation on perceptual and motor characteristics of skill learning has not been studied to our knowledge. In our research we used a sequence learning task to determine if consolidation had the same or different effect on the perceptual and the motor components of skill acquisition. We introduced a 12-h (including or not including sleep) and a 24-h (diurnal control) delay between the learning and the testing phase with AM-PM, PM-AM, AM-AM and PM-PM groups, in order to examine whether the offline period had differential effects on perceptual and motor learning. Although both perceptual and motor learning were significant in the testing phase, results showed that motor knowledge transfers more effectively than perceptual knowledge during the offline period, irrespective of whether sleep occurred or not and whether there was a 12- or 24-h delay period between the learning and the testing phase. These results have important implications for the debate concerning perceptual/motor learning and the role of sleep in skill acquisition.

  5. Perceptual learning in Williams syndrome: looking beyond averages.

    Directory of Open Access Journals (Sweden)

    Patricia Gervan

    Full Text Available Williams Syndrome is a genetically determined neurodevelopmental disorder characterized by an uneven cognitive profile and surprisingly large neurobehavioral differences among individuals. Previous studies have already shown different forms of memory deficiencies and learning difficulties in WS. Here we studied the capacity of WS subjects to improve their performance in a basic visual task. We employed a contour integration paradigm that addresses occipital visual function, and analyzed the initial (i.e. baseline and after-learning performance of WS individuals. Instead of pooling the very inhomogeneous results of WS subjects together, we evaluated individual performance by expressing it in terms of the deviation from the average performance of the group of typically developing subjects of similar age. This approach helped us to reveal information about the possible origins of poor performance of WS subjects in contour integration. Although the majority of WS individuals showed both reduced baseline and reduced learning performance, individual analysis also revealed a dissociation between baseline and learning capacity in several WS subjects. In spite of impaired initial contour integration performance, some WS individuals presented learning capacity comparable to learning in the typically developing population, and vice versa, poor learning was also observed in subjects with high initial performance levels. These data indicate a dissociation between factors determining initial performance and perceptual learning.

  6. Applying perceptual and adaptive learning techniques for teaching introductory histopathology

    Directory of Open Access Journals (Sweden)

    Sally Krasne

    2013-01-01

    Full Text Available Background: Medical students are expected to master the ability to interpret histopathologic images, a difficult and time-consuming process. A major problem is the issue of transferring information learned from one example of a particular pathology to a new example. Recent advances in cognitive science have identified new approaches to address this problem. Methods: We adapted a new approach for enhancing pattern recognition of basic pathologic processes in skin histopathology images that utilizes perceptual learning techniques, allowing learners to see relevant structure in novel cases along with adaptive learning algorithms that space and sequence different categories (e.g. diagnoses that appear during a learning session based on each learner′s accuracy and response time (RT. We developed a perceptual and adaptive learning module (PALM that utilized 261 unique images of cell injury, inflammation, neoplasia, or normal histology at low and high magnification. Accuracy and RT were tracked and integrated into a "Score" that reflected students rapid recognition of the pathologies and pre- and post-tests were given to assess the effectiveness. Results: Accuracy, RT and Scores significantly improved from the pre- to post-test with Scores showing much greater improvement than accuracy alone. Delayed post-tests with previously unseen cases, given after 6-7 weeks, showed a decline in accuracy relative to the post-test for 1 st -year students, but not significantly so for 2 nd -year students. However, the delayed post-test scores maintained a significant and large improvement relative to those of the pre-test for both 1 st and 2 nd year students suggesting good retention of pattern recognition. Student evaluations were very favorable. Conclusion: A web-based learning module based on the principles of cognitive science showed an evidence for improved recognition of histopathology patterns by medical students.

  7. Music Lessons Improve Auditory Perceptual and Cognitive Performance in Deaf Children

    OpenAIRE

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading...

  8. Music lessons improve auditory perceptual and cognitive performance in deaf children

    OpenAIRE

    Françoise eROCHETTE

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading...

  9. Complete Transfer of Perceptual Learning across Retinal Locations Enabled by Double Training

    OpenAIRE

    Xiao, Lu-Qi; Zhang, Jun-Yun; Wang, Rui; Stanley A Klein; Levi, Dennis M.; Yu, Cong

    2008-01-01

    Practice improves discrimination of many basic visual features, such as contrast, orientation, positional offset, etc. [1–7]. Perceptual learning of many of these tasks is found to be retinal location specific, in that learning transfers little to an untrained retinal location [1, 6–8]. In most perceptual learning models, this location specificity is interpreted as a pointer to a retinotopic early visual cortical locus of learning [1, 6–11]. Alternatively, an untested hypothesis is that learn...

  10. Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia.

    Science.gov (United States)

    Gori, Simone; Facoetti, Andrea

    2014-06-01

    Learning to read is extremely difficult for about 10% of children across cultures because they are affected by developmental dyslexia (DD). According to the dominant view, DD is considered an auditory-phonological processing deficit. However, accumulating evidence from developmental and clinical vision science, suggests that the basic cross-modal letter-to-speech sound integration deficit in DD might arise from a mild atypical development of the magnocellular-dorsal pathway which also contains the main fronto-parietal attentional network. Letters have to be precisely selected from irrelevant and cluttering letters by rapid orienting of visual attention before the correct letter-to-speech sound integration applies. Our aim is to review the literature supporting a possible role of perceptual learning (PL) in helping to solve the puzzle called DD. PL is defined as improvement of perceptual skills with practice. Based on the previous literature showing how PL is able to selectively change visual abilities, we here propose to use PL to improve the impaired visual functions characterizing DD and, in particular, the visual deficits that could be developmentally related to an early magnocellular-dorsal pathway and selective attention dysfunction. The crucial visual attention deficits that are causally linked to DD could be, indeed, strongly reduced by training the magnocellular-dorsal pathway with the PL, and learning to read for children with DD would not be anymore such a difficult task. This new remediation approach - not involving any phonological or orthographic training - could be also used to develop new prevention programs for pre-reading children at DD risk.

  11. The Auditory Verbal Learning Test (Rey AVLT): An Arabic Version

    Science.gov (United States)

    Sharoni, Varda; Natur, Nazeh

    2014-01-01

    The goals of this study were to adapt the Rey Auditory Verbal Learning Test (AVLT) into Arabic, to compare recall functioning among age groups (6:0 to 17:11), and to compare gender differences on various memory dimensions (immediate and delayed recall, learning rate, recognition, proactive interferences, and retroactive interferences). This…

  12. Perceptual-motor learning benefits from increased stress and anxiety.

    Science.gov (United States)

    Hordacre, Brenton; Immink, Maarten A; Ridding, Michael C; Hillier, Susan

    2016-10-01

    The purpose of this study was to manipulate psychological stress and anxiety to investigate effects on ensuing perceptual-motor learning. Thirty-six participants attended two experimental sessions separated by 24h. In the first session, participants were randomized to either a mental arithmetic task known to increase stress and anxiety levels or a control condition and subsequently completed training on a speeded precision pinch task. Learning of the pinch task was assessed at the second session. Those exposed to the high stress-anxiety mental arithmetic task prior to training reported elevated levels of both stress and anxiety and demonstrated shorter movement times and improved retention of movement accuracy and movement variability. Response execution processes appear to benefit from elevated states of stress and anxiety immediately prior to training even when elicited by an unrelated task. PMID:27309494

  13. The Psychophysics of Algebra Expertise: Mathematics Perceptual Learning Interventions Produce Durable Encoding Changes

    Science.gov (United States)

    Bufford, Carolyn A.; Mettler, Everett; Geller, Emma H.; Kellman, Philip J.

    2014-01-01

    Mathematics requires thinking but also pattern recognition. Recent research indicates that perceptual learning (PL) interventions facilitate discovery of structure and recognition of patterns in mathematical domains, as assessed by tests of mathematical competence. Here we sought direct evidence that a brief perceptual learning module (PLM)…

  14. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors.

    Science.gov (United States)

    Chen, Zhaocong; Wong, Francis C K; Jones, Jeffery A; Li, Weifeng; Liu, Peng; Chen, Xi; Liu, Hanjun

    2015-01-01

    Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production. PMID:26278337

  15. The Neural Circuitry of Expertise: Perceptual Learning and Social Cognition

    Directory of Open Access Journals (Sweden)

    Michael eHarre

    2013-12-01

    Full Text Available Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create our social environment. While this is an enormous task, we may already have at hand many of the tools we need. This article is intended to review some of the recent results in neuro-cognitive research and show how they can be extended to two very specific types of expertise: perceptual expertise and social cognition. These two cognitive skills span a vast range of our genetic heritage. Perceptual expertise developed very early in our evolutionary history and is likely a highly developed part of all mammals' cognitive ability. On the other hand social cognition is most highly developed in humans in that we are able to maintain larger and more stable long term social connections with more behaviourally diverse individuals than any other species. To illustrate these ideas I will discuss board games as a toy model of social interactions as they include many of the relevant concepts: perceptual learning, decision-making, long term planning and understanding the mental states of other people. Using techniques that have been developed in mathematical psychology, I show that we can represent some of the key features of expertise using stochastic differential equations. Such models demonstrate how an expert's long exposure to a particular context influences the information they accumulate in order to make a decision.These processes are not confined to board games, we are all experts in our daily lives through long exposure to the many regularities of daily tasks and

  16. The neural circuitry of expertise: perceptual learning and social cognition.

    Science.gov (United States)

    Harré, Michael

    2013-12-17

    Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create our social environment. While this is an enormous task, we may already have at hand many of the tools we need. This article is intended to review some of the recent results in neuro-cognitive research and show how they can be extended to two very specific and interrelated types of expertise: perceptual expertise and social cognition. These two cognitive skills span a vast range of our genetic heritage. Perceptual expertise developed very early in our evolutionary history and is a highly developed part of all mammals' cognitive ability. On the other hand social cognition is most highly developed in humans in that we are able to maintain larger and more stable long term social connections with more behaviorally diverse individuals than any other species. To illustrate these ideas I will discuss board games as a toy model of social interactions as they include many of the relevant concepts: perceptual learning, decision-making, long term planning and understanding the mental states of other people. Using techniques that have been developed in mathematical psychology, I show that we can represent some of the key features of expertise using stochastic differential equations (SDEs). Such models demonstrate how an expert's long exposure to a particular context influences the information they accumulate in order to make a decision.These processes are not confined to board games, we are all experts in our daily lives through long exposure to the many regularities of daily tasks and social

  17. Two-stage perceptual learning to break visual crowding.

    Science.gov (United States)

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  18. Effects of Consensus Training on the Reliability of Auditory Perceptual Ratings of Voice Quality

    DEFF Research Database (Denmark)

    Iwarsson, Jenny; Petersen, Niels Reinholt

    2012-01-01

    a multidimensional protocol with four-point equal-appearing interval scales. The stimuli consisted of text reading by authentic dysphonic patients. The consensus training for each perceptual voice parameter included (1) definition, (2) underlying physiology, (3) presentation of carefully selected sound examples...

  19. Seeing what is not there shows the costs of perceptual learning

    OpenAIRE

    Seitz, Aaron R.; Nanez, Jose E.; Holloway, Steven R.; Koyama, Shinichi; Watanabe, Takeo

    2005-01-01

    Perceptual learning is an improvement in one's sensory abilities after training and is thought to help us to better adapt to the sensory environment. Here, we show that perceptual learning also can lead to misperceptions, such that subjects actually perceive stimuli when none are physically presented. After learning, subjects not only showed enhanced performance when tested with the motion direction of the trained stimulus but also often reported seeing dots moving in the trained direction wh...

  20. NEURAL CHANGES WITH TACTILE LEARNING REFLECT DECISION-LEVEL REWEIGHTING OF PERCEPTUAL READOUT

    OpenAIRE

    Sathian, K.; Deshpande, Gopikrishna; Stilla, Randall

    2013-01-01

    Despite considerable work, the neural basis of perceptual learning remains uncertain. For visual learning, although some studies suggested that changes in early sensory representations are responsible, other studies point to decision-level reweighting of perceptual readout. These competing possibilities have not been examined in other sensory systems, investigating which could help resolve the issue. Here we report a study of human tactile microspatial learning in which participants achieved ...

  1. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    Science.gov (United States)

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  2. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    Science.gov (United States)

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  3. Motor and perceptual sequence learning: different time course of parallel processes.

    Science.gov (United States)

    Dirnberger, Georg; Novak-Knollmueller, Judith

    2013-07-10

    The aim was to determine the extent and time course of motor and perceptual learning in a procedural learning task, and the relation of these two processes. Because environmental constraints modulate the relative impact of different learning mechanisms, we chose a simple learning task similar to real-life exercise. Thirty-four healthy individuals performed a visuomotor serial reaction time task. Learning blocks with high stimulus-response compatibility were practiced repeatedly; in between these, participants performed test blocks with the same or a different (mirror-inverted, or new) stimulus sequence and/or with the same or a different (mirror-inverted) stimulus-response allocation. This design allowed us to measure the progress of motor learning and perceptual learning independently. Results showed that in the learning blocks, a steady reduction of the reaction times indicated that - as expected - participants improved their skills continuously. Analysis of the test blocks indicated that both motor learning and perceptual learning were significant. The two mechanisms were correlated (r=0.62, Pperceptual learning was more stable but slower. In conclusion, in a simple visuomotor learning task, participants can learn the motor sequence and the stimulus sequence in parallel. The positive correlation of motor and perceptual learning suggests that the two mechanisms act in synergy and are not alternative opposing strategies. The impact of these two learning mechanisms changes over time: motor learning sets in later and becomes relevant only in the course of training.

  4. Auditory same/different concept learning and generalization in black-capped chickadees (Poecile atricapillus).

    Science.gov (United States)

    Hoeschele, Marisa; Cook, Robert G; Guillette, Lauren M; Hahn, Allison H; Sturdy, Christopher B

    2012-01-01

    Abstract concept learning was thought to be uniquely human, but has since been observed in many other species. Discriminating same from different is one abstract relation that has been studied frequently. In the current experiment, using operant conditioning, we tested whether black-capped chickadees (Poecile atricapillus) could discriminate sets of auditory stimuli based on whether all the sounds within a sequence were the same or different from one another. The chickadees were successful at solving this same/different relational task, and transferred their learning to same/different sequences involving novel combinations of training notes and novel notes within the range of pitches experienced during training. The chickadees showed limited transfer to pitches that was not used in training, suggesting that the processing of absolute pitch may constrain their relational performance. Our results indicate, for the first time, that black-capped chickadees readily form relational auditory same and different categories, adding to the list of perceptual, behavioural, and cognitive abilities that make this species an important comparative model for human language and cognition.

  5. Auditory same/different concept learning and generalization in black-capped chickadees (Poecile atricapillus.

    Directory of Open Access Journals (Sweden)

    Marisa Hoeschele

    Full Text Available Abstract concept learning was thought to be uniquely human, but has since been observed in many other species. Discriminating same from different is one abstract relation that has been studied frequently. In the current experiment, using operant conditioning, we tested whether black-capped chickadees (Poecile atricapillus could discriminate sets of auditory stimuli based on whether all the sounds within a sequence were the same or different from one another. The chickadees were successful at solving this same/different relational task, and transferred their learning to same/different sequences involving novel combinations of training notes and novel notes within the range of pitches experienced during training. The chickadees showed limited transfer to pitches that was not used in training, suggesting that the processing of absolute pitch may constrain their relational performance. Our results indicate, for the first time, that black-capped chickadees readily form relational auditory same and different categories, adding to the list of perceptual, behavioural, and cognitive abilities that make this species an important comparative model for human language and cognition.

  6. On the Impacts of Perceptual Learning Style and Gender on Iranian Undergraduate EFL Learners' Choice of Vocabulary Learning

    Science.gov (United States)

    Zokaee, Saeedeh; Zaferanieh, Elaheh; Naseri, Mahdieh

    2012-01-01

    Students' learning styles and vocabulary learning strategies are among the main factors that help determine how students learn second language vocabulary. This work examined the extent to which choice of vocabulary learning strategies is affected by students' perceptual learning style. In this research, the participants were 54 EFL learners at…

  7. Broad-based visual benefits from training with an integrated perceptual-learning video game

    OpenAIRE

    Deveau, Jenni; Lovcik, Gary; Aaron R Seitz

    2014-01-01

    Perception is the window through which we understand all information about our environment, and therefore deficits in perception due to disease, injury, stroke or aging can have significant negative impacts on individuals’ lives. Research in the field of perceptual learning has demonstrated that vision can be improved in both normally seeing and visually impaired individuals, however, a limitation of most perceptual learning approaches is their emphasis on isolating particular mechanisms. In ...

  8. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  9. The characterization of the vibrato in lyric and sertanejo singing styles: acoustic and perceptual auditory aspects.

    Science.gov (United States)

    de Almeida Bezerra, Adriana; Cukier-Blaj, Sabrina; Duprat, André; Camargo, Zuleica; Granato, Lídio

    2009-11-01

    The vibrato is one of the embellishments most frequently used in the singing voice and it can be found in different singing styles, among those, lyric and Sertanejo (Brazilian country western-like singing style). Considering these two styles, the objective of the present study was to analyze the production of vibrato in the singing voice in the lyric and sertanejo genres from an acoustic and perceptual viewpoint. Twenty male singers-10 classical (operatic) singers and 10 sertanejo singers-reportedly in perfect laryngeal health, served as subjects for this study. Digital recording of the subjects' voices was performed. For each phonation, acoustic analysis was carried out together with comparison of overtones and vibrato rate and extension measurements. The results have shown that the mean values for vibrato rate and extent in lyric singers were 4.55-6.25 Hz and 0-54-1.66 semitone, respectively, whereas for sertanejo they were 5.0-6.56 Hz and 0.54-0.95 semitone. In the spectrogram, there was regularity in terms of frequency oscillation in the lyric genre whereas in the sertanejo style there was no regularity. PMID:19022619

  10. Neural adaptation and perceptual learning using a portable real-time cochlear implant simulator in natural environments.

    Science.gov (United States)

    Smalt, Christopher J; Talavage, Thomas M; Pisoni, David B; Svirsky, Mario A

    2011-01-01

    A portable real-time speech processor that implements an acoustic simulation model of a cochlear implant (CI) has been developed on the Apple iPhone / iPod Touch to permit testing and experimentation under extended exposure in real-world environments. This simulator allows for both a variable number of noise band channels and electrode insertion depth. Utilizing this portable CI simulator, we tested perceptual learning in normal hearing listeners by measuring word and sentence comprehension behaviorally before and after 2 weeks of exposure. To evaluate changes in neural activation related to adaptation to transformed speech, fMRI was also conducted. Differences in brain activation after training occurred in the inferior frontal gyrus and areas related to language processing. A 15-20% improvement in word and sentence comprehension of cochlear implant simulated speech was also observed. These results demonstrate the effectiveness of a portable CI simulator as a research tool and provide new information about the physiological changes that accompany perceptual learning of degraded auditory input. PMID:22254517

  11. Perceptual Learning Modules in Mathematics: Enhancing Students' Pattern Recognition, Structure Extraction, and Fluency

    Science.gov (United States)

    Kellman, Philip J.; Massey, Christine M.; Son, Ji Y.

    2009-01-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex…

  12. Rapid auditory learning of temporal gap detection.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manasa R

    2016-07-01

    The rapid initial phase of training-induced improvement has been shown to reflect a genuine sensory change in perception. Several features of early and rapid learning, such as generalization and stability, remain to be characterized. The present study demonstrated that learning effects from brief training on a temporal gap detection task using spectrally similar narrowband noise markers defining the gap (within-channel task), transfer across ears, however, not across spectrally dissimilar markers (between-channel task). The learning effects associated with brief training on a gap detection task were found to be stable for at least a day. These initial findings have significant implications for characterizing early and rapid learning effects. PMID:27475211

  13. Learning to perceptually organize speech signals in native fashion1

    OpenAIRE

    Nittrouer, Susan; Lowenstein, Joanna H.

    2010-01-01

    The ability to recognize speech involves sensory, perceptual, and cognitive processes. For much of the history of speech perception research, investigators have focused on the first and third of these, asking how much and what kinds of sensory information are used by normal and impaired listeners, as well as how effective amounts of that information are altered by “top-down” cognitive processes. This experiment focused on perceptual processes, asking what accounts for how the sensory informat...

  14. Broad-based visual benefits from training with an integrated perceptual-learning video game

    Science.gov (United States)

    Deveau, Jenni; Lovcik, Gary; Seitz, Aaron R.

    2014-01-01

    Perception is the window through which we understand all information about our environment, and therefore deficits in perception due to disease, injury, stroke or aging can have significant negative impacts on individuals’ lives. Research in the field of perceptual learning has demonstrated that vision can be improved in both normally seeing and visually impaired individuals, however, a limitation of most perceptual learning approaches is their emphasis on isolating particular mechanisms. In the current study, we adopted an integrative approach where the goal is not to achieve highly specific learning but instead to achieve general improvements to vision. We combined multiple perceptual learning approaches that have individually contributed to increasing the speed, magnitude and generality of learning into a perceptual-learning based video-game. Our results demonstrate broad-based benefits of vision in a healthy adult population. Transfer from the game includes; improvements in acuity (measured with self-paced standard eye-charts), improvement along the full contrast sensitivity function, and improvements in peripheral acuity and contrast thresholds. The use of this type of this custom video game framework built up from psychophysical approaches takes advantage of the benefits found from video game training while maintaining a tight link to psychophysical designs that enable understanding of mechanisms of perceptual learning and has great potential both as a scientific tool and as therapy to help improve vision. PMID:24406157

  15. Broad-based visual benefits from training with an integrated perceptual-learning video game.

    Science.gov (United States)

    Deveau, Jenni; Lovcik, Gary; Seitz, Aaron R

    2014-06-01

    Perception is the window through which we understand all information about our environment, and therefore deficits in perception due to disease, injury, stroke or aging can have significant negative impacts on individuals' lives. Research in the field of perceptual learning has demonstrated that vision can be improved in both normally seeing and visually impaired individuals, however, a limitation of most perceptual learning approaches is their emphasis on isolating particular mechanisms. In the current study, we adopted an integrative approach where the goal is not to achieve highly specific learning but instead to achieve general improvements to vision. We combined multiple perceptual learning approaches that have individually contributed to increasing the speed, magnitude and generality of learning into a perceptual-learning based video-game. Our results demonstrate broad-based benefits of vision in a healthy adult population. Transfer from the game includes; improvements in acuity (measured with self-paced standard eye-charts), improvement along the full contrast sensitivity function, and improvements in peripheral acuity and contrast thresholds. The use of this type of this custom video game framework built up from psychophysical approaches takes advantage of the benefits found from video game training while maintaining a tight link to psychophysical designs that enable understanding of mechanisms of perceptual learning and has great potential both as a scientific tool and as therapy to help improve vision.

  16. Broad-based visual benefits from training with an integrated perceptual-learning video game.

    Science.gov (United States)

    Deveau, Jenni; Lovcik, Gary; Seitz, Aaron R

    2014-06-01

    Perception is the window through which we understand all information about our environment, and therefore deficits in perception due to disease, injury, stroke or aging can have significant negative impacts on individuals' lives. Research in the field of perceptual learning has demonstrated that vision can be improved in both normally seeing and visually impaired individuals, however, a limitation of most perceptual learning approaches is their emphasis on isolating particular mechanisms. In the current study, we adopted an integrative approach where the goal is not to achieve highly specific learning but instead to achieve general improvements to vision. We combined multiple perceptual learning approaches that have individually contributed to increasing the speed, magnitude and generality of learning into a perceptual-learning based video-game. Our results demonstrate broad-based benefits of vision in a healthy adult population. Transfer from the game includes; improvements in acuity (measured with self-paced standard eye-charts), improvement along the full contrast sensitivity function, and improvements in peripheral acuity and contrast thresholds. The use of this type of this custom video game framework built up from psychophysical approaches takes advantage of the benefits found from video game training while maintaining a tight link to psychophysical designs that enable understanding of mechanisms of perceptual learning and has great potential both as a scientific tool and as therapy to help improve vision. PMID:24406157

  17. The Effect of Haptic Cues on Motor and Perceptual Based Implicit Sequence Learning

    Directory of Open Access Journals (Sweden)

    Dongwon eKim

    2014-03-01

    Full Text Available We introduced haptic cues to the serial reaction time (SRT sequence learning task alongside the standard visual cues to assess the relative contributions of haptic and visual stimuli to the formation of motor and perceptual memories. We used motorized keys to deliver brief pulse-like displacements to the resting fingers, expecting that the proximity and similarity of these cues to the subsequent response motor actions (finger activated key-presses would strengthen the motor memory trace in particular. We adopted the experimental protocol developed by Willingham in 1999 to explore whether haptic cues contribute differently than visual cues to the balance of motor and perceptual learning. We found that sequence learning occurs with haptic stimuli as with visual stimuli and we found that irrespective of the stimuli (visual or haptic the serial reaction time task leads to a greater amount of motor learning than perceptual learning.

  18. Perceptual and motor learning underlies human stick-balancing skill.

    Science.gov (United States)

    Lee, Kwee-Yum; O'Dwyer, Nicholas; Halaki, Mark; Smith, Richard

    2015-01-01

    We investigated the acquisition of skill in balancing a stick (52 cm, 34 g) on the fingertip in nine participants using three-dimensional motion analysis. After 3.5 h of practice over 6 wk, the participants could more consistently balance the stick for longer durations with greatly reduced magnitude and speed of stick and finger movements. Irrespective of level of skill, the balanced stick behaved like a normal noninverted pendulum oscillating under greater-than-gravity torque with simple harmonic motion about a virtual pivot located at the radius of gyration above the center of mass. The control input parameter was the magnitude ratio between the torque applied on the stick by the participant and the torque due to gravity. The participants utilized only a narrow range of this parameter, which did not change with practice, to rotate the stick like a linear mass-spring system. With increased skill, the stick therefore maintained the same period of oscillation but showed marked reductions in magnitude of both oscillation and horizontal translation. Better balancing was associated with 1) more accurate visual localization of the stick and proprioceptive localization of the finger and 2) reduced cross-coupling errors between finger and stick movements in orthogonal directions; i.e., finger movements in the anteroposterior plane became less coupled with stick tip movements in the mediolateral plane, and vice versa. Development of this fine motor skill therefore depended on perceptual and motor learning to provide improved estimation of sensorimotor state and precision of motor commands to an unchanging internal model of the rotational dynamics.

  19. Learning-induced uncertainty reduction in perceptual decisions is task-dependent

    OpenAIRE

    Feitong eYang; Qiong eWu; Sheng eLi

    2014-01-01

    Perceptual decision-making in which decisions are reached primarily from extracting and evaluating sensory information requires close interactions between the sensory system and decision-related networks in the brain. Uncertainty pervades every aspect of this process and can be considered related to either the stimulus signal or decision criterion. Here, we investigated the learning-induced reduction of both the signal and criterion uncertainty in two perceptual decision tasks based on two Gl...

  20. Associative learning and perceptual style: Are associated events perceived analytically or as a whole?

    OpenAIRE

    Tsakanikos, Elias

    2006-01-01

    The present study examined whether the formation of associations is affected by individual differences in perceptual style (analytic vs. holistic). Ninety undergraduate students were tested on their ability to associate concurrent events (i.e. word—colour) and were assessed on measures of field dependence and intelligence. The analysis revealed that analytic perceptual style (field independence) was associated with better performance on associative learning, and that this relationship was retain...

  1. Comparação entre as análises auditiva e acústica nas disartrias Comparison between auditory-perceptual and acoustic analyses in dysarthrias

    Directory of Open Access Journals (Sweden)

    Karin Zazo Ortiz

    2008-01-01

    Full Text Available OBJETIVO: Comparar os dados da análise perceptivo-auditiva (subjetiva com os dados da análise acústica (objetiva. MÉTODOS: Quarenta e dois pacientes disártricos, com diagnósticos neurológicos definidos, 21 do sexo masculino e 21 do sexo feminino foram submetidos à análise perceptual-auditiva e acústica. Todos os pacientes foram submetidos à gravação da voz, tendo sido avaliados, na análise auditiva, tipo de voz, ressonância (equilibrada, hipernasal ou laringo-faríngea, loudness (adequado, diminuído ou aumentado, pitch (adequado, grave, agudo ataque vocal (isocrônico, brusco ou soproso, e estabilidade (estável ou instável. Para a análise acústica foram utilizados os programas GRAM 5.1.7; para a análise da qualidade vocal e comportamento dos harmônicos na espectrografia e o Programa Vox Metria, para a obtenção das medidas objetivas. RESULTADOS: A comparação entre os achados das análises auditiva e acústica em sua maioria não foi significante, ou seja, não houve uma relação direta entre os achados subjetivos e os dados objetivos. Houve diferença estatisticamente significante apenas entre voz soprosa e Shimmer alterado (p=0,048 e entre a definição dos harmônicos e voz soprosa (p=0,040, sendo assim, observou-se correlação entre a presença de ruído à emissão e soprosidade. CONCLUSÕES: As análises perceptual-auditiva e acústica forneceram dados diferentes, porém complementares, auxiliando, de forma conjunta, no diagnóstico clínico das disartrias.PURPOSE: To compare data found in auditory-perceptual analyses (subjective and acoustic analyses (objective in dysarthric patients. METHODS: Forty-two patients with well defined neurological diagnosis, 21 male and 21 female, were evaluated in auditory-perceptual parameters and acoustic measures. All patients had their voices recorded. Auditory-perceptual voice analyses were made considering type of voice, resonance (balanced, hipernasal or laryngopharyngeal

  2. Observations on auditory learning in amplitude- and frequency-modulation rate discrimination

    DEFF Research Database (Denmark)

    Hoffmann, Pablo F.

    2010-01-01

    Because amplitude- and frequency-modulated sounds can be the basis for the synthesis of many complex sounds, they can be good candidates in the design of training systems aiming at improving the acquisition of perceptual skills that can benefit from information provided via the auditory channel...

  3. Contributions of procedure and stimulus learning to early, rapid perceptual improvements

    OpenAIRE

    Ortiz, Jeanette A.; Wright, Beverly A.

    2009-01-01

    Improvements in performance on many perceptual skills can occur with only a single training session. Of interest here is what aspects of the training experience are being learned during this brief exposure. While there is considerable evidence that learning associated with specific feature values of the stimulus used in training (stimulus learning) contributes to these rapid improvements, there has been little direct investigation of the possibility that other types of learning do so as well....

  4. Visual Statistical Learning Based on the Perceptual and Semantic Information of Objects

    Science.gov (United States)

    Otsuka, Sachio; Nishiyama, Megumi; Nakahara, Fumitaka; Kawaguchi, Jun

    2013-01-01

    Five experiments examined what is learned based on the perceptual and semantic information of objects in visual statistical learning (VSL). In the familiarization phase, participants viewed a sequence of line drawings and detected repetitions of various objects. In a subsequent test phase, they watched 2 test sequences (statistically related…

  5. Perceptual Learning in Early Mathematics: Interacting with Problem Structure Improves Mapping, Solving and Fluency

    Science.gov (United States)

    Thai, Khanh-Phuong; Son, Ji Y.; Hoffman, Jessica; Devers, Christopher; Kellman, Philip J.

    2014-01-01

    Mathematics is the study of structure but students think of math as solving problems according to rules. Students can learn procedures, but they often have trouble knowing when to apply learned procedures, especially to problems unlike those they trained with. In this study, the authors rely on the psychological mechanism of perceptual learning…

  6. Contributions of Procedure and Stimulus Learning to Early, Rapid Perceptual Improvements

    Science.gov (United States)

    Ortiz, Jeanette A.; Wright, Beverly A.

    2009-01-01

    Improvements in performance on many perceptual skills can occur with only a single training session. Of interest here is what aspects of the training experience are being learned during this brief exposure. Although there is considerable evidence that learning associated with specific feature values of the stimulus used in training ("stimulus…

  7. Speech perception as complex auditory categorization

    Science.gov (United States)

    Holt, Lori L.

    2002-05-01

    Despite a long and rich history of categorization research in cognitive psychology, very little work has addressed the issue of complex auditory category formation. This is especially unfortunate because the general underlying cognitive and perceptual mechanisms that guide auditory category formation are of great importance to understanding speech perception. I will discuss a new methodological approach to examining complex auditory category formation that specifically addresses issues relevant to speech perception. This approach utilizes novel nonspeech sound stimuli to gain full experimental control over listeners' history of experience. As such, the course of learning is readily measurable. Results from this methodology indicate that the structure and formation of auditory categories are a function of the statistical input distributions of sound that listeners hear, aspects of the operating characteristics of the auditory system, and characteristics of the perceptual categorization system. These results have important implications for phonetic acquisition and speech perception.

  8. New perspectives on the auditory cortex: learning and memory.

    Science.gov (United States)

    Weinberger, Norman M

    2015-01-01

    Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex.

  9. Learning auditory space: generalization and long-term effects.

    Directory of Open Access Journals (Sweden)

    Catarina Mendonça

    Full Text Available BACKGROUND: Previous findings have shown that humans can learn to localize with altered auditory space cues. Here we analyze such learning processes and their effects up to one month on both localization accuracy and sound externalization. Subjects were trained and retested, focusing on the effects of stimulus type in learning, stimulus type in localization, stimulus position, previous experience, externalization levels, and time. METHOD: We trained listeners in azimuth and elevation discrimination in two experiments. Half participated in the azimuth experiment first and half in the elevation first. In each experiment, half were trained in speech sounds and half in white noise. Retests were performed at several time intervals: just after training and one hour, one day, one week and one month later. In a control condition, we tested the effect of systematic retesting over time with post-tests only after training and either one day, one week, or one month later. RESULTS: With training all participants lowered their localization errors. This benefit was still present one month after training. Participants were more accurate in the second training phase, revealing an effect of previous experience on a different task. Training with white noise led to better results than training with speech sounds. Moreover, the training benefit generalized to untrained stimulus-position pairs. Throughout the post-tests externalization levels increased. In the control condition the long-term localization improvement was not lower without additional contact with the trained sounds, but externalization levels were lower. CONCLUSION: Our findings suggest that humans adapt easily to altered auditory space cues and that such adaptation spreads to untrained positions and sound types. We propose that such learning depends on all available cues, but each cue type might be learned and retrieved differently. The process of localization learning is global, not limited to

  10. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Directory of Open Access Journals (Sweden)

    Carlos M Hamamé

    Full Text Available BACKGROUND: Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. METHODOLOGY/PRINCIPAL FINDINGS: We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d' and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz and alpha (8-14 Hz frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. CONCLUSIONS/SIGNIFICANCE: We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  11. Perceptual learning of Gabor orientation identification in visual periphery: complete inter-ocular transfer of learning mechanisms.

    Science.gov (United States)

    Lu, Zhong-Lin; Chu, Wilson; Dosher, Barbara Anne; Lee, Sophia

    2005-09-01

    We combined the external noise paradigm, the Perceptual Template Model approach, and transfer tests to investigate the mechanisms and eye-specificity of perceptual learning of Gabor orientation in visual periphery. Coupled with a fixation task, discriminating a 5 from an S in a rapid small character string at fixation, contrast thresholds were estimated for each of eight external noise levels at two performance criteria using 3/1 and 2/1 staircases. Perceptual learning in one eye was measured over 10 practice sessions, followed by five sessions of practice in the new eye to assess transfer. We found that monocular learning improved performance (reduced contrast thresholds) with virtually equal magnitude across a wide range of external noise levels with no significant change in central task performance. Based on measurements of learning effects at two performance criterion levels, we identified a mixture of stimulus enhancement and external noise exclusion as the mechanism of perceptual learning underlying the observed improvements. Perceptual learning in the trained eye generalized completely to the untrained eye. We related the transfer patterns to known physiology and psychophysics on orientation direction coding.

  12. Elevated yolk progesterone moderates prenatal heart rate and postnatal auditory learning in bobwhite quail (Colinus virginianus).

    Science.gov (United States)

    Herrington, Joshua A; Rodriguez, Yvette; Lickliter, Robert

    2016-09-01

    Previous studies have established that yolk hormones of maternal origin can influence physiology and behavior in birds. However, few studies have examined the effects of maternal gestagens, like progesterone, on chick behavior and physiology. We tested the effects of experimentally elevated egg yolk progesterone on embryonic heart rate and postnatal auditory learning in bobwhite quail hatchlings. Quail chicks were passively exposed to an individual maternal assembly call for 10 min/hr during the 24 hr following hatching. Preference for the familiarized call was tested at 48 hr following hatching in three experimental groups: chicks that received artificially elevated yolk progesterone (P) prior to incubation, vehicle-only controls (V), and non-manipulated controls (C). Resting heart rate of P, V, and C embryos were also measured on prenatal day 17. The resting heart rate of P embryos was significantly higher than both the V and C embryos. Chicks from the P group also showed an enhanced preference for the familiarized bobwhite maternal call when compared to chicks from the C and V groups. Our results indicate that elevated yolk progesterone in pre-incubated bobwhite quail eggs can influence arousal level in bobwhite embryos and postnatal perceptual learning in bobwhite neonates. PMID:27108924

  13. Evaluating the Perceptual and Pathophysiological Consequences of Auditory Deprivation in Early Postnatal Life: A Comparison of Basic and Clinical Studies

    OpenAIRE

    Whitton, Jonathon P.; Polley, Daniel B.

