WorldWideScience

Sample records for auditory pathways

  1. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  2. Response recovery in the locust auditory pathway.

    Science.gov (United States)

    Wirtssohn, Sarah; Ronacher, Bernhard

    2016-01-01

    Temporal resolution and the time courses of recovery from acute adaptation of neurons in the auditory pathway of the grasshopper Locusta migratoria were investigated with a response recovery paradigm. We stimulated with a series of single click and click pair stimuli while performing intracellular recordings from neurons at three processing stages: receptors and first and second order interneurons. The response to the second click was expressed relative to the single click response. This allowed the uncovering of the basic temporal resolution in these neurons. The effect of adaptation increased with processing layer. While neurons in the auditory periphery displayed a steady response recovery after a short initial adaptation, many interneurons showed nonlinear effects: most prominent a long-lasting suppression of the response to the second click in a pair, as well as a gain in response if a click was preceded by a click a few milliseconds before. Our results reveal a distributed temporal filtering of input at an early auditory processing stage. This set of specified filters is very likely homologous across grasshopper species and thus forms the neurophysiological basis for extracting relevant information from a variety of different temporal signals. Interestingly, in terms of spike timing precision neurons at all three processing layers recovered very fast, within 20 ms. Spike waveform analysis of several neuron types did not sufficiently explain the response recovery profiles implemented in these neurons, indicating that temporal resolution in neurons located at several processing layers of the auditory pathway is not necessarily limited by the spike duration and refractory period.

  3. Demonstration of prosthetic activation of central auditory pathways using ( sup 14 C)-2-deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D.A.; Niparko, J.K.; Altschuler, R.A.; Frey, K.A.; Miller, J.M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-02-01

    The cochlear prosthesis is not applicable to patients who lack an implantable cochlea or an intact vestibulocochlear nerve. Direct electrical stimulation of the cochlear nucleus (CN) of the brain stem might provide a method for auditory rehabilitation of these patients. A penetrating CN electrode has been developed and tissue tolerance to this device demonstrated. This study was undertaken to evaluate metabolic activation of central nervous system (CNS) auditory tracts produced by such implants. Regional cerebral glucose use resulting from CN stimulation was estimated in a series of chronically implanted guinea pigs with the use of ({sup 14}C)-2-deoxyglucose (2-DG). Enhanced 2-DG uptake was observed in structures of the auditory tract. The activation of central auditory structures achieved with CN stimulation was similar to that produced by acoustic stimulation and by electrical stimulation of the modiolar portion of the auditory nerve in control groups. An interesting banding pattern was observed in the inferior colliculus following CN stimulation, as previously described with acoustic stimulation. This study demonstrates that functional metabolic activation of central auditory pathways can be achieved with a penetrating CNS auditory prosthesis.

  4. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe.

    Science.gov (United States)

    Berns, Gregory S; Cook, Peter F; Foxley, Sean; Jbabdi, Saad; Miller, Karla L; Marino, Lori

    2015-07-22

    The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of 'associative' regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species

  5. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Directory of Open Access Journals (Sweden)

    Francisco Jose Alvarez

    Full Text Available Hypoxia-ischemia (HI is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets.Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs of newborn piglets exposed to acute hypoxia/ischemia (n = 6 and a control group with no such exposure (n = 10. ABRs were recorded for both ears before the start of the experiment (baseline, after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury.Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant.The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  6. Simple ears-flexible behavior: Information processing in the moth auditory pathway

    Institute of Scientific and Technical Information of China (English)

    Gerit PFUHL; Blanka KALINOVA; Irena VALTEROVA; Bente G.BERG

    2015-01-01

    Lepidoptera evolved tympanic ears in response to echolocating bats.Comparative studies have shown that moth ears evolved many times independently from chordotonal organs.With only 1 to 4 receptor cells,they are one of the simplest hearing organs.The small number of receptors does not imply simplicity,neither in behavior nor in the neural circuit.Behaviorally,the response to ultrasound is far from being a simple reflex.Moths' escape behavior is modulated by a variety of cues,especially pheromones,which can alter the auditory response.Neurally the receptor cell(s) diverges onto many intemeurons,enabling pa rallel processing and feature extraction.Ascending interneurons and sound-sensitive brain neurons innervate a neuropil in the ventrolateral protocerebrum.Further,recent electrophysiological data provides the first glimpses into how the acoustic response is modulated as well as how ultrasound influences the other senses.So far,the auditory pathway has been studied in noctuids.The findings agree well with common computational principles found in other insects.However,moth ears also show unique mechanical and neural adaptation.Here,we first describe the variety of moths' auditory behavior,especially the co-option of ultrasonic signals for intraspecific communication.Second,we describe the current knowledge of the neural pathway gained from noctuid moths.Finally,we argue that Galleriinae which show negative and positive phonotaxis,are an interesting model species for future electrophysiological studies of the auditory pathway and multimodal sensory integration,and so are ideally suited for the study of the evolution of behavioral mechanisms given a few receptors [Current Zoology 61 (2):292-302,2015].

  7. Emergence of tuning to natural stimulus statistics along the central auditory pathway.

    Directory of Open Access Journals (Sweden)

    Jose A Garcia-Lazaro

    Full Text Available We have previously shown that neurons in primary auditory cortex (A1 of anaesthetized (ketamine/medetomidine ferrets respond more strongly and reliably to dynamic stimuli whose statistics follow "natural" 1/f dynamics than to stimuli exhibiting pitch and amplitude modulations that are faster (1/f(0.5 or slower (1/f(2 than 1/f. To investigate where along the central auditory pathway this 1/f-modulation tuning arises, we have now characterized responses of neurons in the central nucleus of the inferior colliculus (ICC and the ventral division of the mediate geniculate nucleus of the thalamus (MGV to 1/f(γ distributed stimuli with γ varying between 0.5 and 2.8. We found that, while the great majority of neurons recorded from the ICC showed a strong preference for the most rapidly varying (1/f(0.5 distributed stimuli, responses from MGV neurons did not exhibit marked or systematic preferences for any particular γ exponent. Only in A1 did a majority of neurons respond with higher firing rates to stimuli in which γ takes values near 1. These results indicate that 1/f tuning emerges at forebrain levels of the ascending auditory pathway.

  8. Abnormal auditory and language pathways in children with 16p11.2 deletion

    Directory of Open Access Journals (Sweden)

    Jeffrey I. Berman

    2015-01-01

    Full Text Available Copy number variations at chromosome 16p11.2 contribute to neurodevelopmental disorders, including autism spectrum disorder (ASD. This study seeks to improve our understanding of the biological basis of behavioral phenotypes common in ASD, in particular the prominent and prevalent disruption of spoken language seen in children with the 16p11.2 BP4–BP5 deletion. We examined the auditory and language white matter pathways with diffusion MRI in a cohort of 36 pediatric deletion carriers and 45 age-matched controls. Diffusion MR tractography of the auditory radiations and the arcuate fasciculus was performed to generate tract specific measures of white matter microstructure. In both tracts, deletion carriers exhibited significantly higher diffusivity than that of controls. Cross-sectional diffusion parameters in these tracts changed with age with no group difference in the rate of maturation. Within deletion carriers, the left-hemisphere arcuate fasciculus mean and radial diffusivities were significantly negatively correlated with clinical language ability, but not non-verbal cognitive ability. Diffusion metrics in the right-hemisphere arcuate fasciculus were not predictive of language ability. These results provide insight into the link between the 16p11.2 deletion, abnormal auditory and language pathway structures, and the specific behavioral deficits that may contribute to neurodevelopmental disorders such as ASD.

  9. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys. PMID:26041980

  10. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Hs 224, Rotterdam (Netherlands); Kovacs, Silvia; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [University Hospitals of the Catholic University Leuven, Department of Radiology, Leuven (Belgium); Ridder, Dirk de [University of Antwerp, Department of Neurosurgery, Edegem (Belgium)

    2007-08-15

    Tinnitus is hypothesized to be an auditory phantom phenomenon resulting from spontaneous neuronal activity somewhere along the auditory pathway. We performed fMRI of the entire auditory pathway, including the inferior colliculus (IC), the medial geniculate body (MGB) and the auditory cortex (AC), in 42 patients with tinnitus and 10 healthy volunteers to assess lateralization of fMRI activation. Subjects were scanned on a 3T MRI scanner. A T2*-weighted EPI silent gap sequence was used during the stimulation paradigm, which consisted of a blocked design of 12 epochs in which music presented binaurally through headphones, which was switched on and off for periods of 50 s. Using SPM2 software, single subject and group statistical parametric maps were calculated. Lateralization of activation was assessed qualitatively and quantitatively. Tinnitus was lateralized in 35 patients (83%, 13 right-sided and 22 left-sided). Significant signal change (P{sub corrected} < 0.05) was found bilaterally in the primary and secondary AC, the IC and the MGB. Signal change was symmetrical in patients with bilateral tinnitus. In patients with lateralized tinnitus, fMRI activation was lateralized towards the side of perceived tinnitus in the primary AC and IC in patients with right-sided tinnitus, and in the MGB in patients with left-sided tinnitus. In healthy volunteers, activation in the primary AC was left-lateralized. Our paradigm adequately visualized the auditory pathways in tinnitus patients. In lateralized tinnitus fMRI activation was also lateralized, supporting the hypothesis that tinnitus is an auditory phantom phenomenon. (orig.)

  11. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe

    OpenAIRE

    Berns, Gregory S.; Cook, Peter F.; Foxley, Sean; Jbabdi, Saad; Miller, Karla L.; Marino, Lori

    2015-01-01

    The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this...

  12. Hierarchical and serial processing in the spatial auditory cortical pathway is degraded by natural aging

    OpenAIRE

    Juarez-Salinas, Dina L.; Engle, James R.; Navarro, Xochi O.; Gregg H Recanzone

    2010-01-01

    The compromised abilities to localize sounds and to understand speech are two hallmark deficits in aged individuals. The auditory cortex is necessary for these processes, yet we know little about how normal aging affects these early cortical fields. In this study, we recorded the spatial tuning of single neurons in primary (area A1) and secondary (area CL) auditory cortical areas in young and aged alert rhesus macaques. We found that the neurons of aged animals had greater spontaneous and dri...

  13. Prediction of Human's Ability in Sound Localization Based on the Statistical Properties of Spike Trains along the Brainstem Auditory Pathway

    Directory of Open Access Journals (Sweden)

    Ram Krips

    2014-01-01

    Full Text Available The minimum audible angle test which is commonly used for evaluating human localization ability depends on interaural time delay, interaural level differences, and spectral information about the acoustic stimulus. These physical properties are estimated at different stages along the brainstem auditory pathway. The interaural time delay is ambiguous at certain frequencies, thus confusion arises as to the source of these frequencies. It is assumed that in a typical minimum audible angle experiment, the brain acts as an unbiased optimal estimator and thus the human performance can be obtained by deriving optimal lower bounds. Two types of lower bounds are tested: the Cramer-Rao and the Barankin. The Cramer-Rao bound only takes into account the approximation of the true direction of the stimulus; the Barankin bound considers other possible directions that arise from the ambiguous phase information. These lower bounds are derived at the output of the auditory nerve and of the superior olivary complex where binaural cues are estimated. An agreement between human experimental data was obtained only when the superior olivary complex was considered and the Barankin lower bound was used. This result suggests that sound localization is estimated by the auditory nuclei using ambiguous binaural information.

  14. Influence of cortical descending pathways on neuronal adaptation in the auditory midbrain

    OpenAIRE

    Robinson, B. L.

    2014-01-01

    Adaptation of the spike rate of sensory neurones is associated with alteration in neuronal representation of a wide range of stimuli, including sound level, visual contrast, and whisker vibrissa motion. In the inferior colliculus (IC) of the auditory midbrain, adaptation may allow neurones to adjust their limited representational range to match the current range of sound levels in the environment. Two outstanding questions concern the rapidity of this adaptation in IC, and the mechanisms unde...

  15. Effects of asymmetric cultural experiences on the auditory pathway: evidence from music.

    Science.gov (United States)

    Wong, Patrick C M; Perrachione, Tyler K; Margulis, Elizabeth Hellmuth

    2009-07-01

    Cultural experiences come in many different forms, such as immersion in a particular linguistic community, exposure to faces of people with different racial backgrounds, or repeated encounters with music of a particular tradition. In most circumstances, these cultural experiences are asymmetric, meaning one type of experience occurs more frequently than other types (e.g., a person raised in India will likely encounter the Indian todi scale more so than a Westerner). In this paper, we will discuss recent findings from our laboratories that reveal the impact of short- and long-term asymmetric musical experiences on how the nervous system responds to complex sounds. We will discuss experiments examining how musical experience may facilitate the learning of a tone language, how musicians develop neural circuitries that are sensitive to musical melodies played on their instrument of expertise, and how even everyday listeners who have little formal training are particularly sensitive to music of their own culture(s). An understanding of these cultural asymmetries is useful in formulating a more comprehensive model of auditory perceptual expertise that considers how experiences shape auditory skill levels. Such a model has the potential to aid in the development of rehabilitation programs for the efficacious treatment of neurologic impairments. PMID:19673772

  16. Diet-Induced Obesity Exacerbates Auditory Degeneration via Hypoxia, Inflammation, and Apoptosis Signaling Pathways in CD/1 Mice

    Science.gov (United States)

    Hwang, Juen-Haur; Hsu, Chuan-Jen; Yu, Wei-Hsuan; Liu, Tien-Chen; Yang, Wei-Shiung

    2013-01-01

    The aim of this study was to investigate the mechanisms of diet-induced obesity on hearing degeneration in CD/1 mice. Sixty 4-week-old male CD/1 mice were randomly and equally divided into 2 groups. For 16 weeks, the diet-induced obesity (DIO) group was fed a high fat diet and the control group was fed a standard diet of 13.43 % kcal fat. The morphometry, biochemistry, auditory brainstem response thresholds, omental fat, and histopathology of the cochlea were compared between the beginning and end of the study (4 vs. 20 weeks old). The results show that the body weight, fasting plasma triglyceride concentrations, and omental fat weight were higher in the DIO group than in the control group at the end of experiment. The auditory brainstem response thresholds at high frequencies were significantly elevated in the DIO group compared to those of the control group. Histology studies showed that, compared to the control group, the DIO group had blood vessels with smaller diameters and thicker walls in the stria vascularis at the middle and basal turns of the cochlea. The cell densities in the spiral ganglion and spiral ligament at the basal turn of the cochlea were significantly lower in the DIO group. Immunohistochemical staining showed that hypoxia-induced factor 1 (HIF-1), tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB), caspase 3, poly(ADP-ribose) polymerase-1, and apoptosis inducing factor were all significantly more dense in the spiral ganglion and spiral ligament at the basal turn of cochlea in the DIO group. Our results suggest that diet-induced obesity exacerbates hearing degeneration via increased hypoxia, inflammatory responses, and cell loss in the spiral ganglion and spiral ligament and is associated with the activation of both caspase-dependent and -independent apoptosis signaling pathways in CD/1 mice. PMID:23637762

  17. Diet-induced obesity exacerbates auditory degeneration via hypoxia, inflammation, and apoptosis signaling pathways in CD/1 mice.

    Directory of Open Access Journals (Sweden)

    Juen-Haur Hwang

    Full Text Available The aim of this study was to investigate the mechanisms of diet-induced obesity on hearing degeneration in CD/1 mice. Sixty 4-week-old male CD/1 mice were randomly and equally divided into 2 groups. For 16 weeks, the diet-induced obesity (DIO group was fed a high fat diet and the control group was fed a standard diet of 13.43 % kcal fat. The morphometry, biochemistry, auditory brainstem response thresholds, omental fat, and histopathology of the cochlea were compared between the beginning and end of the study (4 vs. 20 weeks old. The results show that the body weight, fasting plasma triglyceride concentrations, and omental fat weight were higher in the DIO group than in the control group at the end of experiment. The auditory brainstem response thresholds at high frequencies were significantly elevated in the DIO group compared to those of the control group. Histology studies showed that, compared to the control group, the DIO group had blood vessels with smaller diameters and thicker walls in the stria vascularis at the middle and basal turns of the cochlea. The cell densities in the spiral ganglion and spiral ligament at the basal turn of the cochlea were significantly lower in the DIO group. Immunohistochemical staining showed that hypoxia-induced factor 1 (HIF-1, tumor necrosis factor alpha (TNF-α, nuclear factor kappa B (NF-κB, caspase 3, poly(ADP-ribose polymerase-1, and apoptosis inducing factor were all significantly more dense in the spiral ganglion and spiral ligament at the basal turn of cochlea in the DIO group. Our results suggest that diet-induced obesity exacerbates hearing degeneration via increased hypoxia, inflammatory responses, and cell loss in the spiral ganglion and spiral ligament and is associated with the activation of both caspase-dependent and -independent apoptosis signaling pathways in CD/1 mice.

  18. Overlapping and distinct pRb pathways in the mammalian auditory and vestibular organs.

    Science.gov (United States)

    Huang, Mingqian; Sage, Cyrille; Tang, Yong; Lee, Sang Goo; Petrillo, Marco; Hinds, Philip W; Chen, Zheng-Yi

    2011-01-15

    Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In a conditional hair cell Rb1 knockout mouse, Pou4f3-Cre-pRb(-/-), pRb(-/-) utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of pRb(-/-) cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of (pRb(-/-) cochlea and utricle. The comparative analysis shows that the core pathway shared between pRb(-/-) cochlea and utricle is centered on E2F, the key pathway that mediates pRb function. A majority of differentially expressed genes and enriched pathways are not shared but uniquely associated with pRb(-/-) cochlea or utricle. In pRb(-/-) cochlea, pathways involved in early inner ear development such as Wnt/β-catenin and Notch were enriched, whereas pathways involving in proliferation and survival are enriched in pRb(-/-) utricle. Clustering analysis showed that the pRb(-/-) inner ear has characteristics of a younger control inner ear, an indication of delayed differentiation. We created a transgenic mouse model (ER-Cre-pRb(flox/flox)) in which Rb1 can be acutely deleted postnatally. Acute Rb1 deletion in the adult mouse fails to induce proliferation or cell death in inner ear, strongly indicating that Rb1 loss in these postmitotic tissues can be effectively compensated for, or that pRb-mediated changes in the postmitotic compartment result in events that are functionally irreversible once enacted. This study thus supports the concept that pRb-regulated pathways relevant to hair cell development, encompassing proliferation, differentiation and survival, act predominantly during early development.

  19. Auditory functional magnetic resonance imaging in dogs – normalization and group analysis and the processing of pitch in the canine auditory pathways

    OpenAIRE

    Bach, Jan-Peter; Lüpke, Matthias; Dziallas, Peter; Wefstaedt, Patrick; Uppenkamp, Stefan; Seifert, Hermann; Nolte, Ingo

    2016-01-01

    Background Functional magnetic resonance imaging (fMRI) is an advanced and frequently used technique for studying brain functions in humans and increasingly so in animals. A key element of analyzing fMRI data is group analysis, for which valid spatial normalization is a prerequisite. In the current study we applied normalization and group analysis to a dataset from an auditory functional MRI experiment in anesthetized beagles. The stimulation paradigm used in the experiment was composed of si...

  20. The neglected neglect: auditory neglect.

    Science.gov (United States)

    Gokhale, Sankalp; Lahoti, Sourabh; Caplan, Louis R

    2013-08-01

    Whereas visual and somatosensory forms of neglect are commonly recognized by clinicians, auditory neglect is often not assessed and therefore neglected. The auditory cortical processing system can be functionally classified into 2 distinct pathways. These 2 distinct functional pathways deal with recognition of sound ("what" pathway) and the directional attributes of the sound ("where" pathway). Lesions of higher auditory pathways produce distinct clinical features. Clinical bedside evaluation of auditory neglect is often difficult because of coexisting neurological deficits and the binaural nature of auditory inputs. In addition, auditory neglect and auditory extinction may show varying degrees of overlap, which makes the assessment even harder. Shielding one ear from the other as well as separating the ear from space is therefore critical for accurate assessment of auditory neglect. This can be achieved by use of specialized auditory tests (dichotic tasks and sound localization tests) for accurate interpretation of deficits. Herein, we have reviewed auditory neglect with an emphasis on the functional anatomy, clinical evaluation, and basic principles of specialized auditory tests.

  1. Actin filaments as the fast pathways for calcium ions involved in auditory processes

    Indian Academy of Sciences (India)

    Miljko V Sataric; Dalibor L Sekulic; Bogdan M Sataric

    2015-09-01

    We investigated the polyelectrolyte properties of actin filaments which are in interaction with myosin motors, basic participants in mechano-electrical transduction in the stereocilia of the inner ear. Here, we elaborated a model in which actin filaments play the role of guides or pathways for localized flow of calcium ions. It is well recognized that calcium ions are implicated in tuning of actin-myosin cross-bridge interaction, which controls the mechanical property of hair bundle. Actin filaments enable much more efficient delivery of calcium ions and faster mechanism for their distribution within the stereocilia. With this model we were able to semiquantitatively explain experimental evidences regarding the way of how calcium ions tune the mechanosensitivity of hair cells.

  2. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  3. Auditory Processing Disorders

    Science.gov (United States)

    Auditory Processing Disorders Auditory processing disorders (APDs) are referred to by many names: central auditory processing disorders , auditory perceptual disorders , and central auditory disorders . APDs ...

  4. Multiple arithmetic operations in a single neuron: the recruitment of adaptation processes in the cricket auditory pathway depends on sensory context.

    Science.gov (United States)

    Hildebrandt, K Jannis; Benda, Jan; Hennig, R Matthias

    2011-10-01

    Sensory pathways process behaviorally relevant signals in various contexts and therefore have to adapt to differing background conditions. Depending on changes in signal statistics, this adjustment might be a combination of two fundamental computational operations: subtractive adaptation shifting a neuron's threshold and divisive gain control scaling its sensitivity. The cricket auditory system has to deal with highly stereotyped conspecific songs at low carrier frequencies, and likely much more variable predator signals at high frequencies. We proposed that due to the differences between the two signal classes, the operation that is implemented by adaptation depends on the carrier frequency. We aimed to identify the biophysical basis underlying the basic computational operations of subtraction and division. We performed in vivo intracellular and extracellular recordings in a first-order auditory interneuron (AN2) that is active in both mate recognition and predator avoidance. We demonstrated subtractive shifts at the carrier frequency of conspecific songs and division at the predator-like carrier frequency. Combined application of current injection and acoustic stimuli for each cell allowed us to demonstrate the subtractive effect of cell-intrinsic adaptation currents. Pharmacological manipulation enabled us to demonstrate that presynaptic inhibition is most likely the source of divisive gain control. We showed that adjustment to the sensory context can depend on the class of signals that are relevant to the animal. We further revealed that presynaptic inhibition is a simple mechanism for divisive operations. Unlike other proposed mechanisms, it is widely available in the sensory periphery of both vertebrates and invertebrates.

  5. Auditory Neuropathy

    Science.gov (United States)

    ... field differ in their opinions about the potential benefits of hearing aids, cochlear implants, and other technologies for people with auditory neuropathy. Some professionals report that hearing aids and personal listening devices such as frequency modulation (FM) systems are ...

  6. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons.

    Science.gov (United States)

    Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2015-11-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory.

  7. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons.

    Science.gov (United States)

    Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2015-11-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. PMID

  8. A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem

    OpenAIRE

    MacLeod, Katrina M.; Horiuchi, Timothy K.

    2011-01-01

    Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for ...

  9. Mapping tonotopy in human auditory cortex

    NARCIS (Netherlands)

    van Dijk, Pim; Langers, Dave R M; Moore, BCJ; Patterson, RD; Winter, IM; Carlyon, RP; Gockel, HE

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier

  10. An evoked auditory response fMRI study of the effects of rTMS on putative AVH pathways in healthy volunteers.

    LENUS (Irish Health Repository)

    Tracy, D K

    2010-01-01

    Auditory verbal hallucinations (AVH) are the most prevalent symptom in schizophrenia. They are associated with increased activation within the temporoparietal cortices and are refractory to pharmacological and psychological treatment in approximately 25% of patients. Low frequency repetitive transcranial magnetic stimulation (rTMS) over the temporoparietal cortex has been demonstrated to be effective in reducing AVH in some patients, although results have varied. The cortical mechanism by which rTMS exerts its effects remain unknown, although data from the motor system is suggestive of a local cortical inhibitory effect. We explored neuroimaging differences in healthy volunteers between application of a clinically utilized rTMS protocol and a sham rTMS equivalent when undertaking a prosodic auditory task.

  11. Auditory memory function in expert chess players

    OpenAIRE

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Background: Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert...

  12. Auditory brain-stem responses in syphilis.

    OpenAIRE

    Rosenhall, U; Roupe, G

    1981-01-01

    Analysis of auditory brain-stem electrical responses (BSER) provides an effective means of detecting lesions in the auditory pathways. In the present study the wave patterns were analysed in 11 patients with secondary or latent syphilis with no clinical symptoms referrable to the central nervous system and in two patients with congenital syphilis and general paralysis. Decreased amplitudes and prolonged latencies occurred frequently in patients with secondary and with advanced syphilis. This ...

  13. Associação entre funções da via auditiva eferente e genotoxicidade em adultos jovens Association between auditory pathway efferent functions and genotoxicity in young adults

    Directory of Open Access Journals (Sweden)

    Andressa Boer Fronza

    2011-02-01

    Full Text Available Funções da via auditiva eferente incluem a modulação das células ciliadas externas, proteção contra ruído e melhora na detecção da fonte sonora em ambientes ruidosos. Genotoxicidade são danos ao DNA. OBJETIVOS: Analisar associação entre funções da via auditiva eferente com marcadores genotóxicos. Adicionalmente, considerou-se tabagismo e gênero como principais variáveis intervenientes. MATERIAL E MÉTODO: Estudo prospectivo-clínico, quantitativo, transversal, contemporâneo. Foi realizada uma análise da função da via auditiva eferente e indicadores de genotoxicidade em 60 voluntários adultos jovens. RESULTADOS: Idade média dos voluntários foi de 24,86±3,68 anos; 30 do gênero masculino e 30 do gênero feminino, 15 de cada gênero tabagistas e 15 não tabagistas; indivíduos do gênero masculino tabagistas apresentaram maior ocorrência de efeito de supressão das EOAEPDs nas frequências de 2000 e 6000Hz na orelha do lado esquerdo; mulheres tabagistas apresentaram maior prevalência de queixa de dificuldade de ouvir em ambiente ruidoso; indivíduos tabagistas e mulheres apresentaram maiores danos ao DNA; indivíduos com queixas de dificuldade auditiva e zumbido apresentaram maiores índices de genotoxicidade. CONCLUSÕES: Em adultos jovens normo-ouvintes que referem queixas relacionadas às funções da via auditiva eferente, como zumbido e dificuldade auditiva, já é possível observar associação com genotoxicidade considerando interações entre gênero e tabagismo.Efferent auditory pathways modulate outer hair cells of the cochlea, protect against noise, and improve the detection of sound sources in noisy environments. Genotoxicity is DNA damage. AIM: To study the association between auditory pathway efferent functions with genotoxic markers. The study also considered smoking and gender as two main variables. METHODS: A prospective-clinical, quantitative, cross-sectional, contemporary study. The function of

  14. Interhemispheric Auditory Connectivity: Structure and Function Related to Auditory Verbal Hallucinations

    Directory of Open Access Journals (Sweden)

    Saskia eSteinmann

    2014-02-01

    Full Text Available Auditory verbal hallucinations (AVH are one of the most common and most distressing symptoms of schizophrenia. Despite fundamental research, the underlying neurocognitive and neurobiological mechanisms are still a matter of debate. Previous studies suggested that hearing voices is associated with a number of factors including local deficits in the left auditory cortex and a disturbed connectivity of frontal and temporoparietal language-related areas. In addition, it is hypothesized that the interhemispheric pathways connecting right and left auditory cortices might be involved in the pathogenesis of AVH. Findings based on Diffusion-Tensor-Imaging (DTI measurements revealed a remarkable interindividual variability in size and shape of the interhemispheric auditory pathways. Interestingly, schizophrenia patients suffering from AVH exhibited increased fractional anisotropy (FA in the interhemispheric fibers than non-hallucinating patients. Thus, higher FA-values indicate an increased severity of AVH. Moreover, a dichotic listening (DL task showed that the interindividual variability in the interhemispheric auditory pathways was reflected in the behavioral outcome: Stronger pathways supported a better information transfer and consequently improved speech perception. This detection indicates a specific structure-function relationship, which seems to be interindividually variable. This review focuses on recent findings concerning the structure-function relationship of the interhemispheric pathways in controls, hallucinating and non-hallucinating schizophrenia patients and concludes that changes in the structural and functional connectivity of auditory areas are involved in the pathophysiology of AVH.

  15. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    Science.gov (United States)

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  16. Effects of Hyperbilirubinemia on Auditory Brainstem Response of Neonates Treated with Phototherapy

    Directory of Open Access Journals (Sweden)

    Negin Salehi

    2016-01-01

    Conclusion:  The results of this study underline the importance of the Auditory Brainstem Response Test as an efficient tool for monitoring the auditory brainstem pathway in neonates who are at risk of neurotoxicity and for diagnosing the earliest stages of auditory damage caused by high levels of bilirubin.

  17. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    Science.gov (United States)

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  18. Contribution of psychoacoustics and neuroaudiology in revealing correlation of mental disorders with central auditory processing disorders

    OpenAIRE

    Iliadou, V; Iakovides, S

    2003-01-01

    Background Psychoacoustics is a fascinating developing field concerned with the evaluation of the hearing sensation as an outcome of a sound or speech stimulus. Neuroaudiology with electrophysiologic testing, records the electrical activity of the auditory pathways, extending from the 8th cranial nerve up to the cortical auditory centers as a result of external auditory stimuli. Central Auditory Processing Disorders may co-exist with mental disorders and complicate diagnosis and outcome. Desi...

  19. Auditory imagery: empirical findings.

    Science.gov (United States)

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  20. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  1. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  2. Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain.

    Science.gov (United States)

    Woolley, Sarah M N; Portfors, Christine V

    2013-11-01

    The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".

  3. Auditory Responses of Infants

    Science.gov (United States)

    Watrous, Betty Springer; And Others

    1975-01-01

    Forty infants, 3- to 12-months-old, participated in a study designed to differentiate the auditory response characteristics of normally developing infants in the age ranges 3 - 5 months, 6 - 8 months, and 9 - 12 months. (Author)

  4. [Central auditory prosthesis].

    Science.gov (United States)

    Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M

    2009-06-01

    Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084

  5. Toward a neurobiology of auditory object perception: What can we learn from the songbird forebrain?

    Directory of Open Access Journals (Sweden)

    Kai LU, David S. VICARIO

    2011-12-01

    Full Text Available In the acoustic world, no sounds occur entirely in isolation; they always reach the ears in combination with other sounds. How any given sound is discriminated and perceived as an independent auditory object is a challenging question in neuroscience. Although our knowledge of neural processing in the auditory pathway has expanded over the years, no good theory exists to explain how perception of auditory objects is achieved. A growing body of evidence suggests that the selectivity of neurons in the auditory forebrain is under dynamic modulation, and this plasticity may contribute to auditory object perception. We propose that stimulus-specific adaptation in the auditory forebrain of the songbird (and perhaps in other systems may play an important role in modulating sensitivity in a way that aids discrimination, and thus can potentially contribute to auditory object perception [Current Zoology 57 (6: 671–683, 2011].

  6. Toward a neurobiology of auditory object perception: What can we learn from the songbird forebrain?

    Institute of Scientific and Technical Information of China (English)

    Kai LU; David S. VICARIO

    2011-01-01

    In the acoustic world,no sounds occur entirely in isolation; they always reach the ears in combination with other sounds.How any given sound is discriminated and perceived as an independent auditory object is a challenging question in neuroscience.Although our knowledge of neural processing in the auditory pathway has expanded over the years,no good theory exists to explain how perception of auditory objects is achieved.A growing body of evidence suggests that the selectivity of neurons in the auditory forebrain is under dynamic modulation,and this plasticity may contribute to auditory object perception.We propose that stimulus-specific adaptation in the auditory forebrain of the songbird (and perhaps in other systems) may play an important role in modulating sensitivity in a way that aids discrimination,and thus can potentially contribute to auditory object perception [Current Zoology 57 (6):671-683,2011].

  7. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing

    OpenAIRE

    Harper, NS; Willmore, BDB; Schnupp, JWH; King, AJ; Schoppe, O

    2016-01-01

    Adaptation to stimulus statistics, such as the mean level and contrast of recently- heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet, current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here, we present a model of neural responses in the ferret auditory cortex (the I...

  8. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  9. A corollary discharge maintains auditory sensitivity during sound production.

    Science.gov (United States)

    Poulet, James F A; Hedwig, Berthold

    2002-08-22

    Speaking and singing present the auditory system of the caller with two fundamental problems: discriminating between self-generated and external auditory signals and preventing desensitization. In humans and many other vertebrates, auditory neurons in the brain are inhibited during vocalization but little is known about the nature of the inhibition. Here we show, using intracellular recordings of auditory neurons in the singing cricket, that presynaptic inhibition of auditory afferents and postsynaptic inhibition of an identified auditory interneuron occur in phase with the song pattern. Presynaptic and postsynaptic inhibition persist in a fictively singing, isolated cricket central nervous system and are therefore the result of a corollary discharge from the singing motor network. Mimicking inhibition in the interneuron by injecting hyperpolarizing current suppresses its spiking response to a 100-dB sound pressure level (SPL) acoustic stimulus and maintains its response to subsequent, quieter stimuli. Inhibition by the corollary discharge reduces the neural response to self-generated sound and protects the cricket's auditory pathway from self-induced desensitization.

  10. A unique cellular scaling rule in the avian auditory system.

    Science.gov (United States)

    Corfield, Jeremy R; Long, Brendan; Krilow, Justin M; Wylie, Douglas R; Iwaniuk, Andrew N

    2016-06-01

    Although it is clear that neural structures scale with body size, the mechanisms of this relationship are not well understood. Several recent studies have shown that the relationship between neuron numbers and brain (or brain region) size are not only different across mammalian orders, but also across auditory and visual regions within the same brains. Among birds, similar cellular scaling rules have not been examined in any detail. Here, we examine the scaling of auditory structures in birds and show that the scaling rules that have been established in the mammalian auditory pathway do not necessarily apply to birds. In galliforms, neuronal densities decrease with increasing brain size, suggesting that auditory brainstem structures increase in size faster than neurons are added; smaller brains have relatively more neurons than larger brains. The cellular scaling rules that apply to auditory brainstem structures in galliforms are, therefore, different to that found in primate auditory pathway. It is likely that the factors driving this difference are associated with the anatomical specializations required for sound perception in birds, although there is a decoupling of neuron numbers in brain structures and hair cell numbers in the basilar papilla. This study provides significant insight into the allometric scaling of neural structures in birds and improves our understanding of the rules that govern neural scaling across vertebrates. PMID:26002617

  11. Intact spectral but abnormal temporal processing of auditory stimuli in autism.

    NARCIS (Netherlands)

    Groen, W.B.; Orsouw, L. van; Huurne, N.; Swinkels, S.H.N.; Gaag, R.J. van der; Buitelaar, J.K.; Zwiers, M.P.

    2009-01-01

    The perceptual pattern in autism has been related to either a specific localized processing deficit or a pathway-independent, complexity-specific anomaly. We examined auditory perception in autism using an auditory disembedding task that required spectral and temporal integration. 23 children with h

  12. Auditory processing in the brainstem and audiovisual integration in humans studied with fMRI

    NARCIS (Netherlands)

    Slabu, Lavinia Mihaela

    2008-01-01

    Functional magnetic resonance imaging (fMRI) is a powerful technique because of the high spatial resolution and the noninvasiveness. The applications of the fMRI to the auditory pathway remain a challenge due to the intense acoustic scanner noise of approximately 110 dB SPL. The auditory system cons

  13. Pediatric central auditory processing disorder showing elevated threshold on pure tone audiogram.

    Science.gov (United States)

    Maeda, Yukihide; Nakagawa, Atsuko; Nagayasu, Rie; Sugaya, Akiko; Omichi, Ryotaro; Kariya, Shin; Fukushima, Kunihiro; Nishizaki, Kazunori

    2016-10-01

    Central auditory processing disorder (CAPD) is a condition in which dysfunction in the central auditory system causes difficulty in listening to conversations, particularly under noisy conditions, despite normal peripheral auditory function. Central auditory testing is generally performed in patients with normal hearing on the pure tone audiogram (PTA). This report shows that diagnosis of CAPD is possible even in the presence of an elevated threshold on the PTA, provided that the normal function of the peripheral auditory pathway was verified by distortion product otoacoustic emission (DPOAE), auditory brainstem response (ABR), and auditory steady state response (ASSR). Three pediatric cases (9- and 10-year-old girls and an 8-year-old boy) of CAPD with elevated thresholds on PTAs are presented. The chief complaint was difficulty in listening to conversations. PTA showed elevated thresholds, but the responses and thresholds for DPOAE, ABR, and ASSR were normal, showing that peripheral auditory function was normal. Significant findings of central auditory testing such as dichotic speech tests, time compression of speech signals, and binaural interaction tests confirmed the diagnosis of CAPD. These threshold shifts in PTA may provide a new concept of a clinical symptom due to central auditory dysfunction in CAPD. PMID:26922127

  14. Visual–auditory spatial processing in auditory cortical neurons

    OpenAIRE

    Bizley, Jennifer K.; King, Andrew J

    2008-01-01

    Neurons responsive to visual stimulation have now been described in the auditory cortex of various species, but their functions are largely unknown. Here we investigate the auditory and visual spatial sensitivity of neurons recorded in 5 different primary and non-primary auditory cortical areas of the ferret. We quantified the spatial tuning of neurons by measuring the responses to stimuli presented across a range of azimuthal positions and calculating the mutual information (MI) between the ...

