WorldWideScience

Sample records for auditory gap detection

  1. Rapid auditory learning of temporal gap detection.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manasa R

    2016-07-01

    The rapid initial phase of training-induced improvement has been shown to reflect a genuine sensory change in perception. Several features of early and rapid learning, such as generalization and stability, remain to be characterized. The present study demonstrated that learning effects from brief training on a temporal gap detection task using spectrally similar narrowband noise markers defining the gap (within-channel task), transfer across ears, however, not across spectrally dissimilar markers (between-channel task). The learning effects associated with brief training on a gap detection task were found to be stable for at least a day. These initial findings have significant implications for characterizing early and rapid learning effects. PMID:27475211

  2. Parameters affecting gap detection in the rat.

    Science.gov (United States)

    Leitner, D S; Hammond, G R; Springer, C P; Ingham, K M; Mekilo, A M; Bodison, P R; Aranda, M T; Shawaryn, M A

    1993-09-01

    The present research used a startle amplitude reduction paradigm to investigate the ability of the rat's auditory system to track rapidly changing acoustic transients. Specifically examined was the ability of brief gaps in otherwise continuous noise to reduce the amplitude of a subsequently elicited acoustic startle reflex. The duration of the gap, time between gap offset and startle elicitation (the interstimulus interval or ISI), and rise-fall characteristics of the gap were systematically varied. Consistent with previous research, gaps reliably reduced startle amplitude. Gaps 2 msec long were reliably detected, and a 50-msec ISI resulted in the greatest amplitude reduction. Gaps presented at short ISIs produced amplitude reduction that followed a different time course than did gaps presented at longer ISIs. These results may reflect differences in the length of time available for the processing of the stimulus and may involve two different processes.

  3. Gap prepulse inhibition and auditory brainstem evoked potentials as objective measures for tinnitus in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Susanne eDehmel

    2012-05-01

    Full Text Available Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept.

  4. Dynamic faces speed up the onset of auditory cortical spiking responses during vocal detection

    OpenAIRE

    Chandrasekaran, Chandramouli; Lemus, Luis; Asif A Ghazanfar

    2013-01-01

    We combine facial motion with voices to help us hear better, but the role that low-level sensory areas such as the auditory cortex may play in this process is unclear. We combined a vocalization detection task with auditory cortical physiology in monkeys to bridge this epistemic gap. Surprisingly, and contrary to previous assumptions and hypotheses, changes in firing rate had no clear relationship to the detection advantage that dynamic faces provided when listening for vocalizations. Instead...

  5. Noise-Induced Tinnitus Using Individualized Gap Detection Analysis and Its Relationship with Hyperacusis, Anxiety, and Spatial Cognition

    OpenAIRE

    Edward Pace; Jinsheng Zhang

    2013-01-01

    Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual ...

  6. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    When an early wall reflection is added to a direct sound, a spectral modulation is introduced to the signal's power spectrum. This spectral modulation typically produces an auditory sensation of coloration or pitch. Throughout this study, auditory spectral-integration effects involved in coloration...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...... filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high...

  7. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs.

    Science.gov (United States)

    Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E

    2012-01-01

    Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not

  8. Visual change detection recruits auditory cortices in early deafness.

    Science.gov (United States)

    Bottari, Davide; Heimler, Benedetta; Caclin, Anne; Dalmolin, Anna; Giard, Marie-Hélène; Pavani, Francesco

    2014-07-01

    Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation.

  9. Automatically detecting auditory P300 in several trials

    Institute of Scientific and Technical Information of China (English)

    莫少锋; 汤井田; 陈洪波

    2015-01-01

    A method was demonstrated based on Infomax independent component analysis (Infomax ICA) for automatically extracting auditory P300 signals within several trials. A signaling equilibrium algorithm was proposed to enhance the effectiveness of the Infomax ICA decomposition. After the mixed signal was decomposed by Infomax ICA, the independent component (IC) used in auditory P300 reconstruction was automatically chosen by using the standard deviation of the fixed temporal pattern. And the result of auditory P300 was reconstructed using the selected ICs. The experimental results show that the auditory P300 can be detected automatically within five trials. The Pearson correlation coefficient between the standard signal and the signal detected using the proposed method is significantly greater than that between the standard signal and the signal detected using the average method within five trials. The wave pattern result obtained using the proposed algorithm is better and more similar to the standard signal than that obtained by the average method for the same number of trials. Therefore, the proposed method can automatically detect the effective auditory P300 within several trials.

  10. A Sequential Detection Method for Late Auditory Evoked Potentials

    OpenAIRE

    Hoppe, U; Eysholdt, U; Weiss, S.

    1996-01-01

    This work presents a novel mechanism for detection of late auditory evoked potentials (AEP). AEPs, which are an important diagnostic tool to detect hearing deficiencies, are contained within the electroencephalogram (EEG) at a very low SNR. Our proposed automatic detection of AEPs is based on the Wavelet-Transform of EEG data for feature extraction. Several transform coefficients are then used for a classification by a neural network; its decisions on successive EEG segments are judged by a s...

  11. Automatic hearing loss detection system based on auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Aldonate, J; Mercuri, C; Reta, J; Biurrun, J; Bonell, C; Gentiletti, G; Escobar, S; Acevedo, R [Laboratorio de Ingenieria en Rehabilitacion e Investigaciones Neuromusculares y Sensoriales (Argentina); Facultad de Ingenieria, Universidad Nacional de Entre Rios, Ruta 11 - Km 10, Oro Verde, Entre Rios (Argentina)

    2007-11-15

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

  12. Automatic hearing loss detection system based on auditory brainstem response

    Science.gov (United States)

    Aldonate, J.; Mercuri, C.; Reta, J.; Biurrun, J.; Bonell, C.; Gentiletti, G.; Escobar, S.; Acevedo, R.

    2007-11-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

  13. An auditory feature detection circuit for sound pattern recognition.

    Science.gov (United States)

    Schöneich, Stefan; Kostarakos, Konstantinos; Hedwig, Berthold

    2015-09-01

    From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns.

  14. A Detection-Theoretic Analysis of Auditory Streaming and Its Relation to Auditory Masking.

    Science.gov (United States)

    Chang, An-Chieh; Lutfi, Robert; Lee, Jungmee; Heo, Inseok

    2016-09-18

    Research on hearing has long been challenged with understanding our exceptional ability to hear out individual sounds in a mixture (the so-called cocktail party problem). Two general approaches to the problem have been taken using sequences of tones as stimuli. The first has focused on our tendency to hear sequences, sufficiently separated in frequency, split into separate cohesive streams (auditory streaming). The second has focused on our ability to detect a change in one sequence, ignoring all others (auditory masking). The two phenomena are clearly related, but that relation has never been evaluated analytically. This article offers a detection-theoretic analysis of the relation between multitone streaming and masking that underscores the expected similarities and differences between these phenomena and the predicted outcome of experiments in each case. The key to establishing this relation is the function linking performance to the information divergence of the tone sequences, DKL (a measure of the statistical separation of their parameters). A strong prediction is that streaming and masking of tones will be a common function of DKL provided that the statistical properties of sequences are symmetric. Results of experiments are reported supporting this prediction.