    2011-01-01

    Decades of clinical and basic research in visual system development have shown that degraded or imbalanced visual inputs can induce a long-lasting visual impairment called amblyopia. In the auditory domain, it is well established that inducing a conductive hearing loss (CHL) in young laboratory animals is associated with a panoply of central auditory system irregularities, ranging from cellular morphology to behavior. Human auditory deprivation, in the form of otitis media (OM), is tremendous...

  14. Perceptual Learning Increases The Strength of The Earliest Signals in Visual Cortex

    OpenAIRE

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A.

    2010-01-01

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feed-forward signals in early visual cortex as measured by the hum...

  15. Enhanced cognitive and perceptual processing: a computational basis for the musician advantage in speech learning.

    Science.gov (United States)

    Smayda, Kirsten E; Chandrasekaran, Bharath; Maddox, W Todd

    2015-01-01

    Long-term music training can positively impact speech processing. A recent framework developed to explain such cross-domain plasticity posits that music training-related advantages in speech processing are due to shared cognitive and perceptual processes between music and speech. Although perceptual and cognitive processing advantages due to music training have been independently demonstrated, to date no study has examined perceptual and cognitive processing within the context of a single task. The present study examines the impact of long-term music training on speech learning from a rigorous, computational perspective derived from signal detection theory. Our computational models provide independent estimates of cognitive and perceptual processing in native English-speaking musicians (n = 15, mean age = 25 years) and non-musicians (n = 15, mean age = 23 years) learning to categorize non-native lexical pitch patterns (Mandarin tones). Musicians outperformed non-musicians in this task. Model-based analyses suggested that musicians shifted from simple unidimensional decision strategies to more optimal multidimensional (MD) decision strategies sooner than non-musicians. In addition, musicians used optimal decisional strategies more often than non-musicians. However, musicians and non-musicians who used MD strategies showed no difference in performance. We estimated parameters that quantify the magnitude of perceptual variability along two dimensions that are critical for tone categorization: pitch height and pitch direction. Both musicians and non-musicians showed a decrease in perceptual variability along the pitch height dimension, but only musicians showed a significant reduction in perceptual variability along the pitch direction dimension. Notably, these advantages persisted during a generalization phase, when no feedback was provided. These results provide an insight into the mechanisms underlying the musician advantage observed in non-native speech learning

  16. Enhanced cognitive and perceptual processing: A computational basis for the musician advantage in speech learning

    Directory of Open Access Journals (Sweden)

    Kirsten eSmayda

    2015-05-01

    Full Text Available Long-term music training can positively impact speech processing. A recent framework developed to explain such cross-domain plasticity posits that music training-related advantages in speech processing are due to shared cognitive and perceptual processes between music and speech. Although perceptual and cognitive processing advantages due to music training have been independently demonstrated, to date no study has examined perceptual and cognitive processing within the context of a single task. The present study examines the impact of long-term music training on speech learning from a rigorous, computational perspective derived from signal detection theory. Our computational models provide independent estimates of cognitive and perceptual processing in native English-speaking musicians (n=15, mean age= 25 years and non-musicians (n=15, mean age= 23 years learning to categorize non-native lexical pitch patterns (Mandarin tones. Musicians outperformed non-musicians in this task. Model-based analyses suggested that musicians shifted from simple unidimensional decision strategies to more optimal multidimensional decision strategies sooner than non-musicians. In addition, musicians used optimal decisional strategies more often than non-musicians. However, musicians and non-musicians who used multidimensional strategies showed no difference in performance. We estimated parameters that quantify the magnitude of perceptual variability along two dimensions that are critical for tone categorization: pitch height and pitch direction. Both musicians and non-musicians showed a decrease in perceptual variability along the pitch height dimension, but only musicians showed a significant reduction in perceptual variability along the pitch direction dimension. Notably, these advantages persisted during a generalization phase, when no feedback was provided. These results provide an insight into the mechanisms underlying the musician advantage observed in non

  17. Learning to perceptually organize speech signals in native fashion.

    Science.gov (United States)

    Nittrouer, Susan; Lowenstein, Joanna H

    2010-03-01

    The ability to recognize speech involves sensory, perceptual, and cognitive processes. For much of the history of speech perception research, investigators have focused on the first and third of these, asking how much and what kinds of sensory information are used by normal and impaired listeners, as well as how effective amounts of that information are altered by "top-down" cognitive processes. This experiment focused on perceptual processes, asking what accounts for how the sensory information in the speech signal gets organized. Two types of speech signals processed to remove properties that could be considered traditional acoustic cues (amplitude envelopes and sine wave replicas) were presented to 100 listeners in five groups: native English-speaking (L1) adults, 7-, 5-, and 3-year-olds, and native Mandarin-speaking adults who were excellent second-language (L2) users of English. The L2 adults performed more poorly than L1 adults with both kinds of signals. Children performed more poorly than L1 adults but showed disproportionately better performance for the sine waves than for the amplitude envelopes compared to both groups of adults. Sentence context had similar effects across groups, so variability in recognition was attributed to differences in perceptual organization of the sensory information, presumed to arise from native language experience. PMID:20329861

  18. Heterogeneity in Perceptual Category Learning by High Functioning Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Eduardo eMercado

    2015-06-01

    Full Text Available Previous research suggests that high functioning children with Autism Spectrum Disorder (ASD sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally-based theories account for atypical perceptual category learning shown by high functioning children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets.

  19. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training.

    Science.gov (United States)

    Wang, Zhengke; Cheng-Lai, Alice; Song, Yan; Cutting, Laurie; Jiang, Yuzheng; Lin, Ou; Meng, Xiangzhi; Zhou, Xiaolin

    2014-08-01

    Learning to read involves discriminating between different written forms and establishing connections with phonology and semantics. This process may be partially built upon visual perceptual learning, during which the ability to process the attributes of visual stimuli progressively improves with practice. The present study investigated to what extent Chinese children with developmental dyslexia have deficits in perceptual learning by using a texture discrimination task, in which participants were asked to discriminate the orientation of target bars. Experiment l demonstrated that, when all of the participants started with the same initial stimulus-to-mask onset asynchrony (SOA) at 300 ms, the threshold SOA, adjusted according to response accuracy for reaching 80% accuracy, did not show a decrement over 5 days of training for children with dyslexia, whereas this threshold SOA steadily decreased over the training for the control group. Experiment 2 used an adaptive procedure to determine the threshold SOA for each participant during training. Results showed that both the group of dyslexia and the control group attained perceptual learning over the sessions in 5 days, although the threshold SOAs were significantly higher for the group of dyslexia than for the control group; moreover, over individual participants, the threshold SOA negatively correlated with their performance in Chinese character recognition. These findings suggest that deficits in visual perceptual processing and learning might, in part, underpin difficulty in reading Chinese.

  20. The effect of learning condition on perceptual anticipation, awareness, and visual search.

    Science.gov (United States)

    Poulter, D R; Jackson, R C; Wann, J P; Berry, D C

    2005-06-01

    The efficacy of explicit and implicit learning paradigms was examined during the very early stages of learning the perceptual-motor anticipation task of predicting ball direction from temporally occluded footage of soccer penalty kicks. In addition, the effect of instructional condition on point-of-gaze during learning was examined. A significant improvement in horizontal prediction accuracy was observed in the explicit learning group; however, similar improvement was evident in a placebo group who watched footage of soccer matches. Only the explicit learning intervention resulted in changes in eye movement behaviour and increased awareness of relevant postural cues. Results are discussed in terms of methodological and practical issues regarding the employment of implicit perceptual training interventions. PMID:16084616

  1. Category Variability Effect in Category Learning with Auditory Stimuli

    Directory of Open Access Journals (Sweden)

    Lee-Xieng eYang

    2014-10-01

    Full Text Available The category variability effect refers to that people tend to classify the midpoint item between two categories as the category more variable. This effect is regarded as evidence against the exemplar model, such as GCM (Generalized Context Model and favoring the rule model, such as GRT (i.e., the decision bound model. Although this effect has been found in conceptual category learning, it is not often observed in perceptual category learning. To figure out why the category variability effect is seldom reported in the past studies, we propose two hypotheses. First, due to sequence effect, the midpoint item would be classified as different categories, when following different items. When we combine these inconsistent responses for the midpoint item, no category variability effect occurs. Second, instead of the combination of sequence effect in different categorization conditions, the combination of different categorization strategies conceals the category variability effect. One experiment is conducted with single tones of different frequencies as stimuli. The collected data reveal sequence effect. However, the modeling results with the MAC model and the decision bound model support that the existence of individual differences is the reason for why no category variability effect occurs. Three groups are identified by their categorization strategy. Group 1 is rule user, placing the category boundary close to the low-variability category, hence inducing category variability effect. Group 2 takes the MAC strategy and classifies the midpoint item as different categories, depending on its preceding item. Group 3 classifies the midpoint item as the low-variability category, which is consistent with the prediction of the decision bound model as well as GCM. Nonetheless, our conclusion is that category variability effect can be found in perceptual category learning, but might be concealed by the averaged data.

  2. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.

    Science.gov (United States)

    Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A

    2015-11-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning. PMID:26448497

  3. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.

    Science.gov (United States)

    Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A

    2015-11-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.

  4. Category and perceptual interference in second-language phoneme learning: an examination of English /w/-/v/ learning by Sinhala, German, and Dutch speakers.

    Science.gov (United States)

    Iverson, Paul; Ekanayake, Dulika; Hamann, Silke; Sennema, Anke; Evans, Bronwen G

    2008-10-01

    The present study investigated the perception and production of English /w/ and /v/ by native speakers of Sinhala, German, and Dutch, with the aim of examining how their native language phonetic processing affected the acquisition of these phonemes. Subjects performed a battery of tests that assessed their identification accuracy for natural recordings, their degree of spoken accent, their relative use of place and manner cues, the assimilation of these phonemes into native-language categories, and their perceptual maps (i.e., multidimensional scaling solutions) for these phonemes. Most Sinhala speakers had near-chance identification accuracy, Germans ranged from chance to 100% correct, and Dutch speakers had uniformly high accuracy. The results suggest that these learning differences were caused more by perceptual interference than by category assimilation; Sinhala and German speakers both have a single native-language phoneme that is similar to English /w/ and /v/, but the auditory sensitivities of Sinhala speakers make it harder for them to discern the acoustic cues that are critical to /w/-/v/ categorization.

  5. The Relationship between Perceptual Learning Style Preferences and Multiple Intelligences among Iranian EFL Learners

    Science.gov (United States)

    Baleghizadeh, Sasan; Shayeghi, Rose

    2014-01-01

    The purpose of the present study is to investigate the relationships between preferences of Multiple Intelligences and perceptual/social learning styles. Two self-report questionnaires were administered to a total of 207 male and female participants. Pearson correlation results revealed statistically significant positive relations between…

  6. Perceptual learning in children with visual impairment improves near visual acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.; Rens, G. van; Cillessen, A.H.

    2013-01-01

    PURPOSE: This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. METHODS: Participants were 45 children with visual impairment and 29 children with normal vision. Children

  7. THE USES AND ABUSES OF VISUAL TRAINING FOR CHILDREN WITH PERCEPTUAL-MOTOR LEARNING PROBLEMS.

    Science.gov (United States)

    CARLSON, PAUL V.; GREENSPOON, MORTON K.

    THE ROLE OF THE OPTOMETRIST IN DIAGNOSING AND CORRECTING PERCEPTUAL-MOTOR LEARNING PROBLEMS IS DISCUSSED. ONE GROUP OF OPTOMETRISTS ADHERES TO STANDARD TECHNIQUES, INCLUDING THE PRESCRIPTION OF CORRECTIVE LENSES AND THE USE OF ORTHOPTIC TECHNIQUES FOR THE SAKE OF CLEAR, COMFORTABLE, AND EFFECTIVE VISUAL PERFORMANCE. OTHERS EMPLOY DIVERSE…

  8. Exploring the Differences of Undergraduate Students' Perceptual Learning Styles in International Business Study

    Science.gov (United States)

    Ding, Ning; Lin, Wei

    2013-01-01

    More than 45,000 international students are now studying for bachelor programs in The Netherlands. The number of Asian students increased dramatically in the past decade. The current research aims at examining the differences between Western European and Asian students' perceptual learning styles, and exploring the relationships between students'…

  9. Learning perceptual aspects of diagnosis in medicine via eye movement modeling examples on patient video cases

    NARCIS (Netherlands)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2010-01-01

    Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2010). Learning perceptual aspects of diagnosis in medicine via eye movement modeling examples on patient video cases. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the

  10. Learning perceptual aspects of diagnosis in medicine via eye movement modeling examples on patient video cases

    NARCIS (Netherlands)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2010-01-01

    Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2010, August). Learning perceptual aspects of diagnosis in medicine via eye movement modeling examples on patient video cases. Poster presented at the 32nd Annual Conference of the Cognitive Science Society

  11. Effects of Protein Restriction on Perceptual-Motor Development, Habituation and Learning.

    Science.gov (United States)

    Elias, Marjorie F.

    Perceptual motor development, habituation, and learning in squirrel monkeys were studied under controlled rearing and diet history conditions to determine whether the animal's level of behavioral development was similar to well-nourished animals of his own age (agemates) or his own size (sizemates). From birth to 8 weeks of age, the animals were…

  12. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, Bianca; Boonstra, F. Nienke; Cox, Ralf F. A.; van Rens, Ger; Cillessen, Antonius H. N.

    2013-01-01

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children w

  13. Differential rates of consolidation of conceptual and stimulus learning following training on an auditory skill

    OpenAIRE

    Ortiz, Jeanette A.; Wright, Beverly A.

    2009-01-01

    Training-induced improvements on perceptual skills can be attributed to at least two learning types: learning of general aspects of the trained condition (conceptual learning) and learning of specific feature values of the stimulus used in training (stimulus learning). Here we asked whether conceptual and stimulus learning on interaural time difference (ITD) discrimination emerge along different time courses. Conceptual learning was clearly evident 10 h after training, when performance on a t...

  14. Task relevancy and demand modulate double-training enabled transfer of perceptual learning

    OpenAIRE

    Wang, Rui; Zhang, Jun-Yun; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong

    2011-01-01

    Location-specific perceptual learning can be rendered transferrable to a new location with double training, in which feature training (e.g., contrast) is accompanied by additional location training at the new location even with an irrelevant task (e.g. orientation). Here we investigated the impact of relevancy (to feature training) and demand of location training tasks on double training enabled learning transfer. We found that location training with an irrelevant task (Gabor vs. letter judgm...

  15. Generalization of affective learning about faces to perceptually similar faces.

    Science.gov (United States)

    Verosky, Sara C; Todorov, Alexander

    2010-06-01

    Different individuals have different (and different-looking) significant others, friends, and foes. The objective of this study was to investigate whether these social face environments can shape individual face preferences. First, participants learned to associate faces with positive, neutral, or negative behaviors. Then, they evaluated morphs combining novel faces with the learned faces. The morphs (65% and 80% novel faces) were within the categorical boundary of the novel faces: They were perceived as those faces in a preliminary study. Moreover, a second preliminary study showed that following the learning, the morphs' categorization as similar to the learned faces was indistinguishable from the categorization of actual novel faces. Nevertheless, in the main experiment, participants evaluated morphs of "positive" faces more positively than morphs of "negative" faces. This learning generalization effect increased as a function of the similarity of the novel faces to the learned faces. The findings suggest that general learning mechanisms based on similarity can account for idiosyncratic face preferences.

  16. Perceptual Learning of Motion Direction Discrimination with Suppressed and Unsuppressed MT in Humans: An fMRI Study

    OpenAIRE

    Thompson, Benjamin; Tjan, Bosco S.; Liu, Zili

    2013-01-01

    The middle temporal area of the extrastriate visual cortex (area MT) is integral to motion perception and is thought to play a key role in the perceptual learning of motion tasks. We have previously found, however, that perceptual learning of a motion discrimination task is possible even when the training stimulus contains locally balanced, motion opponent signals that putatively suppress the response of MT. Assuming at least partial suppression of MT, possible explanations for this learning ...

  17. The Role of Visual Speech Information in Supporting Perceptual Learning of Degraded Speech

    Science.gov (United States)

    Wayne, Rachel V.; Johnsrude, Ingrid S.

    2012-01-01

    Following cochlear implantation, hearing-impaired listeners must adapt to speech as heard through their prosthesis. Visual speech information (VSI; the lip and facial movements of speech) is typically available in everyday conversation. Here, we investigate whether learning to understand a popular auditory simulation of speech as transduced by a…

  18. Predictive codes of familiarity and context during the perceptual learning of facial identities

    Science.gov (United States)

    Apps, Matthew A. J.; Tsakiris, Manos

    2013-11-01

    Face recognition is a key component of successful social behaviour. However, the computational processes that underpin perceptual learning and recognition as faces transition from unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through prediction errors that update stimulus familiarity, but recognition is a function of both stimulus and contextual familiarity. Here we show that behavioural responses on a two-option face recognition task can be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. Using fMRI, we show that activity in the superior temporal sulcus varies with the contextual familiarity in the model, whereas activity in the fusiform face area covaries with the prediction error parameter that updated facial familiarity. Our results characterize the key computations underpinning the perceptual learning of faces, highlighting that the functional properties of face-processing areas conform to the principles of predictive coding.

  19. Perceptual Drawing as a Learning Tool in a College Biology Laboratory

    Science.gov (United States)

    Landin, Jennifer

    2011-12-01

    The use of drawing in the classroom has a contentious history in the U.S. education system. While most instructors and students agree that the activity helps students focus and observe more details, there is a lack of empirical data to support these positions. This study examines the use of three treatments (writing a description, drawing a perceptual image, or drawing a perceptual image after participating in a short instructional lesson on perceptual drawing) each week over the course of a semester. The students in the "Drawing with Instruction" group exhibit a small but significantly higher level of content knowledge by the end of the semester. When comparing Attitude Toward Biology and Observational Skills among the three groups, inconclusive results restrict making any conclusions. Student perceptions of the task are positive, although not as strong as indicated by other studies. A student behavior observed during the first study led to another question regarding student cognitive processes, and demonstrated cognitive change in student-rendered drawings. The data from the second study indicate that hemispheric dominance or visual/verbal learning do not impact learning from perceptual drawing activities. However, conservatism and need for closure are inversely proportional to the change seen in student drawings over the course of a lesson. Further research is needed to verify these conclusions, as the second study has a small number of participants.

  20. What Matters in Implicit Task Sequence Learning: Perceptual Stimulus Features, Task Sets, or Correlated Streams of Information?

    Science.gov (United States)

    Weiermann, Brigitte; Cock, Josephine; Meier, Beat

    2010-01-01

    Implicit task sequence learning may be attributed to learning the order of perceptual stimulus features associated with the task sequence, learning a series of automatic task set activations, or learning an integrated sequence that derives from 2 correlated streams of information. In the present study, our purpose was to distinguish among these 3…

  1. Learning and perceptual similarity among cuticular hydrocarbons in ants.

    Science.gov (United States)

    Bos, Nick; Dreier, Stephanie; Jørgensen, Charlotte G; Nielsen, John; Guerrieri, Fernando J; d'Ettorre, Patrizia

    2012-01-01

    Nestmate recognition in ants is based on perceived differences in a multi-component blend of hydrocarbons that are present on the insect cuticle. Although supplementation experiments have shown that some classes of hydrocarbons, such as methyl branched alkanes and alkenes, have a salient role in nestmate recognition, there was basically no information available on how ants detect and perceive these molecules. We used a new conditioning procedure to investigate whether individual carpenter ants could associate a given hydrocarbon (linear or methyl-branched alkane) to sugar reward. We then studied perceptual similarity between a hydrocarbon previously associated with sugar and a novel hydrocarbon. Ants learnt all hydrocarbon-reward associations rapidly and with the same efficiency, regardless of the structure of the molecules. Ants could discriminate among a large number of pairs of hydrocarbons, but also generalised. Generalisation depended both on the structure of the molecule and the animal's experience. For linear alkanes, generalisation was observed when the novel molecule was smaller than the conditioned one. Generalisation between pairs of methyl-alkanes was high, while generalisation between hydrocarbons that differed in the presence or absence of a methyl group was low, suggesting that chain length and functional group might be coded independently by the ant olfactory system. Understanding variations in perception of recognition cues in ants is necessary for the general understanding of the mechanisms involved in social recognition processes based on chemical cues. PMID:22067290

  2. Learning and perceptual similarity among cuticular hydrocarbons in ants.

    Science.gov (United States)

    Bos, Nick; Dreier, Stephanie; Jørgensen, Charlotte G; Nielsen, John; Guerrieri, Fernando J; d'Ettorre, Patrizia

    2012-01-01

    Nestmate recognition in ants is based on perceived differences in a multi-component blend of hydrocarbons that are present on the insect cuticle. Although supplementation experiments have shown that some classes of hydrocarbons, such as methyl branched alkanes and alkenes, have a salient role in nestmate recognition, there was basically no information available on how ants detect and perceive these molecules. We used a new conditioning procedure to investigate whether individual carpenter ants could associate a given hydrocarbon (linear or methyl-branched alkane) to sugar reward. We then studied perceptual similarity between a hydrocarbon previously associated with sugar and a novel hydrocarbon. Ants learnt all hydrocarbon-reward associations rapidly and with the same efficiency, regardless of the structure of the molecules. Ants could discriminate among a large number of pairs of hydrocarbons, but also generalised. Generalisation depended both on the structure of the molecule and the animal's experience. For linear alkanes, generalisation was observed when the novel molecule was smaller than the conditioned one. Generalisation between pairs of methyl-alkanes was high, while generalisation between hydrocarbons that differed in the presence or absence of a methyl group was low, suggesting that chain length and functional group might be coded independently by the ant olfactory system. Understanding variations in perception of recognition cues in ants is necessary for the general understanding of the mechanisms involved in social recognition processes based on chemical cues.

  3. An Investigation into English Perceptual Learning Styles of Rural High School Seniors%农村高三学生英语感知学习风格之调研

    Institute of Scientific and Technical Information of China (English)

    田晶晶

    2011-01-01

    对农村高三学生的英语感知学习风格进行的调查结果分析显示:农村高三学生喜欢多种英语感知学习风格,最喜欢动手学习风格,最不喜欢单独学习风格;女生比男生更喜欢听觉学习和体验学习风格;英语水平对感知学习风格没有显著性影响;动手学习风格和写作技能有一定的相关性。英语教师应根据学生的感知学习风格灵活应用多种教学方法,指导学生调整和丰富多种感知学习风格以促进教与学的协调发展。%This paper makes an investigation into perceptual learning styles of rural high school seniors through a questionnaire. The results show that rural high school seniors llke various kinds of learning styles and they like tactile learning style best and individual learning least. Besides,girls prefer auditory learning and kinesthetic learning styles more than boys, students' perceptual learning styles are not significantly affected by English proficiency and tactile learning is partly correlated with the writing skill.English teachers should use diversified teaching methods according to students' perceptual learning styles and guide students to adjust and enrich perceptual learning styles so as to promote coordinated development between teaching and learning.

  4. Speech motor learning changes the neural response to both auditory and somatosensory signals

    Science.gov (United States)

    Ito, Takayuki; Coppola, Joshua H.; Ostry, David J.

    2016-01-01

    In the present paper, we present evidence for the idea that speech motor learning is accompanied by changes to the neural coding of both auditory and somatosensory stimuli. Participants in our experiments undergo adaptation to altered auditory feedback, an experimental model of speech motor learning which like visuo-motor adaptation in limb movement, requires that participants change their speech movements and associated somatosensory inputs to correct for systematic real-time changes to auditory feedback. We measure the sensory effects of adaptation by examining changes to auditory and somatosensory event-related responses. We find that adaptation results in progressive changes to speech acoustical outputs that serve to correct for the perturbation. We also observe changes in both auditory and somatosensory event-related responses that are correlated with the magnitude of adaptation. These results indicate that sensory change occurs in conjunction with the processes involved in speech motor adaptation. PMID:27181603

  5. Assessment of visual, auditory, and kinesthetic learning style among undergraduate nursing students

    OpenAIRE

    Radhwan Hussein Ibrahim; Dhiaa Al-rahman Hussein

    2015-01-01

    Background: Learning styles refer to the ability of learner to perceive and process information in learning situations. The ability to understand students’ learning styles can increase the educational outcomes. VAK (Visual, auditory, kinesthetic) learning style is one of the learning style in which students use three of sensory perception to receive information. Teachers can incorporate these learning styles in their classroom activities so that students are competent to be successful in thei...

  6. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning

    Science.gov (United States)

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H.; Andersen, George J.; Watanabe, Takeo; Sasaki, Yuka

    2014-01-01

    While normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging (MRI) morphological analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphological measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex and the degree of change may be associated with individual visual plasticity. PMID:25277041

  7. Creating Objects and Object Categories for Studying Perception and Perceptual Learning

    OpenAIRE

    Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay

    2012-01-01

    In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). ...

  8. Reading Speed in the peripheral visual field of older adults: Does it benefit from perceptual learning?

    OpenAIRE

    Yu, Deyue; Cheung, Sing-Hang; Legge, Gordon E.; Chung, Susana T. L.

    2010-01-01

    Enhancing reading ability in peripheral vision is important for the rehabilitation of people with central-visual-field loss from age-related macular degeneration (AMD). Previous research has shown that perceptual learning, based on a trigram letter-recognition task, improved peripheral reading speed among normally-sighted young adults (Chung, Legge, & Cheung, 2004). Here we ask whether the same happens in older adults in an age range more typical of the onset of AMD. Eighteen normally-sighted...

  9. Perceptual learning eases crowding by reducing recognition errors but not position errors.

    Science.gov (United States)

    Xiong, Ying-Zi; Yu, Cong; Zhang, Jun-Yun

    2015-08-01

    When an observer reports a letter flanked by additional letters in the visual periphery, the response errors (the crowding effect) may result from failure to recognize the target letter (recognition errors), from mislocating a correctly recognized target letter at a flanker location (target misplacement errors), or from reporting a flanker as the target letter (flanker substitution errors). Crowding can be reduced through perceptual learning. However, it is not known how perceptual learning operates to reduce crowding. In this study we trained observers with a partial-report task (Experiment 1), in which they reported the central target letter of a three-letter string presented in the visual periphery, or a whole-report task (Experiment 2), in which they reported all three letters in order. We then assessed the impact of training on recognition of both unflanked and flanked targets, with particular attention to how perceptual learning affected the types of errors. Our results show that training improved target recognition but not single-letter recognition, indicating that training indeed affected crowding. However, training did not reduce target misplacement errors or flanker substitution errors. This dissociation between target recognition and flanker substitution errors supports the view that flanker substitution may be more likely a by-product (due to response bias), rather than a cause, of crowding. Moreover, the dissociation is not consistent with hypothesized mechanisms of crowding that would predict reduced positional errors.

  10. Stimulus Variability and Perceptual Learning of Nonnative Vowel Categories

    Science.gov (United States)

    Brosseau-Lapre, Francoise; Rvachew, Susan; Clayards, Meghan; Dickson, Daniel

    2013-01-01

    English-speakers' learning of a French vowel contrast (/schwa/-/slashed o/) was examined under six different stimulus conditions in which contrastive and noncontrastive stimulus dimensions were varied orthogonally to each other. The distribution of contrastive cues was varied across training conditions to create single prototype, variable far…

  11. Assessment of visual, auditory, and kinesthetic learning style among undergraduate nursing students

    Directory of Open Access Journals (Sweden)

    Radhwan Hussein Ibrahim

    2015-12-01

    Full Text Available Background: Learning styles refer to the ability of learner to perceive and process information in learning situations. The ability to understand students’ learning styles can increase the educational outcomes. VAK (Visual, auditory, kinesthetic learning style is one of the learning style in which students use three of sensory perception to receive information. Teachers can incorporate these learning styles in their classroom activities so that students are competent to be successful in their courses. The purpose of this study is to assess Visual, Auditory, and Kinesthetic learning style among undergraduate nursing students. Methods: A descriptive study was carried out; the study was conducted during the period of 3rd. November, 2013-15, March, 2014, in two Nursing Colleges at Universities of Mosul and Kirkuk. A stratified random sampling was used for data collection. The target population was an undergraduate nursing students (210 students (60 male and 150 female. Statistical Package for the Social Science (SPSS, Chi-square, Frequencies and Percentage was used for data analysis. The results: the findings reveal that Visual, Auditory, and Kinesthetic learning style of the study sample was (40.0%, (29.5%, and 30.5% respectively. Females preferred auditory learning style (30.3% more than males (27.3%, while males preferred kinesthetic learning style (32.3% more than females (29.8%. Recommendation: The researcher recommended that nurse educators should aware of learning styles of the students and provide teaching style to be matched with their learning style.

  12. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training.

    Science.gov (United States)

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.

  13. Many faces, one rule: the role of perceptual expertise in infants’ sequential rule learning

    Science.gov (United States)

    Bulf, Hermann; Brenna, Viola; Valenza, Eloisa; Johnson, Scott P.; Turati, Chiara

    2015-01-01

    Rule learning is a mechanism that allows infants to recognize and generalize rule-like patterns, such as ABB or ABA. Although infants are better at learning rules from speech vs. non-speech, rule learning can be applied also to frequently experienced visual stimuli, suggesting that perceptual expertise with material to be learned is critical in enhancing rule learning abilities. Yet infants’ rule learning has never been investigated using one of the most commonly experienced visual stimulus category available in infants’ environment, i.e., faces. Here, we investigate 7-month-olds’ ability to extract rule-like patterns from sequences composed of upright faces and compared their results to those of infants who viewed inverted faces, which presumably are encountered far less frequently than upright faces. Infants were habituated with face triads in either an ABA or ABB condition followed by a test phase with ABA and ABB triads composed of faces that differed from those showed during habituation. When upright faces were used, infants generalized the pattern presented during habituation to include the new face identities showed during testing, but when inverted faces were presented, infants failed to extract the rule. This finding supports the idea that perceptual expertise can modulate 7-month-olds’ abilities to detect rule-like patterns. PMID:26539142

  14. Investigating Verbal and Visual Auditory Learning After Conformal Radiation Therapy for Childhood Ependymoma

    International Nuclear Information System (INIS)

    Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant decline on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.

  15. Comparative Evaluation of Auditory Attention in 7 to 9 Year Old Learning Disabled Students

    OpenAIRE

    Fereshteh Amiriani; Ali Akbar Tahaei; Mohammad Kamali

    2011-01-01

    Background and Aim: Learning disability is a term referes to a group of disorders manifesting listening, reading, writing, or mathematical problems. These children mostly have attention difficulties in classroom that leads to many learning problems. In this study we aimed to compare the auditory attention of 7 to 9 year old children with learning disability to non- learning disability age matched normal group.Methods: Twenty seven male 7 to 9 year old students with learning disability and 27 ...

  16. 周边视觉的知觉学习%Perceptual Learning of Peripheral Vision

    Institute of Scientific and Technical Information of China (English)

    徐笑含; 谢新秀; 邵志芳

    2012-01-01

    知觉学习是指知觉能力随着知觉训练或经验逐渐改变的现象。它具有特异性-迁移性,可以根据时程划分为快速学习和慢速学习。知觉学习意味着与知觉直接对应的脑区神经元激活方式的变化,并且与注意有着一定的联系。目前周边视觉的知觉学习研究已有一些成果:对于非语词刺激,随着练习,判断目标刺激(例如刺激朝向、游标视敏度)的能力,有很大的提升;对于语词刺激,周边视觉的知觉学习可以帮助提高阅读速度。可以通过提高视觉广度来提高周边视觉的阅读速度。周边视觉的知觉学习还有着重大应用价值,可以帮助中央凹视觉缺损的人们提高周边视觉能力,帮助恢复阅读能力。%Perceptual learning is defined as the improvement of the performance on perceptual tasks after training. Perceptual learning of human visual system has been widely investigated. Previous studies on perceptual learning were focused on its specificity and generalization. In some visual tasks, such as retinal location, spatial frequency or orientation, the learned performance is limited to the specific stimulus. In other visual tasks, the improved performance can be transferred to different stimuli or tasks. Specificity and generalization can be viewed as two the ends of a transferability continuum, on which each task may have a specific position (or value). Neurophysiological findings suggest that perceptual learning of different complexities may involve different levels of visual cortical processing, and the neural mechanism involved may depend on the feature ( e. g. , the complexity) of the stimulus in the task. Perceptual learning can be divided into fast learning and slow learning. A number of studies have used ERP and other brain imaging techniques to investigate the neural mechanism of visual perceptual learning under different time scales. Age-related macular degeneration (AMD) afflicts

  17. Memory Processes in Learning Disability Subtypes of Children Born Preterm

    OpenAIRE

    McCoy, Thomasin E; Conrad, Amy L.; Richman, Lynn C.; Nopoulos, Peg C.; Bell, Edward F.

    2012-01-01

    The purpose of this study was to evaluate immediate auditory and visual memory processes in learning disability subtypes of 40 children born preterm. Three subgroups of children were examined: (a) primary language disability group (n = 13), (b) perceptual-motor disability group (n = 14), and (c) no learning disability diagnosis group without identified language or perceptual-motor learning disability (n = 13). Between-group comparisons indicate no significant differences in immediate auditory...

  18. Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning.

    Science.gov (United States)

    Matsushita, Reiko; Andoh, Jamila; Zatorre, Robert J

    2015-01-01

    Transcranial direct current stimulation (tDCS) is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioral outcomes, possibly due to differences in stimulation parameters, task-induced brain activity, or task measurements used in each study. Further research, using well-validated tasks is therefore required for clarification of behavioral effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for 3 days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold) over the 3 days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the 3 days. The results support a causal role for the right auditory cortex in pitch discrimination learning. PMID:26041982

  19. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  20. Co-Learning Analysis of Two Perceptual Learning Tasks with Identical Input Stimuli Supports the Reweighting Hypothesis

    OpenAIRE

    Huang, Chang-Bing; Lu, Zhong-Lin; Dosher, Barbara A.

    2011-01-01

    Perceptual learning, even when it exhibits significant specificity to basic stimulus features such as retinal location or spatial frequency, may cause discrimination performance to improve either through enhancement of early sensory representations or through selective re-weighting of connections from the sensory representations to specific responses, or both. For most experiments in the literature (Ahissar & Hochstein, 1996, Fahle & Morgan, 1996, Wilson, 1986), the two forms of plasticity ma...

  1. Perceptual Learning With Tactile Stimuli in Rats: Changes in the Processing of a Dimension

    Science.gov (United States)

    2016-01-01

    Four experiments with male rats investigated perceptual learning involving a tactile dimension (A, B, C, D, E), where A denotes 1 end of the continuum (e.g., a rough floor) and E the other (e.g., a smooth floor). In Experiment 1, rats given preexposure to A and E learned an appetitive discrimination between them more readily than those not given preexposure. Experiment 2a showed that rats preexposed to B and D acquired a discrimination between A and E more readily than those preexposed to A and E; and in Experiment 2b the same preexposure treatments had no effect on the acquisition of a discrimination between B and D. In Experiments 3a and 3b, rats given preexposure to C learned a discrimination between A and E more readily than those not given preexposure. Experiment 4 demonstrated that preexposure to a texture (e.g., B) that was adjacent to the to-be-discriminated textures (e.g., C and E) facilitated a discrimination between them relative to preexposure to their midpoint (D). These novel perceptual learning effects are interpreted as reflecting a redistribution of processing between the notional elements of the texture dimension. PMID:27379718

  2. Reducing crowding by weakening inhibitory lateral interactions in the periphery with perceptual learning.

    Directory of Open Access Journals (Sweden)

    Marcello Maniglia

    Full Text Available We investigated whether lateral masking in the near-periphery, due to inhibitory lateral interactions at an early level of central visual processing, could be weakened by perceptual learning and whether learning transferred to an untrained, higher-level lateral masking known as crowding. The trained task was contrast detection of a Gabor target presented in the near periphery (4° in the presence of co-oriented and co-aligned high contrast Gabor flankers, which featured different target-to-flankers separations along the vertical axis that varied from 2λ to 8λ. We found both suppressive and facilitatory lateral interactions at target-to-flankers distances (2λ - 4λ and 8λ, respectively that were larger than those found in the fovea. Training reduces suppression but does not increase facilitation. Most importantly, we found that learning reduces crowding and improves contrast sensitivity, but has no effect on visual acuity (VA. These results suggest a different pattern of connectivity in the periphery with respect to the fovea as well as a different modulation of this connectivity via perceptual learning that not only reduces low-level lateral masking but also reduces crowding. These results have important implications for the rehabilitation of low-vision patients who must use peripheral vision to perform tasks, such as reading and refined figure-ground segmentation, which normal sighted subjects perform in the fovea.