  15. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...... of sound as an active component in shaping urban environments. As urban conditions spreads globally, new scales, shapes and forms of communities appear and call for new distinctions and models in the study and representation of sonic environments. Particularly so, since urban environments are increasingly...... presents some terminologies for mapping urban environments through its sonic configuration. Such probing into the practices of acoustic territorialisation may direct attention to some of the conflicting and disharmonious interests defining public inclusive domains. The paper investigates the concept...

  16. Auditory function in individuals within Leber's hereditary optic neuropathy pedigrees.

    Science.gov (United States)

    Rance, Gary; Kearns, Lisa S; Tan, Johanna; Gravina, Anthony; Rosenfeld, Lisa; Henley, Lauren; Carew, Peter; Graydon, Kelley; O'Hare, Fleur; Mackey, David A

    2012-03-01

    The aims of this study are to investigate whether auditory dysfunction is part of the spectrum of neurological abnormalities associated with Leber's hereditary optic neuropathy (LHON) and to determine the perceptual consequences of auditory neuropathy (AN) in affected listeners. Forty-eight subjects confirmed by genetic testing as having one of four mitochondrial mutations associated with LHON (mt11778, mtDNA14484, mtDNA14482 and mtDNA3460) participated. Thirty-two of these had lost vision, and 16 were asymptomatic at the point of data collection. While the majority of individuals showed normal sound detection, >25% (of both symptomatic and asymptomatic participants) showed electrophysiological evidence of AN with either absent or severely delayed auditory brainstem potentials. Abnormalities were observed for each of the mutations, but subjects with the mtDNA11778 type were the most affected. Auditory perception was also abnormal in both symptomatic and asymptomatic subjects, with >20% of cases showing impaired detection of auditory temporal (timing) cues and >30% showing abnormal speech perception both in quiet and in the presence of background noise. The findings of this study indicate that a relatively high proportion of individuals with the LHON genetic profile may suffer functional hearing difficulties due to neural abnormality in the central auditory pathways.

  17. Auditory Neuropathy: Findings of Behavioral, Physiological and Neurophysiological Tests

    Directory of Open Access Journals (Sweden)

    Mohammad Farhadi

    2006-12-01

    Full Text Available Background and Aim: Auditory neuropathy (AN can be diagnosed by abnormal auditory brainstem response (ABR, in the presence of normal cochlear microphonic (CM and otoacoustic emissions (OAEs.The aim of this study was to investigate the ABR and other electrodiagnostic test results of 6 patients suspicious to AN with problems in speech recognition. Materials and Methods: this cross sectional study was conducted on 6 AN patients with different ages evaluated by pure tone audiometry, speech discrimination score (SDS , immittance audiometry. ElectroCochleoGraphy , ABR, middle latency response (MLR, Late latency response (LLR, and OAEs. Results: Behavioral pure tone audiometric tests showed moderate to profound hearing loss. SDS was so poor which is not in accordance with pure tone thresholds. All patients had normal tympanogram but absent acoustic reflexes. CMs and OAEs were within normal limits. There was no contra lateral suppression of OAEs. None of cases had normal ABR or MLR although LLR was recorded in 4. Conclusion: All patients in this study are typical cases of auditory neuropathy. Despite having abnormal input, LLR remains normal that indicates differences in auditory evoked potentials related to required neural synchrony. These findings show that auditory cortex may play a role in regulating presentation of deficient signals along auditory pathways in primary steps.

  18. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  19. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  20. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mec

  1. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  2. The Perception of Auditory Motion.

    Science.gov (United States)

    Carlile, Simon; Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  3. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  4. Altered intrinsic connectivity of the auditory cortex in congenital amusia.

    Science.gov (United States)

    Leveque, Yohana; Fauvel, Baptiste; Groussard, Mathilde; Caclin, Anne; Albouy, Philippe; Platel, Hervé; Tillmann, Barbara

    2016-07-01

    Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest. PMID:27009161

  5. Association between language development and auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha-Muniz

    2014-06-01

    Full Text Available INTRODUCTION: It is crucial to understand the complex processing of acoustic stimuli along the auditory pathway ;comprehension of this complex processing can facilitate our understanding of the processes that underlie normal and altered human communication. AIM: To investigate the performance and lateralization effects on auditory processing assessment in children with specific language impairment (SLI, relating these findings to those obtained in children with auditory processing disorder (APD and typical development (TD. MATERIAL AND METHODS: Prospective study. Seventy-five children, aged 6-12 years, were separated in three groups: 25 children with SLI, 25 children with APD, and 25 children with TD. All went through the following tests: speech-in-noise test, Dichotic Digit test and Pitch Pattern Sequencing test. RESULTS: The effects of lateralization were observed only in the SLI group, with the left ear presenting much lower scores than those presented to the right ear. The inter-group analysis has shown that in all tests children from APD and SLI groups had significantly poorer performance compared to TD group. Moreover, SLI group presented worse results than APD group. CONCLUSION: This study has shown, in children with SLI, an inefficient processing of essential sound components and an effect of lateralization. These findings may indicate that neural processes (required for auditory processing are different between auditory processing and speech disorders.

  6. Auditory orientation in crickets: Pattern recognition controls reactive steering

    Science.gov (United States)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  7. Neural interactions in unilateral colliculus and between bilateral colliculi modulate auditory signal processing

    Science.gov (United States)

    Mei, Hui-Xian; Cheng, Liang; Chen, Qi-Cai

    2013-01-01

    In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral integration of auditory information. There are widespread neural interactions in unilateral (one) IC and between bilateral (two) ICs that could modulate auditory signal processing such as the amplitude and frequency selectivity of IC neurons. These neural interactions are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA) and glutamate, respectively. However, the majority of interactions are inhibitory while excitatory interactions are in the minority. Such unbalanced properties between excitatory and inhibitory projections have an important role in the formation of unilateral auditory dominance and sound location, and the neural interaction in one IC and between two ICs provide an adjustable and plastic modulation pattern for auditory signal processing. PMID:23626523

  8. Neural interactions in unilateral colliculus and between bilateral colliculi modulate auditory signal processing.

    Science.gov (United States)

    Mei, Hui-Xian; Cheng, Liang; Chen, Qi-Cai

    2013-01-01

    In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral integration of auditory information. There are widespread neural interactions in unilateral (one) IC and between bilateral (two) ICs that could modulate auditory signal processing such as the amplitude and frequency selectivity of IC neurons. These neural interactions are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA) and glutamate, respectively. However, the majority of interactions are inhibitory while excitatory interactions are in the minority. Such unbalanced properties between excitatory and inhibitory projections have an important role in the formation of unilateral auditory dominance and sound location, and the neural interaction in one IC and between two ICs provide an adjustable and plastic modulation pattern for auditory signal processing.

  9. The impact of severity of hypertension on auditory brainstem responses

    Directory of Open Access Journals (Sweden)

    Gurdev Lal Goyal

    2014-07-01

    Full Text Available Background: Auditory brainstem response is an objective electrophysiological method for assessing the auditory pathways from the auditory nerve to the brainstem. The aim of this study was to correlate and to assess the degree of involvement of peripheral and central regions of brainstem auditory pathways with increasing severity of hypertension, among the patients of essential hypertension. Method: This study was conducted on 50 healthy age and sex matched controls (Group I and 50 hypertensive patients (Group II. Later group was further sub-divided into - Group IIa (Grade 1 hypertension, Group IIb (Grade 2 hypertension, and Group IIc (Grade 3 hypertension, as per WHO guidelines. These responses/potentials were recorded by using electroencephalogram electrodes on a root-mean-square electromyography, EP MARC II (PC-based machine and data were statistically compared between the various groups by way of one-way ANOVA. The parameters used for analysis were the absolute latencies of Waves I through V, interpeak latencies (IPLs and amplitude ratio of Wave V/I. Result: The absolute latency of Wave I was observed to be significantly increased in Group IIa and IIb hypertensives, while Wave V absolute latency was highly significantly prolonged among Group IIb and IIc, as compared to that of normal control group. All the hypertensives, that is, Group IIa, IIb, and IIc patients were found to have highly significant prolonged III-V IPL as compared to that of normal healthy controls. Further, intergroup comparison among hypertensive patients revealed a significant prolongation of Wave V absolute latency and III-V IPL in Group IIb and IIc patients as compared to Group IIa patients. These findings suggest a sensory deficit along with synaptic delays, across the auditory pathways in all the hypertensives, the deficit being more markedly affecting the auditory processing time at pons to midbrain (IPL III-V region of auditory pathways among Grade 2 and 3

  10. Central projections of auditory receptor neurons of crickets.

    Science.gov (United States)

    Imaizumi, Kazuo; Pollack, Gerald S

    2005-12-19

    We describe the central projections of physiologically characterized auditory receptor neurons of crickets as revealed by confocal microscopy. Receptors tuned to ultrasonic frequencies (similar to those produced by echolocating, insectivorous bats), to a mid-range of frequencies, and a subset of those tuned to low, cricket-like frequencies have similar projections, terminating medially within the auditory neuropile. Quantitative analysis shows that despite the general similarity of these projections they are tonotopic, with receptors tuned to lower frequencies terminating more medially. Another subset of cricket-song-tuned receptors projects more laterally and posteriorly than the other types. Double-fills of receptors and identified interneurons show that the three medially projecting receptor types are anatomically well positioned to provide monosynaptic input to interneurons that relay auditory information to the brain and to interneurons that modify this ascending information. The more laterally and posteriorly branching receptor type may not interact directly with this ascending pathway, but is well positioned to provide direct input to an interneuron that carries auditory information to more posterior ganglia. These results suggest that information about cricket song is segregated into functionally different pathways as early as the level of receptor neurons. Ultrasound-tuned and mid-frequency tuned receptors have approximately twice as many varicosities, which are sites of transmitter release, per receptor as either anatomical type of cricket-song-tuned receptor. This may compensate in part for the numerical under-representation of these receptor types.

  11. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26541581

  12. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  13. Tactile feedback improves auditory spatial localization

    OpenAIRE

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds b...

  14. Tactile feedback improves auditory spatial localization

    OpenAIRE

    Monica eGori; Tiziana eVercillo; Giulio eSandini; David eBurr

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds b...

  15. Auditory Neuropathy - A Case of Auditory Neuropathy after Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Maliheh Mazaher Yazdi

    2007-12-01

    Full Text Available Background and Aim: Auditory neuropathy is an hearing disorder in which peripheral hearing is normal, but the eighth nerve and brainstem are abnormal. By clinical definition, patient with this disorder have normal OAE, but exhibit an absent or severely abnormal ABR. Auditory neuropathy was first reported in the late 1970s as different methods could identify discrepancy between absent ABR and present hearing threshold. Speech understanding difficulties are worse than can be predicted from other tests of hearing function. Auditory neuropathy may also affect vestibular function. Case Report: This article presents electrophysiological and behavioral data from a case of auditory neuropathy in a child with normal hearing after bilirubinemia in a 5 years follow-up. Audiological findings demonstrate remarkable changes after multidisciplinary rehabilitation. Conclusion: auditory neuropathy may involve damage to the inner hair cells-specialized sensory cells in the inner ear that transmit information about sound through the nervous system to the brain. Other causes may include faulty connections between the inner hair cells and the nerve leading from the inner ear to the brain or damage to the nerve itself. People with auditory neuropathy have OAEs response but absent ABR and hearing loss threshold that can be permanent, get worse or get better.

  16. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  17. A songbird forebrain area potentially involved in auditory discrimination and memory formation

    Indian Academy of Sciences (India)

    Raphael Pinaud; Thomas A Terleph

    2008-03-01

    Songbirds rely on auditory processing of natural communication signals for a number of social behaviors, including mate selection, individual recognition and the rare behavior of vocal learning – the ability to learn vocalizations through imitation of an adult model, rather than by instinct. Like mammals, songbirds possess a set of interconnected ascending and descending auditory brain pathways that process acoustic information and that are presumably involved in the perceptual processing of vocal communication signals. Most auditory areas studied to date are located in the caudomedial forebrain of the songbird and include the thalamo-recipient field L (subfields L1, L2 and L3), the caudomedial and caudolateral mesopallium (CMM and CLM, respectively) and the caudomedial nidopallium (NCM). This review focuses on NCM, an auditory area previously proposed to be analogous to parts of the primary auditory cortex in mammals. Stimulation of songbirds with auditory stimuli drives vigorous electrophysiological responses and the expression of several activity-regulated genes in NCM. Interestingly, NCM neurons are tuned to species-specific songs and undergo some forms of experience-dependent plasticity in-vivo. These activity-dependent changes may underlie long-term modifications in the functional performance of NCM and constitute a potential neural substrate for auditory discrimination. We end this review by discussing evidence that suggests that NCM may be a site of auditory memory formation and/or storage.

  18. Functional studies of the human auditory cortex, auditory memory and musical hallucinations

    International Nuclear Information System (INIS)

    of Brodmann, more intense in the contralateral (right) side. There is activation of both frontal executive areas without lateralization. Simultaneously, while area 39 of Brodmann was being activated, the temporal lobe was being inhibited. This seemingly not previously reported functional observation is suggestive that also inhibitory and not only excitatory relays play a role in the auditory pathways. The central activity in our patient (without external auditory stimuli) -who was tested while having musical hallucinations- was a mirror image of that of our normal stimulated volunteers. It is suggested that the trigger role of the inner ear -if any- could conceivably be inhibitory, desinhibitory and not necessarily purely excitatory. Based on our observations the trigger effect in our patient, could occur via the left ear. Finally, our functional studies are suggestive that auditory memory for musical perceptions could be seemingly located in the right area 39 of Brodm

  19. Auditory Processing Disorder in Children

    Science.gov (United States)

    ... free publications Find organizations Related Topics Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick ... NIH… Turning Discovery Into Health ® National Institute on Deafness and Other Communication Disorders 31 Center Drive, MSC ...

  20. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... and school. A positive, realistic attitude and healthy self-esteem in a child with APD can work wonders. And kids with APD can go on to ... Parents MORE ON THIS TOPIC Auditory Processing Disorder Special ...

  1. Auditory cortical processing: Binaural interaction in healthy and ROBO1-deficient subjects

    OpenAIRE

    LamminmÀki, Satu

    2012-01-01

    Two functioning ears provide clear advantages over monaural listening. During natural binaural listening, robust brain-level interaction occurs between the slightly different inputs from the left and the right ear. Binaural interaction requires convergence of inputs from the two ears somewhere in the auditory system, and it therefore relies on midline crossing of auditory pathways, a fundamental property of the mammalian central nervous system. Binaural interaction plays a significant ro...

  2. A Novel 9-Class Auditory ERP Paradigm Driving a Predictive Text Entry System

    OpenAIRE

    Johannes eHöhne; Martijn eSchreuder; Benjamin eBlankertz; Michael eTangermann

    2011-01-01

    Brain–computer interfaces (BCIs) based on event related potentials (ERPs) strive for offering communication pathways which are independent of muscle activity. While most visual ERP-based BCI paradigms require good control of the user's gaze direction, auditory BCI paradigms overcome this restriction. The present work proposes a novel approach using auditory evoked potentials for the example of a multiclass text spelling application. To control the ERP speller, BCI users focus their attention ...

  3. Psychology of auditory perception.

    Science.gov (United States)

    Lotto, Andrew; Holt, Lori

    2011-09-01

    Audition is often treated as a 'secondary' sensory system behind vision in the study of cognitive science. In this review, we focus on three seemingly simple perceptual tasks to demonstrate the complexity of perceptual-cognitive processing involved in everyday audition. After providing a short overview of the characteristics of sound and their neural encoding, we present a description of the perceptual task of segregating multiple sound events that are mixed together in the signal reaching the ears. Then, we discuss the ability to localize the sound source in the environment. Finally, we provide some data and theory on how listeners categorize complex sounds, such as speech. In particular, we present research on how listeners weigh multiple acoustic cues in making a categorization decision. One conclusion of this review is that it is time for auditory cognitive science to be developed to match what has been done in vision in order for us to better understand how humans communicate with speech and music. WIREs Cogni Sci 2011 2 479-489 DOI: 10.1002/wcs.123 For further resources related to this article, please visit the WIREs website. PMID:26302301

  4. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience

  5. Neural Correlates of an Auditory Afterimage in Primary Auditory Cortex

    OpenAIRE

    Noreña, A. J.; Eggermont, J. J.

    2003-01-01

    The Zwicker tone (ZT) is defined as an auditory negative afterimage, perceived after the presentation of an appropriate inducer. Typically, a notched noise (NN) with a notch width of 1/2 octave induces a ZT with a pitch falling in the frequency range of the notch. The aim of the present study was to find potential neural correlates of the ZT in the primary auditory cortex of ketamine-anesthetized cats. Responses of multiunits were recorded simultaneously with two 8-electrode arrays during 1 s...

  6. Brainstem auditory evoked potential abnormalities in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Sharat Gupta

    2013-01-01

    Full Text Available Background: Diabetes mellitus represents a syndrome complex in which multiple organ systems, including the central nervous system, are affected. Aim: The study was conducted to determine the changes in the brainstem auditory evoked potentials in type 2 diabetes mellitus. Materials and Methods: A cross sectional study was conducted on 126 diabetic males, aged 35-50 years, and 106 age-matched, healthy male volunteers. Brainstem auditory evoked potentials were recorded and the results were analyzed statistically using student′s unpaired t-test. The data consisted of wave latencies I, II, III, IV, V and interpeak latencies I-III, III-V and I-V, separately for both ears. Results: The latency of wave IV was significantly delayed only in the right ear, while the latency of waves III, V and interpeak latencies III-V, I-V showed a significant delay bilaterally in diabetic males. However, no significant difference was found between diabetic and control subjects as regards to the latency of wave IV unilaterally in the left ear and the latencies of waves I, II and interpeak latency I-III bilaterally. Conclusion: Diabetes patients have an early involvement of central auditory pathway, which can be detected with fair accuracy with auditory evoked potential studies.

  7. Subcortical correlates of auditory perceptual organization in humans.

    Science.gov (United States)

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2016-09-01

    To make sense of complex auditory scenes, the auditory system sequentially organizes auditory components into perceptual objects or streams. In the conventional view of this process, the cortex plays a major role in perceptual organization, and subcortical mechanisms merely provide the cortex with acoustical features. Here, we show that the neural activities of the brainstem are linked to perceptual organization, which alternates spontaneously for human listeners without any stimulus change. The stimulus used in the experiment was an unchanging sequence of repeated triplet tones, which can be interpreted as either one or two streams. Listeners were instructed to report the perceptual states whenever they experienced perceptual switching between one and two streams throughout the stimulus presentation. Simultaneously, we recorded event related potentials with scalp electrodes. We measured the frequency-following response (FFR), which is considered to originate from the brainstem. We also assessed thalamo-cortical activity through the middle-latency response (MLR). The results demonstrate that the FFR and MLR varied with the state of auditory stream perception. In addition, we found that the MLR change precedes the FFR change with perceptual switching from a one-stream to a two-stream percept. This suggests that there are top-down influences on brainstem activity from the thalamo-cortical pathway. These findings are consistent with the idea of a distributed, hierarchical neural network for perceptual organization and suggest that the network extends to the brainstem level. PMID:27371867

  8. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  9. Adaptation in the auditory system: an overview

    OpenAIRE

    David ePérez-González; Malmierca, Manuel S.

    2014-01-01

    The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the s...

  10. Coding of auditory space

    OpenAIRE

    Konishi­, Masakazu

    2003-01-01

    Behavioral, anatomical, and physiological approaches can be integrated in the study of sound localization in barn owls. Space representation in owls provides a useful example for discussion of place and ensemble coding. Selectivity for space is broad and ambiguous in low-order neurons. Parallel pathways for binaural cues and for different frequency bands converge on high-order space-specific neurons, which encode space more precisely. An ensemble of broadly tuned place-coding neurons may conv...

  11. Efeito de supressão nas vias auditivas: um estudo com os potenciais de média e longa latência Effect of suppression in the auditory pathways: a study with middle and long latency potentials

    Directory of Open Access Journals (Sweden)

    Mariana Buncana Simões

    2009-03-01

    Full Text Available OBJETIVO: avaliar o efeito de supressão no Potencial Evocado Auditivo de Média e Longa Latência em indivíduos sem alterações auditivas, com presença de emissões otoacústicas (EOA transientes em ambas as orelhas. MÉTODOS: foram avaliados 25 indivíduos (50 orelhas de 18 a 30 anos de idade, de ambos os sexos, utilizando-se os Potenciais Evocados Auditivos de Média e Longa latência sem e com ruído branco contralateral. Os sujeitos não apresentavam queixa relacionada ao Processamento Auditivo. Foram verificados e comparados os valores numéricos das latências e amplitudes das ondas na avaliação convencional sem ruído e com ruído contralateral. RESULTADOS: a média aritmética da amplitude de resposta na situação com ruído (mascaramento reduziu em todas as posições (C3/A1, C4/A1, C3/A2 e C4/A2, porém estes achados foram estatisticamente significantes nas posições C4/A1, C3/A2 e C4/A2. CONCLUSÃO: a diminuição da amplitude pode ter relação com o número de sinapses realizadas. O efeito de supressão na amplitude pode estar relacionado à ação do sistema eferente que suprime o número de sinapses neuronais.PURPOSE: to evaluate the suppression effect of the Middle Latency Response (MLR and Long Latency Potential on normal hearing individuals. METHODS: twenty-five individuals of both genders between 18 and 30-year old were evaluated (50 ears, with presence of OAE in both ears (thus, excluding any middle ear problem or hearing loss that could compromise the final evaluation. The individuals did not present any complain on the Auditory Processing. We used MLR and P300 with and with no contralateral white noise. The latency and amplitude of the waves were evaluated (with and with no noise and the results were compared. RESULTS: we found reduction in the median amplitude in the situation with noise (masking in all positions (C3/A1, C4/A1, C3/A2 and C4/A2. However, these findings had no statistically significant difference in

  12. Electrostimulation mapping of comprehension of auditory and visual words.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. PMID:26332785

  13. Electrostimulation mapping of comprehension of auditory and visual words.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing.

  14. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  15. Acquisition, Analyses and Interpretation of fMRI Data: A Study on the Effective Connectivity in Human Primary Auditory Cortices

    International Nuclear Information System (INIS)

    A study on the effective connectivity characteristics in auditory cortices was conducted on five healthy Malay male subjects with the age of 20 to 40 years old using functional magnetic resonance imaging (fMRI), statistical parametric mapping (SPM5) and dynamic causal modelling (DCM). A silent imaging paradigm was used to reduce the scanner sound artefacts on functional images. The subjects were instructed to pay attention to the white noise stimulus binaurally given at intensity level of 70 dB higher than the hearing level for normal people. Functional specialisation was studied using Matlab-based SPM5 software by means of fixed effects (FFX), random effects (RFX) and conjunction analyses. Individual analyses on all subjects indicate asymmetrical bilateral activation between the left and right auditory cortices in Brodmann areas (BA)22, 41 and 42 involving the primary and secondary auditory cortices. The three auditory areas in the right and left auditory cortices are selected for the determination of the effective connectivity by constructing 9 network models. The effective connectivity is determined on four out of five subjects with the exception of one subject who has the BA22 coordinates located too far from BA22 coordinates obtained from group analysis. DCM results showed the existence of effective connectivity between the three selected auditory areas in both auditory cortices. In the right auditory cortex, BA42 is identified as input centre with unidirectional parallel effective connectivities of BA42→BA41and BA42→BA22. However, for the left auditory cortex, the input is BA41 with unidirectional parallel effective connectivities of BA41→BA42 and BA41→BA22. The connectivity between the activated auditory areas suggests the existence of signal pathway in the auditory cortices even when the subject is listening to noise. (author)

  16. 后天性感音神经性聋患者听觉中枢磁共振弥散张量成像研究%Diffusion Tensor Imaging Study of Central Auditory Pathway in Patients with Acquired Sensorineural Hearing Loss

    Institute of Scientific and Technical Information of China (English)

    祝康; 何莹; 侯瑾; 闫静; 郑国玺; 许珉; 白芝兰

    2015-01-01

    obtained from the inferior colliculus and lateral lemniscus ,consisting of the fractional anisotropy (FA) ,radial diffusion (RD) ,axi‐al dispersion (AD) and mean diffusivity .Results There were significant differences(P0 .05) .Conclusion There was no obviously abnormal change on the central auditory processing in sudden deafness group ,but significant destruction was found on 2 years SNHL group .It indicated that central auditory processing of the history of sensorineural deafness affected the structural changes of the central au‐ditory pathway .

  17. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. PMID:24378910

  18. Psychophysiological responses to auditory change.

    Science.gov (United States)

    Chuen, Lorraine; Sears, David; McAdams, Stephen

    2016-06-01

    A comprehensive characterization of autonomic and somatic responding within the auditory domain is currently lacking. We studied whether simple types of auditory change that occur frequently during music listening could elicit measurable changes in heart rate, skin conductance, respiration rate, and facial motor activity. Participants heard a rhythmically isochronous sequence consisting of a repeated standard tone, followed by a repeated target tone that changed in pitch, timbre, duration, intensity, or tempo, or that deviated momentarily from rhythmic isochrony. Changes in all parameters produced increases in heart rate. Skin conductance response magnitude was affected by changes in timbre, intensity, and tempo. Respiratory rate was sensitive to deviations from isochrony. Our findings suggest that music researchers interpreting physiological responses as emotional indices should consider acoustic factors that may influence physiology in the absence of induced emotions. PMID:26927928

  19. Reality of auditory verbal hallucinations

    Science.gov (United States)

    Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency. PMID:19620178

  20. Auditory and visual interhemispheric communication in musicians and non-musicians.

    Science.gov (United States)

    Woelfle, Rebecca; Grahn, Jessica A

    2013-01-01

    The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer. PMID:24386382

  1. Auditory distraction and serial memory

    OpenAIRE

    Jones, D M; Hughes, Rob; Macken, W.J.

    2010-01-01

    One mental activity that is very vulnerable to auditory distraction is serial recall. This review of the contemporary findings relating to serial recall charts the key determinants of distraction. It is evident that there is one form of distraction that is a joint product of the cognitive characteristics of the task and of the obligatory cognitive processing of the sound. For sequences of sound, distraction appears to be an ineluctable product of similarity-of-process, specifically, the seria...

  2. Reality of auditory verbal hallucinations

    OpenAIRE

    Raij TT; Valkonen-Korhonen M; Holi M; Therman S; Lehtonen J; Hari R

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation st...

  3. The auditory dorsal stream plays a crucial role in projecting hallucinated voices into external space

    NARCIS (Netherlands)

    Looijestijn, Jasper; Diederen, Kelly M. J.; Goekoop, Rutger; Sommer, Iris E. C.; Daalman, Kirstin; Kahn, Rene S.; Hoek, Hans W.; Blom, Jan Dirk

    2013-01-01

    Introduction: Verbal auditory hallucinations (VAHs) are experienced as spoken voices which seem to originate in the extracorporeal environment or inside the head. Animal and human research has identified a 'where' pathway for sound processing comprising the planum temporale, the middle frontal gyrus

  4. Auditory sequence analysis and phonological skill.

    Science.gov (United States)

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E; Turton, Stuart; Griffiths, Timothy D

    2012-11-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  5. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.

    Science.gov (United States)

    Nabatiyan, A; Poulet, J F A; de Polavieja, G G; Hedwig, B

    2003-10-01

    Auditory pattern recognition by the CNS is a fundamental process in acoustic communication. Because crickets communicate with stereotyped patterns of constant frequency syllables, they are established models to investigate the neuronal mechanisms of auditory pattern recognition. Here we provide evidence that for the neural processing of amplitude-modulated sounds, the instantaneous spike rate rather than the time-averaged neural activity is the appropriate coding principle by comparing both coding parameters in a thoracic interneuron (Omega neuron ON1) of the cricket (Gryllus bimaculatus) auditory system. When stimulated with different temporal sound patterns, the analysis of the instantaneous spike rate demonstrates that the neuron acts as a low-pass filter for syllable patterns. The instantaneous spike rate is low at high syllable rates, but prominent peaks in the instantaneous spike rate are generated as the syllable rate resembles that of the species-specific pattern. The occurrence and repetition rate of these peaks in the neuronal discharge are sufficient to explain temporal filtering in the cricket auditory pathway as they closely match the tuning of phonotactic behavior to different sound patterns. Thus temporal filtering or "pattern recognition" occurs at an early stage in the auditory pathway.

  6. Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex.

    Science.gov (United States)

    Basta, Dietmar; Tzschentke, Barbara; Ernst, Arne

    Noise-induced effects within the inner ear have been well investigated for several years. However, this peripheral damage cannot fully explain the audiological symptoms in noise-induced hearing loss (NIHL), e.g. tinnitus, recruitment, reduced speech intelligibility, hyperacusis. There are few reports on central noise effects. Noise can induce an apoptosis of neuronal tissue within the lower auditory pathway. Higher auditory structures (e.g. medial geniculate body, auditory cortex) are characterized by metabolic changes after noise exposure. However, little is known about the microstructural changes of the higher auditory pathway after noise exposure. The present paper was therefore aimed at investigating the cell density in the medial geniculate body (MGB) and the primary auditory cortex (AI) after noise exposure. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun, 10:1). After 1 week, auditory brainstem response recordings (ABR) were performed in noise exposed and normal hearing animals. After fixation, the brain was microdissected and stained (Kluever-Barrera). The cell density in the MGB subdivisions and the AI were determined by counting the cells within a grid. Noise-exposed animals showed a significant ABR threshold shift over the whole frequency range. Cell density was significantly reduced in all subdivisions of the MGB and in layers IV-VI of AI. The present findings demonstrate a significant noise-induced change of the neuronal cytoarchitecture in central key areas of auditory processing. These changes could contribute to the complex psychoacoustic symptoms after NIHL.

  7. Speech distortion measure based on auditory properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo; HU Xiulin; ZHANG Yunyu; ZHU Yaoting

    2000-01-01

    The Perceptual Spectrum Distortion (PSD), based on auditory properties of human being, is presented to measure speech distortion. The PSD measure calculates the speech distortion distance by simulating the auditory properties of human being and converting short-time speech power spectrum to auditory perceptual spectrum. Preliminary simulative experiments in comparison with the Itakura measure have been done. The results show that the PSD measure is a perferable speech distortion measure and more consistent with subjective assessment of speech quality.

  8. Auditory stimulation and cardiac autonomic regulation

    OpenAIRE

    Vitor E Valenti; Guida, Heraldo L.; Frizzo, Ana C F; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M; Luiz Carlos de Abreu

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation bet...

  9. Mechanisms of Auditory Verbal Hallucination in Schizophrenia

    OpenAIRE

    Raymond eCho; Wayne eWu

    2013-01-01

    Recent work on the mechanisms underlying auditory verbal hallucination (AVH) has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two...

  10. Lis1 mediates planar polarity of auditory hair cells through regulation of microtubule organization

    OpenAIRE

    Sipe, Conor W.; Liu, Lixia; Lee, Jianyi; Grimsley-Myers, Cynthia; Lu, Xiaowei

    2013-01-01

    The V-shaped hair bundles atop auditory hair cells and their uniform orientation are manifestations of epithelial planar cell polarity (PCP) required for proper perception of sound. PCP is regulated at the tissue level by a conserved core Wnt/PCP pathway. However, the hair cell-intrinsic polarity machinery is poorly understood. Recent findings implicate hair cell microtubules in planar polarization of hair cells. To elucidate the microtubule-mediated polarity pathway, we analyzed Lis1 functio...

  11. Development of auditory-vocal perceptual skills in songbirds.

    Directory of Open Access Journals (Sweden)

    Vanessa C Miller-Sims

    Full Text Available Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult "tutors", and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.

  12. Development of auditory-vocal perceptual skills in songbirds.

    Science.gov (United States)

    Miller-Sims, Vanessa C; Bottjer, Sarah W

    2012-01-01

    Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult "tutors", and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.

  13. Auditory Training and Its Effects upon the Auditory Discrimination and Reading Readiness of Kindergarten Children.

    Science.gov (United States)

    Cullen, Minga Mustard

    The purpose of this investigation was to evaluate the effects of a systematic auditory training program on the auditory discrimination ability and reading readiness of 55 white, middle/upper middle class kindergarten students. Following pretesting with the "Wepman Auditory Discrimination Test,""The Clymer-Barrett Prereading Battery," and the…

  14. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    Science.gov (United States)

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  15. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  16. Central auditory function of deafness genes.

    Science.gov (United States)

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  17. Auditory Neuropathy in Two Patients with Generalized Neuropathic Disorder: A Case Report

    Directory of Open Access Journals (Sweden)

    P Ahmadi

    2008-06-01

    Full Text Available Background: Although it is not a new disorder, in recent times we have attained a greater understanding of auditory neuropathy (AN. In this type of hearing impairment, cochlear hair cells function but AN victims suffer from disordered neural transmission in the auditory pathway. The auditory neuropathy result profile often occurs as a part of that of the generalized neuropathic disorders, indicated in approximately 30-40% of all reported auditory neuropathy/auditory dyssynchrony (AN/AD cases, with approximately 80% of patients reporting symptom onset over the age of 15 years. In the present report, the results of audiologic tests (behavioral, physiologic and evoked potentials on two young patients with generalized neuropathy are discussed.Case report: Two brothers, 26 and 17 years old, presented with speech perception weakness and movement difficulties that started at 12 years of age and progressed as time passed. In their last examination, there was a moderate to severe flat audiogram in the older patient and mild low tone loss in the younger one. The major difficulty of the patients was severe speech perception impairment that was not compatible with their hearing thresholds. Paresthesia, sural muscle contraction and pain, and balance disorder were the first symptoms of the older brother. Now he can only move with crutches and his finger muscle tonicity has decreased remarkably, with marked fatigue after a short period of walking. Increasing movement difficulties were noted in his last visit. Visual neuropathy had been reported in repeated visual system examinations for the older brother, with similar, albeit less severe, symptoms in the younger brother.In the present study of these patients, behavioral investigations included pure-tone audiometry and speech discrimination scoring. Physiologic studies consisted Transient Evoked Otoacoustic Emission (TEOAE and acoustic reflexes. Electrophysiologic auditory tests were also performed to determine

  18. Auditory responses and stimulus-specific adaptation in rat auditory cortex are preserved across NREM and REM sleep.

    Science.gov (United States)

    Nir, Yuval; Vyazovskiy, Vladyslav V; Cirelli, Chiara; Banks, Matthew I; Tononi, Giulio

    2015-05-01

    Sleep entails a disconnection from the external environment. By and large, sensory stimuli do not trigger behavioral responses and are not consciously perceived as they usually are in wakefulness. Traditionally, sleep disconnection was ascribed to a thalamic "gate," which would prevent signal propagation along ascending sensory pathways to primary cortical areas. Here, we compared single-unit and LFP responses in core auditory cortex as freely moving rats spontaneously switched between wakefulness and sleep states. Despite robust differences in baseline neuronal activity, both the selectivity and the magnitude of auditory-evoked responses were comparable across wakefulness, Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep (pairwise differences sleep and wakefulness using an oddball paradigm. Robust stimulus-specific adaptation (SSA) was observed following the onset of repetitive tones, and the strength of SSA effects (13-20%) was comparable across vigilance states. Thus, responses in core auditory cortex are preserved across sleep states, suggesting that evoked activity in primary sensory cortices is driven by external physical stimuli with little modulation by vigilance state. We suggest that sensory disconnection during sleep occurs at a stage later than primary sensory areas.

  19. Brainstem auditory-evoked potentials in two meditative mental states

    Directory of Open Access Journals (Sweden)

    Kumar Sanjay

    2010-01-01

    Full Text Available Context: Practicing mental repetition of "OM" has been shown to cause significant changes in the middle latency auditory-evoked potentials, which suggests that it facilitates the neural activity at the mesencephalic or diencephalic levels. Aims: The aim of the study was to study the brainstem auditory-evoked potentials (BAEP in two meditation states based on consciousness, viz. dharana, and dhyana. Materials and Methods: Thirty subjects were selected, with ages ranging from 20 to 55 years (M=29.1; ±SD=6.5 years who had a minimum of 6 months experience in meditating "OM". Each subject was assessed in four sessions, i.e. two meditation and two control sessions. The two control sessions were: (i ekagrata, i.e. single-topic lecture on meditation and (ii cancalata, i.e. non-targeted thinking. The two meditation sessions were: (i dharana, i.e. focusing on the symbol "OM" and (ii dhyana, i.e. effortless single-thought state "OM". All four sessions were recorded on four different days and consisted of three states, i.e. pre, during and post. Results: The present results showed that the wave V peak latency significantly increased in cancalata, ekagrata and dharana, but no change occurred during the dhyana session. Conclusions: These results suggested that information transmission along the auditory pathway is delayed during cancalata, ekagrata and dharana, but there is no change during dhyana. It may be said that auditory information transmission was delayed at the inferior collicular level as the wave V corresponds to the tectum.

  20. Auditory hallucinations suppressed by etizolam in a patient with schizophrenia.

    Science.gov (United States)

    Benazzi, F; Mazzoli, M; Rossi, E

    1993-10-01

    A patient presented with a 15 year history of schizophrenia with auditory hallucinations. Though unresponsive to prolonged trials of neuroleptics, the auditory hallucinations disappeared with etizolam. PMID:7902201

  1. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  2. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  3. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  4. Auditory hallucinations in nonverbal quadriplegics.