  15. Effects of localized auditory information on visual target detection performance using a helmet-mounted display.

    Science.gov (United States)

    Nelson, W T; Hettinger, L J; Cunningham, J A; Brickman, B J; Haas, M W; McKinley, R L

    1998-09-01

    An experiment was conducted to evaluate the effects of localized auditory information on visual target detection performance. Visual targets were presented on either a wide field-of-view dome display or a helmet-mounted display and were accompanied by either localized, nonlocalized, or no auditory information. The addition of localized auditory information resulted in significant increases in target detection performance and significant reductions in workload ratings as compared with conditions in which auditory information was either nonlocalized or absent. Qualitative and quantitative analyses of participants' head motions revealed that the addition of localized auditory information resulted in extremely efficient and consistent search strategies. Implications for the development and design of multisensory virtual environments are discussed. Actual or potential applications of this research include the use of spatial auditory displays to augment visual information presented in helmet-mounted displays, thereby leading to increases in performance efficiency, reductions in physical and mental workload, and enhanced spatial awareness of objects in the environment.

  16. Non-Auditory Health Hazard Vulnerability to Noise Pollution: Assessing Public Awareness Gap

    Directory of Open Access Journals (Sweden)

    Tanjir Ahmed

    2015-04-01

    Full Text Available In Dhaka, one of the top ten megacities in Asia and the capital of Bangladesh, the problem of noise related pollution is prevalent. In almost every part of Dhaka city, the levels of noise which are established by W.H.O. are regularly exceeded, thus prompting adverse health effects on its inhabitants. This sort of pollution is more acute in central portion of Dhaka than its periphery. Therefore, if the greater Dhaka is taken as a study area, the central’s problem may be underestimated. This study is prepared to find out the actual condition of auditory and non-auditory health effect of noise among roadside people and provide recommendation to ameliorate the same and consequently reduce noise level in Dhaka city as an effort to make Dhaka a better place to live in. The result shows that both auditory and non-auditory effects of noise are at alarming condition in all zones of the city.

  17. Auditory Brainstem Gap Responses Start to Decline in Middle Age Mice: A Novel Physiological Biomarker for Age-Related Hearing Loss

    Science.gov (United States)

    Williamson, Tanika T.; Zhu, Xiaoxia; Walton, Joseph P.; Frisina, Robert D.

    2014-01-01

    The CBA/CaJ mouse strain's auditory function is normal during the early phases of life and gradually declines over its lifespan, much like human age-related hearing loss (ARHL), but on a mouse life cycle “time frame”. This pattern of ARHL is relatively similar to that of most humans: difficult to clinically diagnose at its onset, and currently not treatable medically. To address the challenge of early diagnosis, CBA mice were used for the present study to analyze the beginning stages and functional onset biomarkers of ARHL. The results from Auditory Brainstem Response (ABR) audiogram and Gap-in-noise (GIN) ABR tests were compared for two groups of mice of different ages, young adult and middle age. ABR peak components from the middle age group displayed minor changes in audibility, but had a significantly higher prolonged peak latency and decreased peak amplitude in response to temporal gaps in comparison to the young adult group. The results for the younger subjects revealed gap thresholds and recovery rates that were comparable to previous studies of auditory neural gap coding. Our findings suggest that age-linked degeneration of the peripheral and brainstem auditory system is already beginning in middle age, allowing for the possibility of preventative biomedical or hearing protection measures to be implemented as a possibility for attenuating further damage to the auditory system due to ARHL. PMID:25307161

  18. Auditory brainstem gap responses start to decline in mice in middle age: a novel physiological biomarker for age-related hearing loss.

    Science.gov (United States)

    Williamson, Tanika T; Zhu, Xiaoxia; Walton, Joseph P; Frisina, Robert D

    2015-07-01

    The auditory function of the CBA/CaJ mouse strain is normal during the early phases of life and gradually declines over its lifespan, much like human age-related hearing loss (ARHL) but within the "time frame" of a mouse life cycle. This pattern of ARHL is similar to that of most humans: difficult to diagnose clinically at its onset and currently not treatable medically. To address the challenge of early diagnosis, we use CBA mice to analyze the initial stages and functional onset biomarkers of ARHL. The results from Auditory Brainstem Response (ABR) audiogram and Gap-in-noise (GIN) ABR tests were compared for two groups of mice of different ages, namely young adult and middle age. ABR peak components from the middle age group displayed minor changes in audibility but had a significantly higher prolonged peak latency and decreased peak amplitude in response to temporal gaps in comparison with the young adult group. The results for the younger subjects revealed gap thresholds and recovery rates that were comparable with previous studies of auditory neural gap coding. Our findings suggest that age-linked degeneration of the peripheral and brainstem auditory system begins in middle age, allowing for the possibility of preventative biomedical or hearing protection measures to be implemented in order to attenuate further damage to the auditory system attributable to ARHL.

  19. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats

    OpenAIRE

    Herzog, Linnea; Salehi, Kia; Bohon, Kaitlin S.; Wiest, Michael C.

    2014-01-01

    Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (

  20. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus.

    Science.gov (United States)

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  1. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    Science.gov (United States)

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can

  2. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats

    Science.gov (United States)

    Herzog, Linnea; Salehi, Kia; Bohon, Kaitlin S.

    2014-01-01

    Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (motor state. PMID:24572093

  3. Temporal-Gap Detection by Cochlear Prosthesis Users.

    Science.gov (United States)

    Preece, John P.; Tyler, Richard S.

    1989-01-01

    Three experiments were undertaken involving three users of multi-electrode cochlear prostheses. The experiments established a scale of stimulus loudness; measured minimum-detectable gaps for sinusoidal stimuli as functions of stimulus level, frequency, and electrode place within the cochlea; and assessed independence of the electrodes using a…

  4. Detection Rates of Cortical Auditory Evoked Potentials at Different Sensation Levels in Infants with Sensory/Neural Hearing Loss and Auditory Neuropathy Spectrum Disorder.

    Science.gov (United States)

    Gardner-Berry, Kirsty; Chang, Hsiuwen; Ching, Teresa Y C; Hou, Sanna

    2016-02-01

    With the introduction of newborn hearing screening, infants are being diagnosed with hearing loss during the first few months of life. For infants with a sensory/neural hearing loss (SNHL), the audiogram can be estimated objectively using auditory brainstem response (ABR) testing and hearing aids prescribed accordingly. However, for infants with auditory neuropathy spectrum disorder (ANSD) due to the abnormal/absent ABR waveforms, alternative measures of auditory function are needed to assess the need for amplification and evaluate whether aided benefit has been achieved. Cortical auditory evoked potentials (CAEPs) are used to assess aided benefit in infants with hearing loss; however, there is insufficient information regarding the relationship between stimulus audibility and CAEP detection rates. It is also not clear whether CAEP detection rates differ between infants with SNHL and infants with ANSD. This study involved retrospective collection of CAEP, hearing threshold, and hearing aid gain data to investigate the relationship between stimulus audibility and CAEP detection rates. The results demonstrate that increases in stimulus audibility result in an increase in detection rate. For the same range of sensation levels, there was no difference in the detection rates between infants with SNHL and ANSD. PMID:27587922

  5. Probability of detecting band-tailed pigeons during call-broadcast versus auditory surveys

    Science.gov (United States)

    Kirkpatrick, C.; Conway, C.J.; Hughes, K.M.; Devos, J.C., Jr.