  3. Perceptual learning with tactile stimuli in rats: Changes in the processing of a dimension.

    Science.gov (United States)

    Montuori, Luke M; Honey, R C

    2016-07-01

    Four experiments with male rats investigated perceptual learning involving a tactile dimension (A, B, C, D, E), where A denotes 1 end of the continuum (e.g., a rough floor) and E the other (e.g., a smooth floor). In Experiment 1, rats given preexposure to A and E learned an appetitive discrimination between them more readily than those not given preexposure. Experiment 2a showed that rats preexposed to B and D acquired a discrimination between A and E more readily than those preexposed to A and E; and in Experiment 2b the same preexposure treatments had no effect on the acquisition of a discrimination between B and D. In Experiments 3a and 3b, rats given preexposure to C learned a discrimination between A and E more readily than those not given preexposure. Experiment 4 demonstrated that preexposure to a texture (e.g., B) that was adjacent to the to-be-discriminated textures (e.g., C and E) facilitated a discrimination between them relative to preexposure to their midpoint (D). These novel perceptual learning effects are interpreted as reflecting a redistribution of processing between the notional elements of the texture dimension. (PsycINFO Database Record PMID:27379718

  4. A Latent Consolidation Phase in Auditory Identification Learning: Time in the Awake State Is Sufficient

    Science.gov (United States)

    Roth, Daphne Ari-Even; Kishon-Rabin, Liat; Hildesheimer, Minka; Karni, Avi

    2005-01-01

    Large gains in performance, evolving hours after practice has terminated, were reported in a number of visual and some motor learning tasks, as well as recently in an auditory nonverbal discrimination task. It was proposed that these gains reflect a latent phase of experience-triggered memory consolidation in human skill learning. It is not clear,…

  5. Changes across the psychometric function following perceptual learning of an RSVP reading task

    Directory of Open Access Journals (Sweden)

    Daniel Robert Coates

    2014-12-01

    Full Text Available Several recent studies have shown that perceptual learning can result in improvements inreading speed for people with macular disease (e.g. Chung, 2011; Tarita-Nistor et al., 2014.The improvements were reported as an increase in reading speed defined by specific criteria;however, little is known about how other properties of the reading performance or the participantsperceptual responses change as a consequence of learning. In this paper, we performeddetailed analyses of data following perceptual learning using an RSVP (rapid serial visualpresentation reading task, looking beyond the change in reading speed defined by the thresholdat a given accuracy on a psychometric function relating response accuracy with word exposureduration. Specifically, we explored the statistical characteristics of theresponse data to address two specific questions: was there a change in theslope of the psychometric function and did the improvements in performance occurconsistently across different word exposure durations? Our results show thatthere is a general steepening of the slope of the psychometric function, leadingto non-uniform improvements across stimulus levels.

  6. Localized brain activation related to the strength of auditory learning in a parrot.

    Directory of Open Access Journals (Sweden)

    Hiroko Eda-Fujiwara

    Full Text Available Parrots and songbirds learn their vocalizations from a conspecific tutor, much like human infants acquire spoken language. Parrots can learn human words and it has been suggested that they can use them to communicate with humans. The caudomedial pallium in the parrot brain is homologous with that of songbirds, and analogous to the human auditory association cortex, involved in speech processing. Here we investigated neuronal activation, measured as expression of the protein product of the immediate early gene ZENK, in relation to auditory learning in the budgerigar (Melopsittacus undulatus, a parrot. Budgerigar males successfully learned to discriminate two Japanese words spoken by another male conspecific. Re-exposure to the two discriminanda led to increased neuronal activation in the caudomedial pallium, but not in the hippocampus, compared to untrained birds that were exposed to the same words, or were not exposed to words. Neuronal activation in the caudomedial pallium of the experimental birds was correlated significantly and positively with the percentage of correct responses in the discrimination task. These results suggest that in a parrot, the caudomedial pallium is involved in auditory learning. Thus, in parrots, songbirds and humans, analogous brain regions may contain the neural substrate for auditory learning and memory.

  7. Localized brain activation related to the strength of auditory learning in a parrot.

    Science.gov (United States)

    Eda-Fujiwara, Hiroko; Imagawa, Takuya; Matsushita, Masanori; Matsuda, Yasushi; Takeuchi, Hiro-Aki; Satoh, Ryohei; Watanabe, Aiko; Zandbergen, Matthijs A; Manabe, Kazuchika; Kawashima, Takashi; Bolhuis, Johan J

    2012-01-01

    Parrots and songbirds learn their vocalizations from a conspecific tutor, much like human infants acquire spoken language. Parrots can learn human words and it has been suggested that they can use them to communicate with humans. The caudomedial pallium in the parrot brain is homologous with that of songbirds, and analogous to the human auditory association cortex, involved in speech processing. Here we investigated neuronal activation, measured as expression of the protein product of the immediate early gene ZENK, in relation to auditory learning in the budgerigar (Melopsittacus undulatus), a parrot. Budgerigar males successfully learned to discriminate two Japanese words spoken by another male conspecific. Re-exposure to the two discriminanda led to increased neuronal activation in the caudomedial pallium, but not in the hippocampus, compared to untrained birds that were exposed to the same words, or were not exposed to words. Neuronal activation in the caudomedial pallium of the experimental birds was correlated significantly and positively with the percentage of correct responses in the discrimination task. These results suggest that in a parrot, the caudomedial pallium is involved in auditory learning. Thus, in parrots, songbirds and humans, analogous brain regions may contain the neural substrate for auditory learning and memory.

  8. Perceptual context and individual differences in the language proficiency of preschool children.

    Science.gov (United States)

    Banai, Karen; Yifat, Rachel

    2016-02-01

    Although the contribution of perceptual processes to language skills during infancy is well recognized, the role of perception in linguistic processing beyond infancy is not well understood. In the experiments reported here, we asked whether manipulating the perceptual context in which stimuli are presented across trials influences how preschool children perform visual (shape-size identification; Experiment 1) and auditory (syllable identification; Experiment 2) tasks. Another goal was to determine whether the sensitivity to perceptual context can explain part of the variance in oral language skills in typically developing preschool children. Perceptual context was manipulated by changing the relative frequency with which target visual (Experiment 1) and auditory (Experiment 2) stimuli were presented in arrays of fixed size, and identification of the target stimuli was tested. Oral language skills were assessed using vocabulary, word definition, and phonological awareness tasks. Changes in perceptual context influenced the performance of the majority of children on both identification tasks. Sensitivity to perceptual context accounted for 7% to 15% of the variance in language scores. We suggest that context effects are an outcome of a statistical learning process. Therefore, the current findings demonstrate that statistical learning can facilitate both visual and auditory identification processes in preschool children. Furthermore, consistent with previous findings in infants and in older children and adults, individual differences in statistical learning were found to be associated with individual differences in language skills of preschool children. PMID:26547248

  9. Perceptual context and individual differences in the language proficiency of preschool children.

    Science.gov (United States)

    Banai, Karen; Yifat, Rachel

    2016-02-01

    Although the contribution of perceptual processes to language skills during infancy is well recognized, the role of perception in linguistic processing beyond infancy is not well understood. In the experiments reported here, we asked whether manipulating the perceptual context in which stimuli are presented across trials influences how preschool children perform visual (shape-size identification; Experiment 1) and auditory (syllable identification; Experiment 2) tasks. Another goal was to determine whether the sensitivity to perceptual context can explain part of the variance in oral language skills in typically developing preschool children. Perceptual context was manipulated by changing the relative frequency with which target visual (Experiment 1) and auditory (Experiment 2) stimuli were presented in arrays of fixed size, and identification of the target stimuli was tested. Oral language skills were assessed using vocabulary, word definition, and phonological awareness tasks. Changes in perceptual context influenced the performance of the majority of children on both identification tasks. Sensitivity to perceptual context accounted for 7% to 15% of the variance in language scores. We suggest that context effects are an outcome of a statistical learning process. Therefore, the current findings demonstrate that statistical learning can facilitate both visual and auditory identification processes in preschool children. Furthermore, consistent with previous findings in infants and in older children and adults, individual differences in statistical learning were found to be associated with individual differences in language skills of preschool children.

  10. Utilising reinforcement learning to develop strategies for driving auditory neural implants

    Science.gov (United States)

    Lee, Geoffrey W.; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G.

    2016-08-01

    Objective. In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. Approach. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Main results. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model’s function. We show the ability to effectively learn stimulation patterns which mimic the cochlea’s ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. Significance. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  11. Comparative Evaluation of Auditory Attention in 7 to 9 Year Old Learning Disabled Students

    Directory of Open Access Journals (Sweden)

    Fereshteh Amiriani

    2011-06-01

    Full Text Available Background and Aim: Learning disability is a term referes to a group of disorders manifesting listening, reading, writing, or mathematical problems. These children mostly have attention difficulties in classroom that leads to many learning problems. In this study we aimed to compare the auditory attention of 7 to 9 year old children with learning disability to non- learning disability age matched normal group.Methods: Twenty seven male 7 to 9 year old students with learning disability and 27 age and sex matched normal conrols were selected with unprobable simple sampling. 27 In order to evaluate auditory selective and divided attention, Farsi versions of speech in noise and dichotic digit test were used respectively.Results: Comparison of mean scores of Farsi versions of speech in noise in both ears of 7 and 8 year-old students in two groups indicated no significant difference (p>0.05 Mean scores of 9 year old controls was significant more than those of the cases only in the right ear (p=0.033. However, no significant difference was observed between mean scores of dichotic digit test assessing the right ear of 9 year-old learning disability and non learning disability students (p>0.05. Moreover, mean scores of 7 and 8 year- old students with learning disability was less than those of their normal peers in the left ear (p>0.05.Conclusion: Selective auditory attention is not affected in the optimal signal to noise ratio, while divided attention seems to be affected by maturity delay of auditory system or central auditory system disorders.

  12. Thalamocortical dynamics of the McCollough effect: boundary-surface alignment through perceptual learning.

    Science.gov (United States)

    Grossberg, Stephen; Hwang, Seungwoo; Mingolla, Ennio

    2002-05-01

    This article further develops the FACADE neural model of 3-D vision and figure-ground perception to quantitatively explain properties of the McCollough effect (ME). The model proposes that many ME data result from visual system mechanisms whose primary function is to adaptively align, through learning, boundary and surface representations that are positionally shifted due to the process of binocular fusion. For example, binocular boundary representations are shifted by binocular fusion relative to monocular surface representations, yet the boundaries must become positionally aligned with the surfaces to control binocular surface capture and filling-in. The model also includes perceptual reset mechanisms that use habituative transmitters in opponent processing circuits. Thus the model shows how ME data may arise from a combination of mechanisms that have a clear functional role in biological vision. Simulation results with a single set of parameters quantitatively fit data from 13 experiments that probe the nature of achromatic/chromatic and monocular/binocular interactions during induction of the ME. The model proposes how perceptual learning, opponent processing, and habituation at both monocular and binocular surface representations are involved, including early thalamocortical sites. In particular, it explains the anomalous ME utilizing these multiple processing sites. Alternative models of the ME are also summarized and compared with the present model.

  13. Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression.

    Science.gov (United States)

    Gotts, Stephen J

    2016-08-01

    Incremental learning models of long-term perceptual and conceptual knowledge hold that neural representations are gradually acquired over many individual experiences via Hebbian-like activity-dependent synaptic plasticity across cortical connections of the brain. In such models, variation in task relevance of information, anatomic constraints, and the statistics of sensory inputs and motor outputs lead to qualitative alterations in the nature of representations that are acquired. Here, the proposal that behavioral repetition priming and neural repetition suppression effects are empirical markers of incremental learning in the cortex is discussed, and research results that both support and challenge this position are reviewed. Discussion is focused on a recent fMRI-adaptation study from our laboratory that shows decoupling of experience-dependent changes in neural tuning, priming, and repetition suppression, with representational changes that appear to work counter to the explicit task demands. Finally, critical experiments that may help to clarify and resolve current challenges are outlined. PMID:27294423

  14. Learned perceptual associations influence visuomotor programming under limited conditions: cues as surface patterns.

    Science.gov (United States)

    Haffenden, Angela M; Goodale, Melvyn A

    2002-12-01

    The present set of three experiments was designed to extend the findings that visuomotor programming can make use of learned size information under some, but not all, conditions. An association was established between the size of square wooden blocks and a perceptual cue in all experiments. In Experiment 1 the perceptual cue to size was a small two-dimensional drawing of a shape affixed to the top of the blocks (e.g. triangle = large; circle = small, or vice versa). In Experiment 2 size and shape were again associated but this time a pattern of two-dimensional shapes covered the visible surface of the blocks. In Experiment 3 block size was associated with the colour of a small circle affixed to the top of the blocks (e.g. red = large; yellow = small, or vice versa). All of the subjects grasped the blocks, and on other trials estimated the size of the blocks by opening their thumb and finger a matching amount. Consistent with previous reports, in all experiments, the learned associations changed the perceived size of two test blocks halfway in size between the large and small blocks: estimations of the test block matched by shape or colour to the group of large objects were smaller than estimations of the test block matched to the group of small objects. The effect appears to result from relative-size comparisons being made between the medium-sized test blocks and the size category (large or small) associated with the matching shape or colour cue. Despite the significant effect of the learned perceptual associations on manual estimations, no effect on grip scaling was seen when the cues associated with size were single small elements centred on the top of the block (Experiment 1 and Experiment 3). Changes in grip scaling corresponded to the change in perceived size only when the cue to size covered the entire block (Experiment 2), forming a surface pattern. These findings suggest that visuomotor programming is more likely to use learned size information when the cue

  15. Mental imagery of speech implicates two mechanisms of perceptual reactivation.

    Science.gov (United States)

    Tian, Xing; Zarate, Jean Mary; Poeppel, David

    2016-04-01

    Sensory cortices can be activated without any external stimuli. Yet, it is still unclear how this perceptual reactivation occurs and which neural structures mediate this reconstruction process. In this study, we employed fMRI with mental imagery paradigms to investigate the neural networks involved in perceptual reactivation. Subjects performed two speech imagery tasks: articulation imagery (AI) and hearing imagery (HI). We found that AI induced greater activity in frontal-parietal sensorimotor systems, including sensorimotor cortex, subcentral (BA 43), middle frontal cortex (BA 46) and parietal operculum (PO), whereas HI showed stronger activation in regions that have been implicated in memory retrieval: middle frontal (BA 8), inferior parietal cortex and intraparietal sulcus. Moreover, posterior superior temporal sulcus (pSTS) and anterior superior temporal gyrus (aSTG) was activated more in AI compared with HI, suggesting that covert motor processes induced stronger perceptual reactivation in the auditory cortices. These results suggest that motor-to-perceptual transformation and memory retrieval act as two complementary mechanisms to internally reconstruct corresponding perceptual outcomes. These two mechanisms can serve as a neurocomputational foundation for predicting perceptual changes, either via a previously learned relationship between actions and their perceptual consequences or via stored perceptual experiences of stimulus and episodic or contextual regularity. PMID:26889603

  16. Learning-induced uncertainty reduction in perceptual decisions is task-dependent

    Directory of Open Access Journals (Sweden)

    Feitong eYang

    2014-05-01

    Full Text Available Perceptual decision making in which decisions are reached primarily from extracting and evaluating sensory information requires close interactions between the sensory system and decision-related networks in the brain. Uncertainty pervades every aspect of this process and can be considered related to either the stimulus signal or decision criterion. Here, we investigated the learning-induced reduction of both the signal and criterion uncertainty in two perceptual decision tasks based on two Glass pattern stimulus sets. This was achieved by manipulating spiral angle and signal level of radial and concentric Glass patterns. The behavioral results showed that the participants trained with a task based on criterion comparison improved their categorization accuracy for both tasks, whereas the participants who were trained on a task based on signal detection improved their categorization accuracy only on their trained task. We fitted the behavioral data with a computational model that can dissociate the contribution of the signal and criterion uncertainties. The modeling results indicated that the participants trained on the criterion comparison task reduced both the criterion and signal uncertainty. By contrast, the participants who were trained on the signal detection task only reduced their signal uncertainty after training. Our results suggest that the signal uncertainty can be resolved by training participants to extract signals from noisy environments and to discriminate between clear signals, which are evidenced by reduced perception variance after both training procedures. Conversely, the criterion uncertainty can only be resolved by the training of fine discrimination. These findings demonstrate that uncertainty in perceptual decision-making can be reduced with training but that the reduction of different types of uncertainty is task-dependent.

  17. Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy

    Directory of Open Access Journals (Sweden)

    Françoise eLecaignard

    2015-09-01

    Full Text Available Deviant stimuli, violating regularities in a sensory environment, elicit the Mismatch Negativity (MMN, largely described in the Event-Related Potential literature. While it is widely accepted that the MMN reflects more than basic change detection, a comprehensive description of mental processes modulating this response is still lacking. Within the framework of predictive coding, deviance processing is part of an inference process where prediction errors (the mismatch between incoming sensations and predictions established through experience are minimized. In this view, the MMN is a measure of prediction error, which yields specific expectations regarding its modulations by various experimental factors. In particular, it predicts that the MMN should decrease as the occurrence of a deviance becomes more predictable. We conducted a passive oddball EEG study and manipulated the predictability of sound sequences by means of different temporal structures. Importantly, our design allows comparing mismatch responses elicited by predictable and unpredictable violations of a simple repetition rule and therefore departs from previous studies that investigate violations of different time-scale regularities. We observed a decrease of the MMN with predictability and interestingly, a similar effect at earlier latencies, within 70 ms after deviance onset. Following these pre-attentive responses, a reduced P3a was measured in the case of predictable deviants. We conclude that early and late deviance responses reflect prediction errors, triggering belief updating within the auditory hierarchy. Beside, in this passive study, such perceptual inference appears to be modulated by higher-level implicit learning of sequence statistical structures. Our findings argue for a hierarchical model of auditory processing where predictive coding enables implicit extraction of environmental regularities.

  18. Analysis of previous perceptual and motor experience in breaststroke kick learning

    Directory of Open Access Journals (Sweden)

    Ried Bettina

    2015-12-01

    Full Text Available One of the variables that influence motor learning is the learner’s previous experience, which may provide perceptual and motor elements to be transferred to a novel motor skill. For swimming skills, several motor experiences may prove effective. Purpose. The aim was to analyse the influence of previous experience in playing in water, swimming lessons, and music or dance lessons on learning the breaststroke kick. Methods. The study involved 39 Physical Education students possessing basic swimming skills, but not the breaststroke, who performed 400 acquisition trials followed by 50 retention and 50 transfer trials, during which stroke index as well as rhythmic and spatial configuration indices were mapped, and answered a yes/no questionnaire regarding previous experience. Data were analysed by ANOVA (p = 0.05 and the effect size (Cohen’s d ≥0.8 indicating large effect size. Results. The whole sample improved their stroke index and spatial configuration index, but not their rhythmic configuration index. Although differences between groups were not significant, two types of experience showed large practical effects on learning: childhood water playing experience only showed major practically relevant positive effects, and no experience in any of the three fields hampered the learning process. Conclusions. The results point towards diverse impact of previous experience regarding rhythmic activities, swimming lessons, and especially with playing in water during childhood, on learning the breaststroke kick.

  19. A Comparative Usability Study on the Use of Auditory Icons to Support Virtual Lecturers in E-Learning Interfaces

    Directory of Open Access Journals (Sweden)

    Marwan Alseid

    2014-01-01

    Full Text Available Prior conducted research revealed that the auditory icons could contribute in supporting the virtual lecturers in presence of full body animation while delivering the learning content in e-learning interfaces. This paper presents further empirical investigation into the use of these supportive auditory icons by comparing three different e-learning interfaces in terms of usability aspects; effectiveness, user satisfaction and memorability. The aim is to find out which combination of the tested multimodal metaphors is the best one in terms of utilizing the auditory icons to supplement the presentation of learning material by virtual lecturer. The first experimental e-learning interface incorporates a speaking virtual lecturer with full body gestures along with supportive auditory icons. The second experimental e-learning interface includes the use of virtual lecturer speech in the absence of his body and accompanied with the same auditory icons used in the first interface. However, the third interface is similar to the second one in terms of using the virtual lecturer's speech but without any additional auditory icons. The obtained results have shown that the inclusion of auditory icons could enhance the usability and learning performance of e-learning interfaces much better if combined along with speaking virtual lectures in the absence of any body animation.

  20. ONTOGENY OF EYEBLINK CONDITIONING IN THE RAT: AUDITORY FREQUENCY AND DISCRIMINATION LEARNING EFFECTS

    Science.gov (United States)

    The present study sought to determine whether acoustic properties of the auditory conditioned stimulus (CS) or the use of a discrimination learning procedure would alter the emergence of eyeblink conditioning between Postnatal Day 17 and 24 (PND17-24) in the rat. n Experiment 1, ...

  1. Learning the Phonological Forms of New Words: Effects of Orthographic and Auditory Input

    Science.gov (United States)

    Hayes-Harb, Rachel; Nicol, Janet; Barker, Jason

    2010-01-01

    We investigated the relationship between the phonological and orthographic representations of new words for adult learners. Three groups of native English speakers learned a set of auditorily-presented pseudowords along with pictures indicating their "meanings". They were later tested on their memory of the words via an auditory word-picture…

  2. Learning of perceptual grouping for object segmentation on RGB-D data.

    Science.gov (United States)

    Richtsfeld, Andreas; Mörwald, Thomas; Prankl, Johann; Zillich, Michael; Vincze, Markus

    2014-01-01

    Object segmentation of unknown objects with arbitrary shape in cluttered scenes is an ambitious goal in computer vision and became a great impulse with the introduction of cheap and powerful RGB-D sensors. We introduce a framework for segmenting RGB-D images where data is processed in a hierarchical fashion. After pre-clustering on pixel level parametric surface patches are estimated. Different relations between patch-pairs are calculated, which we derive from perceptual grouping principles, and support vector machine classification is employed to learn Perceptual Grouping. Finally, we show that object hypotheses generation with Graph-Cut finds a globally optimal solution and prevents wrong grouping. Our framework is able to segment objects, even if they are stacked or jumbled in cluttered scenes. We also tackle the problem of segmenting objects when they are partially occluded. The work is evaluated on publicly available object segmentation databases and also compared with state-of-the-art work of object segmentation. PMID:24478571

  3. Localized Brain Activation Related to the Strength of Auditory Learning in a Parrot

    OpenAIRE

    Hiroko Eda-Fujiwara; Takuya Imagawa; Masanori Matsushita; Yasushi Matsuda; Hiro-Aki Takeuchi; Ryohei Satoh; Aiko Watanabe; Zandbergen, Matthijs A.; Kazuchika Manabe; Takashi Kawashima; Johan J Bolhuis

    2012-01-01

    Parrots and songbirds learn their vocalizations from a conspecific tutor, much like human infants acquire spoken language. Parrots can learn human words and it has been suggested that they can use them to communicate with humans. The caudomedial pallium in the parrot brain is homologous with that of songbirds, and analogous to the human auditory association cortex, involved in speech processing. Here we investigated neuronal activation, measured as expression of the protein product of the imm...

  4. An Empirical Examination of EFL Learners' Perceptual Learning Styles and Acceptance of ASR-Based Computer-Assisted Pronunciation Training

    Science.gov (United States)

    Hsu, Liwei

    2016-01-01

    This study aims to explore the structural relationships among the variables of EFL (English as a foreign language) learners' perceptual learning styles and Technology Acceptance Model (TAM). Three hundred and forty-one (n = 341) EFL learners were invited to join a self-regulated English pronunciation training program through automatic speech…

  5. Consequences of comorbidity of developmental coordination disorders and learning disabilities for severity and pattern of perceptual-motor dysfunction

    NARCIS (Netherlands)

    Jongmans, MJ; Smits-Engelsman, BCM; Schoemaker, MM

    2003-01-01

    Children with developmental coordination disorder (DCD) have difficulty learning and performing age-appropriate perceptual-motor skills in the absence of diagnosable neurological disorders. Descriptive studies have shown that comorbidity of DCD exists with attention-deficit/hyperactivity disorder (A

  6. Auditory learning through active engagement with sound: Biological impact of community music lessons in at-risk children

    OpenAIRE

    Nina eKraus; Jessica eSlater; Thompson, Elaine C.; Jane eHornickel; Strait, Dana L.; Trent eNicol; Travis eWhite-Schwoch

    2014-01-01

    The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements in the soundscape. In light of evidence that music training improves auditory skills and their neural substr...

  7. Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children

    OpenAIRE

    Kraus, Nina; Slater, Jessica; Thompson, Elaine C.; Hornickel, Jane; Strait, Dana L.; Nicol, Trent; White-Schwoch, Travis

    2014-01-01

    The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substr...

  8. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  9. Influence of Grade Level on Perceptual Learning Style Preferences and Language Learning Strategies of Taiwanese English as a Foreign Language Learners

    Science.gov (United States)

    Chen, Mei-Ling

    2009-01-01

    The purpose of this study was to investigate relationships between grade level, perceptual learning style preferences, and language learning strategies among Taiwanese English as a Foreign Language (EFL) students in grades 7 through 9. Three hundred and ninety junior high school students participated in this study. The instruments for data…

  10. Effect of Auditory Constraints on Motor Learning Depends on Stage of Recovery Post Stroke

    Directory of Open Access Journals (Sweden)

    Viswanath eAluru

    2014-06-01

    Full Text Available In order to develop evidence-based rehabilitation protocols post stroke, one must first reconcile the vast heterogeneity in the post-stroke population and develop protocols to facilitate motor learning in the various subgroups. The main purpose of this study is to show that auditory constraints interact with the stage of recovery post stroke to influence motor learning. We characterized the stages of upper limb recovery using task-based kinematic measures in twenty subjects with chronic hemiparesis, and used a bimanual wrist extension task using a custom-made wrist trainer to facilitate learning of wrist extension in the paretic hand under four auditory conditions: 1 without auditory cueing; 2 to non-musical happy sounds; 3 to self-selected music; and 4 to a metronome beat set at a comfortable tempo. Two bimanual trials (15 s each were followed by one unimanual trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and arm kinematics and electromyographic activity were recorded. Hierarchical cluster analysis with the Mahalanobis metric based on baseline speed and extent of wrist movement stratified subjects into three distinct groups which reflected their stage of recovery: spastic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome beat increased wrist extension, but also increased muscle co-activation across the wrist. In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension and reduced co-activation. In minimal paresis, wrist extension did not improve under any condition. The results suggest that auditory task constraints interact with stage of recovery during motor learning after stroke, perhaps due to recruitment of distinct neural substrates over the course of recovery. The findings advance our understanding of the mechanisms of progression of motor recovery and lay the foundation for personalized treatment algorithms post stroke.

  11. Mapping phonological information from auditory to written modality during foreign vocabulary learning.

    Science.gov (United States)

    Kaushanskaya, Margarita; Marian, Viorica

    2008-12-01

    Learning to read in a foreign language often entails recognizing the printed form of words learned by sound. In the current study, the ability to map novel phonological information from the auditory modality onto the written modality was examined at different levels of overlap between the native language and an artificially constructed foreign language. In this study, monolingual English-speaking adults learned novel foreign words in the auditory modality. Recognition testing was first conducted in the auditory modality and then in the written modality. Participants who learned foreign words that matched English phonology showed similar accuracy rates when tested in either modality. Participants who learned foreign words that mismatched English phonology showed decreased recognition accuracy when tested in the written modality. Results indicate that cross-linguistic matching in phonology facilitated mapping of phonological information to the written modality. In addition, at different levels of cross-linguistic overlap, specific cognitive skills were found to correlate with the ability to map phonological information across modalities. This finding suggests that the cognitive skills required for acquisition of a foreign language may vary depending upon degree of cross-linguistic similarity.

  12. Encoding of episodic information through fast task-irrelevant perceptual learning.

    Science.gov (United States)

    Leclercq, Virginie; Le Dantec, Christophe C; Seitz, Aaron R

    2014-06-01

    The mechanisms guiding our learning and memory processes are of key interest to human cognition. While much research shows that attention and reinforcement processes help guide the encoding process, there is still much to know regarding how our brains choose what to remember. Recent research of task-irrelevant perceptual learning (TIPL) has found that information presented coincident with important events is better encoded even if participants are not aware of its presence (see Seitz & Watanabe, 2009). However a limitation of existing studies of TIPL is that they provide little information regarding the depth of encoding supported by pairing a stimulus with a behaviorally relevant event. The objective of this research was to understand the depth of encoding of information that is learned through TIPL. To do so, we adopted a variant of the "remember/know" paradigm, recently reported by Ingram, Mickes, and Wixted (2012), in which multiple confidence levels of both familiar (know) and remember reports are reported (Experiment 1), and in which episodic information is tested (Experiment 2). TIPL was found in both experiments, with higher recognition performance for target-paired than for distractor-paired images. Furthermore, TIPL benefitted both "familiar" and "remember" reports. The results of Experiment 2 indicate that the most confident "remember" response was associated with episodic information, where participants were able to access the location of image presentation for these items. Together, these results indicate that TIPL results in a deep enhancement in the encoding of target-paired information. PMID:24070687

  13. Disruption of Broca's Area Alters Higher-order Chunking Processing during Perceptual Sequence Learning.

    Science.gov (United States)

    Alamia, Andrea; Solopchuk, Oleg; D'Ausilio, Alessandro; Van Bever, Violette; Fadiga, Luciano; Olivier, Etienne; Zénon, Alexandre

    2016-03-01

    Because Broca's area is known to be involved in many cognitive functions, including language, music, and action processing, several attempts have been made to propose a unifying theory of its role that emphasizes a possible contribution to syntactic processing. Recently, we have postulated that Broca's area might be involved in higher-order chunk processing during implicit learning of a motor sequence. Chunking is an information-processing mechanism that consists of grouping consecutive items in a sequence and is likely to be involved in all of the aforementioned cognitive processes. Demonstrating a contribution of Broca's area to chunking during the learning of a nonmotor sequence that does not involve language could shed new light on its function. To address this issue, we used offline MRI-guided TMS in healthy volunteers to disrupt the activity of either the posterior part of Broca's area (left Brodmann's area [BA] 44) or a control site just before participants learned a perceptual sequence structured in distinct hierarchical levels. We found that disruption of the left BA 44 increased the processing time of stimuli representing the boundaries of higher-order chunks and modified the chunking strategy. The current results highlight the possible role of the left BA 44 in building up effector-independent representations of higher-order events in structured sequences. This might clarify the contribution of Broca's area in processing hierarchical structures, a key mechanism in many cognitive functions, such as language and composite actions. PMID:26765778

  14. Transfer of tactile perceptual learning to untrained neighboring fingers reflects natural use relationships.

    Science.gov (United States)

    Dempsey-Jones, Harriet; Harrar, Vanessa; Oliver, Jonathan; Johansen-Berg, Heidi; Spence, Charles; Makin, Tamar R

    2016-03-01

    Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization. PMID:26631145

  15. Neural correlates of short-term perceptual learning in orientation discrimination indexed by event-related potentials

    Institute of Scientific and Technical Information of China (English)

    SONG Yan; PENG DanLing; LI XiaoLan; ZHANG Yi; KANG Jing; QU Zhe; DING YuLong

    2007-01-01

    The current work investigated the neural correlates of visual perceptual learning in grating orientation discrimination by recording event-related potentials (ERPs) from human adults. Subjects were trained with a discrimination task of grating orientation in three consecutive training sessions within 2 h. While reaction times (RTs) were shortened gradually across training sessions, the N1 was decreased and the P2 was increased over the parietal and occipital areas. A broadly distributed P3 was increased along with more practices. In addition, the time course of learning reflected in the P2 and P3 amplitudes was in line with the changes of reaction times and exhibited a stable level during later training. The implications of these results to the neural mechanisms subserving perceptual learning were discussed.

  16. Perceptual Wavelet packet transform based Wavelet Filter Banks Modeling of Human Auditory system for improving the intelligibility of voiced and unvoiced speech: A Case Study of a system development

    Directory of Open Access Journals (Sweden)

    Ranganadh Narayanam

    2015-10-01

    Full Text Available The objective of this project is to discuss a versatile speech enhancement method based on the human auditory model. In this project a speech enhancement scheme is being described which meets the demand for quality noise reduction algorithms which are capable of operating at a very low signal to noise ratio. We will be discussing how proposed speech enhancement system is capable of reducing noise with little speech degradation in diverse noise environments. In this model to reduce the residual noise and improve the intelligibility of speech a psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise. This is a generalized time frequency subtraction algorithm which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet transform via the frequency and temporal localization of speech components. To calculate the bark spreading energy and temporal spreading energy the wavelet coefficients are used from which a time frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the discussed method. To increase the intelligibility of speech an unvoiced speech enhancement algorithm also integrated into the system.

  17. Developmental stress impairs performance on an association task in male and female songbirds, but impairs auditory learning in females only.

    Science.gov (United States)

    Farrell, Tara M; Morgan, Amanda; MacDougall-Shackleton, Scott A

    2016-01-01

    In songbirds, early-life environments critically shape song development. Many studies have demonstrated that developmental stress impairs song learning and the development of song-control regions of the brain in males. However, song has evolved through signaller-receiver networks and the effect stress has on the ability to receive auditory signals is equally important, especially for females who use song as an indicator of mate quality. Female song preferences have been the metric used to evaluate how developmental stress affects auditory learning, but preferences are shaped by many non-cognitive factors and preclude the evaluation of auditory learning abilities in males. To determine whether developmental stress specifically affects auditory learning in both sexes, we subjected juvenile European starlings, Sturnus vulgaris, to either an ad libitum or an unpredictable food supply treatment from 35 to 115 days of age. In adulthood, we assessed learning of both auditory and visual discrimination tasks. Females reared in the experimental group were slower than females in the control group to acquire a relative frequency auditory task, and slower than their male counterparts to acquire an absolute frequency auditory task. There was no difference in auditory performance between treatment groups for males. However, on the colour association task, birds from the experimental group committed more errors per trial than control birds. There was no correlation in performance across the cognitive tasks. Developmental stress did not affect all cognitive processes equally across the sexes. Our results suggest that the male auditory system may be more robust to developmental stress than that of females. PMID:26238792

  18. Baseline performance and learning rate of conceptual and perceptual skill-learning tasks: the effect of moderate to severe traumatic brain injury.

    Science.gov (United States)

    Vakil, Eli; Lev-Ran Galon, Carmit

    2014-01-01

    Existing literature presents a complex and inconsistent picture of the specific deficiencies involved in skill learning following traumatic brain injury (TBI). In an attempt to address this difficulty, individuals with moderate to severe TBI (n = 29) and a control group (n = 29) were tested with two different skill-learning tasks: conceptual (i.e., Tower of Hanoi Puzzle, TOHP) and perceptual (i.e., mirror reading, MR). Based on previous studies of the effect of divided attention on these tasks and findings regarding the effect of TBI on conceptual and perceptual priming tasks, it was predicted that the group with TBI would show impaired baseline performance compared to controls in the TOHP task though their learning rate would be maintained, while both baseline performance and learning rate on the MR task would be maintained. Consistent with our predictions, overall baseline performance of the group with TBI was impaired in the TOHP test, while the learning rate was not. The learning rate on the MR task was preserved but, contrary to our prediction, response time of the group with TBI was slower than that of controls. The pattern of results observed in the present study was interpreted to possibly reflect an impairment of both the frontal lobes as well as that of diffuse axonal injury, which is well documented as being affected by TBI. The former impairment affects baseline performance of the conceptual learning skill, while the latter affects the overall slower performance of the perceptual learning skill. PMID:24742199

  19. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    Science.gov (United States)

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience

  20. 汉语发展性阅读障碍儿童的视知觉学习*%Visual Perceptual Learning in Chinese Developmental Dyslexia

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    As to the origin and mechanisms of developmental dyslexia, nonlinguistic framework proposes that the phonological and other deficits at the linguistic level may stem from more fundamental deficits in sensory information processing, including acoustic-auditory and auditory temporal processing and visual perceptual processing. Previous studies have shown that visual perceptual deficits of dyslexic children may stem from the deficit in processing more basic visual attributes, as basic visual features are fundamental to higher-level visual processing. Perceptual learning is the improvement of perceptual performance as a function of training (Gibson, 1969), which has been found in various visual tasks involving basic visual features. Here, using visual searching tasks, the main purpose of the present study was to investigate to what extent dyslexic children would show deficits in perceptual processing and learning and whether these deficits are related to their performance in linguistic tasks. Eighteen participants, 9 with dyslexia, 9 chronological age- and nonverbal IQ-matched control children, were screened from a large pool of students in 3, 4, 5 grades with the standardized Chinese written vocabulary test, the reading fluency test and the Raven’s Standard Progressive Matrices test. We tested 9 children in dyslexia group and 9 age-matched children in control group with a parallel search task, a serial search task and a serial search task in restricted time. Study 1 utilized a parallel searching task to examine whether there is a deficit in the basic searching processing and learning in dyslexia group. Study 2 used a serial searching task to explore whether there is a deficit in more complex searching processing and learning. Study 3 adopted a serial searching task with restricted time to investigate whether the ability of serial searching processing will be affected by the restricted time. The results showed that there was no difference between dyslexics and

  1. Auditory Frequency Discrimination in Adults with Dyslexia: A Test of the Anchoring Hypothesis

    Science.gov (United States)

    Wijnen, Frank; Kappers, Astrid M. L.; Vlutters, Leoni D.; Winkel, Sven

    2012-01-01

    Purpose: A recent hypothesis ascribes dyslexia to a perceptual anchoring deficit. Supporting results have so far been obtained only in children with dyslexia and additional learning difficulties, but the hypothesis has been argued to apply to all individuals with dyslexia. Method: The authors measured auditory frequency discrimination thresholds…

  2. Learning to play a melody: an fMRI study examining the formation of auditory-motor associations.

    Science.gov (United States)

    Chen, Joyce L; Rae, Charlotte; Watkins, Kate E

    2012-01-16

    Interactions between the auditory and motor systems are important for music and speech, and may be especially relevant when one learns to associate sounds with movements such as when learning to play a musical instrument. However, little is known about the neural substrates underlying auditory-motor learning. This study used fMRI to investigate the formation of auditory-motor associations while participants with no musical training learned to play a melody. Listening to melodies before and after training activated the superior temporal gyrus bilaterally, but neural activity in this region was significantly reduced on the right when participants listened to the trained melody. When playing melodies and random sequences, activity in the left dorsal premotor cortex (PMd) was reduced in the late compared to early phase of training; learning to play the melody was also associated with reduced neural activity in the left ventral premotor cortex (PMv). Participants with the highest performance scores for learning the melody showed more reduced neural activity in the left PMd and PMv. Learning to play a melody or random sequence involves acquiring conditional associations between key-presses and their corresponding musical pitches, and is related to activity in the PMd. Learning to play a melody additionally involves acquisition of a learned auditory-motor sequence and is related to activity in the PMv. Together, these findings demonstrate that auditory-motor learning is related to the reduction of neural activity in brain regions of the dorsal auditory action stream, which suggests increased efficiency in neural processing of a learned stimulus. PMID:21871571

  3. Aesthetic concepts, perceptual learning, and linguistic enculturation: considerations from Wittgenstein, language, and music.