    Science.gov (United States)

    Hamilton, J

    1985-11-01

    When a system for communicating with nonverbal, quadriplegic, institutionalized residents was developed, it was discovered that many were experiencing auditory hallucinations. Nine cases are presented in this study. The "voices" described have many similar characteristics, the primary one being that they give authoritarian commands that tell the residents how to behave and to which the residents feel compelled to respond. Both the relationship of this phenomenon to the theoretical work of Julian Jaynes and its effect on the lives of the residents are discussed.

  5. Autosomal recessive hereditary auditory neuropathy

    Institute of Scientific and Technical Information of China (English)

    王秋菊; 顾瑞; 曹菊阳

    2003-01-01

    Objectives: Auditory neuropathy (AN) is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses (ABRs) and normal cochlear outer hair cell function as measured by otoacoustic emissions (OAEs). Many risk factors are thought to be involved in its etiology and pathophysiology. Three Chinese pedigrees with familial AN are presented herein to demonstrate involvement of genetic factors in AN etiology. Methods: Probands of the above - mentioned pedigrees, who had been diagnosed with AN, were evaluated and followed up in the Department of Otolaryngology Head and Neck Surgery, China PLA General Hospital. Their family members were studied and the pedigree diagrams were established. History of illness, physical examination,pure tone audiometry, acoustic reflex, ABRs and transient evoked and distortion- product otoacoustic emissions (TEOAEs and DPOAEs) were obtained from members of these families. DPOAE changes under the influence of contralateral sound stimuli were observed by presenting a set of continuous white noise to the non - recording ear to exam the function of auditory efferent system. Some subjects received vestibular caloric test, computed tomography (CT)scan of the temporal bone and electrocardiography (ECG) to exclude other possible neuropathy disorders. Results: In most affected subjects, hearing loss of various degrees and speech discrimination difficulties started at 10 to16 years of age. Their audiological evaluation showed absence of acoustic reflex and ABRs. As expected in AN, these subjects exhibited near normal cochlear outer hair cell function as shown in TEOAE & DPOAE recordings. Pure- tone audiometry revealed hearing loss ranging from mild to severe in these patients. Autosomal recessive inheritance patterns were observed in the three families. In Pedigree Ⅰ and Ⅱ, two affected brothers were found respectively, while in pedigree Ⅲ, 2 sisters were affected. All the patients were otherwise normal without

  6. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  7. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  8. Speech perception as complex auditory categorization

    Science.gov (United States)

    Holt, Lori L.

    2002-05-01

    Despite a long and rich history of categorization research in cognitive psychology, very little work has addressed the issue of complex auditory category formation. This is especially unfortunate because the general underlying cognitive and perceptual mechanisms that guide auditory category formation are of great importance to understanding speech perception. I will discuss a new methodological approach to examining complex auditory category formation that specifically addresses issues relevant to speech perception. This approach utilizes novel nonspeech sound stimuli to gain full experimental control over listeners' history of experience. As such, the course of learning is readily measurable. Results from this methodology indicate that the structure and formation of auditory categories are a function of the statistical input distributions of sound that listeners hear, aspects of the operating characteristics of the auditory system, and characteristics of the perceptual categorization system. These results have important implications for phonetic acquisition and speech perception.

  9. Tactile feedback improves auditory spatial localization.

    Science.gov (United States)

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality. PMID:25368587

  10. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  11. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  12. Temporal auditory processing in elders

    Directory of Open Access Journals (Sweden)

    Azzolini, Vanuza Conceição

    2010-03-01

    Full Text Available Introduction: In the trial of aging all the structures of the organism are modified, generating intercurrences in the quality of the hearing and of the comprehension. The hearing loss that occurs in consequence of this trial occasion a reduction of the communicative function, causing, also, a distance of the social relationship. Objective: Comparing the performance of the temporal auditory processing between elderly individuals with and without hearing loss. Method: The present study is characterized for to be a prospective, transversal and of diagnosis character field work. They were analyzed 21 elders (16 women and 5 men, with ages between 60 to 81 years divided in two groups, a group "without hearing loss"; (n = 13 with normal auditive thresholds or restricted hearing loss to the isolated frequencies and a group "with hearing loss" (n = 8 with neurosensory hearing loss of variable degree between light to moderately severe. Both the groups performed the tests of frequency (PPS and duration (DPS, for evaluate the ability of temporal sequencing, and the test Randon Gap Detection Test (RGDT, for evaluate the temporal resolution ability. Results: It had not difference statistically significant between the groups, evaluated by the tests DPS and RGDT. The ability of temporal sequencing was significantly major in the group without hearing loss, when evaluated by the test PPS in the condition "muttering". This result presented a growing one significant in parallel with the increase of the age group. Conclusion: It had not difference in the temporal auditory processing in the comparison between the groups.

  13. Effects of passive tactile and auditory stimuli on left visual neglect.

    Science.gov (United States)

    Hommel, M; Peres, B; Pollak, P; Memin, B; Besson, G; Gaio, J M; Perret, J

    1990-05-01

    Patients with left-sided visual neglect fail to copy the left part of drawings or the drawings on the left side of a sheet of paper. Our aim was to study the variations in copying drawings induced by passive stimulation in patients with left-sided visual neglect. No stimulation at all, tactile unilateral and bilateral, binaural auditory verbal, and nonverbal stimuli were randomly applied to 14 patients with right-hemisphere strokes. Only nonverbal stimuli decreased the neglect. As nonverbal stimuli mainly activate the right hemisphere, the decrease in neglect suggests right-hemispheric hypoactivity at rest in these patients. The absence of modification of neglect during verbal stimulation suggests a bilateral hemispheric activation and the persistence of interhemispheric imbalance. Our results showed that auditory pathways take part in the network involved with neglect. Passive nonverbal auditory stimuli may be of interest in the rehabilitation of patients with left visual neglect. PMID:2334306

  14. The Wellcome Prize Lecture. A map of auditory space in the mammalian brain: neural computation and development.

    Science.gov (United States)

    King, A J

    1993-09-01

    The experiments described in this review have demonstrated that the SC contains a two-dimensional map of auditory space, which is synthesized within the brain using a combination of monaural and binaural localization cues. There is also an adaptive fusion of auditory and visual space in this midbrain nucleus, providing for a common access to the motor pathways that control orientation behaviour. This necessitates a highly plastic relationship between the visual and auditory systems, both during postnatal development and in adult life. Because of the independent mobility of difference sense organs, gating mechanisms are incorporated into the auditory representation to provide up-to-date information about the spatial orientation of the eyes and ears. The SC therefore provides a valuable model system for studying a number of important issues in brain function, including the neural coding of sound location, the co-ordination of spatial information between different sensory systems, and the integration of sensory signals with motor outputs. PMID:8240794

  15. A corollary discharge mechanism modulates central auditory processing in singing crickets.

    Science.gov (United States)

    Poulet, J F A; Hedwig, B

    2003-03-01

    Crickets communicate using loud (100 dB SPL) sound signals that could adversely affect their own auditory system. To examine how they cope with this self-generated acoustic stimulation, intracellular recordings were made from auditory afferent neurons and an identified auditory interneuron-the Omega 1 neuron (ON1)-during pharmacologically elicited singing (stridulation). During sonorous stridulation, the auditory afferents and ON1 responded with bursts of spikes to the crickets' own song. When the crickets were stridulating silently, after one wing had been removed, only a few spikes were recorded in the afferents and ON1. Primary afferent depolarizations (PADs) occurred in the terminals of the auditory afferents, and inhibitory postsynaptic potentials (IPSPs) were apparent in ON1. The PADs and IPSPs were composed of many summed, small-amplitude potentials that occurred at a rate of about 230 Hz. The PADs and the IPSPs started during the closing wing movement and peaked in amplitude during the subsequent opening wing movement. As a consequence, during silent stridulation, ON1's response to acoustic stimuli was maximally inhibited during wing opening. Inhibition coincides with the time when ON1 would otherwise be most strongly excited by self-generated sounds in a sonorously stridulating cricket. The PADs and the IPSPs persisted in fictively stridulating crickets whose ventral nerve cord had been isolated from muscles and sense organs. This strongly suggests that the inhibition of the auditory pathway is the result of a corollary discharge from the stridulation motor network. The central inhibition was mimicked by hyperpolarizing current injection into ON1 while it was responding to a 100 dB SPL sound pulse. This suppressed its spiking response to the acoustic stimulus and maintained its response to subsequent, quieter stimuli. The corollary discharge therefore prevents auditory desensitization in stridulating crickets and allows the animals to respond to external

  16. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli.

    Science.gov (United States)

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-07-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli.

  17. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway. PMID:24672012

  18. Spatial auditory processing in pinnipeds

    Science.gov (United States)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study

  19. An Auditory Model of Improved Adaptive ZCPA

    Directory of Open Access Journals (Sweden)

    Jinping Zhang

    2013-07-01

    Full Text Available An improved ZCAP auditory model with adaptability is proposed in this paper, and the  adaptive method designed for ZCPA model is suitable for other auditory model with inner-hair-cell sub-model. The first step in the implement process of the proposed ZCPA model is to carry out the calculation of inner product between signal and complex Gammatone filters to obtain important frequency components  of signal. And then, according to  the result of the first step, the parameters of the basilar membrane sub-model and frequency box are automatically adjusted, such as the number of the basilar membrane filters, center frequency and bandwith of each basilar membrane filter, position of each frequency box, and so on. Lastly  an auditory model is built, and the final output is auditory spectrum.The results of numerical simulation and experiments have showed that the proposed model could realize accurate frequency selection, and the auditory spectrum is more distinctly than that of conventional ZCPA model. Moreover, the proposed model can completely avoided the influence of the number of filter on the shape of auditory spectrum existing in conventional ZCPA model so that the shape of auditory spectrum is steady, and the data quantity is small.

  20. Auditory Efferent System Modulates Mosquito Hearing.

    Science.gov (United States)

    Andrés, Marta; Seifert, Marvin; Spalthoff, Christian; Warren, Ben; Weiss, Lukas; Giraldo, Diego; Winkler, Margret; Pauls, Stephanie; Göpfert, Martin C

    2016-08-01

    The performance of vertebrate ears is controlled by auditory efferents that originate in the brain and innervate the ear, synapsing onto hair cell somata and auditory afferent fibers [1-3]. Efferent activity can provide protection from noise and facilitate the detection and discrimination of sound by modulating mechanical amplification by hair cells and transmitter release as well as auditory afferent action potential firing [1-3]. Insect auditory organs are thought to lack efferent control [4-7], but when we inspected mosquito ears, we obtained evidence for its existence. Antibodies against synaptic proteins recognized rows of bouton-like puncta running along the dendrites and axons of mosquito auditory sensory neurons. Electron microscopy identified synaptic and non-synaptic sites of vesicle release, and some of the innervating fibers co-labeled with somata in the CNS. Octopamine, GABA, and serotonin were identified as efferent neurotransmitters or neuromodulators that affect auditory frequency tuning, mechanical amplification, and sound-evoked potentials. Mosquito brains thus modulate mosquito ears, extending the use of auditory efferent systems from vertebrates to invertebrates and adding new levels of complexity to mosquito sound detection and communication. PMID:27476597

  1. Functional Neurochemistry of the Auditory System

    Directory of Open Access Journals (Sweden)

    Nourollah Agha Ebrahimi

    1993-03-01

    Full Text Available Functional Neurochemistry is one of the fields of studies in the auditory system which has had an outstanding development in the recent years. Many of the findings in the mentioned field had led not only the basic auditory researches but also the clinicians to new points of view in audiology.Here, we are aimed at discussing the latest investigations in the Functional Neurochemistry of the auditory system and have focused this review mainly on the researches which will arise flashes of hope for future clinical studies

  2. Auditory Neuropathy/Dyssynchrony in Biotinidase Deficiency

    Science.gov (United States)

    Yaghini, Omid

    2016-01-01

    Biotinidase deficiency is a disorder inherited autosomal recessively showing evidence of hearing loss and optic atrophy in addition to seizures, hypotonia, and ataxia. In the present study, a 2-year-old boy with Biotinidase deficiency is presented in which clinical symptoms have been reported with auditory neuropathy/auditory dyssynchrony (AN/AD). In this case, transient-evoked otoacoustic emissions showed bilaterally normal responses representing normal function of outer hair cells. In contrast, acoustic reflex test showed absent reflexes bilaterally, and visual reinforcement audiometry and auditory brainstem responses indicated severe to profound hearing loss in both ears. These results suggest AN/AD in patients with Biotinidase deficiency. PMID:27144235

  3. Functional Neurochemistry of the Auditory System

    OpenAIRE

    Nourollah Agha Ebrahimi

    1993-01-01

    Functional Neurochemistry is one of the fields of studies in the auditory system which has had an outstanding development in the recent years. Many of the findings in the mentioned field had led not only the basic auditory researches but also the clinicians to new points of view in audiology.Here, we are aimed at discussing the latest investigations in the Functional Neurochemistry of the auditory system and have focused this review mainly on the researches which will arise flashes of hope f...

  4. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    Prediction and assessment of low-frequency noise problems requires information about the auditory filter characteristics at low-frequencies. Unfortunately, data at low-frequencies is scarce and practically no results have been published for frequencies below 100 Hz. Extrapolation of ERB results......-ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...

  5. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  6. AUDITORY CORTICAL PLASTICITY: DOES IT PROVIDE EVIDENCE FOR COGNITIVE PROCESSING IN THE AUDITORY CORTEX?

    OpenAIRE

    Irvine, Dexter R. F.

    2007-01-01

    The past 20 years have seen substantial changes in our view of the nature of the processing carried out in auditory cortex. Some processing of a cognitive nature, previously attributed to higher order “association” areas, is now considered to take place in auditory cortex itself. One argument adduced in support of this view is the evidence indicating a remarkable degree of plasticity in the auditory cortex of adult animals. Such plasticity has been demonstrated in a wide range of paradigms, i...

  7. Frequency band-importance functions for auditory and auditory-visual speech recognition

    Science.gov (United States)

    Grant, Ken W.

    2005-04-01

    In many everyday listening environments, speech communication involves the integration of both acoustic and visual speech cues. This is especially true in noisy and reverberant environments where the speech signal is highly degraded, or when the listener has a hearing impairment. Understanding the mechanisms involved in auditory-visual integration is a primary interest of this work. Of particular interest is whether listeners are able to allocate their attention to various frequency regions of the speech signal differently under auditory-visual conditions and auditory-alone conditions. For auditory speech recognition, the most important frequency regions tend to be around 1500-3000 Hz, corresponding roughly to important acoustic cues for place of articulation. The purpose of this study is to determine the most important frequency region under auditory-visual speech conditions. Frequency band-importance functions for auditory and auditory-visual conditions were obtained by having subjects identify speech tokens under conditions where the speech-to-noise ratio of different parts of the speech spectrum is independently and randomly varied on every trial. Point biserial correlations were computed for each separate spectral region and the normalized correlations are interpreted as weights indicating the importance of each region. Relations among frequency-importance functions for auditory and auditory-visual conditions will be discussed.

  8. In search of an auditory engram

    Science.gov (United States)

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory. PMID:15967995

  9. Effect of omega-3 on auditory system

    Directory of Open Access Journals (Sweden)

    Vida Rahimi

    2014-01-01

    Full Text Available Background and Aim: Omega-3 fatty acid have structural and biological roles in the body 's various systems . Numerous studies have tried to research about it. Auditory system is affected a s well. The aim of this article was to review the researches about the effect of omega-3 on auditory system.Methods: We searched Medline , Google Scholar, PubMed, Cochrane Library and SID search engines with the "auditory" and "omega-3" keywords and read textbooks about this subject between 19 70 and 20 13.Conclusion: Both excess and deficient amounts of dietary omega-3 fatty acid can cause harmful effects on fetal and infant growth and development of brain and central nervous system esspesially auditory system. It is important to determine the adequate dosage of omega-3.

  10. Auditory perception modulated by word reading.

    Science.gov (United States)

    Cao, Liyu; Klepp, Anne; Schnitzler, Alfons; Gross, Joachim; Biermann-Ruben, Katja

    2016-10-01

    Theories of embodied cognition positing that sensorimotor areas are indispensable during language comprehension are supported by neuroimaging and behavioural studies. Among others, the auditory system has been suggested to be important for understanding sound-related words (visually presented) and the motor system for action-related words. In this behavioural study, using a sound detection task embedded in a lexical decision task, we show that in participants with high lexical decision performance sound verbs improve auditory perception. The amount of modulation was correlated with lexical decision performance. Our study provides convergent behavioural evidence of auditory cortex involvement in word processing, supporting the view of embodied language comprehension concerning the auditory domain. PMID:27324193

  11. [Approaches to therapy of auditory agnosia].

    Science.gov (United States)

    Fechtelpeter, A; Göddenhenrich, S; Huber, W; Springer, L

    1990-01-01

    In a 41-year-old stroke patient with bitemporal brain damage, we found severe signs of auditory agnosia 6 months after onset. Recognition of environmental sounds was extremely impaired when tested in a multiple choice sound-picture matching task, whereas auditory discrimination between sounds and picture identifications by written names was almost undisturbed. In a therapy experiment, we tried to enhance sound recognition via semantic categorization and association, imitation of sound and analysis of auditory features, respectively. The stimulation of conscious auditory analysis proved to be increasingly effective over a 4-week period of therapy. We were able to show that the patient's improvement was not only a simple effect of practicing, but it was stable and carried over to nontrained items.

  12. Auditory-visual spatial interaction and modularity

    Science.gov (United States)

    Radeau, M

    1994-02-01

    The results of dealing with the conditions for pairing visual and auditory data coming from spatially separate locations argue for cognitive impenetrability and computational autonomy, the pairing rules being the Gestalt principles of common fate and proximity. Other data provide evidence for pairing with several properties of modular functioning. Arguments for domain specificity are inferred from comparison with audio-visual speech. Suggestion of innate specification can be found in developmental data indicating that the grouping of visual and auditory signals is supported very early in life by the same principles that operate in adults. Support for a specific neural architecture comes from neurophysiological studies of the bimodal (auditory-visual) neurons of the cat superior colliculus. Auditory-visual pairing thus seems to present the four main properties of the Fodorian module.

  13. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  14. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  15. Auditory sequence analysis and phonological skill

    OpenAIRE

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E.; Turton, Stuart; Griffiths, Timothy D

    2012-01-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between ...

  16. Auditory model inversion and its application

    Institute of Scientific and Technical Information of China (English)

    ZHAO Heming; WANG Yongqi; CHEN Xueqin

    2005-01-01

    Auditory model has been applied to several aspects of speech signal processing field, and appears to be effective in performance. This paper presents the inverse transform of each stage of one widely used auditory model. First of all it is necessary to invert correlogram and reconstruct phase information by repetitious iterations in order to get auditory-nerve firing rate. The next step is to obtain the negative parts of the signal via the reverse process of the HWR (Half Wave Rectification). Finally the functions of inner hair cell/synapse model and Gammatone filters have to be inverted. Thus the whole auditory model inversion has been achieved. An application of noisy speech enhancement based on auditory model inversion algorithm is proposed. Many experiments show that this method is effective in reducing noise.Especially when SNR of noisy speech is low it is more effective than other methods. Thus this auditory model inversion method given in this paper is applicable to speech enhancement field.

  17. Frequency Transformation in the Auditory Lemniscal Thalamocortical System.

    Directory of Open Access Journals (Sweden)

    Kazuo eImaizumi

    2014-07-01

    Full Text Available The auditory lemniscal thalamocortical (TC pathway conveys information from the ventral division of the medial geniculate body to the primary auditory cortex (A1. Although their general topographic organization has been well characterized, functional transformations at the lemniscal TC synapse still remain incompletely codified, largely due to the need for integration of functional anatomical results with the variability observed with various animal models and experimental techniques. In this review, we discuss these issues with classical approaches, such as in vivo extracellular recordings and tracer injections to physiologically identified areas in A1, and then compare these studies with modern approaches, such as in vivo two-photon calcium imaging, in vivo whole-cell recordings, optogenetic methods, and in vitro methods using slice preparations. A surprising finding from a comparison of classical and modern approaches is the similar degree of convergence from thalamic neurons to single A1 neurons and clusters of A1 neurons, although, thalamic convergence to single A1 neurons is more restricted areas within putative thalamic frequency lamina. These comparisons suggest that frequency convergence from thalamic input to A1 is functionally limited. Finally, we consider synaptic organization of TC projections and future directions for research.

  18. The role of the auditory brainstem in processing musically relevant pitch.

    Science.gov (United States)

    Bidelman, Gavin M

    2013-01-01

    Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners' perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294

  19. Coding of communication calls in the subcortical and cortical structures of the auditory system.

    Science.gov (United States)

    Suta, D; Popelár, J; Syka, J

    2008-01-01

    The processing of species-specific communication signals in the auditory system represents an important aspect of animal behavior and is crucial for its social interactions, reproduction, and survival. In this article the neuronal mechanisms underlying the processing of communication signals in the higher centers of the auditory system--inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC)--are reviewed, with particular attention to the guinea pig. The selectivity of neuronal responses for individual calls in these auditory centers in the guinea pig is usually low--most neurons respond to calls as well as to artificial sounds; the coding of complex sounds in the central auditory nuclei is apparently based on the representation of temporal and spectral features of acoustical stimuli in neural networks. Neuronal response patterns in the IC reliably match the sound envelope for calls characterized by one or more short impulses, but do not exactly fit the envelope for long calls. Also, the main spectral peaks are represented by neuronal firing rates in the IC. In comparison to the IC, response patterns in the MGB and AC demonstrate a less precise representation of the sound envelope, especially in the case of longer calls. The spectral representation is worse in the case of low-frequency calls, but not in the case of broad-band calls. The emotional content of the call may influence neuronal responses in the auditory pathway, which can be demonstrated by stimulation with time-reversed calls or by measurements performed under different levels of anesthesia. The investigation of the principles of the neural coding of species-specific vocalizations offers some keys for understanding the neural mechanisms underlying human speech perception.

  20. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  1. EXPRESSION PATTERNS OF ESTROGEN RECEPTORS IN THE CENTRAL AUDITORY SYSTEM CHANGE IN PREPUBERTAL AND AGED MICE

    Science.gov (United States)

    Charitidi, K.; Frisina, R. D.; Vasilyeva, O. N.; Zhu, X.; Canlon, B.

    2011-01-01

    Estrogens are important in the development, maintenance and physiology of the CNS. Several studies have shown their effects on the processing of hearing in both males and females, and these effects, in part, are thought to result from regulation of the transcription of genes via their classical estrogen receptor (ER) pathway. In order to understand the spatiotemporal changes that occur with age, we have studied the expression of ERs in the central auditory pathway in prepubertal and aged CBA mice with immunohistochemistry. In prepubertal mice a clear dichotomy was noted between the expression of ERα and ERβ. ERβ-positive neurons were found in the metencephalon whereas the majority of ERα was found in mesencephalon, diencephalon or the telencephalon. In the aged animals a different pattern of ER expression was found in terms of location and overall intensity. These age-induced changes in the expression pattern were generally not uniform, suggesting that region-specific mechanisms regulate the ERs’ age-related expression. Neither the prepubertal nor the aged animals showed sex differences in any auditory structure. Our results demonstrate different age-dependent spatial and temporal changes in the pattern of expression of ERα and ERβ, suggesting that each ER type may be involved in distinct roles across the central auditory pathway in different periods of maturation. PMID:20736049

  2. Auditory sustained field responses to periodic noise

    Directory of Open Access Journals (Sweden)

    Keceli Sumru

    2012-01-01

    Full Text Available Abstract Background Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. Results Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. Conclusions The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.

  3. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    Science.gov (United States)

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches.

  4. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  5. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  6. Auditory Conflict Processing in ADHD

    Science.gov (United States)

    van Mourik, Rosa; Sergeant, Joseph A.; Heslenfeld, Dirk; Konig, Claudia; Oosterlaan, Jaap

    2011-01-01

    Background: Impaired cognitive control has been implicated as an important developmental pathway to attention deficit/hyperactivity disorder (ADHD). Cognitive control is crucial to suppress interference resulting from conflicting information and can be measured by Stroop-like tasks. This study was conducted to gain insight into conflict processing…

  7. The harmonic organization of auditory cortex.

    Science.gov (United States)

    Wang, Xiaoqin

    2013-01-01

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544

  8. Acquired auditory neuropathy spectrum disorder after an attack of chikungunya: case study.

    Science.gov (United States)

    Prabhu, Prashanth

    2016-01-01

    Auditory neuropathy spectrum disorder (ANSD) is a retrocochlear disorder in which the cochlear functioning is normal but the transmission in the auditory neural pathway is affected. The present study reports of a 14-year-old teenager with acquired ANSD after an attack of chikungunya. He reported symptoms of difficulty in understanding speech, tinnitus and vertigo when exposed to loud sounds. The audiological characteristics suggested auditory neuropathy spectrum disorder with raising audiogram configuration. The results of tinnitus evaluation showed low-pitched tinnitus and it was persistent causing significant handicap to him based on self report tinnitus handicap questionnaire results. The results of depression, anxiety and stress scale also suggested symptoms of mild depression and anxiety. Chikungunya virus is suspected to be neurotropic in nature which can damage auditory nerve cells and may have caused ANSD. The result also shows presence of tullio's phenomenon and absence of cervical vestibular evoked myogenic potentials suggesting damage to the vestibular neuronal system. The possible pathophysiology of chikungunya virus causing ANSD and vestibular symptoms needs to be explored further in future studies. PMID:25728940

  9. Bilateral collicular interaction: modulation of auditory signal processing in frequency domain.

    Science.gov (United States)

    Cheng, L; Mei, H-X; Tang, J; Fu, Z-Y; Jen, P H-S; Chen, Q-C

    2013-04-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from a variety of lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in the modulation of frequency-domain signal processing of mice using electrophysiological recording and focal electrical stimulation. Focal electrical stimulation of neurons in one IC produces widespread inhibition and focused facilitation of responses of neurons in the other IC. This bilateral collicular interaction decreases the response magnitude and lengthens the response latency of inhibited IC neurons but produces an opposite effect on the response of facilitated IC neurons. In the frequency domain, the focal electrical stimulation of one IC sharpens or expands the frequency tuning curves (FTCs) of neurons in the other IC to improve frequency sensitivity and the frequency response range. The focal electrical stimulation also produces a shift in the best frequency (BF) of modulated IC (ICMdu) neurons toward that of electrically stimulated IC (ICES) neurons. The degree of bilateral collicular interaction is dependent upon the difference in the BF between the ICES neurons and ICMdu neurons. These data suggest that bilateral collicular interaction is a part of dynamic acoustic signal processing that adjusts and improves signal processing as well as reorganizes collicular representation of signal parameters according to the acoustic experience.

  10. The effect of background music in auditory health persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2013-01-01

    In auditory health persuasion, threatening information regarding health is communicated by voice only. One relevant context of auditory persuasion is the addition of background music. There are different mechanisms through which background music might influence persuasion, for example through mood (

  11. Auditory Discrimination Development through Vestibulo-Cochlear Stimulation.

    Science.gov (United States)

    Palmer, Lyelle L.

    1980-01-01

    Three types of vestibular activities (active, adaptive, and passively imposed) to improve auditory discrimination development are described and results of a study using the vestibular stimulation techniques with 20 Ss (average age 9) having abnormal auditory discrimination. (PHR)

  12. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. PMID:20018234

  13. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  14. Applied research in auditory data representation

    Science.gov (United States)

    Frysinger, Steve P.

    1990-08-01

    A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.

  15. Are auditory percepts determined by experience?

    Science.gov (United States)

    Monson, Brian B; Han, Shui'Er; Purves, Dale

    2013-01-01

    Audition--what listeners hear--is generally studied in terms of the physical properties of sound stimuli and physiological properties of the auditory system. Based on recent work in vision, we here consider an alternative perspective that sensory percepts are based on past experience. In this framework, basic auditory qualities (e.g., loudness and pitch) are based on the frequency of occurrence of stimulus patterns in natural acoustic stimuli. To explore this concept of audition, we examined five well-documented psychophysical functions. The frequency of occurrence of acoustic patterns in a database of natural sound stimuli (speech) predicts some qualitative aspects of these functions, but with substantial quantitative discrepancies. This approach may offer a rationale for auditory phenomena that are difficult to explain in terms of the physical attributes of the stimuli as such.

  16. Are auditory percepts determined by experience?

    Directory of Open Access Journals (Sweden)

    Brian B Monson

    Full Text Available Audition--what listeners hear--is generally studied in terms of the physical properties of sound stimuli and physiological properties of the auditory system. Based on recent work in vision, we here consider an alternative perspective that sensory percepts are based on past experience. In this framework, basic auditory qualities (e.g., loudness and pitch are based on the frequency of occurrence of stimulus patterns in natural acoustic stimuli. To explore this concept of audition, we examined five well-documented psychophysical functions. The frequency of occurrence of acoustic patterns in a database of natural sound stimuli (speech predicts some qualitative aspects of these functions, but with substantial quantitative discrepancies. This approach may offer a rationale for auditory phenomena that are difficult to explain in terms of the physical attributes of the stimuli as such.

  17. Phonetic categorization in auditory word perception.

    Science.gov (United States)

    Ganong, W F

    1980-02-01

    To investigate the interaction in speech perception of auditory information and lexical knowledge (in particular, knowledge of which phonetic sequences are words), acoustic continua varying in voice onset time were constructed so that for each acoustic continuum, one of the two possible phonetic categorizations made a word and the other did not. For example, one continuum ranged between the word dash and the nonword tash; another used the nonword dask and the word task. In two experiments, subjects showed a significant lexical effect--that is, a tendency to make phonetic categorizations that make words. This lexical effect was greater at the phoneme boundary (where auditory information is ambiguous) than at the ends of the condinua. Hence the lexical effect must arise at a stage of processing sensitive to both lexical knowledge and auditory information.

  18. Auditory temporal processes in the elderly

    Directory of Open Access Journals (Sweden)

    E. Ben-Artzi

    2011-03-01

    Full Text Available Several studies have reported age-related decline in auditory temporal resolution and in working memory. However, earlier studies did not provide evidence as to whether these declines reflect overall changes in the same mechanisms, or reflect age-related changes in two independent mechanisms. In the current study we examined whether the age-related decline in auditory temporal resolution and in working memory would remain significant even after controlling for their shared variance. Eighty-two participants, aged 21-82 performed the dichotic temporal order judgment task and the backward digit span task. The findings indicate that age-related decline in auditory temporal resolution and in working memory are two independent processes.

  19. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  20. Auditory Neuropathy Spectrum Disorder Masquerading as Social Anxiety

    OpenAIRE

    Behere, Rishikesh V.; Rao, Mukund G.; Mishra, Shree; Varambally, Shivarama; Nagarajarao, Shivashankar; Bangalore N Gangadhar

    2015-01-01

    The authors report a case of a 47-year-old man who presented with treatment-resistant anxiety disorder. Behavioral observation raised clinical suspicion of auditory neuropathy spectrum disorder. The presence of auditory neuropathy spectrum disorder was confirmed on audiological investigations. The patient was experiencing extreme symptoms of anxiety, which initially masked the underlying diagnosis of auditory neuropathy spectrum disorder. Challenges in diagnosis and treatment of auditory neur...

  1. ABR and auditory P300 findings inchildren with ADHD

    OpenAIRE

    Schochat Eliane; Scheuer Claudia Ines; Andrade Ênio Roberto de

    2002-01-01

    Auditory processing disorders (APD), also referred as central auditory processing disorders (CAPD) and attention deficit hyperactivity disorders (ADHD) have become popular diagnostic entities for school age children. It has been demonstrated a high incidence of comorbid ADHD with communication disorders and auditory processing disorder. The aim of this study was to investigate ABR and P300 auditory evoked potentials in children with ADHD, in a double-blind study. Twenty-one children, ages bet...

  2. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    OpenAIRE

    Golden, Hannah L.; Jennifer L. Agustus; Johanna C. Goll; Downey, Laura E; Mummery, Catherine J.; Jonathan M Schott; Crutch, Sebastian J.; Jason D Warren

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘back...

  3. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  4. Auditory Brainstem Response Improvements in Hyperbillirubinemic Infants

    Science.gov (United States)

    Abdollahi, Farzaneh Zamiri; Manchaiah, Vinaya; Lotfi, Yones

    2016-01-01

    Background and Objectives Hyperbillirubinemia in infants have been associated with neuronal damage including in the auditory system. Some researchers have suggested that the bilirubin-induced auditory neuronal damages may be temporary and reversible. This study was aimed at investigating the auditory neuropathy and reversibility of auditory abnormalities in hyperbillirubinemic infants. Subjects and Methods The study participants included 41 full term hyperbilirubinemic infants (mean age 39.24 days) with normal birth weight (3,200-3,700 grams) that admitted in hospital for hyperbillirubinemia and 39 normal infants (mean age 35.54 days) without any hyperbillirubinemia or other hearing loss risk factors for ruling out maturational changes. All infants in hyperbilirubinemic group had serum bilirubin level more than 20 milligram per deciliter and undergone one blood exchange transfusion. Hearing evaluation for each infant was conducted twice: the first one after hyperbilirubinemia treatment and before leaving hospital and the second one three months after the first hearing evaluation. Hearing evaluations included transient evoked otoacoustic emission (TEOAE) screening and auditory brainstem response (ABR) threshold tracing. Results The TEOAE and ABR results of control group and TEOAE results of the hyperbilirubinemic group did not change significantly from the first to the second evaluation. However, the ABR results of the hyperbilirubinemic group improved significantly from the first to the second assessment (p=0.025). Conclusions The results suggest that the bilirubin induced auditory neuronal damage can be reversible over time so we suggest that infants with hyperbilirubinemia who fail the first hearing tests should be reevaluated after 3 months of treatment. PMID:27144228

  5. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel

    A loudspeaker-based virtual auditory environment (VAE) has been developed to provide a realistic versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room reverberation. The VAE allows a full control of...... the acoustic scenario in order to systematically study the auditory processing of reverberant sounds. It is based on the ODEON software, which is state-of-the-art software for room acoustic simulations developed at Acoustic Technology, DTU. First, a MATLAB interface to the ODEON software has been...

  6. Transient auditory hallucinations in an adolescent.

    Science.gov (United States)

    Skokauskas, Norbert; Pillay, Devina; Moran, Tom; Kahn, David A

    2010-05-01

    In adolescents, hallucinations can be a transient illness or can be associated with non-psychotic psychopathology, psychosocial adversity, or a physical illness. We present the case of a 15-year-old secondary-school student who presented with a 1-month history of first onset auditory hallucinations, which had been increasing in frequency and severity, and mild paranoid ideation. Over a 10-week period, there was a gradual diminution, followed by a complete resolution, of symptoms. We discuss issues regarding the diagnosis and prognosis of auditory hallucinations in adolescents.

  7. Do dyslexics have auditory input processing difficulties?

    DEFF Research Database (Denmark)

    Poulsen, Mads

    2011-01-01

    Word production difficulties are well documented in dyslexia, whereas the results are mixed for receptive phonological processing. This asymmetry raises the possibility that the core phonological deficit of dyslexia is restricted to output processing stages. The present study investigated whether...... a group of dyslexics had word level receptive difficulties using an auditory lexical decision task with long words and nonsense words. The dyslexics were slower and less accurate than chronological age controls in an auditory lexical decision task, with disproportionate low performance on nonsense words...

  8. Subsymmetries predict auditory and visual pattern complexity.

    Science.gov (United States)

    Toussaint, Godfried T; Beltran, Juan F

    2013-01-01

    A mathematical measure of pattern complexity based on subsymmetries possessed by the pattern, previously shown to correlate highly with empirically derived measures of cognitive complexity in the visual domain, is found to also correlate significantly with empirically derived complexity measures of perception and production of auditory temporal and musical rhythmic patterns. Not only does the subsymmetry measure correlate highly with the difficulty of reproducing the rhythms by tapping after listening to them, but also the empirical measures exhibit similar behavior, for both the visual and auditory patterns, as a function of the relative number of subsymmetries present in the patterns. PMID:24494441

  9. AN EVALUATION OF AUDITORY LEARNING IN FILIAL IMPRINTING

    NARCIS (Netherlands)

    BOLHUIS, JJ; VANKAMPEN, HS

    1992-01-01

    The characteristics of auditory learning in filial imprinting in precocial birds are reviewed. Numerous studies have demonstrated that the addition of an auditory stimulus improves following of a visual stimulus. This paper evaluates whether there is genuine auditory imprinting, i.e. the formation o

  10. Distinct energy metabolism of auditory and vestibular sensory epithelia revealed by quantitative mass spectrometry using MS2 intensity.

    Science.gov (United States)

    Spinelli, Kateri J; Klimek, John E; Wilmarth, Phillip A; Shin, Jung-Bum; Choi, Dongseok; David, Larry L; Gillespie, Peter G

    2012-01-31

    Measuring the abundance of many proteins over a broad dynamic range requires accurate quantitation. We show empirically that, in MS experiments, relative quantitation using summed dissociation-product ion-current intensities is accurate, albeit variable from protein to protein, and outperforms spectral counting. By applying intensities to quantify proteins in two complex but related tissues, chick auditory and vestibular sensory epithelia, we find that glycolytic enzymes are enriched threefold in auditory epithelia, whereas enzymes responsible for oxidative phosphorylation are increased at least fourfold in vestibular epithelia. This striking difference in relative use of the two ATP-production pathways likely reflects the isolation of the auditory epithelium from its blood supply, necessary to prevent heartbeat-induced mechanical disruptions. The global view of protein expression afforded by label-free quantitation with a wide dynamic range reveals molecular specialization at a tissue or cellular level. PMID:22307652

  11. Testosterone alters genomic responses to song and monoaminergic innervation of auditory areas in a seasonally breeding songbird.