    2007-01-01

    Estimates of population trend for the interior subspecies of band-tailed pigeon (Patagioenas fasciata fasciata) are not available because no standardized survey method exists for monitoring the interior subspecies. We evaluated 2 potential band-tailed pigeon survey methods (auditory and call-broadcast surveys) from 2002 to 2004 in 5 mountain ranges in southern Arizona, USA, and in mixed-conifer forest throughout the state. Both auditory and call-broadcast surveys produced low numbers of cooing pigeons detected per survey route (x?? ??? 0.67) and had relatively high temporal variance in average number of cooing pigeons detected during replicate surveys (CV ??? 161%). However, compared to auditory surveys, use of call-broadcast increased 1) the percentage of replicate surveys on which ???1 cooing pigeon was detected by an average of 16%, and 2) the number of cooing pigeons detected per survey route by an average of 29%, with this difference being greatest during the first 45 minutes of the morning survey period. Moreover, probability of detecting a cooing pigeon was 27% greater during call-broadcast (0.80) versus auditory (0.63) surveys. We found that cooing pigeons were most common in mixed-conifer forest in southern Arizona and density of male pigeons in mixed-conifer forest throughout the state averaged 0.004 (SE = 0.001) pigeons/ha. Our results are the first to show that call-broadcast increases the probability of detecting band-tailed pigeons (or any species of Columbidae) during surveys. Call-broadcast surveys may provide a useful method for monitoring populations of the interior subspecies of band-tailed pigeon in areas where other survey methods are inappropriate.

  6. Valid cues for auditory or somatosensory targets affect their perception: a signal detection approach.

    Science.gov (United States)

    Van Hulle, Lore; Van Damme, Stefaan; Crombez, Geert

    2013-01-01

    We investigated the effects of focusing attention towards auditory or somatosensory stimuli on perceptual sensitivity and response bias using a signal detection task. Participants (N = 44) performed an unspeeded detection task in which weak (individually calibrated) somatosensory or auditory stimuli were delivered. The focus of attention was manipulated by the presentation of a visual cue at the start of each trial. The visual cue consisted of the word "warmth" or the word "tone". This word cue was predictive of the corresponding target on two-thirds of the trials. As hypothesised, the results showed that cueing attention to a specific sensory modality resulted in a higher perceptual sensitivity for validly cued targets than for invalidly cued targets, as well as in a more liberal response criterion for reporting stimuli in the valid modality than in the invalid modality. The value of this experimental paradigm for investigating excessive attentional focus or hypervigilance in various non-clinical and clinical populations is discussed.

  7. Auditory detection of non-speech and speech stimuli in noise: Native speech advantage.

    Science.gov (United States)

    Huo, Shuting; Tao, Sha; Wang, Wenjing; Li, Mingshuang; Dong, Qi; Liu, Chang

    2016-05-01

    Detection thresholds of Chinese vowels, Korean vowels, and a complex tone, with harmonic and noise carriers were measured in noise for Mandarin Chinese-native listeners. The harmonic index was calculated as the difference between detection thresholds of the stimuli with harmonic carriers and those with noise carriers. The harmonic index for Chinese vowels was significantly greater than that for Korean vowels and the complex tone. Moreover, native speech sounds were rated significantly more native-like than non-native speech and non-speech sounds. The results indicate that native speech has an advantage over other sounds in simple auditory tasks like sound detection. PMID:27250202

  8. Auditory Warnings for Electric Vehicles: Detectability in Normal-Vision and Visually-Impaired Listeners

    OpenAIRE

    Parizet, Etienne; Ellermeier, Wolfgang; Robart, Ryan

    2014-01-01

    Electrical vehicles operating at low speed are often too quiet to be detected by pedestrians in time. In order to study the efficiency of additional auditory warning signals they might be equipped with, a sample of 100 sighted and 53 blind listeners was exposed to a virtual road-crossing scenario in which they had to detect whether an approaching vehicle came from the right or left. Nine warning signals, designed to differ in particular sound features such as FM, AM or the number of harmonics...

  9. Stimulus-specific adaptation and deviance detection in the rat auditory cortex.

    Directory of Open Access Journals (Sweden)

    Nevo Taaseh

    Full Text Available Stimulus-specific adaptation (SSA is the specific decrease in the response to a frequent ('standard' stimulus, which does not generalize, or generalizes only partially, to another, rare stimulus ('deviant'. Stimulus-specific adaptation could result simply from the depression of the responses to the standard. Alternatively, there may be an increase in the responses to the deviant stimulus due to the violation of expectations set by the standard, indicating the presence of true deviance detection. We studied SSA in the auditory cortex of halothane-anesthetized rats, recording local field potentials and multi-unit activity. We tested the responses to pure tones of one frequency when embedded in sequences that differed from each other in the frequency and probability of the tones composing them. The responses to tones of the same frequency were larger when deviant than when standard, even with inter-stimulus time intervals of almost 2 seconds. Thus, SSA is present and strong in rat auditory cortex. SSA was present even when the frequency difference between deviants and standards was as small as 10%, substantially smaller than the typical width of cortical tuning curves, revealing hyper-resolution in frequency. Strong responses were evoked also by a rare tone presented by itself, and by rare tones presented as part of a sequence of many widely spaced frequencies. On the other hand, when presented within a sequence of narrowly spaced frequencies, the responses to a tone, even when rare, were smaller. A model of SSA that included only adaptation of the responses in narrow frequency channels predicted responses to the deviants that were substantially smaller than the observed ones. Thus, the response to a deviant is at least partially due to the change it represents relative to the regularity set by the standard tone, indicating the presence of true deviance detection in rat auditory cortex.

  10. [The PRRSV-serumneutralization test detects gaps in herd immunity].

    Science.gov (United States)

    Böttcher, Jens; Alex, Michaela; Janowetz, Britta; Müller, Silvia; Schuh, Christina; Niemeyer, Hermann

    2014-01-01

    Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) appears in two genotypes (EU and US), for both genotypes attenuated live-vaccines are available. A cross-sectional study in 38 Bavarian sow herds was performed to assess the level of neutralizing antibodies. Per herd 38 blood samples were collected (10 weaned piglets, 10 gilts and 6 sows of 1./2., 3J4. and 5/6. parity, respectively). Sera were tested by ELISA, serumneutralization test (SNT) against EU- and US-vaccine virus, and pooled sera were tested by real-time RT-PCR. Herds were classified by the last vaccination of sows as "Vacc EU" "Vacc US"and "nv (non-vaccinated) and by detection of PRRSV-US and vaccination of piglets were not included as variables. Sows of group (2) Vacc EU/EU- showed the highest EU-SNT-titers irrespective of parity. Groups (5) Vacc US/EU+ and (1) Vacc EU/EU+ followed in descending order. Significantly lower SNT-titers in (1) Vacc EU/EU+ were especially observed in sows of 1/2. Parity (Kruskal-Wallis, p herds detection of PRRSV-EU coincided with strong ELISA-reactivity in all animal groups. In EU-vaccinated herds this was only observed for weaned piglets. Sows showed a strong ELISA-reactivity irrespective of detection of PRRSV-EU. The value of the ELISA is restricted to the certification of PRRSV-free herds. The EU-SNT reflects the level of herd immunity at least against vaccine virus; it indicates gaps in herd immunity.

