WorldWideScience

Sample records for auditory nerve projections

  1. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low...

  2. Stimulation of the human auditory nerve with optical radiation

    Science.gov (United States)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  3. Deafness in cochlear and auditory nerve disorders.

    Science.gov (United States)

    Hopkins, Kathryn

    2015-01-01

    Sensorineural hearing loss is the most common type of hearing impairment worldwide. It arises as a consequence of damage to the cochlea or auditory nerve, and several structures are often affected simultaneously. There are many causes, including genetic mutations affecting the structures of the inner ear, and environmental insults such as noise, ototoxic substances, and hypoxia. The prevalence increases dramatically with age. Clinical diagnosis is most commonly accomplished by measuring detection thresholds and comparing these to normative values to determine the degree of hearing loss. In addition to causing insensitivity to weak sounds, sensorineural hearing loss has a number of adverse perceptual consequences, including loudness recruitment, poor perception of pitch and auditory space, and difficulty understanding speech, particularly in the presence of background noise. The condition is usually incurable; treatment focuses on restoring the audibility of sounds made inaudible by hearing loss using either hearing aids or cochlear implants.

  4. Time course of dynamic range adaptation in the auditory nerve

    OpenAIRE

    Wen, Bo; Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common ...

  5. One-tone suppression in the frog auditory nerve

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-01-01

    Sixty-seven fibers of a sample of 401 in the auditory nerve of grassfrogs (Rana temporaria) showed one-tone suppression, i.e., their spontaneous activity was suppressed by tones. All fibers were afferents from the amphibian papilla with best frequencies between 100 and 400 Hz. Best suppression...

  6. Temporary Neurotrophin Treatment Prevents Deafness-Induced Auditory Nerve Degeneration and Preserves Function

    NARCIS (Netherlands)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B.; Klis, Sjaak F. L.; Grolman, Wilko

    2015-01-01

    After substantial loss of cochlear hair cells, exogenous neurotrophins prevent degeneration of the auditory nerve. Because cochlear implantation, the current therapy for profound sensorineural hearing loss, depends on a functional nerve, application of neurotrophins is being investigated. We address

  7. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs : Relation to neuronal status

    NARCIS (Netherlands)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B.; Klis, Sjaak F L; Grolman, Wilko

    2015-01-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to ch

  8. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable of produ......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable......μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing...

  9. Diffusion tensor imaging of the auditory nerve in patients with acquired single-sided deafness

    DEFF Research Database (Denmark)

    Vos, Sjoerd; Haakma, Wieke; Versnel, Huib;

    2015-01-01

    following cochlear hair cell loss, and the amount of degeneration may considerably differ between the two ears, also in patients with bilateral deafness. A measure that reflects the nerve's condition would help to assess the best of both nerves and decide accordingly which ear should be implanted...... DTI metrics from the deaf-sided with the healthy-sided nerves in patients showed no significant differences. There was a small but significant reduction in fractional anisotropy in both auditory nerves in patients compared with normal-hearing controls. These results are the first evidence of possible...... changes in the microstructure of the bilateral auditory nerves as a result of single-sided deafness. Our results also indicate that it is too early to assess the degenerative status of the auditory nerve of a subject-specific basis....

  10. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus.

    Science.gov (United States)

    Ahn, J; MacLeod, K M

    2016-03-01

    Short-term synaptic plasticity (STP) acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the auditory brain stem, the divergent pathways that encode acoustic timing and intensity information express differential STP. To investigate what factors determine the plasticity expressed at different terminals, we tested whether presynaptic release probability differed in the auditory nerve projections to the two divisions of the avian cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Estimates of release probability were made with an open-channel blocker ofN-methyl-d-aspartate (NMDA) receptors. Activity-dependent blockade of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) with application of 20 μM (+)-MK801 maleate was more rapid in NM than in NA, indicating that release probability was significantly higher at terminals in NM. Paired-pulse ratio (PPR) was tightly correlated with the blockade rate at terminals in NA, suggesting that PPR was a reasonable proxy for relative release probability at these synapses. To test whether release probability was similar across convergent inputs onto NA neurons, PPRs of different nerve inputs onto the same postsynaptic NA target neuron were measured. The PPRs, as well as the plasticity during short trains, were tightly correlated across multiple inputs, further suggesting that release probability is coordinated at auditory nerve terminals in a target-specific manner. This highly specific regulation of STP in the auditory brain stem provides evidence that the synaptic dynamics are tuned to differentially transmit the auditory information in nerve activity into parallel ascending pathways. PMID:26719087

  11. Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes’ hearing problem: an innovation in multi-channel-array skin-hearing technology

    OpenAIRE

    Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

    2014-01-01

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different...

  12. The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing

    Science.gov (United States)

    Lichtenhan, Jeffery T.; Salt, Alec N.; Guinan, John J.

    2015-12-01

    One of the most pressing problems today in the mechanics of hearing is to understand the mechanical motions in the apical half of the cochlea. Almost all available measurements from the cochlear apex of basilar membrane or other organ-of-Corti transverse motion have been made from ears where the health, or sensitivity, in the apical half of the cochlea was not known. A key step in understanding the mechanics of the cochlear base was to trust mechanical measurements only when objective measures from auditory-nerve compound action potentials (CAPs) showed good preparation sensitivity. However, such traditional objective measures are not adequate monitors of cochlear health in the very low-frequency regions of the apex that are accessible for mechanical measurements. To address this problem, we developed the Auditory Nerve Overlapped Waveform (ANOW) that originates from auditory nerve output in the apex. When responses from the round window to alternating low-frequency tones are averaged, the cochlear microphonic is canceled and phase-locked neural firing interleaves in time (i.e., overlaps). The result is a waveform that oscillates at twice the probe frequency. We have demonstrated that this Auditory Nerve Overlapped Waveform - called ANOW - originates from auditory nerve fibers in the cochlear apex [8], relates well to single-auditory-nerve-fiber thresholds, and can provide an objective estimate of low-frequency sensitivity [7]. Our new experiments demonstrate that ANOW is a highly sensitive indicator of apical cochlear function. During four different manipulations to the scala media along the cochlear spiral, ANOW amplitude changed when either no, or only small, changes occurred in CAP thresholds. Overall, our results demonstrate that ANOW can be used to monitor cochlear sensitivity of low-frequency regions during experiments that make apical basilar membrane motion measurements.

  13. Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve Using a Convolution Model.

    Science.gov (United States)

    Strahl, Stefan B; Ramekers, Dyan; Nagelkerke, Marjolijn M B; Schwarz, Konrad E; Spitzer, Philipp; Klis, Sjaak F L; Grolman, Wilko; Versnel, Huib

    2016-01-01

    The electrically evoked compound action potential (eCAP) is a routinely performed measure of the auditory nerve in cochlear implant users. Using a convolution model of the eCAP, additional information about the neural firing properties can be obtained, which may provide relevant information about the health of the auditory nerve. In this study, guinea pigs with various degrees of nerve degeneration were used to directly relate firing properties to nerve histology. The same convolution model was applied on human eCAPs to examine similarities and ultimately to examine its clinical applicability. For most eCAPs, the estimated nerve firing probability was bimodal and could be parameterised by two Gaussian distributions with an average latency difference of 0.4 ms. The ratio of the scaling factors of the late and early component increased with neural degeneration in the guinea pig. This ratio decreased with stimulation intensity in humans. The latency of the early component decreased with neural degeneration in the guinea pig. Indirectly, this was observed in humans as well, assuming that the cochlear base exhibits more neural degeneration than the apex. Differences between guinea pigs and humans were observed, among other parameters, in the width of the early component: very robust in guinea pig, and dependent on stimulation intensity and cochlear region in humans. We conclude that the deconvolution of the eCAP is a valuable addition to existing analyses, in particular as it reveals two separate firing components in the auditory nerve.

  14. Assessment and Preservation of Auditory Nerve Integrity in the Deafened Guinea Pig

    NARCIS (Netherlands)

    Ramekers, D.

    2014-01-01

    Profound hearing loss is often caused by cochlear hair cell loss. Cochlear implants (CIs) essentially replace hair cells by encoding sound and conveying the signal by means of pulsatile electrical stimulation to the spiral ganglion cells (SGCs) which form the auditory nerve. SGCs progressively degen

  15. Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve Using a Convolution Model

    NARCIS (Netherlands)

    Strahl, Stefan B; Ramekers, Dyan; Nagelkerke, Marjolijn M B; Schwarz, Konrad E; Spitzer, Philipp; Klis, Sjaak F L; Grolman, Wilko; Versnel, Huib

    2016-01-01

    The electrically evoked compound action potential (eCAP) is a routinely performed measure of the auditory nerve in cochlear implant users. Using a convolution model of the eCAP, additional information about the neural firing properties can be obtained, which may provide relevant information about th

  16. Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers

    NARCIS (Netherlands)

    Recio-Spinoso, A; Temchin, AN; van Dijk, P; Fan, YH; Ruggero, MA

    2005-01-01

    Responses to broadband Gaussian white noise were recorded in auditory-nerve fibers of deeply anesthetized chinchillas and analyzed by computation of zeroth-, first-, and second-order Wiener kernels. The first- order kernels ( similar to reverse correlations or "revcors") of fibers with characteristi

  17. Pulsed 808-nm infrared laser stimulation of the auditory nerve in guinea pig cochlea.

    Science.gov (United States)

    Xia, Nan; Wu, Xiao Y; Wang, Xing; Mou, Zong X; Wang, Man Q; Gu, Xin; Zheng, Xiao L; Hou, Wen S

    2014-01-01

    Pulsed near-infrared radiation has been proposed as an alternative stimulus for auditory nerve stimulation and could be potentially used in the design of cochlear implant. Although the infrared with high absorption coefficient of water (i.e., wavelength ranged from 1.8 to 2.2 μm) has been widely investigated, the lymph in the cochlea absorbs most of the infrared energies, and only a small part can arrive at the target auditory nerves. The present study is aimed to test whether the short-wavelength near-infrared irradiation with lower absorption coefficients can penetrate the lymph fluid to stimulate the auditory nerves. An 808-nm near-infrared laser was chosen to stimulate the auditory nerve in the guinea pig cochlea. The infrared pulse was delivered by an optical fiber that was surgically inserted near the round window membrane and oriented toward the spiral ganglion cells in the basal turn of the cochlea. The 2-Hz infrared pulses were used to stimulate the cochlea before and after the deafness with different pulse durations (100-1,000 μs). Optically evoked compound action potentials (oCAPs) were recorded during the infrared radiation. We successfully recorded oCAPs from both normal hearing animals and deafened animals. The oCAP amplitude increased with the infrared radiation energy. The preliminary experiment suggests that the near-infrared with lower absorption coefficients can effectively pass through the lymph filled in the cochlea and stimulate the auditory nerve. Further studies will optimize the deafness animal model and determine the optimal stimulation parameters.

  18. The Effect of Low Omega-3/Omega-6 Ratio on Auditory Nerve Conduction in Rat Pups.

    OpenAIRE

    Saeid Farahani; Masoud Motasaddi Zarandy; Gholamreza Hassanzadeh; Farzad Shidfar; Shohreh Jalaie; Vida Rahimi

    2015-01-01

    The biological effects of omega-3 and omega-6 fatty acids are determined by their mutual interactions. This interaction extremely affects various functions. Lower consumption of omega-3 during gestation leads to various disorders, even in hearing. We aimed to assess the effect of low omega-3/omega-6 ratios on auditory nerve conduction. In this experimental study, the auditory brainstem response test was performed on 24-day-old rat (n=14). The rats were divided into case (low omega-3/omega-6 r...

  19. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.

    Science.gov (United States)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B; Klis, Sjaak F L; Grolman, Wilko

    2015-03-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to characterize the recovery of the electrically stimulated auditory nerve, as well as to evaluate possible changes caused by deafness-induced degeneration. To this end we studied temporal responsiveness of the auditory nerve in a guinea pig model of sensorineural hearing loss. Using masker-probe and pulse train paradigms we compared electrically evoked compound action potentials (eCAPs) in normal-hearing animals with those in animals with moderate (two weeks after ototoxic treatment) and severe (six weeks after ototoxic treatment) loss of spiral ganglion cells (SGCs). Masker-probe interval and pulse train inter-pulse interval was varied from 0.3 to 16 ms. Whereas recovery assessed with masker-probe was roughly similar for normal-hearing and both groups of deafened animals, it was considerably faster for six weeks deaf animals (τ ≈ 1.2 ms) than for two weeks deaf or normal-hearing animals (τ ≈ 3-4 ms) when 100-ms pulse trains were applied. Latency increased with decreasing inter-pulse intervals, and this was more pronounced with pulse trains than with masker-probe stimulation. With high frequency pulse train stimulation eCAP amplitudes were modulated for deafened animals, meaning that amplitudes for odd pulse numbers were larger than for even pulses. The relative refractory period (τ) and the modulation depth of the eCAP amplitude for pulse trains, as well as the latency increase for both paradigms significantly correlated with quantified measures of auditory nerve degeneration (size and packing density of SGCs). In addition to these findings, separate masker-probe recovery functions for the eCAP N1 and N2 peaks displayed a robust non-monotonic or shoulder

  20. The cochlear nerve canal and internal auditory canal in children with normal cochlea but cochlear nerve deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fei; Li, Jianhong; Xian, Junfang; Wang, Zhenchang [Dept. of Radiology, Beijing Tongren Hospital, Capital Medical Univ., Beijing (China)], e-mail: cjr.wzhch@vip.163.com; Mo, Lingyan [Dept. of Otorhinolaryngology, Beijing Tongren Hospital, Capital Medical Univ., Beijing (China)

    2013-04-15

    Background: There is an increasing frequency of requests for cochlear implantation (CI) in deaf children and more detailed image information is necessary for selecting appropriate candidates. Cochlear nerve deficiency (CND) is a contraindication to CI. Magnetic resonance imaging (MRI) has been used to evaluate the integrity of the cochlear nerve. The abnormalities of the cochlear nerve canal (CNC) and internal auditory canal (IAC) have been reported to be associated with CND. Purpose: To correlate CNC manifestation, size, and IAC diameter on high-resolution CT (HRCT) with CND diagnosed by MRI in children. Material and Methods: HRCT images from 35 sensorineurally deaf children who had normal cochlea but bilateral or unilateral CND diagnosed by MRI were studied retrospectively. The CNC and IAC manifestation and size were assessed and correlated with CND. Results: CND was diagnosed by MRI in 54/70 ears (77.1%). Thirty-two ears had an absent cochlear nerve (59.3%), while 22 ears had a small cochlear nerve (40.7%). The CNC diameter was <1.5 mm in 36 ears (66.7%). The CNC diameter ranged between 1.5 and 2.0 mm in seven ears (13.0%) and was >2.0 mm in 11 ears (20.4%). The IAC diameter was <3.0 mm in 25 ears (46.3%) and >3.0 mm in 29 ears (53.7%). Conclusion: The hypoplastic CNC might be more highly indicative of CND than that of a narrow IAC.

  1. Evaluation of peripheral compression and auditory nerve fiber intensity coding using auditory steady-state responses

    DEFF Research Database (Denmark)

    Encina Llamas, Gerard; M. Harte, James; Epp, Bastian

    2015-01-01

    . Evaluation of these properties provides information about the health state of the system. It has been shown that a loss of outer hair cells leads to a reduction in peripheral compression. It has also recently been shown in animal studies that noise over-exposure, producing temporary threshold shifts, can......The compressive nonlinearity of the auditory system is assumed to be an epiphenomenon of a healthy cochlea and, particularly, of outer-hair cell function. Another ability of the healthy auditory system is to enable communication in acoustical environments with high-level background noises...

  2. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    peripheral for the cathodic phase. This results in an average difference of 200 μs in spike latency for AP generated by anodic vs cathodic pulses. It is hypothesized here that this difference is large enough to corrupt the temporal coding in the AN. To quantify effects of pulse polarity on auditory......, fail to correctly predict responses to anodic stimulation. This study presents a model that simulates AN responses to anodic and cathodic stimulation. The main goal was to account for the data obtained with monophasic electrical stimulation in cat AN. The model is based on an exponential integrate......-and-fire neuron with two partitions responding individually to anodic and cathodic stimulation. Membrane noise was parameterized based on reported relative spread of AN neurons. Firing efficiency curves and spike-latency distributions were simulated for monophasic and symmetric biphasic stimulation...

  3. Polarity sensitivity of the electrically stimulated auditory nerve at different cochlear sites

    OpenAIRE

    Undurraga Lucero, Jaime; van Wieringen, Astrid; Carlyon, Robert P.; Macherey, Olivier; Wouters, Jan

    2009-01-01

    Commercially available cochlear implants (CIs) stimulate the auditory nerve (AN) using symmetric biphasic current (BP) pulses. However, recent data have shown that the use of asymmetric pulse shapes could be beneficial in terms of reducing power consumption, increasing dynamic range and limiting channel interactions. In these charge-balanced stimuli, the effectiveness of one phase (one polarity) is reduced by making it longer and lower in amplitude than the other. For the design of novel CI s...

  4. [Ultrastructural organization of the auditory nerves of Gryllus bimaculatus and G. campestris crickets].

    Science.gov (United States)

    Svetlogorskaia, I D

    1980-01-01

    Electron microscopic observations have been made on transverse sections of the auditory (tympanal) nerve of the crickets at various levels from the tympanal ganglion (close to the ganglion, 150, 250, 1,000, 2,000 and 3,000 mu from the latter). In the vicinity of the ganglion, axons of the auditory receptors are separated from each other by the processes of Schwann cells. Beginning from the level of 150-250 mu, the axons are subdivided and form, with the help of collaterals, a subreceptor plexus which is similar to that found in the auditory system of the locust. Collaterals of an axon pass to the adjacent axons and deeply penetrate into the latter loosing their Schwann sheath, so that axonal membranes form a direct contact. At the site of these contacts, intracellular cleft is equal to 50-80 A. No synaptic vesicles were found in the region of the plexus. At the level of 3,000 mu, the auditory axons again attain a roundlike form and become completely isolated from each other by the processes of Schwann cells. It is suggested that in the region of the subreceptor plexus, electrotonic interaction between the receptors of the crickets takes place, as it is common in the auditory sistem of insects. PMID:7405445

  5. Differential roles for EphA and EphB signaling in segregation and patterning of central vestibulocochlear nerve projections.

    Directory of Open Access Journals (Sweden)

    Michelle R Allen-Sharpley

    Full Text Available Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first identified the central compartments through which auditory and vestibular axons travel. We then manipulated Eph-ephrin signaling using pharmacological inhibition of Eph receptors and in ovo electroporation to misexpress EphA4 and EphB2. Anterograde labeling of auditory afferents showed that inhibition of Eph signaling did not misroute axons to non-auditory target regions. Similarly, we did not find vestibular axons within auditory projection regions. However, we found that pharmacologic inhibition of Eph receptors reduced the volume of the vestibular projection compartment. Inhibition of EphB signaling alone did not affect auditory or vestibular central projection volumes, but it significantly increased the area of the auditory sensory epithelium. Misexpression of EphA4 and EphB2 in VIIIth nerve axons resulted in a significant shift of dorsoventral spacing between the axon tracts, suggesting a cell-autonomous role for the partitioning of projection areas along this axis. Cochlear ganglion volumes did not differ among treatment groups, indicating the changes seen were not due to a gain or loss of cochlear ganglion cells. These results suggest that Eph-ephrin signaling does not specify auditory versus vestibular targets but rather contributes to formation of boundaries for patterning of inner ear projections in the hindbrain.

  6. Nerve canals at the fundus of the internal auditory canal on high-resolution temporal bone CT

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yoon Ha; Youn, Eun Kyung; Kim, Seung Chul [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-12-01

    To identify and evaluate the normal anatomy of nerve canals in the fundus of the internal auditory canal which can be visualized on high-resolution temporal bone CT. We retrospectively reviewed high-resolution (1 mm thickness and interval contiguous scan) temporal bone CT images of 253 ears in 150 patients who had not suffered trauma or undergone surgery. Those with a history of uncomplicated inflammatory disease were included, but those with symptoms of vertigo, sensorineural hearing loss, or facial nerve palsy were excluded. Three radiologists determined the detectability and location of canals for the labyrinthine segment of the facial, superior vestibular and cochlear nerve, and the saccular branch and posterior ampullary nerve of the inferior vestibular nerve. Five bony canals in the fundus of the internal auditory canal were identified as nerve canals. Four canals were identified on axial CT images in 100% of cases; the so-called singular canal was identified in only 68%. On coronal CT images, canals for the labyrinthine segment of the facial and superior vestibular nerve were seen in 100% of cases, but those for the cochlear nerve, the saccular branch of the inferior vestibular nerve, and the singular canal were seen in 90.1%, 87.4% and 78% of cases, respectiveIy. In all detectable cases, the canal for the labyrinthine segment of the facial nerve was revealed as one which traversed anterolateralIy, from the anterosuperior portion of the fundus of the internal auditory canal. The canal for the cochlear nerve was located just below that for the labyrinthine segment of the facial nerve, while that canal for the superior vestibular nerve was seen at the posterior aspect of these two canals. The canal for the saccular branch of the inferior vestibular nerve was located just below the canal for the superior vestibular nerve, and that for the posterior ampullary nerve, the so-called singular canal, ran laterally or posteolateralIy from the posteroinferior aspect of

  7. Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes’ hearing problem:an innovation in multi-channel-array skin-hearing technology

    Institute of Scientific and Technical Information of China (English)

    Jianwen Li; Yan Li; Ming Zhang; Weifang Ma; Xuezong Ma

    2014-01-01

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the ifltering principle of hair cells, external voice sig-nals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass ifltering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequen-cy analysis, the frequency range of the band-pass iflter can also be determined. These ifndings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to dis-tinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes’ hearing problems. Scientiifc hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized.

  8. Trauma-induced auditory nerve degeneration due to cerebellopontine(CP) angle manipulations:clinical and experimental experience

    Institute of Scientific and Technical Information of China (English)

    Tetsuji Sekiya

    2004-01-01

    In order to investigate the pathophysiologic mechanisms responsible for trauma-induced hearing disturbances due to auditory nerve degeneration, we established for the first time a rat experimental model in which auditory nerve degeneration due to compression injury of the cerebellopontine (CP) angle portion of the auditory nerve can be quantitatively evaluated. In this paper, Ⅰ demonstrate our clinical experience in CP angle surgery and some of the results of our experiments performed onthis rat experimental model. Trauma-induced hearing loss in CP angle operations has long been regarded as a sort of unavoidable "natural course"and therefore hopeless.I believe that this pessimistic view should be challenged and changed through new approaches in scientific research.

  9. Central projections of auditory receptor neurons of crickets.

    Science.gov (United States)

    Imaizumi, Kazuo; Pollack, Gerald S

    2005-12-19

    We describe the central projections of physiologically characterized auditory receptor neurons of crickets as revealed by confocal microscopy. Receptors tuned to ultrasonic frequencies (similar to those produced by echolocating, insectivorous bats), to a mid-range of frequencies, and a subset of those tuned to low, cricket-like frequencies have similar projections, terminating medially within the auditory neuropile. Quantitative analysis shows that despite the general similarity of these projections they are tonotopic, with receptors tuned to lower frequencies terminating more medially. Another subset of cricket-song-tuned receptors projects more laterally and posteriorly than the other types. Double-fills of receptors and identified interneurons show that the three medially projecting receptor types are anatomically well positioned to provide monosynaptic input to interneurons that relay auditory information to the brain and to interneurons that modify this ascending information. The more laterally and posteriorly branching receptor type may not interact directly with this ascending pathway, but is well positioned to provide direct input to an interneuron that carries auditory information to more posterior ganglia. These results suggest that information about cricket song is segregated into functionally different pathways as early as the level of receptor neurons. Ultrasound-tuned and mid-frequency tuned receptors have approximately twice as many varicosities, which are sites of transmitter release, per receptor as either anatomical type of cricket-song-tuned receptor. This may compensate in part for the numerical under-representation of these receptor types.

  10. Effects of Electrode Position on Spatiotemporal Auditory Nerve Fiber Responses: A 3D Computational Model Study

    Directory of Open Access Journals (Sweden)

    Soojin Kang

    2015-01-01

    Full Text Available A cochlear implant (CI is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF response to either a single pulse or low- (250 pulses/s and high-rate (5,000 pulses/s pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance.

  11. Modeling the Anti-masking Effects of the Olivocochlear Reflex in Auditory Nerve Responses to Tones in Sustained Noise

    OpenAIRE

    Chintanpalli, Ananthakrishna; Jennings, Skyler G.; Heinz, Michael G.; Strickland, Elizabeth A.

    2012-01-01

    The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noise. Strong physiological support for an anti-masking role for the MOCR has come from the observation that auditory nerve (AN) fibers exhibit reduced firing to sustained noise and increased sensitivity to tones when the MOCR is elicited. The present study extended a well-established computational model for normal-hearing and hearing-impaired AN responses to demonstrate that these anti-masking ef...

  12. Auditory nerve representation of a complex communication sound in background noise.

    Science.gov (United States)

    Simmons, A M; Schwartz, J J; Ferragamo, M

    1992-05-01

    A population study of auditory nerve responses in the bullfrog, Rana catesbeiana, analyzed the relative contributions of spectral and temporal coding in representing a complex, species-specific communication signal at different stimulus intensities and in the presence of background noise. At stimulus levels of 70 and 80 dB SPL, levels which approximate that received during communication in the natural environment, average rate profiles plotted over fiber characteristic frequency do not reflect the detailed spectral fine structure of the synthetic call. Rate profiles do not change significantly in the presence of background noise. In ambient (no noise) and low noise conditions, both amphibian papilla and basilar papilla fibers phase lock strongly to the waveform periodicity (fundamental frequency) of the synthetic advertisement call. The higher harmonic spectral fine structure of the synthetic call is not accurately reflected in the timing of fiber firing, because firing is "captured" by the fundamental frequency. Only a small number of fibers synchronize preferentially to any harmonic in the call other than the first, and none synchronize to any higher than the third, even when fiber characteristic frequency is close to one of these higher harmonics. Background noise affects fiber temporal responses in two ways: It can reduce synchronization to the fundamental frequency, until fiber responses are masked; or it can shift synchronization from the fundamental to the second or third harmonic of the call. This second effect results in a preservation of temporal coding at high noise levels. These data suggest that bullfrog eighth nerve fibers extract the waveform periodicity of multiple-harmonic stimuli primarily by a temporal code.

  13. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss.

    Science.gov (United States)

    McGuire, Brian; Fiorillo, Benjamin; Ryugo, David K; Lauer, Amanda M

    2015-04-24

    Perceptual performance in persons with hearing loss, especially those using devices to restore hearing, is not fully predicted by traditional audiometric measurements designed to evaluate the status of peripheral function. The integrity of auditory brainstem synapses may vary with different forms of hearing loss, and differential effects on the auditory nerve-brain interface may have particularly profound consequences for the transfer of sound from ear to brain. Loss of auditory nerve synapses in ventral cochlear nucleus (VCN) has been reported after acoustic trauma, ablation of the organ of Corti, and administration of ototoxic compounds. The effects of gradually acquired forms deafness on these synapses are less well understood. We investigated VCN gross morphology and auditory nerve synapse integrity in DBA/2J mice with early-onset progressive sensorineural hearing loss. Hearing status was confirmed using auditory brainstem response audiometry and acoustic startle responses. We found no change in VCN volume, number of macroneurons, or number of VGLUT1-positive auditory nerve terminals between young adult and older, deaf DBA/2J. Cell-type specific analysis revealed no difference in the number of VGLUT1 puncta contacting bushy and multipolar cell body profiles, but the terminals were smaller in deaf DBA/2J mice. Transmission electron microscopy confirmed the presence of numerous healthy, vesicle-filled auditory nerve synapses in older, deaf DBA/2J mice. The present results suggest that synapses can be preserved over a relatively long time-course in gradually acquired deafness. Elucidating the mechanisms supporting survival of central auditory nerve synapses in models of acquired deafness may reveal new opportunities for therapeutic intervention. PMID:25686750

  14. Periodicity extraction in the anuran auditory nerve. II: Phase and temporal fine structure.

    Science.gov (United States)

    Simmons, A M; Reese, G; Ferragamo, M

    1993-06-01

    phase locking to simple sinusoids. Increasing stimulus intensity also shifts the synchronized responses of some fibers away from the fundamental frequency to one of the low-frequency harmonics in the stimuli. These data suggest that the synchronized firing of bullfrog eighth nerve fibers operates to extract the waveform periodicity of complex, multiple-harmonic stimuli, and this periodicity extraction is influenced by the phase spectrum and temporal fine structure of the stimuli. The similarity in response patterns of amphibian papilla and basilar papilla fibers argues that the frog auditory system employs primarily a temporal mechanism for extraction of first harmonic periodicity.

  15. A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    Science.gov (United States)

    Horne, Colin D F; Sumner, Christian J; Seeber, Bernhard U

    2016-01-01

    We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  16. Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve

    OpenAIRE

    Wen, Bo; Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2009-01-01

    The auditory system operates over a vast range of sound pressure levels (100–120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20–40 dB). Dean et al. (Nat. Neurosci. 8:1684, 2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shifting towards the most frequently occurring level. Here we show that dynamic rang...

  17. Fast negative feedback enables mammalian auditory nerve fibers to encode a wide dynamic range of sound intensities.

    Directory of Open Access Journals (Sweden)

    Mark Ospeck

    Full Text Available Mammalian auditory nerve fibers (ANF are remarkable for being able to encode a 40 dB, or hundred fold, range of sound pressure levels into their firing rate. Most of the fibers are very sensitive and raise their quiescent spike rate by a small amount for a faint sound at auditory threshold. Then as the sound intensity is increased, they slowly increase their spike rate, with some fibers going up as high as ∼300 Hz. In this way mammals are able to combine sensitivity and wide dynamic range. They are also able to discern sounds embedded within background noise. ANF receive efferent feedback, which suggests that the fibers are readjusted according to the background noise in order to maximize the information content of their auditory spike trains. Inner hair cells activate currents in the unmyelinated distal dendrites of ANF where sound intensity is rate-coded into action potentials. We model this spike generator compartment as an attenuator that employs fast negative feedback. Input current induces rapid and proportional leak currents. This way ANF are able to have a linear frequency to input current (f-I curve that has a wide dynamic range. The ANF spike generator remains very sensitive to threshold currents, but efferent feedback is able to lower its gain in response to noise.

  18. [Central auditory prosthesis].

    Science.gov (United States)

    Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M

    2009-06-01

    Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084

  19. Nerve growth factor and inducible nitric oxide synthase expression in the mesencephalon and diencephalon, as well as visual- and auditory-related nervous tissues, in a macaque model of type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Qihui Luo; Wentao Liu; Jingyao Chen; Mingshu Wang; Wen Zeng; Zhengli Chen; Anchun Cheng

    2012-01-01

    The present study detected distribution and expression of nerve growth factor and inducible nitric oxide synthase in the mesencephalon and diencephalon, as well as visual- and auditory-related nervous tissues, in a macaque model of type 2 diabetes using immunohistochemistry. Results showed that nerve growth factor expression decreased, but inducible nitric oxide synthase expression increased, in the mesencephalon and diencephalon, as well as visual- and auditory- related nervous tissues. These results suggested that nerve growth factor and inducible nitric oxide synthase play an important role in regulating the development of diabetic visual- and auditory-related diseases.

  20. Cavernous hemangioma of the internal auditory canal encasing the VII and VIII cranial nerve complex: case report and review of the literature.

    Science.gov (United States)

    Mastronardi, Luciano; Carpineta, Ettore; Cacciotti, Guglielmo; Di Scipio, Ettore; Roperto, Raffaelino

    2016-04-01

    Cavernous angiomas originating in the internal auditory canal are very rare. In the available literature, only 65 cases of cavernomas in this location have been previously reported. We describe the case of a 22-year-old woman surgically treated for a cavernous hemangioma in the left internal auditory canal, mimicking on preoperative magnetic resonance imaging MRI an acoustic neuroma. Neurological symptoms were hypoacusia and dizziness. The cavernous angioma encased the seventh and, partially, the eighth cranial nerve complex. A "nearly total" removal was performed, leaving a thin residual of malformation adherent to the facial nerve. Postoperative period was uneventful; hearing was unchanged, but the patient had a moderate inferior left facial palsy (House-Brackmann grade II) slightly improved during the following weeks. On the basis of the observation of this uncommon case, we propose a revision of the literature and discuss clinical features, differential diagnosis, and treatment. PMID:26876892

  1. BDNF Increases Survival and Neuronal Differentiation of Human Neural Precursor Cells Cotransplanted with a Nanofiber Gel to the Auditory Nerve in a Rat Model of Neuronal Damage

    Directory of Open Access Journals (Sweden)

    Yu Jiao

    2014-01-01

    Full Text Available Objectives. To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. Methods. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM. Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel, in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Results. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Conclusion. Our results indicate that human neural precursor cells (HNPC integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN.

  2. Effects on auditory-nerve fibers of opening the otic capsule at the apex of the chinchilla cochlea

    Science.gov (United States)

    Recio-Spinoso, Alberto; Temchin, Andrei N.; Ruggero, Mario A.

    2015-12-01

    Vibration responses to clicks measured at the apex of chinchilla cochleae with open otic capsules have onsets much shorter than those of responses of auditory-nerve fibers (ANFs) corrected for synaptic and neural delays. Apical vibration responses to tones in open cochleae also differ in other respects from the responses to tones of ANFs with low characteristic frequency (CF) in normal chinchilla cochleae. To further specify the origin(s) of these differences, we recorded from chinchilla ANFs after delicately opening a small hole in the otic capsule overlying scala vestibuli in the cochlear apex. In those cochleae, the earliest ANF responses to clicks are often evoked by condensation (rather than rarefaction) clicks and responses to tones often exhibit level-dependent phase changes different from those in normal cochleae. These findings are largely consistent with, and seem to account for, apical vibration responses of cochleae with open otic capsules. An unexpected finding is that the tuning curves of ANFs with moderately high CF and normal CF thresholds often had hypersensitive tails.

  3. Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise.

    Science.gov (United States)

    Chintanpalli, Ananthakrishna; Jennings, Skyler G; Heinz, Michael G; Strickland, Elizabeth A

    2012-04-01

    The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noise. Strong physiological support for an anti-masking role for the MOCR has come from the observation that auditory nerve (AN) fibers exhibit reduced firing to sustained noise and increased sensitivity to tones when the MOCR is elicited. The present study extended a well-established computational model for normal-hearing and hearing-impaired AN responses to demonstrate that these anti-masking effects can be accounted for by reducing outer hair cell (OHC) gain, which is a primary effect of the MOCR. Tone responses in noise were examined systematically as a function of tone level, noise level, and OHC gain. Signal detection theory was used to predict detection and discrimination for different spontaneous rate fiber groups. Decreasing OHC gain decreased the sustained noise response and increased maximum discharge rate to the tone, thus modeling the ability of the MOCR to decompress AN fiber rate-level functions. Comparing the present modeling results with previous data from AN fibers in decerebrate cats suggests that the ipsilateral masking noise used in the physiological study may have elicited up to 20 dB of OHC gain reduction in addition to that inferred from the contralateral noise effects. Reducing OHC gain in the model also extended the dynamic range for discrimination over a wide range of background noise levels. For each masker level, an optimal OHC gain reduction was predicted (i.e., where maximum discrimination was achieved without increased detection threshold). These optimal gain reductions increased with masker level and were physiologically realistic. Thus, reducing OHC gain can improve tone-in-noise discrimination even though it may produce a “hearing loss” in quiet. Combining MOCR effects with the sensorineural hearing loss effects already captured by this computational AN model will be beneficial for exploring the implications of their interaction

  4. Reducing auditory hypersensitivities in autistic spectrum disorders: Preliminary findings evaluating the Listening Project Protocol

    Directory of Open Access Journals (Sweden)

    Stephen W Porges

    2014-08-01

    Full Text Available Auditory hypersensitivities are a common feature of autism spectrum disorder (ASD. In the present study the effectiveness of a novel intervention, the Listening Project Protocol (LPP was evaluated in two trials conducted with children diagnosed with ASD. LPP was developed to reduce auditory hypersensitivities. LPP is based on a theoretical neural exercise model that uses computer altered acoustic stimulation to recruit the neural regulation of middle ear muscles. Features of the intervention stimuli were informed by basic research in speech and hearing sciences that has identified the specific acoustic frequencies necessary to understand speech, which must pass through middle ear structures before being processed by other components of the auditory system. LPP was hypothesized to reduce auditory hypersensitivities by increasing the neural tone to the middle ear muscles to functionally dampen competing sounds in frequencies lower than human speech. The trials demonstrated that LPP, when contrasted to control conditions, selectively reduced auditory hypersensitivities. These findings are consistent with the Polyvagal Theory, which emphasizes the role of the middle ear muscles in social communication.

  5. Research progress of laser-induced nerve impulses in the auditory system%激光诱发听觉系统神经冲动的研究进展

    Institute of Scientific and Technical Information of China (English)

    秦文超; 王健; 吴默村; 梁田; 关添

    2015-01-01

    近年来利用激光诱发神经冲动逐渐成为研究的热点。本文归纳整理了近7年来激光在刺激听神经方面的主要研究进展,包括激光诱发耳蜗内听神经冲动的研究、激光参数和神经组织特性对激光诱发耳蜗听神经冲动的影响,并对激光诱发听神经冲动的安全性、多通道激光刺激、扩大激光刺激参数的范围等方面进行了展望。%Using laser to induce nerve impulses has become a popular research issue in recent years . This paper summarizes main research progresses related to laser-induced auditory nerve response in the past seven years.The contents include the advances of laser-induced auditory nerve impulses in the cochlea , the effects of laser parameters and nerve tissue characteristics on the induced cochlear nerve impulses .Finally, this paper prospects the security of the laser-induced auditory nerve impulses , multi-channel laser stimulation , and the expansion of the scope of laser stimulation parameters .

  6. Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus

    Directory of Open Access Journals (Sweden)

    Jeffrey Garrett Mellott

    2014-10-01

    Full Text Available Descending projections from the auditory cortex (AC terminate in subcortical auditory centers from the medial geniculate nucleus (MG to the cochlear nucleus, allowing the AC to modulate the processing of acoustic information at many levels of the auditory system. The nucleus of the brachium of the inferior colliculus (NBIC is a large midbrain auditory nucleus that is a target of these descending cortical projections. The NBIC is a source of several auditory projections, including an ascending projection to the MG. This ascending projection appears to originate from both excitatory and inhibitory NBIC cells, but whether the cortical projections contact either of these cell groups is unknown. In this study, we first combined retrograde tracing and immunochemistry for glutamic acid decarboxylase (GAD, a marker of GABAergic cells to identify GABAergic and non-GABAergic NBIC projections to the MG. Our first result is that GAD-immunopositive cells constitute ~17% of the NBIC to MG projection. We then used anterograde labeling and electron microscopy to examine the AC projection to the NBIC. Our second result is that cortical boutons in the NBIC form synapses with round vesicles and asymmetric synapses, consistent with excitatory effects. Finally, we combined fluorescent anterograde labeling of corticofugal axons with immunochemistry and retrograde labeling of NBIC cells that project to the MG. These final results suggest first that AC axons contact both GAD-negative and GAD-positive NBIC cells and, second, that some of cortically-contacted cells project to the MG. Overall, the results imply that corticofugal projections can modulate both excitatory and inhibitory ascending projections from the NBIC to the auditory thalamus.

  7. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    Science.gov (United States)

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset.

  8. The Olivocochlear Reflex Strength and Cochlear Sensitivity are Independently Modulated by Auditory Cortex Microstimulation

    OpenAIRE

    Dragicevic, Constantino D.; Aedo, Cristian; León, Alex; Bowen, Macarena; Jara, Natalia; Terreros, Gonzalo; Robles, Luis; Delano, Paul H.

    2015-01-01

    In mammals, efferent projections to the cochlear receptor are constituted by olivocochlear (OC) fibers that originate in the superior olivary complex. Medial and lateral OC neurons make synapses with outer hair cells and with auditory nerve fibers, respectively. In addition to the OC system, there are also descending projections from the auditory cortex that are directed towards the thalamus, inferior colliculus, cochlear nucleus, and superior olivary complex. Olivocochlear function can be as...

  9. Anesthesia mumps resulting in temporary facial nerve paralysis after the auditory brainstem implantation in a 3-year-old child.

    Science.gov (United States)

    Özdek, Ali; Bayır, Ömer; Işık, Murat Eray; Tatar, Emel Çadallı; Saylam, Güleser; Korkmaz, Hakan

    2014-01-01

    An acute transient sialadenitis of the major salivary glands in the early postoperative period is called 'anesthesia mumps'. It has been reported in different surgical procedures especially in neurosurgical procedures. Anesthesia mumps develops very fast after the extubation period but it usually regresses with no sequelae within a few hours. However, sometimes serious complication can occur such as respiratory distress. In this report, we present a 3-year-old girl with an anesthesia mumps and facial palsy occurring after successful auditory brainstem implantation and we discuss the cause and the management of this rare complication in this report.

  10. Suppression Measured from Chinchilla Auditory-Nerve-Fiber Responses Following Noise-Induced Hearing Loss: Adaptive-Tracking and Systems-Identification Approaches.

    Science.gov (United States)

    Sayles, Mark; Walls, Michael K; Heinz, Michael G

    2016-01-01

    The compressive nonlinearity of cochlear signal transduction, reflecting outer-hair-cell function, manifests as suppressive spectral interactions; e.g., two-tone suppression. Moreover, for broadband sounds, there are multiple interactions between frequency components. These frequency-dependent nonlinearities are important for neural coding of complex sounds, such as speech. Acoustic-trauma-induced outer-hair-cell damage is associated with loss of nonlinearity, which auditory prostheses attempt to restore with, e.g., "multi-channel dynamic compression" algorithms.Neurophysiological data on suppression in hearing-impaired (HI) mammals are limited. We present data on firing-rate suppression measured in auditory-nerve-fiber responses in a chinchilla model of noise-induced hearing loss, and in normal-hearing (NH) controls at equal sensation level. Hearing-impaired (HI) animals had elevated single-fiber excitatory thresholds (by ~ 20-40 dB), broadened frequency tuning, and reduced-magnitude distortion-product otoacoustic emissions; consistent with mixed inner- and outer-hair-cell pathology. We characterized suppression using two approaches: adaptive tracking of two-tone-suppression threshold (62 NH, and 35 HI fibers), and Wiener-kernel analyses of responses to broadband noise (91 NH, and 148 HI fibers). Suppression-threshold tuning curves showed sensitive low-side suppression for NH and HI animals. High-side suppression thresholds were elevated in HI animals, to the same extent as excitatory thresholds. We factored second-order Wiener-kernels into excitatory and suppressive sub-kernels to quantify the relative strength of suppression. We found a small decrease in suppression in HI fibers, which correlated with broadened tuning. These data will help guide novel amplification strategies, particularly for complex listening situations (e.g., speech in noise), in which current hearing aids struggle to restore intelligibility. PMID:27080669

  11. Amplified somatosensory and visual cortical projections to a core auditory area, the anterior auditory field, following early- and late-onset deafness.