    Science.gov (United States)

    Matragrano, Lisa L; LeBlanc, Meredith M; Chitrapu, Anjani; Blanton, Zane E; Maney, Donna L

    2013-06-01

    Behavioral responses to social stimuli often vary according to endocrine state. Our previous work has suggested that such changes in behavior may be due in part to hormone-dependent sensory processing. In the auditory forebrain of female white-throated sparrows, expression of the immediate early gene ZENK (egr-1) is higher in response to conspecific song than to a control sound only when plasma estradiol reaches breeding-typical levels. Estradiol also increases the number of detectable noradrenergic neurons in the locus coeruleus and the density of noradrenergic and serotonergic fibers innervating auditory areas. We hypothesize, therefore, that reproductive hormones alter auditory responses by acting on monoaminergic systems. This possibility has not been examined in males. Here, we treated non-breeding male white-throated sparrows with testosterone to mimic breeding-typical levels and then exposed them to conspecific male song or frequency-matched tones. We observed selective ZENK responses in the caudomedial nidopallium only in the testosterone-treated males. Responses in another auditory area, the caudomedial mesopallium, were selective regardless of hormone treatment. Testosterone treatment reduced serotonergic fiber density in the auditory forebrain, thalamus, and midbrain, and although it increased the number of noradrenergic neurons detected in the locus coeruleus, it reduced noradrenergic fiber density in the auditory midbrain. Thus, whereas we previously reported that estradiol enhances monoaminergic innervation of the auditory pathway in females, we show here that testosterone decreases it in males. Mechanisms underlying testosterone-dependent selectivity of the ZENK response may differ from estradiol-dependent ones

  12. Neural pathways for visual speech perception

    Directory of Open Access Journals (Sweden)

    Lynne E Bernstein

    2014-12-01

    Full Text Available This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1 The visual perception of speech relies on visual pathway representations of speech qua speech. (2 A proposed site of these representations, the temporal visual speech area (TVSA has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS. (3 Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.

  13. A novel method of brainstem auditory evoked potentials using complex verbal stimuli

    Directory of Open Access Journals (Sweden)

    Sophia N Kouni

    2014-01-01

    Full Text Available Background: The click and tone-evoked auditory brainstem responses are widely used in clinical practice due to their consistency and predictability. More recently, the speech-evoked responses have been used to evaluate subcortical processing of complex signals, not revealed by responses to clicks and tones. Aims: Disyllable stimuli corresponding to familiar words can induce a pattern of voltage fluctuations in the brain stem resulting in a familiar waveform, and they can yield better information about brain stem nuclei along the ascending central auditory pathway. Materials and Methods: We describe a new method with the use of the disyllable word "baba" corresponding to English "daddy" that is commonly used in many other ethnic languages spanning from West Africa to the Eastern Mediterranean all the way to the East Asia. Results: This method was applied in 20 young adults institutionally diagnosed as dyslexic (10 subjects or light dyslexic (10 subjects who were matched with 20 sex, age, education, hearing sensitivity, and IQ-matched normal subjects. The absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli "baba" were found to be significantly increased in the dyslexic group in comparison with the control group. Conclusions: The method is easy and helpful to diagnose abnormalities affecting the auditory pathway, to identify subjects with early perception and cortical representation abnormalities, and to apply the suitable therapeutic and rehabilitation management.

  14. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  15. Utilising reinforcement learning to develop strategies for driving auditory neural implants

    Science.gov (United States)

    Lee, Geoffrey W.; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G.

    2016-08-01

    Objective. In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. Approach. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Main results. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model’s function. We show the ability to effectively learn stimulation patterns which mimic the cochlea’s ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. Significance. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  16. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP hypothesis.

    Directory of Open Access Journals (Sweden)

    Aniruddh D. Patel

    2014-05-01

    Full Text Available Every human culture has some form of music with a beat: a perceived periodic pulse that structures the perception of musical rhythm and which serves as a framework for synchronized movement to music. What are the neural mechanisms of musical beat perception, and how did they evolve? One view, which dates back to Darwin and implicitly informs some current models of beat perception, is that the relevant neural mechanisms are relatively general and are widespread among animal species. On the basis of recent neural and cross-species data on musical beat processing, this paper argues for a different view. Here we argue that beat perception is a complex brain function involving temporally-precise communication between auditory regions and motor planning regions of the cortex (even in the absence of overt movement. More specifically, we propose that simulation of periodic movement in motor planning regions provides a neural signal that helps the auditory system predict the timing of upcoming beats. This action simulation for auditory prediction (ASAP hypothesis leads to testable predictions. We further suggest that ASAP relies on dorsal auditory pathway connections between auditory regions and motor planning regions via the parietal cortex, and suggest that these connections may be stronger in humans than in nonhuman primates due to the evolution of vocal learning in our lineage. This suggestion motivates cross-species research to determine which species are capable of human-like beat perception, i.e., beat perception that involves accurate temporal prediction of beat times across a fairly broad range of tempi.

  17. The Goldilocks Effect in Infant Auditory Attention

    Science.gov (United States)

    Kidd, Celeste; Piantadosi, Steven T.; Aslin, Richard N.

    2014-01-01

    Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, yet capacity limits on their cognitive resources restrict the quantity that they can encode. Previous research has established that infants can attend to only a subset of available acoustic input. Yet few previous studies have directly examined infant…

  18. Reading adn Auditory-Visual Equivalences

    Science.gov (United States)

    Sidman, Murray

    1971-01-01

    A retarded boy, unable to read orally or with comprehension, was taught to match spoken to printed words and was then capable of reading comprehension (matching printed words to picture) and oral reading (naming printed words aloud), demonstrating that certain learned auditory-visual equivalences are sufficient prerequisites for reading…

  19. Development of Receiver Stimulator for Auditory Prosthesis

    Directory of Open Access Journals (Sweden)

    K. Raja Kumar

    2010-05-01

    Full Text Available The Auditory Prosthesis (AP is an electronic device that can provide hearing sensations to people who are profoundly deaf by stimulating the auditory nerve via an array of electrodes with an electric current allowing them to understand the speech. The AP system consists of two hardware functional units such as Body Worn Speech Processor (BWSP and Receiver Stimulator. The prototype model of Receiver Stimulator for Auditory Prosthesis (RSAP consists of Speech Data Decoder, DAC, ADC, constant current generator, electrode selection logic, switch matrix and simulated electrode resistance array. The laboratory model of speech processor is designed to implement the Continuous Interleaved Sampling (CIS speech processing algorithm which generates the information required for electrode stimulation based on the speech / audio data. Speech Data Decoder receives the encoded speech data via an inductive RF transcutaneous link from speech processor. Twelve channels of auditory Prosthesis with selectable eight electrodes for stimulation of simulated electrode resistance array are used for testing. The RSAP is validated by using the test data generated by the laboratory prototype of speech processor. The experimental results are obtained from specific speech/sound tests using a high-speed data acquisition system and found satisfactory.

  20. Auditory Training with Frequent Communication Partners

    Science.gov (United States)

    Tye-Murray, Nancy; Spehar, Brent; Sommers, Mitchell; Barcroft, Joe

    2016-01-01

    Purpose: Individuals with hearing loss engage in auditory training to improve their speech recognition. They typically practice listening to utterances spoken by unfamiliar talkers but never to utterances spoken by their most frequent communication partner (FCP)--speech they most likely desire to recognize--under the assumption that familiarity…

  1. Auditory Perception of Statistically Blurred Sound Textures

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; MacDonald, Ewen; Dau, Torsten

    Sound textures have been identified as a category of sounds which are processed by the peripheral auditory system and captured with running timeaveraged statistics. Although sound textures are temporally homogeneous, they offer a listener with enough information to identify and differentiate sour...

  2. Auditory confrontation naming in Alzheimer's disease.

    Science.gov (United States)

    Brandt, Jason; Bakker, Arnold; Maroof, David Aaron

    2010-11-01

    Naming is a fundamental aspect of language and is virtually always assessed with visual confrontation tests. Tests of the ability to name objects by their characteristic sounds would be particularly useful in the assessment of visually impaired patients, and may be particularly sensitive in Alzheimer's disease (AD). We developed an auditory naming task, requiring the identification of the source of environmental sounds (i.e., animal calls, musical instruments, vehicles) and multiple-choice recognition of those not identified. In two separate studies mild-to-moderate AD patients performed more poorly than cognitively normal elderly on the auditory naming task. This task was also more difficult than two versions of a comparable visual naming task, and correlated more highly with Mini-Mental State Exam score. Internal consistency reliability was acceptable, although ROC analysis revealed auditory naming to be slightly less successful than visual confrontation naming in discriminating AD patients from normal participants. Nonetheless, our auditory naming task may prove useful in research and clinical practice, especially with visually impaired patients. PMID:20981630

  3. Lateralization of auditory-cortex functions.

    Science.gov (United States)

    Tervaniemi, Mari; Hugdahl, Kenneth

    2003-12-01

    In the present review, we summarize the most recent findings and current views about the structural and functional basis of human brain lateralization in the auditory modality. Main emphasis is given to hemodynamic and electromagnetic data of healthy adult participants with regard to music- vs. speech-sound encoding. Moreover, a selective set of behavioral dichotic-listening (DL) results and clinical findings (e.g., schizophrenia, dyslexia) are included. It is shown that human brain has a strong predisposition to process speech sounds in the left and music sounds in the right auditory cortex in the temporal lobe. Up to great extent, an auditory area located at the posterior end of the temporal lobe (called planum temporale [PT]) underlies this functional asymmetry. However, the predisposition is not bound to informational sound content but to rapid temporal information more common in speech than in music sounds. Finally, we obtain evidence for the vulnerability of the functional specialization of sound processing. These altered forms of lateralization may be caused by top-down and bottom-up effects inter- and intraindividually In other words, relatively small changes in acoustic sound features or in their familiarity may modify the degree in which the left vs. right auditory areas contribute to sound encoding. PMID:14629926

  4. Self-affirmation in auditory persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2011-01-01

    Persuasive health information can be presented through an auditory channel. Curiously enough, the effect of voice cues in health persuasion has hardly been studied. Research concerning visual persuasive messages showed that self-affirmation results in a more open-minded reaction to threatening infor

  5. Affective priming with auditory speech stimuli

    NARCIS (Netherlands)

    J. Degner

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In

  6. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  7. Auditory risk estimates for youth target shooting

    Science.gov (United States)

    Meinke, Deanna K.; Murphy, William J.; Finan, Donald S.; Lankford, James E.; Flamme, Gregory A.; Stewart, Michael; Soendergaard, Jacob; Jerome, Trevor W.

    2015-01-01

    Objective To characterize the impulse noise exposure and auditory risk for youth recreational firearm users engaged in outdoor target shooting events. The youth shooting positions are typically standing or sitting at a table, which places the firearm closer to the ground or reflective surface when compared to adult shooters. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 26 firearm/ammunition configurations representing rifles, shotguns, and pistols used by youth. Measurements were obtained relative to a youth shooter’s left ear. Results All firearms generated peak levels that exceeded the 120 dB peak limit suggested by the WHO for children. In general, shooting from the seated position over a tabletop increases the peak levels, LAeq8 and reduces the unprotected maximum permissible exposures (MPEs) for both rifles and pistols. Pistols pose the greatest auditory risk when fired over a tabletop. Conclusion Youth should utilize smaller caliber weapons, preferably from the standing position, and always wear hearing protection whenever engaging in shooting activities to reduce the risk for auditory damage. PMID:24564688

  8. Use of a highly transparent zebrafish mutant for investigations in the development of the vertebrate auditory system (Conference Presentation)

    Science.gov (United States)

    Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.

    2016-03-01

    Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.

  9. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function. PMID:23988583

  10. 40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.

    Science.gov (United States)

    Ying, Jun; Yan, Zheng; Gao, Xiao-rong

    2013-10-01

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic. PMID:24142731

  11. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.

  12. McGurk illusion recalibrates subsequent auditory perception.

    Science.gov (United States)

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of 'ada'. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as 'ada'. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as 'ada', activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  13. McGurk illusion recalibrates subsequent auditory perception

    Science.gov (United States)

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  14. Representation of Reward Feedback in Primate Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Michael eBrosch

    2011-02-01

    Full Text Available It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1 the reward expectancy for each trial, (2 the reward size received and (3 the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  15. Representation of reward feedback in primate auditory cortex.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  16. Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2016-01-01

    Full Text Available It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage.

  17. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y. (Queen Mary Hospital, Hong Kong (Hong Kong))

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  18. Characterization of auditory synaptic inputs to gerbil perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Vibhakar C Kotak

    2015-08-01

    Full Text Available The representation of acoustic cues involves regions downstream from the auditory cortex (ACx. One such area, the perirhinal cortex (PRh, processes sensory signals containing mnemonic information. Therefore, our goal was to assess whether PRh receives auditory inputs from the auditory thalamus (MG and ACx in an auditory thalamocortical brain slice preparation and characterize these afferent-driven synaptic properties. When the MG or ACx was electrically stimulated, synaptic responses were recorded from the PRh neurons. Blockade of GABA-A receptors dramatically increased the amplitude of evoked excitatory potentials. Stimulation of the MG or ACx also evoked calcium transients in most PRh neurons. Separately, when fluoro ruby was injected in ACx in vivo, anterogradely labeled axons and terminals were observed in the PRh. Collectively, these data show that the PRh integrates auditory information from the MG and ACx and that auditory driven inhibition dominates the postsynaptic responses in a non-sensory cortical region downstream from the auditory cortex.

  19. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  20. Bilateral Collicular Interaction: Modulation of Auditory Signal Processing in Amplitude Domain

    Science.gov (United States)

    Fu, Zi-Ying; Wang, Xin; Jen, Philip H.-S.; Chen, Qi-Cai

    2012-01-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation. Focal electrical stimulation of one (ipsilateral) IC produces widespread inhibition (61.6%) and focused facilitation (9.1%) of responses of neurons in the other (contralateral) IC, while 29.3% of the neurons were not affected. Bilateral collicular interaction produces a decrease in the response magnitude and an increase in the response latency of inhibited IC neurons but produces opposite effects on the response of facilitated IC neurons. These two groups of neurons are not separately located and are tonotopically organized within the IC. The modulation effect is most effective at low sound level and is dependent upon the interval between the acoustic and electric stimuli. The focal electrical stimulation of the ipsilateral IC compresses or expands the rate-level functions of contralateral IC neurons. The focal electrical stimulation also produces a shift in the minimum threshold and dynamic range of contralateral IC neurons for as long as 150 minutes. The degree of bilateral collicular interaction is dependent upon the difference in the best frequency between the electrically stimulated IC neurons and modulated IC neurons. These data suggest that bilateral collicular interaction mainly changes the ratio between excitation and inhibition during signal processing so as to sharpen the amplitude sensitivity of IC neurons. Bilateral interaction may be also involved in acoustic

  1. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    Science.gov (United States)

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  2. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  3. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  4. An Auditory Model with Hearing Loss

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    An auditory model based on the psychophysics of hearing has been developed and tested. The model simulates the normal ear or an impaired ear with a given hearing loss. Based on reviews of the current literature, the frequency selectivity and loudness growth as functions of threshold and stimulus...... level have been found and implemented in the model. The auditory model was verified against selected results from the literature, and it was confirmed that the normal spread of masking and loudness growth could be simulated in the model. The effects of hearing loss on these parameters was also...... in qualitative agreement with recent findings. The temporal properties of the ear have currently not been included in the model. As an example of a real-world application of the model, loudness spectrograms for a speech utterance were presented. By introducing hearing loss, the speech sounds became less audible...

  5. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  6. Deafness in cochlear and auditory nerve disorders.

    Science.gov (United States)

    Hopkins, Kathryn

    2015-01-01

    Sensorineural hearing loss is the most common type of hearing impairment worldwide. It arises as a consequence of damage to the cochlea or auditory nerve, and several structures are often affected simultaneously. There are many causes, including genetic mutations affecting the structures of the inner ear, and environmental insults such as noise, ototoxic substances, and hypoxia. The prevalence increases dramatically with age. Clinical diagnosis is most commonly accomplished by measuring detection thresholds and comparing these to normative values to determine the degree of hearing loss. In addition to causing insensitivity to weak sounds, sensorineural hearing loss has a number of adverse perceptual consequences, including loudness recruitment, poor perception of pitch and auditory space, and difficulty understanding speech, particularly in the presence of background noise. The condition is usually incurable; treatment focuses on restoring the audibility of sounds made inaudible by hearing loss using either hearing aids or cochlear implants.

  7. Anatomy and Physiology of the Auditory Tracts

    Directory of Open Access Journals (Sweden)

    Mohammad hosein Hekmat Ara

    1999-03-01

    Full Text Available Hearing is one of the excel sense of human being. Sound waves travel through the medium of air and enter the ear canal and then hit the tympanic membrane. Middle ear transfer almost 60-80% of this mechanical energy to the inner ear by means of “impedance matching”. Then, the sound energy changes to traveling wave and is transferred based on its specific frequency and stimulates organ of corti. Receptors in this organ and their synapses transform mechanical waves to the neural waves and transfer them to the brain. The central nervous system tract of conducting the auditory signals in the auditory cortex will be explained here briefly.

  8. Delayed auditory feedback in polyglot simultaneous interpreters.

    Science.gov (United States)

    Fabbro, F; Darò, V

    1995-03-01

    Twelve polyglot students of simultaneous interpretation and 12 controls (students of the faculty of Medicine) were submitted to a task of verbal fluency under amplified normal auditory feedback (NAF) and under three delayed auditory feedback (DAF) conditions with three different delay intervals (150, 200, and 250 msec). The control group showed a significant reduction in verbal fluency and a significant increase in the number of mistakes in all three DAF conditions. The interpreters' group, however, did not show any significant speech disruption neither in the subjects' mother tongue (L1) nor in their second language (L2) across all DAF conditions. Interpreters' general high verbal fluency along with their ability to pay less attention to their own verbal output make them more resistant to the interfering effects of DAF on speech. PMID:7757448

  9. Neural correlates of auditory scale illusion.

    Science.gov (United States)

    Kuriki, Shinya; Numao, Ryousuke; Nemoto, Iku

    2016-09-01

    The auditory illusory perception "scale illusion" occurs when ascending and descending musical scale tones are delivered in a dichotic manner, such that the higher or lower tone at each instant is presented alternately to the right and left ears. Resulting tone sequences have a zigzag pitch in one ear and the reversed (zagzig) pitch in the other ear. Most listeners hear illusory smooth pitch sequences of up-down and down-up streams in the two ears separated in higher and lower halves of the scale. Although many behavioral studies have been conducted, how and where in the brain the illusory percept is formed have not been elucidated. In this study, we conducted functional magnetic resonance imaging using sequential tones that induced scale illusion (ILL) and those that mimicked the percept of scale illusion (PCP), and we compared the activation responses evoked by those stimuli by region-of-interest analysis. We examined the effects of adaptation, i.e., the attenuation of response that occurs when close-frequency sounds are repeated, which might interfere with the changes in activation by the illusion process. Results of the activation difference of the two stimuli, measured at varied tempi of tone presentation, in the superior temporal auditory cortex were not explained by adaptation. Instead, excess activation of the ILL stimulus from the PCP stimulus at moderate tempi (83 and 126 bpm) was significant in the posterior auditory cortex with rightward superiority, while significant prefrontal activation was dominant at the highest tempo (245 bpm). We suggest that the area of the planum temporale posterior to the primary auditory cortex is mainly involved in the illusion formation, and that the illusion-related process is strongly dependent on the rate of tone presentation. PMID:27292114

  10. Inhibition in the Human Auditory Cortex

    OpenAIRE

    Koji Inui; Kei Nakagawa; Makoto Nishihara; Eishi Motomura; Ryusuke Kakigi

    2016-01-01

    Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI) in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observe...

  11. Lesions in the external auditory canal

    Directory of Open Access Journals (Sweden)

    Priyank S Chatra

    2011-01-01

    Full Text Available The external auditory canal is an S- shaped osseo-cartilaginous structure that extends from the auricle to the tympanic membrane. Congenital, inflammatory, neoplastic, and traumatic lesions can affect the EAC. High-resolution CT is well suited for the evaluation of the temporal bone, which has a complex anatomy with multiple small structures. In this study, we describe the various lesions affecting the EAC.

  12. Midbrain auditory selectivity to natural sounds.

    Science.gov (United States)

    Wohlgemuth, Melville J; Moss, Cynthia F

    2016-03-01

    This study investigated auditory stimulus selectivity in the midbrain superior colliculus (SC) of the echolocating bat, an animal that relies on hearing to guide its orienting behaviors. Multichannel, single-unit recordings were taken across laminae of the midbrain SC of the awake, passively listening big brown bat, Eptesicus fuscus. Species-specific frequency-modulated (FM) echolocation sound sequences with dynamic spectrotemporal features served as acoustic stimuli along with artificial sound sequences matched in bandwidth, amplitude, and duration but differing in spectrotemporal structure. Neurons in dorsal sensory regions of the bat SC responded selectively to elements within the FM sound sequences, whereas neurons in ventral sensorimotor regions showed broad response profiles to natural and artificial stimuli. Moreover, a generalized linear model (GLM) constructed on responses in the dorsal SC to artificial linear FM stimuli failed to predict responses to natural sounds and vice versa, but the GLM produced accurate response predictions in ventral SC neurons. This result suggests that auditory selectivity in the dorsal extent of the bat SC arises through nonlinear mechanisms, which extract species-specific sensory information. Importantly, auditory selectivity appeared only in responses to stimuli containing the natural statistics of acoustic signals used by the bat for spatial orientation-sonar vocalizations-offering support for the hypothesis that sensory selectivity enables rapid species-specific orienting behaviors. The results of this study are the first, to our knowledge, to show auditory spectrotemporal selectivity to natural stimuli in SC neurons and serve to inform a more general understanding of mechanisms guiding sensory selectivity for natural, goal-directed orienting behaviors.

  13. Predictive uncertainty in auditory sequence processing

    OpenAIRE

    Niels Chr.Hansen; MarcusT.Pearce

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty - a property of listeners’ prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic e...

  14. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  15. Electric auditory brainstem response (E-ABR in cochlear implant children: Effect of age at implantation and duration of implant use

    Directory of Open Access Journals (Sweden)

    Nithreen Mohammed Said Abdelsalam

    2015-07-01

    Conclusion: A well-established EABR was obtained in cochlear implant children with proper parameters. The characterizations of the EABR waves including wave latencies and threshold were extracted at different electrodes. The EABR test proves to be an effective method to evaluate the functions of the auditory pathway in children after cochlear implantation.

  16. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  17. Hierarchical processing of auditory objects in humans.

    Directory of Open Access Journals (Sweden)

    Sukhbinder Kumar

    2007-06-01

    Full Text Available This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG, containing the primary auditory cortex, planum temporale (PT, and superior temporal sulcus (STS, and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

  18. Concentric scheme of monkey auditory cortex

    Science.gov (United States)

    Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer

    2003-04-01

    The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.

  19. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  20. Mechanisms of auditory verbal hallucination in schizophrenia

    Directory of Open Access Journals (Sweden)

    Raymond eCho

    2013-11-01

    Full Text Available Recent work on the mechanisms underlying auditory verbal hallucination (AVH has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two models of AVH can generate sharper questions that will lead to new avenues of investigation. In this paper, we provide such a theoretical discussion of the two models, drawing strong contrasts between them. We identify a set of challenges for the self-monitoring account and argue that the spontaneous activation account has much in favor of it and should be the default account. Our theoretical overview leads to new questions and issues regarding the explanation of AVH as a subjective phenomenon and its neural basis. Accordingly, we suggest a set of experimental strategies to dissect the underlying mechanisms of AVH in light of the two competing models.

  1. Mechanisms of auditory verbal hallucination in schizophrenia.

    Science.gov (United States)

    Cho, Raymond; Wu, Wayne

    2013-01-01

    Recent work on the mechanisms underlying auditory verbal hallucination (AVH) has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two models of AVH can generate sharper questions that will lead to new avenues of investigation. In this paper, we provide such a theoretical discussion of the two models, drawing strong contrasts between them. We identify a set of challenges for the self-monitoring account and argue that the spontaneous activation account has much in favor of it and should be the default account. Our theoretical overview leads to new questions and issues regarding the explanation of AVH as a subjective phenomenon and its neural basis. Accordingly, we suggest a set of experimental strategies to dissect the underlying mechanisms of AVH in light of the two competing models. PMID:24348430

  2. Auditory temporal processing skills in musicians with dyslexia.

    Science.gov (United States)

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia.

  3. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    When an early wall reflection is added to a direct sound, a spectral modulation is introduced to the signal's power spectrum. This spectral modulation typically produces an auditory sensation of coloration or pitch. Throughout this study, auditory spectral-integration effects involved in coloration...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...... filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high...

  4. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...... on the stream segregation process was analysed. The model analysis showed that auditory frequency selectivity and physiological forward masking play a significant role in stream segregation based on frequency separation and tone rate. Secondly, the model analysis suggested that neural adaptation...

  5. Role of bimodal stimulation for auditory-perceptual skills development in children with a unilateral cochlear implant.

    Science.gov (United States)

    Marsella, P; Giannantonio, S; Scorpecci, A; Pianesi, F; Micardi, M; Resca, A

    2015-12-01

    This is a prospective randomised study that evaluated the differences arising from a bimodal stimulation compared to a monaural electrical stimulation in deaf children, particularly in terms of auditory-perceptual skills development. We enrolled 39 children aged 12 to 36 months, suffering from severe-to-profound bilateral sensorineural hearing loss with residual hearing on at least one side. All were unilaterally implanted: 21 wore only the cochlear implant (CI) (unilateral CI group), while the other 18 used the CI and a contralateral hearing aid at the same time (bimodal group). They were assessed with a test battery designed to appraise preverbal and verbal auditory-perceptual skills immediately before and 6 and 12 months after implantation. No statistically significant differences were observed between groups at time 0, while at 6 and 12 months children in the bimodal group had better scores in each test than peers in the unilateral CI group. Therefore, although unilateral deafness/hearing does not undermine hearing acuity in normal listening, the simultaneous use of a CI and a contralateral hearing aid (binaural hearing through a bimodal stimulation) provides an advantage in terms of acquisition of auditory-perceptual skills, allowing children to achieve the basic milestones of auditory perception faster and in greater number than children with only one CI. Thus, "keeping awake" the contralateral auditory pathway, albeit not crucial in determining auditory acuity, guarantees benefits compared with the use of the implant alone. These findings provide initial evidence to establish shared guidelines for better rehabilitation of patients undergoing unilateral cochlear implantation, and add more evidence regarding the correct indications for bilateral cochlear implantation. PMID:26900251

  6. Role of bimodal stimulation for auditory-perceptual skills development in children with a unilateral cochlear implant.

    Science.gov (United States)

    Marsella, P; Giannantonio, S; Scorpecci, A; Pianesi, F; Micardi, M; Resca, A

    2015-12-01

    This is a prospective randomised study that evaluated the differences arising from a bimodal stimulation compared to a monaural electrical stimulation in deaf children, particularly in terms of auditory-perceptual skills development. We enrolled 39 children aged 12 to 36 months, suffering from severe-to-profound bilateral sensorineural hearing loss with residual hearing on at least one side. All were unilaterally implanted: 21 wore only the cochlear implant (CI) (unilateral CI group), while the other 18 used the CI and a contralateral hearing aid at the same time (bimodal group). They were assessed with a test battery designed to appraise preverbal and verbal auditory-perceptual skills immediately before and 6 and 12 months after implantation. No statistically significant differences were observed between groups at time 0, while at 6 and 12 months children in the bimodal group had better scores in each test than peers in the unilateral CI group. Therefore, although unilateral deafness/hearing does not undermine hearing acuity in normal listening, the simultaneous use of a CI and a contralateral hearing aid (binaural hearing through a bimodal stimulation) provides an advantage in terms of acquisition of auditory-perceptual skills, allowing children to achieve the basic milestones of auditory perception faster and in greater number than children with only one CI. Thus, "keeping awake" the contralateral auditory pathway, albeit not crucial in determining auditory acuity, guarantees benefits compared with the use of the implant alone. These findings provide initial evidence to establish shared guidelines for better rehabilitation of patients undergoing unilateral cochlear implantation, and add more evidence regarding the correct indications for bilateral cochlear implantation.

  7. Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking.

    Science.gov (United States)

    Zorović, M; Hedwig, B

    2011-05-01

    The recognition of the male calling song is essential for phonotaxis in female crickets. We investigated the responses toward different models of song patterns by ascending, local, and descending neurons in the brain of standing and walking crickets. We describe results for two ascending, three local, and two descending interneurons. Characteristic dendritic and axonal arborizations of the local and descending neurons indicate a flow of auditory information from the ascending interneurons toward the lateral accessory lobes and point toward the relevance of this brain region for cricket phonotaxis. Two aspects of auditory processing were studied: the tuning of interneuron activity to pulse repetition rate and the precision of pattern copying. Whereas ascending neurons exhibited weak, low-pass properties, local neurons showed both low- and band-pass properties, and descending neurons represented clear band-pass filters. Accurate copying of single pulses was found at all three levels of the auditory pathway. Animals were walking on a trackball, which allowed an assessment of the effect that walking has on auditory processing. During walking, all neurons were additionally activated, and in most neurons, the spike rate was correlated to walking velocity. The number of spikes elicited by a chirp increased with walking only in ascending neurons, whereas the peak instantaneous spike rate of the auditory responses increased on all levels of the processing pathway. Extra spiking activity resulted in a somewhat degraded copying of the pulse pattern in most neurons.

  8. Perspectives on the design of musical auditory interfaces

    OpenAIRE

    Leplatre, G.; Brewster, S.A.

    1998-01-01

    This paper addresses the issue of music as a communication medium in auditory human-computer interfaces. So far, psychoacoustics has had a great influence on the development of auditory interfaces, directly and through music cognition. We suggest that a better understanding of the processes involved in the perception of actual musical excerpts should allow musical auditory interface designers to exploit the communicative potential of music. In this respect, we argue that the real advantage of...

  9. [Auditory guidance systems for the visually impaired people].

    Science.gov (United States)

    He, Jing; Nie, Min; Luo, Lan; Tong, Shanbao; Niu, Jinhai; Zhu, Yisheng

    2010-04-01

    Visually impaired people face many inconveniences because of the loss of vision. Therefore, scientists are trying to design various guidance systems for improving the lives of the blind. Based on sensory substitution, auditory guidance has become an interesting topic in the field of biomedical engineering. In this paper, we made a state-of-technique review of the auditory guidance system. Although there have been many technical challenges, the auditory guidance system would be a useful alternative for the visually impaired people.

  10. Time course of dynamic range adaptation in the auditory nerve

    OpenAIRE

    Wen, Bo; Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common ...

  11. Using Facebook to Reach People Who Experience Auditory Hallucinations

    OpenAIRE

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging...

  12. Speech Perception Within an Auditory Cognitive Science Framework

    OpenAIRE

    Holt, Lori L.; Lotto, Andrew J.

    2008-01-01

    The complexities of the acoustic speech signal pose many significant challenges for listeners. Although perceiving speech begins with auditory processing, investigation of speech perception has progressed mostly independently of study of the auditory system. Nevertheless, a growing body of evidence demonstrates that cross-fertilization between the two areas of research can be productive. We briefly describe research bridging the study of general auditory processing and speech perception, show...

  13. Effect of auditory training on the middle latency response in children with (central) auditory processing disorder.

    Science.gov (United States)

    Schochat, E; Musiek, F E; Alonso, R; Ogata, J

    2010-08-01

    The purpose of this study was to determine the middle latency response (MLR) characteristics (latency and amplitude) in children with (central) auditory processing disorder [(C)APD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (C)APD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (C)APD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (C)APD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 microV (mean), 0.39 (SD--standard deviation) for the (C)APD group and 1.18 microV (mean), 0.65 (SD) for the control group; C3-A2, 0.69 microV (mean), 0.31 (SD) for the (C)APD group and 1.00 microV (mean), 0.46 (SD) for the control group]. After training, the MLR C3-A1 [1.59 microV (mean), 0.82 (SD)] and C3-A2 [1.24 microV (mean), 0.73 (SD)] wave amplitudes of the (C)APD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (C)APD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (C)APD.

  14. Effect of auditory training on the middle latency response in children with (central auditory processing disorder

    Directory of Open Access Journals (Sweden)

    E. Schochat

    2010-08-01

    Full Text Available The purpose of this study was to determine the middle latency response (MLR characteristics (latency and amplitude in children with (central auditory processing disorder [(CAPD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (CAPD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (CAPD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (CAPD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 µV (mean, 0.39 (SD - standard deviation for the (CAPD group and 1.18 µV (mean, 0.65 (SD for the control group; C3-A2, 0.69 µV (mean, 0.31 (SD for the (CAPD group and 1.00 µV (mean, 0.46 (SD for the control group]. After training, the MLR C3-A1 [1.59 µV (mean, 0.82 (SD] and C3-A2 [1.24 µV (mean, 0.73 (SD] wave amplitudes of the (CAPD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (CAPD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (CAPD.

  15. A novel 9-class auditory ERP paradigm driving a predictive text entry system

    Directory of Open Access Journals (Sweden)

    Johannes eHöhne

    2011-08-01

    Full Text Available Brain-Computer Interfaces (BCIs based on Event Related Potentials (ERPs strive for offering communication pathways which are independent of muscle activity. While most visual ERP-based BCI paradigms require good control of the user's gaze direction, auditory BCI paradigms overcome this restriction. The present work proposes a novel approach using Auditory Evoked Potentials (AEP for the example of a multiclass text spelling application. To control the ERP speller, BCI users focus their attention to two-dimensional auditory stimuli that vary in both, pitch (high/medium/low and direction (left/middle/right and that are presented via headphones. The resulting nine different control signals are exploited to drive a predictive text entry system. It enables the user to spell a letter by a single 9-class decision plus two additional decisions to confirm a spelled word.This paradigm - called PASS2D - was investigated in an online study with twelve healthy participants. Users spelled with more than 0.8 characters per minute on average (3.4 bits per minute which makes PASS2D a competitive method. It could enrich the toolbox of existing ERP paradigms for BCI end users like late-stage ALS patients.

  16. The Effect of Adaptation on the Tuning Curves of Rat Auditory Cortex

    Science.gov (United States)

    Parto Dezfouli, Mohsen; Daliri, Mohammad Reza

    2015-01-01

    Repeated stimulus causes a specific suppression of neuronal responses, which is so-called as Stimulus-Specific Adaptation (SSA). This effect can be recovered when the stimulus changes. In the auditory system SSA is a well-known phenomenon that appears at different levels of the mammalian auditory pathway. In this study, we explored the effects of adaptation to a particular stimulus on the auditory tuning curves of anesthetized rats. We used two sequences and compared the responses of each tone combination in these two conditions. First sequence consists of different pure tone combinations that were presented randomly. In the second one, the same stimuli of the first sequence were presented in the context of an adapted stimulus (adapter) that occupied 80% of sequence probability. The population results demonstrated that the adaptation factor decreased the frequency response area and made a change in the tuning curve to shift it unevenly toward the higher thresholds of tones. The local field potentials and multi-unit activity responses have indicated that the neural activities strength of the adapted frequency has been suppressed as well as with lower suppression in neighboring frequencies. This aforementioned reduction changed the characteristic frequency of the tuning curve. PMID:25719404

  17. Multi-frequency auditory stimulation disrupts spindling activity in anesthetized animals.

    Science.gov (United States)

    Britvina, T; Eggermont, J J

    2008-02-01

    It is often implied that during the occurrence of spindle oscillations, thalamocortical neurons do not respond to signals from the outside world. Since recording of sound-evoked activity from cat auditory cortex is common during spindling this implies that sound stimulation changes the spindle-related brain state. Local field potentials and multi-unit activity recorded from cat primary auditory cortex under ketamine anesthesia during successive silence-stimulus-silence conditions were used to investigate the effect of sound on cortical spindle oscillations. Multi-frequency stimulation suppresses spindle waves, as shown by the decrease of spectral power within the spindle frequency range during stimulation as compared with the previous silent period. We show that the percentage suppression is independent of the power of the spindle waves during silence, and that the suppression of spindle power occurs very fast after stimulus onset. The global inter-spindle rhythm was not disturbed during stimulation. Spectrotemporal and correlation analysis revealed that beta waves (15-26 Hz), and to a lesser extent delta waves, were modulated by the same inter-spindle rhythm as spindle oscillations. The suppression of spindle power during stimulation had no effect on the spatial correlation of spindle waves. Firing rates increased under stimulation and spectro-temporal receptive fields could reliably be obtained. The possible mechanism of suppression of spindle waves is discussed and it is suggested that suppression likely occurs through activity of the specific auditory pathway. PMID:18164553

  18. Auditory Cortex tACS and tRNS for Tinnitus: Single versus Multiple Sessions

    Directory of Open Access Journals (Sweden)

    Laura Claes

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external acoustic source, which often exerts a significant impact on the quality of life. Currently there is evidence that neuroplastic changes in both neural pathways are involved in the generation and maintaining of tinnitus. Neuromodulation has been suggested to interfere with these neuroplastic alterations. In this study we aimed to compare the effect of two upcoming forms of transcranial electrical neuromodulation: alternating current stimulation (tACS and random noise stimulation (tRNS, both applied on the auditory cortex. A database with 228 patients with chronic tinnitus who underwent noninvasive neuromodulation was retrospectively analyzed. The results of this study show that a single session of tRNS induces a significant suppressive effect on tinnitus loudness and distress, in contrast to tACS. Multiple sessions of tRNS augment the suppressive effect on tinnitus loudness but have no effect on tinnitus distress. In conclusion this preliminary study shows a possibly beneficial effect of tRNS on tinnitus and can be a motivation for future randomized placebo-controlled clinical studies with auditory tRNS for tinnitus. Auditory alpha-modulated tACS does not seem to be contributing to the treatment of tinnitus.