  11. The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions.

    Directory of Open Access Journals (Sweden)

    Karin Petrini

    Full Text Available In humans, emotions from music serve important communicative roles. Despite a growing interest in the neural basis of music perception, action and emotion, the majority of previous studies in this area have focused on the auditory aspects of music performances. Here we investigate how the brain processes the emotions elicited by audiovisual music performances. We used event-related functional magnetic resonance imaging, and in Experiment 1 we defined the areas responding to audiovisual (musician's movements with music, visual (musician's movements only, and auditory emotional (music only displays. Subsequently a region of interest analysis was performed to examine if any of the areas detected in Experiment 1 showed greater activation for emotionally mismatching performances (combining the musician's movements with mismatching emotional sound than for emotionally matching music performances (combining the musician's movements with matching emotional sound as presented in Experiment 2 to the same participants. The insula and the left thalamus were found to respond consistently to visual, auditory and audiovisual emotional information and to have increased activation for emotionally mismatching displays in comparison with emotionally matching displays. In contrast, the right thalamus was found to respond to audiovisual emotional displays and to have similar activation for emotionally matching and mismatching displays. These results suggest that the insula and left thalamus have an active role in detecting emotional correspondence between auditory and visual information during music performances, whereas the right thalamus has a different role.

  12. The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions.

    Science.gov (United States)

    Petrini, Karin; Crabbe, Frances; Sheridan, Carol; Pollick, Frank E

    2011-04-29

    In humans, emotions from music serve important communicative roles. Despite a growing interest in the neural basis of music perception, action and emotion, the majority of previous studies in this area have focused on the auditory aspects of music performances. Here we investigate how the brain processes the emotions elicited by audiovisual music performances. We used event-related functional magnetic resonance imaging, and in Experiment 1 we defined the areas responding to audiovisual (musician's movements with music), visual (musician's movements only), and auditory emotional (music only) displays. Subsequently a region of interest analysis was performed to examine if any of the areas detected in Experiment 1 showed greater activation for emotionally mismatching performances (combining the musician's movements with mismatching emotional sound) than for emotionally matching music performances (combining the musician's movements with matching emotional sound) as presented in Experiment 2 to the same participants. The insula and the left thalamus were found to respond consistently to visual, auditory and audiovisual emotional information and to have increased activation for emotionally mismatching displays in comparison with emotionally matching displays. In contrast, the right thalamus was found to respond to audiovisual emotional displays and to have similar activation for emotionally matching and mismatching displays. These results suggest that the insula and left thalamus have an active role in detecting emotional correspondence between auditory and visual information during music performances, whereas the right thalamus has a different role.

  13. AN EFFICIENT PEAK VALLEY DETECTION BASED VAD ALGORITHM FOR ROBUST DETECTION OF SPEECH AUDITORY BRAINSTEM RESPONSES

    OpenAIRE

    Ranganadh Narayanam*

    2013-01-01

    Voice Activity Detection (VAD) problem considers detecting the presence of speech in a noisy signal. The speech/non-speech classification task is not as trivial as it appears, and most of the VAD algorithms fail when the level of background noise increases. In this research we are presenting a new technique for Voice Activity Detection (VAD) in EEG collected brain stem speech evoked potentials data [7, 8, 9]. This one is spectral subtraction method in which we have developed ou...

  14. The Gap Detection Test : Can It Be Used to Diagnose Tinnitus?

    NARCIS (Netherlands)

    Boyen, Kris; Başkent, Deniz; van Dijk, Pim

    2015-01-01

    Objectives: Animals with induced tinnitus showed difficulties in detecting silent gaps in sounds, suggesting that the tinnitus percept may be filling the gap. The main purpose of this study was to evaluate the applicability of this approach to detect tinnitus in human patients. The authors first hyp

  15. Experimental analysis of the auditory detection process on avian point counts

    Science.gov (United States)

    Simons, T.R.; Alldredge, M.W.; Pollock, K.H.; Wettroth, J.M.

    2007-01-01

    We have developed a system for simulating the conditions of avian surveys in which birds are identified by sound. The system uses a laptop computer to control a set of amplified MP3 players placed at known locations around a survey point. The system can realistically simulate a known population of songbirds under a range of factors that affect detection probabilities. The goals of our research are to describe the sources and range of variability affecting point-count estimates and to find applications of sampling theory and methodologies that produce practical improvements in the quality of bird-census data. Initial experiments in an open field showed that, on average, observers tend to undercount birds on unlimited-radius counts, though the proportion of birds counted by individual observers ranged from 81% to 132% of the actual total. In contrast to the unlimited-radius counts, when data were truncated at a 50-m radius around the point, observers overestimated the total population by 17% to 122%. Results also illustrate how detection distances decline and identification errors increase with increasing levels of ambient noise. Overall, the proportion of birds heard by observers decreased by 28 ?? 4.7% under breezy conditions, 41 ?? 5.2% with the presence of additional background birds, and 42 ?? 3.4% with the addition of 10 dB of white noise. These findings illustrate some of the inherent difficulties in interpreting avian abundance estimates based on auditory detections, and why estimates that do not account for variations in detection probability will not withstand critical scrutiny. ?? The American Ornithologists' Union, 2007.

  16. Non-linear laws of echoic memory and auditory change detection in humans

    Directory of Open Access Journals (Sweden)

    Takeshima Yasuyuki

    2010-07-01

    Full Text Available Abstract Background The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1 of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory. Results Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms, while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms. The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds. Conclusions The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.

  17. AN EFFICIENT PEAK VALLEY DETECTION BASED VAD ALGORITHM FOR ROBUST DETECTION OF SPEECH AUDITORY BRAINSTEM RESPONSES

    Directory of Open Access Journals (Sweden)

    Ranganadh Narayanam

    2013-02-01

    Full Text Available Voice Activity Detection (VAD problem considers detecting the presence of speech in a noisy signal. The speech/non-speech classification task is not as trivial as it appears, and most of the VAD algorithms fail when the level of background noise increases. In this research we are presenting a new technique for Voice Activity Detection (VAD in EEG collected brain stem speech evoked potentials data [7, 8, 9]. This one is spectral subtraction method in which we have developed our own mathematical formula for the peak valley detection (PVD of the frequency spectra to detect the voice activity [1]. The purpose of this research is to compare the performance of this SNR based PVD (SNRPVD method over Zero-Crossing rate detector [5] and statistical analysis based algorithms [10]. We have put into application of these three algorithms on these particular data sets of this experiment [7, 8, 9] and VAD is verified and compared the results of these three. MATLAB routines were developed on these particular methodologies. Finally we concluded that the method of SNRPVD surely performing better than the ZCR and statistical algorithms.