    Science.gov (United States)

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2015-09-01

    Cross-modal reorganization following the loss of input from a sensory modality can recruit sensory-deprived cortical areas to process information from the remaining senses. Specifically, in early-deaf cats, the anterior auditory field (AAF) is unresponsive to auditory stimuli but can be activated by somatosensory and visual stimuli. Similarly, AAF neurons respond to tactile input in adult-deafened animals. To examine anatomical changes that may underlie this functional adaptation following early or late deafness, afferent projections to AAF were examined in hearing cats, and cats with early- or adult-onset deafness. Unilateral deposits of biotinylated dextran amine were made in AAF to retrogradely label cortical and thalamic afferents to AAF. In early-deaf cats, ipsilateral neuronal labeling in visual and somatosensory cortices increased by 329% and 101%, respectively. The largest increases arose from the anterior ectosylvian visual area and the anterolateral lateral suprasylvian visual area, as well as somatosensory areas S2 and S4. Consequently, labeling in auditory areas was reduced by 36%. The age of deafness onset appeared to influence afferent connectivity, with less marked differences observed in late-deaf cats. Profound changes to visual and somatosensory afferent connectivity following deafness may reflect corticocortical rewiring affording acoustically deprived AAF with cross-modal functionality.

  12. Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people.

    Science.gov (United States)

    Clark, G M

    1996-09-01

    1. The development of speech processing strategies for multiple-channel cochlear implants has depended on encoding sound frequencies and intensities as temporal and spatial patterns of electrical stimulation of the auditory nerve fibres so that speech information of most importance of intelligibility could be transmitted. 2. Initial physiological studies showed that rate encoding of electrical stimulation above 200 pulses/s could not reproduce the normal response patterns in auditory neurons for acoustic stimulation in the speech frequency range above 200 Hz and suggested that place coding was appropriate for the higher frequencies. 3. Rate difference limens in the experimental animal were only similar to those for sound up to 200 Hz. 4. Rate difference limens in implant patients were similar to those obtained in the experimental animal. 5. Satisfactory rate discrimination could be made for durations of 50 and 100 ms, but not 25 ms. This made rate suitable for encoding longer duration suprasegmental speech information, but not segmental information, such as consonants. The rate of stimulation could also be perceived as pitch, discriminated at different electrode sites along the cochlea and discriminated for stimuli across electrodes. 6. Place pitch could be scaled according to the site of stimulation in the cochlea so that a frequency scale was preserved and it also had a different quality from rate pitch and was described as tonality. Place pitch could also be discriminated for the shorter durations (25 ms) required for identifying consonants. 7. The inaugural speech processing strategy encoded the second formant frequencies (concentrations of frequency energy in the mid frequency range of most importance for speech intelligibility) as place of stimulation, the voicing frequency as rate of stimulation and the intensity as current level. Our further speech processing strategies have extracted additional frequency information and coded this as place of stimulation

  13. Developmental segregation in the afferent projections to mammalian auditory hair cells.

    OpenAIRE

    Echteler, S M

    1992-01-01

    The mammalian ear contains two types of auditory receptors, inner and outer hair cells, that lie in close proximity to each other within the sensory epithelium of the cochlea. In adult mammals, these two classes of auditory hair cells are innervated by separate populations of afferent neurons that differ strikingly in their cellular morphology and their pattern of arborization within the cochlea. At present, it is unclear when or how these distinctive patterns of cochlear innervation emerge a...

  14. Normal and abnormal retinal projections following the crush of one optic nerve in goldfish (Carassius auratus).

    Science.gov (United States)

    Springer, A D

    1981-06-10

    Optic nerve regeneration was examined with [3H]proline radioautography in fish that had one nerve crushed. Fibers had not yet grown beyond the crush site at 2 days post-crush (PC) and were at the optic chiasm by 4-5 days PC. By 6 days PC the fibers had reinnervated the rostral pole of the contralateral tectum, the lateral geniculate nucleus and area pretectalis dorsalis and ventralis. Area preopticus, nucleus opticus dorsolateralis and nucleus opticus commissurae posterior were partially reinnervated by 8 days PC. At this time numerous abnormal targets were labeled, including nucleus rotundus, nucleus isthmi, cerebellum, pituitary gland and ipsilateral optic tectum. Optic fibers also entered the posterior, intertectal and horizontal commissures, as well as tractus rotundus, the tectocerebellar, tectobulbar and mesencephalocerebellar tracts. In addition, fibers with the contralateral optic tectum were not restricted to their usual laminae. They were distributed from the superficial edge of the tectum to the ventricle. At 32 days PC only the normal retinal projections were evident, and all of the anomalous projections had disappeared. The anomalous projections may have either retracted or degenerated or become undetectable with radioautography. PMID:7263949

  15. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  16. Adaptation in the auditory system: an overview

    OpenAIRE

    David ePérez-González; Malmierca, Manuel S.

    2014-01-01

    The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the s...

  17. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  18. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  19. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats.

    Science.gov (United States)

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-10-15

    Following sensory loss, compensatory crossmodal reorganization occurs such that the remaining modalities are functionally enhanced. For example, behavioral evidence suggests that peripheral visual localization is better in deaf than in normal hearing animals, and that this enhancement is mediated by recruitment of the posterior auditory field (PAF), an area that is typically involved in localization of sounds in normal hearing animals. To characterize the anatomical changes that underlie this phenomenon, we identified the thalamic and cortical projections to the PAF in hearing cats and those with early- and late-onset deafness. The retrograde tracer biotinylated dextran amine was deposited in the PAF unilaterally, to label cortical and thalamic afferents. Following early deafness, there was a significant decrease in callosal projections from the contralateral PAF. Late-deaf animals showed small-scale changes in projections from one visual cortical area, the posterior ectosylvian field (EPp), and the multisensory zone (MZ). With the exception of these minor differences, connectivity to the PAF was largely similar between groups, with the principle projections arising from the primary auditory cortex (A1) and the ventral division of the medial geniculate body (MGBv). This absence of large-scale connectional change suggests that the functional reorganization that follows sensory loss results from changes in synaptic strength and/or unmasking of subthreshold intermodal connections. J. Comp. Neurol. 524:3042-3063, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019080

  20. The auditory dorsal stream plays a crucial role in projecting hallucinated voices into external space

    NARCIS (Netherlands)

    Looijestijn, Jasper; Diederen, Kelly M. J.; Goekoop, Rutger; Sommer, Iris E. C.; Daalman, Kirstin; Kahn, Rene S.; Hoek, Hans W.; Blom, Jan Dirk

    2013-01-01

    Introduction: Verbal auditory hallucinations (VAHs) are experienced as spoken voices which seem to originate in the extracorporeal environment or inside the head. Animal and human research has identified a 'where' pathway for sound processing comprising the planum temporale, the middle frontal gyrus

  1. Auditory Processing Disorders

    Science.gov (United States)

    Auditory Processing Disorders Auditory processing disorders (APDs) are referred to by many names: central auditory processing disorders , auditory perceptual disorders , and central auditory disorders . APDs ...

  2. Auditory Neuropathy - A Case of Auditory Neuropathy after Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Maliheh Mazaher Yazdi

    2007-12-01

    Full Text Available Background and Aim: Auditory neuropathy is an hearing disorder in which peripheral hearing is normal, but the eighth nerve and brainstem are abnormal. By clinical definition, patient with this disorder have normal OAE, but exhibit an absent or severely abnormal ABR. Auditory neuropathy was first reported in the late 1970s as different methods could identify discrepancy between absent ABR and present hearing threshold. Speech understanding difficulties are worse than can be predicted from other tests of hearing function. Auditory neuropathy may also affect vestibular function. Case Report: This article presents electrophysiological and behavioral data from a case of auditory neuropathy in a child with normal hearing after bilirubinemia in a 5 years follow-up. Audiological findings demonstrate remarkable changes after multidisciplinary rehabilitation. Conclusion: auditory neuropathy may involve damage to the inner hair cells-specialized sensory cells in the inner ear that transmit information about sound through the nervous system to the brain. Other causes may include faulty connections between the inner hair cells and the nerve leading from the inner ear to the brain or damage to the nerve itself. People with auditory neuropathy have OAEs response but absent ABR and hearing loss threshold that can be permanent, get worse or get better.

  3. Postnatal development of synaptic properties of the GABAergic projection from the inferior colliculus to the auditory thalamus

    OpenAIRE

    Venkataraman, Yamini; Bartlett, Edward L.

    2013-01-01

    The development of auditory temporal processing is important for processing complex sounds as well as for acquiring reading and language skills. Neuronal properties and sound processing change dramatically in auditory cortex neurons after the onset of hearing. However, the development of the auditory thalamus or medial geniculate body (MGB) has not been well studied over this critical time window. Since synaptic inhibition has been shown to be crucial for auditory temporal processing, this st...

  4. 基于听觉神经同步振荡网络的时频结构描述方法%Novel Method for Time-frequency Structure Description Based on Synchronized Oscillatory Network of Auditory Nerve Fiber

    Institute of Scientific and Technical Information of China (English)

    李允公; 张金萍; 戴丽; 张占一

    2012-01-01

    人类听觉系统具有优良的非平稳信号分析能力,在听觉系统中,由耳蜗基底膜对信号进行类似于带通滤波的时频分解,并由内毛细胞、传入神经和听觉中枢的神经网络对时频分解结果逐步进行特征信息提取和压缩.鉴于此,参照Wang-Brown模型,建立一种可描述信号时频结构特征的听觉模型,该模型包括基底膜、内毛细胞、中级听觉和听觉中枢等子模型,听觉中枢模型由单层听神经振荡网络构成.略去Wang-Brown模型中随机项和侧抑制项,简化内毛细胞模型,设计听神经元的活跃准则和神经元间的联接方式.信号经基底膜、内毛细胞和中级听觉模型处理后,由听神经振荡网络进行信息综合,使得信号中时频结构相似的区域所对应的听神经元进行同步振荡,从而可利用同步振荡神经元的分布情况描述信号的时频结构.进行故障转子升降速试验和风力发电增速机稳速运行试验,试验所得信号的分析结果表明,所建模型能够有效描述信号的时频结构特征及其变化情况,对信号的瞬态变化较为敏感,且数据量相对较小,易于智能识别.%The human auditory system possesses excellent capability to analysis non-stationary signal. In auditory system, before a signal is recognized by the auditory cortex, it is sequentially processed by the basilar membrane, which can be seen as a bandpass filterbank, and other elements in auditory system. Therefore, to describe the structure features of signal in time-frequency space, an auditory model is proposed based on Wang-Brown model and the auditory nerve fiber oscillatory network with single layer. This model consists of basilar membrane, inner hair cells, middle auditory stage and auditory cortex, and the auditory cortex model is a single layer auditory nerve fiber oscillatory network. According to the characteristic of mechanical vibration signal, the random term and lateral inhibitor in Wang

  5. Pathology of the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    De Foer, Bert [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: bert.defoer@GZA.be; Kenis, Christoph [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: christophkenis@hotmail.com; Van Melkebeke, Deborah [Department of Neurology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Deborah.vanmelkebeke@Ugent.be; Vercruysse, Jean-Philippe [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: jphver@yahoo.com; Somers, Thomas [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Thomas.somers@GZA.be; Pouillon, Marc [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: marc.pouillon@GZA.be; Offeciers, Erwin [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Erwin.offeciers@GZA.be; Casselman, Jan W. [Department of Radiology, AZ Sint-Jan AV Hospital, Ruddershove 10, Bruges (Belgium); Consultant Radiologist, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium); Academic Consultent, University of Ghent (Belgium)], E-mail: jan.casselman@azbrugge.be

    2010-05-15

    There is a large scala of pathology affecting the vestibulocochlear nerve. Magnetic resonance imaging is the method of choice for the investigation of pathology of the vestibulocochlear nerve. Congenital pathology mainly consists of agenesis or hypoplasia of the vestibulocochlear nerve. Tumoral pathology affecting the vestibulocochlear nerve is most frequently located in the internal auditory canal or cerebellopontine angle. Schwannoma of the vestibulocochlear nerve is the most frequently found tumoral lesion followed by meningeoma, arachnoid cyst and epidermoid cyst. The most frequently encountered pathologies as well as some more rare entities are discussed in this chapter.

  6. Review of pulsed infrared laser stimulating auditory nerves%脉冲红外激光刺激听神经研究综述

    Institute of Scientific and Technical Information of China (English)

    王健; 关添; 吴默村; 彭保

    2015-01-01

    相比于电刺激,红外激光刺激技术具有显著的优越性。本文综述了近年来脉冲红外激光刺激听觉系统的研究,主要包括:激光触发听觉冲动的可行性、空间选择性、安全性、生理机制、刺激参数的影响、致聋时长的影响等。最后,本文展望了红外激光刺激技术在光学耳蜗方向的应用和未来的研究方向。%Compared to electrical stimulation, infrared laser stimulation technique has significant advantages. This paper reviewed relative research focusing on pulsed infrared laser stimulation of the auditory system in recent years. The main contents include:feasibility of laser triggering auditory impulse, spatial selectivity, security, physiological mechanisms, the effect of stimulation parameters, and the effect of time duration of deafness. Finally, this paper prospected the application of infrared laser stimulation technology on optical cochlear, proposing potential research directions in the future.

  7. Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function

    Science.gov (United States)

    Zarzoso, Manuel; Rysevaite, Kristina; Milstein, Michelle L.; Calvo, Conrado J.; Kean, Adam C.; Atienza, Felipe; Pauza, Dainius H.; Jalife, José; Noujaim, Sami F.

    2013-01-01

    Aims Pulmonary vein ganglia (PVG) are targets for atrial fibrillation ablation. However, the functional relevance of PVG to the normal heart rhythm remains unclear. Our aim was to investigate whether PVG can modulate sinoatrial node (SAN) function. Methods and results Forty-nine C57BL and seven Connexin40+/EGFP mice were studied. We used tyrosine-hydroxylase (TH) and choline-acetyltransferase immunofluorescence labelling to characterize adrenergic and cholinergic neural elements. PVG projected postganglionic nerves to the SAN, which entered the SAN as an extensive, mesh-like neural network. PVG neurones were adrenergic, cholinergic, and biphenotypic. Histochemical characterization of two human embryonic hearts showed similarities between mouse and human neuroanatomy: direct neural communications between PVG and SAN. In Langendorff perfused mouse hearts, PVG were stimulated using 200–2000 ms trains of pulses (300 μs, 400 µA, 200 Hz). PVG stimulation caused an initial heart rate (HR) slowing (36 ± 9%) followed by acceleration. PVG stimulation in the presence of propranolol caused HR slowing (43 ± 13%) that was sustained over 20 beats. PVG stimulation with atropine progressively increased HR. Time-course effects were enhanced with 1000 and 2000 ms trains (P < 0.05 vs. 200 ms). In optical mapping, PVG stimulation shifted the origin of SAN discharges. In five paroxysmal AF patients undergoing pulmonary vein ablation, application of radiofrequency energy to the PVG area during sinus rhythm produced a decrease in HR similar to that observed in isolated mouse hearts. Conclusion PVG have functional and anatomical biphenotypic characteristics. They can have significant effects on the electrophysiological control of the SAN. PMID:23559611

  8. Formation of the avian nucleus magnocellularis from the auditory anlage.

    Science.gov (United States)

    Hendricks, Susan J; Rubel, Edwin W; Nishi, Rae

    2006-10-01

    In the avian auditory system, the neural network for computing the localization of sound in space begins with bilateral innervation of nucleus laminaris (NL) by nucleus magnocellularis (NM) neurons. We used antibodies against the neural specific markers Hu C/D, neurofilament, and SV2 together with retrograde fluorescent dextran labeling from the contralateral hindbrain to identify NM neurons within the anlage and follow their development. NM neurons could be identified by retrograde labeling as early as embryonic day (E) 6. While the auditory anlage organized itself into NM and NL in a rostral-to-caudal fashion between E6 and E8, labeled NM neurons were visible throughout the extent of the anlage at E6. By observing the pattern of neuronal rearrangements together with the pattern of contralaterally projecting NM fibers, we could identify NL in the ventral anlage. Ipsilateral NM fibers contacted the developing NL at E8, well after NM collaterals had projected contralaterally. Furthermore, the formation of ipsilateral connections between NM and NL neurons appeared to coincide with the arrival of VIIIth nerve fibers in NM. By E10, immunoreactivity for SV2 was heavily concentrated in the dorsal and ventral neuropils of NL. Thus, extensive pathfinding and morphological rearrangement of central auditory nuclei occurs well before the arrival of cochlear afferents. Our results suggest that NM neurons may play a central role in formation of tonotopic connections in the auditory system.

  9. Morphological and physiological regeneration in the auditory system of adult Mecopoda elongata (Orthoptera: Tettigoniidae).

    Science.gov (United States)

    Krüger, Silke; Butler, Casey S; Lakes-Harlan, Reinhard

    2011-02-01

    Orthopterans are suitable model organisms for investigations of regeneration mechanisms in the auditory system. Regeneration has been described in the auditory systems of locusts (Caelifera) and of crickets (Ensifera). In this study, we comparatively investigate the neural regeneration in the auditory system in the bush cricket Mecopoda elongata. A crushing of the tympanal nerve in the foreleg of M. elongata results in a loss of auditory information transfer. Physiological recordings of the tympanal nerve suggest outgrowing fibers 5 days after crushing. An anatomical regeneration of the fibers within the central nervous system starts 10 days after crushing. The neuronal projection reaches the target area at day 20. Threshold values to low frequency airborne sound remain high after crushing, indicating a lower regeneration capability of this group of fibers. However, within the central target area the low frequency areas are also innervated. Recordings of auditory interneurons show that the regenerating fibers form new functional connections starting at day 20 after crushing.

  10. Cortical perfusion response to an electrical stimulation of the auditory nerve in profoundly deaf patients: Study with technetium-99m hexamethylpropylene amine oxime single photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Le Scao, Y.; Robier, A.; Beuter, P. (Centre Hospitalier Universitaire, 37 - Tours (France). Dept. of Otorhinolaryngology); Baulieu, J.L.; Pourcelot, L. (Centre Hospitalier Universitaire, 37 - Tours (France). Dept. of Nuclear Medicine)

    1992-04-01

    Brain activation procedures associated with single photon emission tomography (SPET) have recently been developed in healthy controls and diseased patients in order to help in their diagnosis and treatment. We investigated the effects of a promontory test (PT) on the cerebral distribution of technetium-99m hexamethyl-propylene amine oxime ({sup 99m}Tc-HMPAO) in 7 profoundly deaf patients, 6 PT+ and PT-. The count variation in the temporal lobe was calculated on 6 coronal slices using the ratio (R{sub stimulation}-R{sub deprivation})/R{sub deprivation} where R=counts in the temporal lobe was observed in all patients and was higher in all patients with PT+ than in the patient with PT-. The problems of head positioning and resolution of the system were taken into account, and we considered that the maximal count increment was related to the auditory cortex response to the stimulus. Further clinical investigations with high-resolution systems have to be performed in order to validate this presurgery test in cochlear implant assessment. (orig.).

  11. Auditory Neuropathy

    Science.gov (United States)

    ... field differ in their opinions about the potential benefits of hearing aids, cochlear implants, and other technologies for people with auditory neuropathy. Some professionals report that hearing aids and personal listening devices such as frequency modulation (FM) systems are ...

  12. Three-dimensional display of peripheral nerves in the wrist region based on MR diffusion tensor imaging and maximum intensity projection post-processing

    International Nuclear Information System (INIS)

    Highlights: • 3D displays of peripheral nerves can be achieved by 2 MIP post-processing methods. • The median nerves’ FA and ADC values can be accurately measured by using DTI6 data. • Adopting 6-direction DTI scan and MIP can evaluate peripheral nerves efficiently. - Abstract: Objectives: To achieve 3-dimensional (3D) display of peripheral nerves in the wrist region by using maximum intensity projection (MIP) post-processing methods to reconstruct raw images acquired by a diffusion tensor imaging (DTI) scan, and to explore its clinical applications. Methods: We performed DTI scans in 6 (DTI6) and 25 (DTI25) diffusion directions on 20 wrists of 10 healthy young volunteers, 6 wrists of 5 patients with carpal tunnel syndrome, 6 wrists of 6 patients with nerve lacerations, and one patient with neurofibroma. The MIP post-processing methods employed 2 types of DTI raw images: (1) single-direction and (2) T2-weighted trace. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the median and ulnar nerves were measured at multiple testing sites. Two radiologists used custom evaluation scales to assess the 3D nerve imaging quality independently. Results: In both DTI6 and DTI25, nerves in the wrist region could be displayed clearly by the 2 MIP post-processing methods. The FA and ADC values were not significantly different between DTI6 and DTI25, except for the FA values of the ulnar nerves at the level of pisiform bone (p = 0.03). As to the imaging quality of each MIP post-processing method, there were no significant differences between DTI6 and DTI25 (p > 0.05). The imaging quality of single-direction MIP post-processing was better than that from T2-weighted traces (p < 0.05) because of the higher nerve signal intensity. Conclusions: Three-dimensional displays of peripheral nerves in the wrist region can be achieved by MIP post-processing for single-direction images and T2-weighted trace images for both DTI6 and DTI25. The FA and ADC

  13. Three-dimensional display of peripheral nerves in the wrist region based on MR diffusion tensor imaging and maximum intensity projection post-processing

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wen Quan, E-mail: dingwenquan1982@163.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Zhou, Xue Jun, E-mail: zxj0925101@sina.com [Department of Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Tang, Jin Bo, E-mail: jinbotang@yahoo.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Gu, Jian Hui, E-mail: gujianhuint@163.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Jin, Dong Sheng, E-mail: jindongshengnj@aliyun.com [Department of Radiology, Jiangsu Province Official Hospital, Nanjing, Jiangsu (China)

    2015-06-15

    Highlights: • 3D displays of peripheral nerves can be achieved by 2 MIP post-processing methods. • The median nerves’ FA and ADC values can be accurately measured by using DTI6 data. • Adopting 6-direction DTI scan and MIP can evaluate peripheral nerves efficiently. - Abstract: Objectives: To achieve 3-dimensional (3D) display of peripheral nerves in the wrist region by using maximum intensity projection (MIP) post-processing methods to reconstruct raw images acquired by a diffusion tensor imaging (DTI) scan, and to explore its clinical applications. Methods: We performed DTI scans in 6 (DTI6) and 25 (DTI25) diffusion directions on 20 wrists of 10 healthy young volunteers, 6 wrists of 5 patients with carpal tunnel syndrome, 6 wrists of 6 patients with nerve lacerations, and one patient with neurofibroma. The MIP post-processing methods employed 2 types of DTI raw images: (1) single-direction and (2) T{sub 2}-weighted trace. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the median and ulnar nerves were measured at multiple testing sites. Two radiologists used custom evaluation scales to assess the 3D nerve imaging quality independently. Results: In both DTI6 and DTI25, nerves in the wrist region could be displayed clearly by the 2 MIP post-processing methods. The FA and ADC values were not significantly different between DTI6 and DTI25, except for the FA values of the ulnar nerves at the level of pisiform bone (p = 0.03). As to the imaging quality of each MIP post-processing method, there were no significant differences between DTI6 and DTI25 (p > 0.05). The imaging quality of single-direction MIP post-processing was better than that from T{sub 2}-weighted traces (p < 0.05) because of the higher nerve signal intensity. Conclusions: Three-dimensional displays of peripheral nerves in the wrist region can be achieved by MIP post-processing for single-direction images and T{sub 2}-weighted trace images for both DTI6 and DTI25

  14. Central auditory function of deafness genes.

    Science.gov (United States)

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  15. Nerve biopsy

    Science.gov (United States)

    Biopsy - nerve ... A nerve biopsy is most often done on a nerve in the ankle, forearm, or along a rib. The health care ... feel a prick and a mild sting. The biopsy site may be sore for a few days ...

  16. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James;

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory-nerve ...

  17. Acoustic Noise of MRI Scans of the Internal Auditory Canal and Potential for Intracochlear Physiological Changes

    CERN Document Server

    Busada, M A; Ibrahim, G; Huckans, J H

    2012-01-01

    Magnetic resonance imaging (MRI) is a widely used medical imaging technique to assess the health of the auditory (vestibulocochlear) nerve. A well known problem with MRI machines is that the acoustic noise they generate during a scan can cause auditory temporary threshold shifts (TTS) in humans. In addition, studies have shown that excessive noise in general can cause rapid physiological changes of constituents of the auditory within the cochlea. Here, we report in-situ measurements of the acoustic noise from a 1.5 Tesla MRI machine (GE Signa) during scans specific to auditory nerve assessment. The measured average and maximum noise levels corroborate earlier investigations where TTS occurred. We briefly discuss the potential for physiological changes to the intracochlear branches of the auditory nerve as well as iatrogenic misdiagnoses of intralabyrinthine and intracochlear schwannomas due to hypertrophe of the auditory nerve within the cochlea during MRI assessment.

  18. Brainstem Auditory Evoked Potentials Suggest a Role for the Ventral Cochlear Nucleus in Tinnitus

    OpenAIRE

    Gu, Jianwen Wendy; Herrmann, Barbara S.; Levine, Robert A.; Melcher, Jennifer R.

    2012-01-01

    Numerous studies have demonstrated elevated spontaneous and sound-evoked brainstem activity in animal models of tinnitus, but data on brainstem function in people with this common clinical condition are sparse. Here, auditory nerve and brainstem function in response to sound was assessed via auditory brainstem responses (ABR) in humans with tinnitus and without. Tinnitus subjects showed reduced wave I amplitude (indicating reduced auditory nerve activity) but enhanced wave V (reflecting eleva...

  19. Contribution of psychoacoustics and neuroaudiology in revealing correlation of mental disorders with central auditory processing disorders

    OpenAIRE

    Iliadou, V; Iakovides, S

    2003-01-01

    Background Psychoacoustics is a fascinating developing field concerned with the evaluation of the hearing sensation as an outcome of a sound or speech stimulus. Neuroaudiology with electrophysiologic testing, records the electrical activity of the auditory pathways, extending from the 8th cranial nerve up to the cortical auditory centers as a result of external auditory stimuli. Central Auditory Processing Disorders may co-exist with mental disorders and complicate diagnosis and outcome. Desi...

  20. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...... of sound as an active component in shaping urban environments. As urban conditions spreads globally, new scales, shapes and forms of communities appear and call for new distinctions and models in the study and representation of sonic environments. Particularly so, since urban environments are increasingly...... presents some terminologies for mapping urban environments through its sonic configuration. Such probing into the practices of acoustic territorialisation may direct attention to some of the conflicting and disharmonious interests defining public inclusive domains. The paper investigates the concept...

  1. The 12, 24, or is it 26 cranial nerves?

    OpenAIRE

    Welsby, P

    2004-01-01

    Many of our perceptions are gained through interpretative organs that we assume to be providing objective accounts. Notably, however, neither vision nor hearing provide an objective account of reality. This paper challenges the "conventional wisdoms" held regarding the optic, auditory, and hypoglossal nerves, and the nerves of eye movement.

  2. Auditory model inversion and its application

    Institute of Scientific and Technical Information of China (English)

    ZHAO Heming; WANG Yongqi; CHEN Xueqin

    2005-01-01

    Auditory model has been applied to several aspects of speech signal processing field, and appears to be effective in performance. This paper presents the inverse transform of each stage of one widely used auditory model. First of all it is necessary to invert correlogram and reconstruct phase information by repetitious iterations in order to get auditory-nerve firing rate. The next step is to obtain the negative parts of the signal via the reverse process of the HWR (Half Wave Rectification). Finally the functions of inner hair cell/synapse model and Gammatone filters have to be inverted. Thus the whole auditory model inversion has been achieved. An application of noisy speech enhancement based on auditory model inversion algorithm is proposed. Many experiments show that this method is effective in reducing noise.Especially when SNR of noisy speech is low it is more effective than other methods. Thus this auditory model inversion method given in this paper is applicable to speech enhancement field.

  3. 蜗神经管狭窄患者人工耳蜗植入术后听觉康复效果分析%An Analysis of the Auditory Rehabilitation Outcomes of Patients with Cochlear Nerve Canal Stenosis after Cochlear Implantation

    Institute of Scientific and Technical Information of China (English)

    王林娥; 李悦; 王伟; 张道行

    2014-01-01

    Objective To evaluate the auditory rehabilitation outcomes of profoundly sensorineural hearing-impaired patients with cochlear nerve canal stenosis after cochlear implantation. Methods The clinical data of 10 cases were analyzed including audiologic data, imaging findings, intraoperative neural responses and postoperative auditory performance. Results The auditory brainstem response, 40 Hz auditory event related potential and distortion product otoacoustic emissions (DPOAE) were absent before cochlear implantation in all the 10 cases. The temporal bone CT showed different degrees of cochlear nerve canal stenosis between the internal auditory canal and cochlear modiolus. The electrically evoked compound action potentials(ECAP)of auditory nerves can be elicited by 3 electrodes in 2 cases, 2 electrodes in 1 case and 1 electrode in 6 cases, but no ECAP waveform was observed in 1 case during surgery. The average vowel recognition rates of 8 patients 3 months,6 months,9 months,1 year and 2 years after cochlear implantation were 60.3%,60.4%,60.3%,60.2%and 60.2%,and the average consonant recognition rates were 19.0%,19,1%,19.1%,19.2% and 19.2%.The average vowel and consonant recognition rate of the 2 patients 3 months after cochlear implantation was 60.1% and 18.2%, respectively. Conclusion The 10 profoundly sensorineural hearing-impaired patients with cochlear nerve canal stenosis have no residual hearing before cochlear implantation and the intraoperative ECAPs can be evoked by only part of the electrodes. After cochlear implantation, the patients have poor auditory rehabilitation outcomes.%目的评估极重度感音神经性聋伴蜗神经管狭窄患者人工耳蜗植入术后的听觉康复效果。方法回顾分析10例极重度感音神经性聋伴蜗神经管狭窄患者的临床资料,包括听力学、影像学、术中神经反应测试及术后听觉康复效果评估结果。结果10例患者术耳人工耳蜗植入前听性脑干反应、40 Hz听觉事

  4. Spreading of hemiretinal projections in the ipsilateral tectum following unilateral enucleation: a study of optic nerve regeneration in Xenopus with one compound eye.

    Science.gov (United States)

    Straznicky, C; Tay, D

    1981-02-01

    Right compound eyes were formed in Xenopus embryos at stages 32-33 by the fusion of two nasal (NN), two ventral (VV) or two temporal (TT) halves. Shortly after metamorphosis the optic nerve from the compound eye was sectioned and the left intact eye removed. The retinotectal projections from the compound eye to the contralateral and ipsilateral tecta were studied by [3H]proline autoradiography and electrophysiological mapping between 6 weeks and 5 months after the postmetamorphic surgery. The results showed that NN and VV eyes projected to the entire extent of both tecta. In contrast, optic fibre projection from TT eyes, although more extensive than the normal temporal hemiretinal projection, failed to cover the caudomedial portion of the tecta. The visuotectal projections in all three combinations corresponded to typical reduplicated maps to be expected from such compound eyes, where each of the hemiretinae projected across the contralateral and ipsilateral tecta in an overlapping fashion. The rapid expansion of the hemiretinal projections of the compound eyes in the ipsilateral tectum following the removal of the resident optic fibre projection suggests that tectal markers may be carried and deployed by the incoming optic fibres themselves.

  5. Dendritic arbors and central projections of physiologically characterized auditory fibers from the saccule of the toadfish, Opsanus tau.

    Science.gov (United States)

    Edds-Walton, P L; Fay, R R; Highstein, S M

    1999-08-23

    Neurobiotin was injected iontophoretically into saccular afferents of toadfish (Opsanus tau) after intracellular recording to examine dendritic arbors and central projections with respect to the physiological and directional response properties of the cells. Dendritic arbors of 36 afferents were examined in detail. Maximum diameter of the arbor and the number of terminal points were positively correlated with each other, but neither was predictive of spontaneous activity or sensitivity. Best azimuths were centered around 30 degrees -40 degrees, which corresponds to the angle of the saccule with respect to the fish's midline. In general, best elevations for afferents corresponded to hair cell orientations in the region innervated; unexpectedly low elevations obtained from afferents innervating the middle saccule may reflect curvature of the sensory epithelium against the otolith. Three efferent cells were filled partially. The location and large size of the efferent projections indicate that activity along the saccule could be modulated by a single efferent. All afferents projected to the dorsal zone of the descending octaval nucleus (dDON); many afferents bifurcated to terminate in the anterior octaval nucleus, and a few of those also had terminal fields in the medial zone of DON. All afferent projections into the dDON consisted of multiple axon collaterals projecting to numerous sites along the rostral-caudal extent of the nucleus. Variation in terminal field sites also was noted in the medial to lateral axis of the dDON; however, there were no consistent correlations between terminal field locations, physiology, and best directions of the saccular afferents.

  6. 人工耳蜗植入前电刺激听神经复合动作电位检测方法的建立和初步应用%The Establishment and Application of Electrically Evoked Auditory Nerve Compound Action Potential Test Method before Cochlear Implantation

    Institute of Scientific and Technical Information of China (English)

    王斌; 曹克利; 魏朝刚; 王轶; 路远

    2012-01-01

    目的 建立术中利用探测电极施行电刺激听神经复合动作电位(electrically evoked auditory nerve compound active potentials,ECAP)检测的方法,在植入人工耳蜗装置前评估患者耳蜗听神经功能状况.方法 选择20例人工耳蜗植入患者,其中耳蜗形态发育正常12例,5例双侧前庭导水管扩大,3例双侧耳蜗Mondini畸形.测试完成后全部使用Cochlear人工耳蜗.全麻后常规人工耳蜗手术进路,行标准耳蜗鼓阶开窗,将自制测试用多通道试验电极置入鼓阶,电极连接Cochlear公司体外言语处理器及自制电刺激发生器,连接电脑,采用Custom Sound EP 2.0软件,调整优化刺激参数进行神经反应遥测(neural responsetelemetry,NRT)初步了解听神经功能状态;刺激强度以5 CL为步长递减或递增至反应阈值给予电刺激脉冲,同时自动记录ECAP波形和阈值.植入人工耳蜗后常规进行NRT检测,记录ECAP波形和阈值;术后1个月患者开机后采集T、C值,将两种电极测试所得阈值和开机C值进行相关性研究,并进行数据统计分析.结果 试验电极ECAP引出率为90%,商业电极ECAP引出率为90%,平均阈值分别为(160.50±15.12)CL和(160.00±11.27)CL,两者经统计学检验没有显著性差异(P>0.05);和开机后C值(177.40±10.61)有明显相关性(R2=0.844,r=0.919).结论 成功建立了术中植入人工耳蜗装置前的ECAP检测方法,为内耳和/或听觉通路发育异常及无残余听力患者提供有效的听神经反应信息,对了解听觉系统发育程度及初步预测术后患者康复情况提供客观依据.%Objective To establish an electrically evoked auditory nerve compound action potential (ECAP) test procedure in order to assess the auditory nerve functions before cochlear implantation. Methods Twenty cochlear implant patients were selected, including 12 subjects with normal cochlear structure, 5 subjects with bilateral enlarged vestibular aqueducts, 3 with bilateral Mondini

  7. Comparison of Auditory Evoked Potentials in Heterosexual, Homosexual, and Bisexual Males and Females

    OpenAIRE

    McFadden, Dennis; Champlin, Craig A.

    2000-01-01

    The auditory evoked potentials (AEPs) elicited by click stimuli were measured in heterosexual, homosexual, and bisexual males and females having normal hearing sensitivity. Estimates of latency and/or amplitude were extracted for nine peaks having latencies of about 2–240 ms, which are presumed to correspond to populations of neurons located from the auditory nerve through auditory cortex. For five of the 19 measures obtained, the mean latency or amplitude for the 57 homosexual and bisexual f...

  8. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    Directory of Open Access Journals (Sweden)

    Takashi eTateno

    2013-11-01

    Full Text Available To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number.

  9. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    Science.gov (United States)

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  10. 40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.

    Science.gov (United States)

    Ying, Jun; Yan, Zheng; Gao, Xiao-rong

    2013-10-01

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic. PMID:24142731

  11. Auditory imagery: empirical findings.

    Science.gov (United States)

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  12. Cochlear Responses and Auditory Brainstem Response Functions in Adults with Auditory Neuropathy/ Dys-Synchrony and Individuals with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-06-01

    Full Text Available Background and Aim: Physiologic measures of cochlear and auditory nerve function may be of assis¬tance in distinguishing between hearing disorders due primarily to auditory nerve impairment from those due primarily to cochlear hair cells dysfunction. The goal of present study was to measure of co-chlear responses (otoacoustic emissions and cochlear microphonics and auditory brainstem response in some adults with auditory neuropathy/ dys-synchrony and subjects with normal hearing. Materials and Methods: Patients were 16 adults (32 ears in age range of 14-30 years with auditory neu¬ropathy/ dys-synchrony and 16 individuals in age range of 16-30 years from both sexes. The results of transient otoacoustic emissions, cochlear microphonics and auditory brainstem response measures were compared in both groups and the effects of age, sex, ear and degree of hearing loss were studied. Results: The pure-tone average was 48.1 dB HL in auditory neuropathy/dys-synchrony group and the fre¬quency of low tone loss and flat audiograms were higher among other audiogram's shapes. Transient oto¬acoustic emissions were shown in all auditory neuropathy/dys-synchrony people except two cases and its average was near in both studied groups. The latency and amplitude of the biggest reversed co-chlear microphonics response were higher in auditory neuropathy/dys-synchrony patients than control peo¬ple significantly. The correlation between cochlear microphonics amplitude and degree of hearing loss was not significant, and age had significant effect in some cochlear microphonics measures. Audi-tory brainstem response had no response in auditory neuropathy/dys-synchrony patients even with low stim¬uli rates. Conclusion: In adults with speech understanding worsen than predicted from the degree of hearing loss that suspect to auditory neuropathy/ dys-synchrony, the frequency of low tone loss and flat audiograms are higher. Usually auditory brainstem response is absent in

  13. Cutaneous nerve entrapment syndrome

    Institute of Scientific and Technical Information of China (English)

    DongFuhui

    2004-01-01

    The cutaneous nerve entrapment syndrome is named that, the cutaneous nerve's functional disorder caused by some chronic entrapment, moreover appears a series of nerve's feeling obstacle,vegetative nerve function obstacle, nutrition obstacle, even motor function obstacle in various degree.

  14. Nerve biopsy (image)

    Science.gov (United States)

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  15. The central-peripheral transitional regions of cranial nerves. Trochlear and abducent nerves.

    OpenAIRE

    Fraher, J P; Smiddy, P F; O'Sullivan, V R

    1988-01-01

    Unlike all other nerves containing somatic efferent fibres, the trochlear nerve emerges from the dorsal aspect of the brainstem. It generally emerges as a single trunk which resembles a dorsal rather than a ventral spinal nerve rootlet in terms of its size and of the morphology and position of the central tissue projection which it contains. The morphology of the central-peripheral transition of the trochlear nerve is therefore correlated with its dorsal location rather than with the nature o...

  16. Development of Receiver Stimulator for Auditory Prosthesis

    Directory of Open Access Journals (Sweden)

    K. Raja Kumar

    2010-05-01

    Full Text Available The Auditory Prosthesis (AP is an electronic device that can provide hearing sensations to people who are profoundly deaf by stimulating the auditory nerve via an array of electrodes with an electric current allowing them to understand the speech. The AP system consists of two hardware functional units such as Body Worn Speech Processor (BWSP and Receiver Stimulator. The prototype model of Receiver Stimulator for Auditory Prosthesis (RSAP consists of Speech Data Decoder, DAC, ADC, constant current generator, electrode selection logic, switch matrix and simulated electrode resistance array. The laboratory model of speech processor is designed to implement the Continuous Interleaved Sampling (CIS speech processing algorithm which generates the information required for electrode stimulation based on the speech / audio data. Speech Data Decoder receives the encoded speech data via an inductive RF transcutaneous link from speech processor. Twelve channels of auditory Prosthesis with selectable eight electrodes for stimulation of simulated electrode resistance array are used for testing. The RSAP is validated by using the test data generated by the laboratory prototype of speech processor. The experimental results are obtained from specific speech/sound tests using a high-speed data acquisition system and found satisfactory.

  17. Transtympanic Facial Nerve Paralysis: A Review of the Literature.

    Science.gov (United States)

    Schaefer, Nathan; O'Donohue, Peter; French, Heath; Griffin, Aaron; Elliott, Devlin; Gochee, Peter

    2015-05-01

    Facial nerve paralysis because of penetrating trauma through the external auditory canal is extremely rare, with a paucity of published literature. The objective of this study is to review the literature on transtympanic facial nerve paralysis and increase physician awareness of this uncommon injury through discussion of its clinical presentation, management and prognosis. We also aim to improve patient outcomes in those that have sustained this type of injury by suggesting an optimal management plan. In this case report, we present the case of a 46-year-old white woman who sustained a unilateral facial nerve paresis because of a garfish penetrating her tympanic membrane and causing direct damage to the tympanic portion of her facial nerve. On follow-up after 12 months, her facial nerve function has largely returned to normal. Transtympanic facial nerve paralysis is a rare injury but can have a favorable prognosis if managed effectively.

  18. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  19. Tinnitus in vascular conflict of the eighth cranial nerve : a surgical pathophysiological approach to ABR changes

    NARCIS (Netherlands)

    De Ridder, Dirk; Heijneman, Karin; Haarman, Benno; van der Loo, Elsa; Langguth, B; Hajak, G; Kleinjung, T; Cacace, A; Moller, AR

    2007-01-01

    Some forms of tinnitus are associated with a blood vessel being in close contact with the auditory nerve near its entrance into the brainstem. The outcome of operations for tinnitus, moving the blood vessel off the nerve (microvascular decompression operations, MVD) is less successful than microvasc

  20. Distribution of Vesicular Glutamate Transporter 2 and Ionotropic Glutamate Receptors in the Auditory Ganglion and Cochlear Nuclei of Pigeons (Columba livia).

    Science.gov (United States)

    Karim, M R; Atoji, Y

    2016-02-01

    Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds.

  1. 多巴胺对豚鼠听觉传入神经的抑制作用及其频率选择性%Suppressive effect and its frequency selection of dopamine on the cochlear auditory afferent nerve activity in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    侯志强; 余力生; 李兴启; 刘军

    2008-01-01

    Objective To investigate the suppressive effect and its frequency selection of dopamine on the cochlear auditory afferent nerve activity. To offer an important step in understanding the modulation of dopamine in the inner cell synaptic complex. Methods Forty guinea pigs were randomly divided into four groups and the whole intracochlear perfusions were performed: (1) perfused with artificial perilymph solutions; (2) perfused with artifical perilymph solutions containing 10 mmol/L dopamine; (3) perfused with artificial perilymph solutions containing 30 mmol/L dopamine; (4) perfused with artifical perilymph solutions containing 50 mmol/L dopamine. Compound action potential (CAP)evoked by different frequencies (250 Hz,500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz, 16 000 Hz) and cochlear microphonics (CM) evoked by4000 Hz tone burst were recorded from the roud window of guinea pigs before perfusion and 1 hours, 2 hours after perfusions. Results There was no significant difference in CAP threshold before and after perfusion in the artificial perilymph solutions group (P > 0.05) . An increase of CAP threshold of most detecting frequencies were observed in the three dopamine-perfused groups(P 0.05);灌流多巴胺后大部分频率的CAP阈值提高,与灌流前相比差异具有统计学意义(P值均0.05).结论 多巴胺对豚鼠听觉传入神经具有抑制性作用,而对外毛细胞无影响;这种抑制作用具有频率选择性,对高频纤维的抑制作用较强,而对低频的抑制作用较弱.