  19. Evaluation of peripheral compression and auditory nerve fiber intensity coding using auditory steady-state responses

    DEFF Research Database (Denmark)

    Encina Llamas, Gerard; M. Harte, James; Epp, Bastian

    2015-01-01

    . Evaluation of these properties provides information about the health state of the system. It has been shown that a loss of outer hair cells leads to a reduction in peripheral compression. It has also recently been shown in animal studies that noise over-exposure, producing temporary threshold shifts, can......The compressive nonlinearity of the auditory system is assumed to be an epiphenomenon of a healthy cochlea and, particularly, of outer-hair cell function. Another ability of the healthy auditory system is to enable communication in acoustical environments with high-level background noises...

  20. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus.

    Science.gov (United States)

    Ahn, J; MacLeod, K M

    2016-03-01

    Short-term synaptic plasticity (STP) acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the auditory brain stem, the divergent pathways that encode acoustic timing and intensity information express differential STP. To investigate what factors determine the plasticity expressed at different terminals, we tested whether presynaptic release probability differed in the auditory nerve projections to the two divisions of the avian cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Estimates of release probability were made with an open-channel blocker ofN-methyl-d-aspartate (NMDA) receptors. Activity-dependent blockade of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) with application of 20 μM (+)-MK801 maleate was more rapid in NM than in NA, indicating that release probability was significantly higher at terminals in NM. Paired-pulse ratio (PPR) was tightly correlated with the blockade rate at terminals in NA, suggesting that PPR was a reasonable proxy for relative release probability at these synapses. To test whether release probability was similar across convergent inputs onto NA neurons, PPRs of different nerve inputs onto the same postsynaptic NA target neuron were measured. The PPRs, as well as the plasticity during short trains, were tightly correlated across multiple inputs, further suggesting that release probability is coordinated at auditory nerve terminals in a target-specific manner. This highly specific regulation of STP in the auditory brain stem provides evidence that the synaptic dynamics are tuned to differentially transmit the auditory information in nerve activity into parallel ascending pathways. PMID:26719087

  1. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2015-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  2. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2016-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  3. Extrinsic sound stimulations and development of periphery auditory synapses

    Institute of Scientific and Technical Information of China (English)

    Kun Hou; Shiming Yang; Ke Liu

    2015-01-01

    The development of auditory synapses is a key process for the maturation of hearing function. However, it is still on debate regarding whether the development of auditory synapses is dominated by acquired sound stimulations. In this review, we summarize relevant publications in recent decades to address this issue. Most reported data suggest that extrinsic sound stimulations do affect, but not govern the development of periphery auditory synapses. Overall, periphery auditory synapses develop and mature according to its intrinsic mechanism to build up the synaptic connections between sensory neurons and/or interneurons.

  4. The Role of Auditory and Kinaesthetic Feedback Mechanisms on Phonatory Stability in Children

    OpenAIRE

    Rathna Kumar, S. B.; Azeem, Suhail; Choudhary, Abhishek Kumar; Prakash, S. G. R.

    2012-01-01

    Auditory feedback plays an important role in phonatory control. When auditory feedback is disrupted, various changes are observed in vocal motor control. Vocal intensity and fundamental frequency (F0) levels tend to increase in response to auditory masking. Because of the close reflexive links between the auditory and phonatory systems, it is likely that phonatory stability may be disrupted when auditory feedback is disrupted or altered. However, studies on phonatory stability under auditory ...

  5. Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: a randomized controlled pilot study.

    Science.gov (United States)

    Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta

    2014-03-15

    Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. PMID:24388435

  6. Auditory excitation patterns : the significance of the pulsation threshold method for the measurement of auditory nonlinearity

    NARCIS (Netherlands)

    H. Verschuure (Hans)

    1978-01-01

    textabstractThe auditory system is the toto[ of organs that translates an acoustical signal into the perception of a sound. An acoustic signal is a vibration. It is decribed by physical parameters. The perception of sound is the awareness of a signal being present and the attribution of certain qual

  7. Subdivisions of the auditory midbrain (n. mesencephalicus lateralis, pars dorsalis in zebra finches using calcium-binding protein immunocytochemistry.

    Directory of Open Access Journals (Sweden)

    Priscilla Logerot

    Full Text Available The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I and outer (MLd.O. MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches.

  8. A critical period for auditory thalamocortical connectivity

    DEFF Research Database (Denmark)

    Rinaldi Barkat, Tania; Polley, Daniel B; Hensch, Takao K

    2011-01-01

    connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene......-targeted deletion of a forebrain-specific cell-adhesion molecule (Icam5) accelerated plasticity in this critical period. Consistent with its normal role of slowing spinogenesis, loss of Icam5 induced precocious stubby spine maturation on pyramidal cell dendrites in neocortical layer 4 (L4), identifying a primary...

  9. CAVERNOUS HEMANGIOMA OF THE INTERNAL AUDITORY CANAL

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Hekmatara

    1993-06-01

    Full Text Available Cavernous hemangioma is a rare benign tumor of the internal auditory canal (IAC of which fourteen cases have been reported so far."nTinnitus and progressive sensorineural hearing loss (SNHL are the chief complaints of the patients. Audiological and radiological planes, CTScan, and magnetic resonance image (MRI studies are helpful in diagnosis. The only choice of treatment is surgery with elective transmastoid trans¬labyrinthine approach. And if tumor is very large, the method of choice will be retrosigmoid approach.

  10. INFLUENCE ON VESTIBULAR FUNCTION BY AUDITORY NEUROPATHY

    Institute of Scientific and Technical Information of China (English)

    WANG Jingmiao; JIANG Xinxia; SHAN Chunguang

    2013-01-01

    Objective The main purpose of the present study was to describe the vestibular function in patients with auditory neuropathy (AN), and to assess their ability to maintain balance. Methods Vestibular function tests were performed on 32 patients with AN and 36 normal subjects including electronystagmopraphy(ENG) and static postrography(SPG). The results from the two groups were compared. Results Equilibrium function in patients with AN, was abnormal, compared to normal subjects. Conclusion Vestibular function tests, espe-cially static postrography, should be performed on patients with AN.

  11. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  12. From ear to hand: the role of the auditory-motor loop in pointing to an auditory source

    Science.gov (United States)

    Boyer, Eric O.; Babayan, Bénédicte M.; Bevilacqua, Frédéric; Noisternig, Markus; Warusfel, Olivier; Roby-Brami, Agnes; Hanneton, Sylvain; Viaud-Delmon, Isabelle

    2013-01-01

    Studies of the nature of the neural mechanisms involved in goal-directed movements tend to concentrate on the role of vision. We present here an attempt to address the mechanisms whereby an auditory input is transformed into a motor command. The spatial and temporal organization of hand movements were studied in normal human subjects as they pointed toward unseen auditory targets located in a horizontal plane in front of them. Positions and movements of the hand were measured by a six infrared camera tracking system. In one condition, we assessed the role of auditory information about target position in correcting the trajectory of the hand. To accomplish this, the duration of the target presentation was varied. In another condition, subjects received continuous auditory feedback of their hand movement while pointing to the auditory targets. Online auditory control of the direction of pointing movements was assessed by evaluating how subjects reacted to shifts in heard hand position. Localization errors were exacerbated by short duration of target presentation but not modified by auditory feedback of hand position. Long duration of target presentation gave rise to a higher level of accuracy and was accompanied by early automatic head orienting movements consistently related to target direction. These results highlight the efficiency of auditory feedback processing in online motor control and suggest that the auditory system takes advantages of dynamic changes of the acoustic cues due to changes in head orientation in order to process online motor control. How to design an informative acoustic feedback needs to be carefully studied to demonstrate that auditory feedback of the hand could assist the monitoring of movements directed at objects in auditory space. PMID:23626532

  13. Auditory perceptual simulation: Simulating speech rates or accents?

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. PMID:27177077

  14. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  15. Auditory Processing Theories of Language Disorders: Past, Present, and Future

    Science.gov (United States)

    Miller, Carol A.

    2011-01-01

    Purpose: The purpose of this article is to provide information that will assist readers in understanding and interpreting research literature on the role of auditory processing in communication disorders. Method: A narrative review was used to summarize and synthesize the literature on auditory processing deficits in children with auditory…

  16. Quantification of the auditory startle reflex in children

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; van der Meer, Johan N.; Koelman, Johannes H. T. M.; Boeree, Thijs; Bour, Lo; Tijssen, Marina A. J.

    2009-01-01

    Objective: To find an adequate tool to assess the auditory startle reflex (ASR) in children. Methods: We investigated the effect of stimulus repetition, gender and age on several quantifications of the ASR. ASR's were elicited by eight consecutive auditory stimuli in 27 healthy children. Electromyog

  17. Effect of Auditory Interference on Memory of Haptic Perceptions.

    Science.gov (United States)

    Anater, Paul F.

    1980-01-01

    The effect of auditory interference on the processing of haptic information by 61 visually impaired students (8 to 20 years old) was the focus of the research described in this article. It was assumed that as the auditory interference approximated the verbalized activity of the haptic task, accuracy of recall would decline. (Author)

  18. A Pilot Study of Auditory Integration Training in Autism.

    Science.gov (United States)

    Rimland, Bernard; Edelson, Stephen M.

    1995-01-01

    The effectiveness of Auditory Integration Training (AIT) in 8 autistic individuals (ages 4-21) was evaluated using repeated multiple criteria assessment over a 3-month period. Compared to matched controls, subjects' scores improved on the Aberrant Behavior Checklist and Fisher's Auditory Problems Checklist. AIT did not decrease sound sensitivity.…

  19. Statistical representation of sound textures in the impaired auditory system

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2015-01-01

    homogenous sounds such as rain, birds, or fire. It has been suggested that sound texture perception is mediated by time-averaged statistics measured from early auditory representations (McDermott et al., 2013). Changes to early auditory processing, such as broader “peripheral” filters or reduced compression...

  20. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a bas

  1. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  2. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  3. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    Science.gov (United States)

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  4. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  5. Auditory Processing Learning Disability, Suicidal Ideation, and Transformational Faith

    Science.gov (United States)

    Bailey, Frank S.; Yocum, Russell G.

    2015-01-01

    The purpose of this personal experience as a narrative investigation is to describe how an auditory processing learning disability exacerbated--and how spirituality and religiosity relieved--suicidal ideation, through the lived experiences of an individual born and raised in the United States. The study addresses: (a) how an auditory processing…

  6. Loudspeaker-based room auralization in auditory perception research

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Favrot, Sylvain Emmanuel

    2010-01-01

    , and aided-impaired auditory system in realistic environments and (ii) a framework to evaluate the effect of different room modeling and auralisation methods on auditory perception. The applicability of such environment is demonstrated using different objective room acoustic measures. Different experimental...... results are presented, including measures of distance perception and the effect of early reflections on speech intelligibility....

  7. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James;

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory-nerve ...

  8. Subdividing the beat: auditory and motor contributions to synchronization

    NARCIS (Netherlands)

    Loehr, J.D.; Palmer, C.

    2009-01-01

    THE CURRENT STUDY EXAMINED HOW AUDITORY AND kinematic information influenced pianists' ability to synchronize musical sequences with a metronome. Pianists performed melodies in which quarter-note beats were subdivided by intervening eighth notes that resulted from auditory information (heard tones),

  9. Deactivation of the Parahippocampal Gyrus Preceding Auditory Hallucinations in Schizophrenia

    NARCIS (Netherlands)

    Diederen, Kelly M. J.; Neggers, Sebastiaan F. W.; Daalman, Kirstin; Blom, Jan Dirk; Goekoop, Rutger; Kahn, Rene S.; Sommer, Iris E. C.

    2010-01-01

    Objective: Activation in a network of language-related regions has been reported during auditory verbal hallucinations. It remains unclear, however, how this activation is triggered. Identifying brain regions that show significant signal changes preceding auditory hallucinations might reveal the ori

  10. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to age-m

  11. Comparison of auditory hallucinations across different disorders and syndromes

    NARCIS (Netherlands)

    Sommer, Iris E. C.; Koops, Sanne; Blom, Jan Dirk

    2012-01-01

    Auditory hallucinations can be experienced in the context of many different disorders and syndromes. The differential diagnosis basically rests on the presence or absence of accompanying symptoms. In terms of clinical relevance, the most important distinction to be made is between auditory hallucina

  12. Auditory-Visual Transfer in Four-Month-Old Infants.

    Science.gov (United States)

    Mendelson, Morton J.; Ferland, Mark B.

    1982-01-01

    Twenty-seven 4-month-old infants heard a repetitive auditory rhythm, then viewed silent film of puppet opening/closing its mouth, either in the familiar rhythm or a novel rhythm. Results showed infants exposed to the novel condition watched the film longer than infants shown the familiar condition, providing evidence for auditory-visual transfer…

  13. A Time-Frequency Auditory Model Using Wavelet Packets

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1996-01-01

    A time-frequency auditory model is presented. The model uses the wavelet packet analysis as the preprocessor. The auditory filters are modelled by the rounded exponential filters, and the excitation is smoothed by a window function. By comparing time-frequency excitation patterns it is shown...

  14. Auditory perceptual simulation: Simulating speech rates or accents?

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects.

  15. Auditory Dysfunction and Its Communicative Impact in the Classroom.

    Science.gov (United States)

    Friedrich, Brad W.

    1982-01-01

    The origins and nature of auditory dysfunction in school age children and the role of the audiologist in the evaluation of the learning disabled child are reviewed. Specific structures and mechanisms responsible for the reception and perception of auditory signals are specified. (Author/SEW)

  16. Preparation and Culture of Chicken Auditory Brainstem Slices

    OpenAIRE

    Sanchez, Jason T.; Seidl, Armin H.; Rubel, Edwin W.; Barria, Andres

    2011-01-01

    The chicken auditory brainstem is a well-established model system that has been widely used to study the anatomy and physiology of auditory processing at discreet periods of development 1-4 as well as mechanisms for temporal coding in the central nervous system 5-7.

  17. Auditory signal design for automatic number plate recognition system

    NARCIS (Netherlands)

    Heydra, C.G.; Jansen, R.J.; Van Egmond, R.

    2014-01-01

    This paper focuses on the design of an auditory signal for the Automatic Number Plate Recognition system of Dutch national police. The auditory signal is designed to alert police officers of suspicious cars in their proximity, communicating priority level and location of the suspicious car and takin

  18. Overview of Central Auditory Processing Deficits in Older Adults.

    Science.gov (United States)

    Atcherson, Samuel R; Nagaraj, Naveen K; Kennett, Sarah E W; Levisee, Meredith

    2015-08-01

    Although there are many reported age-related declines in the human body, the notion that a central auditory processing deficit exists in older adults has not always been clear. Hearing loss and both structural and functional central nervous system changes with advancing age are contributors to how we listen, hear, and process auditory information. Even older adults with normal or near normal hearing sensitivity may exhibit age-related central auditory processing deficits as measured behaviorally and/or electrophysiologically. The purpose of this article is to provide an overview of assessment and rehabilitative approaches for central auditory processing deficits in older adults. It is hoped that the outcome of the information presented here will help clinicians with older adult patients who do not exhibit the typical auditory processing behaviors exhibited by others at the same age and with comparable hearing sensitivity all in the absence of other health-related conditions. PMID:27516715

  19. Formal auditory training in adult hearing aid users

    Directory of Open Access Journals (Sweden)

    Daniela Gil

    2010-01-01

    Full Text Available INTRODUCTION: Individuals with sensorineural hearing loss are often able to regain some lost auditory function with the help of hearing aids. However, hearing aids are not able to overcome auditory distortions such as impaired frequency resolution and speech understanding in noisy environments. The coexistence of peripheral hearing loss and a central auditory deficit may contribute to patient dissatisfaction with amplification, even when audiological tests indicate nearly normal hearing thresholds. OBJECTIVE: This study was designed to validate the effects of a formal auditory training program in adult hearing aid users with mild to moderate sensorineural hearing loss. METHODS: Fourteen bilateral hearing aid users were divided into two groups: seven who received auditory training and seven who did not. The training program was designed to improve auditory closure, figure-to-ground for verbal and nonverbal sounds and temporal processing (frequency and duration of sounds. Pre- and post-training evaluations included measuring electrophysiological and behavioral auditory processing and administration of the Abbreviated Profile of Hearing Aid Benefit (APHAB self-report scale. RESULTS: The post-training evaluation of the experimental group demonstrated a statistically significant reduction in P3 latency, improved performance in some of the behavioral auditory processing tests and higher hearing aid benefit in noisy situations (p-value < 0,05. No changes were noted for the control group (p-value <0,05. CONCLUSION: The results demonstrated that auditory training in adult hearing aid users can lead to a reduction in P3 latency, improvements in sound localization, memory for nonverbal sounds in sequence, auditory closure, figure-to-ground for verbal sounds and greater benefits in reverberant and noisy environments.

  20. Auditory complaints in scuba divers: an overview.

    Science.gov (United States)

    Evens, Rachel A; Bardsley, Barry; C Manchaiah, Vinaya K

    2012-03-01

    Pre-1970s, diving was seen as a predominantly male working occupation. Since then it has become a popular hobby, with increasing access to SCUBA diving while on holiday. For a leisure activity, diving puts the auditory system at the risk of a wide variety of complaints. However, there is still insufficient consensus on the frequency of these conditions, which ultimately would require more attention from hearing-healthcare professionals. A literature search of epidemiology studies of eight auditory complaints was conducted, using both individual and large-scale diving studies, with some reference to large-scale non-diving populations . A higher incidence was found for middle ear barotrauma, eustachian tube dysfunction, and alternobaric vertigo with a high correlation among females. Comparing these findings with a non-diving population found no statistically significant difference for hearing loss or tinnitus. Increased awareness of health professionals is required, training, and implementation of the Frenzel technique would help resolve the ambiguities of the Valsalva technique underwater. PMID:23448900

  1. Happiness increases distraction by auditory deviant stimuli.

    Science.gov (United States)

    Pacheco-Unguetti, Antonia Pilar; Parmentier, Fabrice B R

    2016-08-01

    Rare and unexpected changes (deviants) in an otherwise repeated stream of task-irrelevant auditory distractors (standards) capture attention and impair behavioural performance in an ongoing visual task. Recent evidence indicates that this effect is increased by sadness in a task involving neutral stimuli. We tested the hypothesis that such effect may not be limited to negative emotions but reflect a general depletion of attentional resources by examining whether a positive emotion (happiness) would increase deviance distraction too. Prior to performing an auditory-visual oddball task, happiness or a neutral mood was induced in participants by means of the exposure to music and the recollection of an autobiographical event. Results from the oddball task showed significantly larger deviance distraction following the induction of happiness. Interestingly, the small amount of distraction typically observed on the standard trial following a deviant trial (post-deviance distraction) was not increased by happiness. We speculate that happiness might interfere with the disengagement of attention from the deviant sound back towards the target stimulus (through the depletion of cognitive resources and/or mind wandering) but help subsequent cognitive control to recover from distraction. PMID:26302716

  2. Selective attention in an insect auditory neuron.

    Science.gov (United States)

    Pollack, G S

    1988-07-01

    Previous work (Pollack, 1986) showed that an identified auditory neuron of crickets, the omega neuron, selectively encodes the temporal structure of an ipsilateral sound stimulus when a contralateral stimulus is presented simultaneously, even though the contralateral stimulus is clearly encoded when it is presented alone. The present paper investigates the physiological basis for this selective response. The selectivity for the ipsilateral stimulus is a result of the apparent intensity difference of ipsi- and contralateral stimuli, which is imposed by auditory directionality; when simultaneous presentation of stimuli from the 2 sides is mimicked by presenting low- and high-intensity stimuli simultaneously from the ipsilateral side, the neuron responds selectively to the high-intensity stimulus, even though the low-intensity stimulus is effective when it is presented alone. The selective encoding of the more intense (= ipsilateral) stimulus is due to intensity-dependent inhibition, which is superimposed on the cell's excitatory response to sound. Because of the inhibition, the stimulus with lower intensity (i.e., the contralateral stimulus) is rendered subthreshold, while the stimulus with higher intensity (the ipsilateral stimulus) remains above threshold. Consequently, the temporal structure of the low-intensity stimulus is filtered out of the neuron's spike train. The source of the inhibition is not known. It is not a consequence of activation of the omega neuron. Its characteristics are not consistent with those of known inhibitory inputs to the omega neuron.

  3. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low...

  4. Auditory Preferences of Young Children with and without Hearing Loss for Meaningful Auditory-Visual Compound Stimuli

    Science.gov (United States)

    Zupan, Barbra; Sussman, Joan E.

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…

  5. Auditory Masking Effects on Speech Fluency in Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback

    Science.gov (United States)

    Jacks, Adam; Haley, Katarina L.

    2015-01-01

    Purpose: To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not…

  6. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus;

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements. The mi...

  7. The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation.

    Science.gov (United States)

    Trainor, Laurel J

    2015-03-19

    Whether music was an evolutionary adaptation that conferred survival advantages or a cultural creation has generated much debate. Consistent with an evolutionary hypothesis, music is unique to humans, emerges early in development and is universal across societies. However, the adaptive benefit of music is far from obvious. Music is highly flexible, generative and changes rapidly over time, consistent with a cultural creation hypothesis. In this paper, it is proposed that much of musical pitch and timing structure adapted to preexisting features of auditory processing that evolved for auditory scene analysis (ASA). Thus, music may have emerged initially as a cultural creation made possible by preexisting adaptations for ASA. However, some aspects of music, such as its emotional and social power, may have subsequently proved beneficial for survival and led to adaptations that enhanced musical behaviour. Ontogenetic and phylogenetic evidence is considered in this regard. In particular, enhanced auditory-motor pathways in humans that enable movement entrainment to music and consequent increases in social cohesion, and pathways enabling music to affect reward centres in the brain should be investigated as possible musical adaptations. It is concluded that the origins of music are complex and probably involved exaptation, cultural creation and evolutionary adaptation. PMID:25646512

  8. The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation.

    Science.gov (United States)

    Trainor, Laurel J

    2015-03-19

    Whether music was an evolutionary adaptation that conferred survival advantages or a cultural creation has generated much debate. Consistent with an evolutionary hypothesis, music is unique to humans, emerges early in development and is universal across societies. However, the adaptive benefit of music is far from obvious. Music is highly flexible, generative and changes rapidly over time, consistent with a cultural creation hypothesis. In this paper, it is proposed that much of musical pitch and timing structure adapted to preexisting features of auditory processing that evolved for auditory scene analysis (ASA). Thus, music may have emerged initially as a cultural creation made possible by preexisting adaptations for ASA. However, some aspects of music, such as its emotional and social power, may have subsequently proved beneficial for survival and led to adaptations that enhanced musical behaviour. Ontogenetic and phylogenetic evidence is considered in this regard. In particular, enhanced auditory-motor pathways in humans that enable movement entrainment to music and consequent increases in social cohesion, and pathways enabling music to affect reward centres in the brain should be investigated as possible musical adaptations. It is concluded that the origins of music are complex and probably involved exaptation, cultural creation and evolutionary adaptation.

  9. Auditory-perceptual learning improves speech motor adaptation in children.

    Science.gov (United States)

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  10. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  11. Functional sex differences in human primary auditory cortex

    International Nuclear Information System (INIS)

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  12. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  13. Cochlear Responses and Auditory Brainstem Response Functions in Adults with Auditory Neuropathy/ Dys-Synchrony and Individuals with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-06-01

    Full Text Available Background and Aim: Physiologic measures of cochlear and auditory nerve function may be of assis¬tance in distinguishing between hearing disorders due primarily to auditory nerve impairment from those due primarily to cochlear hair cells dysfunction. The goal of present study was to measure of co-chlear responses (otoacoustic emissions and cochlear microphonics and auditory brainstem response in some adults with auditory neuropathy/ dys-synchrony and subjects with normal hearing. Materials and Methods: Patients were 16 adults (32 ears in age range of 14-30 years with auditory neu¬ropathy/ dys-synchrony and 16 individuals in age range of 16-30 years from both sexes. The results of transient otoacoustic emissions, cochlear microphonics and auditory brainstem response measures were compared in both groups and the effects of age, sex, ear and degree of hearing loss were studied. Results: The pure-tone average was 48.1 dB HL in auditory neuropathy/dys-synchrony group and the fre¬quency of low tone loss and flat audiograms were higher among other audiogram's shapes. Transient oto¬acoustic emissions were shown in all auditory neuropathy/dys-synchrony people except two cases and its average was near in both studied groups. The latency and amplitude of the biggest reversed co-chlear microphonics response were higher in auditory neuropathy/dys-synchrony patients than control peo¬ple significantly. The correlation between cochlear microphonics amplitude and degree of hearing loss was not significant, and age had significant effect in some cochlear microphonics measures. Audi-tory brainstem response had no response in auditory neuropathy/dys-synchrony patients even with low stim¬uli rates. Conclusion: In adults with speech understanding worsen than predicted from the degree of hearing loss that suspect to auditory neuropathy/ dys-synchrony, the frequency of low tone loss and flat audiograms are higher. Usually auditory brainstem response is absent in

  14. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    OpenAIRE

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J.; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M.; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p

  15. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    OpenAIRE

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the p...

  16. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    Science.gov (United States)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  17. Continuity of visual and auditory rhythms influences sensorimotor coordination.

    Directory of Open Access Journals (Sweden)

    Manuel Varlet

    Full Text Available People often coordinate their movement with visual and auditory environmental rhythms. Previous research showed better performances when coordinating with auditory compared to visual stimuli, and with bimodal compared to unimodal stimuli. However, these results have been demonstrated with discrete rhythms and it is possible that such effects depend on the continuity of the stimulus rhythms (i.e., whether they are discrete or continuous. The aim of the current study was to investigate the influence of the continuity of visual and auditory rhythms on sensorimotor coordination. We examined the dynamics of synchronized oscillations of a wrist pendulum with auditory and visual rhythms at different frequencies, which were either unimodal or bimodal and discrete or continuous. Specifically, the stimuli used were a light flash, a fading light, a short tone and a frequency-modulated tone. The results demonstrate that the continuity of the stimulus rhythms strongly influences visual and auditory motor coordination. Participants' movement led continuous stimuli and followed discrete stimuli. Asymmetries between the half-cycles of the movement in term of duration and nonlinearity of the trajectory occurred with slower discrete rhythms. Furthermore, the results show that the differences of performance between visual and auditory modalities depend on the continuity of the stimulus rhythms as indicated by movements closer to the instructed coordination for the auditory modality when coordinating with discrete stimuli. The results also indicate that visual and auditory rhythms are integrated together in order to better coordinate irrespective of their continuity, as indicated by less variable coordination closer to the instructed pattern. Generally, the findings have important implications for understanding how we coordinate our movements with visual and auditory environmental rhythms in everyday life.

  18. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  19. Participação do cerebelo no processamento auditivo Participation of the cerebellum in auditory processing

    Directory of Open Access Journals (Sweden)

    Patrícia Maria Sens

    2007-04-01

    Full Text Available O cerebelo era tradicionalmente visto como um órgão coordenador da motricidade, entretanto é atualmente considerado como um importante centro de integração de sensibilidades e coordenação de várias fases do processo cognitivo. OBJETIVO: é sistematizar as informações da literatura quanto à participação do cerebelo na percepção auditiva. MÉTODOS: foram selecionados na literatura trabalhos em animais sobre a fisiologia e anatomia das vias auditivas do cerebelo, além de trabalhos em humanos sobre diversas funções do cerebelo na percepção auditiva. Foram discutidos os achados da literatura, que há evidências que o cerebelo participa das seguintes funções cognitivas relacionadas à audição: geração verbal; processamento auditivo; atenção auditiva; memória auditiva; raciocínio abstrato; timing; solução de problemas; discriminação sensorial; informação sensorial; processamento da linguagem; operações lingüísticas. CONCLUSÃO: Foi constatado que são incompletas as informações sobre as estruturas, funções e vias auditivas do cerebelo.The cerebellum, traditionally conceived as a controlling organ of motricity, it is today considered an all-important integration center for both sensitivity and coordination of the various phases of the cognitive process. AIM: This paper aims at gather and sort literature information on the cerebellum’s role in the auditory perception. METHODS: We have selected animal studies of both the physiology and the anatomy of the cerebellum auditory pathway, as well as papers on humans discussing several functions of the cerebellum in auditory perception. As for the literature, it has been discussed and concluded that there is evidence that the cerebellum participates in many cognitive functions related to hearing: speech generation, auditory processing, auditory memory, abstract reasoning, timing, solution of problems, sensorial discrimination, sensorial information, language

  20. [EFFECT OF HYPOXIA ON THE CHARACTERISTICS OF HUMAN AUDITORY PERCEPTION].

    Science.gov (United States)

    Ogorodnikova, E A; Stolvaroya, E I; Pak, S P; Bogomolova, G M; Korolev, Yu N; Golubev, V N; Lesova, E M

    2015-12-01

    The effect of normobaric hypoxic hypoxia (single and interval training) on the characteristics of human hearing was investigated. The hearing thresholds (tonal audiograms), reaction time of subjects in psychophysical experiments (pause detection, perception of rhythm and target words), and short-term auditory memory were measured before and after hypoxia. The obtained data revealed improvement of the auditory sensitivity and characteristics of working memory, and increasing of response speed. It was demonstrated that interval hypoxic training had positive effect on the processes of auditory perception. PMID:26987233

  1. Auditory pitch imagery and its relationship to musical synchronization.

    Science.gov (United States)

    Pecenka, Nadine; Keller, Peter E

    2009-07-01

    Musical ensemble performance requires precise coordination of action. To play in synchrony, ensemble musicians presumably anticipate the sounds that will be produced by their co-performers. These predictions may be based on auditory images in working memory. This study examined the contribution of auditory imagery abilities to sensorimotor synchronization (SMS) in 20 musicians. The acuity of single-tone pitch images was measured by an adjustment method and by adaptive threshold estimation. Different types of finger tapping tasks were administered to assess SMS. Auditory imagery and SMS abilities were found to be positively correlated with one another and with musical experience. PMID:19673794

  2. [Auditory guidance systems for the visually impaired people].

    Science.gov (United States)

    He, Jing; Nie, Min; Luo, Lan; Tong, Shanbao; Niu, Jinhai; Zhu, Yisheng

    2010-04-01

    Visually impaired people face many inconveniences because of the loss of vision. Therefore, scientists are trying to design various guidance systems for improving the lives of the blind. Based on sensory substitution, auditory guidance has become an interesting topic in the field of biomedical engineering. In this paper, we made a state-of-technique review of the auditory guidance system. Although there have been many technical challenges, the auditory guidance system would be a useful alternative for the visually impaired people. PMID:20481341

  3. Tiapride for the treatment of auditory hallucinations in schizophrenia

    Directory of Open Access Journals (Sweden)

    Sagar Karia

    2013-01-01

    Full Text Available Hallucinations are considered as core symptoms of psychosis by both International Classification of Diseases-10 (ICD-10 and Diagnostic and Statistical Manual for the Classification of Psychiatric Disorders - 4 th edition text revised (DSM-IV TR. The most common types of hallucinations in patients with schizophrenia are auditory in nature followed by visual hallucinations. Few patients with schizophrenia have persisting auditory hallucinations despite all other features of schizophrenia having being improved. Here, we report two cases where tiapride was useful as an add-on drug for treating persistent auditory hallucinations.

  4. Predictive uncertainty in auditory sequence processing

    DEFF Research Database (Denmark)

    Hansen, Niels Chr.; Pearce, Marcus T

    2014-01-01

    and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note......Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty—a property of listeners' prospective state of expectation prior to the onset of an event. We examine...... the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using...

  5. An analysis of auditory alphabet confusions.

    Science.gov (United States)

    Walker, M E

    1989-04-01

    The present study, using the nonhierarchical overlapping clustering algorithm MAPCLUS to fit the Shepard-Arabie (1979) ADCLUS model, attempted to derive a set of features that would accurately describe the auditory alphabet confusions present in the data matrices of Conrad (1964) and Hull (1973). Separate nine-cluster solutions accounted for 80% and 89% of the variance in the matrices, respectively. The clusters revealed that the most frequently confused letter names contained common vowels and phonetically similar consonants. Further analyses using INDCLUS, an individual differences extension of the MAPCLUS algorithm and ADCLUS model, indicated that while the patterns of errors in the two matrices were remarkably similar, some differences were also apparent. These differences reflected the differing amounts of background noise present in the two studies. PMID:2710632

  6. Discrimination of auditory stimuli during isoflurane anesthesia.

    Science.gov (United States)

    Rojas, Manuel J; Navas, Jinna A; Greene, Stephen A; Rector, David M

    2008-10-01

    Deep isoflurane anesthesia initiates a burst suppression pattern in which high-amplitude bursts are preceded by periods of nearly silent electroencephalogram. The burst suppression ratio (BSR) is the percentage of suppression (silent electroencephalogram) during the burst suppression pattern and is one parameter used to assess anesthesia depth. We investigated cortical burst activity in rats in response to different auditory stimuli presented during the burst suppression state. We noted a rapid appearance of bursts and a significant decrease in the BSR during stimulation. The BSR changes were distinctive for the different stimuli applied, and the BSR decreased significantly more when stimulated with a voice familiar to the rat as compared with an unfamiliar voice. These results show that the cortex can show differential sensory responses during deep isoflurane anesthesia.

  7. Cancer of the external auditory canal

    DEFF Research Database (Denmark)

    Nyrop, Mette; Grøntved, Aksel

    2002-01-01

    . PATIENTS: Ten women and 10 men with previously untreated primary cancer. Median age at diagnosis was 67 years (range, 31-87 years). Survival data included 18 patients with at least 2 years of follow-up or recurrence. INTERVENTION: Local canal resection or partial temporal bone resection. MAIN OUTCOME......OBJECTIVE: To evaluate the outcome of surgery for cancer of the external auditory canal and relate this to the Pittsburgh staging system used both on squamous cell carcinoma and non-squamous cell carcinoma. DESIGN: Retrospective case series of all patients who had surgery between 1979 and 2000...... MEASURE: Recurrence rate. RESULTS: Half of the patients had squamous cell carcinoma. Thirteen of the patients had stage I tumor (65%), 2 had stage II (10%), 2 had stage III (10%), and 3 had stage IV tumor (15%). Twelve patients were cured. All patients with stage I or II cancers were cured except 1...

  8. On Optimality in Auditory Information Processing

    CERN Document Server

    Karlsson, M

    2000-01-01

    We study limits for the detection and estimation of weak sinusoidal signals in the primary part of the mammalian auditory system using a stochastic Fitzhugh-Nagumo (FHN) model and an action-reaction model for synaptic plasticity. Our overall model covers the chain from a hair cell to a point just after the synaptic connection with a cell in the cochlear nucleus. The information processing performance of the system is evaluated using so called phi-divergences from statistics which quantify a dissimilarity between probability measures and are intimately related to a number of fundamental limits in statistics and information theory (IT). We show that there exists a set of parameters that can optimize several important phi-divergences simultaneously and that this set corresponds to a constant quiescent firing rate (QFR) of the spiral ganglion neuron. The optimal value of the QFR is frequency dependent but is essentially independent of the amplitude of the signal (for small amplitudes). Consequently, optimal proce...

  9. Changes of brainstem auditory and somatosensory evoked

    Institute of Scientific and Technical Information of China (English)

    Yang Jian

    2000-01-01

    Objective: to investigate the characteristics and clinical value of evoked potentials in late infantile form of metachromatic leukodystrophy. Methods: Brainstem auditory, and somatosensory evoked potentials were recorded in 6 patients, and compared with the results of CT scan. Results: All of the 6 patients had abnormal results of BAEP and MNSEP. The main abnormal parameters in BAEP were latency prolongation in wave I, inter-peak latency prolongation in Ⅰ-Ⅲ and Ⅰ-Ⅴ. The abnormal features of MNSEP were low amplitude and absence of wave N9, inter-Peak latency prolongation in Ng-N13 and N13-N20, but no significant change of N20 amplitude. The results also revealed that abnormal changes in BAEP and MNSEP were earlier than that in CT. Conclusion: The detection of BAEP and MNSEP in late infantile form of metachromatic leukodystrophy might early reveal the abnormality of conductive function in nervous system and might be a useful method in diagnosis.

  10. Biomedical Simulation Models of Human Auditory Processes

    Science.gov (United States)

    Bicak, Mehmet M. A.

    2012-01-01

    Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.