  18. Biomusic: An Auditory Interface for Detecting Physiological Indicators of Anxiety in Children

    Science.gov (United States)

    Cheung, Stephanie; Han, Elizabeth; Kushki, Azadeh; Anagnostou, Evdokia; Biddiss, Elaine

    2016-01-01

    For children with profound disabilities affecting communication, it can be extremely challenging to identify salient emotions such as anxiety. If left unmanaged, anxiety can lead to hypertension, cardiovascular disease, and other psychological diagnoses. Physiological signals of the autonomic nervous system are indicative of anxiety, but can be difficult to interpret for non-specialist caregivers. This paper evaluates an auditory interface for intuitive detection of anxiety from physiological signals. The interface, called “Biomusic,” maps physiological signals to music (i.e., electrodermal activity to melody; skin temperature to musical key; heart rate to drum beat; respiration to a “whooshing” embellishment resembling the sound of an exhalation). The Biomusic interface was tested in two experiments. Biomusic samples were generated from physiological recordings of typically developing children (n = 10) and children with autism spectrum disorders (n = 5) during relaxing and anxiety-provoking conditions. Adult participants (n = 16) were then asked to identify “anxious” or “relaxed” states by listening to the samples. In a classification task with 30 Biomusic samples (1 relaxed state, 1 anxious state per child), classification accuracy, sensitivity, and specificity were 80.8% [standard error (SE) = 2.3], 84.9% (SE = 3.0), and 76.8% (SE = 3.9), respectively. Participants were able to form an early and accurate impression of the anxiety state within 12.1 (SE = 0.7) seconds of hearing the Biomusic with very little training (i.e., biofeedback systems for anxiety management.

  19. Biomusic: An Auditory Interface for Detecting Physiological Indicators of Anxiety in Children.

    Science.gov (United States)

    Cheung, Stephanie; Han, Elizabeth; Kushki, Azadeh; Anagnostou, Evdokia; Biddiss, Elaine

    2016-01-01

    For children with profound disabilities affecting communication, it can be extremely challenging to identify salient emotions such as anxiety. If left unmanaged, anxiety can lead to hypertension, cardiovascular disease, and other psychological diagnoses. Physiological signals of the autonomic nervous system are indicative of anxiety, but can be difficult to interpret for non-specialist caregivers. This paper evaluates an auditory interface for intuitive detection of anxiety from physiological signals. The interface, called "Biomusic," maps physiological signals to music (i.e., electrodermal activity to melody; skin temperature to musical key; heart rate to drum beat; respiration to a "whooshing" embellishment resembling the sound of an exhalation). The Biomusic interface was tested in two experiments. Biomusic samples were generated from physiological recordings of typically developing children (n = 10) and children with autism spectrum disorders (n = 5) during relaxing and anxiety-provoking conditions. Adult participants (n = 16) were then asked to identify "anxious" or "relaxed" states by listening to the samples. In a classification task with 30 Biomusic samples (1 relaxed state, 1 anxious state per child), classification accuracy, sensitivity, and specificity were 80.8% [standard error (SE) = 2.3], 84.9% (SE = 3.0), and 76.8% (SE = 3.9), respectively. Participants were able to form an early and accurate impression of the anxiety state within 12.1 (SE = 0.7) seconds of hearing the Biomusic with very little training (i.e., information. Biomusic holds promise for monitoring, communication, and biofeedback systems for anxiety management. PMID:27625593

  20. Methodology to detect gaps in a soccer defence

    DEFF Research Database (Denmark)

    Knudsen, Nikolas Sten; Andersen, Thomas Bull

    2015-01-01

    The purpose of the present study was to create a methodology which can provide information about gaps in an opposing team’s defence. To illustrate the methodology, a defence was tracked during a game in the danish Superliga using ZXY radio tracking and analysed using the methodology. Results show...

  1. Methodology to detect gaps in a soccer defence

    DEFF Research Database (Denmark)

    Knudsen, Nikolas Sten; Andersen, Thomas Bull

    2015-01-01

    The purpose of the present study was to create a methodology which can provide information about gaps in an opposing team’s defence. To illustrate the methodology, a defence was tracked during a game in the danish Superliga using ZXY radio tracking and analysed using the methodology. Results showed...... in a defence for the offence to take advantage of....

  2. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  3. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children.

    Science.gov (United States)

    Yang, Ming-Tao; Hsu, Chun-Hsien; Yeh, Pei-Wen; Lee, Wang-Tso; Liang, Jao-Shwann; Fu, Wen-Mei; Lee, Chia-Ying

    2015-01-01

    Inattention (IA) has been a major problem in children with attention deficit/hyperactivity disorder (ADHD), accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN), P3a, and late discriminative negativity (LDN) as event-related potential (ERP) markers, under the passive auditory oddball paradigm. Two types of stimuli-pure tones and Mandarin lexical tones-were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years). Two passive auditory oddball paradigms (lexical tones and pure tones) were applied. The pure tone oddball paradigm included a standard stimulus (1000 Hz, 80%) and two deviant stimuli (1015 and 1090 Hz, 10% each). The Mandarin lexical tone oddball paradigm's standard stimulus was /yi3/ (80%) and two deviant stimuli were /yi1/ and /yi2/ (10% each). The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents' and teachers' ratings on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for the evaluation of anti-ADHD drugs that aim to

  4. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children

    Directory of Open Access Journals (Sweden)

    Ming-Tao eYang

    2015-08-01

    Full Text Available Inattention has been a major problem in children with attention deficit/hyperactivity disorder (ADHD, accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN, P3a, and late discriminative negativity (LDN as event-related potential (ERP markers, under the passive auditory oddball paradigm. Two types of stimuli - pure tones and Mandarin lexical tones - were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years. Two passive auditory oddball paradigms (lexical tones and pure tones were applied. Pure tone paradigm included standard stimuli (1000 Hz, 80% and two deviant stimuli (1015 Hz and 1090 Hz, 10% each. The Mandarin lexical tone paradigm’s standard stimuli was /yi3/ (80% and two deviant stimuli were /yi1/ and /yi2/ (10% each. The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents’ and teachers’ rating on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for evaluation of anti-ADHD drugs that aim to alleviate these

  5. Auditory imagery: empirical findings.

    Science.gov (United States)

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  6. Mind the gap: the minimal detectable separation distance between two objects during active electrolocation.

    Science.gov (United States)

    Fechler, K; Holtkamp, D; Neusel, G; Sanguinetti-Scheck, J I; Budelli, R; von der Emde, G

    2012-12-01

    In a food-rewarded two-alternative forced-choice procedure, it was determined how well the weakly electric elephantnose fish Gnathonemus petersii can sense gaps between two objects, some of which were placed in front of complex backgrounds. The results show that at close distances, G. petersii is able to detect gaps between two small metal cubes (2 cm × 2 cm × 2 cm) down to a width of c. 1·5 mm. When larger objects (3 cm × 3 cm × 3 cm) were used, gaps with a width of 2-3 mm could still be detected. Discrimination performance was better (c. 1 mm gap size) when the objects were placed in front of a moving background consisting of plastic stripes or plant leaves, indicating that movement in the environment plays an important role for object identification. In addition, the smallest gap size that could be detected at increasing distances was determined. A linear relationship between object distance and gap size existed. Minimal detectable gap sizes increased from c. 1·5 mm at a distance of 1 cm, to 20 mm at a distance of 7 cm. Measurements and simulations of the electric stimuli occurring during gap detection revealed that the electric images of two close objects influence each other and superimpose. A large gap of 20 mm between two objects induced two clearly separated peaks in the electric image, while a 2 mm gap caused just a slight indentation in the image. Therefore, the fusion of electric images limits spatial resolution during active electrolocation. Relative movements either between the fish and the objects or between object and background might improve spatial resolution by accentuating the fine details of the electric images. PMID:23252738

  7. Biomusic: An Auditory Interface for Detecting Physiological Indicators of Anxiety in Children

    Science.gov (United States)

    Cheung, Stephanie; Han, Elizabeth; Kushki, Azadeh; Anagnostou, Evdokia; Biddiss, Elaine