    Science.gov (United States)

    Croom, Adam M

    2012-03-01

    Aesthetic non-cognitivists deny that aesthetic statements express genuinely aesthetic beliefs and instead hold that they work primarily to express something non-cognitive, such as attitudes of approval or disapproval, or desire. Non-cognitivists deny that aesthetic statements express aesthetic beliefs because they deny that there are aesthetic features in the world for aesthetic beliefs to represent. Their assumption, shared by scientists and theorists of mind alike, was that language-users possess cognitive mechanisms with which to objectively grasp abstract rules fixed independently of human responses, and that cognizers are thereby capable of grasping rules for the correct application of aesthetic concepts without relying on evaluation or enculturation. However, in this article I use Wittgenstein's rule-following considerations to argue that psychological theories grounded upon this so-called objective model of rule-following fail to adequately account for concept acquisition and mastery. I argue that this is because linguistic enculturation, and the perceptual learning that's often involved, influences and enables the mastery of aesthetic concepts. I argue that part of what's involved in speaking aesthetically is to belong to a cultural practice of making sense of things aesthetically, and that it's within a socio-linguistic community, and that community's practices, that such aesthetic sense can be made intelligible.

  4. Aesthetic concepts, perceptual learning, and linguistic enculturation: considerations from Wittgenstein, language, and music.

    Science.gov (United States)

    Croom, Adam M

    2012-03-01

    Aesthetic non-cognitivists deny that aesthetic statements express genuinely aesthetic beliefs and instead hold that they work primarily to express something non-cognitive, such as attitudes of approval or disapproval, or desire. Non-cognitivists deny that aesthetic statements express aesthetic beliefs because they deny that there are aesthetic features in the world for aesthetic beliefs to represent. Their assumption, shared by scientists and theorists of mind alike, was that language-users possess cognitive mechanisms with which to objectively grasp abstract rules fixed independently of human responses, and that cognizers are thereby capable of grasping rules for the correct application of aesthetic concepts without relying on evaluation or enculturation. However, in this article I use Wittgenstein's rule-following considerations to argue that psychological theories grounded upon this so-called objective model of rule-following fail to adequately account for concept acquisition and mastery. I argue that this is because linguistic enculturation, and the perceptual learning that's often involved, influences and enables the mastery of aesthetic concepts. I argue that part of what's involved in speaking aesthetically is to belong to a cultural practice of making sense of things aesthetically, and that it's within a socio-linguistic community, and that community's practices, that such aesthetic sense can be made intelligible. PMID:21904955

  5. Effects of native language experience on perceptual learning of Cantonese lexical tones

    Science.gov (United States)

    Francis, Alexander L.; Ciocca, Valter; Ma, Lian

    2001-05-01

    In a tonal language syllabic pitch patterns contribute to lexical meaning. Perceptual assimilation models of cross-language perception predict speakers of another tonal language should assimilate Cantonese lexical tones to native tonal categories, affecting identification, discrimination and acquisition. For nontonal language speakers, two possibilities exist. If pitch information is ignored, vowels with different tones should assimilate to the same native category, lowering performance. If tonal information is attended but unused in native categorization, Cantonese tones could be nonassimilable and therefore easily discriminated, and possibly easily identified or learned. Here, native speakers of Mandarin Chinese and American English were trained to identify Cantonese words differing in lexical tone. Discrimination and identification were tested before and after training. Both groups initially performed well on upper register tones (high level, high rising, mid level) and poorly on lower (low falling, low level, low rising). Mandarin listeners improved most at identifying low falling tones; English listeners improved most on low level and low rising tones. Training primarily appeared to improve listeners' ability to make categorical decisions based on direction of pitch change, a feature reportedly under-attended by English speakers, but preferred by Mandarin speakers. [Work supported by research funding from The University of Hong Kong.

  6. Perceptual learning reduces crowding in amblyopia and in the normal periphery.

    Science.gov (United States)

    Hussain, Zahra; Webb, Ben S; Astle, Andrew T; McGraw, Paul V

    2012-01-11

    Amblyopia is a developmental visual disorder of cortical origin, characterized by crowding and poor acuity in central vision of the affected eye. Crowding refers to the adverse effects of surrounding items on object identification, common only in normal peripheral but not central vision. We trained a group of adult human amblyopes on a crowded letter identification task to assess whether the crowding problem can be ameliorated. Letter size was fixed well above the acuity limit, and letter spacing was varied to obtain spacing thresholds for central target identification. Normally sighted observers practiced the same task in their lower peripheral visual field. Independent measures of acuity were taken in flanked and unflanked conditions before and after training to measure crowding ratios at three fixed letter separations. Practice improved the letter spacing thresholds of both groups on the training task, and crowding ratios were reduced after posttest. The reductions in crowding in amblyopes were associated with improvements in standard measures of visual acuity. Thus, perceptual learning reduced the deleterious effects of crowding in amblyopia and in the normal periphery. The results support the effectiveness of plasticity-based approaches for improving vision in adult amblyopes and suggest experience-dependent effects on the cortical substrates of crowding.

  7. Bottom-up and top-down influences at untrained conditions determine perceptual learning specificity and transfer

    Science.gov (United States)

    Xiong, Ying-Zi; Zhang, Jun-Yun; Yu, Cong

    2016-01-01

    Perceptual learning is often orientation and location specific, which may indicate neuronal plasticity in early visual areas. However, learning specificity diminishes with additional exposure of the transfer orientation or location via irrelevant tasks, suggesting that the specificity is related to untrained conditions, likely because neurons representing untrained conditions are neither bottom-up stimulated nor top-down attended during training. To demonstrate these top-down and bottom-up contributions, we applied a “continuous flash suppression” technique to suppress the exposure stimulus into sub-consciousness, and with additional manipulations to achieve pure bottom-up stimulation or top-down attention with the transfer condition. We found that either bottom-up or top-down influences enabled significant transfer of orientation and Vernier discrimination learning. These results suggest that learning specificity may result from under-activations of untrained visual neurons due to insufficient bottom-up stimulation and/or top-down attention during training. High-level perceptual learning thus may not functionally connect to these neurons for learning transfer. DOI: http://dx.doi.org/10.7554/eLife.14614.001 PMID:27377357

  8. A mouse model of visual perceptual learning reveals alterations in neuronal coding and dendritic spine density in the visual cortex

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-03-01

    Full Text Available Visual perceptual learning (VPL can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS and a 55% gain in visual acuity (VA. Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1 than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  9. Environmental design shapes perceptual-motor exploration, learning and transfer in climbing

    Directory of Open Access Journals (Sweden)

    Ludovic eSeifert

    2015-11-01

    Full Text Available This study investigated how environmental design shapes perceptual-motor exploration, when meta-stable regions of performance are created. Here, we examined how creating meta-stable regions of performance could destabilize pre-existing skills, favoring greater exploration of performance environments, exemplified in this study by climbing surfaces. In this investigation we manipulated hold orientations on an indoor climbing wall to examine how nine climbers explored, learned and transferred various trunk-rolling motion patterns and hand grasping movements. The learning protocol consisted of four sessions, in which climbers randomly ascended three different routes, as fluently as possible. All three routes were 10.3m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i a horizontal-edge route was designed to afford horizontal hold grasping, (ii a vertical-edge route afforded vertical hold grasping, and (iii, a double-edge route was designed to afford both horizontal and vertical hold grasping. As a meta-stable condition of performance invite an individual to both exploit his pre-existing behavioral repertoire (i.e., horizontal hold grasping pattern and trunk face to the wall and explore new behaviors (i.e., vertical hold grasping and trunk side to the wall, it was hypothesized that the double-edge route characterized a meta-stable region of performance. Data were collected from inertial measurement units located on the neck and hip of each climber, allowing us to compute rolling motion referenced to the artificial climbing wall. Information on ascent duration, the number of exploratory and performatory movements for locating hand-holds, and hip path was also observed in video footage from a frontal camera worn by participants. Climbing fluency was assessed by calculating geometric index of entropy. Results showed that the meta-stable condition of performance may have

  10. Environmental Design Shapes Perceptual-motor Exploration, Learning, and Transfer in Climbing.

    Science.gov (United States)

    Seifert, Ludovic; Boulanger, Jérémie; Orth, Dominic; Davids, Keith

    2015-01-01

    This study investigated how environmental design shapes perceptual-motor exploration, when meta-stable regions of performance are created. Here, we examined how creating meta-stable regions of performance could destabilize pre-existing skills, favoring greater exploration of performance environments, exemplified in this study by climbing surfaces. In this investigation we manipulated hold orientations on an indoor climbing wall to examine how nine climbers explored, learned, and transferred various trunk-rolling motion patterns and hand grasping movements. The learning protocol consisted of four sessions, in which climbers randomly ascended three different routes, as fluently as possible. All three routes were 10.3 m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i) a horizontal-edge route was designed to afford horizontal hold grasping, (ii) a vertical-edge route afforded vertical hold grasping, and (iii), a double-edge route was designed to afford both horizontal and vertical hold grasping. As a meta-stable condition of performance invite an individual to both exploit his pre-existing behavioral repertoire (i.e., horizontal hold grasping pattern and trunk face to the wall) and explore new behaviors (i.e., vertical hold grasping and trunk side to the wall), it was hypothesized that the double-edge route characterized a meta-stable region of performance. Data were collected from inertial measurement units located on the neck and hip of each climber, allowing us to compute rolling motion referenced to the artificial climbing wall. Information on ascent duration, the number of exploratory and performatory movements for locating hand-holds, and hip path was also observed in video footage from a frontal camera worn by participants. Climbing fluency was assessed by calculating geometric index of entropy. Results showed that the meta-stable condition of performance may have afforded

  11. Learning to "See" Less than Nothing: Putting Perceptual Skills to Work for Learning Numerical Structure

    Science.gov (United States)

    Tsang, Jessica M.; Blair, Kristen P.; Bofferding, Laura; Schwartz, Daniel L.

    2015-01-01

    How can children's natural perceptuo-motor skills be harnessed for teaching and learning mathematical structure? We address this question in the case of the integers. Existing research suggests that adult mental representations of integers recruit perceptuo-motor functionalities involving symmetry. Building on these findings, we designed a…

  12. Listening natively across perceptual domains?

    Science.gov (United States)

    Langus, Alan; Seyed-Allaei, Shima; Uysal, Ertuğrul; Pirmoradian, Sahar; Marino, Caterina; Asaadi, Sina; Eren, Ömer; Toro, Juan M; Peña, Marcela; Bion, Ricardo A H; Nespor, Marina

    2016-07-01

    Our native tongue influences the way we perceive other languages. But does it also determine the way we perceive nonlinguistic sounds? The authors investigated how speakers of Italian, Turkish, and Persian group sequences of syllables, tones, or visual shapes alternating in either frequency or duration. We found strong native listening effects with linguistic stimuli. Speakers of Italian grouped the linguistic stimuli differently from speakers of Turkish and Persian. However, speakers of all languages showed the same perceptual biases when grouping the nonlinguistic auditory and the visual stimuli. The shared perceptual biases appear to be determined by universal grouping principles, and the linguistic differences caused by prosodic differences between the languages. Although previous findings suggest that acquired linguistic knowledge can either enhance or diminish the perception of both linguistic and nonlinguistic auditory stimuli, we found no transfer of native listening effects across auditory domains or perceptual modalities. (PsycINFO Database Record PMID:26820498

  13. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    Science.gov (United States)

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.

  14. The Relative Influences of Priors and Sensory Evidence on an Oculomotor Decision Variable During Perceptual Learning

    OpenAIRE

    Gold, Joshua I.; Law, Chi-Tat; Connolly, Patrick; Bennur, Sharath

    2008-01-01

    Choice behavior on simple sensory-motor tasks can exhibit trial-to-trial dependencies. For perceptual tasks, these dependencies reflect the influence of prior trials on choices that are also guided by sensory evidence, which is often independent across trials. Here we show that the relative influences of prior trials and sensory evidence on choice behavior can be shaped by training, such that prior influences are strongest when perceptual sensitivity to the relevant sensory evidence is weakes...

  15. Perceptually-oriented hypnosis: removing a socially learned pathology and developing adequacy: the case of invisible girl.

    Science.gov (United States)

    Woodard, Fredrick James

    2014-10-01

    This is the first case review to explicate perceptual hypnotic principles such as differentiation, characteristics of an adequate personality, and the need for adequacy, as utilized in clinical hypnosis in a complex case that altered the distorted perceptions and personal meanings of an eleven-year-old girl who believed that she had Bipolar Disorder and her body and mind were damaged. This qualitative case study examines aspects of hypnosis during therapy from a perceptual point of view to illustrate frustrations in difficult cases and identify some of the causes and origins of alleged clinical pathology in adverse environments. Some moments of effective self-healing through supporting internally controlled changes in perception during hypnotic experiencing are highlighted rather than externally focusing on observed thoughts and behavior. Factors relevant to social psychological research, such as family dynamics, poverty, and interactions with social service agencies and institutions, creating learned pathology, are pointed out for future research.

  16. Creating objects and object categories for studying perception and perceptual learning.

    Science.gov (United States)

    Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay

    2012-01-01

    In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties. Many innovative and useful methods currently exist for creating novel objects and object categories (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection. Objects and object categories created by these simulations can

  17. Activities for a Perceptual Motor Program.

    Science.gov (United States)

    Brinning, Dorothy; And Others

    Perceptual motor activities for physically handicapped children are presented in the areas of fine and gross motor skills. Also detailed are activities to develop body image, visual motor skills, and tactile and auditory perception. (JD)

  18. Perceptual learning for treating amblyopia in children based on activation of visual signal pathway Relationship of curative effects and time

    Institute of Scientific and Technical Information of China (English)

    Weimin Liu; Jiang Shen; Jianzhong Huang; Yan Luo; Hongting Liu

    2008-01-01

    BACKGROUND: Conventional methods (such as occlusion therapy, fine manipulation, complementary, and alternative medicine) take effects slowly, are time and labor consuming, and have uncertain curative effects in the treatment of amblyopia. Perceptual learning, a new method for treating amblyopia, improves the ability to process signals from the cerebral optic nerve system by specific visual stimulation and visual learning, as well as activation of the visual signal pathway utilizing brain nervous system plasticity.OBJECTIVE: This study investigated and evaluated the curative effects of perceptual learning, which can directionally increase brain plasticity, on the treatment of amblyopia in children. The relationship between curative effect and time was also analyzed.DESIGN: A self-control experiment. SETTING: Visual Science and Optometry Center, People's Hospital of Guangxi Zhuang Autonomous Region. PARTICIPANTS: A total of 125 amblyopic children (250 amblyopic eyes), 73 males, 52 females, averaging (6 ± 2) years of age, received treatment at the Visual Science and Optometry Center, People's Hospital of Guangxi Zhuang Autonomous Region between September 2006 and February 2007 and were recruited for this study. All children presented with no structural disease of the eyeballs. Written informed consent for therapeutic regiments was obtained from each child's parent. The protocol received approval from the Hospital's Ethics Committee. METHODS: Visual function was tested with a perceptual learning system (Research Center for Human Health and Development of Sun Yat-sen University, National Engineering Technique Research Center for Medical Care Implement) for visual noise, position noise, contour discrimination, contrast sensitivity, grating stereogram, and random-dot fusion. These tests helped to evaluate the efficiency of visual information processing of these children, and to determine the degree of defects of the optic nerve cells and the connections of visual

  19. Análise de parâmetros perceptivo-auditivos e acústicos em indivíduos gagos Analysis of acoustic and auditory-perceptual parameters in stutterers

    Directory of Open Access Journals (Sweden)

    Bruna Ferreira Valenzuela de Oliveira

    2009-01-01

    Full Text Available OBJETIVO: Analisar parâmetros perceptivo-auditivos e acústicos da voz em indivíduos adultos gagos. MÉTODOS: Foram analisados 15 indivíduos gagos do gênero masculino na faixa etária de 21 a 41 anos (média 26,6 anos, atendidos no Centro Clínico de Fonoaudiologia da instituição no período de fevereiro de 2005 a julho de 2007. Os parâmetros perceptivo-auditivos analisados envolveram a qualidade vocal, tipo de voz, ressonância, tensão vocal, velocidade de fala, coordenação pneumofônica, ataque vocal e gama tonal; quanto aos parâmetros acústicos, foram analisadas a frequência fundamental e sua variabilidade durante a fala espontânea. RESULTADOS: A análise perceptivo-auditiva mostrou que as características mais frequentes nos indivíduos gagos foram: qualidade vocal normal (60%, ressonância alterada (66%, tensão vocal (86%, ataque vocal alterado (73%, velocidade de fala normal (54%, gama tonal alterada (80% e coordenação pneumofônica alterada (100%. No entanto, a análise estatística revelou que apenas a presença de tensão vocal, coordenação pneumofônica e a gama tonal alteradas apresentaram-se estatisticamente significativas nos indivíduos gagos estudados. Na análise acústica, a frequência fundamental variou de 125,54 a 149,59 Hz e a variabilidade da frequência fundamental foi de 16 a 21 semitons ou 112,50 a 172,40 Hz. CONCLUSÃO: Os parâmetros perceptivo-auditivos analisados que tiveram frequência significativa nos indivíduos gagos estudados foram: presença de tensão vocal, alteração da gama tonal e na coordenação pneumofônica. Desta forma, é importante avaliar os aspectos vocais nesses pacientes, pois a desordem da fluência pode comprometer alguns parâmetros vocais podendo ocasionar disfonia.PURPOSE: To analyze auditory-perceptual and acoustic parameters of the voices of adult stutterers. METHODS: Fifteen male stutterers in the age range from 21 to 41 years (mean 26.6 years, attended at the

  20. Brief Report: Simulations Suggest Heterogeneous Category Learning and Generalization in Children with Autism is a Result of Idiosyncratic Perceptual Transformations.

    Science.gov (United States)

    Mercado, Eduardo; Church, Barbara A

    2016-08-01

    Children with autism spectrum disorder (ASD) sometimes have difficulties learning categories. Past computational work suggests that such deficits may result from atypical representations in cortical maps. Here we use neural networks to show that idiosyncratic transformations of inputs can result in the formation of feature maps that impair category learning for some inputs, but not for other closely related inputs. These simulations suggest that large inter- and intra-individual variations in learning capacities shown by children with ASD across similar categorization tasks may similarly result from idiosyncratic perceptual encoding that is resistant to experience-dependent changes. If so, then both feedback- and exposure-based category learning should lead to heterogeneous, stimulus-dependent deficits in children with ASD. PMID:27193184

  1. The performance of learning-disabled and normal young men on the test of visual-perceptual skills.

    Science.gov (United States)

    Hung, S S; Fisher, A G; Cermak, S A

    1987-12-01

    The present study explored the discriminative validity of the motor-free Test of Visual-Perceptual Skills (TVPS) as an assessment for adults. The subjects were 26 learning-disabled and 26 normal young men. Overall, the subjects with learning disabilities made significantly more errors and took significantly more time on the total TVPS than did the normal subjects. The group with learning disabilities demonstrated significantly lower accuracy scores on four of the seven subtests and longer time scores on five subtests. Discriminant analysis revealed that the time score for Visual Sequential Memory and the accuracy score for Visual Closure were the two subtest scores that best discriminated between groups and, together, were able to correctly classify 84.6% of the subjects. The TVPS total accuracy score for the subjects with learning disabilities significantly correlated with their overall performance IQ but not with their verbal IQ. Their TVPS total accuracy scores also correlated with scores on Block Design, but not with scores on the Object Assembly or Picture Completion subtests of the WAIS-R. The results seem to indicate that the TVPS is valid as an assessment of visual-perceptual functions for young adult subjects. Recommendations for further study were made. PMID:3503598

  2. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory

    Science.gov (United States)

    Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects’ performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode. PMID:27314235

  3. Comparison of Middle Latency Auditory Evoked Potentials in Learning Disability and Normal 7-12 Year- Old Children

    Directory of Open Access Journals (Sweden)

    Shoreh Jalaei

    2007-12-01

    Full Text Available Background and Aim: Learning disability(LD is one of the most prevalent problems among elementary school children. Approximately 10 percent of all elementary school children suffer from this problem. It has been determined that learning disability is predominantly accompanied with subtle impairment in central auditory nervous system. The main idea of this study was to evaluate middle latency auditory evoked potential (MLAEPs in learning disabled children. Materials and Method: This cross-sectional study investigated middle latency auditory evoked potential in children with learning disability (n = 31 compared to normal children (n = 31. Latencies and amplitudes of MLAEPs results with different stimulus intensity and binaural stimulation were compared between two groups. Results: Compared to control group, learning disabled children exhibited smaller amplitudes for all the components except the right ear Na and Pa. There is no significant difference between two groups for latencies of the components. Conclusion: It seems that middle latency auditory evoked potential may be useful in diagnosis and evaluation of learning disabled children although more investigation is required.

  4. Speech distortion measure based on auditory properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo; HU Xiulin; ZHANG Yunyu; ZHU Yaoting

    2000-01-01

    The Perceptual Spectrum Distortion (PSD), based on auditory properties of human being, is presented to measure speech distortion. The PSD measure calculates the speech distortion distance by simulating the auditory properties of human being and converting short-time speech power spectrum to auditory perceptual spectrum. Preliminary simulative experiments in comparison with the Itakura measure have been done. The results show that the PSD measure is a perferable speech distortion measure and more consistent with subjective assessment of speech quality.

  5. Perceptual grouping enhances visual plasticity

    OpenAIRE

    T. Mastropasqua; Turatto, M.

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidat...

  6. Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS)

    Science.gov (United States)

    Lega, Carlotta; Stephan, Marianne A.; Zatorre, Robert J.; Penhune, Virginia

    2016-01-01

    Interactions between the auditory and the motor systems are critical in music as well as in other domains, such as speech. The premotor cortex, specifically the dorsal premotor cortex (dPMC), seems to play a key role in auditory-motor integration, and in mapping the association between a sound and the movement used to produce it. In the present studies we tested the causal role of the dPMC in learning and applying auditory-motor associations using 1 Hz repetitive Transcranical Magnetic Stimulation (rTMS). In this paradigm, non-musicians learn a set of auditory-motor associations through melody training in two contexts: first when the sound to key-press mapping was in a conventional sequential order (low to high tones mapped onto keys from left to right), and then when it was in a novel scrambled order. Participant’s ability to match the four pitches to four computer keys was tested before and after the training. In both experiments, the group that received 1 Hz rTMS over the dPMC showed no significant improvement on the pitch-matching task following training, whereas the control group (who received rTMS to visual cortex) did. Moreover, in Experiment 2 where the pitch-key mapping was novel, rTMS over the dPMC also interfered with learning. These findings suggest that rTMS over dPMC disturbs the formation of auditory-motor associations, especially when the association is novel and must be learned rather explicitly. The present results contribute to a better understanding of the role of dPMC in auditory-motor integration, suggesting a critical role of dPMC in learning the link between an action and its associated sound. PMID:27684369

  7. Perceptual Learning of Noise Vocoded Words: Effects of Feedback and Lexicality

    Science.gov (United States)

    Hervais-Adelman, Alexis; Davis, Matthew H.; Johnsrude, Ingrid S.; Carlyon, Robert P.

    2008-01-01

    Speech comprehension is resistant to acoustic distortion in the input, reflecting listeners' ability to adjust perceptual processes to match the speech input. This adjustment is reflected in improved comprehension of distorted speech with experience. For noise vocoding, a manipulation that removes spectral detail from speech, listeners' word…

  8. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  9. Perceptual learning of motion direction discrimination with suppressed and unsuppressed MT in humans: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Benjamin Thompson

    Full Text Available The middle temporal area of the extrastriate visual cortex (area MT is integral to motion perception and is thought to play a key role in the perceptual learning of motion tasks. We have previously found, however, that perceptual learning of a motion discrimination task is possible even when the training stimulus contains locally balanced, motion opponent signals that putatively suppress the response of MT. Assuming at least partial suppression of MT, possible explanations for this learning are that 1 training made MT more responsive by reducing motion opponency, 2 MT remained suppressed and alternative visual areas such as V1 enabled learning and/or 3 suppression of MT increased with training, possibly to reduce noise. Here we used fMRI to test these possibilities. We first confirmed that the motion opponent stimulus did indeed suppress the BOLD response within hMT+ compared to an almost identical stimulus without locally balanced motion signals. We then trained participants on motion opponent or non-opponent stimuli. Training with the motion opponent stimulus reduced the BOLD response within hMT+ and greater reductions in BOLD response were correlated with greater amounts of learning. The opposite relationship between BOLD and behaviour was found at V1 for the group trained on the motion-opponent stimulus and at both V1 and hMT+ for the group trained on the non-opponent motion stimulus. As the average response of many cells within MT to motion opponent stimuli is the same as their response to non-directional flickering noise, the reduced activation of hMT+ after training may reflect noise reduction.

  10. Influence of selective attention on implicit learning with auditory stimuli%选择性注意对听觉内隐学习的影响

    Institute of Scientific and Technical Information of China (English)

    李秀君; 石文典

    2016-01-01

    experiments. Sequences of letters and sequences of digits with different grammar rules were presented simultaneously through Dichotic listening technology. In Experiment 1, one group of participants were instructed to memorize the sequences ofletters; another, the sequences ofdigits. In Experiment 2, all participants were instructed to memorize the above two types of sequences. Results showed that: (1) when only one of the two stimulus dimensions was selected to attend (Experiment 1), participants learned the structure underlying the selected, but not that one of the ignored dimension; (2) when both stimulus dimensions were selected to attend, both structures were learned by participants (Experiment 2). These findings revealed that participants learned only the grammar for the dimensions to which they are attended. The results of two studies strongly suggest that AGL occurs with auditory stimuli and visual perceptual learning is not necessary. The effect of selective attention on AGL is applicable across modalities, it is not only suitable for visual stimulus, but also applies to the auditory stimulus.

  11. A spiking neural network model of model-free reinforcement learning with high-dimensional sensory input and perceptual ambiguity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    Full Text Available A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. However, most of these models cannot handle observations which are noisy, or occurred in the past, even though these are inevitable and constraining features of learning in real environments. This class of problem is formally known as partially observable reinforcement learning (PORL problems. It provides a generalization of reinforcement learning to partially observable domains. In addition, observations in the real world tend to be rich and high-dimensional. In this work, we use a spiking neural network model to approximate the free energy of a restricted Boltzmann machine and apply it to the solution of PORL problems with high-dimensional observations. Our spiking network model solves maze tasks with perceptually ambiguous high-dimensional observations without knowledge of the true environment. An extended model with working memory also solves history-dependent tasks. The way spiking neural networks handle PORL problems may provide a glimpse into the underlying laws of neural information processing which can only be discovered through such a top-down approach.

  12. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise

    Directory of Open Access Journals (Sweden)

    Dana L Strait

    2011-06-01

    Full Text Available Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker’s voice amidst others. Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and nonmusicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not nonmusicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work from our laboratory documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development of language-related skills, musical training may aid in the prevention, habilitation and remediation of children with a wide range of attention-based language and learning impairments.

  13. Alternative Forms of the Rey Auditory Verbal Learning Test: A Review

    Directory of Open Access Journals (Sweden)

    Keith A. Hawkins

    2004-01-01

    Full Text Available Practice effects in memory testing complicate the interpretation of score changes over repeated testings, particularly in clinical applications. Consequently, several alternative forms of the Auditory Verbal Learning Test (AVLT have been developed. Studies of these typically indicate that the forms examined are equivalent. However, the implication that the forms in the literature are interchangeable must be tempered by several caveats. Few studies of equivalence have been undertaken; most are restricted to the comparison of single pairs of forms, and the pairings vary across studies. These limitations are exacerbated by the minimal overlapping across studies in variables reported, or in the analyses of equivalence undertaken. The data generated by these studies are nonetheless valuable, as significant practice effects result from serial use of the same form. The available data on alternative AVLT forms are summarized, and recommendations regarding form development and the determination of form equivalence are offered.

  14. Jumpstarting auditory learning in children with cochlear implants through music experiences.

    Science.gov (United States)

    Barton, Christine; Robbins, Amy McConkey

    2015-09-01

    Musical experiences are a valuable part of the lives of children with cochlear implants (CIs). In addition to the pleasure, relationships and emotional outlet provided by music, it serves to enhance or 'jumpstart' other auditory and cognitive skills that are critical for development and learning throughout the lifespan. Musicians have been shown to be 'better listeners' than non-musicians with regard to how they perceive and process sound. A heuristic model of music therapy is reviewed, including six modulating factors that may account for the auditory advantages demonstrated by those who participate in music therapy. The integral approach to music therapy is described along with the hybrid approach to pediatric language intervention. These approaches share the characteristics of placing high value on ecologically valid therapy experiences, i.e., engaging in 'real' music and 'real' communication. Music and language intervention techniques used by the authors are presented. It has been documented that children with CIs consistently have lower music perception scores than do their peers with normal hearing (NH). On the one hand, this finding matters a great deal because it provides parameters for setting reasonable expectations and highlights the work still required to improve signal processing with the devices so that they more accurately transmit music to CI listeners. On the other hand, the finding might not matter much if we assume that music, even in its less-than-optimal state, functions for CI children, as for NH children, as a developmental jumpstarter, a language-learning tool, a cognitive enricher, a motivator, and an attention enhancer.

  15. Modeling speech imitation and ecological learning of auditory-motor maps

    Directory of Open Access Journals (Sweden)

    Claudia eCanevari

    2013-06-01

    Full Text Available Classical models of speech consider an antero-posterior distinction between perceptive and productive functions. However, the selective alteration of neural activity in speech motor centers, via transcranial magnetic stimulation, was shown to affect speech discrimination. On the automatic speech recognition (ASR side, the recognition systems have classically relied solely on acoustic data, achieving rather good performance in optimal listening conditions. The main limitations of current ASR are mainly evident in the realistic use of such systems. These limitations can be partly reduced by using normalization strategies that minimize inter-speaker variability by either explicitly removing speakers’ peculiarities or adapting different speakers to a reference model. In this paper we aim at modeling a motor-based imitation learning mechanism in ASR. We tested the utility of a speaker normalization strategy that uses motor representations of speech and compare it with strategies that ignore the motor domain. Specifically, we first trained a regressor through state-of-the-art machine learning techniques to build an auditory-motor mapping, in a sense mimicking a human learner that tries to reproduce utterances produced by other speakers. This auditory-motor mapping maps the speech acoustics of a speaker into the motor plans of a reference speaker. Since, during recognition, only speech acoustics are available, the mapping is necessary to recover motor information. Subsequently, in a phone classification task, we tested the system on either one of the speakers that was used during training or a new one. Results show that in both cases the motor-based speaker normalization strategy almost always outperforms all other strategies where only acoustics is taken into account.

  16. Jumpstarting auditory learning in children with cochlear implants through music experiences.

    Science.gov (United States)

    Barton, Christine; Robbins, Amy McConkey

    2015-09-01

    Musical experiences are a valuable part of the lives of children with cochlear implants (CIs). In addition to the pleasure, relationships and emotional outlet provided by music, it serves to enhance or 'jumpstart' other auditory and cognitive skills that are critical for development and learning throughout the lifespan. Musicians have been shown to be 'better listeners' than non-musicians with regard to how they perceive and process sound. A heuristic model of music therapy is reviewed, including six modulating factors that may account for the auditory advantages demonstrated by those who participate in music therapy. The integral approach to music therapy is described along with the hybrid approach to pediatric language intervention. These approaches share the characteristics of placing high value on ecologically valid therapy experiences, i.e., engaging in 'real' music and 'real' communication. Music and language intervention techniques used by the authors are presented. It has been documented that children with CIs consistently have lower music perception scores than do their peers with normal hearing (NH). On the one hand, this finding matters a great deal because it provides parameters for setting reasonable expectations and highlights the work still required to improve signal processing with the devices so that they more accurately transmit music to CI listeners. On the other hand, the finding might not matter much if we assume that music, even in its less-than-optimal state, functions for CI children, as for NH children, as a developmental jumpstarter, a language-learning tool, a cognitive enricher, a motivator, and an attention enhancer. PMID:26561888

  17. Auditory reafferences: The influence of real-time feedback on movement control

    Directory of Open Access Journals (Sweden)

    Christian eKennel

    2015-01-01

    Full Text Available Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with nonartificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  18. A songbird forebrain area potentially involved in auditory discrimination and memory formation

    Indian Academy of Sciences (India)

    Raphael Pinaud; Thomas A Terleph

    2008-03-01

    Songbirds rely on auditory processing of natural communication signals for a number of social behaviors, including mate selection, individual recognition and the rare behavior of vocal learning – the ability to learn vocalizations through imitation of an adult model, rather than by instinct. Like mammals, songbirds possess a set of interconnected ascending and descending auditory brain pathways that process acoustic information and that are presumably involved in the perceptual processing of vocal communication signals. Most auditory areas studied to date are located in the caudomedial forebrain of the songbird and include the thalamo-recipient field L (subfields L1, L2 and L3), the caudomedial and caudolateral mesopallium (CMM and CLM, respectively) and the caudomedial nidopallium (NCM). This review focuses on NCM, an auditory area previously proposed to be analogous to parts of the primary auditory cortex in mammals. Stimulation of songbirds with auditory stimuli drives vigorous electrophysiological responses and the expression of several activity-regulated genes in NCM. Interestingly, NCM neurons are tuned to species-specific songs and undergo some forms of experience-dependent plasticity in-vivo. These activity-dependent changes may underlie long-term modifications in the functional performance of NCM and constitute a potential neural substrate for auditory discrimination. We end this review by discussing evidence that suggests that NCM may be a site of auditory memory formation and/or storage.

  19. Using Learning Preferences to Improve Coaching and Athletic Performance

    Science.gov (United States)

    Dunn, Julia L.

    2009-01-01

    Each individual learns in a different manner, depending on his or her perceptual or learning preferences (visual, auditory, read/write, or kinesthetic). In sport, coaches and athletes must speak a common language of instructions, verbal cues, and appropriate motor responses. Thus, developing a clear understanding of how to use students' learning…

  20. Implicit learning of between-group intervals in auditory temporal structures.

    Science.gov (United States)

    Terry, J; Stevens, C J; Weidemann, G; Tillmann, B

    2016-08-01

    Implicit learning of temporal structure has primarily been reported when events within a sequence (e.g., visual-spatial locations, tones) are systematically ordered and correlated with the temporal structure. An auditory serial reaction time task was used to investigate implicit learning of temporal intervals between pseudorandomly ordered syllables. Over exposure, participants identified syllables presented in sequences with weakly metrical temporal structures. In a test block, the temporal structure differed from exposure only in the duration of the interonset intervals (IOIs) between groups. It was hypothesized that reaction time (RT) to syllables following between-group IOIs would decrease with exposure and increase at test. In Experiments 1 and 2, the sequences presented over exposure and test were counterbalanced across participants (Pattern 1 and Pattern 2 conditions). An RT increase at test to syllables following between-group IOIs was only evident in the condition that presented an exposure structure with a slightly stronger meter (Pattern 1 condition). The Pattern 1 condition also elicited a global expectancy effect: Test block RT slowed to earlier-than-expected syllables (i.e., syllables shifted to an earlier beat) but not to later-than-expected syllables. Learning of between-group IOIs and the global expectancy effect extended to the Pattern 2 condition when meter was strengthened with an external pulse (Experiment 2). Experiment 3 further demonstrated implicit learning of a new weakly metrical structure with only earlier-than-expected violations at test. Overall findings demonstrate learning of weakly metrical rhythms without correlated event structures (i.e., sequential syllable orders). They further suggest the presence of a global expectancy effect mediated by metrical strength. PMID:27301354

  1. Toward a neurobiology of auditory object perception: What can we learn from the songbird forebrain?

    Directory of Open Access Journals (Sweden)

    Kai LU, David S. VICARIO

    2011-12-01

    Full Text Available In the acoustic world, no sounds occur entirely in isolation; they always reach the ears in combination with other sounds. How any given sound is discriminated and perceived as an independent auditory object is a challenging question in neuroscience. Although our knowledge of neural processing in the auditory pathway has expanded over the years, no good theory exists to explain how perception of auditory objects is achieved. A growing body of evidence suggests that the selectivity of neurons in the auditory forebrain is under dynamic modulation, and this plasticity may contribute to auditory object perception. We propose that stimulus-specific adaptation in the auditory forebrain of the songbird (and perhaps in other systems may play an important role in modulating sensitivity in a way that aids discrimination, and thus can potentially contribute to auditory object perception [Current Zoology 57 (6: 671–683, 2011].