  11. Practiced musical style shapes auditory skills.

    Science.gov (United States)

    Vuust, Peter; Brattico, Elvira; Seppänen, Miia; Näätänen, Risto; Tervaniemi, Mari

    2012-04-01

    Musicians' processing of sounds depends highly on instrument, performance practice, and level of expertise. Here, we measured the mismatch negativity (MMN), a preattentive brain response, to six types of musical feature change in musicians playing three distinct styles of music (classical, jazz, and rock/pop) and in nonmusicians using a novel, fast, and musical sounding multifeature MMN paradigm. We found MMN to all six deviants, showing that MMN paradigms can be adapted to resemble a musical context. Furthermore, we found that jazz musicians had larger MMN amplitude than all other experimental groups across all sound features, indicating greater overall sensitivity to auditory outliers. Furthermore, we observed a tendency toward shorter latency of the MMN to all feature changes in jazz musicians compared to band musicians. These findings indicate that the characteristics of the style of music played by musicians influence their perceptual skills and the brain processing of sound features embedded in music. PMID:22524351

  12. Resting Heart Rate and Auditory Evoked Potential

    Directory of Open Access Journals (Sweden)

    Simone Fiuza Regaçone

    2015-01-01

    Full Text Available The objective of this study was to evaluate the association between rest heart rate (HR and the components of the auditory evoked-related potentials (ERPs at rest in women. We investigated 21 healthy female university students between 18 and 24 years old. We performed complete audiological evaluation and measurement of heart rate for 10 minutes at rest (heart rate monitor Polar RS800CX and performed ERPs analysis (discrepancy in frequency and duration. There was a moderate negative correlation of the N1 and P3a with rest HR and a strong positive correlation of the P2 and N2 components with rest HR. Larger components of the ERP are associated with higher rest HR.

  13. Predictive uncertainty in auditory sequence processing.

    Science.gov (United States)

    Hansen, Niels Chr; Pearce, Marcus T

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty-a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music.

  14. Predictive uncertainty in auditory sequence processing

    Directory of Open Access Journals (Sweden)

    Niels Chr. eHansen

    2014-09-01

    Full Text Available Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty - a property of listeners’ prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure.Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex. Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty. We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty. Finally, we simulate listeners’ perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature.The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music.

  15. Predictive uncertainty in auditory sequence processing.

    Science.gov (United States)

    Hansen, Niels Chr; Pearce, Marcus T

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty-a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music. PMID:25295018

  16. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection of...... fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  17. 窒息新生儿脑干诱发电位的检测价值%The Value of Brainstem Auditory Evoked Potential in Asphyxia Neonatorum

    Institute of Scientific and Technical Information of China (English)

    李秋玲

    2011-01-01

    围生期窒息后可引起听神经通路细胞的缺血/再灌注损伤,从而影响听觉功能.脑干听觉诱发电位可反映脑神经和脑听觉通路不同部位所引起的生物电活动,因其客观、准确、重复性好、无损伤性、受干扰因素少而受到儿科工作者重视.对可能累及到中枢神经系统功能失调及听力障碍的儿科疾病具有早期诊断和判断预后的临床参考价值.%The ischemic reperfusion of injury of nerve cell in auditory pathway can be caued by perinatal asphyxia. And the injury can affect hearing. Brainstem auditory evoked potential can reflect the bioelectric activity of cranial nerves and cerebral auditory pathway. Because it have not only good objectivity, precision and reproducibility , but also it have no damage and few interference factors, brainstem auditory evoked potential was thought highly by pediatrician. It has the clinical reference value of early diagnosis and the judgment of prognosis in pediatrie disease of central dysautonomia and dysacusis.

  18. Report on the In-vehicle Auditory Interactions Workshop: Taxonomy, Challenges, and Approaches

    OpenAIRE

    Jeon, Myounghoon; Hermann, Thomas; Bazilinskyy, Pavlo; Landry, Steven; Hammerschmidt, Jan; Wolf, Katie Anna E.; Aghdae, Khashayar; Alvarez, Ignacio; Baldan, Stefano; Camier, Cédric; Chun, Min-Ji; Diatkine, Coralie; Ferguson, Sam; Gable, Thomas M.; Kuppanda Ganapathy, Thimmaiah

    2015-01-01

    As driving is mainly a visual task, auditory displays play a critical role for in-vehicle interactions.To improve in-vehicle auditory interactions to the advanced level, auditory display researchers and automotive user interface researchers came together to discuss this timely topic at an in-vehicle auditory interactions workshop at the International Conference on Auditory Display (ICAD).The present paper reports discussion outcomes from the workshop for more discussions at the AutoUI confere...

  19. 听觉皮层信号处理%Information processing in auditory cortex

    Institute of Scientific and Technical Information of China (English)

    王晓勤

    2009-01-01

    In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex include two types of important transformations: the non-isomorphic transformation of acoustic features and the transformation from acoustical to perceptual dimensions. Neural representations in auditory cortex are also modulated by auditory feedback and vocal control signals during speaking or vocalization. The challenges facing auditory neuroscientists and biomedical engineers are to understand neural coding mechanisms in the brain underlying such transformations. I will use recent findings from my laboratory to illustrate how acoustic information is processed in the primate auditory cortex and discuss its implications for neural processing of speech and music in the brain as well as for the design of neural prosthetic devices such as cochlear implants. We have used a combination of neurophysiological techniques and quantitative engineering tools to investigate these problems.%听觉系统和视觉系统的不同之处在于:听觉系统在外周感受器和听皮层间具有更长的皮层下通路和更多的突触联系.该特殊结构反应了听觉系统从复杂听觉环境中提取与行为相关信号的机制与其他感觉系统不同.听皮层神经信号处理包括两种重要的转换机制,声音信号的非同构转换以及从声音感受到知觉层面的转换.听觉皮层神经编码机制同时也受到听觉反馈和语言或发声过程中发声信号的调控.听觉神经科学家和生物医学工程师所面临的挑战便是如何去理解大脑中这些转换的编码机制.我将会用我实验

  20. Auditory hallucinations in childhood : associations with adversity and delusional ideation

    NARCIS (Netherlands)

    Bartels-Velthuis, A. A.; van de Willige, G.; Jenner, J. A.; Wiersma, D.; van Os, J.

    2012-01-01

    Background. Previous work suggests that exposure to childhood adversity is associated with the combination of delusions and hallucinations. In the present study, associations between (severity of) auditory vocal hallucinations (AVH) and (i) social adversity [traumatic experiences (TE) and stressful

  1. Auditory Assessment of Visually Impaired Preschoolers: A Team Effort.

    Science.gov (United States)

    Gleason, Deborah

    1984-01-01

    The paper provides an overview of audiological terms and types of hearing impairments to help teachers of visually impaired preschoolers work more effectively with audiologists. Both functional auditory assessment and formal audiometric evaluations are discussed. (Author/CL)

  2. Auditory spatial localization: Developmental delay in children with visual impairments.

    Science.gov (United States)

    Cappagli, Giulia; Gori, Monica

    2016-01-01

    For individuals with visual impairments, auditory spatial localization is one of the most important features to navigate in the environment. Many works suggest that blind adults show similar or even enhanced performance for localization of auditory cues compared to sighted adults (Collignon, Voss, Lassonde, & Lepore, 2009). To date, the investigation of auditory spatial localization in children with visual impairments has provided contrasting results. Here we report, for the first time, that contrary to visually impaired adults, children with low vision or total blindness show a significant impairment in the localization of static sounds. These results suggest that simple auditory spatial tasks are compromised in children, and that this capacity recovers over time. PMID:27002960

  3. Prospects for replacement of auditory neurons by stem cells.

    Science.gov (United States)

    Shi, Fuxin; Edge, Albert S B

    2013-03-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457

  4. Genetics Home Reference: autosomal dominant partial epilepsy with auditory features

    Science.gov (United States)

    ... Genetics Home Health Conditions ADPEAF autosomal dominant partial epilepsy with auditory features Enable Javascript to view the ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of ...

  5. Electrophysiologic Assessment of Auditory Training Benefits in Older Adults.

    Science.gov (United States)

    Anderson, Samira; Jenkins, Kimberly

    2015-11-01

    Older adults often exhibit speech perception deficits in difficult listening environments. At present, hearing aids or cochlear implants are the main options for therapeutic remediation; however, they only address audibility and do not compensate for central processing changes that may accompany aging and hearing loss or declines in cognitive function. It is unknown whether long-term hearing aid or cochlear implant use can restore changes in central encoding of temporal and spectral components of speech or improve cognitive function. Therefore, consideration should be given to auditory/cognitive training that targets auditory processing and cognitive declines, taking advantage of the plastic nature of the central auditory system. The demonstration of treatment efficacy is an important component of any training strategy. Electrophysiologic measures can be used to assess training-related benefits. This article will review the evidence for neuroplasticity in the auditory system and the use of evoked potentials to document treatment efficacy. PMID:27587912

  6. Binaural technology for e.g. rendering auditory virtual environments

    DEFF Research Database (Denmark)

    Hammershøi, Dorte

    2008-01-01

    Jens Blauert's research up through the late 60ties and later, pioneered the field of binaural technology and auditory virtual environments. He mastered the measurement of head-related transfer functions (HRTFs) before the term was introduced, and his methods were standard for decades. While most......, helped mediate the understanding that if the transfer functions could be mastered, then important dimensions of the auditory percept could also be controlled. He early understood the potential of using the HRTFs and numerical sound transmission analysis programs for rendering auditory virtual...... environments. Jens Blauert participated in many European cooperation projects exploring  this field (and others), among other the SCATIS project addressing the auditory-tactile dimensions in the absence of visual information....

  7. Retinoic Acid Stimulates Regeneration of Mammalian Auditory Hair Cells

    Science.gov (United States)

    Lefebvre, Philippe P.; Malgrange, Brigitte; Staecker, Hinrich; Moonen, Gustave; van de Water, Thomas R.

    1993-04-01

    Sensorineural hearing loss resulting from the loss of auditory hair cells is thought to be irreversible in mammals. This study provides evidence that retinoic acid can stimulate the regeneration in vitro of mammalian auditory hair cells in ototoxic-poisoned organ of Corti explants in the rat. In contrast, treatment with retinoic acid does not stimulate the formation of extra hair cells in control cultures of Corti's organ. Retinoic acid-stimulated hair cell regeneration can be blocked by cytosine arabinoside, which suggests that a period of mitosis is required for the regeneration of auditory hair cells in this system. These results provide hope for a recovery of hearing function in mammals after auditory hair cell damage.

  8. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  9. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  10. Feel What You Say: An Auditory Effect on Somatosensory Perception

    OpenAIRE

    François Champoux; Shiller, Douglas M.; Zatorre, Robert J.

    2011-01-01

    In the present study, we demonstrate an audiotactile effect in which amplitude modulation of auditory feedback during voiced speech induces a throbbing sensation over the lip and laryngeal regions. Control tasks coupled with the examination of speech acoustic parameters allow us to rule out the possibility that the effect may have been due to cognitive factors or motor compensatory effects. We interpret the effect as reflecting the tight interplay between auditory and tactile modalities durin...

  11. Visual change detection recruits auditory cortices in early deafness.

    Science.gov (United States)

    Bottari, Davide; Heimler, Benedetta; Caclin, Anne; Dalmolin, Anna; Giard, Marie-Hélène; Pavani, Francesco

    2014-07-01

    Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation.

  12. Presentation of dynamically overlapping auditory messages in user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A.L.

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  13. The plastic ear and perceptual relearning in auditory spatial perception.

    Science.gov (United States)

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5-10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis. PMID:25147497

  14. Primate Auditory Recognition Memory Performance Varies With Sound Type

    OpenAIRE

    Chi-Wing, Ng; Bethany, Plakke; Amy, Poremba

    2009-01-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g. social status, kinship, environment),have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition, and/or memory. The present study employs a de...

  15. Dissecting the functional anatomy of auditory word repetition

    OpenAIRE

    ‘Ōiwi Parker Jones; Green, David W.; Cathy J Price

    2014-01-01

    Auditory word repetition involves many different brain regions, whose functions are still far from fully understood. Here, we use a single, multi-factorial, within-subjects fMRI design to identify those regions, and to functionally distinguish the multiple linguistic and non-linguistic processing areas that are all involved in repeating back heard words. The study compared: (1) auditory to visual inputs; (2) phonological to non-phonological inputs; (3) semantic to non-semantic inputs; and (4...

  16. Prospects for Replacement of Auditory Neurons by Stem Cells

    OpenAIRE

    Shi, Fuxin; Edge, Albert S. B.

    2013-01-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regene...

  17. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Hannah L. Golden

    2015-01-01

    Full Text Available Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name are used to segregate auditory ‘foreground’ and ‘background’. Patients with typical amnestic Alzheimer's disease (n = 13 and age-matched healthy individuals (n = 17 underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology.

  18. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease.

    Science.gov (United States)

    Golden, Hannah L; Agustus, Jennifer L; Goll, Johanna C; Downey, Laura E; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known 'cocktail party effect' as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory 'foreground' and 'background'. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology. PMID:26029629

  19. Hierarchical computation in the canonical auditory cortical circuit

    OpenAIRE

    Atencio, Craig A.; Sharpee, Tatyana O.; Christoph E Schreiner

    2009-01-01

    Sensory cortical anatomy has identified a canonical microcircuit underlying computations between and within layers. This feed-forward circuit processes information serially from granular to supragranular and to infragranular layers. How this substrate correlates with an auditory cortical processing hierarchy is unclear. We recorded simultaneously from all layers in cat primary auditory cortex (AI) and estimated spectrotemporal receptive fields (STRFs) and associated nonlinearities. Spike-trig...

  20. The plastic ear and perceptual relearning in auditory spatial perception.

    Science.gov (United States)

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5-10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  1. The plastic ear and perceptual relearning in auditory spatial perception.

    Directory of Open Access Journals (Sweden)

    Simon eCarlile

    2014-08-01

    Full Text Available The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear moulds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localisation, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear moulds or through virtual auditory space stimulation using non-individualised spectral cues. The work with ear moulds demonstrates that a relatively short period of training involving sensory-motor feedback (5 – 10 days significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide a spatial code but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  2. Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket.

    Science.gov (United States)

    Poulet, James F A; Hedwig, Berthold

    2003-06-01

    Acoustically communicating animals are able to process external acoustic stimuli despite generating intense sounds during vocalization. We have examined how the crickets' ascending auditory pathway copes with self-generated, intense auditory signals (chirps) during singing (stridulation). We made intracellular recordings from two identified ascending auditory interneurons, ascending neuron 1 (AN1) and ascending neuron 2 (AN2), during pharmacologically elicited sonorous (two-winged), silent (one-winged), and fictive (isolated CNS) stridulation. During sonorous chirps, AN1 responded with bursts of spikes, whereas AN2 was inhibited and rarely spiked. Low-amplitude hyperpolarizing potentials were recorded in AN1 and AN2 during silent chirps. The potentials were also present during fictive chirps. Therefore, they were the result of a centrally generated corollary discharge from the stridulatory motor network. The spiking response of AN1 and AN2 to acoustic stimuli was inhibited during silent and fictive chirps. The maximum period of inhibition occurred in phase with the maximum spiking response to self-generated sound in a sonorously stridulating cricket. In some experiments (30%) depolarizing potentials were recorded during silent chirps. Reafferent feedback elicited by wing movement was probably responsible for the depolarizing potentials. In addition, two other sources of inhibition were present in AN1: (1) IPSPs were elicited by stimulation with 12.5 kHz stimuli and (2) a long-lasting hyperpolarization followed spiking responses to 4.5 kHz stimuli. The hyperpolarization desensitized the response of AN1 to subsequent quieter stimuli. Therefore, the corollary discharge will reduce desensitization by suppressing the response of AN1 to self-generated sounds.

  3. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  4. Auditory temporal processing skills in musicians with dyslexia.

    Science.gov (United States)

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. PMID:25044949

  5. AUDITORY REACTION TIME IN BASKETBALL PLAYERS AND HEALTHY CONTROLS

    Directory of Open Access Journals (Sweden)

    Ghuntla Tejas P.

    2013-08-01

    Full Text Available Reaction is purposeful voluntary response to different stimuli as visual or auditory stimuli. Auditory reaction time is time required to response to auditory stimuli. Quickness of response is very important in games like basketball. This study was conducted to compare auditory reaction time of basketball players and healthy controls. The auditory reaction time was measured by the reaction time instrument in healthy controls and basketball players. Simple reaction time and choice reaction time measured. During the reaction time testing, auditory stimuli were given for three times and minimum reaction time was taken as the final reaction time for that sensory modality of that subject. The results were statistically analyzed and were recorded as mean + standard deviation and student’s unpaired t-test was applied to check the level of significance. The study shows that basketball players have shorter reaction time than healthy controls. As reaction time gives the information how fast a person gives a response to sensory stimuli, it is a good indicator of performance in reactive sports like basketball. Sportsman should be trained to improve their reaction time to improve their performance.

  6. Verrucous Carcinoma in External Auditory Canal – A Rare Case

    Directory of Open Access Journals (Sweden)

    Md Zillur Rahman

    2013-05-01

    Full Text Available Verrucous carcinoma is a variant of squamous cell carcinoma. It is of low grade malignancy and rarely present with distant metastasis. Oral cavity is the commonest site of this tumour, other sites are larynx, oesophagus and genitalia. Verrucous carcinoma in external auditory canal is extremely rare. This is the presentation of a 45 years old woman who came to the ENT & Head Neck Surgery department of Delta medical college, Dhaka, Bangladesh with discharging left ear and impairment of hearing on the same side for 7 years. Otoscopic examination showed a mass occupying almost whole of the external auditory canal and the overlying skin was thickened, papillary and blackish. Cytology from external auditory canal scrap showed hyperkeratosis and parakeratosis. External auditory canal bone was found eroded at some parts. Excision of the mass was done under microscope. Split thickness skin grafting was done in external auditory canal. The mass was diagnosed as verrucous carcinoma on histopathological examination. Afterwards she was given radiotherapy. Six months follow up showed no recurrence and healthy epithelialization of external auditory canal.

  7. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-01

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. PMID:27495013

  8. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  9. Continuity, divergence and the evolution of brain language pathways

    Directory of Open Access Journals (Sweden)

    James eRilling

    2012-01-01

    Full Text Available Recently, the assumption of evolutionary continuity between humans and non-human primates has been used to bolster the hypothesis that human language is mediated especially by the ventral extreme capsule pathway that mediates auditory object recognition in macaques. Here, we argue for the importance of evolutionary divergence in understanding brain language evolution. We present new comparative data reinforcing our previous conclusion that the dorsal arcuate fasciculus pathway was more significantly modified than the ventral extreme capsule pathway in human evolution. Twenty-six adult human and twenty six adult chimpanzees were imaged with diffusion-weighted MRI and probabilistic tractography was used to track and compare the dorsal and ventral language pathways. Based on these and other data, we argue that the arcuate fasciculus is likely to be the pathway most essential for higher-order aspects of human language such as syntax and lexical-semantics.

  10. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  11. Predictors of auditory performance in hearing-aid users: The role of cognitive function and auditory lifestyle (A)

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2006-01-01

    was correlated with self-report outcome. However, overall the predictive leverage of the various measures was moderate, with single predictors explaining only up to 19 percent of the variance in the auditory-performance measures. a)Now at CNBH, Department of Physiology, Development and Neuroscience, University...... no objective benefit can be measured. It has been suggested that lack of agreement between various hearing-aid outcome components can be explained by individual differences in cognitive function and auditory lifestyle. We measured speech identification, self-report outcome, spectral and temporal resolution...... between objective and subjective hearing-aid outcome. Different self-report outcome measures showed a different amount of correlation with objective auditory performance. Cognitive skills were found to play a role in explaining speech performance and spectral and temporal abilities, and auditory lifestyle...

  12. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    reverberation. The environment is based on the ODEON room acoustic simulation software to render the acoustical scene. ODEON outputs are processed using a combination of different order Ambisonic techniques to calculate multichannel room impulse responses (mRIR). Auralization is then obtained by the convolution....... Throughout the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  13. Processing of harmonics in the lateral belt of macaque auditory cortex.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P

    2014-01-01

    Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations ("coos"). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB. PMID:25100935

  14. Fractal Fluctuations in Human Walking: Comparison Between Auditory and Visually Guided Stepping.

    Science.gov (United States)

    Terrier, Philippe

    2016-09-01

    In human locomotion, sensorimotor synchronization of gait consists of the coordination of stepping with rhythmic auditory cues (auditory cueing, AC). AC changes the long-range correlations among consecutive strides (fractal dynamics) into anti-correlations. Visual cueing (VC) is the alignment of step lengths with marks on the floor. The effects of VC on the fluctuation structure of walking have not been investigated. Therefore, the objective was to compare the effects of AC and VC on the fluctuation pattern of basic spatiotemporal gait parameters. Thirty-six healthy individuals walked 3 × 500 strides on an instrumented treadmill with augmented reality capabilities. The conditions were no cueing (NC), AC, and VC. AC included an isochronous metronome. For VC, projected stepping stones were synchronized with the treadmill speed. Detrended fluctuation analysis assessed the correlation structure. The coefficient of variation (CV) was also assessed. The results showed that AC and VC similarly induced a strong anti-correlated pattern in the gait parameters. The CVs were similar between the NC and AC conditions but substantially higher in the VC condition. AC and VC probably mobilize similar motor control pathways and can be used alternatively in gait rehabilitation. However, the increased gait variability induced by VC should be considered. PMID:26903091

  15. Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.

    Science.gov (United States)

    Rau, Florian; Clemens, Jan; Naumov, Victor; Hennig, R Matthias; Schreiber, Susanne

    2015-11-01

    In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.

  16. Using Facebook to Reach People Who Experience Auditory Hallucinations

    Science.gov (United States)

    Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. Methods We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Results Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience

  17. Auditory place theory and frequency difference limen

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jialu

    2006-01-01

    It has been a barrier that the place code is far too coarse a mechanism to account for the finest frequency difference limen for place theory of hearing since it was proposed in 19th century. A place correlation model, which takes the energy distribution of a pure tone in neighboring bands of auditory filters into full account, was presented in this paper. The model based on the place theory and some experimental results of the psychophysical tuning curves of hearing can explain the finest difference limen for frequency (about 0.02 or 0.3% at 1000 Hz)easily. Using a standard 1/3 octave filter bank of which the relationship between the frequency of a input pure tone apart from the centre frequency of K-th filter band, △f, and the output intensity difference between K-th and (K + 1)-th filters, △E, was established in order to show the fine frequency detection ability of the filter bank. This model can also be used to abstract the fundamental frequency of speech and to measure the frequency of pure tone precisely.

  18. Theory of Auditory Thresholds in Primates

    Science.gov (United States)

    Harrison, Michael J.

    2001-03-01

    The influence of thermal pressure fluctuations at the tympanic membrane has been previously investigated as a possible determinant of the threshold of hearing in humans (L.J. Sivian and S.D. White, J. Acoust. Soc. Am. IV, 4;288(1933).). More recent work has focussed more precisely on the relation between statistical mechanics and sensory signal processing by biological means in creatures' brains (W. Bialek, in ``Physics of Biological Systems: from molecules to species'', H. Flyvberg et al, (Eds), p. 252; Springer 1997.). Clinical data on the frequency dependence of hearing thresholds in humans and other primates (W.C. Stebbins, ``The Acoustic Sense of Animals'', Harvard 1983.) has long been available. I have derived an expression for the frequency dependence of hearing thresholds in primates, including humans, by first calculating the frequency dependence of thermal pressure fluctuations at eardrums from damped normal modes excited in model ear canals of given simple geometry. I then show that most of the features of the clinical data are directly related to the frequency dependence of the ratio of thermal noise pressure arising from without to that arising from within the masking bandwidth which signals must dominate in order to be sensed. The higher intensity of threshold signals in primates smaller than humans, which is clinically observed over much but not all of the human auditory spectrum is shown to arise from their smaller meatus dimensions. note

  19. Auditory evoked potential measurements in elasmobranchs

    Science.gov (United States)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  20. Auditory evoked potential measurements with cetaceans

    Science.gov (United States)

    Mann, David; Cook, Mandy; Bauer, Gordon; Fellner, Wendi; Wells, Randy

    2005-04-01

    Auditory evoked potentials (AEPs) allow researchers to measure the hearing abilities of animals that would be difficult or impossible to train for behavioral measurements of hearing. The hearing abilities of live-stranded cetaceans and wild dolphins can only be made with AEP techniques. In these situations, time with the animal is often restricted to an hour or less, and there is often little control over the acoustic environment in which the tests are performed. AEP measurements may be made while the animals are in air or in shallow pools. For cetaceans in air, sounds are typically presented with a suction cup jawphone. For cetaceans in water, sounds may be presented in a direct field (with the transducer located at some distance from the test subject) or with a jawphone. In each of these situations it is important to understand how thresholds derived from AEP measurements compare with behavioral hearing measurements. Examples of AEP measurements from wild and live-stranded cetaceans are presented to illustrate their usefulness and the constraints under which these measurements must be made. AEP measurements from bottlenose dolphins in air and in water are also compared with their behavioral audiograms.

  1. Elastic modulus of cetacean auditory ossicles.

    Science.gov (United States)

    Tubelli, Andrew A; Zosuls, Aleks; Ketten, Darlene R; Mountain, David C

    2014-05-01

    In order to model the hearing capabilities of marine mammals (cetaceans), it is necessary to understand the mechanical properties, such as elastic modulus, of the middle ear bones in these species. Biologically realistic models can be used to investigate the biomechanics of hearing in cetaceans, much of which is currently unknown. In the present study, the elastic moduli of the auditory ossicles (malleus, incus, and stapes) of eight species of cetacean, two baleen whales (mysticete) and six toothed whales (odontocete), were measured using nanoindentation. The two groups of mysticete ossicles overall had lower average elastic moduli (35.2 ± 13.3 GPa and 31.6 ± 6.5 GPa) than the groups of odontocete ossicles (53.3 ± 7.2 GPa to 62.3 ± 4.7 GPa). Interior bone generally had a higher modulus than cortical bone by up to 36%. The effects of freezing and formalin-fixation on elastic modulus were also investigated, although samples were few and no clear trend could be discerned. The high elastic modulus of the ossicles and the differences in the elastic moduli between mysticetes and odontocetes are likely specializations in the bone for underwater hearing. PMID:24523260

  2. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem.

    Science.gov (United States)

    Wallace, Matthew M; Harris, J Aaron; Brubaker, Donald Q; Klotz, Caitlyn A; Gabriele, Mark L

    2016-05-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph

  3. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole. PMID:20881120

  4. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Directory of Open Access Journals (Sweden)

    Vincent Isnard

    Full Text Available Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs. This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  5. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Science.gov (United States)

    Isnard, Vincent; Taffou, Marine; Viaud-Delmon, Isabelle; Suied, Clara

    2016-01-01

    Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second) could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs). This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  6. Compression of auditory space during forward self-motion.

    Directory of Open Access Journals (Sweden)

    Wataru Teramoto

    Full Text Available BACKGROUND: Spatial inputs from the auditory periphery can be changed with movements of the head or whole body relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these movements modulate auditory perceptual processing. Here, we investigate the effect of the linear acceleration on auditory space representation. METHODOLOGY/PRINCIPAL FINDINGS: Participants were passively transported forward/backward at constant accelerations using a robotic wheelchair. An array of loudspeakers was aligned parallel to the motion direction along a wall to the right of the listener. A short noise burst was presented during the self-motion from one of the loudspeakers when the listener's physical coronal plane reached the location of one of the speakers (null point. In Experiments 1 and 2, the participants indicated which direction the sound was presented, forward or backward relative to their subjective coronal plane. The results showed that the sound position aligned with the subjective coronal plane was displaced ahead of the null point only during forward self-motion and that the magnitude of the displacement increased with increasing the acceleration. Experiment 3 investigated the structure of the auditory space in the traveling direction during forward self-motion. The sounds were presented at various distances from the null point. The participants indicated the perceived sound location by pointing a rod. All the sounds that were actually located in the traveling direction were perceived as being biased towards the null point. CONCLUSIONS/SIGNIFICANCE: These results suggest a distortion of the auditory space in the direction of movement during forward self-motion. The underlying mechanism might involve anticipatory spatial

  7. CT findings of the osteoma of the external auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ha Young; Song, Chang Joon; Yoon, Chung Dae; Park, Mi Hyun; Shin, Byung Seok [Chungnam National University, School of Medicine, Daejeon (Korea, Republic of)

    2006-07-15

    We wanted to report the CT image findings of the osteoma of the external auditory canal. Temporal bone CT scanning was performed on eight patients (4 males and 4 females aged between 8 and 41 years) with pathologically proven osteoma of the external auditory canal after operation, and the findings of the CT scanning were retrospectively reviewed. Not only did we analyze the size, shape, distribution and location of the osteomas, we also analyzed the relationship between the lesion and the tympanosqumaous or tympanomastoid suture line, and the changes seen on the CT scan images for the patients who were able to undergo follow-up. All the lesions of the osteoma of the external auditory canal were unilateral, solitary, pedunculated bony masses. In five patients, the osteomas occurred on the left side and for the other three patients, the osteomas occurred on the right side. The average size of the osteoma was 0.6 cm with the smallest being 0.5 cm and the largest being 1.2 cm. Each of the lesions was located at the osteochondral junction in the terminal part of the osseous external ear canal. The stalk of the osteoma of the external auditory canal was found to have occurred in the anteroinferior wall in five cases (63%), in the anterosuperior wall (the tympanosqumaous suture line) in two cases (25%), and in the anterior wall in one case. The osteoma of the external auditory canal was a compact form in five cases and it was a cancellous form in three cases. One case of the cancellous form was changed into a compact form 35 months later due to the advanced ossification. Osteoma of the external auditory canal developed in a unilateral and solitary fashion. The characteristic image findings show that it is attached to the external auditory canal by its stalk. Unlike our common knowledge about its occurrence, osteoma mostly occurred in the tympanic wall, and this is regardless of the tympanosquamous or tympanomastoid suture line.

  8. The processing of visual and auditory information for reaching movements.

    Science.gov (United States)

    Glazebrook, Cheryl M; Welsh, Timothy N; Tremblay, Luc

    2016-09-01

    Presenting target and non-target information in different modalities influences target localization if the non-target is within the spatiotemporal limits of perceptual integration. When using auditory and visual stimuli, the influence of a visual non-target on auditory target localization is greater than the reverse. It is not known, however, whether or how such perceptual effects extend to goal-directed behaviours. To gain insight into how audio-visual stimuli are integrated for motor tasks, the kinematics of reaching movements towards visual or auditory targets with or without a non-target in the other modality were examined. When present, the simultaneously presented non-target could be spatially coincident, to the left, or to the right of the target. Results revealed that auditory non-targets did not influence reaching trajectories towards a visual target, whereas visual non-targets influenced trajectories towards an auditory target. Interestingly, the biases induced by visual non-targets were present early in the trajectory and persisted until movement end. Subsequent experimentation indicated that the magnitude of the biases was equivalent whether participants performed a perceptual or motor task, whereas variability was greater for the motor versus the perceptual tasks. We propose that visually induced trajectory biases were driven by the perceived mislocation of the auditory target, which in turn affected both the movement plan and subsequent control of the movement. Such findings provide further evidence of the dominant role visual information processing plays in encoding spatial locations as well as planning and executing reaching action, even when reaching towards auditory targets. PMID:26253323

  9. A Detection-Theoretic Analysis of Auditory Streaming and Its Relation to Auditory Masking.

    Science.gov (United States)

    Chang, An-Chieh; Lutfi, Robert; Lee, Jungmee; Heo, Inseok

    2016-09-18

    Research on hearing has long been challenged with understanding our exceptional ability to hear out individual sounds in a mixture (the so-called cocktail party problem). Two general approaches to the problem have been taken using sequences of tones as stimuli. The first has focused on our tendency to hear sequences, sufficiently separated in frequency, split into separate cohesive streams (auditory streaming). The second has focused on our ability to detect a change in one sequence, ignoring all others (auditory masking). The two phenomena are clearly related, but that relation has never been evaluated analytically. This article offers a detection-theoretic analysis of the relation between multitone streaming and masking that underscores the expected similarities and differences between these phenomena and the predicted outcome of experiments in each case. The key to establishing this relation is the function linking performance to the information divergence of the tone sequences, DKL (a measure of the statistical separation of their parameters). A strong prediction is that streaming and masking of tones will be a common function of DKL provided that the statistical properties of sequences are symmetric. Results of experiments are reported supporting this prediction.

  10. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    Directory of Open Access Journals (Sweden)

    Guang-Di Chen

    2014-01-01

    Full Text Available Previous studies have shown that sodium salicylate (SS activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus. The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.

  11. Age-related hearing loss: aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain.

    Science.gov (United States)

    Christensen, Nathan; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D

    2009-02-01

    Presbycusis -- age-related hearing loss, is the number one communication disorder, and one of the top three chronic medical conditions of our aged population. Aquaporins, particularly aquaporin 4 (Aqp4), are membrane proteins with important roles in water and ion flux across cell membranes, including cells of the inner ear and pathways of the brain used for hearing. To more fully understand the biological bases of presbycusis, 39 CBA mice, a well-studied animal model of presbycusis, underwent non-invasive hearing testing as a function of sound frequency (auditory brainstem response -- ABR thresholds, and distortion-product otoacoustic emission -- DPOAE magnitudes), and were clustered into four groups based on age and hearing ability. Aqp4 gene expression, as determined by genechip microarray analysis and quantitative real-time PCR, was compared to the young adult control group in the three older groups: middle aged with good hearing, old age with mild presbycusis, and old age with severe presbycusis. Linear regression and ANOVA showed statistically significant changes in Aqp4 gene expression and ABR and DPOAE hearing status in the cochlea and auditory midbrain -- inferior colliculus. Down-regulation in the cochlea was seen, and an initial down-, then up-regulation was discovered for the inferior colliculus Aqp4 expression. It is theorized that these changes in Aqp4 gene expression represent an age-related disruption of ion flux in the fluids of the cochlea that are responsible for ionic gradients underlying sound transduction in cochlear hair cells necessary for hearing. In regard to central auditory processing at the level of the auditory midbrain, aquaporin gene expression changes may affect neurotransmitter cycling involving supporting cells, thus impairing complex sound neural processing with age.

  12. Subcortical neural coding mechanisms for auditory temporal processing.

    Science.gov (United States)

    Frisina, R D

    2001-08-01

    Biologically relevant sounds such as speech, animal vocalizations and music have distinguishing temporal features that are utilized for effective auditory perception. Common temporal features include sound envelope fluctuations, often modeled in the laboratory by amplitude modulation (AM), and starts and stops in ongoing sounds, which are frequently approximated by hearing researchers as gaps between two sounds or are investigated in forward masking experiments. The auditory system has evolved many neural processing mechanisms for encoding important temporal features of sound. Due to rapid progress made in the field of auditory neuroscience in the past three decades, it is not possible to review all progress in this field in a single article. The goal of the present report is to focus on single-unit mechanisms in the mammalian brainstem auditory system for encoding AM and gaps as illustrative examples of how the system encodes key temporal features of sound. This report, following a systems analysis approach, starts with findings in the auditory nerve and proceeds centrally through the cochlear nucleus, superior olivary complex and inferior colliculus. Some general principles can be seen when reviewing this entire field. For example, as one ascends the central auditory system, a neural encoding shift occurs. An emphasis on synchronous responses for temporal coding exists in the auditory periphery, and more reliance on rate coding occurs as one moves centrally. In addition, for AM, modulation transfer functions become more bandpass as the sound level of the signal is raised, but become more lowpass in shape as background noise is added. In many cases, AM coding can actually increase in the presence of background noise. For gap processing or forward masking, coding for gaps changes from a decrease in spike firing rate for neurons of the peripheral auditory system that have sustained response patterns, to an increase in firing rate for more central neurons with

  13. Prevalence of auditory changes in newborns in a teaching hospital

    Directory of Open Access Journals (Sweden)

    Guimarães, Valeriana de Castro

    2012-01-01

    Full Text Available Introduction: The precocious diagnosis and the intervention in the deafness are of basic importance in the infantile development. The loss auditory and more prevalent than other joined riots to the birth. Objective: Esteem the prevalence of auditory alterations in just-born in a hospital school. Method: Prospective transversal study that evaluated 226 just-been born, been born in a public hospital, between May of 2008 the May of 2009. Results: Of the 226 screened, 46 (20.4% had presented absence of emissions, having been directed for the second emission. Of the 26 (56.5% children who had appeared in the retest, 8 (30.8% had remained with absence and had been directed to the Otolaryngologist. Five (55.5% had appeared and had been examined by the doctor. Of these, 3 (75.0% had presented normal otoscopy, being directed for evaluation of the Evoked Potential Auditory of Brainstem (PEATE. Of the total of studied children, 198 (87.6% had had presence of emissions in one of the tests and, 2 (0.9% with deafness diagnosis. Conclusion: The prevalence of auditory alterations in the studied population was of 0,9%. The study it offers given excellent epidemiologists and it presents the first report on the subject, supplying resulted preliminary future implantation and development of a program of neonatal auditory selection.

  14. Role of the auditory system in speech production.

    Science.gov (United States)

    Guenther, Frank H; Hickok, Gregory

    2015-01-01

    This chapter reviews evidence regarding the role of auditory perception in shaping speech output. Evidence indicates that speech movements are planned to follow auditory trajectories. This in turn is followed by a description of the Directions Into Velocities of Articulators (DIVA) model, which provides a detailed account of the role of auditory feedback in speech motor development and control. A brief description of the higher-order brain areas involved in speech sequencing (including the pre-supplementary motor area and inferior frontal sulcus) is then provided, followed by a description of the Hierarchical State Feedback Control (HSFC) model, which posits internal error detection and correction processes that can detect and correct speech production errors prior to articulation. The chapter closes with a treatment of promising future directions of research into auditory-motor interactions in speech, including the use of intracranial recording techniques such as electrocorticography in humans, the investigation of the potential roles of various large-scale brain rhythms in speech perception and production, and the development of brain-computer interfaces that use auditory feedback to allow profoundly paralyzed users to learn to produce speech using a speech synthesizer.