    2016-01-01

    For children with profound disabilities affecting communication, it can be extremely challenging to identify salient emotions such as anxiety. If left unmanaged, anxiety can lead to hypertension, cardiovascular disease, and other psychological diagnoses. Physiological signals of the autonomic nervous system are indicative of anxiety, but can be difficult to interpret for non-specialist caregivers. This paper evaluates an auditory interface for intuitive detection of anxiety from physiological signals. The interface, called “Biomusic,” maps physiological signals to music (i.e., electrodermal activity to melody; skin temperature to musical key; heart rate to drum beat; respiration to a “whooshing” embellishment resembling the sound of an exhalation). The Biomusic interface was tested in two experiments. Biomusic samples were generated from physiological recordings of typically developing children (n = 10) and children with autism spectrum disorders (n = 5) during relaxing and anxiety-provoking conditions. Adult participants (n = 16) were then asked to identify “anxious” or “relaxed” states by listening to the samples. In a classification task with 30 Biomusic samples (1 relaxed state, 1 anxious state per child), classification accuracy, sensitivity, and specificity were 80.8% [standard error (SE) = 2.3], 84.9% (SE = 3.0), and 76.8% (SE = 3.9), respectively. Participants were able to form an early and accurate impression of the anxiety state within 12.1 (SE = 0.7) seconds of hearing the Biomusic with very little training (i.e., < 10 min) and no contextual information. Biomusic holds promise for monitoring, communication, and biofeedback systems for anxiety management. PMID:27625593

  8. Cortical activity associated with the detection of temporal gaps in tones: A magnetoencephalography study

    Directory of Open Access Journals (Sweden)

    Takako eMitsudo

    2014-10-01

    Full Text Available We used magnetoencephalography (MEG in two experiments to investigate spatio-temporal profiles of brain responses to gaps in tones. Stimuli consisted of leading and trailing markers with gaps between the two markers of 0, 30, or 80 ms. Leading and trailing markers were 300 ms pure tones at 800 Hz or 3200 Hz. Two conditions were examined: the within-frequency (WF condition in which the leading and trailing markers had identical frequencies, and the between-frequency (BF condition in which they had different frequencies. Using minimum-norm estimates (MNE, we localized the source activations at the time of the peak response to the trailing markers. Results showed that MEG signals in response to 800 Hz and 3200 Hz tones were localized in different regions within the auditory cortex, indicating that the frequency pathways activated by the two markers were spatially represented. The time course of regional activity (RA was extracted from each localized region for each condition. In Experiment 1, which used a continuous tone for the WF 0-ms stimulus, the N1m amplitude for the trailing marker in the WF condition differed depending on gap duration but not tonal frequency. In contrast, N1m amplitude in BF conditions differed depending on the frequency of the trailing marker. In Experiment 2, in which the 0-ms gap stimulus in the WF condition was made from two markers and included an amplitude reduction in the middle, the amplitude in WF and BF conditions changed depending on frequency, but not gap duration. The difference in temporal characteristics between WF and BF conditions could be observed in the regional activity.

  9. Auditory Processing Disorders

    Science.gov (United States)

    Auditory Processing Disorders Auditory processing disorders (APDs) are referred to by many names: central auditory processing disorders , auditory perceptual disorders , and central auditory disorders . APDs ...

  10. From sounds to words: a neurocomputational model of adaptation, inhibition and memory processes in auditory change detection.

    Science.gov (United States)

    Garagnani, Max; Pulvermüller, Friedemann

    2011-01-01

    Most animals detect sudden changes in trains of repeated stimuli but only some can learn a wide range of sensory patterns and recognise them later, a skill crucial for the evolutionary success of higher mammals. Here we use a neural model mimicking the cortical anatomy of sensory and motor areas and their connections to explain brain activity indexing auditory change and memory access. Our simulations indicate that while neuronal adaptation and local inhibition of cortical activity can explain aspects of change detection as observed when a repeated unfamiliar sound changes in frequency, the brain dynamics elicited by auditory stimulation with well-known patterns (such as meaningful words) cannot be accounted for on the basis of adaptation and inhibition alone. Specifically, we show that the stronger brain responses observed to familiar stimuli in passive oddball tasks are best explained in terms of activation of memory circuits that emerged in the cortex during the learning of these stimuli. Such memory circuits, and the activation enhancement they entail, are absent for unfamiliar stimuli. The model illustrates how basic neurobiological mechanisms, including neuronal adaptation, lateral inhibition, and Hebbian learning, underlie neuronal assembly formation and dynamics, and differentially contribute to the brain's major change detection response, the mismatch negativity. PMID:20728545

  11. An Objective Measurement of the Build-Up of Auditory Streaming and of Its Modulation by Attention

    Science.gov (United States)

    Thompson, Sarah K.; Carlyon, Robert P.; Cusack, Rhodri

    2011-01-01

    Three experiments studied auditory streaming using sequences of alternating "ABA" triplets, where "A" and "B" were 50-ms tones differing in frequency by [delta]f semitones and separated by 75-ms gaps. Experiment 1 showed that detection of a short increase in the gap between a B tone and the preceding A tone, imposed on one ABA triplet, was better…

  12. Carrier-dependent temporal processing in an auditory interneuron.

    Science.gov (United States)

    Sabourin, Patrick; Gottlieb, Heather; Pollack, Gerald S

    2008-05-01

    Signal processing in the auditory interneuron Omega Neuron 1 (ON1) of the cricket Teleogryllus oceanicus was compared at high- and low-carrier frequencies in three different experimental paradigms. First, integration time, which corresponds to the time it takes for a neuron to reach threshold when stimulated at the minimum effective intensity, was found to be significantly shorter at high-carrier frequency than at low-carrier frequency. Second, phase locking to sinusoidally amplitude modulated signals was more efficient at high frequency, especially at high modulation rates and low modulation depths. Finally, we examined the efficiency with which ON1 detects gaps in a constant tone. As reflected by the decrease in firing rate in the vicinity of the gap, ON1 is better at detecting gaps at low-carrier frequency. Following a gap, firing rate increases beyond the pre-gap level. This "rebound" phenomenon is similar for low- and high-carrier frequencies.

  13. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    Directory of Open Access Journals (Sweden)

    Bram Van Dun

    2012-01-01

    Full Text Available

    Background: Cortical auditory evoked potentials (CAEPs are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs.

    Design and methods: Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry (VROA. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB SPL, and CAEP recordings were made. An automatic statistical detection paradigm was used for CAEP detection.

    Results: For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72 ± 10, 75 ± 10, and 78 ± 12%. In 79% of the cases, automatic detection p-values became smaller when the sensation level was increased by 10 dB.

    Conclusions: The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP provides confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less.

  14. Detection of Perinatal Cytomegalovirus Infection and Sensorineural Hearing Loss in Belgian Infants by Measurement of Automated Auditory Brainstem Response▿

    OpenAIRE

    Verbeeck, Jannick; Van Kerschaver, Erwin; Wollants, Elke; Beuselinck, Kurt; Stappaerts, Luc; Van Ranst, Marc

    2008-01-01

    Since auditory disability causes serious problems in the development of speech and in the total development of a child, it is crucial to diagnose possible hearing impairment as soon as possible after birth. This study evaluates the neonatal hearing screening program in Flanders, Belgium. The auditory ability of 118,438 babies was tested using the automated auditory brainstem response. We selected 194 babies with indicative hearing impairment and 332 matched controls to investigate the associa...