  2. Toward a neurobiology of auditory object perception: What can we learn from the songbird forebrain?

    Institute of Scientific and Technical Information of China (English)

    Kai LU; David S. VICARIO

    2011-01-01

    In the acoustic world,no sounds occur entirely in isolation; they always reach the ears in combination with other sounds.How any given sound is discriminated and perceived as an independent auditory object is a challenging question in neuroscience.Although our knowledge of neural processing in the auditory pathway has expanded over the years,no good theory exists to explain how perception of auditory objects is achieved.A growing body of evidence suggests that the selectivity of neurons in the auditory forebrain is under dynamic modulation,and this plasticity may contribute to auditory object perception.We propose that stimulus-specific adaptation in the auditory forebrain of the songbird (and perhaps in other systems) may play an important role in modulating sensitivity in a way that aids discrimination,and thus can potentially contribute to auditory object perception [Current Zoology 57 (6):671-683,2011].

  3. Explanations, mechanisms, and developmental models: Why the nativist account of early perceptual learning is not a proper mechanistic model

    Directory of Open Access Journals (Sweden)

    Radenović Ljiljana

    2013-01-01

    Full Text Available In the last several decades a number of studies on perceptual learning in early infancy have suggested that even infants seem to be sensitive to the way objects move and interact in the world. In order to explain the early emergence of infants’ sensitivity to causal patterns in the world some psychologists have proposed that core knowledge of objects and causal relations is innate (Leslie & Keeble 1987, Carey & Spelke, 1994; Keil, 1995; Spelke et al., 1994. The goal of this paper is to examine the nativist developmental model by investigating the criteria that a mechanistic model needs to fulfill if it is to be explanatory. Craver (2006 put forth a number of such criteria and developed a few very useful distinctions between explanation sketches and proper mechanistic explanations. By applying these criteria to the nativist developmental model I aim to show, firstly, that nativists only partially characterize the phenomenon at stake without giving us the details of when and under which conditions perception and attention in early infancy take place. Secondly, nativist start off with a description of the phenomena to be explained (even if it is only a partial description but import into it a particular theory of perception that requires further empirical evidence and further defense on its own. Furthermore, I argue that innate knowledge is a good candidate for a filler term (a term that is used to name the still unknown processes and parts of the mechanism and is likely to become redundant. Recent extensive research on early intermodal perception indicates that the mechanism enabling the perception of regularities and causal patterns in early infancy is grounded in our neurophysiology. However, this mechanism is fairly basic and does not involve highly sophisticated cognitive structures or innate core knowledge. I conclude with a remark that a closer examination of the mechanisms involved in early perceptual learning indicates that the nativism

  4. Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training.

    Science.gov (United States)

    Bell, Brittany A; Phan, Mimi L; Vicario, David S

    2015-03-01

    How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions.

  5. Auditory learning through active engagement with sound: Biological impact of community music lessons in at-risk children

    Directory of Open Access Journals (Sweden)

    Nina eKraus

    2014-11-01

    Full Text Available The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements in the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1,000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for one year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to an instrumental training class. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. These findings speak to the potential of active engagement with sound (i.e., music-making to engender experience-dependent neuroplasticity during trand may inform the development of strategies for auditory

  6. Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children.

    Science.gov (United States)

    Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis

    2014-01-01

    The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for 1 year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to the instrumental training. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally-trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. Despite intrinsic constraints on our study imposed by a community setting, these findings speak to the potential of active engagement with sound (i.e., music-making) to engender experience-dependent neuroplasticity and may inform the

  7. Feedback and Stimulus-Offset Timing Effects in Perceptual Category Learning

    OpenAIRE

    Darrell A. Worthy; Markman, Arthur B.; Maddox, W. Todd

    2013-01-01

    We examined how feedback delay and stimulus offset timing affected declarative, rule-based and procedural, information-integration category-learning. We predicted that small feedback delays of several hundred milliseconds would lead to the best information-integration learning based on a highly regarded neurobiological model of learning in the striatum. In Experiment 1 information-integration learning was best with feedback delays of 500ms compared to delays of 0 and 1,000ms. This effect was ...

  8. Top-down inputs enhance orientation selectivity in neurons of the primary visual cortex during perceptual learning.

    Directory of Open Access Journals (Sweden)

    Samat Moldakarimov

    2014-08-01

    Full Text Available Perceptual learning has been used to probe the mechanisms of cortical plasticity in the adult brain. Feedback projections are ubiquitous in the cortex, but little is known about their role in cortical plasticity. Here we explore the hypothesis that learning visual orientation discrimination involves learning-dependent plasticity of top-down feedback inputs from higher cortical areas, serving a different function from plasticity due to changes in recurrent connections within a cortical area. In a Hodgkin-Huxley-based spiking neural network model of visual cortex, we show that modulation of feedback inputs to V1 from higher cortical areas results in shunting inhibition in V1 neurons, which changes the response properties of V1 neurons. The orientation selectivity of V1 neurons is enhanced without changing orientation preference, preserving the topographic organizations in V1. These results provide new insights to the mechanisms of plasticity in the adult brain, reconciling apparently inconsistent experiments and providing a new hypothesis for a functional role of the feedback connections.

  9. Feedback and Stimulus-Offset Timing Effects in Perceptual Category Learning

    Science.gov (United States)

    Worthy, Darrell A.; Markman, Arthur B.; Maddox, W. Todd

    2013-01-01

    We examined how feedback delay and stimulus offset timing affected declarative, rule-based and procedural, information-integration category-learning. We predicted that small feedback delays of several hundred milliseconds would lead to the best information-integration learning based on a highly regarded neurobiological model of learning in the…

  10. Age-related changes in consolidation of perceptual and muscle-based learning of motor skills.

    Science.gov (United States)

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2013-01-01

    Improvements in motor sequence learning come about via goal-based learning of the sequence of visual stimuli and muscle-based learning of the sequence of movement responses. In young adults, consolidation of goal-based learning is observed after intervals of sleep but not following wake, whereas consolidation of muscle-based learning is greater following intervals with wake compared to sleep. While the benefit of sleep on motor sequence learning has been shown to decline with age, how sleep contributes to consolidation of goal-based vs. muscle-based learning in older adults (OA) has not been disentangled. We trained young (n = 62) and older (n = 50) adults on a motor sequence learning task and re-tested learning following 12 h intervals containing overnight sleep or daytime wake. To probe consolidation of goal-based learning of the sequence, half of the participants were re-tested in a configuration in which the stimulus sequence was the same but, due to a shift in stimulus-response mapping, the movement response sequence differed. To probe consolidation of muscle-based learning, the remaining participants were tested in a configuration in which the stimulus sequence was novel, but now the sequence of movements used for responding was unchanged. In young adults, there was a significant condition (goal-based vs. muscle-based learning) by interval (sleep vs. wake) interaction, F(1,58) = 6.58, p = 0.013: goal-based learning tended to be greater following sleep compared to wake, t(29) = 1.47, p = 0.072. Conversely, muscle-based learning was greater following wake than sleep, t(29) = 2.11, p = 0.021. Unlike young adults, this interaction was not significant in OA, F(1,46) = 0.04, p = 0.84, nor was there a main effect of interval, F(1,46) = 1.14, p = 0.29. Thus, OA do not preferentially consolidate sequence learning over wake or sleep.

  11. Movement Sonification: Audiovisual benefits on motor learning

    Directory of Open Access Journals (Sweden)

    Weber Andreas

    2011-12-01

    Full Text Available Processes of motor control and learning in sports as well as in motor rehabilitation are based on perceptual functions and emergent motor representations. Here a new method of movement sonification is described which is designed to tune in more comprehensively the auditory system into motor perception to enhance motor learning. Usually silent features of the cyclic movement pattern "indoor rowing" are sonified in real time to make them additionally available to the auditory system when executing the movement. Via real time sonification movement perception can be enhanced in terms of temporal precision and multi-channel integration. But beside the contribution of a single perceptual channel to motor perception and motor representation also mechanisms of multisensory integration can be addressed, if movement sonification is configured adequately: Multimodal motor representations consisting of at least visual, auditory and proprioceptive components - can be shaped subtly resulting in more precise motor control and enhanced motor learning.

  12. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2015-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  13. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2016-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  14. Clinical efficiency of the Auditory Verbal Learning Test for patients with internal carotid artery stenosis

    International Nuclear Information System (INIS)

    Most patients who have an internal carotid artery (ICA) stenosis with cerebral lesion have some cognitive dysfunction. To clarify the clinical efficiency of the Auditory Verbal Learning Test (AVLT) and to assess the relationship between AVLT and cerebral damage, we examined AVLT in patients with ICA stenosis. 44 patients (35 males and 9 females) with ICA stenosis aged 56 to 83 (69.6±6.5) years old were evaluated. The educational periods were from 9 to 16 (12.3±2.8) years. Their activities of daily living (ADL) were independent. We assessed cognitive function with neuropsychological tests including AVLT, Mini-mental State Examination (MMSE), Raven's coloured progressive matrices (RCPM) and Frontal Assessment Battery (FAB), etc. We assessed cerebral damage (periventricular high intensity; PVH and white matter hyperintensity; WMH) with MRI. Then, we investigated the relationship between AVLT and other neuropsychological tests, and the relationship between AVLT and carotid/cerebral lesion. There was no association with lesion side of ICA stenosis and the scores of AVLT. In patients with ICA stenosis and cerebral damage (PVH and/or WMH), there was a significant relationship between the severity of cerebral damage and the scores in AVLT. AVLT had a significant relationship to other neuropsychological tests. AVLT might be a good cognitive assessment for patients who have cerebral damage due to ICA stenosis. (author)

  15. Training for learning Mandarin tones: A comparison of production and perceptual training

    Science.gov (United States)

    Wang, Xinchun

    2005-04-01

    Mandarin Chinese lexical tones pose difficulties for non-native speakers whose first languages contrast or do not contrast lexical tones. In this study, both tone language and non-tone language speaking learners of Mandarin Chinese were trained for three weeks to identify the four Mandarin lexical tones. One group took the production training with both visual and audio feedback using Kay Sona Speech II software. The target tones produced by native Mandarin speakers were played back through a pair of headphones and the pitch contours of the target tones were displayed on the computer screen on the top window to be compared with the trainees productions which appear in real time in the bottom window. Another group of participants took the perceptual training only with four-way forced choice identification tasks with immediate feedback. The same training tokens were used in both training modes. Pretest and post test data in perception and production were collected from both groups and were compared for effectiveness of training procedures.

  16. Hear no evil: The effect of auditory warning signals on avian innate avoidance, learned avoidance and memory

    Directory of Open Access Journals (Sweden)

    Emma C. SIDDALL, Nicola M. MARPLES

    2011-04-01

    Full Text Available Many aposematic insect species advertise their toxicity to potential predators using olfactory and auditory signals, in addition to visual signals, to produce a multimodal warning display. The olfactory signals in these displays may have interesting effects, such as eliciting innate avoidance against novel colored prey, or improving learning and memory of defended prey. However, little is known about the effects of such ancillary signals when they are auditory rather than olfactory. The few studies that have investigated this question have provided conflicting results. The current study sought to clarify and extend understanding of the effects of prey auditory signals on avian predator responses. The domestic chick Gallus gallus domesticus was used as a model avian predator to examine how the defensive buzzing sound of a bumblebee Bombus terrestris affected the chick’s innate avoidance behavior, and the learning and memory of prey avoidance. The results demonstrate that the buzzing sound had no effect on the predator’s responses to unpalatable aposematically colored crumbs, suggesting that the agitated buzzing of B. terrestris may provide no additional protection from avian predators [Current Zoology 57 (2: 197–207, 2011].

  17. Hear no evil:The effect of auditory warning signals on avian innate avoidance,learned avoidance and memory

    Institute of Scientific and Technical Information of China (English)

    Emma C.SIDDALL; Nicola M.MARPLES

    2011-01-01

    Many aposematic insect species advertise their toxicity to potential predators using olfactory and auditory signals,in addition to visual signals,to produce a multimodal warning display.The olfactory signals in these displays may have interesting effects,such as eliciting innate avoidance against novel colored prey,or improving learning and memory of defended prey.However,little is known about the effects of such ancillary signals when they are auditory rather than olfactory.The few studies that have investigated this question have provided confficting results.The current study sought to clarify and extend understanding of the effects of prey auditory signals on avian predator responses.The domestic chick Gallus gallus domesticus was used as a model avian predator to examine how the defensive buzzing sound of a bumblebee Bombus terrestris affected the chick's innate avoidance behavior,and the learning and memory of prey avoidance.The resuits demonstrate that the buzzing sound had no effect on the predator's responses to unpalalable aposematically colored crumbs,suggesting that the agitated buzzing of B.terrestris may provide no additional protection from avian predators.

  18. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning.

    Science.gov (United States)

    Chen, Nihong; Bi, Taiyong; Zhou, Tiangang; Li, Sheng; Liu, Zili; Fang, Fang

    2015-07-15

    Much has been debated about whether the neural plasticity mediating perceptual learning takes place at the sensory or decision-making stage in the brain. To investigate this, we trained human subjects in a visual motion direction discrimination task. Behavioral performance and BOLD signals were measured before, immediately after, and two weeks after training. Parallel to subjects' long-lasting behavioral improvement, the neural selectivity in V3A and the effective connectivity from V3A to IPS (intraparietal sulcus, a motion decision-making area) exhibited a persistent increase for the trained direction. Moreover, the improvement was well explained by a linear combination of the selectivity and connectivity increases. These findings suggest that the long-term neural mechanisms of motion perceptual learning are implemented by sharpening cortical tuning to trained stimuli at the sensory processing stage, as well as by optimizing the connections between sensory and decision-making areas in the brain.

  19. Learning Style Preferences of Iranian EFL High School Students

    OpenAIRE

    Reza Vaseghi; Hamed Barjesteh; Sedigheh Shakib

    2013-01-01

    The current study examined the learning style preferences of 75 Iranian students at Marefat high school in Kuala Lumpur of which, 41 are females and 34 are males. As there are very few researches in which the learning style preferences of Iranian high school students investigated, this study attempts to fulfil this gap. To this end, in order to identify the students’ preferred learning styles (Visual, Auditory, Kinesthetic, Tactile, Group, and Individual) Reid’s Perceptual Learning Style Pref...

  20. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    Science.gov (United States)

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  1. Research on the self-organization mechanisms of visual perceptual learning%视知觉学习的自组织机制研究

    Institute of Scientific and Technical Information of China (English)

    陈家伟; 陈六君; 刘艳

    2011-01-01

    Based on Hebb learning rule and lateral interaction, a neuralnetwork with the function of perceptual learning was developed. For example, the process of Chinese characters learning was simulated, which shows the transition of perceptual mode from global perception to local perception. The transition of perceptual mode is based on the structural changes of the network weights,i. e. the weights change from the random distribution to the block distribution. Lateral interaction in local range is the core mechanism that leads to the formation of global order.%在Hebb学习法和侧向相互作用的基础上,建立了具有知觉学习功能的神经网络模型,以汉字学习过程为例,模拟了视知觉模式从整体知觉到局部知觉的转变.知觉模式的转变源于网络权重的结构性变化,即由初始的随机分布变为块状分布,而局部的侧向相互作用是导致宏观有序结构产生的核心机制.

  2. Rapid Naming Deficits in Dyslexia: A Stumbling Block for the Perceptual Anchor Theory of Dyslexia

    Science.gov (United States)

    Di Filippo, Gloria; Zoccolotti, Pierluigi; Ziegler, Johannes C.

    2008-01-01

    According to a recent theory of dyslexia, the "perceptual anchor theory," children with dyslexia show deficits in classic auditory and phonological tasks not because they have auditory or phonological impairments but because they are unable to form a "perceptual anchor" in tasks that rely on a small set of repeated stimuli. The theory makes the…

  3. Metabolic correlates of Rey auditory verbal learning test in elderly subjects with memory complaints.

    Science.gov (United States)

    Brugnolo, Andrea; Morbelli, Silvia; Arnaldi, Dario; De Carli, Fabrizio; Accardo, Jennifer; Bossert, Irene; Dessi, Barbara; Famà, Francesco; Ferrara, Michela; Girtler, Nicola; Picco, Agnese; Rodriguez, Guido; Sambuceti, Gianmario; Nobili, Flavio

    2014-01-01

    We evaluated the brain metabolic correlates of main indexes of a widely used word list learning test, the Rey Auditory Verbal Memory Test (RAVLT), in a group of elderly subjects with memory complaints. Fifty-four subjects (age: 72.02 ± 7.45; Mini-Mental State Examination (MMSE) score: 28.9 ± 1.24) presenting at a memory clinic complaining of memory deficit, but not demented, and thirty controls (age: 71.87 ± 7.08; MMSE score: 29.1 ± 1.1) were included. Subjects with memory complaints included both patients with (amnestic mild cognitive impairment, aMCI) and without (subjective memory complaints, SMC) impairment on memory tests. All subjects underwent 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), analyzed with statistical parametric. Patients with aMCI but not those with SMC showed the expected posterior cingulate-precuneus and parietal hypometabolism as compared to controls. Correlation was determined for between four indexes of the RAVLT and brain metabolism. The results show a significant correlation between the delayed recall score and metabolism in posterior cingulate gyrus of both hemispheres and in left precuneus, as well as between a score of long-term percent retention and metabolism in left posterior cingulate gyrus, precuneus, and orbitofrontal areas. These correlations survived correction for age, education, and MMSE score. No correlation was found between immediate or total recall scores and glucose metabolism. These data show the relevant role of posterior cingulate-precuneus and orbitofrontal cortices in retention and retrieval of de-contextualized verbal memory material in a group of elderly subjects with memory complaints and shed light on the topography of synaptic dysfunction in these subjects, overlapping that found in the earliest stages of Alzheimer-type neurodegeneration. PMID:24150105

  4. Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination

    OpenAIRE

    Schwartz, Sophie; Maquet, Pierre; Frith, Chris

    2002-01-01

    Visual texture discrimination has been shown to induce long-lasting behavioral improvement restricted to the trained eye and trained location in visual field [Karni, A. & Sagi, D. (1991) Proc. Natl. Acad. Sci. USA 88, 4966–4970]. We tested the hypothesis that such learning involves durable neural modifications at the earliest cortical stages of the visual system, where eye specificity, orientation, and location information are mapped with highest resolution. Using functional magnetic resonanc...

  5. Sensory information in perceptual-motor sequence learning: visual and/or tactile stimuli

    OpenAIRE

    Abrahamse, Elger L.; Lubbe, van der, S.; Verwey, Willem B.

    2009-01-01

    Sequence learning in serial reaction time (SRT) tasks has been investigated mostly with unimodal stimulus presentation. This approach disregards the possibility that sequence acquisition may be guided by multiple sources of sensory information simultaneously. In the current study we trained participants in a SRT task with visual only, tactile only, or bimodal (visual and tactile) stimulus presentation. Sequence performance for the bimodal and visual only training groups was similar, while bot...

  6. Improvement of uncorrected visual acuity (UCVA and contrast sensitivity (UCCS with perceptual learning and transcranial random noise stimulation (tRNS in individuals with mild myopia

    Directory of Open Access Journals (Sweden)

    Rebecca eCamilleri

    2014-10-01

    Full Text Available Perceptual learning has been shown to produce an improvement of visual acuity (VA and contrast sensitivity (CS both in subjects with amblyopia and refractive defects such as myopia or presbyopia. Transcranial random noise stimulation (tRNS has proven to be efficacious in accelerating neural plasticity and boosting perceptual learning in healthy participants. In this study we investigated whether a short behavioural training regime using a contrast detection task combined with online tRNS was as effective in improving visual functions in participants with mild myopia compared to a two-month behavioural training regime without tRNS (Camilleri et al., 2014. After two weeks of perceptual training in combination with tRNS, participants showed an improvement of 0.15 LogMAR in uncorrected VA (UCVA that was comparable with that obtained after eight weeks of training with no tRNS, and an improvement in uncorrected CS (UCCS at various spatial frequencies (whereas no UCCS improvement was seen after eight weeks of training with no tRNS. On the other hand, a control group that trained for two weeks without stimulation did not show any significant UCVA or UCCS improvement. These results suggest that the combination of behavioural and neuromodulatory techniques can be fast and efficacious in improving sight in individuals with mild myopia.

  7. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Science.gov (United States)

    Alert, Bianca; Michalik, Andreas; Helduser, Sascha; Mouritsen, Henrik; Güntürkün, Onur

    2015-01-01

    Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  8. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Directory of Open Access Journals (Sweden)

    Bianca Alert

    Full Text Available Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  9. Effects of acoustic variability in the perceptual learning of non-native-accented speech sounds.

    Science.gov (United States)

    Wade, Travis; Jongman, Allard; Sereno, Joan

    2007-01-01

    This study addressed whether acoustic variability and category overlap in non-native speech contribute to difficulty in its recognition, and more generally whether the benefits of exposure to acoustic variability during categorization training are stable across differences in category confusability. Three experiments considered a set of Spanish-accented English productions. The set was seen to pose learning and recognition difficulty (experiment 1) and was more variable and confusable than a parallel set of native productions (experiment 2). A training study (experiment 3) probed the relative contributions of category central tendency and variability to difficulty in vowel identification using derived inventories in which these dimensions were manipulated based on the results of experiments 1 and 2. Training and test difficulty related straightforwardly to category confusability but not to location in the vowel space. Benefits of high-variability exposure also varied across vowel categories, and seemed to be diminished for highly confusable vowels. Overall, variability was implicated in perception and learning difficulty in ways that warrant further investigation. PMID:17914280

  10. Estradiol differentially affects auditory recognition and learning according to photoperiodic state in the adult male songbird, European starling (Sturnus vulgaris

    Directory of Open Access Journals (Sweden)

    Rebecca M. Calisi

    2013-09-01

    Full Text Available Changes in hormones can affect many types of learning in vertebrates. Adults experience fluctuations in a multitude of hormones over a temporal scale, from local, rapid action to more long-term, seasonal changes. Endocrine changes during development can affect behavioral outcomes in adulthood, but how learning is affected in adults by hormone fluctuations experienced during adulthood is less understood. Previous reports have implicated the sex steroid hormone estradiol (E2 in both male and female vertebrate cognitive functioning. Here, we examined the effects of E2 on auditory recognition and learning in male European starlings (Sturnus vulgaris. European starlings are photoperiodic, seasonally breeding songbirds that undergo different periods of reproductive activity according to annual changes in day length. We simulated these reproductive periods, specifically 1. photosensitivity, 2. photostimulation, and 3. photorefractoriness in captive birds by altering day length. During each period, we manipulated circulating E2 and examined multiple measures of learning. To manipulate circulating E2, we used subcutaneous implants containing either 17-β E2 and/or fadrozole (FAD, a highly specific aromatase inhibitor that suppresses E2 production in the body and the brain, and measured the latency for birds to learn and respond to short, male conspecific song segments (motifs. We report that photostimulated birds given E2 had higher response rates and responded with better accuracy than those given saline controls or FAD. Conversely, photosensitive, animals treated with E2 responded with less accuracy than those given FAD. These results demonstrate how circulating E2 and photoperiod can interact to shape auditory recognition and learning in adults, driving it in opposite directions in different states.

  11. Perceptual Organization Masquerading as Phonological Storage: Further Support for a Perceptual-Gestural View of Short-Term Memory

    Science.gov (United States)

    Jones, Dylan M.; Hughes, Robert W.; Macken, William J.

    2006-01-01

    Three experiments examined whether the survival of the phonological similarity effect (PSE) under articulatory suppression for auditory but not visual to-be-serially recalled lists is a perceptual effect rather than an effect arising from the action of a bespoke phonological store. Using a list of 5 auditory items, a list length at which the…

  12. Perceptual-Cognitive Changes During Motor Learning: The Influence of Mental and Physical Practice on Mental Representation, Gaze Behavior, and Performance of a Complex Action.

    Science.gov (United States)

    Frank, Cornelia; Land, William M; Schack, Thomas

    2015-01-01

    Despite the wealth of research on differences between experts and novices with respect to their perceptual-cognitive background (e.g., mental representations, gaze behavior), little is known about the change of these perceptual-cognitive components over the course of motor learning. In the present study, changes in one's mental representation, quiet eye behavior, and outcome performance were examined over the course of skill acquisition as it related to physical and mental practice. Novices (N = 45) were assigned to one of three conditions: physical practice, combined physical plus mental practice, and no practice. Participants in the practice groups trained on a golf putting task over the course of 3 days, either by repeatedly executing the putt, or by both executing and imaging the putt. Findings revealed improvements in putting performance across both practice conditions. Regarding the perceptual-cognitive changes, participants practicing mentally and physically revealed longer quiet eye durations as well as more elaborate representation structures in comparison to the control group, while this was not the case for participants who underwent physical practice only. Thus, in the present study, combined mental and physical practice led to both formation of mental representations in long-term memory and longer quiet eye durations. Interestingly, the length of the quiet eye directly related to the degree of elaborateness of the underlying mental representation, supporting the notion that the quiet eye reflects cognitive processing. This study is the first to show that the quiet eye becomes longer in novices practicing a motor action. Moreover, the findings of the present study suggest that perceptual and cognitive adaptations co-occur over the course of motor learning. PMID:26779089

  13. Sensorimotor Interactions in Speech Learning

    Directory of Open Access Journals (Sweden)

    Douglas M Shiller

    2011-10-01

    Full Text Available Auditory input is essential for normal speech development and plays a key role in speech production throughout the life span. In traditional models, auditory input plays two critical roles: 1 establishing the acoustic correlates of speech sounds that serve, in part, as the targets of speech production, and 2 as a source of feedback about a talker's own speech outcomes. This talk will focus on both of these roles, describing a series of studies that examine the capacity of children and adults to adapt to real-time manipulations of auditory feedback during speech production. In one study, we examined sensory and motor adaptation to a manipulation of auditory feedback during production of the fricative “s”. In contrast to prior accounts, adaptive changes were observed not only in speech motor output but also in subjects' perception of the sound. In a second study, speech adaptation was examined following a period of auditory–perceptual training targeting the perception of vowels. The perceptual training was found to systematically improve subjects' motor adaptation response to altered auditory feedback during speech production. The results of both studies support the idea that perceptual and motor processes are tightly coupled in speech production learning, and that the degree and nature of this coupling may change with development.

  14. Computer-based auditory training (CBAT): benefits for children with language- and reading-related learning difficulties.

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Campbell, Nicci; Luxon, Linda M

    2010-08-01

    This article reviews the evidence for computer-based auditory training (CBAT) in children with language, reading, and related learning difficulties, and evaluates the extent it can benefit children with auditory processing disorder (APD). Searches were confined to studies published between 2000 and 2008, and they are rated according to the level of evidence hierarchy proposed by the American Speech-Language Hearing Association (ASHA) in 2004. We identified 16 studies of two commercially available CBAT programs (13 studies of Fast ForWord (FFW) and three studies of Earobics) and five further outcome studies of other non-speech and simple speech sounds training, available for children with language, learning, and reading difficulties. The results suggest that, apart from the phonological awareness skills, the FFW and Earobics programs seem to have little effect on the language, spelling, and reading skills of children. Non-speech and simple speech sounds training may be effective in improving children's reading skills, but only if it is delivered by an audio-visual method. There is some initial evidence to suggest that CBAT may be of benefit for children with APD. Further research is necessary, however, to substantiate these preliminary findings.

  15. Benefits of Stimulus Congruency for Multisensory Facilitation of Visual Learning

    OpenAIRE

    Robyn S Kim; Seitz, Aaron R.; Shams, Ladan

    2008-01-01

    Background Studies of perceptual learning have largely focused on unisensory stimuli. However, multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. Here, we examine the effect of auditory-visual congruency on visual learning. Methodology/Principle Findings Subjects were trained over five days on a visual motion coherence detection task with either congruent audiovisual, or incongruent audiovisual stimuli. Co...

  16. Effects of Lips and Hands on Auditory Learning of Second-Language Speech Sounds

    Science.gov (United States)

    Hirata, Yukari; Kelly, Spencer D.

    2010-01-01

    Purpose: Previous research has found that auditory training helps native English speakers to perceive phonemic vowel length contrasts in Japanese, but their performance did not reach native levels after training. Given that multimodal information, such as lip movement and hand gesture, influences many aspects of native language processing, the…

  17. Effects of asymmetry and learning on phonotaxis in a robot based on the lizard auditory system

    DEFF Research Database (Denmark)

    Zhang, L.; Hallam, J.; Christensen-Dalsgaard, J.

    2012-01-01

    Lizards have strong directional hearing across a broad band of frequencies. The directionality can be attributed to the acoustical properties of the ear, especially the strong acoustical coupling of the two eardrums. The peripheral auditory system of the lizard has previously been modeled in bila...

  18. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns

    Directory of Open Access Journals (Sweden)

    Meyer Martin

    2009-07-01

    Full Text Available Abstract Background Little is known about the contribution of transcranial direct current stimulation (tDCS to the exploration of memory functions. The aim of the present study was to examine the behavioural effects of right or left-hemisphere frontal direct current delivery while committing to memory auditory presented nouns on short-term learning and subsequent long-term retrieval. Methods Twenty subjects, divided into two groups, performed an episodic verbal memory task during anodal, cathodal and sham current application on the right or left dorsolateral prefrontal cortex (DLPFC. Results Our results imply that only cathodal tDCS elicits behavioural effects on verbal memory performance. In particular, left-sided application of cathodal tDCS impaired short-term verbal learning when compared to the baseline. We did not observe tDCS effects on long-term retrieval. Conclusion Our results imply that the left DLPFC is a crucial area involved in short-term verbal learning mechanisms. However, we found further support that direct current delivery with an intensity of 1.5 mA to the DLPFC during short-term learning does not disrupt longer lasting consolidation processes that are mainly known to be related to mesial temporal lobe areas. In the present study, we have shown that the tDCS technique has the potential to modulate short-term verbal learning mechanism.

  19. Performances on Rey Auditory Verbal Learning Test and Rey Complex Figure Test in a healthy, elderly Danish sample--reference data and validity issues

    DEFF Research Database (Denmark)

    Vogel, Asmus; Stokholm, Jette; Jørgensen, Kasper

    2012-01-01

    This study presents Danish data for Rey Auditory Verbal Learning Test (RAVLT) and Rey Complex Figure Test (RCFT) from 100 subjects aged 60-87 years. Education and estimated verbal intelligence (DART score) had a significant impact on the RAVLT trial 1-5 score but not on other RAVLT measures...

  20. Prenatal music stimulation facilitates the postnatal functional development of the auditory as well as visual system in chicks (Gallus domesticus)

    Indian Academy of Sciences (India)

    Saborni Roy; Tapas C Nag; Ashish Datt Upadhyay; Rashmi Mathur; Suman Jain

    2014-03-01

    Rhythmic sound or music is known to improve cognition in animals and humans. We wanted to evaluate the effects of prenatal repetitive music stimulation on the remodelling of the auditory cortex and visual Wulst in chicks. Fertilized eggs (0 day) of white leghorn chicken (Gallus domesticus) during incubation were exposed either to music or no sound from embryonic day 10 until hatching. Auditory and visual perceptual learning and synaptic plasticity, as evident by synaptophysin and PSD-95 expression, were done at posthatch days (PH) 1, 2 and 3. The number of responders was significantly higher in the music stimulated group as compared to controls at PH1 in both auditory and visual preference tests. The stimulated chicks took significantly lesser time to enter and spent more time in the maternal area in both preference tests. A significantly higher expression of synaptophysin and PSD-95 was observed in the stimulated group in comparison to control at PH1-3 both in the auditory cortex and visual Wulst. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results suggest facilitation of postnatal perceptual behaviour and synaptic plasticity in both auditory and visual systems following prenatal stimulation with complex rhythmic music.

  1. Extraction of auditory features and elicitation of attributes for the assessment of multi-channel reproduced sound

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian

    2005-01-01

    The identification of relevant auditory attributes is pivotal in sound quality evaluation. Two fundamentally different psychometric methods were employed to uncover perceptually relevant auditory features of multi-channel reproduced sound. In the first method, called Repertory Grid Technique (RGT...

  2. Estudo do comportamento vocal no ciclo menstrual: avaliação perceptivo-auditiva, acústica e auto-perceptiva Vocal behavior during menstrual cycle: perceptual-auditory, acoustic and self-perception analysis

    Directory of Open Access Journals (Sweden)

    Luciane C. de Figueiredo

    2004-06-01

    Full Text Available Durante o período pré-menstrual é comum a ocorrência de disfonia, e são poucas as mulheres que se dão conta dessa variação da voz dentro do ciclo menstrual (Quinteiro, 1989. OBJETIVO: Verificar se há diferença no padrão vocal de mulheres no período de ovulação em relação ao primeiro dia do ciclo menstrual, utilizando-se da análise perceptivo-auditiva, da espectrografia, dos parâmetros acústicos e quando esta diferença está presente, se é percebida pelas mulheres. FORMA DE ESTUDO: Caso-controle. MATERIAL E MÉTODO: A amostra coletada foi de 30 estudantes de Fonoaudiologia, na faixa etária de 18 a 25 anos, não-fumantes, com ciclo menstrual regular e sem o uso de contraceptivo oral. As vozes foram gravadas no primeiro dia de menstruação e no décimo-terceiro dia pós-menstruação (ovulação, para posterior comparação. RESULTADOS: Observou-se durante o período menstrual que as vozes estão rouco-soprosa de grau leve a moderado, instáveis, sem a presença de quebra de sonoridade, com pitch e loudness adequados e ressonância equilibrada. Há pior qualidade de definição dos harmônicos, maior quantidade de ruído entre eles e menor extensão dos harmônicos superiores. Encontramos uma f0 mais aguda, jitter e shimmer aumentados e PHR diminuída. CONCLUSÃO: No período menstrual há mudanças na qualidade vocal, no comportamento dos harmônicos e nos parâmetros vocais (f0,jitter, shimmer e PHR. Além disso, a maioria das estudantes de Fonoaudiologia não percebeu a variação da voz durante o ciclo menstrual.During the premenstruation period dysphonia often can be observed and only few women are aware of this voice variation (Quinteiro, 1989. AIM: To verify if there are vocal quality variations between the ovulation period and the first day of the menstrual cycle, by using perceptual-auditory and acoustic analysis, including spectrography, and the self perception of the vocal changes when it occurs. STUDY DESIGN: Case

  3. The source dilemma hypothesis: Perceptual uncertainty contributes to musical emotion.

    Science.gov (United States)

    Bonin, Tanor L; Trainor, Laurel J; Belyk, Michel; Andrews, Paul W

    2016-09-01

    Music can evoke powerful emotions in listeners. Here we provide the first empirical evidence that the principles of auditory scene analysis and evolutionary theories of emotion are critical to a comprehensive theory of musical emotion. We interpret these data in light of a theoretical framework termed "the source dilemma hypothesis," which predicts that uncertainty in the number, identity or location of sound objects elicits unpleasant emotions by presenting the auditory system with an incoherent percept, thereby motivating listeners to resolve the auditory ambiguity. We describe two experiments in which source location and timbre were manipulated to change uncertainty in the auditory scene. In both experiments, listeners rated tonal and atonal melodies with congruent auditory scene cues as more pleasant than melodies with incongruent auditory scene cues. These data suggest that music's emotive capacity relies in part on the perceptual uncertainty it produces regarding the auditory scene. PMID:27318599

  4. Performance of normal adults on Rey Auditory Learning Test: a pilot study Desempenho de indivíduos saudáveis no Rey Auditory Verbal Learning Test (RAVLT: estudo piloto

    Directory of Open Access Journals (Sweden)

    Leila Cardoso Teruya

    2009-06-01

    Full Text Available The present study aimed to assess the performance of healthy Brazilian adults on the Rey Auditory Verbal Learning Test (RAVLT, a test devised for assessing memory, and to investigate the influence of the variables age, sex and education on the performance obtained, and finally to suggest scores which may be adopted for assessing memory with this instrument. The performance of 130 individuals, subdivided into groups according to age and education, was assessed. Overall performance decreased with age. Schooling presented a strong and positive relationship with scores on all subitems analyzed except learning, for which no influence was found. Mean scores of subitems analyzed did not differ significantly between men and women, except for the delayed recall subitem. This manuscript describes RAVLT scores according to age and education. In summary, this is a pilot study that presents a profile of Brazilian adults on A1, A7, recognition and LOT subitem.O objetivo deste estudo foi avaliar o desempenho de adultos normais brasileiros no Rey Auditory Verbal Learning Test (RAVLT, um teste destinado à avaliação da memória, e investigar a influência das variáveis idade, sexo e escolaridade no desempenho obtido, além de sugerir escores que possam ser utilizados na avaliação da memória segundo este instrumento. Foi avaliado o desempenho de 130 indivíduos, subdivididos em grupos de acordo com a idade e escolaridade. O desempenho geral no teste diminuiu com o aumento da idade. A escolaridade apresentou relação forte e positiva com os escores em todos os subitens analisados, exceto no aprendizado, no qual não foi verificada influência. As médias dos escores dos subitens analisados não foram estatisticamente diferentes entre homens e mulheres, exceto no subitem recordação tardia. Descrevemos os escores no RAVLT de acordo com faixa etária e escolaridade neste manuscrito.