  15. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    Science.gov (United States)

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  16. Brainstem auditory evoked potentials in children with lead exposure

    Directory of Open Access Journals (Sweden)

    Katia de Freitas Alvarenga

    2015-02-01

    Full Text Available Introduction: Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. Objective: To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Methods: Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months. Results: The mean time-integrated cumulative blood lead index was 12 µg/dL (SD ± 5.7, range:2.433. All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. Conclusion: No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area.

  17. The auditory attention status in Iranian bilingual and monolingual people

    Directory of Open Access Journals (Sweden)

    Nayiere Mansoori

    2013-05-01

    Full Text Available Background and Aim: Bilingualism, as one of the discussing issues of psychology and linguistics, can influence the speech processing. Of several tests for assessing auditory processing, dichotic digit test has been designed to study divided auditory attention. Our study was performed to compare the auditory attention between Iranian bilingual and monolingual young adults. Methods: This cross-sectional study was conducted on 60 students including 30 Turkish-Persian bilinguals and 30 Persian monolinguals aged between 18 to 30 years in both genders. Dichotic digit test was performed on young individuals with normal peripheral hearing and right hand preference. Results: No significant correlation was found between the results of dichotic digit test of monolinguals and bilinguals (p=0.195, and also between the results of right and left ears in monolingual (p=0.460 and bilingual (p=0.054 groups. The mean score of women was significantly more than men (p=0.031. Conclusion: There was no significant difference between bilinguals and monolinguals in divided auditory attention; and it seems that acquisition of second language in lower ages has no noticeable effect on this type of auditory attention.

  18. Neuromagnetic evidence for early auditory restoration of fundamental pitch.

    Directory of Open Access Journals (Sweden)

    Philip J Monahan

    Full Text Available BACKGROUND: Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset. METHODOLOGY: Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz, while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz, such that the restored fundamental (also knows as "virtual pitch" changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component. PRINCIPAL FINDINGS: We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies. CONCLUSIONS: Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex.

  19. Spatial organization of tettigoniid auditory receptors: insights from neuronal tracing.

    Science.gov (United States)

    Strauß, Johannes; Lehmann, Gerlind U C; Lehmann, Arne W; Lakes-Harlan, Reinhard

    2012-11-01

    The auditory sense organ of Tettigoniidae (Insecta, Orthoptera) is located in the foreleg tibia and consists of scolopidial sensilla which form a row termed crista acustica. The crista acustica is associated with the tympana and the auditory trachea. This ear is a highly ordered, tonotopic sensory system. As the neuroanatomy of the crista acustica has been documented for several species, the most distal somata and dendrites of receptor neurons have occasionally been described as forming an alternating or double row. We investigate the spatial arrangement of receptor cell bodies and dendrites by retrograde tracing with cobalt chloride solution. In six tettigoniid species studied, distal receptor neurons are consistently arranged in double-rows of somata rather than a linear sequence. This arrangement of neurons is shown to affect 30-50% of the overall auditory receptors. No strict correlation of somata positions between the anterio-posterior and dorso-ventral axis was evident within the distal crista acustica. Dendrites of distal receptors occasionally also occur in a double row or are even massed without clear order. Thus, a substantial part of auditory receptors can deviate from a strictly straight organization into a more complex morphology. The linear organization of dendrites is not a morphological criterion that allows hearing organs to be distinguished from nonhearing sense organs serially homologous to ears in all species. Both the crowded arrangement of receptor somata and dendrites may result from functional constraints relating to frequency discrimination, or from developmental constraints of auditory morphogenesis in postembryonic development. PMID:22807283

  20. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.

    Science.gov (United States)

    Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices.

  1. Stability and plasticity of auditory brainstem function across the lifespan.

    Science.gov (United States)

    Skoe, Erika; Krizman, Jennifer; Anderson, Samira; Kraus, Nina

    2015-06-01

    The human auditory brainstem is thought to undergo rapid developmental changes early in life until age ∼2 followed by prolonged stability until aging-related changes emerge. However, earlier work on brainstem development was limited by sparse sampling across the lifespan and/or averaging across children and adults. Using a larger dataset than past investigations, we aimed to trace more subtle variations in auditory brainstem function that occur normally from infancy into the eighth decade of life. To do so, we recorded auditory brainstem responses (ABRs) to a click stimulus and a speech syllable (da) in 586 normal-hearing healthy individuals. Although each set of ABR measures (latency, frequency encoding, response consistency, nonstimulus activity) has a distinct developmental profile, across all measures developmental changes were found to continue well past age 2. In addition to an elongated developmental trajectory and evidence for multiple auditory developmental processes, we revealed a period of overshoot during childhood (5-11 years old) for latency and amplitude measures, when the latencies are earlier and the amplitudes are greater than the adult value. Our data also provide insight into the capacity for experience-dependent auditory plasticity at different stages in life and underscore the importance of using age-specific norms in clinical and experimental applications. PMID:24366906

  2. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail

    2015-01-01

    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  3. Options for Auditory Training for Adults with Hearing Loss.

    Science.gov (United States)

    Olson, Anne D

    2015-11-01

    Hearing aid devices alone do not adequately compensate for sensory losses despite significant technological advances in digital technology. Overall use rates of amplification among adults with hearing loss remain low, and overall satisfaction and performance in noise can be improved. Although improved technology may partially address some listening problems, auditory training may be another alternative to improve speech recognition in noise and satisfaction with devices. The literature underlying auditory plasticity following placement of sensory devices suggests that additional auditory training may be needed for reorganization of the brain to occur. Furthermore, training may be required to acquire optimal performance from devices. Several auditory training programs that are readily accessible for adults with hearing loss, hearing aids, or cochlear implants are described. Programs that can be accessed via Web-based formats and smartphone technology are reviewed. A summary table is provided for easy access to programs with descriptions of features that allow hearing health care providers to assist clients in selecting the most appropriate auditory training program to fit their needs. PMID:27587915

  4. The role of auditory feedback in sustaining vocal vibratoa)

    Science.gov (United States)

    Leydon, Ciara; Bauer, Jay J.; Larson, Charles R.

    2006-01-01

    Vocal vibrato and tremor are characterized by oscillations in voice fundamental frequency (F0). These oscillations may be sustained by a control loop within the auditory system. One component of the control loop is the pitch-shift reflex (PSR). The PSR is a closed loop negative feedback reflex that is triggered in response to discrepancies between intended and perceived pitch with a latency of ~ 100 ms. Consecutive compensatory reflexive responses lead to oscillations in pitch every ~200 ms, resulting in ~5-Hz modulation of F0. Pitch-shift reflexes were elicited experimentally in six subjects while they sustained /u/ vowels at a comfortable pitch and loudness. Auditory feedback was sinusoidally modulated at discrete integer frequencies (1 to 10 Hz) with ±25 cents amplitude. Modulated auditory feedback induced oscillations in voice F0 output of all subjects at rates consistent with vocal vibrato and tremor. Transfer functions revealed peak gains at 4 to 7 Hz in all subjects, with an average peak gain at 5 Hz. These gains occurred in the modulation frequency region where the voice output and auditory feedback signals were in phase. A control loop in the auditory system may sustain vocal vibrato and tremorlike oscillations in voice F0. PMID:14514211

  5. The role of auditory feedback in sustaining vocal vibrato

    Science.gov (United States)

    Leydon, Ciara; Bauer, Jay J.; Larson, Charles R.

    2003-09-01

    Vocal vibrato and tremor are characterized by oscillations in voice fundamental frequency (F0). These oscillations may be sustained by a control loop within the auditory system. One component of the control loop is the pitch-shift reflex (PSR). The PSR is a closed loop negative feedback reflex that is triggered in response to discrepancies between intended and perceived pitch with a latency of ~100 ms. Consecutive compensatory reflexive responses lead to oscillations in pitch every ~200 ms, resulting in ~5-Hz modulation of F0. Pitch-shift reflexes were elicited experimentally in six subjects while they sustained /you/ vowels at a comfortable pitch and loudness. Auditory feedback was sinusoidally modulated at discrete integer frequencies (1 to 10 Hz) with +/-25 cents amplitude. Modulated auditory feedback induced oscillations in voice F0 output of all subjects at rates consistent with vocal vibrato and tremor. Transfer functions revealed peak gains at 4 to 7 Hz in all subjects, with an average peak gain at 5 Hz. These gains occurred in the modulation frequency region where the voice output and auditory feedback signals were in phase. A control loop in the auditory system may sustain vocal vibrato and tremorlike oscillations in voice F0.

  6. Automatically detecting auditory P300 in several trials

    Institute of Scientific and Technical Information of China (English)

    莫少锋; 汤井田; 陈洪波

    2015-01-01

    A method was demonstrated based on Infomax independent component analysis (Infomax ICA) for automatically extracting auditory P300 signals within several trials. A signaling equilibrium algorithm was proposed to enhance the effectiveness of the Infomax ICA decomposition. After the mixed signal was decomposed by Infomax ICA, the independent component (IC) used in auditory P300 reconstruction was automatically chosen by using the standard deviation of the fixed temporal pattern. And the result of auditory P300 was reconstructed using the selected ICs. The experimental results show that the auditory P300 can be detected automatically within five trials. The Pearson correlation coefficient between the standard signal and the signal detected using the proposed method is significantly greater than that between the standard signal and the signal detected using the average method within five trials. The wave pattern result obtained using the proposed algorithm is better and more similar to the standard signal than that obtained by the average method for the same number of trials. Therefore, the proposed method can automatically detect the effective auditory P300 within several trials.

  7. Enhanced representation of spectral contrasts in the primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Nicolas eCatz

    2013-06-01

    Full Text Available The role of early auditory processing may be to extract some elementary features from an acoustic mixture in order to organize the auditory scene. To accomplish this task, the central auditory system may rely on the fact that sensory objects are often composed of spectral edges, i.e. regions where the stimulus energy changes abruptly over frequency. The processing of acoustic stimuli may benefit from a mechanism enhancing the internal representation of spectral edges. While the visual system is thought to rely heavily on this mechanism (enhancing spatial edges, it is still unclear whether a related process plays a significant role in audition. We investigated the cortical representation of spectral edges, using acoustic stimuli composed of multi-tone pips whose time-averaged spectral envelope contained suppressed or enhanced regions. Importantly, the stimuli were designed such that neural responses properties could be assessed as a function of stimulus frequency during stimulus presentation. Our results suggest that the representation of acoustic spectral edges is enhanced in the auditory cortex, and that this enhancement is sensitive to the characteristics of the spectral contrast profile, such as depth, sharpness and width. Spectral edges are maximally enhanced for sharp contrast and large depth. Cortical activity was also suppressed at frequencies within the suppressed region. To note, the suppression of firing was larger at frequencies nearby the lower edge of the suppressed region than at the upper edge. Overall, the present study gives critical insights into the processing of spectral contrasts in the auditory system.

  8. Effect of background music on auditory-verbal memory performance

    Directory of Open Access Journals (Sweden)

    Sona Matloubi

    2014-12-01

    Full Text Available Background and Aim: Music exists in all cultures; many scientists are seeking to understand how music effects cognitive development such as comprehension, memory, and reading skills. More recently, a considerable number of neuroscience studies on music have been developed. This study aimed to investigate the effects of null and positive background music in comparison with silence on auditory-verbal memory performance.Methods: Forty young adults (male and female with normal hearing, aged between 18 and 26, participated in this comparative-analysis study. An auditory and speech evaluation was conducted in order to investigate the effects of background music on working memory. Subsequently, the Rey auditory-verbal learning test was performed for three conditions: silence, positive, and null music.Results: The mean score of the Rey auditory-verbal learning test in silence condition was higher than the positive music condition (p=0.003 and the null music condition (p=0.01. The tests results did not reveal any gender differences.Conclusion: It seems that the presence of competitive music (positive and null music and the orientation of auditory attention have negative effects on the performance of verbal working memory. It is possibly owing to the intervention of music with verbal information processing in the brain.

  9. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  10. Training-induced plasticity of auditory localization in adult mammals.

    Directory of Open Access Journals (Sweden)

    Oliver Kacelnik

    2006-04-01

    Full Text Available Accurate auditory localization relies on neural computations based on spatial cues present in the sound waves at each ear. The values of these cues depend on the size, shape, and separation of the two ears and can therefore vary from one individual to another. As with other perceptual skills, the neural circuits involved in spatial hearing are shaped by experience during development and retain some capacity for plasticity in later life. However, the factors that enable and promote plasticity of auditory localization in the adult brain are unknown. Here we show that mature ferrets can rapidly relearn to localize sounds after having their spatial cues altered by reversibly occluding one ear, but only if they are trained to use these cues in a behaviorally relevant task, with greater and more rapid improvement occurring with more frequent training. We also found that auditory adaptation is possible in the absence of vision or error feedback. Finally, we show that this process involves a shift in sensitivity away from the abnormal auditory spatial cues to other cues that are less affected by the earplug. The mature auditory system is therefore capable of adapting to abnormal spatial information by reweighting different localization cues. These results suggest that training should facilitate acclimatization to hearing aids in the hearing impaired.

  11. Speech identification and cortical potentials in individuals with auditory neuropathy

    Directory of Open Access Journals (Sweden)

    Vanaja CS

    2008-03-01

    Full Text Available Abstract Background Present study investigated the relationship between speech identification scores in quiet and parameters of cortical potentials (latency of P1, N1, and P2; and amplitude of N1/P2 in individuals with auditory neuropathy. Methods Ten individuals with auditory neuropathy (five males and five females and ten individuals with normal hearing in the age range of 12 to 39 yr participated in the study. Speech identification ability was assessed for bi-syllabic words and cortical potentials were recorded for click stimuli. Results Results revealed that in individuals with auditory neuropathy, speech identification scores were significantly poorer than that of individuals with normal hearing. Individuals with auditory neuropathy were further classified into two groups, Good Performers and Poor Performers based on their speech identification scores. It was observed that the mean amplitude of N1/P2 of Poor Performers was significantly lower than that of Good Performers and those with normal hearing. There was no significant effect of group on the latency of the peaks. Speech identification scores showed a good correlation with the amplitude of cortical potentials (N1/P2 complex but did not show a significant correlation with the latency of cortical potentials. Conclusion Results of the present study suggests that measuring the cortical potentials may offer a means for predicting perceptual skills in individuals with auditory neuropathy.

  12. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex

    Science.gov (United States)

    Zhuo, Ran; Xue, Hongbo; Chambers, Anna R.; Kolaczyk, Eric; Polley, Daniel B.

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices. PMID:27622211

  13. Coding of melodic gestalt in human auditory cortex.

    Science.gov (United States)

    Schindler, Andreas; Herdener, Marcus; Bartels, Andreas

    2013-12-01

    The perception of a melody is invariant to the absolute properties of its constituting notes, but depends on the relation between them-the melody's relative pitch profile. In fact, a melody's "Gestalt" is recognized regardless of the instrument or key used to play it. Pitch processing in general is assumed to occur at the level of the auditory cortex. However, it is unknown whether early auditory regions are able to encode pitch sequences integrated over time (i.e., melodies) and whether the resulting representations are invariant to specific keys. Here, we presented participants different melodies composed of the same 4 harmonic pitches during functional magnetic resonance imaging recordings. Additionally, we played the same melodies transposed in different keys and on different instruments. We found that melodies were invariantly represented by their blood oxygen level-dependent activation patterns in primary and secondary auditory cortices across instruments, and also across keys. Our findings extend common hierarchical models of auditory processing by showing that melodies are encoded independent of absolute pitch and based on their relative pitch profile as early as the primary auditory cortex.

  14. Asymmetric transfer of auditory perceptual learning

    Directory of Open Access Journals (Sweden)

    Sygal eAmitay

    2012-11-01

    Full Text Available Perceptual skills can improve dramatically even with minimal practice. A major and practical benefit of learning, however, is in transferring the improvement on the trained task to untrained tasks or stimuli, yet the mechanisms underlying this process are still poorly understood. Reduction of internal noise has been proposed as a mechanism of perceptual learning, and while we have evidence that frequency discrimination (FD learning is due to a reduction of internal noise, the source of that noise was not determined. In this study, we examined whether reducing the noise associated with neural phase locking to tones can explain the observed improvement in behavioural thresholds. We compared FD training between two tone durations (15 and 100 ms that straddled the temporal integration window of auditory nerve fibers upon which computational modeling of phase locking noise was based. Training on short tones resulted in improved FD on probe tests of both the long and short tones. Training on long tones resulted in improvement only on the long tones. Simulations of FD learning, based on the computational model and on signal detection theory, were compared with the behavioral FD data. We found that improved fidelity of phase locking accurately predicted transfer of learning from short to long tones, but also predicted transfer from long to short tones. The observed lack of transfer from long to short tones suggests the involvement of a second mechanism. Training may have increased the temporal integration window which could not transfer because integration time for the short tone is limited by its duration. Current learning models assume complex relationships between neural populations that represent the trained stimuli. In contrast, we propose that training-induced enhancement of the signal-to-noise ratio offers a parsimonious explanation of learning and transfer that easily accounts for asymmetric transfer of learning.

  15. Auditory hair cell innervational patterns in lizards.

    Science.gov (United States)

    Miller, M R; Beck, J

    1988-05-22

    The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions. PMID:3385019

  16. Noise-Induced “Toughening” Effect in Wistar Rats: Enhanced Auditory Brainstem Responses Are Related to Calretinin and Nitric Oxide Synthase Upregulation

    Science.gov (United States)

    Alvarado, Juan C.; Fuentes-Santamaría, Verónica; Gabaldón-Ull, María C.; Jareño-Flores, Tania; Miller, Josef M.; Juiz, José M.

    2016-01-01

    An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this “toughening” effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with “toughening” and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN). Auditory brainstem responses (ABR) were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1 h every 72 h, four times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR) and neuronal nitric oxide synthase (nNOS). Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament, and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signaling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol. PMID:27065815

  17. NOISE-INDUCED TOUGHENING EFFECT IN WISTAR RATS: ENHANCED AUDITORY BRAINSTEM RESPONSES ARE RELATED TO CALRETININ AND NITRIC OXIDE SYNTHASE UPREGULATION.

    Directory of Open Access Journals (Sweden)

    Juan Carlos eAlvarado

    2016-03-01

    Full Text Available An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this toughening effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with ‘toughening’ and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN. Auditory brainstem responses (ABR were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1h every 72h, 4 times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR and neuronal nitric oxide synthase (nNOS. Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signalling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol.

  18. Distribution of Vesicular Glutamate Transporter 2 and Ionotropic Glutamate Receptors in the Auditory Ganglion and Cochlear Nuclei of Pigeons (Columba livia).

    Science.gov (United States)

    Karim, M R; Atoji, Y

    2016-02-01

    Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds.

  19. Auditory Brain Stem Processing in Reptiles and Amphibians: Roles of Coupled Ears

    DEFF Research Database (Denmark)

    Willis, Katie L.; Christensen-Dalsgaard, Jakob; Carr, Catherine

    2014-01-01

    Comparative approaches to the auditory system have yielded great insight into the evolution of sound localization circuits, particularly within the nonmammalian tetrapods. The fossil record demonstrates multiple appearances of tympanic hearing, and examination of the auditory brain stem of variou...

  20. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks.

    Science.gov (United States)

    Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375

  1. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  2. The Effects of Auditory Contrast Tuning upon Speech Intelligibility

    Science.gov (United States)

    Killian, Nathan J.; Watkins, Paul V.; Davidson, Lisa S.; Barbour, Dennis L.

    2016-01-01

    We have previously identified neurons tuned to spectral contrast of wideband sounds in auditory cortex of awake marmoset monkeys. Because additive noise alters the spectral contrast of speech, contrast-tuned neurons, if present in human auditory cortex, may aid in extracting speech from noise. Given that this cortical function may be underdeveloped in individuals with sensorineural hearing loss, incorporating biologically-inspired algorithms into external signal processing devices could provide speech enhancement benefits to cochlear implantees. In this study we first constructed a computational signal processing algorithm to mimic auditory cortex contrast tuning. We then manipulated the shape of contrast channels and evaluated the intelligibility of reconstructed noisy speech using a metric to predict cochlear implant user perception. Candidate speech enhancement strategies were then tested in cochlear implantees with a hearing-in-noise test. Accentuation of intermediate contrast values or all contrast values improved computed intelligibility. Cochlear implant subjects showed significant improvement in noisy speech intelligibility with a contrast shaping procedure.

  3. Auditory aura in frontal opercular epilepsy: sounds from afar.

    Science.gov (United States)

    Thompson, Stephen A; Alexopoulos, Andreas; Bingaman, William; Gonzalez-Martinez, Jorge; Bulacio, Juan; Nair, Dileep; So, Norman K

    2015-06-01

    Auditory auras are typically considered to localize to the temporal neocortex. Herein, we present two cases of frontal operculum/perisylvian epilepsy with auditory auras. Following a non-invasive evaluation, including ictal SPECT and magnetoencephalography, implicating the frontal operculum, these cases were evaluated with invasive monitoring, using stereoelectroencephalography and subdural (plus depth) electrodes, respectively. Spontaneous and electrically-induced seizures showed an ictal onset involving the frontal operculum in both cases. A typical auditory aura was triggered by stimulation of the frontal operculum in one. Resection of the frontal operculum and subjacent insula rendered one case seizure- (and aura-) free. From a hodological (network) perspective, we discuss these findings with consideration of the perisylvian and insular network(s) interconnecting the frontal and temporal lobes, and revisit the non-invasive data, specifically that of ictal SPECT.

  4. An auditory feature detection circuit for sound pattern recognition.

    Science.gov (United States)

    Schöneich, Stefan; Kostarakos, Konstantinos; Hedwig, Berthold

    2015-09-01

    From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns.

  5. Robust speech features representation based on computational auditory model

    Institute of Scientific and Technical Information of China (English)

    LU Xugang; JIA Chuan; DANG Jianwu

    2004-01-01

    A speech signal processing and features extracting method based on computational auditory model is proposed. The computational model is based on psychological, physiological knowledge and digital signal processing methods. In each stage of a hearing perception system, there is a corresponding computational model to simulate its function. Based on this model, speech features are extracted. In each stage, the features in different kinds of level are extracted. A further processing for primary auditory spectrum based on lateral inhibition is proposed to extract much more robust speech features. All these features can be regarded as the internal representations of speech stimulation in hearing system. The robust speech recognition experiments are conducted to test the robustness of the features. Results show that the representations based on the proposed computational auditory model are robust representations for speech signals.

  6. What and Where in auditory sensory processing: A high-density electrical mapping study of distinct neural processes underlying sound object recognition and sound localization

    Directory of Open Access Journals (Sweden)

    Victoria M Leavitt

    2011-06-01

    Full Text Available Functionally distinct dorsal and ventral auditory pathways for sound localization (where and sound object recognition (what have been described in non-human primates. A handful of studies have explored differential processing within these streams in humans, with highly inconsistent findings. Stimuli employed have included simple tones, noise bursts and speech sounds, with simulated left-right spatial manipulations, and in some cases participants were not required to actively discriminate the stimuli. Our contention is that these paradigms were not well suited to dissociating processing within the two streams. Our aim here was to determine how early in processing we could find evidence for dissociable pathways using better titrated what and where task conditions. The use of more compelling tasks should allow us to amplify differential processing within the dorsal and ventral pathways. We employed high-density electrical mapping using a relatively large and environmentally realistic stimulus set (seven animal calls delivered from seven free-field spatial locations; with stimulus configuration identical across the where and what tasks. Topographic analysis revealed distinct dorsal and ventral auditory processing networks during the where and what tasks with the earliest point of divergence seen during the N1 component of the auditory evoked response, beginning at approximately 100 ms. While this difference occurred during the N1 timeframe, it was not a simple modulation of N1 amplitude as it displayed a wholly different topographic distribution to that of the N1. Global dissimilarity measures using topographic modulation analysis confirmed that this difference between tasks was driven by a shift in the underlying generator configuration. Minimum norm source reconstruction revealed distinct activations that corresponded well with activity within putative dorsal and ventral auditory structures.

  7. Task-dependent calibration of auditory spatial perception through environmental visual observation

    OpenAIRE

    Luca Brayda

    2015-01-01

    Visual information is paramount to space perception. Vision influences auditory space estimation. Many studies show that simultaneous visual and auditory cues improve precision of the final multisensory estimate. However, the amount or the temporal extent of visual information, that is sufficient to influence auditory perception, is still unknown. It is therefore interesting to know if vision can improve auditory precision through a short-term environmental observation preceding the audio tas...

  8. The role of vowel perceptual cues in compensatory responses to perturbations of speech auditory feedback

    OpenAIRE

    Reilly, Kevin J.; Dougherty, Kathleen E.

    2013-01-01

    The perturbation of acoustic features in a speaker's auditory feedback elicits rapid compensatory responses that demonstrate the importance of auditory feedback for control of speech output. The current study investigated whether responses to a perturbation of speech auditory feedback vary depending on the importance of the perturbed feature to perception of the vowel being produced. Auditory feedback of speakers' first formant frequency (F1) was shifted upward by 130 mels in randomly selecte...

  9. AUDITORY HAIR CELL EXPLANT CO-CULTURES PROMOTE THE DIFFERENTIATION OF STEM CELLS INTO BIPOLAR NEURONS

    OpenAIRE

    Coleman, B.; Fallon, J. B.; Gillespie, L.N.; Silva, M.G.; Shepherd, R.K.

    2006-01-01

    Auditory neurons, the target neurons of the cochlear implant, degenerate following a sensorineural hearing loss. The goal of this research is to direct the differentiation of embryonic stem cells (SCs) into bipolar auditory neurons that can be used to replace degenerating neurons in the deafened mammalian cochlea. Successful replacement of auditory neurons is likely to result in improved clinical outcomes for cochlear implant recipients. We examined two post-natal auditory co-culture models w...

  10. Auditory priming of frequency and temporal information: Effects of lateralized presentation

    OpenAIRE

    List, Alexandra; Justus, Timothy

    2007-01-01

    Asymmetric distribution of function between the cerebral hemispheres has been widely investigated in the auditory modality. The current approach borrows heavily from visual local-global research in an attempt to determine whether, as in vision, local-global auditory processing is lateralized. In vision, lateralized local-global processing likely relies on spatial frequency information. Drawing analogies between visual spatial frequency and auditory dimensions, two sets of auditory stimuli wer...

  11. Auditory Rehabilitation in Rhesus Macaque Monkeys (Macaca mulatta) with Auditory Brainstem Implants

    Institute of Scientific and Technical Information of China (English)

    Zhen-Min Wang; Zhi-Jun Yang; Fu Zhao; Bo Wang; Xing-Chao Wang; Pei-Ran Qu; Pi-Nan Liu

    2015-01-01

    Background:The auditory brainstem implants (ABIs) have been used to treat deafness for patients with neurofibromatosis Type 2 and nontumor patients.The lack of an appropriate animal model has limited the study of improving hearing rehabilitation by the device.This study aimed to establish an animal model of ABI in adult rhesus macaque monkey (Macaca mulatta).Methods:Six adult rhesus macaque monkeys (M.mulatta) were included.Under general anesthesia,a multichannel ABI was implanted into the lateral recess of the fourth ventricle through the modified suboccipital-retrosigmoid (RS) approach.The electrical auditory brainstem response (EABR) waves were tested to ensure the optimal implant site.After the operation,the EABR and computed tomography (CT) were used to test and verify the effectiveness via electrophysiology and anatomy,respectively.The subjects underwent behavioral observation for 6 months,and the postoperative EABR was tested every two weeks from the 1st month after implant surgery.Result:The implant surgery lasted an average of 5.2 h,and no monkey died or sacrificed.The averaged latencies of peaks Ⅰ,Ⅱ and Ⅳ were 1.27,2.34 and 3.98 ms,respectively in the ABR.One-peak EABR wave was elicited in the operation,and one-or two-peak waves were elicited during the postoperative period.The EABR wave latencies appeared to be constant under different stimulus intensities;however,the amplitudes increased as the stimulus increased within a certain scope.Conclusions:It is feasible and safe to implant ABIs in rhesus macaque monkeys (M.mulatta) through a modified suboccipital RS approach,and EABR and CT are valid tools for animal model establishment.In addition,this model should be an appropriate animal model for the electrophysiological and behavioral study of rhesus macaque monkey with ABI.

  12. Auditory streaming of tones of uncertain frequency, level, and duration.

    Science.gov (United States)

    Chang, An-Chieh; Lutfi, Robert A; Lee, Jungmee

    2015-12-01

    Stimulus uncertainty is known to critically affect auditory masking, but its influence on auditory streaming has been largely ignored. Standard ABA-ABA tone sequences were made increasingly uncertain by increasing the sigma of normal distributions from which the frequency, level, or duration of tones were randomly drawn. Consistent with predictions based on a model of masking by Lutfi, Gilbertson, Chang, and Stamas [J. Acoust. Soc. Am. 134, 2160-2170 (2013)], the frequency difference for which A and B tones formed separate streams increased as a linear function of sigma in tone frequency but was much less affected by sigma in tone level or duration.

  13. Designing auditory cues for Parkinson's disease gait rehabilitation.

    Science.gov (United States)

    Cancela, Jorge; Moreno, Eugenio M; Arredondo, Maria T; Bonato, Paolo

    2014-01-01

    Recent works have proved that Parkinson's disease (PD) patients can be largely benefit by performing rehabilitation exercises based on audio cueing and music therapy. Specially, gait can benefit from repetitive sessions of exercises using auditory cues. Nevertheless, all the experiments are based on the use of a metronome as auditory stimuli. Within this work, Human-Computer Interaction methodologies have been used to design new cues that could benefit the long-term engagement of PD patients in these repetitive routines. The study has been also extended to commercial music and musical pieces by analyzing features and characteristics that could benefit the engagement of PD patients to rehabilitation tasks. PMID:25571327

  14. Germinoma in the Internal Auditory Canal Mimicking a Vestibular Schwannoma

    Directory of Open Access Journals (Sweden)

    Rubén Martín-Hernández

    2014-01-01

    Full Text Available The appearance of a primary germinoma in the central nervous system but not on or near the midline or within the brain is exceptional. It may occur at any age; however, it is rare in patients over 50 years old. Only a handful of cases of germinomas located in the cerebellopontine angle were presented, but to our knowledge, there has been no description of an isolated germinoma in the internal auditory canal. We report a case of germinoma in the internal auditory canal in a 51-year-old man simulating the clinical and radiological characteristics of a vestibular schwannoma.

  15. A loudspeaker-based room auralization system for auditory research

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel

    systematically study the signal processing of realistic sounds by normal-hearing and hearing-impaired listeners, a flexible, reproducible and fully controllable auditory environment is needed. A loudspeaker-based room auralization (LoRA) system was developed in this thesis to provide virtual auditory...... investigated the perception of distance in VAEs generated by the LoRA system. These results showed that the distance of far field sources are similarly perceived in these VAEs as in real environments. For close sources (<1 m), a comprehensive study about the near field compensated HOA method was presented and...

  16. Inversion of Auditory Spectrograms, Traditional Spectrograms, and Other Envelope Representations

    DEFF Research Database (Denmark)

    Decorsière, Remi Julien Blaise; Søndergaard, Peter Lempel; MacDonald, Ewen;

    2015-01-01

    implementations of this framework are presented for auditory spectrograms, where the filterbank is based on the behavior of the basilar membrane and envelope extraction is modeled on the response of inner hair cells. One implementation is direct while the other is a two-stage approach that is computationally...... simpler. While both can accurately invert an auditory spectrogram, the two-stage approach performs better on time-domain metrics. The same framework is applied to traditional spectrograms based on the magnitude of the short-time Fourier transform. Inspired by human perception of loudness, a modification...

  17. Auditory Short-Term Memory Activation during Score Reading

    OpenAIRE

    Simoens, Veerle L; Mari Tervaniemi

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during ...

  18. Evaluation of auditory brain-stem evoked response in middle: Aged type 2 diabetes mellitus with normal hearing subjects

    Directory of Open Access Journals (Sweden)

    Debadatta Mahallik

    2014-01-01

    Full Text Available Background: Diabetes mellitus (DM is commonly metabolic disorders of carbohydrate in which blood glucose levels are abnormally high due to relative or absolute insulin deficiency. In addition, it is characterized by abnormal metabolism of fat, protein resulting from insulin deficit or insulin action, or both. There are two broad categories of DM are designated as type 1 and type 2. Type 2 diabetes is due to predominantly insulin resistance with relative insulin deficiency noninsulin-dependent DM. Type 2 diabetes is much more common than insulin-dependent DM. Objectives: The aim of this study was to assess, if there is any abnormality in neural conduction in auditory brain-stem pathway in type 2 DM patients having normal hearing sensitivity when compared to age-matched healthy populations. Materials and Methods: This study included middle - aged 25 subjects having normal hearing with diabetes type 2 mellitus. All were submitted to the full audiological history taking, otological examination, basic audiological evaluation and auditory brain-stem response audiometry which was recorded in both ears, followed by calculation of the absolute latencies of wave I, III and V, as well as interpeak latencies I-III, III-V, I-V. Results: Type 2 DM patients showed significant prolonged absolute latencies of I, III (P = 0.001 and interpeak latencies I-III, III-V and I-V in left ear (P = 0.001 and absolute latencies of I, V (P = 0.001, interpeak latencies III-V was statistically significant in right ear. Conclusions: The prolonged absolute latencies and interpeak latencies suggests abnormal neural firing synchronization or in the transmission in the auditory pathways in normal hearing type 2 diabetes mellitus patients.

  19. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    Science.gov (United States)

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  20. Auditory distance perception in humans : A summary of past and present research

    NARCIS (Netherlands)

    Zahorik, P.; Brungart, D.S.; Bronkhorst, A.W.

    2005-01-01

    Although auditory distance perception is a critical component of spatial hearing, it has received substantially less scienti.c attention than the directional aspects of auditory localization. Here we summarize current knowledge on auditory distance perception, with special emphasis on recent researc

  1. 21 CFR 874.3320 - Group hearing aid or group auditory trainer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Group hearing aid or group auditory trainer. 874.3320 Section 874.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... hearing aid or group auditory trainer. (a) Identification. A group hearing aid or group auditory...

  2. Different forms of effective connectivity in primate frontotemporal pathways.

    Science.gov (United States)

    Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K

    2015-01-01

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079

  3. Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition.

    Science.gov (United States)

    Norman-Haignere, Sam; Kanwisher, Nancy G; McDermott, Josh H

    2015-12-16

    The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles ("components") whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech.

  4. Processamento auditivo de militares expostos a ruído ocupacional Auditory processing of servicemen exposed to occupational noise

    Directory of Open Access Journals (Sweden)

    Carla Cassandra de Souza Santos

    2008-03-01

    Full Text Available OBJETIVO: avaliar o processamento auditivo de militares expostos a ruído ocupacional. MÉTODOS: foram avaliados 41 militares, com exposição a ruído superior a 10 anos, subdivididos em Grupo A (n =16, sem perda auditiva e Grupo B (n = 25, com perda auditiva. Foram realizadas avaliação audiológica básica e testes de processamento auditivo (testes de Fala Filtrada, SSW em Português e de Padrão de Freqüência. RESULTADOS: observou-se altas incidências de alteração de processamento auditivo, especialmente no teste de Fala Filtrada (43,75% e 68% nos grupos A e B, respectivamente e teste de Padrão de Freqüência (68,75% e 48%, nos grupos A e B, respectivamente. O teste SSW não se mostrou eficiente para avaliar as habilidades auditivas centrais de indivíduos expostos a elevados níveis de pressão sonora. CONCLUSÃO: a exposição a ruído ocupacional interfere no processamento auditivo de militares. As alterações na via auditiva central podem ser verificadas independente da presença de alteração auditiva periférica.PURPOSE: to evaluate the auditory processing of military personnel exposed to occupational noise. METHODS: 41 servicemen, exposed to noise for at least 10 years were evaluated, divided into Group A (n= 16, without hearing loss and Group B (n= 25, with hearing loss. The following evaluations were carried through: basic audilogic evaluation and auditory processing tests (low-filtered, SSW and Pitch Pattern Sequence tests. RESULTS: there were high incidences of auditory processing alterations, especially at low-filtered test (43.75% and 68% on groups A e B, respectively and Pitch Pattern Sequence test (68.75% and 48%, on groups A e B, respectively. The SSW test was not efficient to evaluate the central hearing abilities of people exposed to high levels of sound pressure. CONCLUSION: the occupational noise exposure interferes in the auditory processing of military personnel. The alterations on central auditory pathways

  5. Preferential effect of isoflurane on top-down versus bottom-up pathways in sensory cortex

    Directory of Open Access Journals (Sweden)

    Aeyal eRaz

    2014-10-01

    Full Text Available The mechanism of loss of consciousness (LOC under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up ‘core’ thalamo-cortical (TC versus top-down cortico-cortical (CC and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in-vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural

  6. Multimodal Lexical Processing in Auditory Cortex Is Literacy Skill Dependent

    OpenAIRE

    McNorgan, Chris; Awati, Neha; Desroches, Amy S.; Booth, James R.

    2013-01-01

    Literacy is a uniquely human cross-modal cognitive process wherein visual orthographic representations become associated with auditory phonological representations through experience. Developmental studies provide insight into how experience-dependent changes in brain organization influence phonological processing as a function of literacy. Previous investigations show a synchrony-dependent influence of letter presentation on individual phoneme processing in superior temporal sulcus; others d...

  7. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception

    Directory of Open Access Journals (Sweden)

    Yi-Huang Su

    2016-01-01

    Full Text Available Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance.