  15. CS-dependent response probability in an auditory masked-detection task: considerations based on models of Pavlovian conditioning.

    Science.gov (United States)

    Mason, Christine R; Idrobo, Fabio; Early, Susan J; Abibi, Ayome; Zheng, Ling; Harrison, J Michael; Carney, Laurel H

    2003-05-01

    Experimental studies were performed using a Pavlovian-conditioned eyeblink response to measure detection of a variable-sound-level tone (T) in a fixed-sound-level masking noise (N) in rabbits. Results showed an increase in the asymptotic probability of conditioned responses (CRs) to the reinforced TN trials and a decrease in the asymptotic rate of eyeblink responses to the non-reinforced N presentations as a function of the sound level of the T. These observations are consistent with expected behaviour in an auditory masked detection task, but they are not consistent with predictions from a traditional application of the Rescorla-Wagner or Pearce models of associative learning. To implement these models, one typically considers only the actual stimuli and reinforcement on each trial. We found that by considering perceptual interactions and concepts from signal detection theory, these models could predict the CS dependence on the sound level of the T. In these alternative implementations, the animals response probabilities were used as a guide in making assumptions about the "effective stimuli".

  16. The role of auditory abilities in basic mechanisms of cognition in older adults

    Directory of Open Access Journals (Sweden)

    Massimo eGrassi

    2013-10-01

    Full Text Available The aim of this study was to assess age-related differences between young and older adults in auditory abilities and to investigate the relationship between auditory abilities and basic mechanisms of cognition in older adults. Although there is a certain consensus that the participant’s sensitivity to the absolute intensity of sounds (such as that measured via pure tone audiometry explains his/her cognitive performance, there is not yet much evidence that the participant’s auditory ability (i.e., the whole supra-threshold processing of sounds explains his/her cognitive performance. Twenty-eight young adults (age < 35, 26 young-old adults (65 ≤ age ≤75 and 28 old-old adults (age > 75 were presented with a set of tasks estimating several auditory abilities (i.e., frequency discrimination, intensity discrimination, duration discrimination, timbre discrimination, gap detection, amplitude modulation detection, and the absolute threshold for a 1 kHz pure tone and the participant’s working memory, cognitive inhibition, and processing speed. Results showed an age-related decline in both auditory and cognitive performance. Moreover, regression analyses showed that a subset of the auditory abilities (i.e., the ability to discriminate frequency, duration, timbre, and the ability to detect amplitude modulation explained a significant part of the variance observed in processing speed in older adults. Overall, the present results highlight the relationship between auditory abilities and basic mechanisms of cognition.

  17. [Characterization of mid-subtropical evergreen broad-leaved forest gap based on light detection and ranging (LiDAR)].

    Science.gov (United States)

    Liu, Feng; Tan, Chang; Wang, Hong; Zhang, Jiang; Wan, Ying; Long, Jiang-ping; Liu, Rui-xi

    2015-12-01

    Light Detection and Ranging (LiDAR) is an active remote sensing technology for acqui- ring three-dimensional structure parameters of vegetation canopy with high accuracy over multiple spatial scales, which is greatly important to the promotion of forest disturbance ecology and the ap- plication on gaps. This paper focused on mid-subtropical evergreen broadleaved forest in Hunan Province, and small footprint LiDAR point data were adopted to identify canopy gaps. and measure geomagnetic characteristics of gaps. The optimal grid model resolution and interpolation methods were chosen to generate canopy height model, and the computer graphics processing was adopted to estimate characteristics of gaps which involved gap size, canopy height and gap shape index, then field investigation was utilized to validate the estimation results. The results showed that the gap rec- ognition rate was 94.8%, and the major influencing factors were gap size and gap maker type. Line- ar correlation was observed between LiDAR estimation and field investigation, and the R² values of gap size and canopy height case were 0.962 and 0.878, respectively. Compared with field investiga- tion, the size of mean estimated gap was 19.9% larger and the mean estimated canopy height was 9.9% less. Gap density was 12.8 gaps · hm⁻² and the area of gaps occupied 13.3% of the forest area. The average gap size, canopy height and gap shape index were 85.06 m², 15.33 m and 1.71, respectively. The study site usually contained small gaps in which the edge effect was not obvious. PMID:27111996

  18. Using fMRI to Detect Activation of the Cortical and Subcortical Auditory Centers: Development of a Standard Protocol for a Conventional 1.5-T MRI Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk; Kim, Sam Soo; Lee, Kang Uk; Lee, Seung Hwan; Nam, Eui Cheol [Kangwon National University School of Medicine, Chuncheon (Korea, Republic of); Choi, Hyun Kyung [Kangwon National University Hospital, Chuncheon (Korea, Republic of)

    2009-11-15

    We wanted to develop a standard protocol for auditory functional magnetic resonance imaging (fMRI) for detecting blood oxygenation level-dependent (BOLD) responses at the cortical and subcortical auditory centers with using a 1.5-T MRI scanner. Fourteen normal volunteers were enrolled in the study. The subjects were stimulated by four repetitions of 32 sec each with broadband white noise and silent period blocks as a run (34 echo planar images [EPIs]). Multiple regression analysis for the individual analysis and one-sample t-tests for the group analysis were applied (FDR, p <0.05). The auditory cortex was activated in most of the volunteers (left 100% and right 92.9% at an uncorrected p value <0.05, and left 92.9% and right 92.9% at an uncorreced p value <0.01). The cochlear nuclei (100%, 85.7%), inferior colliculi (71.4%, 64.3%), medial geniculate bodies (64.3%, 35.7%) and superior olivary complexes (35.7%, 35.7%) showed significant BOLD responses at uncorrected p values of <0.05 and p <0.01, respectively. On the group analysis, the cortical and subcortical auditory centers showed significant BOLD responses (FDR, p <0.05), except for the superior olivary complex. The signal intensity time courses of the auditory centers showed biphasic wave forms. We successfully visualized BOLD responses at the cortical and subcortical auditory centers using appropriate sound stimuli and an image acquisition method with a 1.5-T MRI scanner.

  19. Temporal auditory processing in elders

    Directory of Open Access Journals (Sweden)

    Azzolini, Vanuza Conceição

    2010-03-01

    Full Text Available Introduction: In the trial of aging all the structures of the organism are modified, generating intercurrences in the quality of the hearing and of the comprehension. The hearing loss that occurs in consequence of this trial occasion a reduction of the communicative function, causing, also, a distance of the social relationship. Objective: Comparing the performance of the temporal auditory processing between elderly individuals with and without hearing loss. Method: The present study is characterized for to be a prospective, transversal and of diagnosis character field work. They were analyzed 21 elders (16 women and 5 men, with ages between 60 to 81 years divided in two groups, a group "without hearing loss"; (n = 13 with normal auditive thresholds or restricted hearing loss to the isolated frequencies and a group "with hearing loss" (n = 8 with neurosensory hearing loss of variable degree between light to moderately severe. Both the groups performed the tests of frequency (PPS and duration (DPS, for evaluate the ability of temporal sequencing, and the test Randon Gap Detection Test (RGDT, for evaluate the temporal resolution ability. Results: It had not difference statistically significant between the groups, evaluated by the tests DPS and RGDT. The ability of temporal sequencing was significantly major in the group without hearing loss, when evaluated by the test PPS in the condition "muttering". This result presented a growing one significant in parallel with the increase of the age group. Conclusion: It had not difference in the temporal auditory processing in the comparison between the groups.