  2. Corticotrigeminal projections from the insular cortex to the trigeminal caudal subnucleus regulate orofacial pain after nerve injury via extracellular signal-regulated kinase activation in insular cortex neurons

    Directory of Open Access Journals (Sweden)

    Jian eWang

    2015-12-01

    Full Text Available Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc, especially the superficial laminae (I/II, received direct descending projections from granular and dysgranular parts of the insular cortex (IC. Extracellular signal-regulated kinase (ERK, an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs and reduced the paired-pulse ratio (PPR of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These

  3. The management of cochlear nerve deficiency.

    Science.gov (United States)

    Freeman, S R; Stivaros, S M; Ramsden, R T; O'Driscoll, M P; Nichani, J R; Bruce, I A; Green, K M; Henderson, L A; Rutherford, S A; King, A T; Lloyd, S K

    2013-11-01

    The assessment process is critical in deciding whether a profoundly deaf child with cochlear nerve deficiency (CND) will be suitable for a cochlear or auditory brainstem implant (ABI). Magnetic resonance imaging (MRI) using submillimetric T2 weighted gradient echo or turbo spin echo sequences is mandatory for all profoundly deaf children to diagnose CND. Evidence of audition on behavioural or electrophysiological tests following both auditory and electrical stimulation sometimes allows identification of significant auditory tissue not visible on MRI. In particular electric auditory brainstem response (EABR) testing may allow some quantification of auditory tissue and help decide whether a cochlear implant will be beneficial. Age and cognitive development are the most critical factors in determining ABI benefit. Hearing outcomes from both cochlear implants and ABIs are variable and likely to be limited in children with CND. A proportion of children will get no benefit. Usually the implants would be expected to provide recognition of environmental sounds and understanding of simple phonetics. Most children will not develop normal speech and they will often need to learn to communicate with sign language. The ABI involves a major neurosurgical procedure and at present the long term outcomes are unknown. It is therefore essential that parents who are considering this intervention have plenty of time to consider all aspects and the opportunity for in depth discussion. PMID:24533760

  4. ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice.

    Science.gov (United States)

    Diaz-Horta, Oscar; Abad, Clemer; Sennaroglu, Levent; Foster, Joseph; DeSmidt, Alexandra; Bademci, Guney; Tokgoz-Yilmaz, Suna; Duman, Duygu; Cengiz, F Basak; Grati, M'hamed; Fitoz, Suat; Liu, Xue Z; Farooq, Amjad; Imtiaz, Faiqa; Currall, Benjamin B; Morton, Cynthia Casson; Nishita, Michiru; Minami, Yasuhiro; Lu, Zhongmin; Walz, Katherina; Tekin, Mustafa

    2016-05-24

    Hair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell-neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy. Via whole-exome sequencing, we identified a variant (c.2207G>C, p.R736T) in ROR1 (receptor tyrosine kinase-like orphan receptor 1), cosegregating with deafness in the family and absent in ethnicity-matched controls. ROR1 is a tyrosine kinase-like receptor localized at the plasma membrane. At the cellular level, the mutation prevents the protein from reaching the cellular membrane. In the presence of WNT5A, a known ROR1 ligand, the mutated ROR1 fails to activate NF-κB. Ror1 is expressed in the inner ear during development at embryonic and postnatal stages. We demonstrate that Ror1 mutant mice are severely deaf, with preserved otoacoustic emissions. Anatomically, mutant mice display malformed cochleae. Axons of spiral ganglion neurons show fasciculation defects. Type I neurons show impaired synapses with inner hair cells, and type II neurons display aberrant projections through the cochlear sensory epithelium. We conclude that Ror1 is crucial for spiral ganglion neurons to innervate auditory hair cells. Impairment of ROR1 function largely affects development of the inner ear and hearing in humans and mice. PMID:27162350

  5. Ramsay Hunt syndrome and zoster laryngitis with multiple cranial nerve involvement.

    Science.gov (United States)

    Shinha, Takashi; Krishna, Pasala

    2015-01-01

    Ramsay Hunt syndrome is characterized by varicella zoster virus infection affecting the geniculate ganglion of the facial nerve. It typically presents with vesicles in the external auditory canal associated with auricular pain and peripheral facial nerve paralysis. Although vestibulocochlear nerve is frequently co-involved during the course of Ramsay Hunt syndrome, multiple lower cranial nerve involvement has rarely been described in the literature. In addition, laryngitis due to varicella zoster virus is a diagnostic challenge due to its unfamiliarity among clinicians. We report a case of Ramsay Hunt syndrome with laryngitis involving multiple lower cranial nerves.

  6. Arnold’s nerve cough reflex: evidence for chronic cough as a sensory vagal neuropathy

    OpenAIRE

    Ryan, Nicole M; Gibson, Peter G; Birring, Surinder S.

    2014-01-01

    Arnold’s nerve ear-cough reflex is recognised to occur uncommonly in patients with chronic cough. In these patients, mechanical stimulation of the external auditory meatus can activate the auricular branch of the vagus nerve (Arnold’s nerve) and evoke reflex cough. This is an example of hypersensitivity of vagal afferent nerves, and there is now an increasing recognition that many cases of refractory or idiopathic cough may be due to a sensory neuropathy of the vagus nerve. We present two cas...

  7. Ramsay Hunt syndrome and zoster laryngitis with multiple cranial nerve involvement

    Directory of Open Access Journals (Sweden)

    Takashi Shinha

    2015-01-01

    Full Text Available Ramsay Hunt syndrome is characterized by varicella zoster virus infection affecting the geniculate ganglion of the facial nerve. It typically presents with vesicles in the external auditory canal associated with auricular pain and peripheral facial nerve paralysis. Although vestibulocochlear nerve is frequently co-involved during the course of Ramsay Hunt syndrome, multiple lower cranial nerve involvement has rarely been described in the literature. In addition, laryngitis due to varicella zoster virus is a diagnostic challenge due to its unfamiliarity among clinicians. We report a case of Ramsay Hunt syndrome with laryngitis involving multiple lower cranial nerves.

  8. Prospects for Replacement of Auditory Neurons by Stem Cells

    OpenAIRE

    Shi, Fuxin; Edge, Albert S. B.

    2013-01-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regene...

  9. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P stimulation (n = 5, P stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  10. Auditory Responses of Infants

    Science.gov (United States)

    Watrous, Betty Springer; And Others

    1975-01-01

    Forty infants, 3- to 12-months-old, participated in a study designed to differentiate the auditory response characteristics of normally developing infants in the age ranges 3 - 5 months, 6 - 8 months, and 9 - 12 months. (Author)

  11. Neural coding and perception of pitch in the normal and impaired human auditory system

    DEFF Research Database (Denmark)

    Santurette, Sébastien

    2011-01-01

    Pitch is an important attribute of hearing that allows us to perceive the musical quality of sounds. Besides music perception, pitch contributes to speech communication, auditory grouping, and perceptual segregation of sound sources. In this work, several aspects of pitch perception in humans were...... that the use of spectral cues remained plausible. Simulations of auditory-nerve representations of the complex tones further suggested that a spectrotemporal mechanism combining precise timing information across auditory channels might best account for the behavioral data. Overall, this work provides insights...

  12. Caution and Warning Alarm Design and Evaluation for NASA CEV Auditory Displays: SHFE Information Presentation Directed Research Project (DRPP) report 12.07

    Science.gov (United States)

    Begault, Durand R.; Godfroy, Martine; Sandor, Aniko; Holden, Kritina

    2008-01-01

    The design of caution-warning signals for NASA s Crew Exploration Vehicle (CEV) and other future spacecraft will be based on both best practices based on current research and evaluation of current alarms. A design approach is presented based upon cross-disciplinary examination of psychoacoustic research, human factors experience, aerospace practices, and acoustical engineering requirements. A listening test with thirteen participants was performed involving ranking and grading of current and newly developed caution-warning stimuli under three conditions: (1) alarm levels adjusted for compliance with ISO 7731, "Danger signals for work places - Auditory Danger Signals", (2) alarm levels adjusted to an overall 15 dBA s/n ratio and (3) simulated codec low-pass filtering. Questionnaire data yielded useful insights regarding cognitive associations with the sounds.

  13. Demonstration of prosthetic activation of central auditory pathways using ( sup 14 C)-2-deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D.A.; Niparko, J.K.; Altschuler, R.A.; Frey, K.A.; Miller, J.M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-02-01

    The cochlear prosthesis is not applicable to patients who lack an implantable cochlea or an intact vestibulocochlear nerve. Direct electrical stimulation of the cochlear nucleus (CN) of the brain stem might provide a method for auditory rehabilitation of these patients. A penetrating CN electrode has been developed and tissue tolerance to this device demonstrated. This study was undertaken to evaluate metabolic activation of central nervous system (CNS) auditory tracts produced by such implants. Regional cerebral glucose use resulting from CN stimulation was estimated in a series of chronically implanted guinea pigs with the use of ({sup 14}C)-2-deoxyglucose (2-DG). Enhanced 2-DG uptake was observed in structures of the auditory tract. The activation of central auditory structures achieved with CN stimulation was similar to that produced by acoustic stimulation and by electrical stimulation of the modiolar portion of the auditory nerve in control groups. An interesting banding pattern was observed in the inferior colliculus following CN stimulation, as previously described with acoustic stimulation. This study demonstrates that functional metabolic activation of central auditory pathways can be achieved with a penetrating CNS auditory prosthesis.

  14. Auditory Neural Prostheses – A Window to the Future

    Directory of Open Access Journals (Sweden)

    Mohan Kameshwaran

    2015-06-01

    Full Text Available Hearing loss is one of the commonest congenital anomalies to affect children world-over. The incidence of congenital hearing loss is more pronounced in developing countries like the Indian sub-continent, especially with the problems of consanguinity. Hearing loss is a double tragedy, as it leads to not only deafness but also language deprivation. However, hearing loss is the only truly remediable handicap, due to remarkable advances in biomedical engineering and surgical techniques. Auditory neural prostheses help to augment or restore hearing by integration of an external circuitry with the peripheral hearing apparatus and the central circuitry of the brain. A cochlear implant (CI is a surgically implantable device that helps restore hearing in patients with severe-profound hearing loss, unresponsive to amplification by conventional hearing aids. CIs are electronic devices designed to detect mechanical sound energy and convert it into electrical signals that can be delivered to the coch­lear nerve, bypassing the damaged hair cells of the coch­lea. The only true prerequisite is an intact auditory nerve. The emphasis is on implantation as early as possible to maximize speech understanding and perception. Bilateral CI has significant benefits which include improved speech perception in noisy environments and improved sound localization. Presently, the indications for CI have widened and these expanded indications for implantation are related to age, additional handicaps, residual hearing, and special etiologies of deafness. Combined electric and acoustic stimulation (EAS / hybrid device is designed for individuals with binaural low-frequency hearing and severe-to-profound high-frequency hearing loss. Auditory brainstem implantation (ABI is a safe and effective means of hearing rehabilitation in patients with retrocochlear disorders, such as neurofibromatosis type 2 (NF2 or congenital cochlear nerve aplasia, wherein the cochlear nerve is damaged

  15. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  16. The significance of a hypoplastic bony canal for the cochlear nerve in patients with sensorineural hearing loss: CT and MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung; Park, Sang Yoo; Kim, Myung Soon; Sung, Ki Jun [College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2004-04-01

    The purpose of this study is to evaluate the significance of the hypoplastic canal for the cochlear nerve in patients with sensorineural hearing loss (SNHL) and the relationship between the hypoplastic bony canal and aplasia or hypoplasia of the cochlear nerve. A retrospective review of high resolution temporal CT(HRCT) and MRI findings was conducted. The narrow bony canal of the cochlear nerve and the relative size of the internal auditory canal were correlated with the cochlear nerve deficiency on MRI. The comparative size of the component nerves (facial, cochlear, superior vestibular, inferior vestibular nerve), and the relative size of the internal auditory canal and the bony canal of the cochlear nerve were measured. The clinical history and the results of the clinical examination were reviewed for each patient. High resolution MRI showed aplasia of the common vestibulocochlear nerve in one patient and a deficiency of the cochlear nerve in 9 patients. These abnormalities occurred in association with a prominent narrowing of the canal for the cochlear nerve and a stenosis of the internal auditory canal, which was observed on temporal bone CT in 9 patients with congenital SNHL. Three patients had normal IAC, despite the presence of a hypoplastic cochlear nerve on the side on which they had SNHL. In one patient, the narrowing of the canal for the cochlear nerve and internal auditory canal were not found to be associated with acquired SNHL. The hypoplastic bony canal for the cochlear nerve might be more highly indicative of congenital cochlear nerve deficiency than that of the narrow internal auditory canal, and the position of the crista falciformis should also be carefully.

  17. Prospects for replacement of auditory neurons by stem cells.

    Science.gov (United States)

    Shi, Fuxin; Edge, Albert S B

    2013-03-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457

  18. Binaural technology for e.g. rendering auditory virtual environments

    DEFF Research Database (Denmark)

    Hammershøi, Dorte

    2008-01-01

    Jens Blauert's research up through the late 60ties and later, pioneered the field of binaural technology and auditory virtual environments. He mastered the measurement of head-related transfer functions (HRTFs) before the term was introduced, and his methods were standard for decades. While most......, helped mediate the understanding that if the transfer functions could be mastered, then important dimensions of the auditory percept could also be controlled. He early understood the potential of using the HRTFs and numerical sound transmission analysis programs for rendering auditory virtual...... environments. Jens Blauert participated in many European cooperation projects exploring  this field (and others), among other the SCATIS project addressing the auditory-tactile dimensions in the absence of visual information....

  19. Characteristics of brainstem auditory evoked potentials of students studying folk dance

    Institute of Scientific and Technical Information of China (English)

    Yunxiang Li; Yuzhen Zhu

    2008-01-01

    BACKGROUND:Previous experiments have demonstrated that brainstem auditory evoked potential is affected by exercise,exercise duration,and frequency. OBJECTIVE:Comparing the brainstem auditory evoked potential of students studying folk dance to students studying other subjects.DESIGN:Observational contrast study. SETTING:Physical Education College,Shandong Normal University PARTICIPANTS:Fifty-five female students were enrolled at Shandong Normal University between September and December in 2005,including 21 students that studied folk dance and 34 students that studied other subjects.The age of the folk dance students averaged(19±1)years and dance training length was(6.0 ±1.5)years.The students that studied other subjects had never taken part in dance training or other physical training,and their age averaged(22±1)years,body height averaged(162±5)cm,body mass averaged(51 ±6)kg.All subjects had no prior ear disease or history of other neurological disorders.All students provided informed consent for the experimental project. METHODS:The neural electricity tester,NDI-200(Shanghai Poseidon Medical Electronic Instrument Factory)was used to examine and record Brainstem Auditory Evoked Potential values of the subjects during silence,as well as to transversally analyze the Brainstem Auditory Evoked Potential values.The electrode positions were cleaned and degreased with soapy water,followed by ethanol.The selected bipolar electrodes were situated on the head:recording electrodes were placed at the Baihui acupoint,and the reference electrode was placed at the mastoid of the measured ear,with grounding electrodes in the center of the forehead.Brainstem Auditory Evoked Potential values were elicited by monaural stimulation of a "click" though an earphone; the other ear was sheltered by the white noise.The click intensity was 102 db,the stimulation frequency was 30 Hz,the bandpass filters were 1 000-3 000 Hz,the sensitivity was 5 μV,and a total of 2 000 sweeps were

  20. Regeneration of the auditory nerve - a cell transplantation study

    OpenAIRE

    Palmgren, Björn

    2011-01-01

    Since in mammals, the hair cells or the spiral ganglion neurons (SGNs) in the inner ear do not regenerate, damage to these cells is an irreversible process. Presently the only aid for patients with severe to profound hearing impairment due to damaged hair cells is a cochlear implant (CI). A CI converts sound to electrical signals that stimulate the SGNs via an electrode that is implanted into the cochlea. Hence, for a successful outcome the CI is dependant on the activation ...

  1. The neglected neglect: auditory neglect.

    Science.gov (United States)

    Gokhale, Sankalp; Lahoti, Sourabh; Caplan, Louis R

    2013-08-01

    Whereas visual and somatosensory forms of neglect are commonly recognized by clinicians, auditory neglect is often not assessed and therefore neglected. The auditory cortical processing system can be functionally classified into 2 distinct pathways. These 2 distinct functional pathways deal with recognition of sound ("what" pathway) and the directional attributes of the sound ("where" pathway). Lesions of higher auditory pathways produce distinct clinical features. Clinical bedside evaluation of auditory neglect is often difficult because of coexisting neurological deficits and the binaural nature of auditory inputs. In addition, auditory neglect and auditory extinction may show varying degrees of overlap, which makes the assessment even harder. Shielding one ear from the other as well as separating the ear from space is therefore critical for accurate assessment of auditory neglect. This can be achieved by use of specialized auditory tests (dichotic tasks and sound localization tests) for accurate interpretation of deficits. Herein, we have reviewed auditory neglect with an emphasis on the functional anatomy, clinical evaluation, and basic principles of specialized auditory tests.

  2. Gd-DTPA enhancement of the facial nerve in Ramsay Hunt's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tsutomu; Yanagida, Masahiro; Yamauchi, Yasuo (Kansai Medical School, Moriguchi, Osaka (Japan)) (and others)

    1992-10-01

    A total of 21 MR images in 16 Ramsay Hunt's syndrome were evaluated. In all images, the involved side of peripheral facial nerve were enhanced in intensity after Gd-DTPA. However, 2 cases had recovered facial palsy when MR images were taken. Nine of 19 cases with the enhancement of internal auditory canal portion had vertigo or tinnitus. Thus, it was suggested that the enhancement of internal auditory canal portion and clinical feature are closely related. (author).

  3. Nerve conduction velocity

    Science.gov (United States)

    ... to measure the speed of the nerve signals. Electromyography (recording from needles placed into the muscles) is ... Often, the nerve conduction test is followed by electromyography (EMG). In this test, needles are placed into ...

  4. Common peroneal nerve dysfunction

    Science.gov (United States)

    ... toe-out movements Tests of nerve activity include: Electromyography (EMG, a test of electrical activity in muscles) Nerve ... Peroneal neuropathy. In: Preston DC, Shapiro BE, eds. Electromyography and Neuromuscular Disorders . 3rd ed. Philadelphia, PA: Elsevier; ...

  5. Visual–auditory spatial processing in auditory cortical neurons

    OpenAIRE

    Bizley, Jennifer K.; King, Andrew J

    2008-01-01

    Neurons responsive to visual stimulation have now been described in the auditory cortex of various species, but their functions are largely unknown. Here we investigate the auditory and visual spatial sensitivity of neurons recorded in 5 different primary and non-primary auditory cortical areas of the ferret. We quantified the spatial tuning of neurons by measuring the responses to stimuli presented across a range of azimuthal positions and calculating the mutual information (MI) between the ...

  6. Optic Nerve Pit

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  7. Identifying the Threshold of Iron Deficiency in the Central Nervous System of the Rat by the Auditory Brainstem Response

    OpenAIRE

    Greminger, Allison R.; Mayer-Pröschel, Margot

    2015-01-01

    The deleterious effects of anemia on auditory nerve (AN) development have been well investigated; however, we have previously reported that significant functional consequences in the auditory brainstem response (ABR) can also occur as a consequence of marginal iron deficiency (ID). As the ABR has widespread clinical use, we evaluated the ability of this electrophysiological method to characterize the threshold of tissue ID in rats by examining the relationship between markers of tissue ID and...

  8. Subcortical neural coding mechanisms for auditory temporal processing.

    Science.gov (United States)

    Frisina, R D

    2001-08-01

    Biologically relevant sounds such as speech, animal vocalizations and music have distinguishing temporal features that are utilized for effective auditory perception. Common temporal features include sound envelope fluctuations, often modeled in the laboratory by amplitude modulation (AM), and starts and stops in ongoing sounds, which are frequently approximated by hearing researchers as gaps between two sounds or are investigated in forward masking experiments. The auditory system has evolved many neural processing mechanisms for encoding important temporal features of sound. Due to rapid progress made in the field of auditory neuroscience in the past three decades, it is not possible to review all progress in this field in a single article. The goal of the present report is to focus on single-unit mechanisms in the mammalian brainstem auditory system for encoding AM and gaps as illustrative examples of how the system encodes key temporal features of sound. This report, following a systems analysis approach, starts with findings in the auditory nerve and proceeds centrally through the cochlear nucleus, superior olivary complex and inferior colliculus. Some general principles can be seen when reviewing this entire field. For example, as one ascends the central auditory system, a neural encoding shift occurs. An emphasis on synchronous responses for temporal coding exists in the auditory periphery, and more reliance on rate coding occurs as one moves centrally. In addition, for AM, modulation transfer functions become more bandpass as the sound level of the signal is raised, but become more lowpass in shape as background noise is added. In many cases, AM coding can actually increase in the presence of background noise. For gap processing or forward masking, coding for gaps changes from a decrease in spike firing rate for neurons of the peripheral auditory system that have sustained response patterns, to an increase in firing rate for more central neurons with

  9. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;

    2005-01-01

    at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen......-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...

  10. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;

    2005-01-01

    at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human......The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen...

  11. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole. PMID:20881120

  12. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mec

  13. Auditory hair cell innervational patterns in lizards.

    Science.gov (United States)

    Miller, M R; Beck, J

    1988-05-22

    The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions. PMID:3385019

  14. Imaging the trigeminal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093, Lisboa (Portugal)], E-mail: borgalexandra@gmail.com; Casselman, Jan [Department of Radiology, A. Z. St Jan Brugge and A. Z. St Augustinus Antwerpen Hospitals (Belgium)

    2010-05-15

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  15. Imaging the trigeminal nerve

    International Nuclear Information System (INIS)

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  16. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus.

    Science.gov (United States)

    Pfister, Alexandra; Johnson, Amy; Ellers, Olaf; Horch, Hadley W

    2013-01-01

    Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  17. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Alexandra ePfister

    2013-08-01

    Full Text Available Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2 send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5. Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 hours, as well as at 3, 5, 7, 14 and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  18. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  19. The Perception of Auditory Motion.

    Science.gov (United States)

    Carlile, Simon; Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  20. Facial Nerve Neuroma Management

    OpenAIRE

    Weber, Peter C; Osguthorpe, J. David

    1998-01-01

    Three facial nerve neuromas were identified in the academic year 1994-1995. Each case illustrates different management dilemmas. One patient with a grade III facial nerve palsy had a small geniculate ganglion neuroma with the dilemma of decompression versus resection clear nerve section margins. The second patient underwent facial neuroma resection with cable graft reconstruction, but the permanent sections were positive. The last patient had a massive neuroma in which grafting versus other f...

  1. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  2. Cystic adenoid carcinoma of the external auditory meatus with mastoid involvement

    Directory of Open Access Journals (Sweden)

    Tinoco, Paulo

    2009-06-01

    Full Text Available Introduction: The cystic adenoid carcinoma (CAC in the external auditory meatus is rare and was originated in the ceruminous glands. It is manifested by otalgia in about 90% of the patients. Case Report: In this article we report the case of a patient with Cystic Adenoid Carcinoma of the external auditory meatus with mastoid involvement that presented peripheral facial paralysis. The treatment is essentially surgical, combined or not with postoperative radiotherapy. The factors of bad prognosis are the tumor expansion, facial nerve and middle ear invasion and lymph node affection, which diminish the survival in five years from 59% to 23%.

  3. Comparison of cochlear delay estimates using otoacoustic emissions and auditory brainstem responses

    DEFF Research Database (Denmark)

    Harte, James; Pigasse, Gilles; Dau, Torsten

    2009-01-01

    Different attempts have been made to directly measure frequency specific basilar membrane (BM) delays in animals, e.g., laser velocimetry of BM vibrations and auditory nerve fiber recordings. The present study uses otoacoustic emissions (OAEs) and auditory brainstem responses (ABRs) to estimate B...... and synaptic delays. This allows a comparison between individual OAE and BM delays over a large frequency range in the same subjects, and offers support to the theory that OAEs are reflected from a tonotopic place and carried back to the cochlear base via a reverse traveling wave....

  4. Brain mass and cranial nerve size in shrews and moles.

    Science.gov (United States)

    Leitch, Duncan B; Sarko, Diana K; Catania, Kenneth C

    2014-09-01

    We investigated the relationship between body size, brain size, and fibers in selected cranial nerves in shrews and moles. Species include tiny masked shrews (S. cinereus) weighing only a few grams and much larger mole species weighing up to 90 grams. It also includes closely related species with very different sensory specializations - such as the star-nosed mole and the common, eastern mole. We found that moles and shrews have tiny optic nerves with fiber counts not correlated with body or brain size. Auditory nerves were similarly small but increased in fiber number with increasing brain and body size. Trigeminal nerve number was by far the largest and also increased with increasing brain and body size. The star-nosed mole was an outlier, with more than twice the number of trigeminal nerve fibers than any other species. Despite this hypertrophied cranial nerve, star-nosed mole brains were not larger than predicted from body size, suggesting that magnification of their somatosensory systems does not result in greater overall CNS size.

  5. In vitro classical conditioning of abducens nerve discharge in turtles.

    Science.gov (United States)

    Keifer, J; Armstrong, K E; Houk, J C

    1995-07-01

    In vitro classical conditioning of abducens nerve activity was performed using an isolated turtle brainstem-cerebellum preparation by direct stimulation of the cranial nerves. Using a delayed training procedure, the in vitro preparation was presented with paired stimuli consisting of a 1 sec train stimulus applied to the auditory nerve (CS), which immediately preceded a single shock US applied to the trigeminal nerve. Conditioned and unconditioned responses were recorded in the ipsilateral abducens nerve. Acquisition exhibited a positive slope of conditioned responding in 60% of the preparations. Application of unpaired stimuli consisting of CS-alone, alternate CS and US, or backward conditioning failed to result in conditioning, or resulted in extinction of CRs. Latencies of CR onset were timed such that they occurred midway through the CS. Activity-dependent uptake of the dye sulforhodamine was used to examine the spatial distribution of neurons labeled during conditioning. These data showed label in the cerebellum and red nucleus during conditioning whereas these regions failed to label during unconditioned responses. Furthermore, the principal abducens nucleus labeled heavily during conditioning. These findings suggest the feasibility of examining classical conditioning in a vertebrate in vitro brainstem-cerebellum preparation. It is postulated that the abducens nerve CR represents a behavioral correlate of a blink-related eye movement. Multiple sites of conditioning are hypothesized, including the cerebellorubral circuitry and brainstem pathways that activate the principal abducens nucleus.

  6. The Influence of Antral Ulcers on Intramural Gastric Nerve Projections Supplying the Pyloric Sphincter in the Pig (Sus scrofa domestica-Neuronal Tracing Studies.

    Directory of Open Access Journals (Sweden)

    Michal Zalecki

    Full Text Available Gastric ulcerations in the region of antrum pylori represent a serious medical problem in humans and animals. Such localization of ulcers can influence the intrinsic descending nerve supply to the pyloric sphincter. The pyloric function is precisely regulated by intrinsic and extrinsic nerves. Impaired neural regulation could result in pyloric sphincter dysfunction and gastric emptying malfunction. The aim of the study was to determine the effect of gastric antral ulcerations on the density and distribution of intramural gastric descending neurons supplying the pyloric sphincter in pigs.The experiment was performed on 2 groups of pigs: healthy gilts (n=6 and gilts with experimentally induced peptic ulcers in the region of antrum pylori (n=6. Gastric neurons supplying pyloric sphincter were labeled using the retrograde neuronal tracing technique (20μl of Fast Blue tracer injected into the pyloric sphincter muscle. After a week survival period the animals were sacrificed and the stomachs were collected. Then, the stomach wall was cross-cut into 0.5cm thick sections taken in specified intervals (section I - 1.5cm; section II - 3.5cm; section III - 5.5cm; section IV - 7.5cm starting from the sphincter. Consecutive microscopic slices prepared from each section were analyzed under fluorescent microscope to count traced neurons. Obtained data were statistically analyzed. The total number of FB-positive perikarya observed within all studied sections significantly decreased from 903.3 ± 130.7 in control to 243.8 ± 67.3 in experimental animals. In healthy pigs 76.1 ± 6.7% of labeled neurons were observed within the section I, 23.53 ± 6.5% in section II and only occasional cells in section III. In experimental animals, as many as 93.8 ± 2.1% of labeled cells were observed within the section I and only 6.2 ± 2.2% in section II, while section III was devoid of such neurons. There were no traced perikarya in section IV observed in both groups of pigs

  7. Peripheral nerve disease

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920745 Experimental reconstruction of in-trinsic hand muscle function by anteriorinterosseous nerve transference. HUANGGang(黄钢), et al. Dept Orthopaedics, GeneralHosp, PLA, Beijing, 100853. Natl, Med J Chin1992; 72(5): 269-272. The anterior interosseous nerve was transferred

  8. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26541581

  9. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  10. Tactile feedback improves auditory spatial localization

    OpenAIRE

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds b...

  11. Tactile feedback improves auditory spatial localization

    OpenAIRE

    Monica eGori; Tiziana eVercillo; Giulio eSandini; David eBurr

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds b...

  12. Biological and artificial nerve conduit for repairing peripheral nerve defect

    Institute of Scientific and Technical Information of China (English)

    Xuetao Xie; Changqing Zhang

    2006-01-01

    OBJECTIVE: Recently, with the development of biological and artificial materials, the experimental and clinical studies on application of this new material-type nerve conduit for treatment of peripheral nerve defect have become the hotspot topics for professorial physicians.DATA SOURCES: Using the terms "nerve conduits, peripheral nerve, nerve regeneration and nerve transplantation" in English, we searched Pubmed database, which was published during January 2000 to June 2006, for the literatures related to repairing peripheral nerve defect with various materials. At the same time, we also searched Chinese Technical Scientific Periodical Database at the same time period by inputting" peripheral nerve defect, nerve repair, nerve regeneration and nerve graft" in Chinese.STUDY SELECTION: The materials were firstly selected, and literatures about study on various materials for repairing peripheral nerve defect and their full texts were also searched. Inclusive criteria: nerve conduits related animal experiments and clinical studies. Exclusive criteria: review or repetitive studies.DATA EXTRACTION: Seventy-nine relevant literatures were collected and 30 of them met inclusive criteria and were cited.DATA SYNTHESTS: Peripheral nerve defect, a commonly seen problem in clinic, is difficult to be solved. Autogenous nerve grafting is still the gold standard for repairing peripheral nerve defect, but because of its application limitation and possible complications, people studied nerve conduits to repair nerve defect. Nerve conduits consist of biological and artificial materials.CONCLUSION: There have been numerous reports about animal experimental and clinical studies of various nerve conduits, but nerve conduit, which is more ideal than autogenous nerve grafting, needs further clinical observation and investigation.

  13. Malignant otitis externa with bilateral cranial nerve involvement: Report of a unique case

    Directory of Open Access Journals (Sweden)

    Somnath Saha

    2013-01-01

    Full Text Available Malignant otitis externa is an inflammatory condition caused by pseudomonas infection usually in the elderly diabetics, or an immunosuppressive condition that presents with diffuse otitis externa along with excruciating pain and granulations tissue in the external auditory meatus. Facial paralysis is common along with occasional involvement of other cranial nerves. Case report describing a patient of malignant otitis externa who presented to a tertiary referral hospital of eastern India. This patient had ipsilateral facial and tenth cranial nerve paralysis along with delayed-onset contralateral sixth and twelfth cranial nerve palsy. The patient was treated initially with intravenous anti-pseudomonal antibody followed by tympanic platectomy, facial nerve decompression and medialisation thyroplasty. The contralateral cranial nerve palsy was managed conservatively with partial recovery of function. Malignant otitis externa, though a common disease, may occasionally present with uncommon or unexplained presentations. The management of these cases should be prompt and aggressive and specifically address each of the debilitating complications.

  14. The impact of severity of hypertension on auditory brainstem responses

    Directory of Open Access Journals (Sweden)

    Gurdev Lal Goyal

    2014-07-01

    Full Text Available Background: Auditory brainstem response is an objective electrophysiological method for assessing the auditory pathways from the auditory nerve to the brainstem. The aim of this study was to correlate and to assess the degree of involvement of peripheral and central regions of brainstem auditory pathways with increasing severity of hypertension, among the patients of essential hypertension. Method: This study was conducted on 50 healthy age and sex matched controls (Group I and 50 hypertensive patients (Group II. Later group was further sub-divided into - Group IIa (Grade 1 hypertension, Group IIb (Grade 2 hypertension, and Group IIc (Grade 3 hypertension, as per WHO guidelines. These responses/potentials were recorded by using electroencephalogram electrodes on a root-mean-square electromyography, EP MARC II (PC-based machine and data were statistically compared between the various groups by way of one-way ANOVA. The parameters used for analysis were the absolute latencies of Waves I through V, interpeak latencies (IPLs and amplitude ratio of Wave V/I. Result: The absolute latency of Wave I was observed to be significantly increased in Group IIa and IIb hypertensives, while Wave V absolute latency was highly significantly prolonged among Group IIb and IIc, as compared to that of normal control group. All the hypertensives, that is, Group IIa, IIb, and IIc patients were found to have highly significant prolonged III-V IPL as compared to that of normal healthy controls. Further, intergroup comparison among hypertensive patients revealed a significant prolongation of Wave V absolute latency and III-V IPL in Group IIb and IIc patients as compared to Group IIa patients. These findings suggest a sensory deficit along with synaptic delays, across the auditory pathways in all the hypertensives, the deficit being more markedly affecting the auditory processing time at pons to midbrain (IPL III-V region of auditory pathways among Grade 2 and 3

  15. Auditory Processing Disorder in Children

    Science.gov (United States)

    ... free publications Find organizations Related Topics Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick ... NIH… Turning Discovery Into Health ® National Institute on Deafness and Other Communication Disorders 31 Center Drive, MSC ...

  16. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... and school. A positive, realistic attitude and healthy self-esteem in a child with APD can work wonders. And kids with APD can go on to ... Parents MORE ON THIS TOPIC Auditory Processing Disorder Special ...

  17. Animal models of spontaneous activity in the healthy and impaired auditory system

    Directory of Open Access Journals (Sweden)

    Jos J Eggermont

    2015-04-01

    Full Text Available Spontaneous neural activity in the auditory nerve fibers and in auditory cortex in healthy animals is discussed with respect to the question: Is spontaneous activity noise or information carrier? The studies reviewed suggest strongly that spontaneous activity is a carrier of information. Subsequently, I review the numerous findings in the impaired auditory system, particularly with reference to noise trauma and tinnitus. Here the common assumption is that tinnitus reflects increased noise in the auditory system that among others affects temporal processing and interferes with the gap-startle reflex, which is frequently used as a behavioral assay for tinnitus. It is, however, more likely that the increased spontaneous activity in tinnitus, firing rate as well as neural synchrony, carries information that shapes the activity of downstream structures, including non-auditory ones, and leading to the tinnitus percept. The main drivers of that process are bursting and synchronous firing, which facilitates transfer of activity across synapses, and allows formation of auditory objects, such as tinnitus

  18. Improving Hearing Performance Using Natural Auditory Coding Strategies

    Science.gov (United States)

    Rattay, Frank

    Sound transfer from the human ear to the brain is based on three quite different neural coding principles when the continuous temporal auditory source signal is sent as binary code in excellent quality via 30,000 nerve fibers per ear. Cochlear implants are well-accepted neural prostheses for people with sensory hearing loss, but currently the devices are inspired only by the tonotopic principle. According to this principle, every sound frequency is mapped to a specific place along the cochlea. By electrical stimulation, the frequency content of the acoustic signal is distributed via few contacts of the prosthesis to corresponding places and generates spikes there. In contrast to the natural situation, the artificially evoked information content in the auditory nerve is quite poor, especially because the richness of the temporal fine structure of the neural pattern is replaced by a firing pattern that is strongly synchronized with an artificial cycle duration. Improvement in hearing performance is expected by involving more of the ingenious strategies developed during evolution.

  19. Modeling mechanisms that contribute to the precedence effect: From auditory periphery to midbrain

    Science.gov (United States)

    Xia, Jing

    The precedence effect (PE) describes a perceptual phenomenon whereby a pair of temporally close clicks from different directions is perceived as coming from a location near that of the first-arriving sound. The objective of this thesis is to build a physiologically plausible model that predicts perceptual aspects of the PE. The project explores different mechanisms that may contribute to the PE at different levels of the auditory system. The roles of peripheral processing and frequency dominance on the PE were explored by modeling the auditory nerve fiber and using a binaural, cross-correlation model whose outputs were weighted across frequency to predict perceived location. New behavioral results confirmed model predictions that (1) lateralization of narrowband clicks is strongly influenced by the stimulus center frequency and the inter-stimulus delay (ISD) between leading and lagging clicks, and (2) decrements in the leading click level influence lateralization of wideband clicks differently at different ISDs. The role of adaptation was explored by modeling neurons in the cochlear nucleus and the medial superior olive (MSO), both of which are important in computing the localization cues of the auditory stimuli. Simulation results indicated that low-threshold potassium currents (a form of fast adaptation) can prevent jittery, subthreshold inputs from accumulating, thus enhancing synchronization. Synaptic depression (a form of slow adaptation) can produce a sustained decline of the responses after accurately encoding the stimulus onset. The role of long-lasting inhibition was explored by modeling inferior colliculus neurons with inhibitory inputs from both ipsilateral and contralateral MSOs. Psychophysical predictions were generated from a population of model neurons. The model simulated how the physiological suppression of the lagging response depends on the ISD and relative lead and lag locations, as well as behavioral results showing that the perceived location

  20. Neurophysiological approach to disorders of peripheral nerve

    DEFF Research Database (Denmark)

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves...

  1. A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem

    OpenAIRE

    MacLeod, Katrina M.; Horiuchi, Timothy K.

    2011-01-01

    Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for ...

  2. Radial Nerve Tendon Transfers.

    Science.gov (United States)

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  3. Changes in nerve microcirculation following peripheral nerve compression

    Institute of Scientific and Technical Information of China (English)

    Yueming Gao; Changshui Weng; Xinglin Wang

    2013-01-01

    Following peripheral nerve compression, peripheral nerve microcirculation plays important roles in regulating the nerve microenvironment and neurotrophic substances, supplying blood and oxygen and maintaining neural conduction and axonal transport. This paper has retrospectively analyzed the articles published in the past 10 years that addressed the relationship between peripheral nerve compression and changes in intraneural microcirculation. In addition, we describe changes in different peripheral nerves, with the aim of providing help for further studies in peripheral nerve microcirculation and understanding its protective mechanism, and exploring new clinical methods for treating peripheral nerve compression from the perspective of neural microcirculation.

  4. Neural interactions in unilateral colliculus and between bilateral colliculi modulate auditory signal processing

    Science.gov (United States)

    Mei, Hui-Xian; Cheng, Liang; Chen, Qi-Cai

    2013-01-01

    In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral integration of auditory information. There are widespread neural interactions in unilateral (one) IC and between bilateral (two) ICs that could modulate auditory signal processing such as the amplitude and frequency selectivity of IC neurons. These neural interactions are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA) and glutamate, respectively. However, the majority of interactions are inhibitory while excitatory interactions are in the minority. Such unbalanced properties between excitatory and inhibitory projections have an important role in the formation of unilateral auditory dominance and sound location, and the neural interaction in one IC and between two ICs provide an adjustable and plastic modulation pattern for auditory signal processing. PMID:23626523

  5. Neural interactions in unilateral colliculus and between bilateral colliculi modulate auditory signal processing.

    Science.gov (United States)

    Mei, Hui-Xian; Cheng, Liang; Chen, Qi-Cai

    2013-01-01

    In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral integration of auditory information. There are widespread neural interactions in unilateral (one) IC and between bilateral (two) ICs that could modulate auditory signal processing such as the amplitude and frequency selectivity of IC neurons. These neural interactions are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA) and glutamate, respectively. However, the majority of interactions are inhibitory while excitatory interactions are in the minority. Such unbalanced properties between excitatory and inhibitory projections have an important role in the formation of unilateral auditory dominance and sound location, and the neural interaction in one IC and between two ICs provide an adjustable and plastic modulation pattern for auditory signal processing.

  6. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    Science.gov (United States)

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893

  7. Psychology of auditory perception.

    Science.gov (United States)

    Lotto, Andrew; Holt, Lori

    2011-09-01

    Audition is often treated as a 'secondary' sensory system behind vision in the study of cognitive science. In this review, we focus on three seemingly simple perceptual tasks to demonstrate the complexity of perceptual-cognitive processing involved in everyday audition. After providing a short overview of the characteristics of sound and their neural encoding, we present a description of the perceptual task of segregating multiple sound events that are mixed together in the signal reaching the ears. Then, we discuss the ability to localize the sound source in the environment. Finally, we provide some data and theory on how listeners categorize complex sounds, such as speech. In particular, we present research on how listeners weigh multiple acoustic cues in making a categorization decision. One conclusion of this review is that it is time for auditory cognitive science to be developed to match what has been done in vision in order for us to better understand how humans communicate with speech and music. WIREs Cogni Sci 2011 2 479-489 DOI: 10.1002/wcs.123 For further resources related to this article, please visit the WIREs website. PMID:26302301

  8. Reversible induction of phantom auditory sensations through simulated unilateral hearing loss.

    Directory of Open Access Journals (Sweden)

    Roland Schaette

    Full Text Available Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from 30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug.

  9. First Branchial Cleft Fistula Associated with External Auditory Canal Stenosis and Middle Ear Cholesteatoma

    Directory of Open Access Journals (Sweden)

    shahin abdollahi fakhim

    2014-10-01

    Full Text Available Introduction: First branchial cleft anomalies manifest with duplication of the external auditory canal.   Case Report: This report features a rare case of microtia and congenital middle ear and canal cholesteatoma with first branchial fistula. External auditory canal stenosis was complicated by middle ear and external canal cholesteatoma, but branchial fistula, opening in the zygomatic root and a sinus in the helical root, may explain this feature. A canal wall down mastoidectomy with canaloplasty and wide meatoplasty was performed. The branchial cleft was excised through parotidectomy and facial nerve dissection.   Conclusion:  It should be considered that canal stenosis in such cases can induce cholesteatoma formation in the auditory canal and middle ear.

  10. Diabetic Nerve Problems

    Science.gov (United States)

    ... at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get ... you change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. ...

  11. Damaged axillary nerve (image)

    Science.gov (United States)

    Conditions associated with axillary nerve dysfunction include fracture of the humerus (upper arm bone), pressure from casts or splints, and improper use of crutches. Other causes include systemic disorders that cause neuritis (inflammation of ...

  12. Sacral nerve stimulation.

    Science.gov (United States)

    Matzel, K E; Stadelmaier, U; Besendörfer, M

    2004-01-01

    The current concept of recruiting residual function of an inadequate pelvic organ by electrostimulation involves stimulation of the sacral spinal nerves at the level of the sacral canal. The rationale for applying SNS to fecal incontinence was based on clinical observations of its effect on bowel habits and anorectal continence function in urologic patients (increased anorectal angulation and anal canal closure pressure) and on anatomic considerations: dissection demonstrated a dual peripheral nerve supply of the striated pelvic floor muscles that govern these functions. Because the sacral spinal nerve site is the most distal common location of this dual nerve supply, stimulating here can elicit both functions. Since the first application of SNS in fecal incontinence in 1994, this technique has been improved, the patient selection process modified, and the spectrum of indications expanded. At present SNS has been applied in more than 1300 patients with fecal incontinence limited.

  13. Diabetes and nerve damage

    Science.gov (United States)

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  14. Degenerative Nerve Diseases

    Science.gov (United States)

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  15. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T;

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  16. Neural Correlates of an Auditory Afterimage in Primary Auditory Cortex

    OpenAIRE

    Noreña, A. J.; Eggermont, J. J.