  5. Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise.

    Science.gov (United States)

    Whitton, Jonathon P; Hancock, Kenneth E; Polley, Daniel B

    2014-06-24

    All sensory systems face the fundamental challenge of encoding weak signals in noisy backgrounds. Although discrimination abilities can improve with practice, these benefits rarely generalize to untrained stimulus dimensions. Inspired by recent findings that action video game training can impart a broader spectrum of benefits than traditional perceptual learning paradigms, we trained adult humans and mice in an immersive audio game that challenged them to forage for hidden auditory targets in a 2D soundscape. Both species learned to modulate their angular search vectors and target approach velocities based on real-time changes in the level of a weak tone embedded in broadband noise. In humans, mastery of this tone in noise task generalized to an improved ability to comprehend spoken sentences in speech babble noise. Neural plasticity in the auditory cortex of trained mice supported improved decoding of low-intensity sounds at the training frequency and an enhanced resistance to interference from background masking noise. These findings highlight the potential to improve the neural and perceptual salience of degraded sensory stimuli through immersive computerized games. PMID:24927596

  6. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  7. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...... on the stream segregation process was analysed. The model analysis showed that auditory frequency selectivity and physiological forward masking play a significant role in stream segregation based on frequency separation and tone rate. Secondly, the model analysis suggested that neural adaptation...

  8. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. PMID:20018234

  9. Learning Style Preferences of Iranian EFL High School Students

    Directory of Open Access Journals (Sweden)

    Reza Vaseghi

    2013-07-01

    Full Text Available The current study examined the learning style preferences of 75 Iranian students at Marefat high school in Kuala Lumpur of which, 41 are females and 34 are males. As there are very few researches in which the learning style preferences of Iranian high school students investigated, this study attempts to fulfil this gap. To this end, in order to identify the students’ preferred learning styles (Visual, Auditory, Kinesthetic, Tactile, Group, and Individual Reid’s Perceptual Learning Style Preferences Questionnaire was used. Results indicated that the six learning style preferences considered in the questionnaire were positively preferred. Overall, kinesthetic and tactile learning were major learning styles. Auditory, group, visual, and individual were minor. Keywords: Learning Style Preferences, High School Students, EFL

  10. Psychology of auditory perception.

    Science.gov (United States)

    Lotto, Andrew; Holt, Lori

    2011-09-01

    Audition is often treated as a 'secondary' sensory system behind vision in the study of cognitive science. In this review, we focus on three seemingly simple perceptual tasks to demonstrate the complexity of perceptual-cognitive processing involved in everyday audition. After providing a short overview of the characteristics of sound and their neural encoding, we present a description of the perceptual task of segregating multiple sound events that are mixed together in the signal reaching the ears. Then, we discuss the ability to localize the sound source in the environment. Finally, we provide some data and theory on how listeners categorize complex sounds, such as speech. In particular, we present research on how listeners weigh multiple acoustic cues in making a categorization decision. One conclusion of this review is that it is time for auditory cognitive science to be developed to match what has been done in vision in order for us to better understand how humans communicate with speech and music. WIREs Cogni Sci 2011 2 479-489 DOI: 10.1002/wcs.123 For further resources related to this article, please visit the WIREs website. PMID:26302301

  11. The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning.

    Science.gov (United States)

    Ilango, A; Wetzel, W; Scheich, H; Ohl, F W

    2010-03-31

    Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance.

  12. The Effect of Feedback Delay and Feedback Type on Perceptual Category Learning: The Limits of Multiple Systems

    Science.gov (United States)

    Dunn, John C.; Newell, Ben R.; Kalish, Michael L.

    2012-01-01

    Evidence that learning rule-based (RB) and information-integration (II) category structures can be dissociated across different experimental variables has been used to support the view that such learning is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables, the delay between response and feedback…

  13. Learning multisensory representations for auditory-visual transfer of sequence category knowledge: a probabilistic language of thought approach.

    Science.gov (United States)

    Yildirim, Ilker; Jacobs, Robert A

    2015-06-01

    If a person is trained to recognize or categorize objects or events using one sensory modality, the person can often recognize or categorize those same (or similar) objects and events via a novel modality. This phenomenon is an instance of cross-modal transfer of knowledge. Here, we study the Multisensory Hypothesis which states that people extract the intrinsic, modality-independent properties of objects and events, and represent these properties in multisensory representations. These representations underlie cross-modal transfer of knowledge. We conducted an experiment evaluating whether people transfer sequence category knowledge across auditory and visual domains. Our experimental data clearly indicate that we do. We also developed a computational model accounting for our experimental results. Consistent with the probabilistic language of thought approach to cognitive modeling, our model formalizes multisensory representations as symbolic "computer programs" and uses Bayesian inference to learn these representations. Because the model demonstrates how the acquisition and use of amodal, multisensory representations can underlie cross-modal transfer of knowledge, and because the model accounts for subjects' experimental performances, our work lends credence to the Multisensory Hypothesis. Overall, our work suggests that people automatically extract and represent objects' and events' intrinsic properties, and use these properties to process and understand the same (and similar) objects and events when they are perceived through novel sensory modalities.

  14. Learning disability subtypes and the effects of auditory and visual priming on visual event-related potentials to words.

    Science.gov (United States)

    Miles, J; Stelmack, R M

    1994-02-01

    Three learning-disability (LD) subtype groups and a normal control group of children were compared in their visual event-related potentials (ERPs) to primed and unprimed words. The LD subtypes were defined by deficient performance on tests of arithmetic (Group A), reading and spelling (Group RS), or both (Group RSA). The primed words were preceded by pictures or spoken words having a related meaning, while unprimed words were preceded by non-associated pictures or spoken words. For normal controls, N450 amplitude was greater to unprimed words than to words primed by pictures and spoken words. For Group A, N450 amplitude was reduced by spoken-word primes, but not by picture primes, an effect that demonstrates a deficit in processing visual-spatial information. For Group RS and Group RSA, neither picture nor spoken-word primes reduced N450 amplitude. These effects can be understood in terms of deficiencies in processing auditory-verbal information. Normal controls displayed a greater left- than right-hemispheric asymmetry in frontal N450 amplitude to unprimed words, an effect that is consistent with the association of skilled reading with hemispheric specialization. This asymmetry was absent in the ERPs of all the LD subtypes. The distinct ERP effects for the groups endorses the value of defining LD subtypes on the basis of patterns of deficits in arithmetic and reading and spelling. PMID:8150889

  15. Frequent video game players resist perceptual interference.

    Directory of Open Access Journals (Sweden)

    Aaron V Berard

    Full Text Available Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT, a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  16. The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning.

    Science.gov (United States)

    Ilango, A; Wetzel, W; Scheich, H; Ohl, F W

    2010-03-31

    Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance. PMID:20080152

  17. Auditory Evoked Potential: a proposal for further evaluation in children with learning disabilities

    Directory of Open Access Journals (Sweden)

    Ana Claudia Figueiredo Frizzo

    2015-06-01

    Full Text Available The information presented in this paper demonstrates the author's experience in previews cross-sectional studies conducted in Brazil, in comparison with the current literature. Over the last ten years, AEP has been used in children with learning disabilities. This method is critical to analyze the quality of the processing in time and indicates the specific neural demands and circuits of the sensorial and cognitive process in this clinical population. Some studies with children with dyslexia and learning disabilities were shown here to illustrate the use of AEP in this population.

  18. Perceptual Wavelet packet transform based Wavelet Filter Banks Modeling of Human Auditory system for improving the intelligibility of voiced and unvoiced speech: A Case Study of a system development

    OpenAIRE

    Ranganadh Narayanam*

    2015-01-01

    The objective of this project is to discuss a versatile speech enhancement method based on the human auditory model. In this project a speech enhancement scheme is being described which meets the demand for quality noise reduction algorithms which are capable of operating at a very low signal to noise ratio. We will be discussing how proposed speech enhancement system is capable of reducing noise with little speech degradation in diverse noise environments. In this model to reduce the resi...

  19. Age and education adjusted normative data and discriminative validity for Rey's Auditory Verbal Learning Test in the elderly Greek population.

    Science.gov (United States)

    Messinis, Lambros; Nasios, Grigorios; Mougias, Antonios; Politis, Antonis; Zampakis, Petros; Tsiamaki, Eirini; Malefaki, Sonia; Gourzis, Phillipos; Papathanasopoulos, Panagiotis

    2016-01-01

    Rey's Auditory Verbal Learning Test (RAVLT) is a widely used neuropsychological test to assess episodic memory. In the present study we sought to establish normative and discriminative validity data for the RAVLT in the elderly population using previously adapted learning lists for the Greek adult population. We administered the test to 258 cognitively healthy elderly participants, aged 60-89 years, and two patient groups (192 with amnestic mild cognitive impairment, aMCI, and 65 with Alzheimer's disease, AD). From the statistical analyses, we found that age and education contributed significantly to most trials of the RAVLT, whereas the influence of gender was not significant. Younger elderly participants with higher education outperformed the older elderly with lower education levels. Moreover, both clinical groups performed significantly worse on most RAVLT trials and composite measures than matched cognitively healthy controls. Furthermore, the AD group performed more poorly than the aMCI group on most RAVLT variables. Receiver operating characteristic (ROC) analysis was used to examine the utility of the RAVLT trials to discriminate cognitively healthy controls from aMCI and AD patients. Area under the curve (AUC), an index of effect size, showed that most of the RAVLT measures (individual and composite) included in this study adequately differentiated between the performance of healthy elders and aMCI/AD patients. We also provide cutoff scores in discriminating cognitively healthy controls from aMCI and AD patients, based on the sensitivity and specificity of the prescribed scores. Moreover, we present age- and education-specific normative data for individual and composite scores for the Greek adapted RAVLT in elderly subjects aged between 60 and 89 years for use in clinical and research settings.

  20. A Spiking Neural Network Model of Model-Free Reinforcement Learning with High-Dimensional Sensory Input and Perceptual Ambiguity

    OpenAIRE

    Takashi Nakano; Makoto Otsuka; Junichiro Yoshimoto; Kenji Doya

    2015-01-01

    A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. However, most of these models cannot handle observations which are noisy, or occurred in the past, even though these are inevitable and constraining features of learning in real environments. ...

  1. How does learning experience modulate expertise markers in the visual and auditory domains

    OpenAIRE

    Liu, Tianyin; 劉天音

    2015-01-01

    In this thesis, I aim to examine how learning to read in different scripts modulates the way visual and spoken words are processed. In visual word processing (Chapter 2), I focused on two expertise markers for Chinese character recognition, reduced holistic processing (HP) and left-side bias (LSB) effects, and used simplified and traditional Chinese scripts as the stimuli. I found that simplified and traditional Chinese readers demonstrated a similar level of HP when processing characters sha...

  2. Extinction resistant changes in the human auditory association cortex following threat learning

    OpenAIRE

    Apergis-Schoute, Annemieke M; Schiller, Daniela; LeDoux, Joseph E.; Phelps, Elizabeth A.

    2014-01-01

    Research in humans has highlighted the importance of the amygdala for transient modulation of cortical areas for enhanced processing of emotional stimuli. However, non-human animal data has shown that amygdala dependent threat (fear) learning can also lead to long lasting changes in cortical sensitivity, persisting even after extinction of fear responses. The neural mechanisms of long-lasting traces of such conditioning in humans have not yet been explored. We used functional magnetic resonan...

  3. Avaliação do processamento auditivo em crianças com dificuldades de aprendizagem Auditory processing evaluation in children with learning difficulties

    Directory of Open Access Journals (Sweden)

    Lucilene Engelmann

    2009-01-01

    Full Text Available OBJETIVO: Esclarecer a relação entre dificuldades de aprendizagem e o transtorno do processamento auditivo em uma turma de segunda série. MÉTODOS: Através da aplicação de testes de leitura os alunos foram classificados quanto à fluência em leitura, sendo um com maior fluência (grupo A e outro com menor fluência (grupo B. Os testes de processamento auditivo foram comparados entre os grupos. RESULTADOS: Todos os participantes apresentaram dificuldades de aprendizagem e transtorno do processamento auditivo em quase todos os subperfis primários. Verificou-se que a variável memória sequencial verbal do grupo de menor fluência em leitura (grupo B foi significantemente melhor (p=0,030. CONCLUSÃO: Questiona-se o diagnóstico de transtorno primário do processamento auditivo e salienta-se a importância da memória sequencial verbal no aprendizado da leitura e escrita. Em face do que foi observado, mais pesquisas deverão ser realizadas objetivando o estudo dessa variável e sua relação com o processamento auditivo temporal.PURPOSE: To clarify the relationship between learning difficulties and auditory processing disorder in second grade students. METHODS: Based on the application of reading tests, the students of a second grade class of an elementary school were classified into two groups, according to their reading fluency: a group with better fluency (group A and another with less fluency (group B. A between-group analysis of the auditory processing tests was carried out. RESULTS: All participants presented learning difficulties and auditory processing disorder in almost every primary subprofiles. It was observed that the verbal sequential memory abilities of the less fluent group (group B was significantly better (p=0,030. CONCLUSION: The diagnosis of primary auditory processing disorder is questioned, and it is emphasized the importance of stimulating verbal sequential memory to the learning of reading and writing abilities. In

  4. Auditory Neuropathy

    Science.gov (United States)

    ... field differ in their opinions about the potential benefits of hearing aids, cochlear implants, and other technologies for people with auditory neuropathy. Some professionals report that hearing aids and personal listening devices such as frequency modulation (FM) systems are ...

  5. Dissociable mechanisms of speed-accuracy tradeoff during visual perceptual learning are revealed by a hierarchical drift diffusion model

    Directory of Open Access Journals (Sweden)

    Jiaxiang eZhang

    2014-04-01

    Full Text Available Two phenomena are commonly observed in decision-making. First, there is a speed-accuracy tradeoff such that decisions are slower and more accurate when instructions emphasize accuracy over speed, and vice versa. Second, decision performance improves with practice, as a task is learnt. The speed-accuracy tradeoff and learning effects have been explained under a well-established evidence-accumulation framework for decision-making, which suggests that evidence supporting each choice is accumulated over time, and a decision is committed to when the accumulated evidence reaches a decision boundary. This framework suggests that changing the decision boundary creates the tradeoff between decision speed and accuracy, while increasing the rate of accumulation leads to more accurate and faster decisions after learning. However, recent studies challenged the view that speed-accuracy tradeoff and learning are associated with changes in distinct, single decision parameters. Further, the influence of speed-accuracy instructions over the course of learning remains largely unknown. Here, we used a hierarchical drift-diffusion model to examine the speed-accuracy tradeoff during learning of a coherent motion discrimination task across multiple training sessions, and a transfer test session. The influence of speed-accuracy instructions was robust over training and generalized across untrained stimulus features. Emphasizing decision accuracy rather than speed was associated with increased boundary separation, drift rate and non-decision time at the beginning of training. However, after training, an emphasis on decision accuracy was only associated with increased boundary separation. In addition, faster and more accurate decisions after learning were due to a gradual decrease in boundary separation and an increase in drift rate. The results suggest that speed-accuracy instructions and learning differentially shape decision-making processes at different time scales.

  6. Extraction of auditory features and elicitation of attributes for the assessment of multi-channel reproduced sound

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian Maria

    2005-01-01

    The identification of relevant auditory attributes is pivotal in sound quality evaluation. Two fundamentally different psychometric methods were employed to uncover perceptually relevant auditory features of multichannel reproduced sound. In the first method, called Repertory Grid Technique (RGT)...... sufficient consistency, a lattice representation-as frequently used in Formal Concept Analysis (FCA)-can be derived to depict the structure of auditory features...

  7. Presentation of dynamically overlapping auditory messages in user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A.L.

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  8. On the Relationship between Gender and Perceptual Language Learning Styles: The Case of Iranian Academic EFL Learners

    Science.gov (United States)

    Aliakbari, Mohammad; Tazik, Khalil

    2011-01-01

    In the past few decades, research on gender and language learning styles (LLSs) across various EFL/ESL contexts has received remarkable attention. From these studies, a multitude of contradictory and heterogeneous findings has been observed which justify additional research in SLA contexts in general and EFL contexts like Iran in particular.…

  9. Brief Report: Simulations Suggest Heterogeneous Category Learning and Generalization in Children with Autism Is a Result of Idiosyncratic Perceptual Transformations

    Science.gov (United States)

    Mercado, Eduardo, III; Church, Barbara A.

    2016-01-01

    Children with autism spectrum disorder (ASD) sometimes have difficulties learning categories. Past computational work suggests that such deficits may result from atypical representations in cortical maps. Here we use neural networks to show that idiosyncratic transformations of inputs can result in the formation of feature maps that impair…

  10. Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Charles-Etienne eBenoit

    2014-07-01

    Full Text Available It is well established that auditory cueing improves gait in patients with Idiopathic Parkinson’s Disease (IPD. Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a four-week music training program with rhythmic auditory cueing. Long-term effects were assessed one month after the end of the training. Perceptual and motor timing was evaluated with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients’ performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts. The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

  11. Signaled two-way avoidance learning using electrical stimulation of the inferior colliculus as negative reinforcement: effects of visual and auditory cues as warning stimuli

    Directory of Open Access Journals (Sweden)

    A.C. Troncoso

    1998-03-01

    Full Text Available The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P0.05 in both cases. Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala

  12. Surprise Leads to Noisier Perceptual Decisions

    Directory of Open Access Journals (Sweden)

    Marta I Garrido

    2011-02-01

    Full Text Available Surprising events in the environment can impair task performance. This might be due to complete distraction, leading to lapses during which performance is reduced to guessing. Alternatively, unpredictability might cause a graded withdrawal of perceptual resources from the task at hand and thereby reduce sensitivity. Here we attempt to distinguish between these two mechanisms. Listeners performed a novel auditory pitch—duration discrimination, where stimulus loudness changed occasionally and incidentally to the task. Responses were slower and less accurate in the surprising condition, where loudness changed unpredictably, than in the predictable condition, where the loudness was held constant. By explicitly modelling both lapses and changes in sensitivity, we found that unpredictable changes diminished sensitivity but did not increase the rate of lapses. These findings suggest that background environmental uncertainty can disrupt goal-directed behaviour. This graded processing strategy might be adaptive in potentially threatening contexts, and reflect a flexible system for automatic allocation of perceptual resources.

  13. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  14. Optimal classifier feedback improves cost-benefit but not base-rate decision criterion learning in perceptual categorization.

    Science.gov (United States)

    Maddox, W Todd; Bohil, Corey J

    2005-03-01

    Unequal payoffs engender separate reward- and accuracy-maximizing decision criteria; unequal base rates do not. When payoffs are unequal, observers place greater emphasis on accuracy than is optimal. This study compares objective classifier (the objectively correct response) with optimal classifier feedback (the optimal classifier's response) when payoffs or base rates are unequal. It provides a critical test of Maddox and Bohil's (1998) competition between reward and accuracy maximization (COBRA) hypothesis, comparing it with a competition between reward and probability matching (COBRM) and a competition between reward and equal response frequencies (COBRE) hypothesis. The COBRA prediction that optimal classifier feedback leads to better decision criterion leaning relative to objective classifier feedback when payoffs are unequal, but not when base rates are unequal, was supported. Model-based analyses suggested that the weight placed on accuracy was reduced for optimal classifier feedback relative to objective classifier feedback. In addition, delayed feedback affected learning of the reward-maximizing decision criterion.

  15. Top-down (Prior Knowledge) and Bottom-up (Perceptual Modality) Influences on Spontaneous Interpersonal Synchronization.

    Science.gov (United States)

    Gipson, Christina L; Gorman, Jamie C; Hessler, Eric E

    2016-04-01

    Coordination with others is such a fundamental part of human activity that it can happen unintentionally. This unintentional coordination can manifest as synchronization and is observed in physical and human systems alike. We investigated the role of top-down influences (prior knowledge of the perceptual modality their partner is using) and bottom-up factors (perceptual modality combination) on spontaneous interpersonal synchronization. We examine this phenomena with respect to two different theoretical perspectives that differently emphasize top-down and bottom-up factors in interpersonal synchronization: joint-action/shared cognition theories and ecological-interactive theories. In an empirical study twelve dyads performed a finger oscillation task while attending to each other's movements through either visual, auditory, or visual and auditory perceptual modalities. Half of the participants were given prior knowledge of their partner's perceptual capabilities for coordinating across these different perceptual modality combinations. We found that the effect of top-down influence depends on the perceptual modality combination between two individuals. When people used the same perceptual modalities, top-down influence resulted in less synchronization and when people used different perceptual modalities, top-down influence resulted in more synchronization. Furthermore, persistence in the change in behavior as a result of having perceptual information about each other ('social memory') was stronger when this top-down influence was present. PMID:27033133

  16. Top-down (Prior Knowledge) and Bottom-up (Perceptual Modality) Influences on Spontaneous Interpersonal Synchronization.

    Science.gov (United States)

    Gipson, Christina L; Gorman, Jamie C; Hessler, Eric E

    2016-04-01

    Coordination with others is such a fundamental part of human activity that it can happen unintentionally. This unintentional coordination can manifest as synchronization and is observed in physical and human systems alike. We investigated the role of top-down influences (prior knowledge of the perceptual modality their partner is using) and bottom-up factors (perceptual modality combination) on spontaneous interpersonal synchronization. We examine this phenomena with respect to two different theoretical perspectives that differently emphasize top-down and bottom-up factors in interpersonal synchronization: joint-action/shared cognition theories and ecological-interactive theories. In an empirical study twelve dyads performed a finger oscillation task while attending to each other's movements through either visual, auditory, or visual and auditory perceptual modalities. Half of the participants were given prior knowledge of their partner's perceptual capabilities for coordinating across these different perceptual modality combinations. We found that the effect of top-down influence depends on the perceptual modality combination between two individuals. When people used the same perceptual modalities, top-down influence resulted in less synchronization and when people used different perceptual modalities, top-down influence resulted in more synchronization. Furthermore, persistence in the change in behavior as a result of having perceptual information about each other ('social memory') was stronger when this top-down influence was present.

  17. Relationships between Perceptual Learning Style and Learning Motivation/Achievements of Military Medical University Undergraduates%军医大学生感知学习风格与学习动机、成绩的关系

    Institute of Scientific and Technical Information of China (English)

    鲁娟; 王悦; 刘斌

    2015-01-01

    目的:探讨军医大学生感知学习风格对学习动机、学习成绩等的影响,为开展教学工作提供依据。方法:应用VARK 7.0版本,调查某军医大学所有在校学员的学习风格。结果:①VARK学习风格倾向重数与学习动机强度之间关系无统计学意义(F=0.600,P=0.615);与学习成绩之间关系有统计学意义(F=3.890,P=0.009),三重倾向学习风格学员的学习成绩(2.77±0.770)高于四重倾向者(2.56±0.865);②VARK学习风格强度与学习动机强弱、学习成绩之间均无统计学意义(F=0.564,0.905;P>0.05);③学习风格中VARK分布与学习成绩之间关系无统计学意义(F=1.866,P=0.114);与学习动机强度之间关系有统计学意义(F=4.155,P=0.002),属于“R”学习风格的学员(2.08±0.656)学习动机高于“K”者(1.88±0.567)。结论:三重学习风格的学员最有利于学习成绩的提高;属于阅读/写作学习风格的学员的学习动机高于属于运动知觉型的学员;在教学中要尊重学员的学习风格,因势利导,有效提高其学习质量。%Objective:To discuss the influence of perceptual learning style of Military Medical Univer-sity Undergraduates on learning motivation/achievements to put basis for teaching job .Methods:Using the Visual,Aural,Read/Write,Kinesthetic questionnaire ,we surveyed all undergraduates on campus of a military medical university.Results:①There were no statistical significances(F=0.600,P=0.615)be-tween the quantity of perceptual learning style orientation and intensities of learning motivation of the un -dergraduates ,while the relationships between the quantity of orientation and achievements was on the con-trary(F=3.890,P=0.009),and those with triple learning orientation had better achievements (2.77 ± 0.770)than those with quadruple ones(2.56 ±0.895).②There were no

  18. Intact spectral but abnormal temporal processing of auditory stimuli in autism.

    NARCIS (Netherlands)

    Groen, W.B.; Orsouw, L. van; Huurne, N.; Swinkels, S.H.N.; Gaag, R.J. van der; Buitelaar, J.K.; Zwiers, M.P.

    2009-01-01

    The perceptual pattern in autism has been related to either a specific localized processing deficit or a pathway-independent, complexity-specific anomaly. We examined auditory perception in autism using an auditory disembedding task that required spectral and temporal integration. 23 children with h

  19. Análise perceptivo-auditiva, acústica computadorizada e laringológica da voz de adultos jovens fumantes e não-fumantes Auditory perceptual, acoustic, computerized and laryngological analysis of young smokers' and nonsmokers' voice

    Directory of Open Access Journals (Sweden)

    Daniele C. de Figueiredo

    2003-12-01

    Full Text Available OBJETIVO: Realizar a avaliação laringológica, análise perceptivo-auditiva e acústica computadorizada das vozes de adultos jovens fumantes e não-fumantes, sem queixa vocal, compará-las e verificar a incidência de alterações laríngeas. FORMA DE ESTUDO: Caso-controle. MATERIAL E MÉTODO: Foram analisadas as vozes de 80 indivíduos com idades compreendidas entre 20 e 40 anos. Estes foram divididos em quatro grupos: 20 homens fumantes, 20 homens não-fumantes, 20 mulheres fumantes e 20 mulheres não-fumantes. Este estudo envolveu laringoscopia, realizada e interpretada por uma médica otorrinolaringologista, e gravação em fita cassete das vogais sustentadas /a/, /m/, /i/ e /u/, contagem dos números de 1 a 20, emissão dos dias da semana, dos meses do ano e da canção "Parabéns a você". A gravação em fita cassete foi editada para posterior análise espectrográfica e avaliação perceptiva auditiva por quatro avaliadores com experiência na área de voz. RESULTADOS: Após a análise, foi constatada uma discreta diminuição da freqüência fundamental da voz dos indivíduos fumantes de ambos os sexos, bem como maior incidência de rouquidão e de alterações laríngeas entre os tabagistas.AIM: The goal of this study was to make the laryngological, auditory perceptual and acoustic computer analyses of young adults' (smokers and non-smokers voices, without vocal complaint, compare them and verify the incidence of vocal alterations. STUDY DESIGN: Clinical comparative. MATERIAL AND METHOD: The voices of 80 individuals with age range from 20 to 40 years were analyzed. These individuals were divided in four groups: 20 male smokers, 20 male non-smokers, 20 female smokers and 20 female non-smokers. This analysis involved laryngoscopy, which was performed and interpreted by an otolaryngologist, and cassette tape recordings of the sustained vowels /a/, /m/, /i/ e /u/, number counting from 1 to 20, speech of the days of the week, months of

  20. Análise de cantores de baile em estilo de canto popular e lírico:perceptivo-auditiva, acústica e da configuração laríngea Dancing show singers analysis in pop and opera music styles:perceptual-auditory, acoustic and laryngeal configuration

    Directory of Open Access Journals (Sweden)

    Sueli A. Zampieri

    2002-05-01

    subjects. Perceptual-auditory and acoustic analysis was performed. Laryngeal assessment with a flexible endoscope was performed to investigate laryngeal configuration in the pop and opera style. Results: The perceptual-auditory analysis allowed us to observe that the pop singers change their vocal quality when trying to sing a piece of an opera music, increasing vibrato and vocal volume, enhancing vocal resonance and overarticulating the words. The spectrographic analysis didn't show the presence of the singer formant in any of the subject's voices. The laryngeal arrangement of pop singers singing opera music was characterized, in the majority, by an increase of the antero-posterior and median supraglotic closure. Median supraglotic closure cropped up more among the male. Jitter and shimmer values decreased for the sung vowel when compared to the spoken one. These values were statistically significant for the female voices.

  1. Fostering perceptual skills in medical diagnosis

    NARCIS (Netherlands)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2010-01-01

    Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2010, August). Fostering perceptual skills in medical diagnosis. Meeting of the EARLI SIG6/7 Instructional Design and Learning and Instruction with Computers, Ulm, Germany.

  2. Sinusoidal Analysis-Synthesis of Audio Using Perceptual Criteria

    Directory of Open Access Journals (Sweden)

    Ted Painter

    2003-01-01

    Full Text Available This paper presents a new method for the selection of sinusoidal components for use in compact representations of narrowband audio. The method consists of ranking and selecting the most perceptually relevant sinusoids. The idea behind the method is to maximize the matching between the auditory excitation pattern associated with the original signal and the corresponding auditory excitation pattern associated with the modeled signal that is being represented by a small set of sinusoidal parameters. The proposed component-selection methodology is shown to outperform the maximum signal-to-mask ratio selection strategy in terms of subjective quality.

  3. PERCEPTUAL CONSTANCY AND CONTEXTUAL ENHANCEMENT CONSTANCIA PERCEPTUAL Y MEJORAMIENTO CONTEXTUAL

    Directory of Open Access Journals (Sweden)

    HERIBERTO AVELINO

    2010-01-01

    Full Text Available The perception of the acoustic world surrounding us very often is different from its physical properties. Our mental representation of the sounds that we are exposed to are not in a one to one correspondence with the sounds we sense. Auditory objects and their environments are categorized and loaded in memory so that recognition of complex dynamic scenes are perceived optimally. Precise identification of voices and linguistic objects are crucial for effective communication. However, the normal context of hearing contains multiple, competing and noisy sources. In such disadvantageous conditions the identity of the percepts is more efficient if they are stored in memory. The results of the present study offer experimental evidence that high-level cognitive processes might constrain basic auditory mechanisms involved in identifying phonemic tone to guarantee perceptual constancy. The results showing a better identification of tones in contexts that are inveresely proportional to their frequency support the idea that peripheral auditory processing enhances the identification of the tones by a general function of contextual contrast.La percepción del mundo acústico que nos rodea es a menudo diferente de sus propiedades físicas. Nuestra representación mental de los sonidos a los que estamos expuestos no están en una correspondencia unívoca con los sonidos que sentimos. Los objetos auditivos y sus contextos son categorizados y acumulados en la memoria de forma tal que el reconocimiento de escenas dinámicas complejas son percibidas óptimamente. La identificación precisa de voces y objetos lingüísticos son cruciales para la comunicación efectiva. Sin embargo, el contexto normal de la escucha contiene fuentes múltiples, con ruido y en competencia. En estas condiciones de desventaja la identidad de los perceptos es más eficiente si son almacenados en la memoria. Los resultados del presente estudio ofrecen evidencia experimental de que

  4. 知觉行为理论与外语教学%Gibson’s Perceptual Learning Theory and Foreign Language Teaching

    Institute of Scientific and Technical Information of China (English)

    尧玮

    2014-01-01

    The key of Gibson’s perceptual learning theory is to explore the interaction between ani-mals/ people and the environment,which claims that people can directly perceive the real ecological world,and learners can directly obtain meaningful information from their surroundings. According to his theory,correct perception of the environmental information can inspire the positive learning. How-ever,because of the shortage of information perception or incorrect perception,the intention of learn-ers will not be well understood. In this way,negative acquisition behavior will be activated. During the process of second language acquisition,learners and the surroundings constitute a kind of ecologi-cal environment,correct perception of relevant environmental information can motivate or induce learners to gain positively the meaning from the environment. On the contrary,it will lead to the op-posite. Accordingly,in English teaching,it’s a crucial way to explore the specific environmental in-formation of learners in order to change the teaching status and the passive role of students. Besides, the course syllabus could be designed based on the information,which can effectively induce the teaching and learning.%吉布森的知觉行为理论探讨动物或人与环境之间的相互作用,认为人可以直接知觉到真实的生态世界,习得者能够直接从周围环境中获得有意义的信息。根据吉布森知觉习得理论,正确地感知环境信息能够正确地引导习得者习得行为获得“给养”,而信息感知的缺失或不明确让习得者习得意图不明确,从而诱发习得者不作为的习得行为。二语习得中,语言习得者与其所处的环境构成了一个生态环境,正确地感知与习得者相关的环境信息能指导或诱发习得者积极作为去获取环境中的意义信息。反之,则正好相反。因此,在英语教学中,改变实用性差的教学现状、改变学生被动受体的一

  5. Auditory-Visual Perception of Acoustically Degraded Prosodic Contrastive Focus in French

    OpenAIRE

    Dohen, Marion; Loevenbruck, Hélène

    2007-01-01

    Previous studies have shown that visual only perception of prosodic contrastive focus in French is possible. The aim of this study was to determine whether the visual modality could be combined to the auditory one and lead to a perceptual enhancement of prosodic focus. In order to examine this question, we carried out auditory only, audiovisual and visual only perception tests. In order to avoid a ceiling effect, auditory only perception of prosodic focus being very high, we used whispered sp...

  6. Observation on the curative effect of visual perceptual learning for juvenile ametropic amblyopia%视知觉学习治疗大龄屈光不正性弱视效果观察

    Institute of Scientific and Technical Information of China (English)

    林泉; 刘伟民; 肖信

    2011-01-01

    目的:比较基于互联网的视知觉学习系统和传统综合训练方法治疗大龄儿童弱视的疗效,分析其视力的变化,摸索儿童弱视有效的治疗方法.方法:选取广西壮族自治区人民医院收治的弱视患儿84例(160眼),应用基于互联网的视知觉学习系统和传统综合训练方法对大龄弱视儿童进行治疗,具体训练方案由医师基于患儿视觉表现的初始状态、功能低下的严重程度以及训练治疗过程中的进步来设计,视知觉学习系统组给予提高视觉噪声和轮廓整合、位置噪声等视觉训练方案,传统训练组采取红光、精细目力训练等治疗.观察两种方法在弱视治疗后1个月、3个月、9个月、12个月的视力变化.结果:视知觉训练系统组的总体疗效高于传统综合疗法组,不同程度屈光不正性弱视视知觉学习组的总体疗效高于传统综合疗法组,差异均有统计学意义.视知觉感知组视力提升速率明显高于传统组,视知觉感知组在疗程第6个月已有50%的患儿进入基本治愈的平台期,而传统组50%的患儿进入基本治愈平台期在第12个月.视知觉训练组治疗屈光不正性弱视平均训练17.14 h可提高一行视力,其中重度弱视所需时间最短(12.00h),轻度弱视所需时间最长(25.12 h).结论:基于互联网的视知觉学习系统提供了强烈的、活跃的、有反馈的个性化视觉刺激,对超过视觉发育敏感期的大龄儿童屈光不正性弱视的疗效优于传统综合疗法,缩短了视功能障碍治疗的周期.此新方法能在较短时间达到最佳治疗效果,为弱视的临床治疗提供了新的可行的途径.%Objective; To compare the curative effects of perceptual learning based on internet and traditional comprehensive training in treatment of juvenile amblyopia, analyze the change of visual acuity, explore an effective therapy for children with amblyopia. Methods; 84 children (160 eyes) were selected

  7. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. PMID:24378910

  8. The processing of visual and auditory information for reaching movements.

    Science.gov (United States)

    Glazebrook, Cheryl M; Welsh, Timothy N; Tremblay, Luc

    2016-09-01

    Presenting target and non-target information in different modalities influences target localization if the non-target is within the spatiotemporal limits of perceptual integration. When using auditory and visual stimuli, the influence of a visual non-target on auditory target localization is greater than the reverse. It is not known, however, whether or how such perceptual effects extend to goal-directed behaviours. To gain insight into how audio-visual stimuli are integrated for motor tasks, the kinematics of reaching movements towards visual or auditory targets with or without a non-target in the other modality were examined. When present, the simultaneously presented non-target could be spatially coincident, to the left, or to the right of the target. Results revealed that auditory non-targets did not influence reaching trajectories towards a visual target, whereas visual non-targets influenced trajectories towards an auditory target. Interestingly, the biases induced by visual non-targets were present early in the trajectory and persisted until movement end. Subsequent experimentation indicated that the magnitude of the biases was equivalent whether participants performed a perceptual or motor task, whereas variability was greater for the motor versus the perceptual tasks. We propose that visually induced trajectory biases were driven by the perceived mislocation of the auditory target, which in turn affected both the movement plan and subsequent control of the movement. Such findings provide further evidence of the dominant role visual information processing plays in encoding spatial locations as well as planning and executing reaching action, even when reaching towards auditory targets. PMID:26253323

  9. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    Science.gov (United States)

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  10. A systematic review on ‘Foveal Crowding’ in visually impaired children and perceptual learning as a method to reduce Crowding

    Directory of Open Access Journals (Sweden)

    Huurneman Bianca

    2012-07-01

    compare crowding ratios and it shows that charts with 50% interoptotype spacing were most sensitive to capture crowding effects. The groups that showed the largest crowding effects were individuals with CN, VI adults with central scotomas and children with CVI. Perceptual Learning seems to be a promising technique to reduce excessive foveal crowding effects.

  11. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions

    Science.gov (United States)

    Murphy, Gillian; Greene, Ciara M.

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628

  12. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.