  8. MR and genetics in schizophrenia: Focus on auditory hallucinations

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Eduardo Jesus [Psychiatric Service, Clinic University Hospital, Avda. Blasco Ibanez 17, 46010 Valencia (Spain)], E-mail: eduardoj.aguilar@gmail.com; Sanjuan, Julio [Psychiatric Unit, Faculty of Medicine, Valencia University, Avda. Blasco Ibanez 17, 46010 Valencia (Spain); Garcia-Marti, Gracian [Department of Radiology, Hospital Quiron, Avda. Blasco Ibanez 14, 46010 Valencia (Spain); Lull, Juan Jose; Robles, Montserrat [ITACA Institute, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2008-09-15

    Although many structural and functional abnormalities have been related to schizophrenia, until now, no single biological marker has been of diagnostic clinical utility. One way to obtain more valid findings is to focus on the symptoms instead of the syndrome. Auditory hallucinations (AHs) are one of the most frequent and reliable symptoms of psychosis. We present a review of our main findings, using a multidisciplinary approach, on auditory hallucinations. Firstly, by applying a new auditory emotional paradigm specific for psychosis, we found an enhanced activation of limbic and frontal brain areas in response to emotional words in these patients. Secondly, in a voxel-based morphometric study, we obtained a significant decreased gray matter concentration in the insula (bilateral), superior temporal gyrus (bilateral), and amygdala (left) in patients compared to healthy subjects. This gray matter loss was directly related to the intensity of AH. Thirdly, using a new method for looking at areas of coincidence between gray matter loss and functional activation, large coinciding brain clusters were found in the left and right middle temporal and superior temporal gyri. Finally, we summarized our main findings from our studies of the molecular genetics of auditory hallucinations. Taking these data together, an integrative model to explain the neurobiological basis of this psychotic symptom is presented.

  9. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception.

    Science.gov (United States)

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance. PMID:27313900

  10. Auditory attention: time of day and type of school

    Directory of Open Access Journals (Sweden)

    Picolini, Mirela Machado

    2010-06-01

    Full Text Available Introduction: The sustained auditory attention is crucial for the development of some communication skills and learning. Objective: To evaluate the effect of time of day and type of school attended by children in their ability to sustained auditory attention. Method: We performed a prospective study of 50 volunteer children of both sexes, aged 7 years, with normal hearing, no learning or behavioral problems and no complaints of attention. These participants underwent Ability Test of Sustained Auditory Attention (SAAAT. The performance was evaluated by total score and the decrease of vigilance. Statistical analysis was used to analysis of variance (ANOVA with significance level of 5% (p<0.05. Results: The result set by the normative test for the age group evaluated showed a statistically significant difference for the errors of inattention (p=0.041, p=0.027 and total error score (p=0.033, p=0.024, in different periods assessment and school types, respectively. Conclusion: Children evaluated in the afternoon and the children studying in public schools had a poorer performance on auditory attention sustained.

  11. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    2010-01-01

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal pain

  12. Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis.

    Science.gov (United States)

    Fletcher, Phillip D; Downey, Laura E; Golden, Hannah L; Clark, Camilla N; Slattery, Catherine F; Paterson, Ross W; Schott, Jonathan M; Rohrer, Jonathan D; Rossor, Martin N; Warren, Jason D

    2015-06-01

    Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music ('musicophilia') occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease. PMID:25929717

  13. Auditory-Visual Coordination in the First Year of Life.

    Science.gov (United States)

    McGurk, Harry; MacDonald, John

    1978-01-01

    Outlines two competing hypotheses concerning the nature of inter-modal sensory development. Research on auditory-visual coordination in young human infants is reviewed. It is concluded that the data support the notion of ontogenetic development being a process of intergration between sensory systems that are initially relatively independent.…

  14. The Auditory Skills Necessary for Echolocation: A New Explanation.

    Science.gov (United States)

    Carlson-Smith, C.; Wiener, W. R.

    1996-01-01

    This study employed an audiometric test battery with nine blindfolded undergraduate students to explore success factors in echolocation. Echolocation performance correlated significantly with several specific auditory measures. No relationship was found between high-frequency sensitivity and echolocation performance. (Author/PB)

  15. Auditory processing efficiency deficits in children with developmental language impairments

    Science.gov (United States)

    Hartley, Douglas E. H.; Moore, David R.

    2002-12-01

    The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.

  16. The Auditory Verbal Learning Test (Rey AVLT): An Arabic Version

    Science.gov (United States)

    Sharoni, Varda; Natur, Nazeh

    2014-01-01

    The goals of this study were to adapt the Rey Auditory Verbal Learning Test (AVLT) into Arabic, to compare recall functioning among age groups (6:0 to 17:11), and to compare gender differences on various memory dimensions (immediate and delayed recall, learning rate, recognition, proactive interferences, and retroactive interferences). This…

  17. Exploring Auditory Saltation Using the "Reduced-Rabbit" Paradigm

    Science.gov (United States)

    Getzmann, Stephan

    2009-01-01

    Sensory saltation is a spatiotemporal illusion in which the judged positions of stimuli are shifted toward subsequent stimuli that follow closely in time. So far, studies on saltation in the auditory domain have usually employed subjective rating techniques, making it difficult to exactly quantify the extent of saltation. In this study, temporal…

  18. Are Auditory and Visual Processing Deficits Related to Developmental Dyslexia?

    Science.gov (United States)

    Georgiou, George K.; Papadopoulos, Timothy C.; Zarouna, Elena; Parrila, Rauno

    2012-01-01

    The purpose of this study was to examine if children with dyslexia learning to read a consistent orthography (Greek) experience auditory and visual processing deficits and if these deficits are associated with phonological awareness, rapid naming speed and orthographic processing. We administered measures of general cognitive ability, phonological…

  19. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    Science.gov (United States)

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  20. One-tone suppression in the frog auditory nerve

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-01-01

    Sixty-seven fibers of a sample of 401 in the auditory nerve of grassfrogs (Rana temporaria) showed one-tone suppression, i.e., their spontaneous activity was suppressed by tones. All fibers were afferents from the amphibian papilla with best frequencies between 100 and 400 Hz. Best suppression...

  1. Listener Agreement for Auditory-Perceptual Ratings of Dysarthria

    Science.gov (United States)

    Bunton, Kate; Kent, Raymond D.; Duffy, Joseph R.; Rosenbek, John C.; Kent, Jane F.

    2007-01-01

    Purpose: Darley, Aronson, and Brown (1969a, 1969b) detailed methods and results of auditory-perceptual assessment for speakers with dysarthrias of varying etiology. They reported adequate listener reliability for use of the rating system as a tool for differential diagnosis, but several more recent studies have raised concerns about listener…

  2. Irrelevant Auditory and Visual Events Induce a Visual Attentional Blink

    NARCIS (Netherlands)

    Van der Burg, Erik; Nieuwenstein, Mark R.; Theeuwes, Jan; Olivers, Christian N. L.

    2013-01-01

    In the present study we investigated whether a task-irrelevant distractor can induce a visual attentional blink pattern. Participants were asked to detect only a visual target letter (A, B, or C) and to ignore the preceding auditory, visual, or audiovisual distractor. An attentional blink was observ

  3. Modifying Directionality through Auditory System Scaling in a Robotic Lizard

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    2010-01-01

    The peripheral auditory system of a lizard is strongly directional. This directionality is created by acoustical coupling of the two eardrums and is strongly dependent on characteristics of the middle ear, such as interaural distance, resonance frequency of the middle ear cavity and of the tympanum...

  4. Lifespan Differences in Cortical Dynamics of Auditory Perception

    Science.gov (United States)

    Muller, Viktor; Gruber, Walter; Klimesch, Wolfgang; Lindenberger, Ulman

    2009-01-01

    Using electroencephalographic recordings (EEG), we assessed differences in oscillatory cortical activity during auditory-oddball performance between children aged 9-13 years, younger adults, and older adults. From childhood to old age, phase synchronization increased within and between electrodes, whereas whole power and evoked power decreased. We…

  5. Cortical development and neuroplasticity in Auditory Neuropathy Spectrum Disorder.

    Science.gov (United States)

    Sharma, Anu; Cardon, Garrett

    2015-12-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. This article is part of a Special Issue entitled . PMID:26070426

  6. Interference by Process, Not Content, Determines Semantic Auditory Distraction

    Science.gov (United States)

    Marsh, John E.; Hughes, Robert W.; Jones, Dylan M.

    2009-01-01

    Distraction by irrelevant background sound of visually-based cognitive tasks illustrates the vulnerability of attentional selectivity across modalities. Four experiments centred on auditory distraction during tests of memory for visually-presented semantic information. Meaningful irrelevant speech disrupted the free recall of semantic…

  7. Synchronization and phonological skills: precise auditory timing hypothesis (PATH

    Directory of Open Access Journals (Sweden)

    Adam eTierney

    2014-11-01

    Full Text Available Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel 2011, 2012, 2014. There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The precise auditory timing hypothesis predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.

  8. Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex.

    Science.gov (United States)

    Fishman, Yonatan I; Micheyl, Christophe; Steinschneider, Mitchell

    2016-01-01

    Successful speech perception in real-world environments requires that the auditory system segregate competing voices that overlap in frequency and time into separate streams. Vowels are major constituents of speech and are comprised of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). The pitch and identity of a vowel are determined by its F0 and spectral envelope (formant structure), respectively. When two spectrally overlapping vowels differing in F0 are presented concurrently, they can be readily perceived as two separate "auditory objects" with pitches at their respective F0s. A difference in pitch between two simultaneous vowels provides a powerful cue for their segregation, which in turn, facilitates their individual identification. The neural mechanisms underlying the segregation of concurrent vowels based on pitch differences are poorly understood. Here, we examine neural population responses in macaque primary auditory cortex (A1) to single and double concurrent vowels (/a/ and /i/) that differ in F0 such that they are heard as two separate auditory objects with distinct pitches. We find that neural population responses in A1 can resolve, via a rate-place code, lower harmonics of both single and double concurrent vowels. Furthermore, we show that the formant structures, and hence the identities, of single vowels can be reliably recovered from the neural representation of double concurrent vowels. We conclude that A1 contains sufficient spectral information to enable concurrent vowel segregation and identification by downstream cortical areas.

  9. Formant compensation for auditory feedback with English vowels

    DEFF Research Database (Denmark)

    Mitsuya, Takashi; MacDonald, Ewen N; Munhall, Kevin G;

    2015-01-01

    to differences in the degree of lingual contact or jaw openness. This may in turn influence the ways in which speakers compensate for auditory feedback. The aim of the current study was to examine speakers' compensatory behavior with six English monophthongs. Specifically, the current study tested to see...

  10. Speech Compensation for Time-Scale-Modified Auditory Feedback

    Science.gov (United States)

    Ogane, Rintaro; Honda, Masaaki

    2014-01-01

    Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…

  11. Implications of blast exposure for central auditory function: A review

    Directory of Open Access Journals (Sweden)

    Frederick J. Gallun, PhD

    2012-10-01

    Full Text Available Auditory system functions, from peripheral sensitivity to central processing capacities, are all at risk from a blast event. Accurate encoding of auditory patterns in time, frequency, and space are required for a clear understanding of speech and accurate localization of sound sources in environments with background noise, multiple sound sources, and/or reverberation. Further work is needed to refine the battery of clinical tests sensitive to the sorts of central auditory dysfunction observed in individuals with blast exposure. Treatment options include low-gain hearing aids, remote-microphone technology, and auditory-training regimens, but clinical evidence does not yet exist for recommending one or more of these options. As this population ages, the natural aging process and other potential brain injuries (such as stroke and blunt trauma may combine with blast-related brain changes to produce a population for which the current clinical diagnostic and treatment tools may prove inadequate. It is important to maintain an updated understanding of the scope of the issues present in this population and to continue to identify those solutions that can provide measurable improvements in the lives of Veterans who have been exposed to high-intensity blasts during the course of their military service.

  12. Context, Contrast, and Tone of Voice in Auditory Sarcasm Perception

    Science.gov (United States)

    Voyer, Daniel; Thibodeau, Sophie-Hélène; Delong, Breanna J.

    2016-01-01

    Four experiments were conducted to investigate the interplay between context and tone of voice in the perception of sarcasm. These experiments emphasized the role of contrast effects in sarcasm perception exclusively by means of auditory stimuli whereas most past research has relied on written material. In all experiments, a positive or negative…

  13. Making and monitoring errors based on altered auditory feedback

    Directory of Open Access Journals (Sweden)

    Peter ePfordresher

    2014-08-01

    Full Text Available Previous research has demonstrated that altered auditory feedback (AAF disrupts music performance and causes disruptions in both action planning and the perception of feedback events. It has been proposed that this disruption occurs because of interference within a shared representation for perception and action (Pfordresher, 2006. Studies reported here address this claim from the standpoint of error monitoring. In Experiment 1 participants performed short melodies on a keyboard while hearing no auditory feedback, normal auditory feedback, or alterations to feedback pitch on some subset of events. Participants overestimated error frequency when AAF was present but not for normal feedback. Experiment 2 introduced a concurrent load task to determine whether error monitoring requires executive resources. Although the concurrent task enhanced the effect of AAF, it did not alter participants’ tendency to overestimate errors when AAF was present. A third correlational study addressed whether effects of AAF are reduced for a subset of the population who may lack the kind of perception/action associations that lead to AAF disruption: poor-pitch singers. Effects of manipulations similar to those presented in Experiments 1 and 2 were reduced for these individuals. We propose that these results are consistent with the notion that AAF interference is based on associations between perception and action within a forward internal model of auditory-motor relationships.

  14. Startle auditory stimuli enhance the performance of fast dynamic contractions.

    Science.gov (United States)

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training.

  15. Formation of the avian nucleus magnocellularis from the auditory anlage.

    Science.gov (United States)

    Hendricks, Susan J; Rubel, Edwin W; Nishi, Rae

    2006-10-01

    In the avian auditory system, the neural network for computing the localization of sound in space begins with bilateral innervation of nucleus laminaris (NL) by nucleus magnocellularis (NM) neurons. We used antibodies against the neural specific markers Hu C/D, neurofilament, and SV2 together with retrograde fluorescent dextran labeling from the contralateral hindbrain to identify NM neurons within the anlage and follow their development. NM neurons could be identified by retrograde labeling as early as embryonic day (E) 6. While the auditory anlage organized itself into NM and NL in a rostral-to-caudal fashion between E6 and E8, labeled NM neurons were visible throughout the extent of the anlage at E6. By observing the pattern of neuronal rearrangements together with the pattern of contralaterally projecting NM fibers, we could identify NL in the ventral anlage. Ipsilateral NM fibers contacted the developing NL at E8, well after NM collaterals had projected contralaterally. Furthermore, the formation of ipsilateral connections between NM and NL neurons appeared to coincide with the arrival of VIIIth nerve fibers in NM. By E10, immunoreactivity for SV2 was heavily concentrated in the dorsal and ventral neuropils of NL. Thus, extensive pathfinding and morphological rearrangement of central auditory nuclei occurs well before the arrival of cochlear afferents. Our results suggest that NM neurons may play a central role in formation of tonotopic connections in the auditory system.

  16. Tuned with a Tune: Talker Normalization via General Auditory Processes.

    Science.gov (United States)

    Laing, Erika J C; Liu, Ran; Lotto, Andrew J; Holt, Lori L

    2012-01-01

    Voices have unique acoustic signatures, contributing to the acoustic variability listeners must contend with in perceiving speech, and it has long been proposed that listeners normalize speech perception to information extracted from a talker's speech. Initial attempts to explain talker normalization relied on extraction of articulatory referents, but recent studies of context-dependent auditory perception suggest that general auditory referents such as the long-term average spectrum (LTAS) of a talker's speech similarly affect speech perception. The present study aimed to differentiate the contributions of articulatory/linguistic versus auditory referents for context-driven talker normalization effects and, more specifically, to identify the specific constraints under which such contexts impact speech perception. Synthesized sentences manipulated to sound like different talkers influenced categorization of a subsequent speech target only when differences in the sentences' LTAS were in the frequency range of the acoustic cues relevant for the target phonemic contrast. This effect was true both for speech targets preceded by spoken sentence contexts and for targets preceded by non-speech tone sequences that were LTAS-matched to the spoken sentence contexts. Specific LTAS characteristics, rather than perceived talker, predicted the results suggesting that general auditory mechanisms play an important role in effects considered to be instances of perceptual talker normalization. PMID:22737140

  17. Tuned with a tune: Talker normalization via general auditory processes

    Directory of Open Access Journals (Sweden)

    Erika J C Laing

    2012-06-01

    Full Text Available Voices have unique acoustic signatures, contributing to the acoustic variability listeners must contend with in perceiving speech, and it has long been proposed that listeners normalize speech perception to information extracted from a talker’s speech. Initial attempts to explain talker normalization relied on extraction of articulatory referents, but recent studies of context-dependent auditory perception suggest that general auditory referents such as the long-term average spectrum (LTAS of a talker’s speech similarly affect speech perception. The present study aimed to differentiate the contributions of articulatory/linguistic versus auditory referents for context-driven talker normalization effects and, more specifically, to identify the specific constraints under which such contexts impact speech perception. Synthesized sentences manipulated to sound like different talkers influenced categorization of a subsequent speech target only when differences in the sentences’ LTAS were in the frequency range of the acoustic cues relevant for the target phonemic contrast. This effect was true both for speech targets preceded by spoken sentence contexts and for targets preceded by nonspeech tone sequences that were LTAS-matched to the spoken sentence contexts. Specific LTAS characteristics, rather than perceived talker, predicted the results suggesting that general auditory mechanisms play an important role in effects considered to be instances of perceptual talker normalization.

  18. Plasticity of Peripheral Auditory Frequency Sensitivity in Emei Music Frog

    Science.gov (United States)

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs. PMID:23029243

  19. On the use of the auditory pathway to represent image scenes in real-time

    OpenAIRE

    Bologna, Guido; Deville, Benoît; Pun, Thierry

    2009-01-01

    The See Color interface transforms a small portion of a colored video image into sound sources represented by spatialized musical instruments. Basically, the conversion of colors into sounds is achieved by quantization of the HSL color system. Our purpose is to provide visually impaired individuals with a capability of perception of the environment in real time. In this work we present the system principles of design and several experiments that have been carried out by several blindfolded pe...

  20. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  1. Music Lessons Improve Auditory Perceptual and Cognitive Performance in Deaf Children

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5–4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes. PMID:25071518

  2. Formation of associations in auditory cortex by slow changes of tonic firing.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    We review event-related slow firing changes in the auditory cortex and related brain structures. Two types of changes can be distinguished, namely increases and decreases of firing, lasting in the order of seconds. Triggering events can be auditory stimuli, reinforcers, and behavioral responses. Slow firing changes terminate with reinforcers and possibly with auditory stimuli and behavioral responses. A necessary condition for the emergence of slow firing changes seems to be that subjects have learnt that consecutive sensory or behavioral events are contingent on reinforcement. They disappear when the contingencies are no longer present. Slow firing changes in auditory cortex bear similarities with slow changes of neuronal activity that have been observed in subcortical parts of the auditory system and in other non-sensory brain structures. We propose that slow firing changes in auditory cortex provide a neuronal mechanism for anticipating, memorizing, and associating events that are related to hearing and of behavioral relevance. This may complement the representation of the timing and types of auditory and auditory-related events which may be provided by phasic responses in auditory cortex. The presence of slow firing changes indicates that many more auditory-related aspects of a behavioral procedure are reflected in the neuronal activity of auditory cortex than previously assumed. PMID:20488230

  3. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes. PMID:25071518

  4. Odors Bias Time Perception in Visual and Auditory Modalities.

    Science.gov (United States)

    Yue, Zhenzhu; Gao, Tianyu; Chen, Lihan; Wu, Jiashuang

    2016-01-01

    Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal) were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor). The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a framework of

  5. (Central Auditory Processing: the impact of otitis media

    Directory of Open Access Journals (Sweden)

    Leticia Reis Borges

    2013-07-01

    Full Text Available OBJECTIVE: To analyze auditory processing test results in children suffering from otitis media in their first five years of age, considering their age. Furthermore, to classify central auditory processing test findings regarding the hearing skills evaluated. METHODS: A total of 109 students between 8 and 12 years old were divided into three groups. The control group consisted of 40 students from public school without a history of otitis media. Experimental group I consisted of 39 students from public schools and experimental group II consisted of 30 students from private schools; students in both groups suffered from secretory otitis media in their first five years of age and underwent surgery for placement of bilateral ventilation tubes. The individuals underwent complete audiological evaluation and assessment by Auditory Processing tests. RESULTS: The left ear showed significantly worse performance when compared to the right ear in the dichotic digits test and pitch pattern sequence test. The students from the experimental groups showed worse performance when compared to the control group in the dichotic digits test and gaps-in-noise. Children from experimental group I had significantly lower results on the dichotic digits and gaps-in-noise tests compared with experimental group II. The hearing skills that were altered were temporal resolution and figure-ground perception. CONCLUSION: Children who suffered from secretory otitis media in their first five years and who underwent surgery for placement of bilateral ventilation tubes showed worse performance in auditory abilities, and children from public schools had worse results on auditory processing tests compared with students from private schools.

  6. Quadri-stability of a spatially ambiguous auditory illusion

    Directory of Open Access Journals (Sweden)

    Constance May Bainbridge

    2015-01-01

    Full Text Available In addition to vision, audition plays an important role in sound localization in our world. One way we estimate the motion of an auditory object moving towards or away from us is from changes in volume intensity. However, the human auditory system has unequally distributed spatial resolution, including difficulty distinguishing sounds in front versus behind the listener. Here, we introduce a novel quadri-stable illusion, the Transverse-and-Bounce Auditory Illusion, which combines front-back confusion with changes in volume levels of a nonspatial sound to create ambiguous percepts of an object approaching and withdrawing from the listener. The sound can be perceived as traveling transversely from front to back or back to front, or bouncing to remain exclusively in front of or behind the observer. Here we demonstrate how human listeners experience this illusory phenomenon by comparing ambiguous and unambiguous stimuli for each of the four possible motion percepts. When asked to rate their confidence in perceiving each sound’s motion, participants reported equal confidence for the illusory and unambiguous stimuli. Participants perceived all four illusory motion percepts, and could not distinguish the illusion from the unambiguous stimuli. These results show that this illusion is effectively quadri-stable. In a second experiment, the illusory stimulus was looped continuously in headphones while participants identified its perceived path of motion to test properties of perceptual switching, locking, and biases. Participants were biased towards perceiving transverse compared to bouncing paths, and they became perceptually locked into alternating between front-to-back and back-to-front percepts, perhaps reflecting how auditory objects commonly move in the real world. This multi-stable auditory illusion opens opportunities for studying the perceptual, cognitive, and neural representation of objects in motion, as well as exploring multimodal perceptual

  7. Visibility of speech articulation enhances auditory phonetic convergence.

    Science.gov (United States)

    Dias, James W; Rosenblum, Lawrence D

    2016-01-01

    Talkers automatically imitate aspects of perceived speech, a phenomenon known as phonetic convergence. Talkers have previously been found to converge to auditory and visual speech information. Furthermore, talkers converge more to the speech of a conversational partner who is seen and heard, relative to one who is just heard (Dias & Rosenblum Perception, 40, 1457-1466, 2011). A question raised by this finding is what visual information facilitates the enhancement effect. In the following experiments, we investigated the possible contributions of visible speech articulation to visual enhancement of phonetic convergence within the noninteractive context of a shadowing task. In Experiment 1, we examined the influence of the visibility of a talker on phonetic convergence when shadowing auditory speech either in the clear or in low-level auditory noise. The results suggest that visual speech can compensate for convergence that is reduced by auditory noise masking. Experiment 2 further established the visibility of articulatory mouth movements as being important to the visual enhancement of phonetic convergence. Furthermore, the word frequency and phonological neighborhood density characteristics of the words shadowed were found to significantly predict phonetic convergence in both experiments. Consistent with previous findings (e.g., Goldinger Psychological Review, 105, 251-279, 1998), phonetic convergence was greater when shadowing low-frequency words. Convergence was also found to be greater for low-density words, contrasting with previous predictions of the effect of phonological neighborhood density on auditory phonetic convergence (e.g., Pardo, Jordan, Mallari, Scanlon, & Lewandowski Journal of Memory and Language, 69, 183-195, 2013). Implications of the results for a gestural account of phonetic convergence are discussed. PMID:26358471

  8. Music perception and cognition following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Tramo, M J; Bharucha, J J; Musiek, F E

    1990-01-01

    We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250-8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies

  9. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    Directory of Open Access Journals (Sweden)

    Brian Odegaard

    2015-12-01

    Full Text Available Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1 if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors, and (2 whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli. Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only

  10. Odors bias time perception in visual and auditory modalities

    Directory of Open Access Journals (Sweden)

    Zhenzhu eYue

    2016-04-01

    Full Text Available Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 ms or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor. The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a

  11. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia.

    Science.gov (United States)

    Rolland, Benjamin; Amad, Ali; Poulet, Emmanuel; Bordet, Régis; Vignaud, Alexandre; Bation, Rémy; Delmaire, Christine; Thomas, Pierre; Cottencin, Olivier; Jardri, Renaud

    2015-01-01

    Both auditory hallucinations (AH) and visual hallucinations may occur in schizophrenia. One of the main hypotheses underlying their occurrence involves the increased activity of the mesolimbic pathway, which links the ventral tegmental area (VTA) and the nucleus accumbens (NAcc). However, the precise contribution of the mesolimbic pathway in hallucinations across various sensory modalities has not yet been explored. We compared the resting-state functional connectivity (rs-FC) of the NAcc among 16 schizophrenia patients with pure AH, 15 with both visuoauditory hallucinations (VAH), and 14 without hallucinations (NoH). A between-group comparison was performed using random-effects ANCOVA (rs-FC of the bilateral NAcc as the dependent variable, groups as the between-subjects factor, age and Positive and Negative Syndrome Scale scores as covariates; q(false discovery rate [FDR]) hallucinations, but the NAcc FC patterns changed with the complexity of these experiences (ie, 0, 1, or 2 sensory modalities), rather than with severity. This might support the aberrant salience hypothesis of schizophrenia. Moreover, these findings suggest that future clinical and neurobiological studies of hallucinations should evaluate not only the global severity of symptoms but also their sensorial features.

  12. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery.

    Science.gov (United States)

    Reijntjes, Daniël O J; Pyott, Sonja J

    2016-06-01

    The spiral ganglion neurons (SGNs) are the first action potential generating neurons in the auditory pathway. The type I SGNs contact the sensory inner hair cells via their peripheral dendrites and relay auditory information to the brainstem via their central axon fibers. Individual afferent fibers show differences in response properties that are essential for normal hearing. The mechanisms that give rise to the heterogeneity of afferent responses are very poorly understood but are likely already in place at the peripheral dendrites where synapses are formed and action potentials are generated. To identify these molecular mechanisms, this review synthesizes a variety of literature and comprehensively outlines the cellular and molecular components positioned to regulate SGN afferent dendrite excitability, especially following glutamate release. These components include 1) proteins of the SGN postsynapses and neighboring supporting cells that together shape glutamatergic signaling, 2) the ion channels and transporters that determine the intrinsic excitability of the SGN afferent dendrites, and 3) the neurotransmitter receptors that extrinsically modify this excitability via synaptic input from the lateral olivocochlear efferents. This cellular and molecular machinery, together with presynaptic specializations of the inner hair cells, can be collectively referred to as the type I afferent signaling complex. As this review underscores, interactions of this signaling complex determine excitability of the SGN afferent dendrites and the afferent fiber responses. Moreover, this complex establishes the environmental milieu critical for the development and maintenance of the SGN afferent dendrites and synapses. Motivated by these important functions, this review also indicates areas of future research to elucidate the contributions of the afferent signaling complex to both normal hearing and also hearing loss. PMID:27018296

  13. Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor).

    Science.gov (United States)

    Endepols, Heike; Feng, Albert S; Gerhardt, H Carl; Schul, Johannes; Walkowiak, Wolfgang

    2003-10-17

    Diencephalic and midbrain auditory nuclei are involved in the processing of auditory communication signals in anurans [Comparative Hearing: Fish and Amphibians, Springer-Verlag, New York, 1999, p. 218], but their exact roles in acoustically guided behavior, such as female phonotaxis, are unclear. To address this question, behavioral experiments were combined with lesions of dorsal thalamic nuclei and the midbrain torus semicircularis. Females were tested in two-alternative-forced-choice phonotactic experiments before and after a defined brain area was lesioned. During phonotactic tests, females had to choose between a "standard" synthetic call and one of three different variants, each of which had a single acoustic property (pulse rate, pulse rise-time, sound spectrum) that differed from the standard synthetic call. Results showed that dorsomedial thalamus lesions produced little or no effect on phonotaxis. In contrast, superficial and deep thalamus lesions, as well as lesions of the torus semicircularis, significantly decreased the number of phonotactic responses and increased the response time. Superficial thalamus lesions also abolished or reversed preferences for the standard call in the rise-time and sound spectrum tests. This effect is likely to have been caused by an imbalance in the stimulation of the thalamus by the low- and high-frequency pathways because these preferences were not affected in animals with more extensive lesions that included the superficial thalamus. Our data suggest that the torus semicircularis, but not the dorsal thalamus is crucial for phonotaxis in gravid, reproductively active females. Although dorsal thalamic nuclei seem to play a role in spectral sensitivity, they may additionally have motivational or attentional functions that contribute to achieving a state of phonotactic readiness.

  14. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).

    Science.gov (United States)

    Ostrowski, Tim Daniel; Stumpner, Andreas

    2010-08-01

    We asked how processing of male signals in the auditory pathway of the bush cricket Ancistrura nigrovittata (Phaneropterinae, Tettigoniidae) changes from the ear to the brain. From 37 sensory neurons in the crista acustica single elements (cells 8 or 9) have frequency tuning corresponding closely to the behavioral tuning of the females. Nevertheless, one-quarter of sensory neurons (approximately cells 9 to 18) excite the ascending neuron 1 (AN1), which is best tuned to the male's song carrier frequency. AN1 receives frequency-dependent inhibition, reducing sensitivity especially in the ultrasound. When recorded in the brain, AN1 shows slightly lower overall activity than when recorded in the prothoracic ganglion close to the spike-generating zone. This difference is significant in the ultrasonic range. The first identified local brain neuron in a bush cricket (LBN1) is described. Its dendrites overlap with some of AN1-terminations in the brain. Its frequency tuning and intensity dependence strongly suggest a direct postsynaptic connection to AN1. Spiking in LBN1 is only elicited after summation of excitatory postsynaptic potentials evoked by individual AN1-action potentials. This serves a filtering mechanism that reduces the sensitivity of LBN1 and also its responsiveness to ultrasound as compared to AN1. Consequently, spike latencies of LBN1 are long (>30 ms) despite its being a second-order interneuron. Additionally, LBN1 receives frequency-specific inhibition, most likely further reducing its responses to ultrasound. This demonstrates that frequency-specific inhibition is redundant in two directly connected interneurons on subsequent levels in the auditory system. PMID:20533362

  15. The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations.

    Science.gov (United States)

    Amad, A; Cachia, A; Gorwood, P; Pins, D; Delmaire, C; Rolland, B; Mondino, M; Thomas, P; Jardri, R

    2014-02-01

    Hallucinations constitute one of the most representative and disabling symptoms of schizophrenia. Several Magnetic Resonance Imaging (MRI) findings support the hypothesis that distinct patterns of connectivity, particularly within networks involving the hippocampal complex (HC), could be associated with different hallucinatory modalities. The aim of this study was to investigate HC connectivity as a function of the hallucinatory modality, that is, auditory or visual. Two carefully selected subgroups of schizophrenia patients with only auditory hallucinations (AH) or with audio-visual hallucinations (A+VH) were compared using the following three complementary multimodal MRI methods: resting state functional MRI, diffusion MRI and structural MRI were used to analyze seed-based Functional Connectivity (sb-FC), Tract-Based Spatial Statistics (TBSS) and shape analysis, respectively. Sb-FC was significantly higher between the HC, the medial prefrontal cortex (mPFC) and the caudate nuclei in A+VH patients compared with the AH group. Conversely, AH patients exhibited a higher sb-FC between the HC and the thalamus in comparison with the A+VH group. In the A+VH group, TBSS showed specific higher white matter connectivity in the pathways connecting the HC with visual areas, such as the forceps major and the inferior-fronto-occipital fasciculus than in the AH group. Finally, shape analysis showed localized hippocampal hypertrophy in the A+VH group. Functional results support the fronto-limbic dysconnectivity hypothesis of schizophrenia, while specific structural findings indicate that plastic changes are associated with hallucinations. Together, these results suggest that there are distinct connectivity patterns in patients with schizophrenia that depend on the sensory-modality, with specific involvement of the HC in visual hallucinations.

  16. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).

    Science.gov (United States)

    Ostrowski, Tim Daniel; Stumpner, Andreas

    2010-08-01

    We asked how processing of male signals in the auditory pathway of the bush cricket Ancistrura nigrovittata (Phaneropterinae, Tettigoniidae) changes from the ear to the brain. From 37 sensory neurons in the crista acustica single elements (cells 8 or 9) have frequency tuning corresponding closely to the behavioral tuning of the females. Nevertheless, one-quarter of sensory neurons (approximately cells 9 to 18) excite the ascending neuron 1 (AN1), which is best tuned to the male's song carrier frequency. AN1 receives frequency-dependent inhibition, reducing sensitivity especially in the ultrasound. When recorded in the brain, AN1 shows slightly lower overall activity than when recorded in the prothoracic ganglion close to the spike-generating zone. This difference is significant in the ultrasonic range. The first identified local brain neuron in a bush cricket (LBN1) is described. Its dendrites overlap with some of AN1-terminations in the brain. Its frequency tuning and intensity dependence strongly suggest a direct postsynaptic connection to AN1. Spiking in LBN1 is only elicited after summation of excitatory postsynaptic potentials evoked by individual AN1-action potentials. This serves a filtering mechanism that reduces the sensitivity of LBN1 and also its responsiveness to ultrasound as compared to AN1. Consequently, spike latencies of LBN1 are long (>30 ms) despite its being a second-order interneuron. Additionally, LBN1 receives frequency-specific inhibition, most likely further reducing its responses to ultrasound. This demonstrates that frequency-specific inhibition is redundant in two directly connected interneurons on subsequent levels in the auditory system.

  17. Efficacy of Individual Computer-Based Auditory Training for People with Hearing Loss: A Systematic Review of the Evidence

    OpenAIRE

    Helen Henshaw; Ferguson, Melanie A.

    2013-01-01

    BACKGROUND: Auditory training involves active listening to auditory stimuli and aims to improve performance in auditory tasks. As such, auditory training is a potential intervention for the management of people with hearing loss. OBJECTIVE: This systematic review (PROSPERO 2011: CRD42011001406) evaluated the published evidence-base for the efficacy of individual computer-based auditory training to improve speech intelligibility, cognition and communication abilities in adults with hearing los...

  18. Modified areal cartography in auditory cortex following early- and late-onset deafness.

    Science.gov (United States)

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2014-07-01

    Cross-modal plasticity following peripheral sensory loss enables deprived cortex to provide enhanced abilities in remaining sensory systems. These functional adaptations have been demonstrated in cat auditory cortex following early-onset deafness in electrophysiological and psychophysical studies. However, little information is available concerning any accompanying structural compensations. To examine the influence of sound experience on areal cartography, auditory cytoarchitecture was examined in hearing cats, early-deaf cats, and cats with late-onset deafness. Cats were deafened shortly after hearing onset or in adulthood. Cerebral cytoarchitecture was revealed immunohistochemically using SMI-32, a monoclonal antibody used to distinguish auditory areas in many species. Auditory areas were delineated in coronal sections and their volumes measured. Staining profiles observed in hearing cats were conserved in early- and late-deaf cats. In all deaf cats, dorsal auditory areas were the most mutable. Early-deaf cats showed further modifications, with significant expansions in second auditory cortex and ventral auditory field. Borders between dorsal auditory areas and adjacent visual and somatosensory areas were shifted ventrally, suggesting expanded visual and somatosensory cortical representation. Overall, this study shows the influence of acoustic experience in cortical development, and suggests that the age of auditory deprivation may significantly affect auditory areal cartography.

  19. Auditory-model-based Feature Extraction Method for Mechanical Faults Diagnosis

    Institute of Scientific and Technical Information of China (English)

    LI Yungong; ZHANG Jinping; DAI Li; ZHANG Zhanyi; LIU Jie

    2010-01-01

    It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect.

  20. Spatial audition in a static virtual environment: the role of auditory-visual interaction

    Directory of Open Access Journals (Sweden)

    Isabelle Viaud-Delmon

    2009-04-01

    Full Text Available The integration of the auditory modality in virtual reality environments is known to promote the sensations of immersion and presence. However it is also known from psychophysics studies that auditory-visual interaction obey to complex rules and that multisensory conflicts may disrupt the adhesion of the participant to the presented virtual scene. It is thus important to measure the accuracy of the auditory spatial cues reproduced by the auditory display and their consistency with the spatial visual cues. This study evaluates auditory localization performances under various unimodal and auditory-visual bimodal conditions in a virtual reality (VR setup using a stereoscopic display and binaural reproduction over headphones in static conditions. The auditory localization performances observed in the present study are in line with those reported in real conditions, suggesting that VR gives rise to consistent auditory and visual spatial cues. These results validate the use of VR for future psychophysics experiments with auditory and visual stimuli. They also emphasize the importance of a spatially accurate auditory and visual rendering for VR setups.