    2003-01-01

    The Zwicker tone (ZT) is defined as an auditory negative afterimage, perceived after the presentation of an appropriate inducer. Typically, a notched noise (NN) with a notch width of 1/2 octave induces a ZT with a pitch falling in the frequency range of the notch. The aim of the present study was to find potential neural correlates of the ZT in the primary auditory cortex of ketamine-anesthetized cats. Responses of multiunits were recorded simultaneously with two 8-electrode arrays during 1 s...

  17. [Biophysics of nerve excitation].

    Science.gov (United States)

    Kol'e, O R; Maksimov, G V

    2010-01-01

    The studies testifying to the presence of the interrelation between the physiological functions of the organism and physical and chemical processes in nerves are discussed. Changes in some physical and chemical parameters observed both upon elicited rhythmic exaltation of nerves and during the spontaneous rhythmic activity of neurons are analyzed. Upon rhythmic exaltation, a complex of physical and chemical processes is triggered, and reversible structural and metabolic rearrangements at the subcellular and molecular levels occur that do not take place during the generation of a single action potential. Thus, only in conditions of rhythmic exaltation of a nerve, it is possible to reveal those processes that provide exaltation of nerves in the organism. The future possibilities of the investigations combining the biophysical and physiological approaches are substantiated. Characteristic changes in physicochemical parameters are observed in nerves during the generation of a series of action potentials of different frequency and duration ("frequency dependence") under normal physiological conditions, as well as in extreme situations and in nerve pathology. The structural and metabolic rearrangements are directly related to the mode of rhythmic exaltation and proceed both in the course of rhythmic exaltation and after its termination. Participation and the basic components of the nervous fulcrum (an axon, Shwan cell, myelin, subcellular organelles) in the realization of rhythmic exaltation is shown. In the coordination of all processes involved in rhythmic exaltation, the main role is played by the systems of redistribution and transport of intercellular and endocellular calcium. The idea is put forward that myelin of nerve fibers is not only an isolator, but also an "intercellular depot" of calcium and participates in the redistribution of different ions. Thus, the rhythmic excitation is of great importance in the realization of some physiological functions, the

  18. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  19. Dog sciatic nerve gap repaired by artificial tissue nerve graft

    Institute of Scientific and Technical Information of China (English)

    GU Xiaosong; ZHANG Peiyun; WANG Xiaodong; DING Fei; PENG Luping; CHENG Hongbing

    2003-01-01

    The feasibility of repairing dog sciatic nerve damage by using a biodegradable artificial tissue nerve graft enriched with neuroregenerating factors is investigated. The artificial nerve graft was implanted to a 30 mm gap of the sciatic nerve damage in 7 dogs. The dogs with the same nerve damage that were repaired by interposition of the autologous nerve or were given no treatment served as control group 1 or 2, respectively. The observations include gross and morphological observations, immune reaction, electrophysiological examination, fluorescence tracing of the neuron formation and the number of the neurons at the experimental sites, etc. Results showed that 6 months after the implantation of the graft, the regenerated nerve repaired the damage of the sciatic nerve without occurrence of rejection and obvious inflammatory reaction in all 7 dogs, and the function of the sciatic nerve recovered with the nerve conduction velocity of (23.91±11.35)m/s. The regenerated neurons and the forming of axon could be observed under an electron microscope. This proves that artificial tissue nerve graft transplantation can bridge the damaged nerve ends and promote the nerve regeneration.

  20. Neuromuscular ultrasound of cranial nerves.

    Science.gov (United States)

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  1. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.

    Science.gov (United States)

    Hennig, R M

    1988-05-01

    Ascending auditory interneurons of the cricket, Teleogryllus commodus (Walker), were investigated using simultaneous intracellular and extracellular recording in order to identify units which had previously been characterized only by extracellular recording. The morphology and physiology of the large adapting unit (LAU: Fig. 1) and of the small tonic unit (STU: Fig. 2) of Teleogryllus correspond well to those of the ascending neuron 2 (AN2) and the ascending neuron 1 (AN1) of Gryllus (Figs. 1, 2), respectively. A summary of the ascending auditory interneurons described by various authors in 5 species of crickets is presented in order to establish common identities. Physiological evidence for direct connections between auditory afferents and the ascending auditory interneurons AN1 (STU) and AN2 (LAU) is presented. Simultaneous intracellular recordings from receptors and interneurons in response to sound as well as the activity of auditory interneurons upon electrical stimulation of the tympanal nerve reveal short and constant latencies of receptor-evoked synaptic activity in AN1 (STU) and AN2 (LAU).

  2. A corollary discharge mechanism modulates central auditory processing in singing crickets.

    Science.gov (United States)

    Poulet, J F A; Hedwig, B

    2003-03-01

    Crickets communicate using loud (100 dB SPL) sound signals that could adversely affect their own auditory system. To examine how they cope with this self-generated acoustic stimulation, intracellular recordings were made from auditory afferent neurons and an identified auditory interneuron-the Omega 1 neuron (ON1)-during pharmacologically elicited singing (stridulation). During sonorous stridulation, the auditory afferents and ON1 responded with bursts of spikes to the crickets' own song. When the crickets were stridulating silently, after one wing had been removed, only a few spikes were recorded in the afferents and ON1. Primary afferent depolarizations (PADs) occurred in the terminals of the auditory afferents, and inhibitory postsynaptic potentials (IPSPs) were apparent in ON1. The PADs and IPSPs were composed of many summed, small-amplitude potentials that occurred at a rate of about 230 Hz. The PADs and the IPSPs started during the closing wing movement and peaked in amplitude during the subsequent opening wing movement. As a consequence, during silent stridulation, ON1's response to acoustic stimuli was maximally inhibited during wing opening. Inhibition coincides with the time when ON1 would otherwise be most strongly excited by self-generated sounds in a sonorously stridulating cricket. The PADs and the IPSPs persisted in fictively stridulating crickets whose ventral nerve cord had been isolated from muscles and sense organs. This strongly suggests that the inhibition of the auditory pathway is the result of a corollary discharge from the stridulation motor network. The central inhibition was mimicked by hyperpolarizing current injection into ON1 while it was responding to a 100 dB SPL sound pulse. This suppressed its spiking response to the acoustic stimulus and maintained its response to subsequent, quieter stimuli. The corollary discharge therefore prevents auditory desensitization in stridulating crickets and allows the animals to respond to external

  3. Topographical anatomy features of branching of nerves of lower extremities of rat

    Directory of Open Access Journals (Sweden)

    Tsarev A.A.

    2008-01-01

    Full Text Available 12 white rats of the reproductive period were the material for research. The topography of sciatic and femoral nerves of lower extremities of rats were studied by the method of level-by-level preparation. Femoral and sciatic nerves, their branches are ventral branches lumbar and sacral plexuses. Sciatic nerve was characterized by dispersed type of ramifying (78 % of cases, for the femoral nerve – the main type of branching (86%. The femoral nerve is projected on a medial surface of a hip and in the region of knee joint lies superficially that has a practical value. The rest portion of femoral nerve is located in hard-to-reach areas in the view of preparation and experimental approach. The sciatic nerve is projected on the skin of dorsal surfaces of pelvic areas where it leaves sciatic notch. For more reliable results of experimental research we propose to took into account age, sex, and topographical features.

  4. Changes of medium-latency SEP-components following peripheral nerve lesion

    Directory of Open Access Journals (Sweden)

    Straschill Max

    2006-10-01

    Full Text Available Abstract Background Animal studies have demonstrated complex cortical reorganization following peripheral nerve lesion. Central projection fields of intact nerves supplying skin areas which border denervated skin, extended into the deafferentiated cortical representation area. As a consequence of nerve lesions and subsequent reorganization an increase of the somatosensory evoked potentials (SEPs was observed in cats when intact neighbouring nerves were stimulated. An increase of SEP-components of patients with nerve lesions may indicate a similar process of posttraumatic plastic cortical reorganization. Methods To test if a similar process of post-traumatic plastic cortical reorganization does occur in humans, the SEP of intact neighbouring hand nerves were recorded in 29 patients with hand nerve lesions. To hypothetically explain the observed changes of SEP-components, SEP recording following paired stimulation of the median nerve was performed in 12 healthy subjects. Results Surprisingly 16 of the 29 patients (55.2% showed a reduction or elimination of N35, P45 and N60. Patients with lesions of two nerves showed more SEP-changes than patients with a single nerve lesion (85.7%; 6/7 nerves; vs. 34.2%; 13/38 nerves; Fisher's exact test, p Conclusion The results of the present investigation do not provide evidence of collateral innervation of peripherally denervated cortical neurons by neurons of adjacent cortical representation areas. They rather suggest that secondary components of the excitatory response to nerve stimulation are lost in cortical areas, which surround the denervated region.

  5. Visualization of Cervical Nerve Roots and Their Distal Nerve Fibers by Diffusion-Weighted Scanning Using Parallel Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Fujikawa, A.; Tateishi, H.; Nitatori, T. [Kyorin Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology

    2006-07-15

    Purpose: To report a technique developed for visualizing cervical nerve roots and distal nerve fibers using diffusion-weighted magnetic resonance imaging employing parallel imaging. Material and Methods: We performed maximum intensity projection for a stack of isotropic axial diffusion-weighted images obtained with parallel imaging applying a motion-probing gradient in six directions with a b-value of 500 s/mm{sup 2} in a preliminary series of 13 subjects. Results: This method worked well for visualizing the spinal cord and most of the nerve roots, the dorsal root ganglia, and proximal peripheral nerves. Conclusion: Although the technique remains limited in depicting the brachial plexus and distal nerves, the ability to visualize the proximal peripheral nervous system at the cervical level is promising.

  6. Tumors of the optic nerve

    DEFF Research Database (Denmark)

    Lindegaard, Jens; Heegaard, Steffen

    2009-01-01

    A variety of lesions may involve the optic nerve. Mainly, these lesions are inflammatory or vascular lesions that rarely necessitate surgery but may induce significant visual morbidity. Orbital tumors may induce proptosis, visual loss, relative afferent pupillary defect, disc edema and optic...... atrophy, but less than one-tenth of these tumors are confined to the optic nerve or its sheaths. No signs or symptoms are pathognomonic for tumors of the optic nerve. The tumors of the optic nerve may originate from the optic nerve itself (primary tumors) as a proliferation of cells normally present...... in the nerve (e.g., astrocytes and meningothelial cells). The optic nerve may also be invaded from tumors originating elsewhere (secondary tumors), invading the nerve from adjacent structures (e.g., choroidal melanoma and retinoblastoma) or from distant sites (e.g., lymphocytic infiltration and distant...

  7. Histomorphogenesis of cranial nerves in Huso huso larvae.

    Science.gov (United States)

    Tavighi, Sherma; Saadatfar, Zohreh; Shojaei, Bahador; Behnam Rassouli, Morteza

    2016-01-01

    In this study the cranial nerves development of H. huso are explained from 1 to 54-days-old (1, 3, 6, 15, 21 and 54 days). Despite all the researches on fish brain, there are no study on nerves evolution on H. huso during their larvae life. For this research 40 samples of larvae H. huso were obtained (from each age, about six samples were selected). The specimens were maintained in fiberglass tank, then histological samples were taken from tissues and stained with hematoxylin and eosin for general histological studies using light microscope. According to the results, on 1 and 3-days-old, no nerve was observed. The terminal nerve and their dendrites were observed around the nasal cavity and the axons projected to different areas in forebrain especially around olfactory bulb diffusely, on 6-day-old fish. Also, olfactory, optic, oculomotor, trochlear, trigeminal, lateral line and vagus nerves were detected on 6-day-old fish, however two parts of lateral line nerve were separated on 54-day-old. Three nerves, profundus, facial and octaval were observed on 54-day-old, however, up to this age, epiphysial nerve was not observed. PMID:27482355

  8. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T;

    2004-01-01

    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta...

  9. Progress of peripheral nerve repair

    Institute of Scientific and Technical Information of China (English)

    陈峥嵘

    2002-01-01

    Study on repair of peripheral nerve injury has been proceeding over a long period of time. With the use of microsurgery technique since 1960s,the quality of nerve repair has been greatly improved. In the past 40 years, with the continuous increase of surgical repair methods, more progress has been made on the basic research of peripheral nerve repair.

  10. Asymmetric transfer of auditory perceptual learning

    Directory of Open Access Journals (Sweden)

    Sygal eAmitay

    2012-11-01

    Full Text Available Perceptual skills can improve dramatically even with minimal practice. A major and practical benefit of learning, however, is in transferring the improvement on the trained task to untrained tasks or stimuli, yet the mechanisms underlying this process are still poorly understood. Reduction of internal noise has been proposed as a mechanism of perceptual learning, and while we have evidence that frequency discrimination (FD learning is due to a reduction of internal noise, the source of that noise was not determined. In this study, we examined whether reducing the noise associated with neural phase locking to tones can explain the observed improvement in behavioural thresholds. We compared FD training between two tone durations (15 and 100 ms that straddled the temporal integration window of auditory nerve fibers upon which computational modeling of phase locking noise was based. Training on short tones resulted in improved FD on probe tests of both the long and short tones. Training on long tones resulted in improvement only on the long tones. Simulations of FD learning, based on the computational model and on signal detection theory, were compared with the behavioral FD data. We found that improved fidelity of phase locking accurately predicted transfer of learning from short to long tones, but also predicted transfer from long to short tones. The observed lack of transfer from long to short tones suggests the involvement of a second mechanism. Training may have increased the temporal integration window which could not transfer because integration time for the short tone is limited by its duration. Current learning models assume complex relationships between neural populations that represent the trained stimuli. In contrast, we propose that training-induced enhancement of the signal-to-noise ratio offers a parsimonious explanation of learning and transfer that easily accounts for asymmetric transfer of learning.

  11. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. PMID:24378910

  12. MRI enhancement of the facial nerve with Gd-DTPA, 2; Investigation of enhanced nerve portions in patients with facial palsy

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro (Kansai Medical School, Moriguchi, Osaka (Japan))

    1993-08-01

    We performed enhanced MRI using Gd-DTPA in 84 patients with facial palsy. After assessing enhancement of the normal facial nerve, we examined enhancement in patients with Bell's palsy and Ramsay Hunt syndrome. In 95% of patients with Bell's palsy, enhancement was obtained in the distal IAC and labyrinthine portions. In 72%, enhancement was significant from the distal IAC portion through the vertical portion. In some of the patients who underwent enhanced MRI twice, increased signal intensity was observed in distal portions such as the vertical portion. In many cases of Ramsay Hunt syndrome, enhancement was seen extensively in the IAC portion through the vertical portion. In the subjects with internal auditory symptoms such as vertigo and tinnitus, enhancement of the IAC portion was seen not only in the facial nerve but also in the vestibular and the cochlear nerves. These results suggest that the vascular permeability of lesions in Bell's palsy may be increased from the distal IAC portion to the vertical portion. Judging from the present findings with Ramsay Hunt syndrome, symptoms related to the enhanced portions suggest that accompanying internal auditory symptoms occur due to inflammation of the IAC portions of cochlear and vestibular nerves. (author).

  13. Early Hearing-Impairment Results in Crossmodal Reorganization of Ferret Core Auditory Cortex

    Directory of Open Access Journals (Sweden)

    M. Alex Meredith

    2012-01-01

    Full Text Available Numerous investigations of cortical crossmodal plasticity, most often in congenital or early-deaf subjects, have indicated that secondary auditory cortical areas reorganize to exhibit visual responsiveness while the core auditory regions are largely spared. However, a recent study of adult-deafened ferrets demonstrated that core auditory cortex was reorganized by the somatosensory modality. Because adult animals have matured beyond their critical period of sensory development and plasticity, it was not known if adult-deafening and early-deafening would generate the same crossmodal results. The present study used young, ototoxically-lesioned ferrets (n=3 that, after maturation (avg. = 173 days old, showed significant hearing deficits (avg. threshold = 72 dB SPL. Recordings from single-units (n=132 in core auditory cortex showed that 72% were activated by somatosensory stimulation (compared to 1% in hearing controls. In addition, tracer injection into early hearing-impaired core auditory cortex labeled essentially the same auditory cortical and thalamic projection sources as seen for injections in the hearing controls, indicating that the functional reorganization was not the result of new or latent projections to the cortex. These data, along with similar observations from adult-deafened and adult hearing-impaired animals, support the recently proposed brainstem theory for crossmodal plasticity induced by hearing loss.

  14. Progesterone and peripheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Fei Fan; Haichao Li; Yuwei Wang; Yanglin Zheng; Lianjun Jia; Zhihui Wang

    2006-01-01

    OBJECTIVE: To explore the effect of progesterone on peripheral nerve regeneration.DATA SOURCES: An online search of Medline and OVID databases was under taken to identify articles about progesterone and peripheral nerve regeneration published in English between January 1990 and June 2004 by using the keywords of "peripheral nerve, injury, progesterone, regeneration".STUDY SELECTION: The data were primarily screened, those correlated with progesterone and peripheral nerve regeneration were involved, and their original articles were further searched, the repetitive studies or reviews were excluded.DATA EXTRACTION: Totally 59 articles about progesterone and peripheral nerve regeneration were collected, and 26 of them were involved, the other 33 excluded ones were the repetitive studies or reviews.DATA SYNTHESIS: Recent researches found that certain amount of progesterone could be synthetized in peripheral nervous system, and the expression of progesterone receptor could be found in sensory neurons and Schwann cells. After combined with the receptor, endogenous and exogenous progesterone can accelerate the formation of peripheral nerve myelin sheath, also promote the axonal regeneration.CONCLUSION: Progesterone plays a role in protecting neurons, increasing the sensitivity of nerve tissue to nerve growth factor, and accelerating regeneration of nerve in peripheral nerve regeneration, which provides theoretical references for the treatment of demyelinated disease and nerve injury, as well as the prevention of neuroma, especially that the in vivo level of progesterone should be considered for the elderly people accompanied by neuropathy and patients with congenital luteal phase defect, which is of positive significance in guiding the treatment.

  15. Psychophysiological responses to auditory change.

    Science.gov (United States)

    Chuen, Lorraine; Sears, David; McAdams, Stephen

    2016-06-01

    A comprehensive characterization of autonomic and somatic responding within the auditory domain is currently lacking. We studied whether simple types of auditory change that occur frequently during music listening could elicit measurable changes in heart rate, skin conductance, respiration rate, and facial motor activity. Participants heard a rhythmically isochronous sequence consisting of a repeated standard tone, followed by a repeated target tone that changed in pitch, timbre, duration, intensity, or tempo, or that deviated momentarily from rhythmic isochrony. Changes in all parameters produced increases in heart rate. Skin conductance response magnitude was affected by changes in timbre, intensity, and tempo. Respiratory rate was sensitive to deviations from isochrony. Our findings suggest that music researchers interpreting physiological responses as emotional indices should consider acoustic factors that may influence physiology in the absence of induced emotions. PMID:26927928

  16. Reality of auditory verbal hallucinations

    Science.gov (United States)

    Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency. PMID:19620178

  17. Intratemporal facial nerve neuromas and their mimics: CT and MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Chang, Kee Hyun; Lee, Kyung Hwan; Cha, Sang Hoon; Kim, Chong Sun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Sang Joon [Chungang Gil General Hospital, Seoul (Korea, Republic of)

    1992-05-15

    CT and MR findings of nine cases with intra temporal facial nerve neuromas were described and compared with CT findings of 3 cases with facial nerve palsy and facial nerve canal erosion which may mimic facial nerve neuroma. The tympanic segment of the facial nerve was involved in 8 cases, mastoid segment in 7 cases and labyrinthine segment in 5 cases. The lesions were easily diagnosed with high resolution CT with bone algorithms by showing the expansion of bony structures along the course of the facial nerves. In 4 cases with large vertical segment tumors, extensive destruction of mastoid air cells and external auditory canals posed difficulty in making a diagnosis. Two out of 5 cases with labyrinthine segment involvement were presented as middle cranial fossa masses. MRI with enhancement was performed in 4 cases and was useful in characterizing the lesion as a tumor with its superior sensitivity to enhancement. Three cases of facial neuroma-mimicking lesion including post-inflammatory peri neural thickening, peri neural extension from parotid adenoid cystic carcinoma, and congenita; cholesteatoma showed irregular erosion or mild expansion of the facial nerve canal which may be helpful for differential diagnosis from neuromas.

  18. Auditory distraction and serial memory

    OpenAIRE

    Jones, D M; Hughes, Rob; Macken, W.J.

    2010-01-01

    One mental activity that is very vulnerable to auditory distraction is serial recall. This review of the contemporary findings relating to serial recall charts the key determinants of distraction. It is evident that there is one form of distraction that is a joint product of the cognitive characteristics of the task and of the obligatory cognitive processing of the sound. For sequences of sound, distraction appears to be an ineluctable product of similarity-of-process, specifically, the seria...

  19. Reality of auditory verbal hallucinations

    OpenAIRE

    Raij TT; Valkonen-Korhonen M; Holi M; Therman S; Lehtonen J; Hari R

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation st...

  20. Auditory responses of engrailed and invected-expressing Johnston's Organ neurons in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Adeline Pézier

    Full Text Available The roles of the transcription factor Engrailed (En, and its paralogue Invected (Inv, in adult Drosophila Johnston's Organ sensory neurons are unknown. We used en-GAL4 driven CD8-GFP and antibody staining to characterize these neurons in the pedicel (second antennal segment. The majority of En and Inv-expressing Johnston's Organ neurons (En-JONs are located in the ventral part of the posterior group of JONs, with only a few in the medial group. Anatomical classification of En-JON axon projections shows they are mainly type A and E, with a few type B. Extracellular recording of sound-evoked potentials (SEPs from the antennal nerve was used along with Kir2.1 silencing to assess the contribution that En-JONs make to the auditory response to pure-tone sound stimuli. Silencing En-JONs reduces the SEP amplitude at the onset of the stimulus by about half at 100, 200 and 400 Hz, and also reduces the steady-state response to 200 Hz. En-JONs respond to 82 dB and 92 dB sounds but not 98 dB. Despite their asymmetrical distribution in the Johnston's Organ they respond equally strongly to both directions of movement of the arista. This implies that individual neurons are excited in both directions, a conclusion supported by reanalysis of the morphology of the pedicel-funicular joint. Other methods of silencing the JONs were also used: RNAi against the voltage-gated Na⁺ channel encoded by the para gene, expression of attenuated diphtheria toxin, and expression of a modified influenza toxin M2(H37A. Only the latter was found to be more effective than Kir2.1. Three additional JON subsets were characterized using Flylight GAL4 lines. inv-GAL4 88B12 and Gycβ100B-GAL4 12G03 express in different subsets of A group neurons and CG12484-GAL4 91G04 is expressed in B neurons. All three contribute to the auditory response to 200 Hz tones.

  1. Auditory sequence analysis and phonological skill.

    Science.gov (United States)

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E; Turton, Stuart; Griffiths, Timothy D

    2012-11-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  2. The cisternal segment of the abducens nerve in man: three-dimensional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Alpay E-mail: aalkan@inonu.edu.tr; Sigirci, Ahmet; Ozveren, M. Faik; Kutlu, Ramazan; Altinok, Tayfun; Onal, Cagatay; Sarac, Kaya

    2004-09-01

    Purpose: The goal of this study was to identify the abducens nerve in its cisternal segment by using three-dimensional turbo spin echo T2-weighted image (3DT2-TSE). The abducens nerve may arise from the medullopontine sulcus by one singular or two separated rootlets. Material and methods: We studied 285 patients (150 males, 135 females, age range: 9-72 years, mean age: 33.3{+-}14.4) referred to MR imaging of the inner ear, internal auditory canal and brainstem. All 3D T2-TSE studies were performed with a 1.5 T MR system. Imaging parameters used for 3DT2-TSE sequence were TR:4000, TE:150, and 0.70 mm slice thickness. A field of view of 160 mm and 256x256 matrix were used. The double rootlets of the abducens nerve and contralateral abducens nerves and their relationships with anatomical structures were searched in the subarachnoid space. Results: We identified 540 of 570 abducens nerves (94.7%) in its complete cisternal course with certainty. Seventy-two cases (25.2%) in the present study had double rootlets of the abducens nerve. In 59 of these cases (34 on the right side and 25 on the left) presented with unilateral double rootlets of the abducens. Thirteen cases presented with bilateral double rootlets of the abducens (4.5%). Conclusion: An abducens nerve arising by two separate rootlets is not a rare variation. The detection of this anatomical variation by preoperative MR imaging is important to avoid partial damage of the nerve during surgical procedures. The 3DT2-TSE as a noninvasive technique makes it possible to obtain extremely high-quality images of microstructures as cranial nerves and surrounding vessels in the cerebellopontine cistern. Therefore, preoperative MR imaging should be performed to detect anatomical variations of abducens nerve and to reduce the chance of operative injuries.

  3. Optic nerve hypoplasia

    Directory of Open Access Journals (Sweden)

    Savleen Kaur

    2013-01-01

    Full Text Available Optic nerve hypoplasia (ONH is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65% than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED.

  4. Peripheral nerve hyperexcitability syndromes.

    Science.gov (United States)

    Küçükali, Cem Ismail; Kürtüncü, Murat; Akçay, Halil İbrahim; Tüzün, Erdem; Öge, Ali Emre

    2015-01-01

    Peripheral nerve hyperexcitability (PNH) syndromes can be subclassified as primary and secondary. The main primary PNH syndromes are neuromyotonia, cramp-fasciculation syndrome (CFS), and Morvan's syndrome, which cause widespread symptoms and signs without the association of an evident peripheral nerve disease. Their major symptoms are muscle twitching and stiffness, which differ only in severity between neuromyotonia and CFS. Cramps, pseudomyotonia, hyperhidrosis, and some other autonomic abnormalities, as well as mild positive sensory phenomena, can be seen in several patients. Symptoms reflecting the involvement of the central nervous system occur in Morvan's syndrome. Secondary PNH syndromes are generally seen in patients with focal or diffuse diseases affecting the peripheral nervous system. The PNH-related symptoms and signs are generally found incidentally during clinical or electrodiagnostic examinations. The electrophysiological findings that are very useful in the diagnosis of PNH are myokymic and neuromyotonic discharges in needle electromyography along with some additional indicators of increased nerve fiber excitability. Based on clinicopathological and etiological associations, PNH syndromes can also be classified as immune mediated, genetic, and those caused by other miscellaneous factors. There has been an increasing awareness on the role of voltage-gated potassium channel complex autoimmunity in primary PNH pathogenesis. Then again, a long list of toxic compounds and genetic factors has also been implicated in development of PNH. The management of primary PNH syndromes comprises symptomatic treatment with anticonvulsant drugs, immune modulation if necessary, and treatment of possible associated dysimmune and/or malignant conditions. PMID:25719304

  5. Optic nerve hypoplasia.

    Science.gov (United States)

    Kaur, Savleen; Jain, Sparshi; Sodhi, Harsimrat B S; Rastogi, Anju; Kamlesh

    2013-05-01

    Optic nerve hypoplasia (ONH) is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65%) than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED). PMID:24082663

  6. Speech distortion measure based on auditory properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo; HU Xiulin; ZHANG Yunyu; ZHU Yaoting

    2000-01-01

    The Perceptual Spectrum Distortion (PSD), based on auditory properties of human being, is presented to measure speech distortion. The PSD measure calculates the speech distortion distance by simulating the auditory properties of human being and converting short-time speech power spectrum to auditory perceptual spectrum. Preliminary simulative experiments in comparison with the Itakura measure have been done. The results show that the PSD measure is a perferable speech distortion measure and more consistent with subjective assessment of speech quality.

  7. Auditory stimulation and cardiac autonomic regulation

    OpenAIRE

    Vitor E Valenti; Guida, Heraldo L.; Frizzo, Ana C F; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M; Luiz Carlos de Abreu

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation bet...

  8. Mechanisms of Auditory Verbal Hallucination in Schizophrenia

    OpenAIRE

    Raymond eCho; Wayne eWu

    2013-01-01

    Recent work on the mechanisms underlying auditory verbal hallucination (AVH) has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two...

  9. The role of the auditory brainstem in processing musically relevant pitch.

    Science.gov (United States)

    Bidelman, Gavin M

    2013-01-01

    Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners' perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294

  10. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  11. Electrophysiological assessment of auditory processing disorder in children with non-syndromic cleft lip and/or palate

    Science.gov (United States)

    McPherson, Bradley; Ma, Lian

    2016-01-01

    Objectives Cleft lip and/or palate is a common congenital craniofacial malformation found worldwide. A frequently associated disorder is conductive hearing loss, and this disorder has been thoroughly investigated in children with non-syndromic cleft lip and/or palate (NSCL/P). However, analysis of auditory processing function is rarely reported for this population, although this issue should not be ignored since abnormal auditory cortical structures have been found in populations with cleft disorders. The present study utilized electrophysiological tests to assess the auditory status of a large group of children with NSCL/P, and investigated whether this group had less robust central auditory processing abilities compared to craniofacially normal children. Methods 146 children with NSCL/P who had normal peripheral hearing thresholds, and 60 craniofacially normal children aged from 6 to 15 years, were recruited. Electrophysiological tests, including auditory brainstem response (ABR), P1-N1-P2 complex, and P300 component recording, were conducted. Results ABR and N1 wave latencies were significantly prolonged in children with NSCL/P. An atypical developmental trend was found for long latency potentials in children with cleft compared to control group children. Children with unilateral cleft lip and palate showed a greater level of abnormal results compared with other cleft subgroups, whereas the cleft lip subgroup had the most robust responses for all tests. Conclusion Children with NSCL/P may have slower than normal neural transmission times between the peripheral auditory nerve and brainstem. Possible delayed development of myelination and synaptogenesis may also influence auditory processing function in this population. Present research outcomes were consistent with previous, smaller sample size, electrophysiological studies on infants and children with cleft lip/palate disorders. In view of the these findings, and reports of educational disadvantage associated

  12. Auditory Training and Its Effects upon the Auditory Discrimination and Reading Readiness of Kindergarten Children.

    Science.gov (United States)

    Cullen, Minga Mustard

    The purpose of this investigation was to evaluate the effects of a systematic auditory training program on the auditory discrimination ability and reading readiness of 55 white, middle/upper middle class kindergarten students. Following pretesting with the "Wepman Auditory Discrimination Test,""The Clymer-Barrett Prereading Battery," and the…

  13. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    Science.gov (United States)

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  14. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  15. [Electrical nerve stimulation for plexus and nerve blocks].

    Science.gov (United States)

    Birnbaum, J; Klotz, E; Bogusch, G; Volk, T

    2007-11-01

    Despite the increasing use of ultrasound, electrical nerve stimulation is commonly used as the standard for both plexus and peripheral nerve blocks. Several recent randomized trials have contributed to a better understanding of physiological and clinical correlations. Traditionally used currents and impulse widths are better defined in relation to the distance between needle tip and nerves. Commercially available devices enable transcutaneous nerve stimulation and provide new opportunities for the detection of puncture sites and for training. The electrically ideal position of the needle usually is defined by motor responses which can not be interpreted without profound anatomical knowledge. For instance, interscalene blocks can be successful even after motor responses of deltoid or pectoral muscles. Infraclavicular blocks should be aimed at stimulation of the posterior fascicle (extension). In contrast to multiple single nerve blocks, axillary single-shot blocks more commonly result in incomplete anaesthesia. Blockade of the femoral nerve can be performed without any nerve stimulation if the fascia iliaca block is used. Independently of the various approaches to the sciatic nerve, inversion and plantar flexion are the best options for single-shot blocks. Further clinical trials are needed to define the advantages of stimulating catheters in continuous nerve blocks.

  16. Acquired auditory neuropathy spectrum disorder after an attack of chikungunya: case study.

    Science.gov (United States)

    Prabhu, Prashanth

    2016-01-01

    Auditory neuropathy spectrum disorder (ANSD) is a retrocochlear disorder in which the cochlear functioning is normal but the transmission in the auditory neural pathway is affected. The present study reports of a 14-year-old teenager with acquired ANSD after an attack of chikungunya. He reported symptoms of difficulty in understanding speech, tinnitus and vertigo when exposed to loud sounds. The audiological characteristics suggested auditory neuropathy spectrum disorder with raising audiogram configuration. The results of tinnitus evaluation showed low-pitched tinnitus and it was persistent causing significant handicap to him based on self report tinnitus handicap questionnaire results. The results of depression, anxiety and stress scale also suggested symptoms of mild depression and anxiety. Chikungunya virus is suspected to be neurotropic in nature which can damage auditory nerve cells and may have caused ANSD. The result also shows presence of tullio's phenomenon and absence of cervical vestibular evoked myogenic potentials suggesting damage to the vestibular neuronal system. The possible pathophysiology of chikungunya virus causing ANSD and vestibular symptoms needs to be explored further in future studies. PMID:25728940

  17. Auditory midbrain implant: research and development towards a second clinical trial.

    Science.gov (United States)

    Lim, Hubert H; Lenarz, Thomas

    2015-04-01

    The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients that is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. A new two-shank array, stimulation strategy, and surgical approach are planned for the AMI that are expected to improve hearing performance in the patients who will be implanted in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. This article is part of a Special Issue entitled .

  18. Auditory hallucinations suppressed by etizolam in a patient with schizophrenia.

    Science.gov (United States)

    Benazzi, F; Mazzoli, M; Rossi, E

    1993-10-01

    A patient presented with a 15 year history of schizophrenia with auditory hallucinations. Though unresponsive to prolonged trials of neuroleptics, the auditory hallucinations disappeared with etizolam. PMID:7902201

  19. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  20. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys. PMID:26041980

  1. Electrophysiologic studies of cervical vagus nerve stimulation in humans: II. Evoked potentials.

    Science.gov (United States)

    Hammond, E J; Uthman, B M; Reid, S A; Wilder, B J

    1992-01-01

    Evidence from studies of experimental animals indicates that electrical stimulation of the vagus nerve not only can alter the EEG but evokes activity in specific brain areas. We report effects of electrical stimulation of the vagus nerve in 9 patients with medically intractable seizures as part of a clinical trial of chronic vagal stimulation for control of epilepsy. The left vagus nerve in the neck was stimulated with a programmable implanted stimulator. Effects of stimulus amplitude, duration, and rate were studied. Noncephalic reference recording of the vagus nerve evoked potential showed some unusual properties: a scalp negative component occurred with a latency of 12 ms, very high amplitude (60 microV), and widespread scalp distribution. Field distribution studies indicated that this potential was myogenic in origin and generated in the region of the stimulating electrodes in the neck area. Chemically induced muscle paralysis confirmed this observation. Bipolar scalp recording showed several small-amplitude topographically distinct potentials occurring in 30 ms. No effect, either acute or chronic, could be detected on pattern-reversal evoked potentials, auditory brainstem evoked potentials, auditory 40-Hz potentials, or cognitive evoked potentials. PMID:1464258

  2. Auditory hallucinations in nonverbal quadriplegics.

    Science.gov (United States)

    Hamilton, J

    1985-11-01

    When a system for communicating with nonverbal, quadriplegic, institutionalized residents was developed, it was discovered that many were experiencing auditory hallucinations. Nine cases are presented in this study. The "voices" described have many similar characteristics, the primary one being that they give authoritarian commands that tell the residents how to behave and to which the residents feel compelled to respond. Both the relationship of this phenomenon to the theoretical work of Julian Jaynes and its effect on the lives of the residents are discussed.

  3. Autosomal recessive hereditary auditory neuropathy

    Institute of Scientific and Technical Information of China (English)

    王秋菊; 顾瑞; 曹菊阳

    2003-01-01

    Objectives: Auditory neuropathy (AN) is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses (ABRs) and normal cochlear outer hair cell function as measured by otoacoustic emissions (OAEs). Many risk factors are thought to be involved in its etiology and pathophysiology. Three Chinese pedigrees with familial AN are presented herein to demonstrate involvement of genetic factors in AN etiology. Methods: Probands of the above - mentioned pedigrees, who had been diagnosed with AN, were evaluated and followed up in the Department of Otolaryngology Head and Neck Surgery, China PLA General Hospital. Their family members were studied and the pedigree diagrams were established. History of illness, physical examination,pure tone audiometry, acoustic reflex, ABRs and transient evoked and distortion- product otoacoustic emissions (TEOAEs and DPOAEs) were obtained from members of these families. DPOAE changes under the influence of contralateral sound stimuli were observed by presenting a set of continuous white noise to the non - recording ear to exam the function of auditory efferent system. Some subjects received vestibular caloric test, computed tomography (CT)scan of the temporal bone and electrocardiography (ECG) to exclude other possible neuropathy disorders. Results: In most affected subjects, hearing loss of various degrees and speech discrimination difficulties started at 10 to16 years of age. Their audiological evaluation showed absence of acoustic reflex and ABRs. As expected in AN, these subjects exhibited near normal cochlear outer hair cell function as shown in TEOAE & DPOAE recordings. Pure- tone audiometry revealed hearing loss ranging from mild to severe in these patients. Autosomal recessive inheritance patterns were observed in the three families. In Pedigree Ⅰ and Ⅱ, two affected brothers were found respectively, while in pedigree Ⅲ, 2 sisters were affected. All the patients were otherwise normal without

  4. Perspectives of optic nerve prostheses.

    Science.gov (United States)

    Lane, Frank John; Nitsch, Kristian; Huyck, Margaret; Troyk, Philip; Schug, Ken

    2016-05-01

    A number of projects exist that are investigating the ability to restore visual percepts for individuals who are blind through a visual prosthesis. While many projects have reported the results from a technical basis, very little exists in the professional literature on the human experience of visual implant technology. The current study uses an ethnographic methodological approach to document the experiences of the research participants and study personnel of a optic nerve vision prosthesis project in Brussels, Belgium. The findings have implications for motivation for participating in clinical trials, ethical safeguards of participants and the role of the participant in a research study. Implications for Rehabilitation Rehabilitation practitioners are often solicited by prospective participants to assist in evaluating a clinical trial before making a decision about participation. Rehabilitation professionals should be aware that: The decision to participate in a clinical trial is ultimately up to the individual participant. However, participants should be aware that family members might experience stress from of a lack of knowledge about the research study. The more opportunities a participant has to share thoughts and feelings about the research study with investigators will likely result in a positive overall experience. Ethical safeguards put in place to protect the interests of an individual participant may have the opposite effect and create stress. Rehabilitation professionals can play an important role as participant advocates from recruitment through termination of the research study. Participant hope is an important component of participation in a research study. Information provided to participants by investigators during the consent process should be balanced carefully with potential benefits, so it does not destroy a participant's hope. PMID:25425410

  5. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  6. Mapping tonotopy in human auditory cortex

    NARCIS (Netherlands)

    van Dijk, Pim; Langers, Dave R M; Moore, BCJ; Patterson, RD; Winter, IM; Carlyon, RP; Gockel, HE

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier

  7. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  8. Speech perception as complex auditory categorization

    Science.gov (United States)

    Holt, Lori L.

    2002-05-01

    Despite a long and rich history of categorization research in cognitive psychology, very little work has addressed the issue of complex auditory category formation. This is especially unfortunate because the general underlying cognitive and perceptual mechanisms that guide auditory category formation are of great importance to understanding speech perception. I will discuss a new methodological approach to examining complex auditory category formation that specifically addresses issues relevant to speech perception. This approach utilizes novel nonspeech sound stimuli to gain full experimental control over listeners' history of experience. As such, the course of learning is readily measurable. Results from this methodology indicate that the structure and formation of auditory categories are a function of the statistical input distributions of sound that listeners hear, aspects of the operating characteristics of the auditory system, and characteristics of the perceptual categorization system. These results have important implications for phonetic acquisition and speech perception.

  9. Acoustic Shadows: An Auditory Exploration of the Sense of Space

    Directory of Open Access Journals (Sweden)

    Frank Dufour

    2011-12-01

    Full Text Available This paper examines the question of auditory detection of the movements of silent objects in noisy environments. The approach to studying and exploring this phenomenon is primarily based on the framework of the ecology of perception defined by James Gibson (Gibson, 1979 in the sense that it focuses on the direct auditory perception of events, or “structured energy that specifies properties of the environment” (Michaels & Carello, 1981 P. 157. The goal of this study is triple: -Theoretical; for various reasons, this kind of acoustic situations has not been extensively studied by traditional acoustics and psychoacoustics, therefore, this project demonstrates and supports the pertinence of the Ecology of Perception for the description and explanation of such complex phenomena. -Practical; like echolocation, perception of acoustic shadows can be improved by practice, this project intends to contribute to the acknowledgment of this way of listening and to help individuals placed in noisy environments without the support of vision acquiring a detailed detection of the movements occurring in these environments. -Artistic; this project explores a new artistic expression based on the creation and exploration of complex multisensory environments. Acoustic Shadows, a multimedia interactive composition is being developed on the premises of the ecological approach to perception. The last dimension of this project is meant to be a contribution to the sonic representation of space in films and in computer generated virtual environments by producing simulations of acoustic shadows.

  10. Characteristic of the Auditory Function and Morphological Development with Cochlear Nerve Demyelination of Experimental Autoimmune Encephalomyelitis in Wistar Rat%PLP139-151多肽诱导实验性自身免疫性脑脊髓炎大鼠的听觉和形态学改变

    Institute of Scientific and Technical Information of China (English)

    石力; 王锦玲; 邱建华; 苏钰; 刘顺利

    2006-01-01

    目的制作实验性自身免疫性脑脊髓炎(experimntal autoimmune encephalomyelitis,EAE)动物模型,研究髓鞘蛋白脂质蛋白(proteolipid protein,PLP)139 - 151多肽诱导的EAE大鼠听觉和听觉传导径路组织学改变,探讨其对大鼠听力的影响.方法动物分实验组和对照组,实验组大鼠用PLP139-151和含结核杆菌的完全福氏佐剂混合制成的抗原配剂行双侧后肢足垫下注射,制作EAE大鼠模型,对照组用生理盐水混合完全福氏佐剂注射.观察大鼠免疫前后体重变化和临床症状评分,检测EAE大鼠免疫前后听性脑干反应(auditory brainstem response,ABR)、听神经复合动作电位(compound action potential,CAP)、中潜伏期反应(middle latency response,MLR)及畸变产物耳声发射(distortion products otoacoustic emissions,DPOAE)的变化,并利用电镜、免疫组织化学染色和Western blot等方法观察EAE大鼠听神经及脑干组织学改变.结果免疫后EAE大鼠体重降低,症状评分在免疫后第14~21天达最高峰;ABR反应阈升高,ABR的波Ⅱ、Ⅴ潜伏期,Ⅰ-Ⅴ、Ⅱ-Ⅴ波间期和CAP的N2波潜伏期延长、波幅降低;MLR的Na、Pa潜伏期明显延长;DPOAE可正常引出,于免疫早期可见低频幅值升高;对照组听力学检测无明显改变.电镜下可见EAE大鼠听神经中枢端髓鞘松散、局部变薄或融合,免疫组织化学染色可见脑干白质局灶性脱髓鞘改变,可累及耳蜗核;Western blot显示听神经PLP蛋白表达减少,髓鞘碱性蛋白(MBP)未见明显改变.结论EAE大鼠的病理改变主要浸润白质,可引起听觉中枢和听神经中枢端少突胶质细胞脱髓鞘,导致听觉中枢传导径路的听力学改变.