    Science.gov (United States)

    Murphy, Gillian; Greene, Ciara M

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628

  13. Perceptual Load Affects Eyewitness Accuracy & Susceptibility to Leading Questions

    Directory of Open Access Journals (Sweden)

    Gillian Murphy

    2016-08-01

    Full Text Available Load Theory (Lavie, 1995; 2005 states that the level of perceptual load in a task (i.e. the amount of information involved in processing task-relevant stimuli determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator, the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  14. A database and digital signal processing framework for the perceptual analysis of voice quality

    OpenAIRE

    Bermúdez de Alvear, Rosa M.; Corral, Jesús; Tardón, Lorenzo J.; Barbancho, Ana M.; Fernández-Contreras, Elena; Rando-Márquez, Sara; Martínez-Arquero, A. Ginés; Barbancho, Isabel

    2015-01-01

    Introduction. Clinical assessment of dysphonia relies on perceptual as much as instrumental methods of analysis [1]. The perceptual auditory analysis is potentially subject to several internal and external sources of bias [2]. Furthermore acoustic analyses which have been used to objectively characterize pathological voices are likely to be affected by confusion variables such as the signal processing or the hardware and software specifications [3]. For these reasons the poor correlation betw...

  15. Clinical Evaluation of the Effectiveness of Sensory Integrative and Perceptual Motor Therapy in Improving Sensory Integrative Function in Children with Learning Disabilities.

    Science.gov (United States)

    Humphries, Thomas W.; And Others

    1993-01-01

    After 72 sessions for 3 hours per week, significantly more children aged 5-9 receiving sensory integration (SI) therapy (n=35) and perceptual motor training (n=35) showed improvement in SI functioning compared to 33 receiving no treatment. Similar effects were found for subgroups with vestibular dysfunction only (n=11, 13, and 11 respectively).…

  16. Classification across the senses: Auditory-visual cognitive performance in a California sea lion (Zalophus californianus)

    Science.gov (United States)

    Lindemann, Kristy L.; Reichmuth-Kastak, Colleen; Schusterman, Ronald J.

    2005-09-01

    The model of stimulus equivalence describes how perceptually dissimilar stimuli can become interrelated to form useful categories both within and between the sensory modalities. A recent experiment expanded upon prior work with a California sea lion by examining stimulus classification across the auditory and visual modalities. Acoustic stimuli were associated with an exemplar from one of two pre-existing visual classes in a matching-to-sample paradigm. After direct training of these associations, the sea lion showed spontaneous transfer of the new auditory stimuli to the remaining members of the visual classes. The sea lion's performance on this cross-modal equivalence task was similar to that shown by human subjects in studies of emergent word learning and reading comprehension. Current research with the same animal further examines how stimulus classes can be expanded across modalities. Fast-mapping techniques are used to rapidly establish new auditory-visual relationships between acoustic cues and multiple arbitrary visual stimuli. Collectively, this research illustrates complex cross-modal performances in a highly experienced subject and provides insight into how animals organize information from multiple sensory modalities into meaningful representations.

  17. Human substantia nigra neurons encode decision outcome and are modulated by categorization uncertainty in an auditory categorization task.

    Science.gov (United States)

    McGovern, Robert A; Chan, Andrew K; Mikell, Charles B; Sheehy, John P; Ferrera, Vincent P; McKhann, Guy M

    2015-09-01

    The ability to categorize stimuli - predator or prey, friend or foe - is an essential feature of the decision-making process. Underlying that ability is the development of an internally generated category boundary to generate decision outcomes. While classic temporal difference reinforcement models assume midbrain dopaminergic neurons underlie the prediction error required to learn boundary location, these neurons also demonstrate a robust response to nonreward incentive stimuli. More recent models suggest that this may reflect a motivational aspect to performing a task which should be accounted for when modeling dopaminergic neuronal behavior. To clarify the role of substantia nigra dopamine neurons in uncertain perceptual decision making, we investigated their behavior using single neuron extracellular recordings in patients with Parkinson's disease undergoing deep brain stimulation. Subjects underwent a simple auditory categorical decision-making task in which they had to classify a tone as either low- or high-pitched relative to an explicit threshold tone and received feedback but no reward. We demonstrate that the activity of human SN dopaminergic neurons is predictive of perceptual categorical decision outcome and is modulated by uncertainty. Neuronal activity was highest during difficult (uncertain) decisions that resulted in correct responses and lowest during easy decisions that resulted in incorrect responses. This pattern of results is more consistent with a "motivational" role with regards to perceptual categorization and suggests that dopamine neurons are most active when critical information - as represented by uncertainty - is available for learning decision boundaries. PMID:26416969

  18. Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task

    OpenAIRE

    Sigrist, Roland; Rauter, Georg; Riener, Robert; Wolf, Peter

    2013-01-01

    Augmented feedback, provided by coaches or displays, is a well-established strategy to accelerate motor learning. Frequent terminal feedback and concurrent feedback have been shown to be detrimental for simple motor task learning but supportive for complex motor task learning. However, conclusions on optimal feedback strategies have been mainly drawn from studies on artificial laboratory tasks with visual feedback only. Therefore, the authors compared the effectiveness of learning a complex, ...

  19. Perceptual discrimination in fear generalization: Mechanistic and clinical implications.

    Science.gov (United States)

    Struyf, Dieter; Zaman, Jonas; Vervliet, Bram; Van Diest, Ilse

    2015-12-01

    For almost a century, Pavlovian conditioning is the imperative experimental paradigm to investigate the development and generalization of fear. However, despite the rich research tradition, the conceptualization of fear generalization has remained somewhat ambiguous. In this selective review, we focus explicitly on some challenges with the current operationalization of fear generalization and their impact on the ability to make inferences on its clinical potential and underlying processes. The main conclusion is that, despite the strong evidence that learning influences perception, current research has largely neglected the role of perceptual discriminability and its plasticity in fear generalization. We propose an alternative operationalization of generalization, where the essence is that Pavlovian conditioning itself influences the breadth of fear generalization via learning-related changes in perceptual discriminability. Hence a conceptualization of fear generalization is incomplete without an in-depth analysis of processes of perceptual discriminability. Furthermore, this highlights perceptual learning and discriminability as important future targets for pre-clinical and clinical research.

  20. Perceptual Estimation Obeys Occam's Razor

    Directory of Open Access Journals (Sweden)

    Samuel Joseph Gershman

    2013-09-01

    Full Text Available Theoretical models of unsupervised category learning postulate that humans "invent" categories to accommodate new patterns, but tend to group stimuli into a small number of categories. This "Occam's razor" principle is motivated by normative rules of statistical inference. If categories influence perception, then one should find effects of category invention on simple perceptual estimation. In a series of experiments, we tested this prediction by asking participants to estimate the number of colored circles on a computer screen, with the number of circles drawn from a color-specific distribution. When the distributions associated with each color overlapped substantially, participants' estimates were biased towards values intermediate between the two means, indicating that subjects ignored the color of the circles and grouped different-colored stimuli into one perceptual category. These data suggest that humans favor simpler explanations of sensory inputs. In contrast, when the distributions associated with each color overlapped minimally, the bias was reduced (i.e., the estimates for each color were closer to the true means, indicating that sensory evidence for more complex explanations can override the simplicity bias. We present a rational analysis of our task, showing how these qualitative patterns can arise from Bayesian computations.

  1. Perceptual estimation obeys Occam's razor.

    Science.gov (United States)

    Gershman, Samuel J; Niv, Yael

    2013-01-01

    Theoretical models of unsupervised category learning postulate that humans "invent" categories to accommodate new patterns, but tend to group stimuli into a small number of categories. This "Occam's razor" principle is motivated by normative rules of statistical inference. If categories influence perception, then one should find effects of category invention on simple perceptual estimation. In a series of experiments, we tested this prediction by asking participants to estimate the number of colored circles on a computer screen, with the number of circles drawn from a color-specific distribution. When the distributions associated with each color overlapped substantially, participants' estimates were biased toward values intermediate between the two means, indicating that subjects ignored the color of the circles and grouped different-colored stimuli into one perceptual category. These data suggest that humans favor simpler explanations of sensory inputs. In contrast, when the distributions associated with each color overlapped minimally, the bias was reduced (i.e., the estimates for each color were closer to the true means), indicating that sensory evidence for more complex explanations can override the simplicity bias. We present a rational analysis of our task, showing how these qualitative patterns can arise from Bayesian computations. PMID:24137136

  2. Effect of perceptual load on conceptual processing: an extension of Vermeulen's theory.

    Science.gov (United States)

    Xie, Jiushu; Wang, Ruiming; Sun, Xun; Chang, Song

    2013-10-01

    The effect of color and shape load on conceptual processing was studied. Perceptual load effects have been found in visual and auditory conceptual processing, supporting the theory of embodied cognition. However, whether different types of visual concepts, such as color and shape, share the same perceptual load effects is unknown. In the current experiment, 32 participants were administered simultaneous perceptual and conceptual tasks to assess the relation between perceptual load and conceptual processing. Keeping color load in mind obstructed color conceptual processing. Hence, perceptual processing and conceptual load shared the same resources, suggesting embodied cognition. Color conceptual processing was not affected by shape pictures, indicating that different types of properties within vision were separate.

  3. Contrast visual acuity in visual perceptual learning before and after treatment%对比度视力检查在视感知觉学习治疗前后的临床应用研究

    Institute of Scientific and Technical Information of China (English)

    郑丽; 李慧丽; 余海; 王大洪

    2013-01-01

    To Assess contrast vision changes of refractive errors children before and after visual perceptual learning treatment, to further explore the clinical significance of the visual quality and visual function. Methods Refractive errors teenagers 50 (100 eyes) , was treated with visual percetpual learning and randomly divided into 2 groups by visual acuity using electronic vision measuring instrument. Results Contrast visual acuity of all pa-tients improved sign ificantly after perceptual learning training, the contrast visual acuity of low diopter patients im-proved more obviously. International standard visual acuity of patients improved after treatment, the contrast of vision in the low light, standard also improved , P<0.05. Conclusions Contrast visual acuity contine light and dark vision, visual perceptual learning can improve contrast vision and visual acuity among refractive errors patients.%目的:评估屈光不正患儿视感知觉学习治疗前后的对比度视力变化,探讨视觉质量及视功能的临床意义。方法对视感知觉学习治疗的屈光不正患者50名(100眼),随机分为两组采用电子视力测量仪检查对比度视力,评估视功能。结果所有患者视感知觉学习训练后对比度视力较国际标准视力改善明显,其中低屈光度数患者改善更明显;治疗后国际标准视力无改善的患者,对比度视力的低亮、标低仍有改善,P<0.05。结论对比度视力能全面的反应明视力及暗视力,同时视感知觉学习训练对提高屈光不正患者对比敏感度及视力有效,值得推广。

  4. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  5. Adaptation and perceptual norms

    Science.gov (United States)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  6. Brazilian children performance on Rey’s auditory verbal learning paradigm Desempenho de crianças brasileiras no paradigma de aprendizagem auditivo-verbal de Rey

    Directory of Open Access Journals (Sweden)

    Rosinda Martins Oliveira

    2008-03-01

    Full Text Available The Rey Auditory Verbal Learning paradigm is worldwide used in clinical and research settings. There is consensus about its psychometric robustessness and that its various scores provide relevant information about different aspects of memory and learning. However, there are only a few studies in Brazil employing this paradigm and none of them with children. This paper describes the performance of 119 Brazilian children in a version of Rey´s paradigm. The correlations between scores showed the internal consistency of this version. Also, the pattern of results observed was very similar to that observed in foreign studies with adults and children. There was correlation between age in months and recall scores, showing that age affects the rhythm of learning. These results were discussed based on the information processing theory.O paradigma de aprendizagem auditivo-verbal de Rey é utilizado em todo o mundo, tanto em pesquisa quanto na clínica. Há consenso sobre sua robustez psicométrica e de que seus vários escores fornecem informações relevantes sobre diferentes aspectos da memória e da aprendizagem. No entanto, existem apenas alguns poucos estudos no Brasil envolvendo este paradigma e nenhum deles com crianças. Este artigo descreve o desempenho de 119 crianças brasileiras em uma versão do paradigma de Rey. As correlações entre escores mostraram a consistência interna desta versão. Além disso, o padrão de resultados encontrado foi muito similar àquele observado em estudos estrangeiros com adultos e crianças. Verificou-se correlação entre idade em meses e os escores de evocação, mostrando que a idade afeta o ritmo de aprendizagem. Estes resultados foram discutidos a partir da teoria do processamento da informação.

  7. Perceptual effects in auralization of virtual rooms

    Science.gov (United States)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  8. Generating Images with Perceptual Similarity Metrics based on Deep Networks

    OpenAIRE

    Dosovitskiy, Alexey; Brox, Thomas

    2016-01-01

    Image-generating machine learning models are typically trained with loss functions based on distance in the image space. This often leads to over-smoothed results. We propose a class of loss functions, which we call deep perceptual similarity metrics (DeePSiM), that mitigate this problem. Instead of computing distances in the image space, we compute distances between image features extracted by deep neural networks. This metric better reflects perceptually similarity of images and thus leads ...

  9. Quadri-stability of a spatially ambiguous auditory illusion

    Directory of Open Access Journals (Sweden)

    Constance May Bainbridge

    2015-01-01

    Full Text Available In addition to vision, audition plays an important role in sound localization in our world. One way we estimate the motion of an auditory object moving towards or away from us is from changes in volume intensity. However, the human auditory system has unequally distributed spatial resolution, including difficulty distinguishing sounds in front versus behind the listener. Here, we introduce a novel quadri-stable illusion, the Transverse-and-Bounce Auditory Illusion, which combines front-back confusion with changes in volume levels of a nonspatial sound to create ambiguous percepts of an object approaching and withdrawing from the listener. The sound can be perceived as traveling transversely from front to back or back to front, or bouncing to remain exclusively in front of or behind the observer. Here we demonstrate how human listeners experience this illusory phenomenon by comparing ambiguous and unambiguous stimuli for each of the four possible motion percepts. When asked to rate their confidence in perceiving each sound’s motion, participants reported equal confidence for the illusory and unambiguous stimuli. Participants perceived all four illusory motion percepts, and could not distinguish the illusion from the unambiguous stimuli. These results show that this illusion is effectively quadri-stable. In a second experiment, the illusory stimulus was looped continuously in headphones while participants identified its perceived path of motion to test properties of perceptual switching, locking, and biases. Participants were biased towards perceiving transverse compared to bouncing paths, and they became perceptually locked into alternating between front-to-back and back-to-front percepts, perhaps reflecting how auditory objects commonly move in the real world. This multi-stable auditory illusion opens opportunities for studying the perceptual, cognitive, and neural representation of objects in motion, as well as exploring multimodal perceptual

  10. NMDA受体与听觉发育可塑性及学习记忆研究的进展%Development of study on NMDA receptor with auditory plasticity and learning memory

    Institute of Scientific and Technical Information of China (English)

    李建红; 王淑玉; 李晓明

    2012-01-01

    Neural plasticity is one of the most important research area of developmental neurobiology. NM-DA(N-Methyl-D-aspartale) receptor is one of the glulamate receptors in nervous system, which palys an important role in many biological and pathological changes, such as development of neural network, neural plasticity, learning and memory, degeneration of the neurons and so on. The studies on NMDA receptor with auditory plasticity and learning and memory were reviewed in order to make early intervention for hearing impaired children and provide a theoretical basis.

  11. The acoustic and perceptual cues affecting melody segregation for listeners with a cochlear implant.

    Directory of Open Access Journals (Sweden)

    Jeremy eMarozeau

    2013-11-01

    Full Text Available Our ability to listen selectively to single sound sources in complex auditory environments is termed ‘auditory stream segregation.’ This ability is affected by peripheral disorders such as hearing loss, as well as plasticity in central processing such as occurs with musical training. Brain plasticity induced by musical training can enhance the ability to segregate sound, leading to improvements in a variety of auditory abilities. The melody segregation ability of 12 cochlear-implant recipients was tested using a new method to determine the perceptual distance needed to segregate a simple 4-note melody from a background of interleaved random-pitch distractor notes. In experiment 1, participants rated the difficulty of segregating the melody from distracter notes. Four physical properties of the distracter notes were changed. In experiment 2, listeners were asked to rate the dissimilarity between melody patterns whose notes differed on the four physical properties simultaneously. Multidimensional scaling analysis transformed the dissimilarity ratings into perceptual distances. Regression between physical and perceptual cues then derived the minimal perceptual distance needed to segregate the melody.The most efficient streaming cue for CI users was loudness. For the normal hearing listeners without musical backgrounds, a greater difference on the perceptual dimension correlated to the temporal envelope is needed for stream segregation in CI users. No differences in streaming efficiency were found between the perceptual dimensions linked to the F0 and the spectral envelope.Combined with our previous results in normally-hearing musicians and non-musicians, the results show that differences in training as well as differences in peripheral auditory processing (hearing impairment and the use of a hearing device influences the way that listeners use different acoustic cues for segregating interleaved musical streams.

  12. Comparison of Perceptual Signs of Voice before and after Vocal Hygiene Program in Adults with Dysphonia

    Directory of Open Access Journals (Sweden)

    Seyyedeh Maryam khoddami

    2011-12-01

    Full Text Available Background and Aim: Vocal abuse and misuse are the most frequent causes of voice disorders. Consequently some therapy is needed to stop or modify such behaviors. This research was performed to study the effectiveness of vocal hygiene program on perceptual signs of voice in people with dysphonia.Methods: A Vocal hygiene program was performed to 8 adults with dysphonia for 6 weeks. At first, Consensus Auditory- Perceptual Evaluation of Voice was used to assess perceptual signs. Then the program was delivered, Individuals were followed in second and forth weeks visits. In the last session, perceptual assessment was performed and individuals’ opinions were collected. Perceptual findings were compared before and after the therapy.Results: After the program, mean score of perceptual assessment decreased. Mean score of every perceptual sign revealed significant difference before and after the therapy (p≤0.0001. «Loudness» had maximum score and coordination between speech and respiration indicated minimum score. All participants confirmed efficiency of the therapy.Conclusion: The vocal hygiene program improves all perceptual signs of voice although not equally. This deduction is confirmed by both clinician-based and patient-based assessments. As a result, vocal hygiene program is necessary for a comprehensive voice therapy but is not solely effective to resolve all voice problems.

  13. Perceptual Temporal Asymmetry Associated with Distinct ON and OFF Responses to Time-Varying Sounds with Rising versus Falling Intensity: A Magnetoencephalography Study

    Science.gov (United States)

    Zhang, Yang; Cheng, Bing; Koerner, Tess K.; Schlauch, Robert S.; Tanaka, Keita; Kawakatsu, Masaki; Nemoto, Iku; Imada, Toshiaki

    2016-01-01

    This magnetoencephalography (MEG) study investigated evoked ON and OFF responses to ramped and damped sounds in normal-hearing human adults. Two pairs of stimuli that differed in spectral complexity were used in a passive listening task; each pair contained identical acoustical properties except for the intensity envelope. Behavioral duration judgment was conducted in separate sessions, which replicated the perceptual bias in favour of the ramped sounds and the effect of spectral complexity on perceived duration asymmetry. MEG results showed similar cortical sites for the ON and OFF responses. There was a dominant ON response with stronger phase-locking factor (PLF) in the alpha (8–14 Hz) and theta (4–8 Hz) bands for the damped sounds. In contrast, the OFF response for sounds with rising intensity was associated with stronger PLF in the gamma band (30–70 Hz). Exploratory correlation analysis showed that the OFF response in the left auditory cortex was a good predictor of the perceived temporal asymmetry for the spectrally simpler pair. The results indicate distinct asymmetry in ON and OFF responses and neural oscillation patterns associated with the dynamic intensity changes, which provides important preliminary data for future studies to examine how the auditory system develops such an asymmetry as a function of age and learning experience and whether the absence of asymmetry or abnormal ON and OFF responses can be taken as a biomarker for certain neurological conditions associated with auditory processing deficits. PMID:27527227

  14. Deafness in cochlear and auditory nerve disorders.

    Science.gov (United States)

    Hopkins, Kathryn

    2015-01-01

    Sensorineural hearing loss is the most common type of hearing impairment worldwide. It arises as a consequence of damage to the cochlea or auditory nerve, and several structures are often affected simultaneously. There are many causes, including genetic mutations affecting the structures of the inner ear, and environmental insults such as noise, ototoxic substances, and hypoxia. The prevalence increases dramatically with age. Clinical diagnosis is most commonly accomplished by measuring detection thresholds and comparing these to normative values to determine the degree of hearing loss. In addition to causing insensitivity to weak sounds, sensorineural hearing loss has a number of adverse perceptual consequences, including loudness recruitment, poor perception of pitch and auditory space, and difficulty understanding speech, particularly in the presence of background noise. The condition is usually incurable; treatment focuses on restoring the audibility of sounds made inaudible by hearing loss using either hearing aids or cochlear implants.

  15. Perceptual Grouping via Untangling Gestalt Principles

    DEFF Research Database (Denmark)

    Qi, Yonggang; Guo, Jun; Li, Yi;

    2013-01-01

    Gestalt principles, a set of conjoining rules derived from hu- man visual studies, have been known to play an important role in computer vision. Many applications such as image segmentation, contour grouping and scene understanding of- ten rely on such rules to work. However, the problem of Gestalt...... the importance of Gestalt rules by solving a learning to rank problem, and formulate a multi-label graph-cuts algo- rithm to group image primitives while taking into account the learned Gestalt confliction. Our experiment results confirm the existence of Gestalt confliction in perceptual grouping and demonstrate...

  16. PERCEPTUAL HOLISTIC APPROACH IN TEACHING LEARNING OF ATHLETICS THROUGH GAMES / ENFOQUE HOLÍSTICO PERCEPTUAL EN LA ENSEÑANZA-APRENDIZAJE DEL ATLETISMO A TRAVÉS DEL JUEGO

    Directory of Open Access Journals (Sweden)

    Rolando Castro Marcelo

    2013-04-01

    Full Text Available The game as a teaching learning method of athletics in ages ranging from nine to eleven years in Las Tunas province brings about the movement development in school children who can show themselves in a conscious and spontaneous manner. It contributes to their interest and necessities satisfaction through the closed sport in a developing environment which allows to dead with the fundamental dimensions and links with the purpose of reaching the right levels in the formation, education and development of personality in life, here, it is where the talented ones emerge and became high performance athletes. Methodological, epistemological, axiological and critical element in the game declivity; sustained apron theoretical bases are integrated with the intention of permitting the holistic, historic, multifunctional, humanistic and the developing conceptual character. On this point, the unity of theoretical elements and the sport practice is revealed in correspondence with the individual characteristics and peculiarities of catch schoolchild. RESUMEN: El juego como método de enseñanza-aprendizaje del atletismo en las edades de nueve a once años en la provincia de Las Tunas, propicia el desarrollo de los movimientos del escolar, que se pueden manifestar en forma espontánea y consciente, lo que contribuye a la satisfacción por esa vía de sus necesidades e intereses a través del deporte elegido, en un ambiente desarrollador que permite abordar las dimensiones y eslabones fundamentales con el propósito de lograr los niveles deseados de educación, formación y desarrollo de la personalidad, que ha aporte las vías indispensables en su preparación para la vida, de donde emergen los que poseen talento para convertirse en atletas de alto rendimiento. En la actividad del juego se integraron los elementos metodológicos, axiológicos, epistemológicos y críticos, los cuales se sustentan sobre bases teóricas que permiten el carácter holístico, hist

  17. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  18. Interocular transfer of perceptual skills after sleep.

    Science.gov (United States)

    Deliens, Gaétane; Schmitz, Rémy; Peigneux, Philippe

    2014-01-24

    Several studies suggest that sleep improves perceptual skills in the visual texture discrimination task (TDT). Here we report that besides consolidation, sleep also generalizes the learned perceptual abilities to the untrained eye. Healthy volunteers (n = 32) were trained on the TDT, in which they had to discriminate between horizontal and vertical target textures briefly presented in the periphery of the visual field (left upper quadrant). After a 10-hr interval filled with either sleep or wakefulness, they were retested first on the trained eye in the trained quadrant and then on the untrained eye and quadrant. In line with prior findings, visual discrimination was globally higher after sleep than after wakefulness, as compared to performance levels at the end of training. Furthermore, discrimination performance was significantly improved only in the sleep condition for the untrained eye in the same quadrant, but also showed a trend to generalize to the untrained eye and untrained quadrant. Our results suggest that sleep-dependent perceptual skills continue developing at a later visual-process stage than the V1 area, where learning is not monocular anymore.

  19. Sensory Underdetermination and Perceptual Constancy

    OpenAIRE

    Crockett, Damon

    2015-01-01

    This project has as its focus a pair of related phenomena central to human perception. The first is the underdetermination of perceptual content by sensor input, and the second is a class of mechanisms designed to transform impoverished sensor input into useful perceptual content, mechanisms commonly called `perceptual constancies'. The goal of this project is to discuss a particularly difficult form of sensory underdetermination I call \\textit{stacking}, a \\textit{co-local} sensory conflatio...

  20. Representation of Reward Feedback in Primate Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Michael eBrosch

    2011-02-01

    Full Text Available It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1 the reward expectancy for each trial, (2 the reward size received and (3 the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  1. Representation of reward feedback in primate auditory cortex.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  2. Application of Perceptual Filtering Models to Noisy Speech Signals Enhancement

    Directory of Open Access Journals (Sweden)

    Novlene Zoghlami

    2012-01-01

    Full Text Available This paper describes a new speech enhancement approach using perceptually based noise reduction. The proposed approach is based on the application of two perceptual filtering models to noisy speech signals: the gammatone and the gammachirp filter banks with nonlinear resolution according to the equivalent rectangular bandwidth (ERB scale. The perceptual filtering gives a number of subbands that are individually spectral weighted and modified according to two different noise suppression rules. The importance of an accurate noise estimate is related to the reduction of the musical noise artifacts in the processed speech that appears after classic subtractive process. In this context, we use continuous noise estimation algorithms. The performance of the proposed approach is evaluated on speech signals corrupted by real-world noises. Using objective tests based on the perceptual quality PESQ score and the quality rating of signal distortion (SIG, noise distortion (BAK and overall quality (OVRL, and subjective test based on the quality rating of automatic speech recognition (ASR, we demonstrate that our speech enhancement approach using filter banks modeling the human auditory system outperforms the conventional spectral modification algorithms to improve quality and intelligibility of the enhanced speech signal.

  3. Dichotomy and perceptual distortions in absolute pitch ability.

    Science.gov (United States)

    Athos, E Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-09-11

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a "perceptual magnet" centered at the note "A." In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the "sharp" direction. These findings speak both to the process of acquisition of AP and to its stability.

  4. Perceptual Audio Hashing Functions

    Directory of Open Access Journals (Sweden)

    Emin Anarım

    2005-07-01

    Full Text Available Perceptual hash functions provide a tool for fast and reliable identification of content. We present new audio hash functions based on summarization of the time-frequency spectral characteristics of an audio document. The proposed hash functions are based on the periodicity series of the fundamental frequency and on singular-value description of the cepstral frequencies. They are found, on one hand, to perform very satisfactorily in identification and verification tests, and on the other hand, to be very resilient to a large variety of attacks. Moreover, we address the issue of security of hashes and propose a keying technique, and thereby a key-dependent hash function.

  5. Grasping the sound: Auditory pitch influences size processing in motor planning.

    Science.gov (United States)

    Rinaldi, Luca; Lega, Carlotta; Cattaneo, Zaira; Girelli, Luisa; Bernardi, Nicolò Francesco

    2016-01-01

    Growing evidence shows that individuals consistently match auditory pitch with visual size. For instance, high-pitched sounds are perceptually associated with smaller visual stimuli, whereas low-pitched sounds with larger ones. The present study explores whether this crossmodal correspondence, reported so far for perceptual processing, also modulates motor planning. To address this issue, we carried out a series of kinematic experiments to verify whether actions implying size processing are affected by auditory pitch. Experiment 1 showed that grasping movements toward small/large objects were initiated faster in response to high/low pitches, respectively, thus extending previous findings in the literature to more complex motor behavior. Importantly, auditory pitch influenced the relative scaling of the hand preshaping, with high pitches associated with smaller grip aperture compared with low pitches. Notably, no effect of auditory pitch was found in case of pointing movements (no grasp implied, Experiment 2), as well as when auditory pitch was irrelevant to the programming of the grip aperture, that is, in case of grasping an object of uniform size (Experiment 3). Finally, auditory pitch influenced also symbolic manual gestures expressing "small" and "large" concepts (Experiment 4). In sum, our results are novel in revealing the impact of auditory pitch on motor planning when size processing is required, and shed light on the role of auditory information in driving actions. (PsycINFO Database Record PMID:26280267

  6. Effects of asymmetric cultural experiences on the auditory pathway: evidence from music.

    Science.gov (United States)

    Wong, Patrick C M; Perrachione, Tyler K; Margulis, Elizabeth Hellmuth

    2009-07-01

    Cultural experiences come in many different forms, such as immersion in a particular linguistic community, exposure to faces of people with different racial backgrounds, or repeated encounters with music of a particular tradition. In most circumstances, these cultural experiences are asymmetric, meaning one type of experience occurs more frequently than other types (e.g., a person raised in India will likely encounter the Indian todi scale more so than a Westerner). In this paper, we will discuss recent findings from our laboratories that reveal the impact of short- and long-term asymmetric musical experiences on how the nervous system responds to complex sounds. We will discuss experiments examining how musical experience may facilitate the learning of a tone language, how musicians develop neural circuitries that are sensitive to musical melodies played on their instrument of expertise, and how even everyday listeners who have little formal training are particularly sensitive to music of their own culture(s). An understanding of these cultural asymmetries is useful in formulating a more comprehensive model of auditory perceptual expertise that considers how experiences shape auditory skill levels. Such a model has the potential to aid in the development of rehabilitation programs for the efficacious treatment of neurologic impairments. PMID:19673772

  7. Mechanisms of spatial and non-spatial auditory selective attention

    OpenAIRE

    Paltoglou, Aspasia Eleni

    2009-01-01

    Selective attention is a crucial function that encompasses all perceptual modalities and which enables us to focus on the behaviorally relevant information and ignore the rest. The main goal of the thesis is to test well-established hypotheses about the mechanisms of visual selective attention in the auditory domain using behavioral and neuroimaging methods. Two fMRI studies (Experiments 1 and 2) test the hypothesis of feature-specific attentional enhancement. This hypothesis states that ...

  8. Auditory and Vestibular Issues Related to Human Spaceflight

    Science.gov (United States)

    Danielson, Richard W.; Wood, Scott J.

    2009-01-01

    Human spaceflight provides unique opportunities to study human vestibular and auditory systems. This session will discuss 1) vestibular adaptive processes reflected by pronounced perceptual and motor coordination problems during, and after, space missions; 2) vestibular diagnostic and rehabilitative techniques (used to promote recovery after living in altered gravity environments) that may be relevant to treatment of vestibular disorders on earth; and 3) unique acoustical challenges to hearing loss prevention and crew performance during spaceflight missions.

  9. Auditory Dysfunction and Its Communicative Impact in the Classroom.

    Science.gov (United States)

    Friedrich, Brad W.

    1982-01-01

    The origins and nature of auditory dysfunction in school age children and the role of the audiologist in the evaluation of the learning disabled child are reviewed. Specific structures and mechanisms responsible for the reception and perception of auditory signals are specified. (Author/SEW)

  10. Movement sonification: Effects on motor learning beyond rhythmic adjustments

    Directory of Open Access Journals (Sweden)

    Alfred Oliver Effenberg

    2016-05-01

    Full Text Available Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities, but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicate an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation there is nearly no evidence about enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap movement sonification is used here in applied research on motor learning in sports.Based on the current knowledge on the multimodal organization of the perceptual system we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error feedback in motor learning settings we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting participants were asked to

  11. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    Science.gov (United States)

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  12. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    Science.gov (United States)

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  13. Outline for Remediation of Problem Areas for Children with Learning Disabilities. Revised. = Bosquejo para la Correccion de Areas Problematicas para Ninos con Impedimientos del Aprendizaje.

    Science.gov (United States)

    Bornstein, Joan L.

    The booklet outlines ways to help children with learning disabilities in specific subject areas. Characteristic behavior and remedial exercises are listed for seven areas of auditory problems: auditory reception, auditory association, auditory discrimination, auditory figure ground, auditory closure and sound blending, auditory memory, and grammar…

  14. Auditory imagery: empirical findings.

    Science.gov (United States)

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  15. A Psychophysical Imaging Method Evidencing Auditory Cue Extraction during Speech Perception: A Group Analysis of Auditory Classification Images

    OpenAIRE

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique t...

  16. Perceptual basis for reactive teleoperation.

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. S.; Ewing, T. F.; Boyle, J. M.; Yule, T. J.

    2001-08-28

    To enhance task performance in partially structured environment, enhancement of teleoperation was proposed by introducing autonomous behaviors. Such autonomy is implemented based on reactive robotic architecture, where reactive motor agents that directly couples sensory inputs and motor actions become the building blocks. To this end, presented in this paper is a perceptual basis for the motor agents. The perceptual basis consists of perceptual agents that extracts environmental information from a structured light vision system and provide action oriented perception for the corresponding motor agents. Rather than performing general scene reconstruction, a perceptual agent directly provides the motion reference for the motor behavior. Various sensory mechanisms--sensor fission, fusion, and fashion--becomes basic building blocks of the perception process. Since perception is a process deeply intertwined with the motor actions, active perception may also incorporate motor behaviors as an integral perceptual process.

  17. What we know about what we have never heard: evidence from perceptual illusions.

    Science.gov (United States)

    Berent, Iris; Steriade, Donca; Lennertz, Tracy; Vaknin, Vered

    2007-09-01

    Are speakers equipped with preferences concerning grammatical structures that are absent in their language? We examine this question by investigating the sensitivity of English speakers to the sonority of onset clusters. Linguistic research suggests that certain onset clusters are universally preferred (e.g., bd>lb). We demonstrate that such preferences modulate the perception of unattested onsets by English speakers: Monosyllabic auditory nonwords with onsets that are universally dispreferred (e.g., lbif) are more likely to be classified as disyllabic and misperceived as identical to their disyllabic counterparts (e.g., lebif) compared to onsets that are relatively preferred across languages (e.g., bdif). Consequently, dispreferred onsets benefit from priming by their epenthetic counterpart (e.g., lebif-lbif) as much as they benefit from identity priming (e.g., lbif-lbif). A similar pattern of misperception (e.g., lbif-->lebif) was observed among speakers of Russian, where clusters of this type occur. But unlike English speakers, Russian speakers perceived these clusters accurately on most trials, suggesting that the perceptual illusions of English speakers are partly due to their linguistic experience, rather than phonetic confusion alone. Further evidence against a purely phonetic explanation for our results is offered by the capacity of English speakers to perceive such onsets accurately under conditions that encourage precise phonetic encoding. The perceptual illusions of English speakers are also irreducible to several statistical properties of the English lexicon. The systematic misperception of universally dispreferred onsets might reflect their ill-formedness in the grammars of all speakers, irrespective of linguistic experience. Such universal grammatical preferences implicate constraints on language learning. PMID:16934244

  18. Cross-Domain Statistical-Sequential Dependencies Are Difficult to Learn.

    Science.gov (United States)

    Walk, Anne M; Conway, Christopher M

    2016-01-01

    Recent studies have demonstrated participants' ability to learn cross-modal associations during statistical learning tasks. However, these studies are all similar in that the cross-modal associations to be learned occur simultaneously, rather than sequentially. In addition, the majority of these studies focused on learning across sensory modalities but not across perceptual categories. To test both cross-modal and cross-categorical learning of sequential dependencies, we used an artificial grammar learning task consisting of a serial stream of auditory and/or visual stimuli containing both within- and cross-domain dependencies. Experiment 1 examined within-modal and cross-modal learning across two sensory modalities (audition and vision). Experiment 2 investigated within-categorical and cross-categorical learning across two perceptual categories within the same sensory modality (e.g., shape and color; tones and non-words). Our results indicated that individuals demonstrated learning of the within-modal and within-categorical but not the cross-modal or cross-categorical dependencies. These results stand in contrast to the previous demonstrations of cross-modal statistical learning, and highlight the presence of modality constraints that limit the effectiveness of learning in a multimodal environment. PMID:26941696

  19. Cross-Domain Statistical-Sequential Dependencies Are Difficult To Learn

    Directory of Open Access Journals (Sweden)

    Anne McClure Walk

    2016-02-01

    Full Text Available Recent studies have demonstrated participants’ ability to learn cross-modal associations during statistical learning tasks. However, these studies are all similar in that the cross-modal associations to be learned occur simultaneously, rather than sequentially. In addition, the majority of these studies focused on learning across sensory modalities but not across perceptual categories. To test both cross-modal and cross-categorical learning of sequential dependencies, we used an artificial grammar learning task consisting of a serial stream of auditory and/or visual stimuli containing both within- and cross-domain dependencies. Experiment 1 examined within-modal and cross-modal learning across two sensory modalities (audition and vision. Experiment 2 investigated within-categorical and cross-categorical learning across two perceptual categories within the same sensory modality (e.g. shape and color; tones and non-words. Our results indicated that individuals demonstrated learning of the within-modal and within-categorical but not the cross-modal or cross-categorical dependencies. These results stand in contrast to the previous demonstrations of cross-modal statistical learning, and highlight the presence of modality constraints that limit the effectiveness of learning in a multimodal environment.