  11. Removal of vestibular schwannoma and facial nerve preservation using small suboccipital retrosigmoid craniotomy

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; CHEN Li-hua; LING Feng; LIU Yun-sheng; Madjid Samii; Amir Samii

    2010-01-01

    Background Vestibular schwannoma, the commonest form of intracranial schwannoma, arises from the Schwann cells investing the vestibular nerve. At present, the surgery for vestibular schwannoma remains one of the most complicated operations demanding for surgical skills in neurosurgery. And the trend of minimal invasion should also be the major influence on the management of patients with vestibular schwannomas. We summarized the microsurgical removal experience in a recent series of vestibular schwannomas and presented the operative technique and cranial nerve preservation in order to improve the rates of total tumor removal and facial nerve preservation.Methods A retrospective analysis was performed in 145 patients over a 7-year period who suffered from vestibular schwannomas that had been microsurgicaily removed by suboccipital retrosigmoid transmeatus approach with small craniotomy. CT thinner scans revealed the tumor size in the internal auditory meatus and the relationship of the posterior wall of the internal acoustic meatus to the bone labyrinths preoperatively. Brain stem evoked potential was monitored intraoperatively. The posterior wall of the internal acoustic meatus was designedly drilled off. Patient records and operative reports, including data from the electrophysiological monitoring, follow-up audiometric examinations, and neuroradiological findings were analyzed.Results Total tumor resection was achieved in 140 cases (96.6%) and subtotal resection in 5 cases. The anatomical integrity of the facial nerve was preserved in 91.0% (132/145) of the cases. Intracranial end-to-end anastomosis of the facial nerve was performed in 7 cases. Functional preservation of the facial nerve was achieved in 115 patients (Grade Ⅰ and Grade Ⅱ, 79.3%). No patient died in this series. Preservation of nerves and vessels were as important as tumor removal dudng the operation. CT thinner scan could show the relationship between the posterior wall of the internal

  12. Tactile feedback improves auditory spatial localization.

    Science.gov (United States)

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality. PMID:25368587

  13. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  14. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  15. Temporal auditory processing in elders

    Directory of Open Access Journals (Sweden)

    Azzolini, Vanuza Conceição

    2010-03-01

    Full Text Available Introduction: In the trial of aging all the structures of the organism are modified, generating intercurrences in the quality of the hearing and of the comprehension. The hearing loss that occurs in consequence of this trial occasion a reduction of the communicative function, causing, also, a distance of the social relationship. Objective: Comparing the performance of the temporal auditory processing between elderly individuals with and without hearing loss. Method: The present study is characterized for to be a prospective, transversal and of diagnosis character field work. They were analyzed 21 elders (16 women and 5 men, with ages between 60 to 81 years divided in two groups, a group "without hearing loss"; (n = 13 with normal auditive thresholds or restricted hearing loss to the isolated frequencies and a group "with hearing loss" (n = 8 with neurosensory hearing loss of variable degree between light to moderately severe. Both the groups performed the tests of frequency (PPS and duration (DPS, for evaluate the ability of temporal sequencing, and the test Randon Gap Detection Test (RGDT, for evaluate the temporal resolution ability. Results: It had not difference statistically significant between the groups, evaluated by the tests DPS and RGDT. The ability of temporal sequencing was significantly major in the group without hearing loss, when evaluated by the test PPS in the condition "muttering". This result presented a growing one significant in parallel with the increase of the age group. Conclusion: It had not difference in the temporal auditory processing in the comparison between the groups.

  16. Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf

    Directory of Open Access Journals (Sweden)

    Karen A. Gordon

    2013-10-01

    Full Text Available We have explored both the benefits and detriments of providing electrical input through a cochlear implant in one ear to the auditory system of young children. A cochlear implant delivers electrical pulses to stimulate the auditory nerve, providing children who are deaf with access to sound. The goals of implantation are to restrict reorganization of the deprived immature auditory brain and promote development of hearing and spoken language. It is clear that limiting the duration of deprivation is a key factor. Additional considerations are the onset, etiology, and use of residual hearing as each of these can have unique effects on auditory development in the pre-implant period. New findings show that many children receiving unilateral cochlear implants are developing mature-like brainstem and thalamo-cortical responses to sound with long term use despite these sources of variability; however, there remain considerable abnormalities in cortical function. The most apparent, determined by implanting the other ear and measuring responses to acute stimulation, is a loss of normal cortical response from the deprived ear. Recent data reveal that this can be avoided in children by early implantation of both ears simultaneously or with limited delay. We conclude that auditory development requires input early in development and from both ears.

  17. In vivo three-dimensional reconstruction of human median nerves by diffusion tensor imaging

    NARCIS (Netherlands)

    Meek, MF; Stenekes, MW; Hoogduin, HM; Nicolai, JPA

    2006-01-01

    The in vivo assessment of axonal projections of the peripheral nervous system has been severely limited by the lack of noninvasive techniques. We examined whether MR diffusion tensor imaging with fiber tracking of the human median nerve is feasible. The median nerve was examined with a 3-T MRI scann

  18. Isolated cranial nerve palsies in multiple sclerosis

    OpenAIRE

    Zadro, Ivana; Barun, Barbara; Habek, Mario; Brinar, Vesna V.

    1997-01-01

    During a 10 year period 24 patients with definite multiple sclerosis with isolated cranial nerve palsies were studied (third and fourth nerve: one patient each, sixth nerve: 12 patients, seventh nerve: three patients, eighth nerve: seven patients), in whom cranial nerve palsies were the presenting sign in 14 and the only clinical sign of an exacerbation in 10 patients. MRI was carried out in 20 patients and substantiated corresponding brainstem lesions in seven patients (...

  19. Ultrasonographic Evaluation of Peripheral Nerves.

    Science.gov (United States)

    Ali, Zarina S; Pisapia, Jared M; Ma, Tracy S; Zager, Eric L; Heuer, Gregory G; Khoury, Viviane

    2016-01-01

    There are a variety of imaging modalities for evaluation of peripheral nerves. Of these, ultrasonography (US) is often underused. There are several advantages of this imaging modality, including its cost-effectiveness, time-efficient assessment of long segments of peripheral nerves, ability to perform dynamic maneuvers, lack of contraindications, portability, and noninvasiveness. It can provide diagnostic information that cannot be obtained by electrophysiologic or, in some cases, magnetic resonance imaging studies. Ideally, the neurosurgeon can use US as a diagnostic adjunct in the preoperative assessment of a patient with traumatic, neoplastic, infective, or compressive nerve injury. Perhaps its most unique use is in intraoperative surgical planning. In this article, a brief description of normal US nerve anatomy is presented followed by a description of the US appearance of peripheral nerve disease caused by trauma, tumor, infection, and entrapment.

  20. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli.

    Science.gov (United States)

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-07-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli.

  1. The neuronal soma trait of trigeminal nerve branch projecting to dental pulp in rat trigeminal ganglia%大鼠牙髓神经胞体在三叉神经节内分布特点

    Institute of Scientific and Technical Information of China (English)

    肖芳莉; 李国超; 马腾飞; 黄姗姗; 徐文华; 王烈成; 王元银

    2016-01-01

    groups respectively, a few fluorescence labeled neuronal somas after 72 h could be detected in the posterolateral and the middle area of the ipsilateral TG, which distributed in clusters. Two different fluorescent probes Fast DiO and Fast DiI were injected respectively into right lower and left upper central incisor of rats in the two groups, green fluorescence labeled neuronal somas and red fluorescence labeled neuronal somas in cluster could be detected after 72 h in the posterolateral and the middle area of the ipsilateral TG of the two groups corresponding-ly. Fast DiI and Fast DiO were injected respectively into left upper central incisor and first molar in lower mandibu-lar of rats in the two groups at the same time, green fluorescence labeled neuronal somas and red fluorescence la-beled neuronal somas in cluster could be detected after 72 h in the middle area and the postermiddle area of left TG correspondingly. There was no statistically significant difference of labeled neuronal somas distribution, quantity and fluorescence intensity in TG between the two groups. Conclusion The neuronal somas of trigeminal nerve branches regional distributions on the ipsilateral side TG. The TN does not affect the number of neurons in TG and the projection. It may be associated with the change of trigeminal nerve function.

  2. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus.

    Directory of Open Access Journals (Sweden)

    Paul M Forlano

    Full Text Available In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic

  3. Ultrasound-Guided Peripheral Nerve Procedures.

    Science.gov (United States)

    Strakowski, Jeffrey A

    2016-08-01

    Ultrasound guidance allows real-time visualization of the needle in peripheral nerve procedures, improving accuracy and safety. Sonographic visualization of the peripheral nerve and surrounding anatomy can provide valuable information for diagnostic purposes and procedure enhancement. Common procedures discussed are the suprascapular nerve at the suprascapular notch, deep branch of the radial nerve at the supinator, median nerve at the pronator teres and carpal tunnel, lateral cutaneous nerve of the thigh, superficial fibular nerve at the leg, tibial nerve at the ankle, and interdigital neuroma. For each procedure, the indications, relevant anatomy, preprocedural scanning technique, and injection procedure itself are detailed. PMID:27468673

  4. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  5. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain.

    Science.gov (United States)

    Hesse, Lara Li; Bakay, Warren; Ong, Hui-Ching; Anderson, Lucy; Ashmore, Jonathan; McAlpine, David; Linden, Jennifer; Schaette, Roland

    2016-01-01

    The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to "hidden hearing loss" (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur

  6. Spatial auditory processing in pinnipeds

    Science.gov (United States)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study

  7. An Auditory Model of Improved Adaptive ZCPA

    Directory of Open Access Journals (Sweden)

    Jinping Zhang

    2013-07-01

    Full Text Available An improved ZCAP auditory model with adaptability is proposed in this paper, and the  adaptive method designed for ZCPA model is suitable for other auditory model with inner-hair-cell sub-model. The first step in the implement process of the proposed ZCPA model is to carry out the calculation of inner product between signal and complex Gammatone filters to obtain important frequency components  of signal. And then, according to  the result of the first step, the parameters of the basilar membrane sub-model and frequency box are automatically adjusted, such as the number of the basilar membrane filters, center frequency and bandwith of each basilar membrane filter, position of each frequency box, and so on. Lastly  an auditory model is built, and the final output is auditory spectrum.The results of numerical simulation and experiments have showed that the proposed model could realize accurate frequency selection, and the auditory spectrum is more distinctly than that of conventional ZCPA model. Moreover, the proposed model can completely avoided the influence of the number of filter on the shape of auditory spectrum existing in conventional ZCPA model so that the shape of auditory spectrum is steady, and the data quantity is small.

  8. Auditory Efferent System Modulates Mosquito Hearing.

    Science.gov (United States)

    Andrés, Marta; Seifert, Marvin; Spalthoff, Christian; Warren, Ben; Weiss, Lukas; Giraldo, Diego; Winkler, Margret; Pauls, Stephanie; Göpfert, Martin C

    2016-08-01

    The performance of vertebrate ears is controlled by auditory efferents that originate in the brain and innervate the ear, synapsing onto hair cell somata and auditory afferent fibers [1-3]. Efferent activity can provide protection from noise and facilitate the detection and discrimination of sound by modulating mechanical amplification by hair cells and transmitter release as well as auditory afferent action potential firing [1-3]. Insect auditory organs are thought to lack efferent control [4-7], but when we inspected mosquito ears, we obtained evidence for its existence. Antibodies against synaptic proteins recognized rows of bouton-like puncta running along the dendrites and axons of mosquito auditory sensory neurons. Electron microscopy identified synaptic and non-synaptic sites of vesicle release, and some of the innervating fibers co-labeled with somata in the CNS. Octopamine, GABA, and serotonin were identified as efferent neurotransmitters or neuromodulators that affect auditory frequency tuning, mechanical amplification, and sound-evoked potentials. Mosquito brains thus modulate mosquito ears, extending the use of auditory efferent systems from vertebrates to invertebrates and adding new levels of complexity to mosquito sound detection and communication. PMID:27476597

  9. Functional Neurochemistry of the Auditory System

    Directory of Open Access Journals (Sweden)

    Nourollah Agha Ebrahimi

    1993-03-01

    Full Text Available Functional Neurochemistry is one of the fields of studies in the auditory system which has had an outstanding development in the recent years. Many of the findings in the mentioned field had led not only the basic auditory researches but also the clinicians to new points of view in audiology.Here, we are aimed at discussing the latest investigations in the Functional Neurochemistry of the auditory system and have focused this review mainly on the researches which will arise flashes of hope for future clinical studies

  10. Auditory Neuropathy/Dyssynchrony in Biotinidase Deficiency

    Science.gov (United States)

    Yaghini, Omid

    2016-01-01

    Biotinidase deficiency is a disorder inherited autosomal recessively showing evidence of hearing loss and optic atrophy in addition to seizures, hypotonia, and ataxia. In the present study, a 2-year-old boy with Biotinidase deficiency is presented in which clinical symptoms have been reported with auditory neuropathy/auditory dyssynchrony (AN/AD). In this case, transient-evoked otoacoustic emissions showed bilaterally normal responses representing normal function of outer hair cells. In contrast, acoustic reflex test showed absent reflexes bilaterally, and visual reinforcement audiometry and auditory brainstem responses indicated severe to profound hearing loss in both ears. These results suggest AN/AD in patients with Biotinidase deficiency. PMID:27144235

  11. Functional Neurochemistry of the Auditory System

    OpenAIRE

    Nourollah Agha Ebrahimi

    1993-01-01

    Functional Neurochemistry is one of the fields of studies in the auditory system which has had an outstanding development in the recent years. Many of the findings in the mentioned field had led not only the basic auditory researches but also the clinicians to new points of view in audiology.Here, we are aimed at discussing the latest investigations in the Functional Neurochemistry of the auditory system and have focused this review mainly on the researches which will arise flashes of hope f...

  12. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    Prediction and assessment of low-frequency noise problems requires information about the auditory filter characteristics at low-frequencies. Unfortunately, data at low-frequencies is scarce and practically no results have been published for frequencies below 100 Hz. Extrapolation of ERB results......-ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...

  13. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  14. Combination of Acellular Nerve Graft and Schwann Cells-Like Cells for Rat Sciatic Nerve Regeneration

    OpenAIRE

    Songtao Gao; Yan Zheng; Qiqing Cai; Zhansheng Deng; Weitao Yao; Jiaqiang Wang; Xin Wang; Peng Zhang

    2014-01-01

    Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI), neural electrophysiology (NEP), histological and tra...

  15. AUDITORY CORTICAL PLASTICITY: DOES IT PROVIDE EVIDENCE FOR COGNITIVE PROCESSING IN THE AUDITORY CORTEX?

    OpenAIRE

    Irvine, Dexter R. F.

    2007-01-01

    The past 20 years have seen substantial changes in our view of the nature of the processing carried out in auditory cortex. Some processing of a cognitive nature, previously attributed to higher order “association” areas, is now considered to take place in auditory cortex itself. One argument adduced in support of this view is the evidence indicating a remarkable degree of plasticity in the auditory cortex of adult animals. Such plasticity has been demonstrated in a wide range of paradigms, i...

  16. Personal Computer Based Clinical Programming Software for Auditory Prostheses

    Directory of Open Access Journals (Sweden)

    K. Rajakumar

    2009-01-01

    Full Text Available Auditory Prostheses (AP are widely used electronic devices for patients suffering with severe to profound senosorineural deafness by electrically stimulating the auditory nerve using an electrode array surgically placed in the inner ear. AP mainly contains external Body Worn Speech Processor (BWSP and internal Implantable Receiver Stimulator (IRS. BWSP receives an external sound or speech and generates encoded speech data bits for transmission to IRS via radio frequency transcutaneous link for excitation of electrode array. After surgical placement electrode array in the inner ear, BWSP should be fine tuned to achieve the 80-100% speech reception abilities of patient by an audiologist. Problem statement: Basic objective of this research was to develop a simple personal computer based user friendly hardware and software interface to fine tune the BWSP to achieve the best possible speech reception abilities of each individual patient. Approach: Tuning process involved several tasks such as identifying the active electrode contacts, determination of detection and pain thresholds of each active electrode and loads these values into BWSP by reprogramming the BWSP. This study contracted with development of easy and simple user friendly hardware and software interface for audiologist to perform post operation tuning procedures. A microcontroller based impedance telemetry with bidirectional RF transceiver was developed as a hardware interface between PC and IRS. The clinical programming software was developed using VB.NET 2008 to perform the post-operative tuning procedures such as (i impedance measurement, (ii fitting to determine the threshold and comfort levels for each active electrodes and (iii reprogramming the speech processor. Results: Simple hardware and software interfaces for audiologist were constructed and tested with laboratory model BWSP and IRS using simulated resistance electrode array. All the functional aspects were tested and results

  17. Schwannomatosis of the sciatic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tetsuji; Maruyama, Shigeki; Mizuno, Kosaku [Dept. of Orthopaedic Surgery, Kobe University School of Medicine (Japan)

    2001-02-01

    A 52-year-old woman with schwannomatosis in the left sciatic nerve is presented. The patient had no stigmata of neurofibromatosis (NF) type 1 or 2. Cutaneous or spinal schwannomas were not detected. Magnetic resonance (MR) imaging of the sciatic nerve revealed more than 15 tumors along the course of the nerve. Histological examination revealed schwannomas consisting of Antoni A and B areas. Immunohistochemical study showed most cells reacting intensely for S-100 protein. The patient underwent conservative follow-up treatment due to the minimal symptoms. The relationship of the disease with NF-2 and plexiform schwannoma is discussed. (orig.)

  18. Frequency band-importance functions for auditory and auditory-visual speech recognition

    Science.gov (United States)

    Grant, Ken W.

    2005-04-01

    In many everyday listening environments, speech communication involves the integration of both acoustic and visual speech cues. This is especially true in noisy and reverberant environments where the speech signal is highly degraded, or when the listener has a hearing impairment. Understanding the mechanisms involved in auditory-visual integration is a primary interest of this work. Of particular interest is whether listeners are able to allocate their attention to various frequency regions of the speech signal differently under auditory-visual conditions and auditory-alone conditions. For auditory speech recognition, the most important frequency regions tend to be around 1500-3000 Hz, corresponding roughly to important acoustic cues for place of articulation. The purpose of this study is to determine the most important frequency region under auditory-visual speech conditions. Frequency band-importance functions for auditory and auditory-visual conditions were obtained by having subjects identify speech tokens under conditions where the speech-to-noise ratio of different parts of the speech spectrum is independently and randomly varied on every trial. Point biserial correlations were computed for each separate spectral region and the normalized correlations are interpreted as weights indicating the importance of each region. Relations among frequency-importance functions for auditory and auditory-visual conditions will be discussed.

  19. Nerve Transfers for Treatment of Isolated Axillary Nerve Injuries

    OpenAIRE

    Wheelock, Margie; Clark, Tod A; Giuffre, Jennifer L

    2015-01-01

    Almost one-half of all dislocations involve the shoulder and may also involve the axillary nerves, which may influence functional recovery and result in persistent shoulder neuropathy. Although individuals with intact rotator cuffs may be able to compensate for axillary nerve dysfunction, the injury may become problematic in later years, especially given the increasing incidence of rotator cuff tears in aging populations, thus placing increased importance on the immediate success of acute man...

  20. In search of an auditory engram

    Science.gov (United States)

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory. PMID:15967995

  1. Effect of omega-3 on auditory system

    Directory of Open Access Journals (Sweden)

    Vida Rahimi

    2014-01-01

    Full Text Available Background and Aim: Omega-3 fatty acid have structural and biological roles in the body 's various systems . Numerous studies have tried to research about it. Auditory system is affected a s well. The aim of this article was to review the researches about the effect of omega-3 on auditory system.Methods: We searched Medline , Google Scholar, PubMed, Cochrane Library and SID search engines with the "auditory" and "omega-3" keywords and read textbooks about this subject between 19 70 and 20 13.Conclusion: Both excess and deficient amounts of dietary omega-3 fatty acid can cause harmful effects on fetal and infant growth and development of brain and central nervous system esspesially auditory system. It is important to determine the adequate dosage of omega-3.

  2. Auditory perception modulated by word reading.

    Science.gov (United States)

    Cao, Liyu; Klepp, Anne; Schnitzler, Alfons; Gross, Joachim; Biermann-Ruben, Katja

    2016-10-01

    Theories of embodied cognition positing that sensorimotor areas are indispensable during language comprehension are supported by neuroimaging and behavioural studies. Among others, the auditory system has been suggested to be important for understanding sound-related words (visually presented) and the motor system for action-related words. In this behavioural study, using a sound detection task embedded in a lexical decision task, we show that in participants with high lexical decision performance sound verbs improve auditory perception. The amount of modulation was correlated with lexical decision performance. Our study provides convergent behavioural evidence of auditory cortex involvement in word processing, supporting the view of embodied language comprehension concerning the auditory domain. PMID:27324193

  3. [Approaches to therapy of auditory agnosia].

    Science.gov (United States)

    Fechtelpeter, A; Göddenhenrich, S; Huber, W; Springer, L

    1990-01-01

    In a 41-year-old stroke patient with bitemporal brain damage, we found severe signs of auditory agnosia 6 months after onset. Recognition of environmental sounds was extremely impaired when tested in a multiple choice sound-picture matching task, whereas auditory discrimination between sounds and picture identifications by written names was almost undisturbed. In a therapy experiment, we tried to enhance sound recognition via semantic categorization and association, imitation of sound and analysis of auditory features, respectively. The stimulation of conscious auditory analysis proved to be increasingly effective over a 4-week period of therapy. We were able to show that the patient's improvement was not only a simple effect of practicing, but it was stable and carried over to nontrained items.

  4. Auditory-visual spatial interaction and modularity

    Science.gov (United States)

    Radeau, M

    1994-02-01

    The results of dealing with the conditions for pairing visual and auditory data coming from spatially separate locations argue for cognitive impenetrability and computational autonomy, the pairing rules being the Gestalt principles of common fate and proximity. Other data provide evidence for pairing with several properties of modular functioning. Arguments for domain specificity are inferred from comparison with audio-visual speech. Suggestion of innate specification can be found in developmental data indicating that the grouping of visual and auditory signals is supported very early in life by the same principles that operate in adults. Support for a specific neural architecture comes from neurophysiological studies of the bimodal (auditory-visual) neurons of the cat superior colliculus. Auditory-visual pairing thus seems to present the four main properties of the Fodorian module.

  5. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  6. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  7. Inhalation of hydrogen gas attenuates ouabaininduced auditory neuropathy in gerbils

    Institute of Scientific and Technical Information of China (English)

    Juan QU; Yun-na GAN; Ke-liang XIE; Wen-bo LIU; Ya-fei WANG; Ren-yi HEI; Wen-juan MI; Jian-hua QIU

    2012-01-01

    Aim:Auditory neuropathy (AN)is a hearing disorder characterized by abnormal auditory nerve function with preservation of normal cochlear hair cells.This study was designed to investigate whether treatment with molecular hydrogen (H2),which can remedy damage in various organs via reducing oxidative stress,inflammation and apoptosis,is beneficial to ouabain-induced AN in gerbils.Methods:AN model was made by local application of ouabain (1 mmoVL,20 mL)to the round window membrane in male Mongolian gerbils.H2 treatment was given twice by exposing the animals to H2 (1%,2%,and 4%)for 60 min at 1 h and 6 h after ouabain application.Before and 7 d after ouabain application,the hearing status of the animals was evaluated using the auditory brainstem response (ABR)approach,the hear cell function was evaluated with distortion product otoacoustic emissions (DPOAE).Seven days after ouabain application,the changes in the cochleae,especially the spiral ganglion neurons (SGNs),were morphologically studied.TUNEL staining and immunofluorescent staining for activated caspase-3 were used to assess the apoptosis of SGNs.Results:Treatment with H2 (2% and 4%)markedly attenuated the click and tone burst-evoked ABR threshold shift at 4,8,and 16 kHz in ouabain-exposed animals.Neither local ouabain application,nor H2 treatment changed the amplitude of DPOAE at 4,8,and 16 kHz.Morphological study showed that treatment with H2 (2%)significantly alleviated SGN damage and attenuated the loss of SGN density for each turn of cochlea in ouabain-exposed animals.Furthermore,ouabain caused significantly higher numbers of apoptotic SGNs in the cochlea,which was significantly attenuated by the H2 treatment.However,ouabain did not change the morphology of cochlear hair cells.Conclusion:The results demonstrate that H2 treatment is beneficial to ouabain-induced AN via reducing apoptosis.Thus,H2 might be a potential agent for treating hearing impairment in AN patients.

  8. Auditory sequence analysis and phonological skill

    OpenAIRE

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E.; Turton, Stuart; Griffiths, Timothy D

    2012-01-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between ...

  9. Auditory memory function in expert chess players

    OpenAIRE

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Background: Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert...

  10. Auditory brain-stem responses in syphilis.

    OpenAIRE

    Rosenhall, U; Roupe, G

    1981-01-01

    Analysis of auditory brain-stem electrical responses (BSER) provides an effective means of detecting lesions in the auditory pathways. In the present study the wave patterns were analysed in 11 patients with secondary or latent syphilis with no clinical symptoms referrable to the central nervous system and in two patients with congenital syphilis and general paralysis. Decreased amplitudes and prolonged latencies occurred frequently in patients with secondary and with advanced syphilis. This ...

  11. Nerve Transfers for the Restoration of Wrist, Finger, and Thumb Extension After High Radial Nerve Injury.

    Science.gov (United States)

    Pet, Mitchell A; Lipira, Angelo B; Ko, Jason H

    2016-05-01

    High radial nerve injury is a common pattern of peripheral nerve injury most often associated with orthopedic trauma. Nerve transfers to the wrist and finger extensors, often from the median nerve, offer several advantages when compared to nerve repair or grafting and tendon transfer. In this article, we discuss the forearm anatomy pertinent to performing these nerve transfers and review the literature surrounding nerve transfers for wrist, finger, and thumb extension. A suggested algorithm for management of acute traumatic high radial nerve palsy is offered, and our preferred surgical technique for treatment of high radial nerve palsy is provided. PMID:27094891

  12. Nerve Disease and Bladder Control

    Science.gov (United States)

    ... Research Training & Career Development Grant programs for students, postdocs, and faculty Research at NIDDK Labs, faculty, and ... KB) Alternate Language URL Nerve Disease and Bladder Control Page Content On this page: What bladder control ...

  13. Nonneoplastic enhancement of internal auditory canal contents mimicking intracanalicular acoustic neuroma on MR images

    International Nuclear Information System (INIS)

    The authors present five patients with inflammation of facial and/or vestibulocochlear nerves that showed enhancement of structures in the internal auditory canal. (IAC) on MR imaging that mimic intracanalicular acoustic neuroma. MR imaging findings of four patients with unilateral sensorineural hearing loss and one with acute facial paralysis were reviewed along with the operative findings. MR imaging included pre-and postcontrast T1- and T2-weighted images. Three patients who presented with unilateral sensorineural hearing loss underwent surgery for exploration and decompression of the IAC. One patient with facial paralysis showed vesicular eruption in the external auditory canal and was diagnosed as having Ramsay Hunt syndrome (herpes zosteroticus) clinically. The fifth patient is also being followed up clinically. MR imaging findings in all five cases were similar. There was focal enhancement in the lateral portion of the IAC on postcontrast T1-weighted images with minimal mass effect. The swollen and edematous nerves were noted on surgery without any evidence of neoplasm. The patients not operated on showed no progression of symptoms. The enhancement of IAC contents on MR imaging in patients with nonspecific neuritis or Ramsay Hunt syndrome may be difficult to differentiate from a small intracanalicular neuroma, which may have important therapeutic implications

  14. Cranial nerve palsies in childhood

    OpenAIRE

    Lyons, C J; Godoy, F; ALQahtani, E

    2015-01-01

    We review ocular motor cranial nerve palsies in childhood and highlight many of the features that differentiate these from their occurrence in adulthood. The clinical characteristics of cranial nerve palsies in childhood are affected by the child's impressive ability to repair and regenerate after injury. Thus, aberrant regeneration is very common after congenital III palsy; Duane syndrome, the result of early repair after congenital VI palsy, is invariably associated with retraction of the g...

  15. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.

    Directory of Open Access Journals (Sweden)

    Maria Di Bonito

    Full Text Available Rhombomeres (r contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN, and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.

  16. Unilateral traumatic oculomotor nerve paralysis

    International Nuclear Information System (INIS)

    The present authors report a case of unilateral traumatic oculomotor nerve paralysis which shows interesting CT findings which suggest its mechanism. A 60-year-old woman was admitted to our hospital with a cerebral concussion soon after a traffic accident. A CT scan was performed soon after admission. A high-density spot was noted at the medial aspect of the left cerebral peduncle, where the oculomotor nerve emerged from the midbrain, and an irregular, slender, high-density area was delineated in the right dorsolateral surface of the midbrain. Although the right hemiparesis had already improved by the next morning, the function of the left oculomotor nerve has been completely disturbed for the three months since the injury. In our case, it is speculated that an avulsion of the left oculomotor nerve rootlet occurred at the time of impact as the mechanism of the oculomotor nerve paralysis. A CT taken soon after the head injury showed a high-density spot; this was considered to be a hemorrhage occurring because of the avulsion of the nerve rootlet at the medial surface of the cerebral peduncle. (J.P.N.)

  17. Anatomically based lower limb nerve model for electrical stimulation

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-12-01

    Full Text Available Abstract Background Functional Electrical Stimulation (FES is a technique that aims to rehabilitate or restore functionality of skeletal muscles using external electrical stimulation. Despite the success achieved within the field of FES, there are still a number of questions that remain unanswered. One way of providing input to the answers is through the use of computational models. Methods This paper describes the development of an anatomically based computer model of the motor neurons in the lower limb of the human leg and shows how it can be used to simulate electrical signal propagation from the beginning of the sciatic nerve to a skeletal muscle. One-dimensional cubic Hermite finite elements were used to represent the major portions of the lower limb nerves. These elements were fit to data that had been digitised using images from the Visible Man project. Nerves smaller than approximately 1 mm could not be seen in the images, and thus a tree-branching algorithm was used to connect the ends of the fitted nerve model to the respective skeletal muscle. To simulate electrical propagation, a previously published mammalian nerve model was implemented and solved on the anatomically based nerve mesh using a finite difference method. The grid points for the finite difference method were derived from the fitted finite element mesh. By adjusting the tree-branching algorithm, it is possible to represent different levels of motor-unit recruitment. Results To illustrate the process of a propagating nerve stimulus to a muscle in detail, the above method was applied to the nerve tree that connects to the human semitendinosus muscle. A conduction velocity of 89.8 m/s was obtained for a 15 μm diameter nerve fibre. This signal was successfully propagated down the motor neurons to a selected group of motor units in the muscle. Conclusion An anatomically and physiologically based model of the posterior motor neurons in the human lower limb was developed. This

  18. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations.

    Science.gov (United States)

    Murayama, M; Sasaki, K; Shibahara, T

    2015-12-01

    The objective of this study was to improve the accuracy of diagnosis of inferior alveolar nerve (IAN) injury by determining degrees of nerve disturbance using the sensory nerve action potential (SNAP) and sensory nerve conduction velocity (SCV). Crush and partial and complete nerve amputation injuries were applied to the IAN of rabbits, then SNAPs and histomorphometric observations were recorded at 1, 5, and 10 weeks. For crush injury, most nerves were smaller in diameter at 5 weeks than at 1 week, however after 10 weeks, extensive nerve regeneration was observed. The SNAP showed a decrease in SCV at weeks 1 and 5, followed by an increase at week 10. For partial nerve amputation, small to medium-sized nerve fibres were observed at weeks 1 and 5, then larger nerves were seen at week 10. Minimal changes in SCV were observed at weeks 1 and 5, however SCV increased at week 10. For complete nerve amputation, nerve fibres were sparse at week 1, but gradual nerve regeneration was observed at weeks 5 and 10. SNAPs were detectable from week 10, however the SCV was extremely low. This study showed SCV to be an effective factor in the evaluation of nerve injury and regeneration. PMID:26433750

  19. Bilateral tectal innervation by regenerating optic nerve fibers in goldfish: a radioautographic, electrophysiological and behavioral study.

    Science.gov (United States)

    Springer, A D; Heacock, A M; Schmidt, J T; Agranoff, B W

    1977-06-17

    Following unilateral enucleation and optic nerve crush in goldfish, the remaining nerve regenerates and innervates both optic tecta. Approximately 5% of the nerve fibers reach the ipsilateral optic tectum (IOT) via the ipsilateral tract at the chiasma. Comparable debris in both tracts was not sufficient to result in an IOT projection since when both nerves were crushed simultaneously the usual pattern was seen, i.e., each nerve innervated a contralateral optic tectum (COT). When the arrival of one nerve at the chiasma was delayed by staggering the nerve crushes, the nerve that first arrived at the chiasma partially innervated the Iot. In most instances the entire IOT was innervated, however, the stratigraphic distribution of fibers in the various tectal lamina was atypical. Electrophysiological analysis indicated that fibers from each area of the retina innervated the IOT visuotopically. The COT was ablated in order to determine whether the IOT projection could mediate behavior. All fish failed to respond to changes in illumination as measured by respiration and failed to swim with or against the stripes in an optomotor drum. Thus, the IOT input, possibly because of its sparseness, could not be shown to be behaviorally functional. PMID:69466

  20. CROSSING ANASTOMOSIS OF NERVE BUNDLES NEAR INNERVATED ORGANS TO TREAT IRREPARABLE NERVE INJURIES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To study the therapeutical effects of crossing anastomosis of nerve on the peripheral and central nerve injuries.Methods Twelve kinds of central and peripheral nerve disorders and their complications were treated with 11 kinds of crossing anastomosis of nerve bundles near the innervated organs. After nerve injury and repair, somatosensory evoked potentials (SEPs) and horseradish peroxidase (HRP) retrograde tracing studies were used to investigate the rabbit's nerve function and morphology.Results The ulcers of all patients healed. Sensation, voluntary movement, and joint function recovered. Four weeks after the anastomosis of distal stump of radialis superficialis nerve and median nerve, pain sensation regained and SEPs appeared. HRP retrograde tracing studies demonstrated sensory nerve ending of medial nerve formed new connection with the body of neuron.Conclusion Crossing anastomosis of nerve is an effective method to treat peripheral and central nerve injuries.

  1. Auditory sustained field responses to periodic noise

    Directory of Open Access Journals (Sweden)

    Keceli Sumru

    2012-01-01

    Full Text Available Abstract Background Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. Results Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. Conclusions The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.

  2. Neurofibromatosis type 2 and auditory brainstem implantation

    Institute of Scientific and Technical Information of China (English)

    XIAO Hong-jun; Dennis K.K. Au; Yau Hui; Chun-kuen Chow; Yiu-wah Fan; William Ignace Wei

    2007-01-01

    @@ Neurofibromatosis type 2 (NF-2) is one of the most common single gene disorders in the nervous system.For approximately 96% of patients with NF-2 present with bilateral Schwannomas involving the eighth cranial nerves, which may be accompanied by Schwannomas involving other cranial, spinal or peripheral nerves, NF-2 is also referred to as "bilateral acoustic neuromas".

  3. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve. PMID:2719524

  4. [Research Progress in Seeding Cells of Peripheral Nerve].

    Science.gov (United States)

    Shi, Gengqiang; Hu, Yi

    2015-04-01

    Seeding cells play an important role in the peripheral nerve damage repair. Seeding cells studied conse- quently in peripheral nerve are Schwann cells, bone marrow mesenchymal stem cells and neural stem cells. Schwann cells, the first seeding cells, are various unique glial cells in the peripheral nervous system, which can form the myelin sheath for insulation and package of the neuron projecting axons in the peripheral nervous system so that the conduction velocity of the nerve signal was accelerated. It can be proved that Schwann cells played an important role in the maintenance of peripheral nerve function and in the regeneration process after peripheral nerve injury. The second, bone marrow mesenchymal stem cells are the various mesenchymal stem cells mainly exist in the systemic connective tissues and organs. These functional stem cells are often studied at present, and it has been found that they have exuberant proliferation and differentiation potentials. Neural stem cells, mentioned the third in sequence, are the kind of pluripotent cells with multi-directional differentiation, which could conduct the self-renewal function, and generate and differentiate neurons, astrocytes and oligodendrocytes through asymmetric cell division. These three types of seed cells are discussed in this paper. PMID:26211274

  5. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    Science.gov (United States)

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches.

  6. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair

    OpenAIRE

    Wang, Dong; Huang, Xijun; Fu, Guo; Gu, Liqiang; Liu, Xiaolin; WANG, HONGGANG; Hu, Jun; Yi, Jianhua; Niu, Xiaofeng; Zhu, Qingtang

    2014-01-01

    Current research on bone marrow stem cell transplantation and autologous or xenogenic nerve transplantation for peripheral nerve regeneration has mainly focused on the repair of peripheral nerve defects in rodents. In this study, we established a standardized experimental model of radial nerve defects in primates and evaluated the effect of repair on peripheral nerve injury. We repaired 2.5-cm lesions in the radial nerve of rhesus monkeys by transplantation of autografts, acellular allografts...

  7. 窒息新生儿脑干诱发电位的检测价值%The Value of Brainstem Auditory Evoked Potential in Asphyxia Neonatorum

    Institute of Scientific and Technical Information of China (English)

    李秋玲

    2011-01-01

    围生期窒息后可引起听神经通路细胞的缺血/再灌注损伤,从而影响听觉功能.脑干听觉诱发电位可反映脑神经和脑听觉通路不同部位所引起的生物电活动,因其客观、准确、重复性好、无损伤性、受干扰因素少而受到儿科工作者重视.对可能累及到中枢神经系统功能失调及听力障碍的儿科疾病具有早期诊断和判断预后的临床参考价值.%The ischemic reperfusion of injury of nerve cell in auditory pathway can be caued by perinatal asphyxia. And the injury can affect hearing. Brainstem auditory evoked potential can reflect the bioelectric activity of cranial nerves and cerebral auditory pathway. Because it have not only good objectivity, precision and reproducibility , but also it have no damage and few interference factors, brainstem auditory evoked potential was thought highly by pediatrician. It has the clinical reference value of early diagnosis and the judgment of prognosis in pediatrie disease of central dysautonomia and dysacusis.

  8. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  9. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  10. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ′excellent′ and ′good′ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  11. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    Institute of Scientific and Technical Information of China (English)

    Huawei Liu; Weisheng Wen; Min Hu; Wenting Bi; Lijie Chen; Sanxia Liu; Peng Chen; Xinying Tan

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as wel as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. Electro-physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation il ustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits com-bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits.

  12. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects.

    Science.gov (United States)

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-11-25

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  13. Cardiac autonomic nerve distribution and arrhythmia

    Institute of Scientific and Technical Information of China (English)

    Quan Liu; Dongmei Chen; Yonggang Wang; Xin Zhao; Yang Zheng

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia.DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using "heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation" as the key words.SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included.MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated.RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system.CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in the

  14. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram.

    Science.gov (United States)

    Hossain, Mohammad E; Jassim, Wissam A; Zilany, Muhammad S A

    2016-01-01

    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants. PMID:26967160

  15. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  16. The harmonic organization of auditory cortex.

    Science.gov (United States)

    Wang, Xiaoqin

    2013-01-01

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544

  17. Facial nerve paralysis in children.

    Science.gov (United States)

    Ciorba, Andrea; Corazzi, Virginia; Conz, Veronica; Bianchini, Chiara; Aimoni, Claudia

    2015-12-16

    Facial nerve palsy is a condition with several implications, particularly when occurring in childhood. It represents a serious clinical problem as it causes significant concerns in doctors because of its etiology, its treatment options and its outcome, as well as in little patients and their parents, because of functional and aesthetic outcomes. There are several described causes of facial nerve paralysis in children, as it can be congenital (due to delivery traumas and genetic or malformative diseases) or acquired (due to infective, inflammatory, neoplastic, traumatic or iatrogenic causes). Nonetheless, in approximately 40%-75% of the cases, the cause of unilateral facial paralysis still remains idiopathic. A careful diagnostic workout and differential diagnosis are particularly recommended in case of pediatric facial nerve palsy, in order to establish the most appropriate treatment, as the therapeutic approach differs in relation to the etiology.

  18. The effect of background music in auditory health persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2013-01-01

    In auditory health persuasion, threatening information regarding health is communicated by voice only. One relevant context of auditory persuasion is the addition of background music. There are different mechanisms through which background music might influence persuasion, for example through mood (

  19. Auditory Discrimination Development through Vestibulo-Cochlear Stimulation.

    Science.gov (United States)

    Palmer, Lyelle L.

    1980-01-01

    Three types of vestibular activities (active, adaptive, and passively imposed) to improve auditory discrimination development are described and results of a study using the vestibular stimulation techniques with 20 Ss (average age 9) having abnormal auditory discrimination. (PHR)

  20. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. PMID:20018234

  1. The Use of Degradable Nerve Conduits for Human Nerve Repair: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    M. F. Meek

    2005-01-01

    Full Text Available The management of peripheral nerve injury continues to be a major clinical challenge. The most widely used technique for bridging defects in peripheral nerves is the use of autologous nerve grafts. This technique, however, has some disadvantages. Many alternative experimental techniques have thus been developed, such as degradable nerve conduits. Degradable nerve guides have been extensively studied in animal experimental studies. However, the repair of human nerves by degradable nerve conduits has been limited to only a few clinical studies. In this paper, an overview of the available international published literature on degradable nerve conduits for bridging human peripheral nerve defects is presented for literature available until 2004. Also, the philosophy on the use of nerve guides and nerve grafts is given.

  2. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity.

    Science.gov (United States)

    Meredith, M Alex; Clemo, H Ruth; Corley, Sarah B; Chabot, Nicole; Lomber, Stephen G

    2016-03-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  3. Peripheral nerve conduits: technology update

    Directory of Open Access Journals (Sweden)

    Arslantunali D

    2014-12-01

    Full Text Available D Arslantunali,1–3,* T Dursun,1,2,* D Yucel,1,4,5 N Hasirci,1,2,6 V Hasirci,1,2,7 1BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU, Ankara, Turkey; 2Department of Biotechnology, METU, Ankara, Turkey; 3Department of Bioengineering, Gumushane University, Gumushane, Turkey; 4Faculty of Engineering, Department of Medical Engineering, Acibadem University, Istanbul, Turkey; 5School of Medicine, Department of Histology and Embryology, Acibadem University, Istanbul, Turkey; 6Department of Chemistry, Faculty of Arts and Sciences, METU, Ankara, Turkey; 7Department of Biological Sciences, Faculty of Arts and Sciences, METU, Ankara, Turkey *These authors have contributed equally to this work Abstract: Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers and designs (tubular, fibrous, and matrix type are being presented. Keywords: peripheral nerve injury, natural biomaterials, synthetic biomaterials

  4. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  5. Applied research in auditory data representation

    Science.gov (United States)

    Frysinger, Steve P.

    1990-08-01

    A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.

  6. Are auditory percepts determined by experience?

    Science.gov (United States)

    Monson, Brian B; Han, Shui'Er; Purves, Dale

    2013-01-01

    Audition--what listeners hear--is generally studied in terms of the physical properties of sound stimuli and physiological properties of the auditory system. Based on recent work in vision, we here consider an alternative perspective that sensory percepts are based on past experience. In this framework, basic auditory qualities (e.g., loudness and pitch) are based on the frequency of occurrence of stimulus patterns in natural acoustic stimuli. To explore this concept of audition, we examined five well-documented psychophysical functions. The frequency of occurrence of acoustic patterns in a database of natural sound stimuli (speech) predicts some qualitative aspects of these functions, but with substantial quantitative discrepancies. This approach may offer a rationale for auditory phenomena that are difficult to explain in terms of the physical attributes of the stimuli as such.