  20. Effects of Prenatal Sensory-Evoked Arousal on Postnatal Behavior and Perceptual Responsiveness in Bobwhite Quail (Colinus virginianus)

    OpenAIRE

    Reynolds, Gregory Durelle

    2002-01-01

    Prenatal sensory stimulation can have facilitative or interfering effects upon subsequent perceptual learning and development in bobwhite quail. Exposure to moderate amounts of unimodal prenatal sensory stimulation has been shown to accelerate early intersensory responsiveness, while exposure to concurrent prenatal bimodal sensory stimulation has been shown to interfere with perceptual learning and development. An immediate mechanism that may underlie this developmental intersensory interfe...

  1. Auditory feedback and memory for music performance: sound evidence for an encoding effect.

    Science.gov (United States)

    Finney, Steven A; Palmer, Caroline

    2003-01-01

    Research on the effects of context and task on learning and memory has included approaches that emphasize processes during learning (e.g., Craik & Tulving, 1975) and approaches that emphasize a match of conditions during learning with conditions during a later test of memory (e.g., Morris, Bransford, & Franks, 1977; Proteau, 1992; Tulving & Thomson, 1973). We investigated the effects of auditory context on learning and retrieval in three experiments on memorized music performance (a form of serial recall). Auditory feedback (presence or absence) was manipulated while pianists learned musical pieces from notation and when they later played the pieces from memory. Auditory feedback during learning significantly improved later recall. However, auditory feedback at test did not significantly affect recall, nor was there an interaction between conditions at learning and test. Auditory feedback in music performance appears to be a contextual factor that affects learning but is relatively independent of retrieval conditions. PMID:12699143

  2. Neural coding and perception of pitch in the normal and impaired human auditory system

    DEFF Research Database (Denmark)

    Santurette, Sébastien

    2011-01-01

    Pitch is an important attribute of hearing that allows us to perceive the musical quality of sounds. Besides music perception, pitch contributes to speech communication, auditory grouping, and perceptual segregation of sound sources. In this work, several aspects of pitch perception in humans were...... that the use of spectral cues remained plausible. Simulations of auditory-nerve representations of the complex tones further suggested that a spectrotemporal mechanism combining precise timing information across auditory channels might best account for the behavioral data. Overall, this work provides insights...

  3. Auditory function in individuals within Leber's hereditary optic neuropathy pedigrees.

    Science.gov (United States)

    Rance, Gary; Kearns, Lisa S; Tan, Johanna; Gravina, Anthony; Rosenfeld, Lisa; Henley, Lauren; Carew, Peter; Graydon, Kelley; O'Hare, Fleur; Mackey, David A

    2012-03-01

    The aims of this study are to investigate whether auditory dysfunction is part of the spectrum of neurological abnormalities associated with Leber's hereditary optic neuropathy (LHON) and to determine the perceptual consequences of auditory neuropathy (AN) in affected listeners. Forty-eight subjects confirmed by genetic testing as having one of four mitochondrial mutations associated with LHON (mt11778, mtDNA14484, mtDNA14482 and mtDNA3460) participated. Thirty-two of these had lost vision, and 16 were asymptomatic at the point of data collection. While the majority of individuals showed normal sound detection, >25% (of both symptomatic and asymptomatic participants) showed electrophysiological evidence of AN with either absent or severely delayed auditory brainstem potentials. Abnormalities were observed for each of the mutations, but subjects with the mtDNA11778 type were the most affected. Auditory perception was also abnormal in both symptomatic and asymptomatic subjects, with >20% of cases showing impaired detection of auditory temporal (timing) cues and >30% showing abnormal speech perception both in quiet and in the presence of background noise. The findings of this study indicate that a relatively high proportion of individuals with the LHON genetic profile may suffer functional hearing difficulties due to neural abnormality in the central auditory pathways.

  4. A Study on Relationship Between Perceptual Learning Styles and Reading Strategies of English Learners in Vocational Colleges%高职英语学习者感知学习风格与阅读策略的关系研究

    Institute of Scientific and Technical Information of China (English)

    陈艳

    2012-01-01

    The study investigates the perceptual learning style preferences and reading strategies of 188 non-English majors from vocational college with the questionnaire of perceptual learning style preferences adapted from PLSP(Joy Reid 1984) and reading strategies questionnaires adapted from SILL(Oxford 1990).Results show that individual and kinesthetic or tactile styles are their major perceptual learning styles while group style is the minor one;strategies of compensation,cognitive and memory are the most frequently used reading strategies while metacognitive and social strategies are the least used.The results suggest that there are significant correlations between perceptual learning styles and reading strategies,and that each style has corresponding strategies and affects the selection and use of strategies.%文章通过Joy Reid(1984)的感知学习风格问卷(PLSP)和基于Oxford(1990)语言学习策略问卷(SILL)改编的阅读策略问卷对非英语专业188名高职英语学习者的感知学习风格和阅读策略进行调查,并分析受试群体的感知风格与阅读策略的特点及两者的相关性。研究结果显示:高职学习者最倾向使用独立和动手、体验风格而少用小组风格,最常用补偿、认知和记忆策略而少用元认知和社会策略;感知风格与阅读策略多处显著相关,每种风格都有其对应的策略,风格影响策略的选择和使用。

  5. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Directory of Open Access Journals (Sweden)

    Andrée-Anne S Meilleur

    Full Text Available BACKGROUND: Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination and mid-level (e.g., pattern matching tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. METHODS: We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ and Raven Progressive Matrices (RPM. We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. RESULTS: In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. CONCLUSIONS: Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor. Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor, which may

  6. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  7. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  8. Studying Effects of Transcranial Alternating Current Stimulation on Hearing and Auditory Scene Analysis

    NARCIS (Netherlands)

    Riecke, Lars

    2016-01-01

    Recent studies have shown that perceptual detection of near-threshold auditory events may depend on the relative timing of the event and ongoing brain oscillations. Furthermore, transcranial alternating current stimulation (tACS), a non-invasive and silent brain stimulation technique, can entrain co

  9. Auditory Processing Disorder in Children with Reading Disabilities: Effect of Audiovisual Training

    Science.gov (United States)

    Veuillet, Evelyne; Magnan, Annie; Ecalle, Jean; Thai-Van, Hung; Collet, Lionel

    2007-01-01

    Reading disability is associated with phonological problems which might originate in auditory processing disorders. The aim of the present study was 2-fold: first, the perceptual skills of average-reading children and children with dyslexia were compared in a categorical perception task assessing the processing of a phonemic contrast based on…

  10. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    Science.gov (United States)

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  11. The Goldilocks Effect in Infant Auditory Attention

    Science.gov (United States)

    Kidd, Celeste; Piantadosi, Steven T.; Aslin, Richard N.

    2014-01-01

    Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, yet capacity limits on their cognitive resources restrict the quantity that they can encode. Previous research has established that infants can attend to only a subset of available acoustic input. Yet few previous studies have directly examined infant…

  12. Reading adn Auditory-Visual Equivalences

    Science.gov (United States)

    Sidman, Murray

    1971-01-01

    A retarded boy, unable to read orally or with comprehension, was taught to match spoken to printed words and was then capable of reading comprehension (matching printed words to picture) and oral reading (naming printed words aloud), demonstrating that certain learned auditory-visual equivalences are sufficient prerequisites for reading…

  13. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  14. Through the eyes of an expert: Role and development of perceptual skills

    NARCIS (Netherlands)

    Jarodzka, Halszka

    2011-01-01

    Jarodzka, H. (2010, 11 November). Through the eyes of an expert: Role and development of perceptual skills. Presentation at the Learning & Cognition meeting, Heerlen, The Netherlands: Open University of the Netherlands.

  15. Where's Waldo? How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2014-06-01

    Full Text Available The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where's Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex inferotemporal cortex, prefrontal cortex, amygdala, basal ganglia, and superior colliculus.

  16. Perceptual aspects of singing.

    Science.gov (United States)

    Sundberg, J

    1994-06-01

    The relations between acoustic and perceived characteristics of vowel sounds are demonstrated with respect to timbre, loudness, pitch, and expressive time patterns. The conditions for perceiving an ensemble of sine tones as one tone or several tones are reviewed. There are two aspects of timbre of voice sounds: vowel quality and voice quality. Although vowel quality depends mainly on the frequencies of the lowest two formants. In particular, the center frequency of the so-called singer's formant seems perceptually relevant. Vocal loudness, generally assumed to correspond closely to the sound pressure level, depends rather on the amplitude balance between the lower and the higher spectrum partials. The perceived pitch corresponds to the fundamental frequency, or for vibrato tones, the mean of this frequency. In rapid passages, such as coloratura singing, special patterns are used. Pitch and duration differences are categorically perceived in music. This means that small variations in tuning or duration do not affect the musical interval and the note value perceived. Categorical perception is used extensively in music performance for the purpose of musical expression because without violating the score, the singer may sharpen or flatten and lengthen or shorten the tones, thereby creating musical expression. PMID:8061767

  17. Comparison of curative effects of visual perceptual learning and traditional treatment for the children under 8 years with astigmatism amblyopia with rule and astigmatism amblyopia against rule%8岁以下顺、逆规散光性弱视儿童视感知疗法与传统疗法疗效比较

    Institute of Scientific and Technical Information of China (English)

    孔旻; 刘伟民; 林泉; 赵武校

    2011-01-01

    目的:比较8岁以下患儿视感知学习疗法(perceptual learning)与传统疗法治疗顺、逆规散光性弱视的疗效.方法:将252例(504眼)8岁以下顺、逆规散光性弱视患儿,分别行视感知学习(154例,308眼)和传统疗法(98例,196眼)治疗,2年后对结果进行统计学分析.结果:8岁以下的顺、逆规散光性弱视患儿视感知学习疗法组的总有效率均高于传统疗法组,组间比较差异均有统计学意义(P<0.05).结论:8岁以下的顺、逆规散光性弱视患者在视感知学习疗法中的总有效率高于其在传统疗法的总有效率.%Objective: To compare the curative effects of visual perceptual learning and traditional treatment for the children under 8 years with astigmatism amblyopia with rule and astigmatism amblyopia against rule. Methods: 252 children (504 eyes) under 8 years with astigmatism amblyopia with rule and astigmatism amblyopia against rule were divided into visual perceptual learning group (154 children, 308 eyes) and traditional treatment group (98 children, 196 eyes), then the results were analyzed statistically after two years. Results; The total effective rate in visual perceptual learning group was significantly higher than that in traditional treatment group (P < 0. 05) . Conclusion;The total effective rate in the children under 8 years with astigmatism amblyopia with rule and astigmatism amblyopia against rule treated with visual perceptual learning is significantly higher than that treated with traditional treatment

  18. What is automatized during perceptual categorization?

    Science.gov (United States)

    Roeder, Jessica L; Ashby, F Gregory

    2016-09-01

    An experiment is described that tested whether stimulus-response associations or an abstract rule are automatized during extensive practice at perceptual categorization. Twenty-seven participants each completed 12,300 trials of perceptual categorization, either on rule-based (RB) categories that could be learned explicitly or information-integration (II) categories that required procedural learning. Each participant practiced predominantly on a primary category structure, but every third session they switched to a secondary structure that used the same stimuli and responses. Half the stimuli retained their same response on the primary and secondary categories (the congruent stimuli) and half switched responses (the incongruent stimuli). Several results stood out. First, performance on the primary categories met the standard criteria of automaticity by the end of training. Second, for the primary categories in the RB condition, accuracy and response time (RT) were identical on congruent and incongruent stimuli. In contrast, for the primary II categories, accuracy was higher and RT was lower for congruent than for incongruent stimuli. These results are consistent with the hypothesis that rules are automatized in RB tasks, whereas stimulus-response associations are automatized in II tasks. A cognitive neuroscience theory is proposed that accounts for these results. PMID:27232521

  19. Perceptual anchoring in preschool children: not adultlike, but there.

    Directory of Open Access Journals (Sweden)

    Karen Banai

    Full Text Available BACKGROUND: Recent studies suggest that human auditory perception follows a prolonged developmental trajectory, sometimes continuing well into adolescence. Whereas both sensory and cognitive accounts have been proposed, the development of the ability to base current perceptual decisions on prior information, an ability that strongly benefits adult perception, has not been directly explored. Here we ask whether the auditory frequency discrimination of preschool children also improves when given the opportunity to use previously presented standard stimuli as perceptual anchors, and whether the magnitude of this anchoring effect undergoes developmental changes. METHODOLOGY/PRINCIPAL FINDINGS: Frequency discrimination was tested using two adaptive same/different protocols. In one protocol (with-reference, a repeated 1-kHz standard tone was presented repeatedly across trials. In the other (no-reference, no such repetitions occurred. Verbal memory and early reading skills were also evaluated to determine if the pattern of correlations between frequency discrimination, memory and literacy is similar to that previously reported in older children and adults. Preschool children were significantly more sensitive in the with-reference than in the no-reference condition, but the magnitude of this anchoring effect was smaller than that observed in adults. The pattern of correlations among discrimination thresholds, memory and literacy replicated previous reports in older children. CONCLUSIONS/SIGNIFICANCE: The processes allowing the use of context to form perceptual anchors are already functional among preschool children, albeit to a lesser extent than in adults. Nevertheless, immature anchoring cannot fully account for the poorer frequency discrimination abilities of young children. That anchoring is present among the majority of typically developing preschool children suggests that the anchoring deficits observed among individuals with dyslexia represent a

  20. Membrane potential dynamics of populations of cortical neurons during auditory streaming.

    Science.gov (United States)

    Farley, Brandon J; Noreña, Arnaud J

    2015-10-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts.

  1. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    Science.gov (United States)

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. PMID:26571051

  2. Incidental learning of sound categories is impaired in developmental dyslexia.

    Science.gov (United States)

    Gabay, Yafit; Holt, Lori L

    2015-12-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed.

  3. Action video game play facilitates the development of better perceptual templates.

    Science.gov (United States)

    Bejjanki, Vikranth R; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-11-25

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play.

  4. Action video game play facilitates the development of better perceptual templates.

    Science.gov (United States)

    Bejjanki, Vikranth R; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-11-25

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play. PMID:25385590

  5. Neural mechanisms underlying the induction and relief of perceptual curiosity.

    Science.gov (United States)

    Jepma, Marieke; Verdonschot, Rinus G; van Steenbergen, Henk; Rombouts, Serge A R B; Nieuwenhuis, Sander

    2012-01-01

    Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI) to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (1) the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex (ACC), brain regions sensitive to conflict and arousal; (2) the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (3) the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  6. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  7. Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs.

    Directory of Open Access Journals (Sweden)

    Michiel van Elk

    Full Text Available Previous studies have shown that one's prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face/house categorization task; Experiment 1 or a visual attention task (i.e. the global/local processing task; Experiment 2. In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical 'global-to-local' interference effect, whereas believers in conspiracy theories were characterized by a stronger 'local-to-global interference effect'. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes.

  8. Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs.

    Science.gov (United States)

    van Elk, Michiel

    2015-01-01

    Previous studies have shown that one's prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face/house categorization task; Experiment 1) or a visual attention task (i.e. the global/local processing task; Experiment 2). In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical 'global-to-local' interference effect, whereas believers in conspiracy theories were characterized by a stronger 'local-to-global interference effect'. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes. PMID:26114604

  9. The perceptual influence of the cabin acoustics on the reproduced sound of a car audio system

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Sakari, Tervo;

    2015-01-01

    A significant element of audio evaluation experiments is the availability of verbal descriptors that can accurately characterize the perceived auditory events. In terms of room acoustics, understanding the perceptual effects of the physical properties of the space would enable a better understand......A significant element of audio evaluation experiments is the availability of verbal descriptors that can accurately characterize the perceived auditory events. In terms of room acoustics, understanding the perceptual effects of the physical properties of the space would enable a better...... understanding of its acoustical qualities, and stipulate perceptually relevant ways to compensate for the subsequent degradations. In contrast to concert halls, perceptual evaluation of everyday-sized and less reverberant spaces has been a challenging task, and literature on the subject is limited....... In this study, a sensory evaluation methodology [Lokki et al., J. Acoust. Soc. Am. 132, 3148–2161 (2012)] was employed to identify the most relevant attributes that characterize the influence of the physical properties of a car cabin on the reproduced sound field. A series of in-situ measurements of a high...

  10. Training-induced plasticity of auditory localization in adult mammals.

    Directory of Open Access Journals (Sweden)

    Oliver Kacelnik

    2006-04-01

    Full Text Available Accurate auditory localization relies on neural computations based on spatial cues present in the sound waves at each ear. The values of these cues depend on the size, shape, and separation of the two ears and can therefore vary from one individual to another. As with other perceptual skills, the neural circuits involved in spatial hearing are shaped by experience during development and retain some capacity for plasticity in later life. However, the factors that enable and promote plasticity of auditory localization in the adult brain are unknown. Here we show that mature ferrets can rapidly relearn to localize sounds after having their spatial cues altered by reversibly occluding one ear, but only if they are trained to use these cues in a behaviorally relevant task, with greater and more rapid improvement occurring with more frequent training. We also found that auditory adaptation is possible in the absence of vision or error feedback. Finally, we show that this process involves a shift in sensitivity away from the abnormal auditory spatial cues to other cues that are less affected by the earplug. The mature auditory system is therefore capable of adapting to abnormal spatial information by reweighting different localization cues. These results suggest that training should facilitate acclimatization to hearing aids in the hearing impaired.

  11. Speech identification and cortical potentials in individuals with auditory neuropathy

    Directory of Open Access Journals (Sweden)

    Vanaja CS

    2008-03-01

    Full Text Available Abstract Background Present study investigated the relationship between speech identification scores in quiet and parameters of cortical potentials (latency of P1, N1, and P2; and amplitude of N1/P2 in individuals with auditory neuropathy. Methods Ten individuals with auditory neuropathy (five males and five females and ten individuals with normal hearing in the age range of 12 to 39 yr participated in the study. Speech identification ability was assessed for bi-syllabic words and cortical potentials were recorded for click stimuli. Results Results revealed that in individuals with auditory neuropathy, speech identification scores were significantly poorer than that of individuals with normal hearing. Individuals with auditory neuropathy were further classified into two groups, Good Performers and Poor Performers based on their speech identification scores. It was observed that the mean amplitude of N1/P2 of Poor Performers was significantly lower than that of Good Performers and those with normal hearing. There was no significant effect of group on the latency of the peaks. Speech identification scores showed a good correlation with the amplitude of cortical potentials (N1/P2 complex but did not show a significant correlation with the latency of cortical potentials. Conclusion Results of the present study suggests that measuring the cortical potentials may offer a means for predicting perceptual skills in individuals with auditory neuropathy.

  12. Avaliação das habilidades auditivas em crianças com alterações de aprendizagem Evaluating auditory abilities in children with learning disabilities

    Directory of Open Access Journals (Sweden)

    Tatiane Maria Pelitero

    2010-08-01

    Full Text Available OBJETIVO: comparar o desempenho na Avaliação Simplificada do Processamento Auditivo (ASPA e no Pediatric Speech Intelligibility Test (PSI, de crianças com alteração de Aprendizagem da Leitura e Escrita e sem este tipo de alteração. MÉTODOS: participaram da pesquisa 28 crianças na faixa etária de 8 a 12 anos, do sexo masculino e feminino. Os participantes foram submetidos ao Teste de Desempenho Escolar (TDE para a categorização dos grupos de estudo e controle, e, para avaliação das habilidades auditivas foram aplicados a ASPA e o Teste PSI. RESULTADOS: não foi observada associação estatisticamente significante entre o desempenho nos testes de Processamento Auditivo (PA e o grupo com dificuldades de aprendizagem, apesar de ter sido verificada maior frequência de alterações no grupo de estudo em relação ao grupo controle, em todos os testes. Na ASPA, o teste em que se observou maior número de alterações foi o Teste de Memória Sequencial Verbal, contudo, o Teste de Memória Sequencial Não-verbal foi o que mostrou maior diferença entre os grupos. CONCLUSÃO: Não foram encontradas diferenças estatisticamente significantes no desempenho na Avaliação Simplificada do Processamento Auditivo (ASPA e no Pediatric Speech Intelligibility Test (PSI, das crianças com alteração de Aprendizagem da Leitura e Escrita e sem alteração.PURPOSE: to compare performance of children with or without alterations in reading and writing skills acquisition in the Simplified Auditory Processing Test (SAPT and the Pediatric Speech Intelligibility (PSI tests. METHODS: twenty-eight female and male children aged 8-12 took part in this study. The subjects did the Academic Achievement Test (TDE in order to be placed in the study group or control group and, for the assessment of hearing abilities, they took the SAPT and the PSI tests. RESULTS: no statistically significant association was found between performances in tests for hearing processing

  13. Music perception and cognition following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Tramo, M J; Bharucha, J J; Musiek, F E

    1990-01-01

    We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250-8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies

  14. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    Directory of Open Access Journals (Sweden)

    Brian Odegaard

    2015-12-01

    Full Text Available Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1 if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors, and (2 whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli. Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only

  15. Auditory Responses of Infants

    Science.gov (United States)

    Watrous, Betty Springer; And Others

    1975-01-01

    Forty infants, 3- to 12-months-old, participated in a study designed to differentiate the auditory response characteristics of normally developing infants in the age ranges 3 - 5 months, 6 - 8 months, and 9 - 12 months. (Author)

  16. Practiced musical style shapes auditory skills.

    Science.gov (United States)

    Vuust, Peter; Brattico, Elvira; Seppänen, Miia; Näätänen, Risto; Tervaniemi, Mari

    2012-04-01

    Musicians' processing of sounds depends highly on instrument, performance practice, and level of expertise. Here, we measured the mismatch negativity (MMN), a preattentive brain response, to six types of musical feature change in musicians playing three distinct styles of music (classical, jazz, and rock/pop) and in nonmusicians using a novel, fast, and musical sounding multifeature MMN paradigm. We found MMN to all six deviants, showing that MMN paradigms can be adapted to resemble a musical context. Furthermore, we found that jazz musicians had larger MMN amplitude than all other experimental groups across all sound features, indicating greater overall sensitivity to auditory outliers. Furthermore, we observed a tendency toward shorter latency of the MMN to all feature changes in jazz musicians compared to band musicians. These findings indicate that the characteristics of the style of music played by musicians influence their perceptual skills and the brain processing of sound features embedded in music. PMID:22524351

  17. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Directory of Open Access Journals (Sweden)

    Vincent Isnard

    Full Text Available Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs. This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  18. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Science.gov (United States)

    Isnard, Vincent; Taffou, Marine; Viaud-Delmon, Isabelle; Suied, Clara

    2016-01-01

    Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second) could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs). This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  19. Compression of auditory space during forward self-motion.

    Directory of Open Access Journals (Sweden)

    Wataru Teramoto

    Full Text Available BACKGROUND: Spatial inputs from the auditory periphery can be changed with movements of the head or whole body relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these movements modulate auditory perceptual processing. Here, we investigate the effect of the linear acceleration on auditory space representation. METHODOLOGY/PRINCIPAL FINDINGS: Participants were passively transported forward/backward at constant accelerations using a robotic wheelchair. An array of loudspeakers was aligned parallel to the motion direction along a wall to the right of the listener. A short noise burst was presented during the self-motion from one of the loudspeakers when the listener's physical coronal plane reached the location of one of the speakers (null point. In Experiments 1 and 2, the participants indicated which direction the sound was presented, forward or backward relative to their subjective coronal plane. The results showed that the sound position aligned with the subjective coronal plane was displaced ahead of the null point only during forward self-motion and that the magnitude of the displacement increased with increasing the acceleration. Experiment 3 investigated the structure of the auditory space in the traveling direction during forward self-motion. The sounds were presented at various distances from the null point. The participants indicated the perceived sound location by pointing a rod. All the sounds that were actually located in the traveling direction were perceived as being biased towards the null point. CONCLUSIONS/SIGNIFICANCE: These results suggest a distortion of the auditory space in the direction of movement during forward self-motion. The underlying mechanism might involve anticipatory spatial

  20. [Central auditory prosthesis].

    Science.gov (United States)

    Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M

    2009-06-01

    Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084

  1. Implicit Recognition Based on Lateralized Perceptual Fluency

    Directory of Open Access Journals (Sweden)

    Iliana M. Vargas

    2012-02-01

    Full Text Available In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this “implicit recognition” results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.

  2. Effects of aging on peripheral and central auditory processing in rats.

    Science.gov (United States)

    Costa, Margarida; Lepore, Franco; Prévost, François; Guillemot, Jean-Paul

    2016-08-01

    Hearing loss is a hallmark sign in the elderly population. Decline in auditory perception provokes deficits in the ability to localize sound sources and reduces speech perception, particularly in noise. In addition to a loss of peripheral hearing sensitivity, changes in more complex central structures have also been demonstrated. Related to these, this study examines the auditory directional maps in the deep layers of the superior colliculus of the rat. Hence, anesthetized Sprague-Dawley adult (10 months) and aged (22 months) rats underwent distortion product of otoacoustic emissions (DPOAEs) to assess cochlear function. Then, auditory brainstem responses (ABRs) were assessed, followed by extracellular single-unit recordings to determine age-related effects on central auditory functions. DPOAE amplitude levels were decreased in aged rats although they were still present between 3.0 and 24.0 kHz. ABR level thresholds in aged rats were significantly elevated at an early (cochlear nucleus - wave II) stage in the auditory brainstem. In the superior colliculus, thresholds were increased and the tuning widths of the directional receptive fields were significantly wider. Moreover, no systematic directional spatial arrangement was present among the neurons of the aged rats, implying that the topographical organization of the auditory directional map was abolished. These results suggest that the deterioration of the auditory directional spatial map can, to some extent, be attributable to age-related dysfunction at more central, perceptual stages of auditory processing.

  3. Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications

    Science.gov (United States)

    Vassilakis, Pantelis N.; Kendall, Roger A.

    2010-02-01

    The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.

  4. Temporal asymmetries in auditory coding and perception reflect multi-layered nonlinearities.

    Science.gov (United States)

    Deneux, Thomas; Kempf, Alexandre; Daret, Aurélie; Ponsot, Emmanuel; Bathellier, Brice

    2016-01-01

    Sound recognition relies not only on spectral cues, but also on temporal cues, as demonstrated by the profound impact of time reversals on perception of common sounds. To address the coding principles underlying such auditory asymmetries, we recorded a large sample of auditory cortex neurons using two-photon calcium imaging in awake mice, while playing sounds ramping up or down in intensity. We observed clear asymmetries in cortical population responses, including stronger cortical activity for up-ramping sounds, which matches perceptual saliency assessments in mice and previous measures in humans. Analysis of cortical activity patterns revealed that auditory cortex implements a map of spatially clustered neuronal ensembles, detecting specific combinations of spectral and intensity modulation features. Comparing different models, we show that cortical responses result from multi-layered nonlinearities, which, contrary to standard receptive field models of auditory cortex function, build divergent representations of sounds with similar spectral content, but different temporal structure. PMID:27580932

  5. Stimulus familiarity affects perceptual restoration in the European starling (Sturnus vulgaris.

    Directory of Open Access Journals (Sweden)

    Folkert Seeba

    Full Text Available BACKGROUND: Humans can easily restore a speech signal that is temporally masked by an interfering sound (e.g., a cough masking parts of a word in a conversation, and listeners have the illusion that the speech continues through the interfering sound. This perceptual restoration for human speech is affected by prior experience. Here we provide evidence for perceptual restoration in complex vocalizations of a songbird that are acquired by vocal learning in a similar way as humans learn their language. METHODOLOGY/PRINCIPAL FINDINGS: European starlings were trained in a same/different paradigm to report salient differences between successive sounds. The birds' response latency for discriminating between a stimulus pair is an indicator for the salience of the difference, and these latencies can be used to evaluate perceptual distances using multi-dimensional scaling. For familiar motifs the birds showed a large perceptual distance if discriminating between song motifs that were muted for brief time periods and complete motifs. If the muted periods were filled with noise, the perceptual distance was reduced. For unfamiliar motifs no such difference was observed. CONCLUSIONS/SIGNIFICANCE: The results suggest that starlings are able to perceptually restore partly masked sounds and, similarly to humans, rely on prior experience. They may be a suitable model to study the mechanism underlying experience-dependent perceptual restoration.

  6. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Jana B. Frtusova

    2016-04-01

    Full Text Available This study examined the effect of auditory-visual (AV speech stimuli on working memory in hearing impaired participants (HIP in comparison to age- and education-matched normal elderly controls (NEC. Participants completed a working memory n-back task (0- to 2-back in which sequences of digits were presented in visual-only (i.e., speech-reading, auditory-only (A-only, and AV conditions. Auditory event-related potentials (ERP were collected to assess the relationship between perceptual and working memory processing. The behavioural results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the HIP group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the HIP group showed a more robust AV benefit; however, the NECs showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the HIP to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed.

  7. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment.

    Science.gov (United States)

    Frtusova, Jana B; Phillips, Natalie A

    2016-01-01

    This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed. PMID:27148106

  8. Study of the affection to binocular visual function by the perceptual learning for children with intermittent exotropia%知觉学习对于间歇性外斜视儿童视功能影响的研究

    Institute of Scientific and Technical Information of China (English)

    俞佳伟; 梁斗立; 于雪冰; 顾若姝; 熊壮; 张玮玮

    2012-01-01

    目的 观察知觉学习训练对于儿童间歇性外斜视双眼视功能的影响.方法 42例间歇性外斜视患儿,行知觉学习训练.训练前及训练1个月、2个月、3个月后应用同视机检测Ⅰ级、Ⅱ级、Ⅲ级视功能,Titmus立体视觉检查图观察近立体视,同时进行间歇性外斜视斜视角检查.并对数据进行统计学分析.结果 42例患儿中,经同视机检查训练前Ⅰ级视功能20例,训练后1个月、2个月、3个月分别增加到24、27、32例,训练前与训练3个月后比较,差异有统计学意义(P<0.05);训练前Ⅱ级视功能20例,训练后1个月、2个月、3个月分别增加至23、26、30例,训练前与训练3个月后比较,差异有统计学意义(P<0.05);训练前Ⅲ级视功能18例,训练后1个月、2个月、3个月分别增加至23、25、30例,训练前与训练3个月后比较,差异有统计学意义(P<0.05);Titmus立体视觉检查图发现,训练前近立体视19例,训练后增加至21、23、29例,训练前与训练后3个月后比较,差异有统计学意义(P<0.05).训练前远方斜视角为28.33△±11.15△,训练1个月、2个月、3个月后分别为27.81△±10.87△,27.98△±11.28△,27.69△±11.56△,与训练3个月后比较,差异有统计学意义(P<0.05).结论 知觉学习训练治疗有助于间歇性外斜视患儿双眼视功能的重建,减少斜视度,对于未达到手术指证患者可以应用.%Objective To investigate the effect of binocular visual function of children with intermittent exotropia after perceptual learning. Methods A total of 42 children with intermittent exotropia were taken. Synoptophore was used to detect visual function at I stage, II stage and at HI stage. Titmus stereogram was used to detect near stereopsis. We also check the strabismus angle of these patinets. All data were recorded before learning and 1, 2 and 3 months after learning, then be statistically analyzed. Results In 42 children with intermittent

  9. Assessing the validity of subjective reports in the auditory streaming paradigm.

    Science.gov (United States)

    Farkas, Dávid; Denham, Susan L; Bendixen, Alexandra; Winkler, István

    2016-04-01

    While subjective reports provide a direct measure of perception, their validity is not self-evident. Here, the authors tested three possible biasing effects on perceptual reports in the auditory streaming paradigm: errors due to imperfect understanding of the instructions, voluntary perceptual biasing, and susceptibility to implicit expectations. (1) Analysis of the responses to catch trials separately promoting each of the possible percepts allowed the authors to exclude participants who likely have not fully understood the instructions. (2) Explicit biasing instructions led to markedly different behavior than the conventional neutral-instruction condition, suggesting that listeners did not voluntarily bias their perception in a systematic way under the neutral instructions. Comparison with a random response condition further supported this conclusion. (3) No significant relationship was found between social desirability, a scale-based measure of susceptibility to implicit social expectations, and any of the perceptual measures extracted from the subjective reports. This suggests that listeners did not significantly bias their perceptual reports due to possible implicit expectations present in the experimental context. In sum, these results suggest that valid perceptual data can be obtained from subjective reports in the auditory streaming paradigm.

  10. Children's Acquisition of Phonology: The Learning of Acoustic Stimuli?

    Science.gov (United States)

    Locke, John L.

    This paper takes issue with the position that children's phoneme acquisition schedule is dictated primarily by auditory perceptual factors and suggests the alternative position that ease of production accounts for age of acquisition. It is felt that perceptual theory cannot adequately explain phonological development, e.g. three-year-olds produce…

  11. Predictive uncertainty in auditory sequence processing

    OpenAIRE

    Niels Chr.Hansen; MarcusT.Pearce

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty - a property of listeners’ prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic e...

  12. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music.

    Science.gov (United States)

    Bidelman, Gavin M; Hutka, Stefanie; Moreno, Sylvain

    2013-01-01

    Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese) speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory). While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language. PMID:23565267

  13. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music.

    Directory of Open Access Journals (Sweden)

    Gavin M Bidelman

    Full Text Available Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory. While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language.

  14. Perceptually Valid Facial Expressions for Character-Based Applications

    OpenAIRE

    Ali Arya; Steve DiPaola; Avi Parush

    2009-01-01

    This paper addresses the problem of creating facial expression of mixed emotions in a perceptually valid way. The research has been done in the context of a “game-like” health and education applications aimed at studying social competency and facial expression awareness in autistic children as well as native language learning, but the results can be applied to many other applications such as games with need for dynamic facial expressions or tools for automating the creation of facial animatio...

  15. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  16. The role of the auditory brainstem in processing musically relevant pitch.

    Science.gov (United States)

    Bidelman, Gavin M

    2013-01-01

    Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners' perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294

  17. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  18. Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging.

    Science.gov (United States)

    Choi, Lark Kwon; You, Jaehee; Bovik, Alan Conrad

    2015-11-01

    We propose a referenceless perceptual fog density prediction model based on natural scene statistics (NSS) and fog aware statistical features. The proposed model, called Fog Aware Density Evaluator (FADE), predicts the visibility of a foggy scene from a single image without reference to a corresponding fog-free image, without dependence on salient objects in a scene, without side geographical camera information, without estimating a depth-dependent transmission map, and without training on human-rated judgments. FADE only makes use of measurable deviations from statistical regularities observed in natural foggy and fog-free images. Fog aware statistical features that define the perceptual fog density index derive from a space domain NSS model and the observed characteristics of foggy images. FADE not only predicts perceptual fog density for the entire image, but also provides a local fog density index for each patch. The predicted fog density using FADE correlates well with human judgments of fog density taken in a subjective study on a large foggy image database. As applications, FADE not only accurately assesses the performance of defogging algorithms designed to enhance the visibility of foggy images, but also is well suited for image defogging. A new FADE-based referenceless perceptual image defogging, dubbed DEnsity of Fog Assessment-based DEfogger (DEFADE) achieves better results for darker, denser foggy images as well as on standard foggy images than the state of the art defogging methods. A software release of FADE and DEFADE is available online for public use: http://live.ece.utexas.edu/research/fog/index.html.

  19. Visual discrimination learning under switching procedure in visually deprived cats.

    Science.gov (United States)

    Zernicki, B

    1999-04-01

    Previous studies have shown that fine visual discrimination learning is severely impaired in cats binocularly deprived in the early period of life (BD cats) and also somewhat in control cats reared with open eyes in the limited laboratory environment (C cats) compared with cats reared in a normal rural environment (N cats). It was concluded that visual deprivation impairs perceptual learning. In the present study discriminative stimuli were dissimilar and so the task was perceptually easy, but using a switching procedure made it associatively difficult. In regular trials a gate with a grating pattern was positive and a blank gate negative, whereas in switching trials the meaning of the gates was reversed. The switching stimulus was intermittent light in some stages of training and intermittent tone in others. Learning was severely impaired in BD cats and somewhat in C cats and the deficit was similar under visual and auditory switching. Thus, early visual deprivation impairs associative learning. The impairment probably includes associations between switching stimulus and instrumental responses and configural associations between switching stimulus and discriminative stimuli. PMID:10212071

  20. Auditory scene analysis: The sweet music of ambiguity

    Directory of Open Access Journals (Sweden)

    Daniel ePressnitzer

    2011-12-01

    Full Text Available In this review paper aimed at the non-specialist, we explore the use that neuroscientists and musicians have made of perceptual illusions based on ambiguity. The pivotal issue is auditory scene analysis, or what enables us to make sense of complex acoustic mixtures in order to follow, for instance, a single melody in the midst of an orchestra. In general, auditory scene analysis uncovers the most likely physical causes that account for the waveform collected at the ears. However, the acoustical problem is ill-posed and it must be solved from noisy sensory input. Recently, the neural mechanisms implicated in the transformation of ambiguous sensory information into coherent auditory scenes have been investigated using so-called bistability illusions (where an unchanging ambiguous stimulus evokes a succession of distinct percepts in the mind of the listener. After reviewing some of those studies, we turn to music, which arguably provides some of the most complex acoustic scenes that a human listener will ever encounter. Interestingly, musicians will not always aim at making each physical source intelligible, but rather to express one or more melodic lines with a small or large number of instruments. By means of a few musical illustrations and by using a computational model inspired by neuro-physiological principles, we suggest that this relies on a detailed (if perhaps implicit knowledge of the rules of auditory scene analysis and of its inherent ambiguity. We then put forward the opinion that some degree perceptual ambiguity may participate in our appreciation of music.