  7. Are auditory percepts determined by experience?

    Directory of Open Access Journals (Sweden)

    Brian B Monson

    Full Text Available Audition--what listeners hear--is generally studied in terms of the physical properties of sound stimuli and physiological properties of the auditory system. Based on recent work in vision, we here consider an alternative perspective that sensory percepts are based on past experience. In this framework, basic auditory qualities (e.g., loudness and pitch are based on the frequency of occurrence of stimulus patterns in natural acoustic stimuli. To explore this concept of audition, we examined five well-documented psychophysical functions. The frequency of occurrence of acoustic patterns in a database of natural sound stimuli (speech predicts some qualitative aspects of these functions, but with substantial quantitative discrepancies. This approach may offer a rationale for auditory phenomena that are difficult to explain in terms of the physical attributes of the stimuli as such.

  8. Phonetic categorization in auditory word perception.

    Science.gov (United States)

    Ganong, W F

    1980-02-01

    To investigate the interaction in speech perception of auditory information and lexical knowledge (in particular, knowledge of which phonetic sequences are words), acoustic continua varying in voice onset time were constructed so that for each acoustic continuum, one of the two possible phonetic categorizations made a word and the other did not. For example, one continuum ranged between the word dash and the nonword tash; another used the nonword dask and the word task. In two experiments, subjects showed a significant lexical effect--that is, a tendency to make phonetic categorizations that make words. This lexical effect was greater at the phoneme boundary (where auditory information is ambiguous) than at the ends of the condinua. Hence the lexical effect must arise at a stage of processing sensitive to both lexical knowledge and auditory information.

  9. Auditory temporal processes in the elderly

    Directory of Open Access Journals (Sweden)

    E. Ben-Artzi

    2011-03-01

    Full Text Available Several studies have reported age-related decline in auditory temporal resolution and in working memory. However, earlier studies did not provide evidence as to whether these declines reflect overall changes in the same mechanisms, or reflect age-related changes in two independent mechanisms. In the current study we examined whether the age-related decline in auditory temporal resolution and in working memory would remain significant even after controlling for their shared variance. Eighty-two participants, aged 21-82 performed the dichotic temporal order judgment task and the backward digit span task. The findings indicate that age-related decline in auditory temporal resolution and in working memory are two independent processes.

  10. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  11. Neurotrophic treatment of the degenerating auditory nerve; cochlear implants in deafened guinea pigs

    NARCIS (Netherlands)

    Agterberg, M.J.H.

    2009-01-01

    To date, the cochlear implant is the most successful sensorineural prosthesis. The device consists of a small array with a number of electrodes implanted in the cochlea of profoundly hearing impaired people. Some people with an implant are able to use the telephone. Unfortunately, others hardly bene

  12. Improved Auditory Nerve Survival with Nanoengineered Supraparticles for Neurotrophin Delivery into the Deafened Cochlea

    Science.gov (United States)

    Tan, Justin; Wang, Yajun; Caruso, Frank; Shepherd, Robert K.

    2016-01-01

    Cochlear implants electrically stimulate spiral ganglion neurons (SGNs) in order to provide speech cues to severe-profoundly deaf patients. In normal hearing cochleae the SGNs depend on endogenous neurotrophins secreted by sensory cells in the organ of Corti for survival. SGNs gradually degenerate following deafness and consequently there is considerable interest in developing clinically relevant strategies to provide exogenous neurotrophins to preserve SGN survival. The present study investigated the safety and efficacy of a drug delivery system for the cochlea using nanoengineered silica supraparticles. In the present study we delivered Brain-derived neurotrophic factor (BDNF) over a period of four weeks and evaluated SGN survival as a measure of efficacy. Supraparticles were bilaterally implanted into the basal turn of cochleae in profoundly deafened guinea pigs. One ear received BDNF-loaded supraparticles and the other ear control (unloaded) supraparticles. After one month of treatment the cochleae were examined histologically. There was significantly greater survival of SGNs in cochleae that received BDNF supraparticles compared to the contralateral control cochleae (repeated measures ANOVA, p = 0.009). SGN survival was observed over a wide extent of the cochlea. The supraparticles were well tolerated within the cochlea with a tissue response that was localised to the site of implantation in the cochlear base. Although mild, the tissue response was significantly greater in cochleae treated with BDNF supraparticles compared to the controls (repeated measures ANOVA, p = 0.003). These data support the clinical potential of this technology particularly as the supraparticles can be loaded with a variety of therapeutic drugs. PMID:27788219

  13. Basic response characteristics of auditory nerve fibers in the grassfrog (Rana temporaria)

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B; Kanneworff, M

    1998-01-01

    phasic cells giving one spike per stimulation. Therefore, the mechanism underlying PS is probably different from that underlying adaptation. The sharpening of the neural encoding of temporal parameters and the strong encoding of sound offset as well as onset caused by PS very likely is biologically...

  14. Electrical stimulation of the auditory nerve: direct current measurement in vivo.

    Science.gov (United States)

    Huang, C Q; Shepherd, R K; Carter, P M; Seligman, P M; Tabor, B

    1999-04-01

    Neural prostheses use charge recovery mechanisms to ensure the electrical stimulus is charge balanced. Nucleus cochlear implants short all stimulating electrodes between pulses in order to achieve charge balance, resulting in a small residual direct current (DC). In the present study we sought to characterize the variation of this residual DC with different charge recovery mechanisms, stimulation modes, and stimulation parameters, and by modeling, to gain insight into the underlying mechanisms. In an acute study with anaesthetised guinea pigs, DC was measured in four platinum intracochlear electrodes stimulated using a Nucleus C124M cochlear implant at moderate to high pulse rates (1200-14,500 pulses/s) and stimulus intensities (0.2-1.75 mA at 26-200 microseconds/phase). Both monopolar and bipolar stimulation modes were used, and the effects of shorting or combining a capacitor with shorting for charge recovery were investigated. Residual DC increased as a function of stimulus rate, stimulus intensity, and pulse width. DC was lower for monopolar than bipolar stimulation, and lower still with capacitively coupled monopolar stimulation. Our model suggests that residual DC is a consequence of Faradaic reactions which allow charge to leak through the electrode tissue interface. Such reactions and charge leakage are still present when capacitors are used to achieve charge recovery, but anodic and cathodic reactions are balanced in such a way that the net charge leakage is zero. PMID:10217884

  15. An experimental study of nerve bypass graft

    Institute of Scientific and Technical Information of China (English)

    XU Jie; LI Xue-shi

    2008-01-01

    Objective: To study the use of a nerve "bypass" graft as a possible alternative to neurolysis or segmental resection with interposition grafting in the treatment of neuroma-in-continuity. Methods: A sciatic nerve crush injury model was established in the Sprague-Dawley rat by compression with a straight hemostatic forceps. Epineurial windows were created proximal and distal to the injury site. An 8-mm segment of radial nerve was harvested and coaptated to the sciatic nerve at the epineurial window sites proximal and distal to the compressed segment (bypass group). A sciatic nerve crush injury without bypass served as a control. Nerve conduction studies were performed over an 8-week period. Sciatic nerves were then harvested and studied under transmission electron microscopy. Myelinated axon counts were obtained. Results: Nerve conduction velocity was significantly faster in the bypass group than in the control group at 8 weeks (63.57 m/s±5.83 m/s vs. 54.88 m/s±4.79m/s, P<0.01). Myelinated axon counts in distal segments were found more in the experimental sciatic nerve than in the control sciatic nerve. Significant axonal growth was noted in the bypass nerve segment itself. Conclusion: Nerve bypass may serve to augment peripheral axonal growth while avoiding further loss of the native nerve.

  16. Auditory Neuropathy Spectrum Disorder Masquerading as Social Anxiety

    OpenAIRE

    Behere, Rishikesh V.; Rao, Mukund G.; Mishra, Shree; Varambally, Shivarama; Nagarajarao, Shivashankar; Bangalore N Gangadhar

    2015-01-01

    The authors report a case of a 47-year-old man who presented with treatment-resistant anxiety disorder. Behavioral observation raised clinical suspicion of auditory neuropathy spectrum disorder. The presence of auditory neuropathy spectrum disorder was confirmed on audiological investigations. The patient was experiencing extreme symptoms of anxiety, which initially masked the underlying diagnosis of auditory neuropathy spectrum disorder. Challenges in diagnosis and treatment of auditory neur...

  17. ABR and auditory P300 findings inchildren with ADHD

    OpenAIRE

    Schochat Eliane; Scheuer Claudia Ines; Andrade Ênio Roberto de

    2002-01-01

    Auditory processing disorders (APD), also referred as central auditory processing disorders (CAPD) and attention deficit hyperactivity disorders (ADHD) have become popular diagnostic entities for school age children. It has been demonstrated a high incidence of comorbid ADHD with communication disorders and auditory processing disorder. The aim of this study was to investigate ABR and P300 auditory evoked potentials in children with ADHD, in a double-blind study. Twenty-one children, ages bet...

  18. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    OpenAIRE

    Golden, Hannah L.; Jennifer L. Agustus; Johanna C. Goll; Downey, Laura E; Mummery, Catherine J.; Jonathan M Schott; Crutch, Sebastian J.; Jason D Warren

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘back...

  19. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  20. Nerve lesioning with direct current

    Science.gov (United States)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  1. Auditory Brainstem Response Improvements in Hyperbillirubinemic Infants

    Science.gov (United States)

    Abdollahi, Farzaneh Zamiri; Manchaiah, Vinaya; Lotfi, Yones

    2016-01-01

    Background and Objectives Hyperbillirubinemia in infants have been associated with neuronal damage including in the auditory system. Some researchers have suggested that the bilirubin-induced auditory neuronal damages may be temporary and reversible. This study was aimed at investigating the auditory neuropathy and reversibility of auditory abnormalities in hyperbillirubinemic infants. Subjects and Methods The study participants included 41 full term hyperbilirubinemic infants (mean age 39.24 days) with normal birth weight (3,200-3,700 grams) that admitted in hospital for hyperbillirubinemia and 39 normal infants (mean age 35.54 days) without any hyperbillirubinemia or other hearing loss risk factors for ruling out maturational changes. All infants in hyperbilirubinemic group had serum bilirubin level more than 20 milligram per deciliter and undergone one blood exchange transfusion. Hearing evaluation for each infant was conducted twice: the first one after hyperbilirubinemia treatment and before leaving hospital and the second one three months after the first hearing evaluation. Hearing evaluations included transient evoked otoacoustic emission (TEOAE) screening and auditory brainstem response (ABR) threshold tracing. Results The TEOAE and ABR results of control group and TEOAE results of the hyperbilirubinemic group did not change significantly from the first to the second evaluation. However, the ABR results of the hyperbilirubinemic group improved significantly from the first to the second assessment (p=0.025). Conclusions The results suggest that the bilirubin induced auditory neuronal damage can be reversible over time so we suggest that infants with hyperbilirubinemia who fail the first hearing tests should be reevaluated after 3 months of treatment. PMID:27144228

  2. Frequency Transformation in the Auditory Lemniscal Thalamocortical System.

    Directory of Open Access Journals (Sweden)

    Kazuo eImaizumi

    2014-07-01

    Full Text Available The auditory lemniscal thalamocortical (TC pathway conveys information from the ventral division of the medial geniculate body to the primary auditory cortex (A1. Although their general topographic organization has been well characterized, functional transformations at the lemniscal TC synapse still remain incompletely codified, largely due to the need for integration of functional anatomical results with the variability observed with various animal models and experimental techniques. In this review, we discuss these issues with classical approaches, such as in vivo extracellular recordings and tracer injections to physiologically identified areas in A1, and then compare these studies with modern approaches, such as in vivo two-photon calcium imaging, in vivo whole-cell recordings, optogenetic methods, and in vitro methods using slice preparations. A surprising finding from a comparison of classical and modern approaches is the similar degree of convergence from thalamic neurons to single A1 neurons and clusters of A1 neurons, although, thalamic convergence to single A1 neurons is more restricted areas within putative thalamic frequency lamina. These comparisons suggest that frequency convergence from thalamic input to A1 is functionally limited. Finally, we consider synaptic organization of TC projections and future directions for research.

  3. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel

    A loudspeaker-based virtual auditory environment (VAE) has been developed to provide a realistic versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room reverberation. The VAE allows a full control of...... the acoustic scenario in order to systematically study the auditory processing of reverberant sounds. It is based on the ODEON software, which is state-of-the-art software for room acoustic simulations developed at Acoustic Technology, DTU. First, a MATLAB interface to the ODEON software has been...

  4. Transient auditory hallucinations in an adolescent.

    Science.gov (United States)

    Skokauskas, Norbert; Pillay, Devina; Moran, Tom; Kahn, David A

    2010-05-01

    In adolescents, hallucinations can be a transient illness or can be associated with non-psychotic psychopathology, psychosocial adversity, or a physical illness. We present the case of a 15-year-old secondary-school student who presented with a 1-month history of first onset auditory hallucinations, which had been increasing in frequency and severity, and mild paranoid ideation. Over a 10-week period, there was a gradual diminution, followed by a complete resolution, of symptoms. We discuss issues regarding the diagnosis and prognosis of auditory hallucinations in adolescents.

  5. Do dyslexics have auditory input processing difficulties?

    DEFF Research Database (Denmark)

    Poulsen, Mads

    2011-01-01

    Word production difficulties are well documented in dyslexia, whereas the results are mixed for receptive phonological processing. This asymmetry raises the possibility that the core phonological deficit of dyslexia is restricted to output processing stages. The present study investigated whether...... a group of dyslexics had word level receptive difficulties using an auditory lexical decision task with long words and nonsense words. The dyslexics were slower and less accurate than chronological age controls in an auditory lexical decision task, with disproportionate low performance on nonsense words...

  6. Subsymmetries predict auditory and visual pattern complexity.

    Science.gov (United States)

    Toussaint, Godfried T; Beltran, Juan F

    2013-01-01

    A mathematical measure of pattern complexity based on subsymmetries possessed by the pattern, previously shown to correlate highly with empirically derived measures of cognitive complexity in the visual domain, is found to also correlate significantly with empirically derived complexity measures of perception and production of auditory temporal and musical rhythmic patterns. Not only does the subsymmetry measure correlate highly with the difficulty of reproducing the rhythms by tapping after listening to them, but also the empirical measures exhibit similar behavior, for both the visual and auditory patterns, as a function of the relative number of subsymmetries present in the patterns. PMID:24494441

  7. AN EVALUATION OF AUDITORY LEARNING IN FILIAL IMPRINTING

    NARCIS (Netherlands)

    BOLHUIS, JJ; VANKAMPEN, HS

    1992-01-01

    The characteristics of auditory learning in filial imprinting in precocial birds are reviewed. Numerous studies have demonstrated that the addition of an auditory stimulus improves following of a visual stimulus. This paper evaluates whether there is genuine auditory imprinting, i.e. the formation o

  8. Functional nerve recovery after bridging a 15 mm gap in rat sciatic nerve with a biodegradable nerve guide

    NARCIS (Netherlands)

    Meek, MF; Klok, F; Robinson, PH; Nicolai, JPA; Gramsbergen, A; van der Werf, J.F.A.

    2003-01-01

    Recovery of nerve function was evaluated after bridging a 15 mm sciatic nerve gap in 51 rats with a biodegradable poly(DL-lactide-epsilon-caprolactone) nerve guide. Recovery of function was investigated by analysing the footprints, by analysing video recordings of gait, by electrically eliciting the

  9. Speech enhancement for listeners with hearing loss based on a model for vowel coding in the auditory midbrain.

    Science.gov (United States)

    Rao, Akshay; Carney, Laurel H

    2014-07-01

    A novel signal-processing strategy is proposed to enhance speech for listeners with hearing loss. The strategy focuses on improving vowel perception based on a recent hypothesis for vowel coding in the auditory system. Traditionally, studies of neural vowel encoding have focused on the representation of formants (peaks in vowel spectra) in the discharge patterns of the population of auditory-nerve (AN) fibers. A recent hypothesis focuses instead on vowel encoding in the auditory midbrain, and suggests a robust representation of formants. AN fiber discharge rates are characterized by pitch-related fluctuations having frequency-dependent modulation depths. Fibers tuned to frequencies near formants exhibit weaker pitch-related fluctuations than those tuned to frequencies between formants. Many auditory midbrain neurons show tuning to amplitude modulation frequency in addition to audio frequency. According to the auditory midbrain vowel encoding hypothesis, the response map of a population of midbrain neurons tuned to modulations near voice pitch exhibits minima near formant frequencies, due to the lack of strong pitch-related fluctuations at their inputs. This representation is robust over the range of noise conditions in which speech intelligibility is also robust for normal-hearing listeners. Based on this hypothesis, a vowel-enhancement strategy has been proposed that aims to restore vowel encoding at the level of the auditory midbrain. The signal processing consists of pitch tracking, formant tracking, and formant enhancement. The novel formant-tracking method proposed here estimates the first two formant frequencies by modeling characteristics of the auditory periphery, such as saturated discharge rates of AN fibers and modulation tuning properties of auditory midbrain neurons. The formant enhancement stage aims to restore the representation of formants at the level of the midbrain by increasing the dominance of a single harmonic near each formant and saturating

  10. Diabetic Neuropathies: The Nerve Damage of Diabetes

    Science.gov (United States)

    ... Organizations (PDF, 293 KB). Alternate Language URL Español Diabetic Neuropathies: The Nerve Damage of Diabetes Page Content ... treated? Points to Remember Clinical Trials What are diabetic neuropathies? Diabetic neuropathies are a family of nerve ...

  11. Palsies of Cranial Nerves That Control Eye Movement

    Science.gov (United States)

    ... Medical News Palsies of Cranial Nerves That Control Eye Movement By Michael Rubin, MDCM NOTE: This is the ... Gaze Palsies Palsies of Cranial Nerves That Control Eye Movement Third Cranial Nerve (Oculomotor Nerve) Palsy Fourth Cranial ...

  12. Effect of experimental devascularization on peripheral nerves

    Directory of Open Access Journals (Sweden)

    Eros Abrantes Erhart

    1966-03-01

    Full Text Available In order to explore the functional importance of the vasa-nervorum and the nerve natural connective bed, fine nerve devascularizations were performed in ten adult dogs, using a dissecting microscope. 4 to 5 cm of the nerve vascularization and corresponding connective bed were injured. By this procedure it could be demonstrated, 30 days later, motor deficiencies and in the histological serial preparations a distad nerve degeneration, total in some fascicles and partial in others.

  13. Isolated trochlear nerve palsy with midbrain hemorrhage

    Directory of Open Access Journals (Sweden)

    Raghavendra S

    2010-01-01

    Full Text Available Midbrain hemorrhage causing isolated fourth nerve palsy is extremely rare. Idiopathic, traumatic and congenital abnormalities are the most common causes of fourth nerve palsy. We report acute isolated fourth nerve palsy in an 18-year-old lady due to a midbrain hemorrhage probably due to a midbrain cavernoma. The case highlights the need for neuroimaging in selected cases of isolated trochlear nerve palsy.

  14. Detergent-free Decellularized Nerve Grafts for Long-gap Peripheral Nerve Reconstruction

    Directory of Open Access Journals (Sweden)

    Srikanth Vasudevan, PhD

    2014-08-01

    Conclusions: This study describes a detergent-free nerve decellularization technique for reconstruction of long-gap nerve injuries. We compared DFD grafts with an established detergent processing technique and found that DFD nerve grafts are successful in promoting regeneration across long-gap peripheral nerve defects as an alternative to existing strategies.

  15. Secondary digital nerve repair in the foot with resorbable p(DLLA-epsilon-CL) nerve conduits

    NARCIS (Netherlands)

    Meek, MF; Nicolai, JPA; Robinson, PH

    2006-01-01

    Nerve guides are increasingly being used in peripheral nerve repair. In the last decade, Much preclinical research has been undertaken into a resorbable nerve guide composed of p(DLLA-epsilon-CL). This report describes the results of secondary digital nerve reconstruction in the foot in a patient wi

  16. Routine exposure of recurrent laryngeal nerve in thyroid surgery can prevent nerve injury

    Institute of Scientific and Technical Information of China (English)

    Chenling Shen; Mingliang Xiang; Hao Wu; Yan Ma; Li Chen; Lan Cheng

    2013-01-01

    To determine the value of dissecting the recurrent laryngeal nerve during thyroid surgery with respect to preventing recurrent laryngeal nerve injury, we retrospectively analyzed clinical data from 5 344 patients undergoing thyroidectomy. Among these cases, 548 underwent dissection of the recurrent laryngeal nerve, while 4 796 did not. There were 12 cases of recurrent laryngeal nerve injury following recurrent laryngeal nerve dissection (injury rate of 2.2%) and 512 cases of recurrent laryngeal nerve injury in those not undergoing nerve dissection (injury rate of 10.7%). This difference remained statistically significant between the two groups in terms of type of thyroid disease, type of surgery, and number of surgeries. Among the 548 cases undergoing recurrent laryngeal nerve dissection, 128 developed anatomical variations of the recurrent laryngeal nerve (incidence rate of 23.4%), but no recurrent laryngeal nerve injury was found. In addition, the incidence of recurrent laryngeal nerve injury was significantly lower in patients with the inferior parathyroid gland and middle thyroid veins used as landmarks for locating the recurrent laryngeal nerve compared with those with the entry of the recurrent laryngeal nerve into the larynx as a landmark. These findings indicate that anatomical variations of the recurrent laryngeal nerve are common, and that dissecting the recurrent laryngeal nerve during thyroid surgery is an effective means of preventing nerve injury.

  17. Cranial nerve palsies in childhood.

    Science.gov (United States)

    Lyons, C J; Godoy, F; ALQahtani, E

    2015-02-01

    We review ocular motor cranial nerve palsies in childhood and highlight many of the features that differentiate these from their occurrence in adulthood. The clinical characteristics of cranial nerve palsies in childhood are affected by the child's impressive ability to repair and regenerate after injury. Thus, aberrant regeneration is very common after congenital III palsy; Duane syndrome, the result of early repair after congenital VI palsy, is invariably associated with retraction of the globe in adduction related to the innervation of the lateral rectus by the III nerve causing co-contraction in adduction. Clinical features that may be of concern in adulthood may not be relevant in childhood; whereas the presence of mydriasis in III palsy suggests a compressive aetiology in adults, this is not the case in children. However, the frequency of associated CNS abnormalities in III palsy and the risk of tumour in VI palsy can be indications for early neuroimaging depending on presenting features elicited through a careful history and clinical examination. The latter should include the neighbouring cranial nerves. We discuss the impact of our evolving knowledge of congenital cranial dysinnervation syndromes on this field. PMID:25572578

  18. Overview of the Cranial Nerves

    Science.gov (United States)

    ... speech Because both the 9th and 10th cranial nerves control swallowing and the gag reflex, they are tested together. The person is asked ... of palate movement). 10th Vagus Swallowing, the gag reflex, and speech ... 11th Accessory Neck turning and shoulder shrugging ...

  19. Intraoral myxoid nerve sheath tumour

    NARCIS (Netherlands)

    Schortinghuis, J; Hille, JJ; Singh, S

    2001-01-01

    A case of an intraoral myxoid nerve sheath tumour of the dorsum of the tongue in a 73-year-old Caucasian male is reported. This case describes the oldest patient with this pathology to date. Immunoperoxidase staining for neuronspecific enolase (NSE) and epithelial membrane antigen (EMA) expression d

  20. Retrolabyrinthine approach for cochlear nerve preservation in neurofibromatosis type 2 and simultaneous cochlear implantation

    Directory of Open Access Journals (Sweden)

    Bento, Ricardo Ferreira

    2014-01-01

    Full Text Available Introduction: Few cases of cochlear implantation (CI in neurofibromatosis type 2 (NF2 patients had been reported in the literature. The approaches described were translabyrinthine, retrosigmoid or middle cranial fossa. Objectives: To describe a case of a NF2- deafened-patient who underwent to vestibular schwannoma resection via RLA with cochlear nerve preservation and CI through the round window, at the same surgical time. Resumed Report: A 36-year-old woman with severe bilateral hearing loss due to NF2 was submitted to vestibular schwannoma resection and simultaneous CI. Functional assessment of cochlear nerve was performed by electrical promontory stimulation. Complete tumor removal was accomplishment via RLA with anatomic and functional cochlear and facial nerve preservation. Cochlear electrode array was partially inserted via round window. Sound field hearing threshold improvement was achieved. Mean tonal threshold was 46.2 dB HL. The patient could only detect environmental sounds and human voice but cannot discriminate vowels, words nor do sentences at 2 years of follow-up. Conclusion: Cochlear implantation is a feasible auditory restoration option in NF2 when cochlear anatomic and functional nerve preservation is achieved. The RLA is adequate for this purpose and features as an option for hearing preservation in NF2 patients.

  1. The Road to Optimized Nerve Reconstruction

    NARCIS (Netherlands)

    C.A. Hundepool (Caroline)

    2016-01-01

    markdownabstractTraumatic injuries to the peripheral nerves cause considerable disability and economic burden. It is estimated that 5% of patients admitted to Level I trauma centers have peripheral nerve injury. The reconstruction of peripheral nerve defects remains a clinical challenge. The gold st

  2. Disorders of Cranial Nerves IX and X

    OpenAIRE

    Erman, Audrey B.; Kejner, Alexandra E.; Hogikyan, Norman D.; Eva L Feldman

    2009-01-01

    The glossopharyngeal and vagus nerves mediate the complex interplay between the many functions of the upper aerodigestive tract. Defects may occur anywhere from the brainstem to the peripheral nerve and can result in significant impairment in speech, swallowing, and breathing. Multiple etiologies can produce symptoms. This review will broadly examine the normal functions, clinical examination, and various pathologies of cranial nerves IX and X.

  3. 21 CFR 882.5275 - Nerve cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve cuff. 882.5275 Section 882.5275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5275 Nerve cuff. (a) Identification. A nerve...

  4. Autologous nerve anastomosis versus human amniotic membrane anastomosis A rheological comparison following simulated sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Guangyao Liu; Qiao Zhang; Yan Jin; Zhongli Gao

    2011-01-01

    The sciatic nerve is biological viscoelastic solid, with stress relaxation and creep characteristics. In this study, a comparative analysis of the stress relaxation and creep characteristics of the sciatic nerve was conducted after simulating sciatic nerve injury and anastomosing with autologous nerve or human amniotic membrane. The results demonstrate that, at the 7 200-second time point, both stress reduction and strain increase in the human amniotic membrane anastomosis group were significantly greater than in the autologous nerve anastomosis group. Our findings indicate that human amniotic membrane anastomosis for sciatic nerve injury has excellent rheological characteristics and is conducive to regeneration of the injured nerve.

  5. [A case of Ramsey Hunt syndrome with multiple cranial nerve paralysis and acute respiratory failure].

    Science.gov (United States)

    Sato, K; Nakamura, S; Koseki, T; Yamauchi, F; Baba, M; Mikami, M; Kobayashi, R; Fujikawa, T; Nagaoka, S

    1991-08-01

    The authors report a 56-year-old woman with Ramsey Hunt syndrome with multiple cranial nerve paralysis and acute respiratory failure. Five days before admission, she experienced right otalgia and right facial pain and consulted an otolaryngologist of our hospital, who diagnosed the illness as acute parotitis and laryngopharyngitis. One day before admission, she experienced mild dyspnea and general fatigue and came to our hospital emergency room. A chest X-ray film revealed no abnormalities but some blisters were observed around her right ear. The next day, her dyspnea became more severe and she was admitted. A chest X-ray film on admission revealed right lower lobe consolidation, and neurological examination disclosed multiple cranial nerve paralysis, i.e., paralysis of the right fifth, seventh, eighth, ninth, tenth, eleventh, twelfth and left tenth cranial nerve. The serum titer of anti-herpes zoster antibody was elevated to 1,024, and the patient was diagnosed as having Ramsey Hunt syndrome with multiple cranial nerve paralysis. Arterial blood gas analysis revealed hypoxemia with hypercapnea, which was considered to be due to aspiration pneumonia and central airway obstruction caused by vocal cord paralysis. Mechanical ventilation was soon instituted and several antibiotics and acyclovir were administered intravenously, with marked effects. Three months after admission, the patient was discharged with no sequelae except mild hoarseness. Patients with herpes zoster oticus, facial nerve paralysis and auditory symptoms are diagnosed as having Ramsey Hunt syndrome. This case was complicated by lower cranial nerve paralysis and acute respiratory failure, which is very rare.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. The Diagnostic Value of Nerve Ultrasound in an Atypical Palmar Cutaneous Nerve Lesion.

    Science.gov (United States)

    Zanette, Giampietro; Tamburin, Stefano

    2016-07-01

    Detailed knowledge of the fascicular anatomy of peripheral nerves is important for microsurgical repair and functional electrostimulation.We report a patient with a lesion on the left palmar cutaneous branch of the median nerve (PCBMN) and sensory signs expanding outside the PCBMN cutaneous innervation territory. Nerve conduction study showed the absence of left PCBMN sensory nerve action potential, but apparently, no median nerve (MN) involvement. Nerve ultrasound documented a neuroma of the left PCBMN and a coexistent lateral neuroma of the left MN in the carpal tunnel after the PCBMN left the main nerve trunk.Nerve ultrasound may offer important information in patients with peripheral nerve lesions and atypical clinical and/or nerve conduction study findings. The present case may shed some light on the somatotopy of MN fascicles at the wrist. PMID:26945219

  7. Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity

    CERN Document Server

    Jensen, Kasper; Thomas, Rodrigo A; Wang, Tian; Fuchs, Annette; Balabas, Mikhail V; Vasilakis, Georgios; Mosgaard, Lars; Heimburg, Thomas; Olesen, Søren-Peter; Polzik, Eugene S

    2016-01-01

    Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the frst detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the tempor...

  8. The Goldilocks Effect in Infant Auditory Attention

    Science.gov (United States)

    Kidd, Celeste; Piantadosi, Steven T.; Aslin, Richard N.

    2014-01-01

    Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, yet capacity limits on their cognitive resources restrict the quantity that they can encode. Previous research has established that infants can attend to only a subset of available acoustic input. Yet few previous studies have directly examined infant…

  9. Reading adn Auditory-Visual Equivalences

    Science.gov (United States)

    Sidman, Murray

    1971-01-01

    A retarded boy, unable to read orally or with comprehension, was taught to match spoken to printed words and was then capable of reading comprehension (matching printed words to picture) and oral reading (naming printed words aloud), demonstrating that certain learned auditory-visual equivalences are sufficient prerequisites for reading…

  10. Auditory Training with Frequent Communication Partners

    Science.gov (United States)

    Tye-Murray, Nancy; Spehar, Brent; Sommers, Mitchell; Barcroft, Joe

    2016-01-01

    Purpose: Individuals with hearing loss engage in auditory training to improve their speech recognition. They typically practice listening to utterances spoken by unfamiliar talkers but never to utterances spoken by their most frequent communication partner (FCP)--speech they most likely desire to recognize--under the assumption that familiarity…

  11. Auditory Perception of Statistically Blurred Sound Textures

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; MacDonald, Ewen; Dau, Torsten

    Sound textures have been identified as a category of sounds which are processed by the peripheral auditory system and captured with running timeaveraged statistics. Although sound textures are temporally homogeneous, they offer a listener with enough information to identify and differentiate sour...

  12. Auditory confrontation naming in Alzheimer's disease.

    Science.gov (United States)

    Brandt, Jason; Bakker, Arnold; Maroof, David Aaron

    2010-11-01

    Naming is a fundamental aspect of language and is virtually always assessed with visual confrontation tests. Tests of the ability to name objects by their characteristic sounds would be particularly useful in the assessment of visually impaired patients, and may be particularly sensitive in Alzheimer's disease (AD). We developed an auditory naming task, requiring the identification of the source of environmental sounds (i.e., animal calls, musical instruments, vehicles) and multiple-choice recognition of those not identified. In two separate studies mild-to-moderate AD patients performed more poorly than cognitively normal elderly on the auditory naming task. This task was also more difficult than two versions of a comparable visual naming task, and correlated more highly with Mini-Mental State Exam score. Internal consistency reliability was acceptable, although ROC analysis revealed auditory naming to be slightly less successful than visual confrontation naming in discriminating AD patients from normal participants. Nonetheless, our auditory naming task may prove useful in research and clinical practice, especially with visually impaired patients. PMID:20981630

  13. Lateralization of auditory-cortex functions.

    Science.gov (United States)

    Tervaniemi, Mari; Hugdahl, Kenneth

    2003-12-01

    In the present review, we summarize the most recent findings and current views about the structural and functional basis of human brain lateralization in the auditory modality. Main emphasis is given to hemodynamic and electromagnetic data of healthy adult participants with regard to music- vs. speech-sound encoding. Moreover, a selective set of behavioral dichotic-listening (DL) results and clinical findings (e.g., schizophrenia, dyslexia) are included. It is shown that human brain has a strong predisposition to process speech sounds in the left and music sounds in the right auditory cortex in the temporal lobe. Up to great extent, an auditory area located at the posterior end of the temporal lobe (called planum temporale [PT]) underlies this functional asymmetry. However, the predisposition is not bound to informational sound content but to rapid temporal information more common in speech than in music sounds. Finally, we obtain evidence for the vulnerability of the functional specialization of sound processing. These altered forms of lateralization may be caused by top-down and bottom-up effects inter- and intraindividually In other words, relatively small changes in acoustic sound features or in their familiarity may modify the degree in which the left vs. right auditory areas contribute to sound encoding. PMID:14629926

  14. Self-affirmation in auditory persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2011-01-01

    Persuasive health information can be presented through an auditory channel. Curiously enough, the effect of voice cues in health persuasion has hardly been studied. Research concerning visual persuasive messages showed that self-affirmation results in a more open-minded reaction to threatening infor

  15. Affective priming with auditory speech stimuli

    NARCIS (Netherlands)

    J. Degner

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In

  16. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  17. Auditory risk estimates for youth target shooting

    Science.gov (United States)

    Meinke, Deanna K.; Murphy, William J.; Finan, Donald S.; Lankford, James E.; Flamme, Gregory A.; Stewart, Michael; Soendergaard, Jacob; Jerome, Trevor W.

    2015-01-01

    Objective To characterize the impulse noise exposure and auditory risk for youth recreational firearm users engaged in outdoor target shooting events. The youth shooting positions are typically standing or sitting at a table, which places the firearm closer to the ground or reflective surface when compared to adult shooters. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 26 firearm/ammunition configurations representing rifles, shotguns, and pistols used by youth. Measurements were obtained relative to a youth shooter’s left ear. Results All firearms generated peak levels that exceeded the 120 dB peak limit suggested by the WHO for children. In general, shooting from the seated position over a tabletop increases the peak levels, LAeq8 and reduces the unprotected maximum permissible exposures (MPEs) for both rifles and pistols. Pistols pose the greatest auditory risk when fired over a tabletop. Conclusion Youth should utilize smaller caliber weapons, preferably from the standing position, and always wear hearing protection whenever engaging in shooting activities to reduce the risk for auditory damage. PMID:24564688

  18. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    OpenAIRE

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft com...

  19. Interhemispheric Auditory Connectivity: Structure and Function Related to Auditory Verbal Hallucinations

    Directory of Open Access Journals (Sweden)

    Saskia eSteinmann

    2014-02-01

    Full Text Available Auditory verbal hallucinations (AVH are one of the most common and most distressing symptoms of schizophrenia. Despite fundamental research, the underlying neurocognitive and neurobiological mechanisms are still a matter of debate. Previous studies suggested that hearing voices is associated with a number of factors including local deficits in the left auditory cortex and a disturbed connectivity of frontal and temporoparietal language-related areas. In addition, it is hypothesized that the interhemispheric pathways connecting right and left auditory cortices might be involved in the pathogenesis of AVH. Findings based on Diffusion-Tensor-Imaging (DTI measurements revealed a remarkable interindividual variability in size and shape of the interhemispheric auditory pathways. Interestingly, schizophrenia patients suffering from AVH exhibited increased fractional anisotropy (FA in the interhemispheric fibers than non-hallucinating patients. Thus, higher FA-values indicate an increased severity of AVH. Moreover, a dichotic listening (DL task showed that the interindividual variability in the interhemispheric auditory pathways was reflected in the behavioral outcome: Stronger pathways supported a better information transfer and consequently improved speech perception. This detection indicates a specific structure-function relationship, which seems to be interindividually variable. This review focuses on recent findings concerning the structure-function relationship of the interhemispheric pathways in controls, hallucinating and non-hallucinating schizophrenia patients and concludes that changes in the structural and functional connectivity of auditory areas are involved in the pathophysiology of AVH.

  20. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function. PMID:23988583

  1. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.

  2. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    Science.gov (United States)

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  3. McGurk illusion recalibrates subsequent auditory perception.

    Science.gov (United States)

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of 'ada'. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as 'ada'. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as 'ada', activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  4. McGurk illusion recalibrates subsequent auditory perception

    Science.gov (United States)

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  5. Representation of Reward Feedback in Primate Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Michael eBrosch

    2011-02-01

    Full Text Available It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1 the reward expectancy for each trial, (2 the reward size received and (3 the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  6. Representation of reward feedback in primate auditory cortex.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  7. Bilateral collicular interaction: modulation of auditory signal processing in frequency domain.

    Science.gov (United States)

    Cheng, L; Mei, H-X; Tang, J; Fu, Z-Y; Jen, P H-S; Chen, Q-C

    2013-04-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from a variety of lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in the modulation of frequency-domain signal processing of mice using electrophysiological recording and focal electrical stimulation. Focal electrical stimulation of neurons in one IC produces widespread inhibition and focused facilitation of responses of neurons in the other IC. This bilateral collicular interaction decreases the response magnitude and lengthens the response latency of inhibited IC neurons but produces an opposite effect on the response of facilitated IC neurons. In the frequency domain, the focal electrical stimulation of one IC sharpens or expands the frequency tuning curves (FTCs) of neurons in the other IC to improve frequency sensitivity and the frequency response range. The focal electrical stimulation also produces a shift in the best frequency (BF) of modulated IC (ICMdu) neurons toward that of electrically stimulated IC (ICES) neurons. The degree of bilateral collicular interaction is dependent upon the difference in the BF between the ICES neurons and ICMdu neurons. These data suggest that bilateral collicular interaction is a part of dynamic acoustic signal processing that adjusts and improves signal processing as well as reorganizes collicular representation of signal parameters according to the acoustic experience.

  8. Characterization of auditory synaptic inputs to gerbil perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Vibhakar C Kotak

    2015-08-01

    Full Text Available The representation of acoustic cues involves regions downstream from the auditory cortex (ACx. One such area, the perirhinal cortex (PRh, processes sensory signals containing mnemonic information. Therefore, our goal was to assess whether PRh receives auditory inputs from the auditory thalamus (MG and ACx in an auditory thalamocortical brain slice preparation and characterize these afferent-driven synaptic properties. When the MG or ACx was electrically stimulated, synaptic responses were recorded from the PRh neurons. Blockade of GABA-A receptors dramatically increased the amplitude of evoked excitatory potentials. Stimulation of the MG or ACx also evoked calcium transients in most PRh neurons. Separately, when fluoro ruby was injected in ACx in vivo, anterogradely labeled axons and terminals were observed in the PRh. Collectively, these data show that the PRh integrates auditory information from the MG and ACx and that auditory driven inhibition dominates the postsynaptic responses in a non-sensory cortical region downstream from the auditory cortex.

  9. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  10. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair.

    Science.gov (United States)

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-07-15

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  11. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Yanru Zhang; Hui Zhang; Kaka Katiella; Wenhua Huang

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune re-jection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regenera-tion. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anasto-mosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.

  12. Nerve transfer in brachial plexus traction injuries

    Directory of Open Access Journals (Sweden)

    Samardžić Miroslav M.

    2003-01-01

    Full Text Available Background. The aim of this study was to analyze the results of nerve transfer to the musculocutaneous and axillary nerves, using some technical modalities such as intercostal, spinal accessory or intraplexal transfer, and on the basis of the results to try to clarify the most common controversies concerning these operations. Methods. The study included 82 patients with brachial plexus traction injuries, who were operated on using various techniques of nerve transfer. The follow-up period was at least two years. The analysis of biceps and deltoid muscles recovery was performed according to the type of the donor nerve. Results. The corresponding rates of recovery for the musculocutaneous and axillary nerves were 46.7% and 68.1% in intercostal nerve transfer, 71.4% and 75% in accessory nerve transfer, 93.1% and 88.8% in nerve transfer of the brachial plexus collateral branches, and 55.5% and 60% in classical intraplexal nerve transfer, respectively. Comparative statistical analysis demonstrated significantly better final outcome and quality of recovery in regional nerve transfers in comparison to the other methods. Conclusion. Our findings suggest that nerve transfer of collateral branches, where possible, (such as in cases with upper or extended upper brachial plexus palsy might be a method of choice, offering better results and quality of recovery.

  13. Microsurgical anatomy of the abducens nerve.

    Science.gov (United States)

    Joo, Wonil; Yoshioka, Fumitaka; Funaki, Takeshi; Rhoton, Albert L

    2012-11-01

    The aim of this study is to demonstrate and review the detailed microsurgical anatomy of the abducens nerve and surrounding structures along its entire course and to provide its topographic measurements. Ten cadaveric heads were examined using ×3 to ×40 magnification after the arteries and veins were injected with colored silicone. Both sides of each cadaveric head were dissected using different skull base approaches to demonstrate the entire course of the abducens nerve from the pontomedullary sulcus to the lateral rectus muscle. The anatomy of the petroclival area and the cavernous sinus through which the abducens nerve passes are complex due to the high density of critically important neural and vascular structures. The abducens nerve has angulations and fixation points along its course that put the nerve at risk in many clinical situations. From a surgical viewpoint, the petrous tubercle of the petrous apex is an intraoperative landmark to avoid damage to the abducens nerve. The abducens nerve is quite different from the other nerves. No other cranial nerve has a long intradural path with angulations and fixations such as the abducens nerve in petroclival venous confluence. A precise knowledge of the relationship between the abducens nerve and surrounding structures has allowed neurosurgeon to approach the clivus, petroclival area, cavernous sinus, and superior orbital fissure without surgical complications. PMID:22334502

  14. Tractography of lumbar nerve roots: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne [Hopital Roger Salengro, Service de Radiologie et d' Imagerie musculo-squelettique, Lille Cedex (France); Duhamel, Alain [Universite de Lille 2, UDSL, Lille (France); Bera-Louville, Anne [Service de Rhumatologie, Hopital Roger Salengro, Lille (France)

    2011-06-15

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  15. Parotid lymphangioma associated with facial nerve paralysis.

    Science.gov (United States)

    Imaizumi, Mitsuyoshi; Tani, Akiko; Ogawa, Hiroshi; Omori, Koichi

    2014-10-01

    Parotid lymphangioma is a relatively rare disease that is usually detected in infancy or early childhood, and which has typical features. Clinical reports of facial nerve paralysis caused by lymphangioma, however, are very rare. Usually, facial nerve paralysis in a child suggests malignancy. Here we report a very rare case of parotid lymphangioma associated with facial nerve paralysis. A 7-year-old boy was admitted to hospital with a rapidly enlarging mass in the left parotid region. Left peripheral-type facial nerve paralysis was also noted. Computed tomography and magnetic resonance imaging also revealed multiple cystic lesions. Open biopsy was undertaken in order to investigate the cause of the facial nerve paralysis. The histopathological findings of the excised tumor were consistent with lymphangioma. Prednisone (40 mg/day) was given in a tapering dose schedule. Facial nerve paralysis was completely cured 1 month after treatment. There has been no recurrent facial nerve paralysis for eight years.

  16. Amniotic membrane covering for facial nerve repair

    Institute of Scientific and Technical Information of China (English)

    Murat Karaman; Arzu Tuncel; Shahrouz Sheidaei; Mehmet Güney (S)enol; Murat Hakan Karabulut; Ildem Deveci; Nihan Karaman

    2013-01-01

    Amniotic membranes have been widely used in ophthalmology and skin injury repair because of their anti-inflammatory properties. In this study, we measured therapeutic efficacy and determined if amniotic membranes could be used for facial nerve repair. The facial nerves of eight rats were dissected and end-to-end anastomosis was performed. Amniotic membranes were covered on the anastomosis sites in four rats. Electromyography results showed that, at the end of the 3rd and 8th weeks after amniotic membrane covering, the latency values of the facial nerves covered by amniotic membranes were significantly shortened and the amplitude values were significantly increased. Compared with simple facial nerve anastomosis, after histopathological examination, facial nerve anastomosed with amniotic membrane showed better continuity, milder inflammatory reactions, and more satisfactory nerve conduction. These findings suggest that amniotic membrane covering has great potential in facial nerve repair.

  17. Continuous peripheral nerve blocks in children.

    Science.gov (United States)

    Dadure, C; Capdevila, X

    2005-06-01

    In recent years, regional anaesthesia in children has generated increasing interest. Continuous peripheral nerve blocks have an important role in the anaesthetic arsenal, allowing effective, safe and prolonged postoperative pain management. Indications for continuous peripheral nerve blocks depend on benefits/risks analysis of each technique for each patient. The indications include surgery associated with intense postoperative pain, surgery requiring painful physical therapy, and complex regional pain syndrome. Continuous peripheral nerve blocks are usually performed under general anaesthesia or sedation, and require appropriate equipment in order to decrease the risk of nerve injury. New techniques, such as transcutaneous stimulation or ultrasound guidance, appear to facilitate nerve and plexus identification in paediatric patients. Nevertheless, continuous peripheral nerve block may mask compartment syndrome in certain surgical procedure or trauma. Finally, ropivacaine appears to be the best local anaesthetic for continuous peripheral nerve blocks in children, requiring low flow rate with low concentration of the local anaesthetic. PMID:15966500

  18. The nerves around the shoulder

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alain, E-mail: alain.blum@gmail.com [Service d’Imagerie GUILLOZ, CHU Nancy, Nancy 54000 (France); Lecocq, Sophie; Louis, Matthias; Wassel, Johnny; Moisei, Andreea; Teixeira, Pedro [Service d’Imagerie GUILLOZ, CHU Nancy, Nancy 54000 (France)

    2013-01-15

    Neuropathies of the shoulder are considered to be entrapment syndromes. They are relatively common, accounting for about 2% of cases of sport-related shoulder pain. Many instances involve suprascapular neuropathy, but the clinical diagnosis is often delayed because of nonspecific symptoms. Classically, EMG is the gold standard investigation but MRI currently reveals muscular abnormality in 50% of cases. Muscle edema, the most characteristic symptom, is nonspecific. In general, the topography of edema, the presence of a lesion compressing the nerve and clinical history contribute to the diagnosis. Although atrophy and fatty degeneration may persist after the disappearance of edema, they are rarely symptomatic. The main differential diagnosis is Parsonage–Turner syndrome. Evidence of a cyst pressing on a nerve may prompt puncture-infiltration guided by ultrasonography or CT-scan.

  19. The nerves around the shoulder

    International Nuclear Information System (INIS)

    Neuropathies of the shoulder are considered to be entrapment syndromes. They are relatively common, accounting for about 2% of cases of sport-related shoulder pain. Many instances involve suprascapular neuropathy, but the clinical diagnosis is often delayed because of nonspecific symptoms. Classically, EMG is the gold standard investigation but MRI currently reveals muscular abnormality in 50% of cases. Muscle edema, the most characteristic symptom, is nonspecific. In general, the topography of edema, the presence of a lesion compressing the nerve and clinical history contribute to the diagnosis. Although atrophy and fatty degeneration may persist after the disappearance of edema, they are rarely symptomatic. The main differential diagnosis is Parsonage–Turner syndrome. Evidence of a cyst pressing on a nerve may prompt puncture-infiltration guided by ultrasonography or CT-scan

  20. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li

    2016-01-01

    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  1. Complement components of nerve regeneration conditioned lfuid inlfuence the microenvironment of nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Guang-shuai Li; Qing-feng Li; Ming-min Dong; Tao Zan; Shuang Ding; Lin-bo Liu

    2016-01-01

    Nerve regeneration conditioned lfuid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the pro-teinogram of nerve regeneration conditioned lfuid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis conifrmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8β and complement factor D) in the nerve regeneration conditioned lfuid and each varied at different time points. These ifndings suggest that all these complement components have a functional role in nerve regeneration.

  2. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    Science.gov (United States)

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  3. Endoscopic Transcanal Retrocochlear Approach to the Internal Auditory Canal with Cochlear Preservation: Pilot Cadaveric Study.

    Science.gov (United States)

    Kempfle, Judith; Kozin, Elliott D; Remenschneider, Aaron K; Eckhard, Andreas; Edge, Albert; Lee, Daniel J

    2016-05-01

    Contemporary operative approaches to the internal auditory canal (IAC) require the creation of large surgical portals for visualization with associated morbidity, including hearing loss, vestibular dysfunction, facial nerve injury, and skull base defects that increase the risk of cerebrospinal fluid leak. Transcanal approaches to the IAC have been possible only via a transcochlear technique. To preserve cochlear function, we describe a novel endoscopic transcanal infracochlear approach to the IAC in cadaveric temporal bones. Navigation fiducials were secured on fresh cadaveric heads, and real-time computed tomography imaging was used for surgical guidance. With a combination of curved instruments and rigid angled endoscopy, a transcanal hypotympanotomy and subcochlear tunnel were created with superior extension to access the IAC. Postprocedure imaging and temporal bone dissection confirmed access to the IAC without injury to the cochlea or neighboring neurovascular structures. PMID:26932951

  4. Neuralgias of the Trigeminal Nerve

    OpenAIRE

    Gordon, Allan S

    2000-01-01

    Practitioners are often presented with patients who complain bitterly of facial pain. The trigeminal nerve is involved in four conditions that are sometimes mixed up. The four conditions - trigeminal neuralgia, trigeminal neuropathic pain, postherpetic neuralgia and atypical facial pain - are discussed under the headings of clinical features, differential diagnosis, cause and treatment. This article should help practitioners to differentiate one from the other and to manage their care.

  5. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  6. Combination of Acellular Nerve Graft and Schwann Cells-Like Cells for Rat Sciatic Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Songtao Gao

    2014-01-01

    Full Text Available Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI, neural electrophysiology (NEP, histological and transmission electron microscope observation, recovery ratio of wet weight of gastrocnemius muscle, regenerated myelinated nerve fibers number, nerve fiber diameter, and thickness of the myelin sheath were measured to assess the effect. Results. After six and twelve weeks, the recovery ratio of SFI and wet weight of gastrocnemius muscle, NEP, and the result of regenerated myelinated nerve fibers in groups B and C were superior to that of group A (P0.05. Conclusion. The tissue engineering nerve composed of acellular allogenic nerve scaffold and Schwann cells-like cells can effectively repair the nerve defect in rats and its effect was similar to that of the autogenous nerve grafts.

  7. The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Xing-long Cheng

    2015-01-01

    Full Text Available Injury severity, operative technique and nerve regeneration are important factors to consider when constructing a model of peripheral nerve injury. Here, we present a novel peripheral nerve injury model and compare it with the complete sciatic nerve transection method. In the experimental group, under a microscope, a 3-mm longitudinal incision was made in the epineurium of the sciatic nerve to reveal the nerve fibers, which were then transected. The small, longitudinal incision in the epineurium was then sutured closed, requiring no stump anastomosis. In the control group, the sciatic nerve was completely transected, and the epineurium was repaired by anastomosis. At 2 and 4 weeks after surgery, Wallerian degeneration was observed in both groups. In the experimental group, at 8 and 12 weeks after surgery, distinct medullary nerve fibers and axons were observed in the injured sciatic nerve. Regular, dense myelin sheaths were visible, as well as some scarring. By 12 weeks, the myelin sheaths were normal and intact, and a tight lamellar structure was observed. Functionally, limb movement and nerve conduction recovered in the injured region between 4 and 12 weeks. The present results demonstrate that longitudinal epineural incision with nerve transection can stably replicate a model of Sunderland grade IV peripheral nerve injury. Compared with the complete sciatic nerve transection model, our method reduced the difficulties of micromanipulation and surgery time, and resulted in good stump restoration, nerve regeneration, and functional recovery.

  8. Effect of oblique nerve grafting on peripheral nerve regeneration in rats.

    Science.gov (United States)

    Kotulska, Katarzyna; Marcol, Wiesław; Larysz-Brysz, Magdalena; Tendera, Zofia; Malinowska-Kołodziej, Izabela; Slusarczyk, Wojciech; Jedrzejowska-Szypułka, Halina; Lewin-Kowalik, Joanna

    2006-01-01

    Current methods of peripheral nerve repair are to rejoin cut nerve stumps directly or to bridge large gaps with autologous nerve grafts. In both cases the surface of nerve stump endings is typically cut perpendicularly to the long axis of the nerve. The outcome of such operations, however, is still not satisfactory. In this study, we examine the effect of oblique nerve cutting and grafting on morphological as well as functional features of regeneration. In adult rats, sciatic nerve was cut and rejoined either directly or using an autologous graft, at 90 degrees or 30 degrees angle. Functional regeneration was assessed by walking track analysis during 12-week follow-up. Afterwards muscle weight was measured and histological studies were performed. The latter included nerve fibers and Schwann cells counting, as well as visualization of scar formation and epineural fibrosis. Nerves cut obliquely and rejoined showed better functional recovery than perpendicularly transected. Similar effect was observed after oblique grafting when compared to perpendicular one. Numbers of nerve fibers growing into the distal stump of the nerve as well as the number of Schwann cells were significantly higher in obliquely than in perpendicularly operated nerves. Moreover, growing axons were arranged more regularly following oblique treatment. These data indicate that joining or grafting the nerve stumps at acute angle is a more profitable method of nerve repair than the standard procedure performed at right angle. PMID:17066410

  9. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    Science.gov (United States)

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.

  10. The Dehiscent Facial Nerve Canal

    Directory of Open Access Journals (Sweden)

    Sertac Yetiser

    2012-01-01

    Full Text Available Accidental injury to the facial nerve where the bony canal defects are present may result with facial nerve dysfunction during otological surgery. Therefore, it is critical to know the incidence and the type of facial nerve dehiscences in the presence of normal development of the facial canal. The aim of this study is to review the site and the type of such bony defects in 144 patients operated for facial paralysis, myringoplasty, stapedotomy, middle ear exploration for sudden hearing loss, and so forth, other than chronic suppurative otitis media with or without cholesteatoma, middle ear tumors, and anomaly. Correlation of intraoperative findings with preoperative computerized tomography was also analyzed in 35 patients. Conclusively, one out of every 10 surgical cases may have dehiscence of the facial canal which has to be always borne in mind during surgical manipulation of the middle ear. Computerized tomography has some limitations to evaluate the dehiscent facial canal due to high false negative and positive rates.

  11. Trigeminal neuralgia and facial nerve paralysis

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [IPOFG, Department of Radiology, Lisbon (Portugal)

    2005-03-01

    The trigeminal nerve is the largest of the cranial nerves. It provides sensory input from the face and motor innervation to the muscles of mastication. The facial nerve is the cranial nerve with the longest extracranial course, and its main functions include motor innervation to the muscles of facial expression, sensory control of lacrimation and salivation, control of the stapedial reflex and to carry taste sensation from the anterior two-thirds of the tongue. In order to be able adequately to image and follow the course of these cranial nerves and their main branches, a detailed knowledge of neuroanatomy is required. As we are dealing with very small anatomic structures, high resolution dedicated imaging studies are required to pick up normal and pathologic nerves. Whereas CT is best suited to demonstrate bony neurovascular foramina and canals, MRI is preferred to directly visualize the nerve. It is also the single technique able to detect pathologic processes afflicting the nerve without causing considerable expansion such as is usually the case in certain inflammatory/infectious conditions, perineural spread of malignancies and in very small intrinsic tumours. Because a long course from the brainstem nuclei to the peripheral branches is seen, it is useful to subdivide the nerve in several segments and then tailor the imaging modality and the imaging study to that specific segment. This is particularly true in cases where topographic diagnosis can be used to locate a lesion in the course of these nerves. (orig.)

  12. Peripheral nerve involvement in Bell's palsy

    Directory of Open Access Journals (Sweden)

    J. A. Bueri

    1984-12-01

    Full Text Available A group of patients with Bell's palsy were studied in order to disclose the presence of subclinical peripheral nerve involvement. 20 patients, 8 male and 12 female, with recent Bell's palsy as their unique disease were examined, in all cases other causes of polyneuropathy were ruled out. Patients were investigated with CSF examination, facial nerve latencies in the affected and in the sound sides, and maximal motor nerve conduction velocities, as well as motor terminal latencies from the right median and peroneal nerves. CSF laboratory examination was normal in all cases. Facial nerve latencies were abnormal in all patients in the affected side, and they differed significantly from those of control group in the clinically sound side. Half of the patients showed abnormal values in the maximal motor nerve conduction velocities and motor terminal latencies of the right median and peroneal nerves. These results agree with previous reports which have pointed out that other cranial nerves may be affected in Bell's palsy. However, we have found a higher frequency of peripheral nerve involvement in this entity. These findings, support the hypothesis that in some patients Bell's palsy is the component of a more widespread disease, affecting other cranial and peripheral nerves.

  13. Trigeminal neuralgia and facial nerve paralysis

    International Nuclear Information System (INIS)

    The trigeminal nerve is the largest of the cranial nerves. It provides sensory input from the face and motor innervation to the muscles of mastication. The facial nerve is the cranial nerve with the longest extracranial course, and its main functions include motor innervation to the muscles of facial expression, sensory control of lacrimation and salivation, control of the stapedial reflex and to carry taste sensation from the anterior two-thirds of the tongue. In order to be able adequately to image and follow the course of these cranial nerves and their main branches, a detailed knowledge of neuroanatomy is required. As we are dealing with very small anatomic structures, high resolution dedicated imaging studies are required to pick up normal and pathologic nerves. Whereas CT is best suited to demonstrate bony neurovascular foramina and canals, MRI is preferred to directly visualize the nerve. It is also the single technique able to detect pathologic processes afflicting the nerve without causing considerable expansion such as is usually the case in certain inflammatory/infectious conditions, perineural spread of malignancies and in very small intrinsic tumours. Because a long course from the brainstem nuclei to the peripheral branches is seen, it is useful to subdivide the nerve in several segments and then tailor the imaging modality and the imaging study to that specific segment. This is particularly true in cases where topographic diagnosis can be used to locate a lesion in the course of these nerves. (orig.)

  14. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  15. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  16. The musical environment and auditory plasticity: Hearing the pitch of percussion

    Directory of Open Access Journals (Sweden)

    Neil M Mclachlan

    2013-10-01

    Full Text Available Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  17. Multitarget surgical neuromodulation: Combined C2 and auditory cortex implantation for tinnitus.

    Science.gov (United States)

    De Ridder, Dirk; Vanneste, Sven

    2015-03-30

    Tinnitus, as a phantom sound can express itself as a pure tone and as a noise-like sound. It is notoriously difficult to treat, and in medically, psychologically and audiologically intractable tinnitus patients sometimes intracranial electrodes overlying the auditory cortex are implanted. In this case report, we describe a patient who had a complete resolution of the pure tone component of his tinnitus by an auditory cortex implant, without any beneficial effect on the noise-like aspect of his tinnitus, even after changing the stimulation design to burst stimulation, which is known to treat noise-like tinnitus better than tonic stimulation. After an initial successful treatment of his noise-like component with transcutaneus electrical nerve stimulation, a wire electrode is inserted subcutaneously and connected to his internal pulse generator. With the dual stimulation his pure tone tinnitus remains abolished after 5 years of stimulation and his noise-like tinnitus is improved by 50%, from 8/10 to 4/10. This case report suggests that multi-target stimulation might be better than single target implantation in selected cases. PMID:25703225

  18. Broadband onset inhibition can suppress spectral splatter in the auditory brainstem.

    Directory of Open Access Journals (Sweden)

    Martin J Spencer

    Full Text Available In vivo intracellular responses to auditory stimuli revealed that, in a particular population of cells of the ventral nucleus of the lateral lemniscus (VNLL of rats, fast inhibition occurred before the first action potential. These experimental data were used to constrain a leaky integrate-and-fire (LIF model of the neurons in this circuit. The post-synaptic potentials of the VNLL cell population were characterized using a method of triggered averaging. Analysis suggested that these inhibited VNLL cells produce action potentials in response to a particular magnitude of the rate of change of their membrane potential. The LIF model was modified to incorporate the VNLL cells' distinctive action potential production mechanism. The model was used to explore the response of the population of VNLL cells to simple speech-like sounds. These sounds consisted of a simple tone modulated by a saw tooth with exponential decays, similar to glottal pulses that are the repeated impulses seen in vocalizations. It was found that the harmonic component of the sound was enhanced in the VNLL cell population when compared to a population of auditory nerve fibers. This was because the broadband onset noise, also termed spectral splatter, was suppressed by the fast onset inhibition. This mechanism has the potential to greatly improve the clarity of the representation of the harmonic content of certain kinds of natural sounds.

  19. An Auditory Model with Hearing Loss

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    An auditory model based on the psychophysics of hearing has been developed and tested. The model simulates the normal ear or an impaired ear with a given hearing loss. Based on reviews of the current literature, the frequency selectivity and loudness growth as functions of threshold and stimulus...... level have been found and implemented in the model. The auditory model was verified against selected results from the literature, and it was confirmed that the normal spread of masking and loudness growth could be simulated in the model. The effects of hearing loss on these parameters was also...... in qualitative agreement with recent findings. The temporal properties of the ear have currently not been included in the model. As an example of a real-world application of the model, loudness spectrograms for a speech utterance were presented. By introducing hearing loss, the speech sounds became less audible...

  20. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  1. Anatomy and Physiology of the Auditory Tracts

    Directory of Open Access Journals (Sweden)

    Mohammad hosein Hekmat Ara

    1999-03-01

    Full Text Available Hearing is one of the excel sense of human being. Sound waves travel through the medium of air and enter the ear canal and then hit the tympanic membrane. Middle ear transfer almost 60-80% of this mechanical energy to the inner ear by means of “impedance matching”. Then, the sound energy changes to traveling wave and is transferred based on its specific frequency and stimulates organ of corti. Receptors in this organ and their synapses transform mechanical waves to the neural waves and transfer them to the brain. The central nervous system tract of conducting the auditory signals in the auditory cortex will be explained here briefly.

  2. Delayed auditory feedback in polyglot simultaneous interpreters.

    Science.gov (United States)

    Fabbro, F; Darò, V

    1995-03-01

    Twelve polyglot students of simultaneous interpretation and 12 controls (students of the faculty of Medicine) were submitted to a task of verbal fluency under amplified normal auditory feedback (NAF) and under three delayed auditory feedback (DAF) conditions with three different delay intervals (150, 200, and 250 msec). The control group showed a significant reduction in verbal fluency and a significant increase in the number of mistakes in all three DAF conditions. The interpreters' group, however, did not show any significant speech disruption neither in the subjects' mother tongue (L1) nor in their second language (L2) across all DAF conditions. Interpreters' general high verbal fluency along with their ability to pay less attention to their own verbal output make them more resistant to the interfering effects of DAF on speech. PMID:7757448

  3. Regeneration of the Nerves in the Aerial Cavity with an Artificial Nerve Conduit -Reconstruction of Chorda Tympani Nerve Gaps-

    OpenAIRE

    Yamanaka, Toshiaki; Hosoi, Hiroshi; Murai, Takayuki; Kobayashi, Takehiko; Inada, Yuji; Nakamura, Tatsuo

    2014-01-01

    Objectives/Hypothesis Due to its anatomical features, the chorda tympani nerve (CTN) is sometimes sacrificed during middle ear surgery, resulting in taste dysfunction. We examined the effect of placing an artificial nerve conduit, a polyglycolic acid (PGA)-collagen tube, across the gap in the section of the resected chorda tympani nerve (CTN) running through the tympanic cavity. Methods The CTN was reconstructed with a PGA-collagen tube in three patients with taste disturbance who underwent C...

  4. Evaluation of Morphological and Functional Nerve Recovery of Rat Sciatic Nerve with a Hyaff11-Based Nerve Guide

    OpenAIRE

    Jansen, K.; Y. Ludwig; M. J. A. van Luyn; Gramsbergen, A. A.; Meek, M.F.

    2006-01-01

    Application of a Hyaff11-based nerve guide was studied in rats. Functional tests were performed to study motor nerve recovery. A withdrawal reflex test was performed to test sensory recovery. Morphology was studied by means of histology on explanted tissue samples. Motor nerve recovery was established within 7 weeks. Hereafter, some behavioral parameters like alternating steps showed an increase in occurence, while others remained stable. Sensory function was observed within the 7 weeks time ...

  5. Response recovery in the locust auditory pathway.

    Science.gov (United States)

    Wirtssohn, Sarah; Ronacher, Bernhard

    2016-01-01

    Temporal resolution and the time courses of recovery from acute adaptation of neurons in the auditory pathway of the grasshopper Locusta migratoria were investigated with a response recovery paradigm. We stimulated with a series of single click and click pair stimuli while performing intracellular recordings from neurons at three processing stages: receptors and first and second order interneurons. The response to the second click was expressed relative to the single click response. This allowed the uncovering of the basic temporal resolution in these neurons. The effect of adaptation increased with processing layer. While neurons in the auditory periphery displayed a steady response recovery after a short initial adaptation, many interneurons showed nonlinear effects: most prominent a long-lasting suppression of the response to the second click in a pair, as well as a gain in response if a click was preceded by a click a few milliseconds before. Our results reveal a distributed temporal filtering of input at an early auditory processing stage. This set of specified filters is very likely homologous across grasshopper species and thus forms the neurophysiological basis for extracting relevant information from a variety of different temporal signals. Interestingly, in terms of spike timing precision neurons at all three processing layers recovered very fast, within 20 ms. Spike waveform analysis of several neuron types did not sufficiently explain the response recovery profiles implemented in these neurons, indicating that temporal resolution in neurons located at several processing layers of the auditory pathway is not necessarily limited by the spike duration and refractory period.

  6. Neural correlates of auditory scale illusion.

    Science.gov (United States)

    Kuriki, Shinya; Numao, Ryousuke; Nemoto, Iku

    2016-09-01

    The auditory illusory perception "scale illusion" occurs when ascending and descending musical scale tones are delivered in a dichotic manner, such that the higher or lower tone at each instant is presented alternately to the right and left ears. Resulting tone sequences have a zigzag pitch in one ear and the reversed (zagzig) pitch in the other ear. Most listeners hear illusory smooth pitch sequences of up-down and down-up streams in the two ears separated in higher and lower halves of the scale. Although many behavioral studies have been conducted, how and where in the brain the illusory percept is formed have not been elucidated. In this study, we conducted functional magnetic resonance imaging using sequential tones that induced scale illusion (ILL) and those that mimicked the percept of scale illusion (PCP), and we compared the activation responses evoked by those stimuli by region-of-interest analysis. We examined the effects of adaptation, i.e., the attenuation of response that occurs when close-frequency sounds are repeated, which might interfere with the changes in activation by the illusion process. Results of the activation difference of the two stimuli, measured at varied tempi of tone presentation, in the superior temporal auditory cortex were not explained by adaptation. Instead, excess activation of the ILL stimulus from the PCP stimulus at moderate tempi (83 and 126 bpm) was significant in the posterior auditory cortex with rightward superiority, while significant prefrontal activation was dominant at the highest tempo (245 bpm). We suggest that the area of the planum temporale posterior to the primary auditory cortex is mainly involved in the illusion formation, and that the illusion-related process is strongly dependent on the rate of tone presentation. PMID:27292114

  7. Inhibition in the Human Auditory Cortex

    OpenAIRE

    Koji Inui; Kei Nakagawa; Makoto Nishihara; Eishi Motomura; Ryusuke Kakigi

    2016-01-01

    Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI) in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observe...

  8. Lesions in the external auditory canal

    Directory of Open Access Journals (Sweden)

    Priyank S Chatra

    2011-01-01

    Full Text Available The external auditory canal is an S- shaped osseo-cartilaginous structure that extends from the auricle to the tympanic membrane. Congenital, inflammatory, neoplastic, and traumatic lesions can affect the EAC. High-resolution CT is well suited for the evaluation of the temporal bone, which has a complex anatomy with multiple small structures. In this study, we describe the various lesions affecting the EAC.

  9. Midbrain auditory selectivity to natural sounds.

    Science.gov (United States)

    Wohlgemuth, Melville J; Moss, Cynthia F

    2016-03-01

    This study investigated auditory stimulus selectivity in the midbrain superior colliculus (SC) of the echolocating bat, an animal that relies on hearing to guide its orienting behaviors. Multichannel, single-unit recordings were taken across laminae of the midbrain SC of the awake, passively listening big brown bat, Eptesicus fuscus. Species-specific frequency-modulated (FM) echolocation sound sequences with dynamic spectrotemporal features served as acoustic stimuli along with artificial sound sequences matched in bandwidth, amplitude, and duration but differing in spectrotemporal structure. Neurons in dorsal sensory regions of the bat SC responded selectively to elements within the FM sound sequences, whereas neurons in ventral sensorimotor regions showed broad response profiles to natural and artificial stimuli. Moreover, a generalized linear model (GLM) constructed on responses in the dorsal SC to artificial linear FM stimuli failed to predict responses to natural sounds and vice versa, but the GLM produced accurate response predictions in ventral SC neurons. This result suggests that auditory selectivity in the dorsal extent of the bat SC arises through nonlinear mechanisms, which extract species-specific sensory information. Importantly, auditory selectivity appeared only in responses to stimuli containing the natural statistics of acoustic signals used by the bat for spatial orientation-sonar vocalizations-offering support for the hypothesis that sensory selectivity enables rapid species-specific orienting behaviors. The results of this study are the first, to our knowledge, to show auditory spectrotemporal selectivity to natural stimuli in SC neurons and serve to inform a more general understanding of mechanisms guiding sensory selectivity for natural, goal-directed orienting behaviors.

  10. Predictive uncertainty in auditory sequence processing

    OpenAIRE

    Niels Chr.Hansen; MarcusT.Pearce

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty - a property of listeners’ prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic e...

  11. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  12. Auditory Presentation of H/OZ Critical Flight Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Automation of a flight control system to perform functions normally attributed to humans is often not robust and limited to specific operating conditions and types...

  13. Polymeric Nerve Conduits with Contact Guidance Cues Used in Nerve Repair

    Institute of Scientific and Technical Information of China (English)

    G DAI; X NIU; J YIN

    2016-01-01

    In the modern life, the nerve injury frequently happens due to mechanical, chemical or thermal accidents. In the trivial injuries, the peripheral nerves can regenerate on their own; however, in most of the cases the clinical treatments are required, where relatively large nerve injury gaps are formed. Currently, the nerve repair can be accomplished by direct suture when the injury gap is not too large;while the autologous nerve graft working as the gold standard of peripheral nerve injury treatment for nerve injuries with larger gaps. However, the direct suture is limited by heavy tension at the suture sites, and the autologous nerve graft also has the drawbacks of donor site morbidity and insufifcient donor tissue. Recently, artiifcial nerve conduits have been developed as an alternative for clinical nerve repair to overcome the limitations associated with the above treatments. In order to further improve the efifciency of nerve conduits, various guidance cues are incorporated, including physical cues, biochemical signals, as well as support cells. First, this paper reviewed the contact guidance cues applied in nerve conduits, such as lumen ifllers, multi-channels and micro-patterns on the inner surface. Then, the paper focused on the polymeric nerve conduits with micro inner grooves. The polymeric nerve conduits were fabricated using the phase inversion-based ifber spinning techniques. The smart spinneret with grooved die was designed in the spinning platform, while different spinning conditions, including flow rates, air-gap distances, and polymer concentrations, were adjusted to investigate the inlfuence of fabrication conditions on the geometry of nerve conduits. The inner groove size in the nerve conduits can be precisely controlled in our hollow ifber spinning process, which can work as the efifcient contact guidance cue for nerve regeneration.

  14. Use of nerve elongator to repair short-distance peripheral nerve defects: a prospective randomized study

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2015-01-01

    Full Text Available Repair techniques for short-distance peripheral nerve defects, including adjacent joint flexion to reduce the distance between the nerve stump defects, "nerve splint" suturing, and nerve sleeve connection, have some disadvantages. Therefore, we designed a repair technique involving intraoperative tension-free application of a nerve elongator and obtained good outcomes in the repair of short-distance peripheral nerve defects in a previous animal study. The present study compared the clinical outcomes between the use of this nerve elongator and performance of the conventional method in the repair of short-distance transection injuries in human elbows. The 3-, 6-, and 12-month postoperative follow-up results demonstrated that early neurological function recovery was better in the nerve elongation group than in the conventional group, but no significant difference in long-term neurological function recovery was detected between the two groups. In the nerve elongation group, the nerves were sutured without tension, and the duration of postoperative immobilization of the elbow was decreased. Elbow function rehabilitation was significantly better in the nerve elongation group than in the control group. Moreover, there were no security risks. The results of this study confirm that the use of this nerve elongator for repair of short-distance peripheral nerve defects is safe and effective.

  15. Sciatic nerve regeneration using a nerve growth factor-containing fibrin glue membrane

    Institute of Scientific and Technical Information of China (English)

    Shengzhong Ma; Changliang Peng; Shiqing Wu; Dongjin Wu; Chunzheng Gao

    2013-01-01

    Our previous findings confirmed that the nerve growth factor-containing fibrin glue membrane pro-vides a good microenvironment for peripheral nerve regeneration;however, the precise mechanism remains unclear. p75 neurotrophin receptor (p75NTR) plays an important role in the regulation of pe-ripheral nerve regeneration. We hypothesized that a nerve growth factor-containing fibrin glue membrane can promote neural regeneration by up-regulating p75NTR expression. In this study, we used a silicon nerve conduit to bridge a 15 mm-long sciatic nerve defect and injected a mixture of nerve growth factor and fibrin glue at the anastomotic site of the nerve conduit and the sciatic nerve. Through RT-PCR and western blot analysis, nerve growth factor-containing fibrin glue membrane significantly increased p75NTR mRNA and protein expression in the Schwann cells at the anasto-motic site, in particular at 8 weeks after injection of the nerve growth factor/fibrin glue mixture. These results indicate that nerve growth factor-containing fibrin glue membrane can promote pe-ripheral nerve regeneration by up-regulating p75NTR expression in Schwann cells.

  16. [Anatomical variants of the medial calcaneal nerve and the Baxter nerve in the tarsal tunnel].

    Science.gov (United States)

    Martín-Oliva, X; Elgueta-Grillo, J; Veliz-Ayta, P; Orosco-Villaseñor, S; Elgueta-Grillo, M; Viladot-Perice, R

    2013-01-01

    The tarsal tunnel is composed of the posterior border of the medial malleoulus, the posterior aspect of the talus and the medial aspect of the calcaneus. The medial calcaneal nerve emerges from the posterior aspect of the posterior tibial nerve in 75% of cases and from the lateral plantar nerve in the remaining 25%. Finally, the medial calcaneal nerve ends as a single terminal branch in 79% of cases and in numerous terminal branches in the remaining 21%. To describe the anatomical variants of the posterior tibial nerve and its terminal branches. To describe the steps for tarsal tunnel release. To describe Baxter nerve release. The anatomical variants of the posterior tibial nerve and its terminal branches within the tarsal tunnel were studied. Then the Lam technique was performed; it consists of: 1) opening of the laciniate ligament, 2) opening of the fascia over the abductor hallucis muscle, 3) exoneurolysis of the posterior tibial nerve and its terminal branches, identifying the emergence and pathway of the medial calcaneal branch, the lateral plantar nerve and its Baxter nerve branch and the medial plantar nerve. Baxter nerve was found in 100% of cases. In 100% of cases in our series the nerve going to the abductor digiti minimi muscle of the foot was found; 87.5% of cases had two terminal branches. The dissections proved that a crucial step was the release of the distal tarsal tunnel. PMID:24701749

  17. Prediction of Human's Ability in Sound Localization Based on the Statistical Properties of Spike Trains along the Brainstem Auditory Pathway

    Directory of Open Access Journals (Sweden)

    Ram Krips

    2014-01-01

    Full Text Available The minimum audible angle test which is commonly used for evaluating human localization ability depends on interaural time delay, interaural level differences, and spectral information about the acoustic stimulus. These physical properties are estimated at different stages along the brainstem auditory pathway. The interaural time delay is ambiguous at certain frequencies, thus confusion arises as to the source of these frequencies. It is assumed that in a typical minimum audible angle experiment, the brain acts as an unbiased optimal estimator and thus the human performance can be obtained by deriving optimal lower bounds. Two types of lower bounds are tested: the Cramer-Rao and the Barankin. The Cramer-Rao bound only takes into account the approximation of the true direction of the stimulus; the Barankin bound considers other possible directions that arise from the ambiguous phase information. These lower bounds are derived at the output of the auditory nerve and of the superior olivary complex where binaural cues are estimated. An agreement between human experimental data was obtained only when the superior olivary complex was considered and the Barankin lower bound was used. This result suggests that sound localization is estimated by the auditory nuclei using ambiguous binaural information.

  18. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  19. Hierarchical processing of auditory objects in humans.

    Directory of Open Access Journals (Sweden)

    Sukhbinder Kumar

    2007-06-01

    Full Text Available This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG, containing the primary auditory cortex, planum temporale (PT, and superior temporal sulcus (STS, and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

  20. Concentric scheme of monkey auditory cortex

    Science.gov (United States)

    Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer

    2003-04-01

    The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.

  1. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  2. Mechanisms of auditory verbal hallucination in schizophrenia

    Directory of Open Access Journals (Sweden)

    Raymond eCho

    2013-11-01

    Full Text Available Recent work on the mechanisms underlying auditory verbal hallucination (AVH has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two models of AVH can generate sharper questions that will lead to new avenues of investigation. In this paper, we provide such a theoretical discussion of the two models, drawing strong contrasts between them. We identify a set of challenges for the self-monitoring account and argue that the spontaneous activation account has much in favor of it and should be the default account. Our theoretical overview leads to new questions and issues regarding the explanation of AVH as a subjective phenomenon and its neural basis. Accordingly, we suggest a set of experimental strategies to dissect the underlying mechanisms of AVH in light of the two competing models.

  3. Mechanisms of auditory verbal hallucination in schizophrenia.

    Science.gov (United States)

    Cho, Raymond; Wu, Wayne

    2013-01-01

    Recent work on the mechanisms underlying auditory verbal hallucination (AVH) has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two models of AVH can generate sharper questions that will lead to new avenues of investigation. In this paper, we provide such a theoretical discussion of the two models, drawing strong contrasts between them. We identify a set of challenges for the self-monitoring account and argue that the spontaneous activation account has much in favor of it and should be the default account. Our theoretical overview leads to new questions and issues regarding the explanation of AVH as a subjective phenomenon and its neural basis. Accordingly, we suggest a set of experimental strategies to dissect the underlying mechanisms of AVH in light of the two competing models. PMID:24348430

  4. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  5. Nerve conduction and excitability studies in peripheral nerve disorders

    DEFF Research Database (Denmark)

    Krarup, Christian; Moldovan, Mihai

    2009-01-01

    counterparts in the peripheral nervous system, in some instances without peripheral nervous system symptoms. Both hereditary and acquired demyelinating neuropathies have been studied and the effects on nerve pathophysiology have been compared with degeneration and regeneration of axons. SUMMARY: Excitability....... Studies of different metabolic neuropathies have assessed the influence of uremia, diabetes and ischemia, and the use of these methods in toxic neuropathies has allowed pinpointing damaging factors. Various mutations in ion channels associated with central nervous system disorders have been shown to have...

  6. Auditory temporal processing skills in musicians with dyslexia.

    Science.gov (United States)

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia.

  7. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    When an early wall reflection is added to a direct sound, a spectral modulation is introduced to the signal's power spectrum. This spectral modulation typically produces an auditory sensation of coloration or pitch. Throughout this study, auditory spectral-integration effects involved in coloration...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...... filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high...

  8. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...... on the stream segregation process was analysed. The model analysis showed that auditory frequency selectivity and physiological forward masking play a significant role in stream segregation based on frequency separation and tone rate. Secondly, the model analysis suggested that neural adaptation...

  9. Applied anatomy of the cervical region of the recurrent laryngeal nerve

    Institute of Scientific and Technical Information of China (English)

    Changchu Wu; Xing Guo; Yanwei Li

    2008-01-01

    BACKGROUND AND OBJECTIVE: To avoid recurrent laryngeal nerve (RLN) injury during thyroid surgery, it is important to identify the nerve and to follow its projection carefully to discriminate it from the inferior thyroid artery. DESIGN, TIME AND SETTING: All studies were performed at the Anatomy Division of Shaoyang Medical College from May 2003 to May 2004 with repeated measurement design. MATERIALS: Fifty embalmed adult corpses, comprising 20 females and 30 males, were obtained by donation. METHODS AND MAIN OUTCOME MEASURES: The projection, branches, and the relationship of the RLN to the inferior thyroid artery were observed. RESULTS: The RLN in all cases ascended through the tracheoesophageal groove at the isthmus superior levels of the thyroid gland. However, the RLN in 14 cases were situated inferior to the isthmus of the thyroid gland; 11 cases were to the right side and 2 cases to the left side, projected in the tracheoesophageal groove, and ascended away from the groove after 4.5-6.5 mm. The RLN typically ramified at the thyroid isthmus plane (44 cases, 44% of all cases). The RLN branches were variable. Type 2 rami were most common in the RLN, accounting for 55%; the second most common was RLN branches with no rami. RLN braches with type 3 rami, 4 rami, and 5 rami were less common. Approximately 54% of nerves were situated behind the main branch artery. The nerves located adjacent to the arteries, and between the arterial branches, were similar; the former applied to 19 cases, accounting for 19%, whereas the latter applied to 18 cases, accounting for 18%. Left nerves behind the artery, and right nerves before the artery, were more common. There were significant differences between the left and right nerves (P<0.01). CONCLUSION: There was not a significant difference in the projection of the RLN, while a significant difference in the number of RLN branches existed. In addition, the anatomical relationship of the RLN and the inferior thyroid artery exhibited

  10. Imaging the Facial Nerve: A Contemporary Review

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    2013-01-01

    Full Text Available Imaging plays a critical role in the evaluation of a number of facial nerve disorders. The facial nerve has a complex anatomical course; thus, a thorough understanding of the course of the facial nerve is essential to localize the sites of pathology. Facial nerve dysfunction can occur from a variety of causes, which can often be identified on imaging. Computed tomography and magnetic resonance imaging are helpful for identifying bony facial canal and soft tissue abnormalities, respectively. Ultrasound of the facial nerve has been used to predict functional outcomes in patients with Bell’s palsy. More recently, diffusion tensor tractography has appeared as a new modality which allows three-dimensional display of facial nerve fibers.

  11. Magnetic resonance imaging of optic nerve

    Directory of Open Access Journals (Sweden)

    Foram Gala

    2015-01-01

    Full Text Available Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI, plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies.

  12. Perspectives on the design of musical auditory interfaces

    OpenAIRE

    Leplatre, G.; Brewster, S.A.

    1998-01-01

    This paper addresses the issue of music as a communication medium in auditory human-computer interfaces. So far, psychoacoustics has had a great influence on the development of auditory interfaces, directly and through music cognition. We suggest that a better understanding of the processes involved in the perception of actual musical excerpts should allow musical auditory interface designers to exploit the communicative potential of music. In this respect, we argue that the real advantage of...

  13. [Auditory guidance systems for the visually impaired people].

    Science.gov (United States)

    He, Jing; Nie, Min; Luo, Lan; Tong, Shanbao; Niu, Jinhai; Zhu, Yisheng

    2010-04-01

    Visually impaired people face many inconveniences because of the loss of vision. Therefore, scientists are trying to design various guidance systems for improving the lives of the blind. Based on sensory substitution, auditory guidance has become an interesting topic in the field of biomedical engineering. In this paper, we made a state-of-technique review of the auditory guidance system. Although there have been many technical challenges, the auditory guidance system would be a useful alternative for the visually impaired people.

  14. Using Facebook to Reach People Who Experience Auditory Hallucinations

    OpenAIRE

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging...

  15. Speech Perception Within an Auditory Cognitive Science Framework

    OpenAIRE

    Holt, Lori L.; Lotto, Andrew J.

    2008-01-01

    The complexities of the acoustic speech signal pose many significant challenges for listeners. Although perceiving speech begins with auditory processing, investigation of speech perception has progressed mostly independently of study of the auditory system. Nevertheless, a growing body of evidence demonstrates that cross-fertilization between the two areas of research can be productive. We briefly describe research bridging the study of general auditory processing and speech perception, show...

  16. An audit of traumatic nerve injury.

    LENUS (Irish Health Repository)

    O'Connor, G

    2009-07-01

    The impact of trauma in the Irish healthcare setting is considerable. We present the results of a retrospective assessment of referrals to a Neurophysiology department for suspected traumatic nerve injury. A broad range of traumatic neuropathies was demonstrated on testing, from numerous causes. We demonstrate an increased liklihood of traumatic nerve injury after fracture \\/ dislocation (p = 0.007). Our series demonstrates the need for clinicians to be aware of the possibility of nerve injury post trauma, especially after bony injury.

  17. Variant position of the medial plantar nerve

    OpenAIRE

    Astik RB; Dave UH; Gajendra KS

    2011-01-01

    Knowledge of variation of position of the medial plantar nerve is important for the forefoot surgeon for plantar reconstruction, local injection therapy and an excision of interdigital neuroma. During routine dissection of 50-year-old female cadaver, we found the medial plantar nerve and vessels variably located between plantar aponeurosis and the muscles of the first layer of the sole of the right foot. Due to this variant position, the medial plantar nerve and vessels lose their protection ...

  18. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used...... to study ephaptic (nonsynaptic) interactions between impulses on parallel fibers, which may play a functional role in neural processing. (C) 2001 Published by Elsevier Science B.V....

  19. Histological assessment in peripheral nerve tissue engineering

    OpenAIRE

    Carriel, Víctor; Garzón, Ingrid; Alaminos, Miguel; Cornelissen, Maria

    2014-01-01

    The histological analysis of peripheral nerve regeneration is one of the most used methods to demonstrate the success of the regeneration through nerve conduits. Nowadays, it is possible to evaluate different parameters of nerve regeneration by using histological, histochemical, immunohistochemical and ultrastructural techniques. The histochemical methods are very sensible and are useful tools to evaluate the extracellular matrix remodeling and the myelin sheath, but they are poorly specific....

  20. Effect of auditory training on the middle latency response in children with (central) auditory processing disorder.

    Science.gov (United States)

    Schochat, E; Musiek, F E; Alonso, R; Ogata, J

    2010-08-01

    The purpose of this study was to determine the middle latency response (MLR) characteristics (latency and amplitude) in children with (central) auditory processing disorder [(C)APD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (C)APD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (C)APD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (C)APD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 microV (mean), 0.39 (SD--standard deviation) for the (C)APD group and 1.18 microV (mean), 0.65 (SD) for the control group; C3-A2, 0.69 microV (mean), 0.31 (SD) for the (C)APD group and 1.00 microV (mean), 0.46 (SD) for the control group]. After training, the MLR C3-A1 [1.59 microV (mean), 0.82 (SD)] and C3-A2 [1.24 microV (mean), 0.73 (SD)] wave amplitudes of the (C)APD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (C)APD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (C)APD.

  1. Effect of auditory training on the middle latency response in children with (central auditory processing disorder

    Directory of Open Access Journals (Sweden)

    E. Schochat

    2010-08-01

    Full Text Available The purpose of this study was to determine the middle latency response (MLR characteristics (latency and amplitude in children with (central auditory processing disorder [(CAPD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (CAPD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (CAPD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (CAPD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 µV (mean, 0.39 (SD - standard deviation for the (CAPD group and 1.18 µV (mean, 0.65 (SD for the control group; C3-A2, 0.69 µV (mean, 0.31 (SD for the (CAPD group and 1.00 µV (mean, 0.46 (SD for the control group]. After training, the MLR C3-A1 [1.59 µV (mean, 0.82 (SD] and C3-A2 [1.24 µV (mean, 0.73 (SD] wave amplitudes of the (CAPD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (CAPD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (CAPD.

  2. 大鼠下丘脑腹外侧视前区和结节乳头体核的直接神经纤维投射研究%The research of direct nerve fiber projections between ventrolateral preoptic nucleus and tuberomammillary nucleus in rats

    Institute of Scientific and Technical Information of China (English)

    丁丁; 丁睿; 吴芳; 张瑾; 许奇; 解敏; 王烈成

    2014-01-01

    目的探讨促睡眠调节中枢下丘脑腹外侧视前区(VLPO)与促觉醒调节中枢结节乳头体核(TMN)之间是否具有双向调节的直接通路。方法将SD大鼠随机分为对照组( ACSF 组)与实验组( TMN + ACSF&VLPO + DiO 组, TMN+DiO&VLPO+ACSF组),采用脑立体定位技术,核团内微量注射、冰冻切片等方法观察和记录大鼠VLPO和TMN分别注射细胞膜荧光探针Fast DiO后的TMN和VLPO的荧光信号。结果 TMN+ACSF&VLPO+DiO组大鼠注射Fast DiO术后72 h, TMN 脑区神经细胞可见明显的绿色荧光;TMN+DiO&VLPO+ACSF组大鼠注射Fast DiO术后72 h, VLPO脑区神经细胞也可见明显的绿色荧光。结论 VLPO与TMN间有双向直接神经纤维投射。%Objective To investigate the research of the direct nerve fiber projections between ventrolateral preop-tic nucleus ( VLPO) and tuberomammillary nucleus ( TMN) in rats. Methods SD rats were randomly divided into control group ( ACSF group) and experimental groups ( TMN+ACSF&VLPO+DiO group and TMN+DiO&VLPO+ACSF group) . Brain stereotaxic technique, microinjection and frozen section technique were used to detect and record the fluorescence signal in TMN and VLPO after injecting fluorescence dye, Fast DiO, into VLPO and TMN, respectively. Results In TMN+ACSF&VLPO+DiO group, the green fluorescence signals in TMN could be de-tected after injected Fast DiO dye 72 h. Meanwhile, in TMN+DiO&VLPO+ACS group, the green fluorescence signals could be detected in VLPO after injected Fast DiO dye 72 h. Conclusion There have bi-directional nerve fiber projection between VLPO and TMN.

  3. The research of direct nerve fiber projections between ventrolateral preoptic nucleus and tuberomammillary nucleus in rats%大鼠下丘脑腹外侧视前区和结节乳头体核的直接神经纤维投射研究

    Institute of Scientific and Technical Information of China (English)

    丁丁; 丁睿; 吴芳; 张瑾; 许奇; 解敏; 王烈成

    2014-01-01

    目的探讨促睡眠调节中枢下丘脑腹外侧视前区(VLPO)与促觉醒调节中枢结节乳头体核(TMN)之间是否具有双向调节的直接通路。方法将SD大鼠随机分为对照组( ACSF 组)与实验组( TMN + ACSF&VLPO + DiO 组, TMN+DiO&VLPO+ACSF组),采用脑立体定位技术,核团内微量注射、冰冻切片等方法观察和记录大鼠VLPO和TMN分别注射细胞膜荧光探针Fast DiO后的TMN和VLPO的荧光信号。结果 TMN+ACSF&VLPO+DiO组大鼠注射Fast DiO术后72 h, TMN 脑区神经细胞可见明显的绿色荧光;TMN+DiO&VLPO+ACSF组大鼠注射Fast DiO术后72 h, VLPO脑区神经细胞也可见明显的绿色荧光。结论 VLPO与TMN间有双向直接神经纤维投射。%Objective To investigate the research of the direct nerve fiber projections between ventrolateral preop-tic nucleus ( VLPO) and tuberomammillary nucleus ( TMN) in rats. Methods SD rats were randomly divided into control group ( ACSF group) and experimental groups ( TMN+ACSF&VLPO+DiO group and TMN+DiO&VLPO+ACSF group) . Brain stereotaxic technique, microinjection and frozen section technique were used to detect and record the fluorescence signal in TMN and VLPO after injecting fluorescence dye, Fast DiO, into VLPO and TMN, respectively. Results In TMN+ACSF&VLPO+DiO group, the green fluorescence signals in TMN could be de-tected after injected Fast DiO dye 72 h. Meanwhile, in TMN+DiO&VLPO+ACS group, the green fluorescence signals could be detected in VLPO after injected Fast DiO dye 72 h. Conclusion There have bi-directional nerve fiber projection between VLPO and TMN.

  4. Estimating a structural bottle neck for eye-brain transfer of visual information from 3D-volumes of the optic nerve head from a commercial OCT device

    Science.gov (United States)

    Malmberg, Filip; Sandberg-Melin, Camilla; Söderberg, Per G.

    2016-03-01

    The aim of this project was to investigate the possibility of using OCT optic nerve head 3D information captured with a Topcon OCT 2000 device for detection of the shortest distance between the inner limit of the retina and the central limit of the pigment epithelium around the circumference of the optic nerve head. The shortest distance between these boundaries reflects the nerve fiber layer thickness and measurement of this distance is interesting for follow-up of glaucoma.

  5. Web-based diagnosis and therapy of auditory prerequisites for reading and spelling

    Directory of Open Access Journals (Sweden)

    Krammer, Sandra

    2006-11-01

    Full Text Available Cognitive deficits in auditory or visual processing or in verbal short-term-memory are amongst others risk factors for the development of dyslexia (reading and spelling disability. By early identification and intervention (optimally before school entry, detrimental effects of these cognitive deficits on reading and spelling might be prevented. The goal of the CASPAR-project is to develop and evaluate web-based tools for diagnosis and therapy of cognitive prerequisites for reading and spelling, which are appropriate for kindergarten children. In the first approach CASPAR addresses auditory processing disorders. This article describes a computerized and web-based approach for screening and testing phoneme discrimination and for promoting phoneme discrimination abilities through interactive games in kindergarteners.

  6. Malignant Peripheral Nerve Sheath Tumor of the Infraorbital Nerve.

    Science.gov (United States)

    D'Addino, José Luis; Piccoletti, Laura; Pigni, María Mercedes; de Gordon, Maria José Rodriguez Arenas

    2016-06-01

    The objective of this study is to report a large, rare, and ulcerative infiltrated skin lesion. Its diagnosis, therapeutic management, and progress are described. The patient is a 78-year-old white man, who presented with a 12-month ulcerative perforated lesion that had affected and infiltrated the skin, with easy bleeding. He had a history of hypertension, although controlled, was a 40-year smoker, had chronic atrial fibrillation, diabetes, and microangiopathy. During the consultation, the patient also presented with ocular obstruction due to an inability to open the eye. He mentioned having reduced vision. The computed tomography scan showed upper maxilla osteolysis without eye involvement. We underwent a radical resection in which upper maxilla and the anterior orbital margin were included. We used a Becker-type flap that allowed us to rebuild the cheek and to complete a modified neck dissection. Progress was favorable; the patient recovered ocular motility and his vision improved to 20/200. The final biopsy result was "malignant peripheral nerve sheath tumor, malignant schwannoma." Malignant schwannoma of the peripheral nerve is extremely rare. The total resection and reconstruction being completed in one surgery represented a challenge due to the difficulty in obtaining tissues in addition to the necessity of an oncological resection. PMID:27162577

  7. Five Roots Pattern of Median Nerve Formation

    Directory of Open Access Journals (Sweden)

    Konstantinos Natsis

    2016-04-01

    Full Text Available An unusual combination of median nerve’s variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve’s medial root. The latter (fourth root was united with the lateral (fifth root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications.

  8. Nerve Biopsy In The Diagnosis Of Leporsy

    Directory of Open Access Journals (Sweden)

    Hazra B

    1997-01-01

    Full Text Available Skin and nerve biopsies were done in 33 cases of different clinical types of leprosy selected from Dermatology OPD of Medical College and Hospitals, Calcutta during 1994-95. Histopathological results were compared with emphasis on the role of nerve biopsies in detection of patients with multibacillary leprosy. The evident possibility of having patients with multibacillary leprosy in peripheral leprosy with multiple drugs. It is found that skin and nerve biopsy are equally informative in borderline and lepromatour leprosy and is the only means to diagnose polyneuritic leprosy. Nerve biopsy appears to be more informative in the diagnosis of all clinical types of leprosy.

  9. Nerve Transfers to Restore Shoulder Function.

    Science.gov (United States)

    Leechavengvongs, Somsak; Malungpaishorpe, Kanchai; Uerpairojkit, Chairoj; Ng, Chye Yew; Witoonchart, Kiat

    2016-05-01

    The restoration of shoulder function after brachial plexus injury represents a significant challenge facing the peripheral nerve surgeons. This is owing to a combination of the complex biomechanics of the shoulder girdle, the multitude of muscles and nerves that could be potentially injured, and a limited number of donor options. In general, nerve transfer is favored over tendon transfer, because the biomechanics of the musculotendinous units are not altered. This article summarizes the surgical techniques and clinical results of nerve transfers for restoration of shoulder function. PMID:27094888

  10. Hypoxia inhibits abdominal expiratory nerve activity.

    Science.gov (United States)

    Fregosi, R F; Knuth, S L; Ward, D K; Bartlett, D

    1987-07-01

    Our purpose was to examine the influence of steady-state changes in chemical stimuli, as well as discrete peripheral chemoreceptor stimulation, on abdominal expiratory motor activity. In decerebrate, paralyzed, vagotomized, and ventilated cats that had bilateral pneumothoraces, we recorded efferent activity from a phrenic nerve and from an abdominal nerve (cranial iliohypogastric nerve, L1). All cats showed phasic expiratory abdominal nerve discharge at normocapnia [end-tidal PCO2 38 +/- 2 Torr], but small doses (2-6 mg/kg) of pentobarbital sodium markedly depressed this activity. Hyperoxic hypercapnia consistently enhanced abdominal expiratory activity and shortened the burst duration. Isocapnic hypoxia caused inhibition of abdominal nerve discharge in 11 of 13 cats. Carotid sinus nerve denervation (3 cats) exacerbated the hypoxic depression of abdominal nerve activity and depressed phrenic motor output. Stimulation of peripheral chemoreceptors with NaCN increased abdominal nerve discharge in 7 of 10 cats, although 2 cats exhibited marked inhibition. Four cats with intact neuraxis, but anesthetized with ketamine, yielded qualitatively similar results. We conclude that when cats are subjected to steady-state chemical stimuli in isolation (no interference from proprioceptive inputs), hypercapnia potentiates, but hypoxia attenuates, abdominal expiratory nerve activity. Mechanisms to explain the selective inhibition of expiratory motor activity by hypoxia are proposed, and physiological implications are discussed. PMID:3624126

  11. Raman microspectroscopy for visualization of peripheral nerves

    Science.gov (United States)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  12. Chitosan Conduit for Peripheral Nerve Regeneration

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Chitosan, the N-deacetylated form of chitin, has good biocompatibility and biodegradability.This paper investigates the feasibility of using chitosan conduits for peripheral nerve regeneration.Cell culture experiments were used to test the material's cytotoxicity and affinity to nerve cells.Conduit implantation experiments were used to study the degradation of the material and the regeneration of injured sciatic nerves.The primary results indicate that chitosan has good mechanical properties, biocompatibility, and biodegradability and it may be a promising biomaterial for peripheral nerve regeneration.

  13. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2015-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  14. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2016-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  15. Extrinsic sound stimulations and development of periphery auditory synapses

    Institute of Scientific and Technical Information of China (English)

    Kun Hou; Shiming Yang; Ke Liu

    2015-01-01

    The development of auditory synapses is a key process for the maturation of hearing function. However, it is still on debate regarding whether the development of auditory synapses is dominated by acquired sound stimulations. In this review, we summarize relevant publications in recent decades to address this issue. Most reported data suggest that extrinsic sound stimulations do affect, but not govern the development of periphery auditory synapses. Overall, periphery auditory synapses develop and mature according to its intrinsic mechanism to build up the synaptic connections between sensory neurons and/or interneurons.

  16. The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration

    OpenAIRE

    Ikeda, Masayoshi; Oka, Yoshinori

    2012-01-01

    We analyzed the relationship between motor nerve conduction velocity (MCV) and morphological changes in regenerating nerve fibers at different times after sciatic nerve transection to identify reliable indices of functional recovery. Thirty rats were divided into five equal groups, one control group and four groups subjected to sciatic nerve transection and immediate suturing, followed by regeneration for 50, 100, 150, and 200 days, respectively. MCV was measured in each group, followed by mo...

  17. Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration

    OpenAIRE

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang; Lee, Jin Ho

    2012-01-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regener...

  18. Silicone Molding and Lifetime Testing of Peripheral Nerve Interfaces for Neuroprostheses

    Energy Technology Data Exchange (ETDEWEB)

    Gupte, Kimaya [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Biomedical Engineering; Tolosa, Vanessa [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Micro- and Nanotechnology

    2016-08-10

    Implantable peripheral nerve cuffs have a large application in neuroprostheses as they can be used to restore sensation to those with upper limb amputations. Modern day prosthetics, while lessening the pain associated with phantom limb syndrome, have limited fine motor control and do not provide sensory feedback to patients. Sensory feedback with prosthetics requires communication between the nervous system and limbs, and is still a challenge to accomplish with amputees. Establishing this communication between the peripheral nerves in the arm and artificial limbs is vital as prosthetics research aims to provide sensory feedback to amputees. Peripheral nerve cuffs restore sensation by electrically stimulating certain parts of the nerve in order to create feeling in the hand. Cuff electrodes have an advantage over standard electrodes as they have high selective stimulation by bringing the electrical interface close to the neural tissue in order to selectively activate targeted regions of a peripheral nerve. In order to further improve the selective stimulation of these nerve cuffs, there is need for finer spatial resolution among electrodes. One method to achieve a higher spatial resolution is to increase the electrode density on the cuff itself. Microfabrication techniques can be used to achieve this higher electrode density. Using L-Edit, a layout editor, microfabricated peripheral nerve cuffs were designed with a higher electrode density than the current model. This increase in electrode density translates to an increase in spatial resolution by at least one order of magnitude. Microfabricated devices also have two separate components that are necessary to understand before implantation: lifetime of the device and assembly to prevent nerve damage. Silicone molding procedures were optimized so that devices do not damage nerves in vivo, and lifetime testing was performed on test microfabricated devices to determine their lifetime in vivo. Future work of this project

  19. Low Median Nerve Transfers (Opponensplasty).

    Science.gov (United States)

    Chadderdon, Robert Christopher; Gaston, R Glenn

    2016-08-01

    Opposition is the placement of the thumb opposite the fingers into a position from which it can work. This motion requires thumb palmar abduction, flexion, and pronation, which are provided by the abductor pollicis brevis, flexor pollicis brevis (FPB), and opponens pollicis. In the setting of a median nerve palsy, this function is typically lost, although anatomic variations and the dual innervation of the FPB may prevent complete loss at times. There are multiple well described and accepted tendon transfers to restore opposition, none of which have been proven to be superior to the others. PMID:27387078

  20. Peroneal Nerve Palsy After Cryotherapy.

    Science.gov (United States)

    Collins, K; Storey, M; Peterson, K

    1986-05-01

    In brief: Cryotherapy, a common treatment method for sports injuries, could result in peroneal nerve palsy. In this case a 26-year-old basketball coach who sustained a hamstring strain applied ice circumferentially around his knee on two occasions for one hour each. He subsequently suffered a severe peroneal neuropathy with weakness of the ankle, ankle evertors, and toe dorsiflexors. Electromyographic studies showed axonotmesis three months after the injury. Four months after the injury the patient was still recovering. This case demonstrates the importance of using cryotherapy cautiously. PMID:27442936

  1. Auditory system physiology (CNS) : behavioral studies psychoacoustics

    CERN Document Server

    Neff, William

    1975-01-01

    nerve; subsequently, however, they concluded that the recordings had been from aberrant cells of the cochlear nucleus lying central to the glial margin of the VIII nerve (GALAMBOS and DAVIS, 1948). The first successful recordmgs from fibres of the cochlear nerve were made by TASAKI (1954) in the guinea pig. These classical but necessarily limited results were greatly extended by ROSE, GALAMBOS, and HUGHES (1959) in the cat cochlear nucleus and by KATSUKI and co-workers (KATSUKI et at. , 1958, 1961, 1962) in the cat and monkey cochlear nerve. Perhaps the most significant developments have been the introduction of techniques for precise control of the acoustic stimulus and the quantitative analysis of neuronal response patterns, notably by the laboratories of KIANG (e. g. GERSTEIN and KIANG, 1960; KIANG et at. , 1962b, 1965a, 1967) and ROSE (e. g. ROSE et at. , 1967; HIND et at. , 1967). These developments have made possible a large number of quanti­ tative investigations of the behaviour of representative num...

  2. Muscle potentials evoked by magnetic stimulation of the sciatic nerve in unilateral sciatic nerve dysfunction

    NARCIS (Netherlands)

    Van Soens, I.; Struys, M. M. R. F.; Van Ham, L. M. L.

    2010-01-01

    Magnetic stimulation of the sciatic nerve and subsequent recording of the muscle-evoked potential (MEP) was performed in eight dogs and three cats with unilateral sciatic nerve dysfunction. Localisation of the lesion in the sciatic nerve was based on the history, clinical neurological examination an

  3. The Cranial Nerve Skywalk: A 3D Tutorial of Cranial Nerves in a Virtual Platform

    Science.gov (United States)

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways…

  4. A comparative study of acellular nerve xenografts and allografts in repairing rat facial nerve defects.

    Science.gov (United States)

    Huang, Haitao; Xiao, Hongxi; Liu, Huawei; Niu, Yu; Yan, Rongzeng; Hu, Min

    2015-10-01

    Acellular nerves are composed of a basal lamina tube, which retains sufficient bioactivity to promote axon regeneration, thereby repairing peripheral nerve gaps. However, the clinical application of acellular allografts has been restricted due to its limited availability. To investigate whether xenografts, a substitute to allograft acellular nerves in abundant supply, could efficiently promote nerve regeneration, rabbit and rat acellular nerve grafts were used to reconstruct 1 cm defects in Wistar rat facial nerves. Autologous peroneal nerve grafts served as a positive control group. A total of 12 weeks following the surgical procedure, the axon number, myelinated axon number, myelin sheath thickness, and nerve conduction velocity of the rabbit and rat‑derived acellular nerve grafts were similar, whereas the fiber diameter of the rabbit‑derived acellular xenografts decreased, as compared with those of rat‑derived acellular allografts. Autografts exerted superior effects on nerve regeneration; however, no significant difference was observed between the axon number in the autograft group, as compared with the two acellular groups. These results suggested that autografts perform better than acellular nerve grafts, and chemically extracted acellular allografts and xenografts have similar effects on the regeneration of short facial nerve defects. PMID:26239906

  5. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair.

    Science.gov (United States)

    Wang, Dong; Huang, Xijun; Fu, Guo; Gu, Liqiang; Liu, Xiaolin; Wang, Honggang; Hu, Jun; Yi, Jianhua; Niu, Xiaofeng; Zhu, Qingtang

    2014-05-15

    Current research on bone marrow stem cell transplantation and autologous or xenogenic nerve transplantation for peripheral nerve regeneration has mainly focused on the repair of peripheral nerve defects in rodents. In this study, we established a standardized experimental model of radial nerve defects in primates and evaluated the effect of repair on peripheral nerve injury. We repaired 2.5-cm lesions in the radial nerve of rhesus monkeys by transplantation of autografts, acellular allografts, or acellular allografts seeded with autologous bone marrow stem cells. Five months after surgery, regenerated nerve tissue was assessed for function, electrophysiology, and histomorphometry. Postoperative functional recovery was evaluated by the wrist-extension test. Compared with the simple autografts, the acellular allografts and allografts seeded with bone marrow stem cells facilitated remarkable recovery of the wrist-extension functions in the rhesus monkeys. This functional improvement was coupled with radial nerve distal axon growth, a higher percentage of neuron survival, increased nerve fiber density and diameter, increased myelin sheath thickness, and increased nerve conduction velocities and peak amplitudes of compound motor action potentials. Furthermore, the quality of nerve regeneration in the bone marrow stem cells-laden allografts group was comparable to that achieved with autografts. The wrist-extension test is a simple behavioral method for objective quantification of peripheral nerve regeneration. PMID:25206757

  6. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Qingtang Zhu; Xijun Huang; Guo Fu; Liqiang Gu; Xiaolin Liu; Honggang Wang; Jun Hu; Jianhua Yi; Xiaofeng Niu

    2014-01-01

    Current research on bone marrow stem cell transplantation and autologous or xenogenic nerve transplantation for peripheral nerve regeneration has mainly focused on the repair of peripher-al nerve defects in rodents. In this study, we established a standardized experimental model of radial nerve defects in primates and evaluated the effect of repair on peripheral nerve injury. We repaired 2.5-cm lesions in the radial nerve of rhesus monkeys by transplantation of autografts, acellular allografts, or acellular allografts seeded with autologous bone marrow stem cells. Five months after surgery, regenerated nerve tissue was assessed for function, electrophysiology, and histomorphometry. Postoperative functional recovery was evaluated by the wrist-extension test. Compared with the simple autografts, the acellular allografts and allografts seeded with bone marrow stem cells facilitated remarkable recovery of the wrist-extension functions in the rhesus monkeys. This functional improvement was coupled with radial nerve distal axon growth, a higher percentage of neuron survival, increased nerve fiber density and diameter, increased myelin sheath thickness, and increased nerve conduction velocities and peak amplitudes of compound motor action potentials. Furthermore, the quality of nerve regeneration in the bone marrow stem cells-laden allografts group was comparable to that achieved with autografts. The wrist-extension test is a simple behavioral method for objective quantification of peripheral nerve regeneration.

  7. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    Science.gov (United States)

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  8. Nerve transfer for treatment of brachial plexus injury:comparison study between the transfer of partial median and ulnar nerves and that of phrenic and spinal accessary nerves

    Institute of Scientific and Technical Information of China (English)

    侯之启; 徐中和

    2002-01-01

    Objective:To compare the effect of using partial median and ulnar nerves for treatment of C5-6 orC5-7 avulsion of the brachial plexus with that of using phrenic and spinal accessary nerves.Methods:The patients were divided into 2groups randomly according to different surgical procedures.Twelve cases were involved in the first group.The phrenic nerve was transferred to the musculocutaneous nerve or through a sural nerve graft,and the spinal accessary nerve was to the suprascapular nerve.Eleven cases were classified into the second group.A part of the fascicles of median nerve was transferred to be coapted with the motor fascicle of musculocutaneous nerve and a part of fascicles of ulnar nerve was transferred to the axillary nerve.The cases were followed up from 1to 3years and the clinical outcome was compared between the two groups.

  9. The Role of Auditory and Kinaesthetic Feedback Mechanisms on Phonatory Stability in Children

    OpenAIRE

    Rathna Kumar, S. B.; Azeem, Suhail; Choudhary, Abhishek Kumar; Prakash, S. G. R.

    2012-01-01

    Auditory feedback plays an important role in phonatory control. When auditory feedback is disrupted, various changes are observed in vocal motor control. Vocal intensity and fundamental frequency (F0) levels tend to increase in response to auditory masking. Because of the close reflexive links between the auditory and phonatory systems, it is likely that phonatory stability may be disrupted when auditory feedback is disrupted or altered. However, studies on phonatory stability under auditory ...

  10. Evolution of rapid nerve conduction.

    Science.gov (United States)

    Castelfranco, Ann M; Hartline, Daniel K

    2016-06-15

    Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26879248

  11. Neuronal differentiation and extensive migration of human neural precursor cells following co-culture with rat auditory brainstem slices.

    Directory of Open Access Journals (Sweden)

    Ekaterina Novozhilova

    Full Text Available Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN, forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN in the brainstem (BS. Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres were deposited adjacent to or on top of the BS slices or as a monoculture (control. The results demonstrate that co-cultured HNPCs compared to monocultures (1 survive better, (2 distribute over a larger area, (3 to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.

  12. Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: a randomized controlled pilot study.

    Science.gov (United States)

    Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta

    2014-03-15

    Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. PMID:24388435

  13. Auditory excitation patterns : the significance of the pulsation threshold method for the measurement of auditory nonlinearity

    NARCIS (Netherlands)

    H. Verschuure (Hans)

    1978-01-01

    textabstractThe auditory system is the toto[ of organs that translates an acoustical signal into the perception of a sound. An acoustic signal is a vibration. It is decribed by physical parameters. The perception of sound is the awareness of a signal being present and the attribution of certain qual

  14. Immediate versus delayed primary nerve repair in the rabbit sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Ahmet Piskin; Berrin Zhal Altunkaynak; Atilla tlak; Hicabi Sezgin; Ozgr Yazc; Sleyman Kaplan

    2013-01-01

    It is wel known that peripheral nerve injury should be treated immediately in the clinic, but in some instances, repair can be delayed. This study investigated the effects of immediate versus delayed (3 days after injury) neurorrhaphy on repair of transected sciatic nerve in New Zealand rabbits using stereological, histomorphological and biomechanical methods. At 8 weeks after immediate and de-layed neurorrhaphy, axon number and area in the sciatic nerve, myelin sheath and epineurium thickness, Schwann cellmorphology, and the mechanical property of nerve fibers did not differ ob-viously. These results indicate that delayed neurorrhaphy do not produce any deleterious effect on sciatic nerve repair.

  15. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    OpenAIRE

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, XinYing

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups...

  16. Immediate versus delayed primary nerve repair in the rabbit sciatic nerve.

    Science.gov (United States)

    Piskin, Ahmet; Altunkaynak, Berrin Zühal; Çitlak, Atilla; Sezgin, Hicabi; Yazιcι, Ozgür; Kaplan, Süleyman

    2013-12-25

    It is well known that peripheral nerve injury should be treated immediately in the clinic, but in some instances, repair can be delayed. This study investigated the effects of immediate versus delayed (3 days after injury) neurorrhaphy on repair of transected sciatic nerve in New Zealand rabbits using stereological, histomorphological and biomechanical methods. At 8 weeks after immediate and delayed neurorrhaphy, axon number and area in the sciatic nerve, myelin sheath and epineurium thickness, Schwann cell morphology, and the mechanical property of nerve fibers did not differ obviously. These results indicate that delayed neurorrhaphy do not produce any deleterious effect on sciatic nerve repair. PMID:25206663

  17. Immunobiology of Facial Nerve Repair and Regeneration

    Institute of Scientific and Technical Information of China (English)

    QUAN Shi-ming; GAO Zhi-qiang

    2006-01-01

    Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial motoneuron, i.e., the aggregation and expression of various types of immune cells and molecules in a dynamic equilibrium, impenetrate from the start to the end of the repair of an injured facial nerve. The concept of "immune microenvironment for facial nerve repair and regeneration", mainly concerns with the dynamic exchange between expression and regulation networks and a variaty of immune cells and immune molecules in the process of facial nerve repair and regeneration for the maintenance of a immune microenvironment favorable for nerve repair.Investigation on microglial activation and recruitment, T cell behavior, cytokine networks, and immunological cellular and molecular signaling pathways in facial nerve repair and regeneration are the current hot spots in the research on immunobiology of facial nerve injury. The current paper provides a comprehensive review of the above mentioned issues. Research of these issues will eventually make immunological interventions practicable treatments for facial nerve injury in the clinic.

  18. Multiple nerve palsies in beta thalassaemia major.

    OpenAIRE

    Lamabadusuriya, S. P.

    1989-01-01

    A patient with beta thalassaemia major is described who developed a lower motor neurone facial nerve palsy on the left side, together with a phrenic nerve palsy on the same side, during the course of the illness. This complication has not been reported before in haemoglobinopathies.

  19. Facial nerve paralysis after cervical traction.

    Science.gov (United States)

    So, Edmund Cheung

    2010-10-01

    Cervical traction is a frequently used treatment in rehabilitation clinics for cervical spine problems. This modality works, in principle, by decompressing the spinal cord or its nerve roots by applying traction on the cervical spine through a harness placed over the mandible (Olivero et al., Neurosurg Focus 2002;12:ECP1). Previous reports on treatment complications include lumbar radicular discomfort, muscle injury, neck soreness, and posttraction pain (LaBan et al., Arch Phys Med Rehabil 1992;73:295-6; Lee et al., J Biomech Eng 1996;118:597-600). Here, we report the first case of unilateral facial nerve paralysis developed after 4 wks of intermittent cervical traction therapy. Nerve conduction velocity examination revealed a peripheral-type facial nerve paralysis. Symptoms of facial nerve paralysis subsided after prednisolone treatment and suspension of traction therapy. It is suspected that a misplaced or an overstrained harness may have been the cause of facial nerve paralysis in this patient. Possible causes were (1) direct compression by the harness on the right facial nerve near its exit through the stylomastoid foramen; (2) compression of the right external carotid artery by the harness, causing transient ischemic injury at the geniculate ganglion; or (3) coincidental herpes zoster virus infection or idiopathic Bell's palsy involving the facial nerve.

  20. Etiological factors of traumatic peripheral nerve injuries

    Directory of Open Access Journals (Sweden)

    Eser Filiz

    2009-01-01

    Full Text Available Background: Traumatic injury of peripheral nerves is a worldwide problem and can result in significant disability. Management of peripheral nerve injuries (PNIs requires accurate localization and the assessment of severity of the lesion. Aim: The purpose of this study is to analyze the data of patients with PNIs referred for electromyography to a tertiary care hospital. Materials and Methods: This is a retrospective study of clinical and electromyographic data of patients with PNIs seen over a period of eight-years (1999-2007 in a tertiary hospital. The data collected included: Demographic data, cause, type of lesion, anatomical location of the lesion, and the mechanism of lesion. Results: During the study period 938 patients were seen with nerve injuries and the distribution of nerve injuries was: PNIs: 1,165; brachial plexus lesions: 76; and lumbar plexus lesions: 7. The mean age was 31.8 years (range 2-81 years and the male to female ratio was 2.4:1. The most frequent nerve injuries were ulnar nerve in the upper extremity and sciatic nerve in the lower extremity. The most common cause of nerve injury was motor vehicle accidents. Two-thirds of the PNIs were partial. Conclusion: This study can serve as a guide to determine the epidemiology and classification of traumatic peripheral and plexus injuries.

  1. Neurotology findings in patients with diagnosis of vascular loop of cranial nerves VIII in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Grocoske, Francisco Luiz Busato

    Full Text Available Introduction: The vascular compression by redundant vessels under the VIII cranial nerves has been studied since the 80's, and many authors proposed correlations between the compression and the otoneurological findings (vertigo, tinnitus, hypoacusis, audiometry and electrophysiological findings. Objective: Analyze and correlate the different signs and otoneurological symptoms, the audiological findings and its incidence over individuals with Vascular Loop (VL diagnosis of VIII cranial nerves by magnetic resonance imaging (MRI. Method: Retrospective study through the analysis of medical records of 47 patients attended in the otoneurology clinic of Clinical Hospital of UFPR. All the patients have MRI exams with compatible pictures of VL of the VIII cranial nerves. Results: The tinnitus was the most frequent symptom, in 83% of the patients, followed by hypoacusis (60% and vertigo (36%. The audiometry presented alterations in 89%, the brainstem evoked auditory potential in 33% and the vecto-electronystagmography in 17% of the patients. Was not found statistically significant relation between the buzz or hypoacusis, and the presence of VL in MRI. Only 36% of patients had complaints of vertigo, the main symptom described in theory of vascular compression of the VIII pair of nerve. As in the audiometry and in brainstem evoked auditory potential was not found a statistically significant relation between the exam and the presence of the VL in the RMI. Conclusion: The results show independence between the findings of the RMI, clinical picture and audiological results (p>0,05 suggesting that there are no exclusive and direct relation between the diagnosis of vascular loop in the MRI and the clinical picture matching.

  2. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    Science.gov (United States)

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. PMID:26332703

  3. A novel bioactive nerve conduit for the repair of peripheral nerve injury

    Institute of Scientific and Technical Information of China (English)

    Bin-bin Li; Yi-xia Yin; Qiong-jiao Yan; Xin-yu Wang; Shi-pu Li

    2016-01-01

    The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regener-ation and avoid autograft defects. We constructed a poly-D-L-lactide (PDLLA)-based nerve conduit that was modiifed using poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} andβ-tricalcium phosphate. The effectiveness of this bioactive PDLLA-based nerve conduit was compared to that of PDLLA-only conduit in the nerve regeneration following a 10-mm sciatic nerve injury in rats. We observed the nerve morphology in the early period of regeneration, 35 days post injury, using hematoxylin-eosin and methylene blue staining. Compared with the PDLLA conduit, the nerve ifbers in the PDLLA-based bioactive nerve conduit were thicker and more regular in size. Muscle ifbers in the soleus muscle had greater diameters in the PDLLA bioactive group than in the PDLLA only group. The PDLLA-based bioactive nerve conduit is a promising strategy for repair after sciatic nerve injury.

  4. An effect of wrapping peripheral nerve anastomosis with pedicled muscle flap on nerve regeneration in experiment

    Directory of Open Access Journals (Sweden)

    Naumenko L.Yu.

    2010-01-01

    Full Text Available Despite intrinsic capacity of peripheral nerves to regenerate, functional outcomes of peripheral nerves injury remain poor. Nerve ischemia, intra-/perineurial fibrosis and neuroma formation contribute a lot to that. Several authors demonstrated beneficial effects of increased vascularization at the site of injury on peripheral nerves regeneration. The use of highly vascularized autologous tissues (greater omentum as a source of peripheral nerves neovascularization shows promising re-sults. We proposed a surgical technique in which injured peripheral nerves anastomosis was wrapped in a pedicled muscular flap and performed morphological assessment of the efficacy of such technique with the aid of immunohistochemistry. 14 rats (which underwent sciatic nerve transection were operated according to proposed technique. Another 14 rats, in which only end-to-end nerve anastomosis (without muscular wrapping was performed served as controls. Morphological changes were evaluated at 3 weeks and 3 months periods. Higher blood vessel and axon counts were observed in experimental groups at both checkpoints. There was also an increase in Schwann cells and macrophages counts, and less collagen content in pe-ripheral nerves of experimental groups. Axons in neuromas of experimental groups showed a higher degree of arrangement. We conclude that proposed surgical technique provides better vascularisation of injured peripheral nerves, which is beneficial for nerve regeneration.

  5. A critical period for auditory thalamocortical connectivity

    DEFF Research Database (Denmark)

    Rinaldi Barkat, Tania; Polley, Daniel B; Hensch, Takao K

    2011-01-01

    connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene......-targeted deletion of a forebrain-specific cell-adhesion molecule (Icam5) accelerated plasticity in this critical period. Consistent with its normal role of slowing spinogenesis, loss of Icam5 induced precocious stubby spine maturation on pyramidal cell dendrites in neocortical layer 4 (L4), identifying a primary...

  6. CAVERNOUS HEMANGIOMA OF THE INTERNAL AUDITORY CANAL

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Hekmatara

    1993-06-01

    Full Text Available Cavernous hemangioma is a rare benign tumor of the internal auditory canal (IAC of which fourteen cases have been reported so far."nTinnitus and progressive sensorineural hearing loss (SNHL are the chief complaints of the patients. Audiological and radiological planes, CTScan, and magnetic resonance image (MRI studies are helpful in diagnosis. The only choice of treatment is surgery with elective transmastoid trans¬labyrinthine approach. And if tumor is very large, the method of choice will be retrosigmoid approach.

  7. INFLUENCE ON VESTIBULAR FUNCTION BY AUDITORY NEUROPATHY

    Institute of Scientific and Technical Information of China (English)

    WANG Jingmiao; JIANG Xinxia; SHAN Chunguang

    2013-01-01

    Objective The main purpose of the present study was to describe the vestibular function in patients with auditory neuropathy (AN), and to assess their ability to maintain balance. Methods Vestibular function tests were performed on 32 patients with AN and 36 normal subjects including electronystagmopraphy(ENG) and static postrography(SPG). The results from the two groups were compared. Results Equilibrium function in patients with AN, was abnormal, compared to normal subjects. Conclusion Vestibular function tests, espe-cially static postrography, should be performed on patients with AN.

  8. Beneficial effects of treadmill training in experimental diabetic nerve regeneration

    OpenAIRE

    Tais Malysz; Jocemar Ilha; Patrícia Severo do Nascimento; Katia De Angelis; Beatriz D'Agord Schaan; Matilde Achaval

    2010-01-01

    OBJECTIVES: We investigated the effects of treadmill training (10 weeks) on hindlimb motor function and nerve morphometric parameters in diabetic rats submitted to sciatic nerve crush. MATERIALS AND METHOD: Wistar rats (n = 64) were divided into the following groups: non-diabetic; trained non-diabetic; non-diabetic with sciatic nerve crush; trained non-diabetic with sciatic nerve crush; diabetic; trained diabetic; diabetic with sciatic nerve crush or trained diabetic with sciatic nerve crush....

  9. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  10. Histological assessment in peripheral nerve tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Vctor Carriel; Ingrid Garzn; Miguel Alaminos; Maria Cornelissen

    2014-01-01

    The histological analysis of peripheral nerve regeneration is one of the most used methods to demonstrate the success of the regeneration through nerve conduits. Nowadays, it is possible to evaluate different parameters of nerve regeneration by using histological, histochemical, immunohistochemical and ultrastructural techniques. The histochemical methods are very sensible and are useful tools to evaluate the extracellular matrix remodeling and the myelin sheath, but they are poorly speciifc. In contrast, the immunohistochemical methods are highly speciifc and are frequently used for the identiifcation of the regenerated axons, Schwann cells and proteins associated to nerve regeneration or neural linage. The ultrastructural techniques offer the possibility to perform a high resolution morphological and quantitative analysis of the nerve regeneration. However, the use of a single histological method may not be enough to assess the degree of regeneration, and the combination of different histological techniques could be necessary.

  11. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre

    2013-01-01

    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...... surgical techniques and better outcome after peripheral nerve injury. Decision making in peripheral nerve surgery continues to be a complex challenge, where the mechanism of injury, repeated clinical evaluation, neuroradiological and neurophysiological examination, and detailed knowledge of the peripheral...... nervous system response to injury are prerequisite to obtain the best possible outcome. Surgery continues to be the primary treatment modality for peripheral nerve tumors and advances in adjuvant oncological treatment has improved outcome after malignant peripheral nerve tumors. The present chapter...

  12. Symptoms of Nerve Dysfunction After Hip Arthroscopy

    DEFF Research Database (Denmark)

    Dippmann, Christian; Thorborg, Kristian; Kraemer, Otto;

    2014-01-01

    year after HA concerning symptoms of nerve dysfunction, possible localization, and erectile dysfunction. Fifty patients participated and returned fully completed questionnaires. Patients reporting symptoms of nerve dysfunction 1 year after HA were re-examined. RESULTS: Twenty-three of 50 patients (46......%) reported symptoms of nerve dysfunction during the first week after HA; this was reduced to 14 patients (28%) after 6 weeks, 11 patients (22%) after 26 weeks, and 9 patients (18%) after 1 year. One patient experienced temporary erectile dysfunction. No difference in traction time between patients......PURPOSE: The primary purpose of this study was to analyze the rate, pattern, and severity of symptoms of nerve dysfunction after hip arthroscopy (HA) by reviewing prospectively collected data. The secondary purpose was to study whether symptoms of nerve dysfunction were related to traction time...

  13. OCT image segmentation of the prostate nerves

    Science.gov (United States)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-08-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.

  14. From ear to hand: the role of the auditory-motor loop in pointing to an auditory source

    Science.gov (United States)

    Boyer, Eric O.; Babayan, Bénédicte M.; Bevilacqua, Frédéric; Noisternig, Markus; Warusfel, Olivier; Roby-Brami, Agnes; Hanneton, Sylvain; Viaud-Delmon, Isabelle

    2013-01-01

    Studies of the nature of the neural mechanisms involved in goal-directed movements tend to concentrate on the role of vision. We present here an attempt to address the mechanisms whereby an auditory input is transformed into a motor command. The spatial and temporal organization of hand movements were studied in normal human subjects as they pointed toward unseen auditory targets located in a horizontal plane in front of them. Positions and movements of the hand were measured by a six infrared camera tracking system. In one condition, we assessed the role of auditory information about target position in correcting the trajectory of the hand. To accomplish this, the duration of the target presentation was varied. In another condition, subjects received continuous auditory feedback of their hand movement while pointing to the auditory targets. Online auditory control of the direction of pointing movements was assessed by evaluating how subjects reacted to shifts in heard hand position. Localization errors were exacerbated by short duration of target presentation but not modified by auditory feedback of hand position. Long duration of target presentation gave rise to a higher level of accuracy and was accompanied by early automatic head orienting movements consistently related to target direction. These results highlight the efficiency of auditory feedback processing in online motor control and suggest that the auditory system takes advantages of dynamic changes of the acoustic cues due to changes in head orientation in order to process online motor control. How to design an informative acoustic feedback needs to be carefully studied to demonstrate that auditory feedback of the hand could assist the monitoring of movements directed at objects in auditory space. PMID:23626532

  15. Auditory perceptual simulation: Simulating speech rates or accents?

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. PMID:27177077

  16. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  17. Auditory Processing Theories of Language Disorders: Past, Present, and Future

    Science.gov (United States)

    Miller, Carol A.

    2011-01-01

    Purpose: The purpose of this article is to provide information that will assist readers in understanding and interpreting research literature on the role of auditory processing in communication disorders. Method: A narrative review was used to summarize and synthesize the literature on auditory processing deficits in children with auditory…

  18. Quantification of the auditory startle reflex in children

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; van der Meer, Johan N.; Koelman, Johannes H. T. M.; Boeree, Thijs; Bour, Lo; Tijssen, Marina A. J.

    2009-01-01

    Objective: To find an adequate tool to assess the auditory startle reflex (ASR) in children. Methods: We investigated the effect of stimulus repetition, gender and age on several quantifications of the ASR. ASR's were elicited by eight consecutive auditory stimuli in 27 healthy children. Electromyog

  19. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    Science.gov (United States)

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  20. Effect of Auditory Interference on Memory of Haptic Perceptions.

    Science.gov (United States)

    Anater, Paul F.

    1980-01-01

    The effect of auditory interference on the processing of haptic information by 61 visually impaired students (8 to 20 years old) was the focus of the research described in this article. It was assumed that as the auditory interference approximated the verbalized activity of the haptic task, accuracy of recall would decline. (Author)