  20. Perceptual learning and generalization resulting from training on an auditory amplitude-modulation detection task.

    Science.gov (United States)

    Fitzgerald, Matthew B; Wright, Beverly A

    2011-02-01

    Fluctuations in sound amplitude provide important cues to the identity of many sounds including speech. Of interest here was whether the ability to detect these fluctuations can be improved with practice, and if so whether this learning generalizes to untrained cases. To address these issues, normal-hearing adults (n = 9) were trained to detect sinusoidal amplitude modulation (SAM; 80-Hz rate, 3-4 kHz bandpass carrier) 720 trials/day for 6-7 days and were tested before and after training on related SAM-detection and SAM-rate-discrimination conditions. Controls (n = 9) only participated in the pre- and post-tests. The trained listeners improved more than the controls on the trained condition between the pre- and post-tests, but different subgroups of trained listeners required different amounts of practice to reach asymptotic performance, ranging from 1 (n = 6) to 4-6 (n = 3) sessions. This training-induced learning did not generalize to detection with two untrained carrier spectra (5 kHz low-pass and 0.5-1.5 kHz bandpass) or to rate discrimination with the trained rate and carrier spectrum, but there was some indication that it generalized to detection with two untrained rates (30 and 150 Hz). Thus, practice improved the ability to detect amplitude modulation, but the generalization of this learning to untrained cases was somewhat limited.

  1. Auditory detection of ultrasonic coded transmitters by seals and sea lions.

    Science.gov (United States)

    Cunningham, Kane A; Hayes, Sean A; Michelle Wargo Rub, A; Reichmuth, Colleen

    2014-04-01

    Ultrasonic coded transmitters (UCTs) are high-frequency acoustic tags that are often used to conduct survivorship studies of vulnerable fish species. Recent observations of differential mortality in tag control studies suggest that fish instrumented with UCTs may be selectively targeted by marine mammal predators, thereby skewing valuable survivorship data. In order to better understand the ability of pinnipeds to detect UCT outputs, behavioral high-frequency hearing thresholds were obtained from a trained harbor seal (Phoca vitulina) and a trained California sea lion (Zalophus californianus). Thresholds were measured for extended (500 ms) and brief (10 ms) 69 kHz narrowband stimuli, as well as for a stimulus recorded directly from a Vemco V16-3H UCT, which consisted of eight 10 ms, 69 kHz pure-tone pulses. Detection thresholds for the harbor seal were as expected based on existing audiometric data for this species, while the California sea lion was much more sensitive than predicted. Given measured detection thresholds of 113 dB re 1 μPa and 124 dB re 1 μPa, respectively, both species are likely able to detect acoustic outputs of the Vemco V16-3H under water from distances exceeding 200 m in typical natural conditions, suggesting that these species are capable of using UCTs to detect free-ranging fish.

  2. Experience-dependent learning of auditory temporal resolution: evidence from Carnatic-trained musicians.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manasa R

    2014-01-22

    Musical training and experience greatly enhance the cortical and subcortical processing of sounds, which may translate to superior auditory perceptual acuity. Auditory temporal resolution is a fundamental perceptual aspect that is critical for speech understanding in noise in listeners with normal hearing, auditory disorders, cochlear implants, and language disorders, yet very few studies have focused on music-induced learning of temporal resolution. This report demonstrates that Carnatic musical training and experience have a significant impact on temporal resolution assayed by gap detection thresholds. This experience-dependent learning in Carnatic-trained musicians exhibits the universal aspects of human perception and plasticity. The present work adds the perceptual component to a growing body of neurophysiological and imaging studies that suggest plasticity of the peripheral auditory system at the level of the brainstem. The present work may be intriguing to researchers and clinicians alike interested in devising cross-cultural training regimens to alleviate listening-in-noise difficulties. PMID:24264076

  3. Deficit of auditory temporal processing in children with dyslexia-dysgraphia

    Directory of Open Access Journals (Sweden)

    Sima Tajik

    2012-12-01

    Full Text Available Background and Aim: Auditory temporal processing reveals an important aspect of auditory performance, in which a deficit can prevent the child from speaking, language learning and reading. Temporal resolution, which is a subgroup of temporal processing, can be evaluated by gap-in-noise detection test. Regarding the relation of auditory temporal processing deficits and phonologic disorder of children with dyslexia-dysgraphia, the aim of this study was to evaluate these children with the gap-in-noise (GIN test.Methods: The gap-in-noise test was performed on 28 normal and 24 dyslexic-dysgraphic children, at the age of 11-12 years old. Mean approximate threshold and percent of corrected answers were compared between the groups.Results: The mean approximate threshold and percent of corrected answers of the right and left ear had no significant difference between the groups (p>0.05. The mean approximate threshold of children with dyslexia-dysgraphia (6.97 ms, SD=1.09 was significantly (p<0.001 more than that of the normal group (5.05 ms, SD=0.92. The mean related frequency of corrected answers (58.05, SD=4.98% was less than normal group (69.97, SD=7.16% (p<0.001.Conclusion: Abnormal temporal resolution was found in children with dyslexia-dysgraphia based on gap-in-noise test. While the brainstem and auditory cortex are responsible for auditory temporal processing, probably the structural and functional differences of these areas in normal and dyslexic-dysgraphic children lead to abnormal coding of auditory temporal information. As a result, auditory temporal processing is inevitable.

  4. Technology Gap Analysis for the Detection of Process Signatures Using Less Than Remote Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, John S.; Atkinson, David A.; Lind, Michael A.; Maughan, A. D.; Kelly, James F.

    2005-01-01

    Although remote sensing methods offer advantages for monitoring important illicit process activities, remote and stand-off technologies cannot successfully detect all important processes with the sensitivity and certainty that is desired. The main scope of the program is observables, with a primary focus on chemical signatures. A number of key process signatures elude remote or stand-off detection for a variety of reasons (e.g., heavy particulate emissions that do not propagate far enough for detection at stand-off distances, semi-volatile chemicals that do not tend to vaporize and remain in the environment near the source, etc.). Some of these compounds can provide persistent, process-specific information that is not available through remote techniques; however, the associated measurement technologies have their own set of advantages, disadvantages and technical challenges that may need to be overcome before additional signature data can be effectively and reliably exploited. The main objective of this report is to describe a process to identify high impact technology gaps for important less-than-remote detection applications. The subsequent analysis focuses on the technology development needed to enable exploitation of important process signatures. The evaluation process that was developed involves three interrelated and often conflicting requirements generation activities: • Identification of target signature chemicals with unique intelligence value and their associated attributes as mitigated by environmentally influenced fate and transport effects (i.e., what can you expect to actually find that has intelligence value, where do you need to look for it and what sensitivity and selectivity do you need to see it) • Identification of end-user deployment scenario possibilities and constraints with a focus on alternative detection requirements, timing issues, logistical consideration, and training requirements for a successful measurement • Identification of

  5. Superiority of visual (verbal) vs. auditory test presentation modality in a P300-based CIT: The Complex Trial Protocol for concealed autobiographical memory detection.

    Science.gov (United States)

    Deng, Xiaohong; Rosenfeld, J Peter; Ward, Anne; Labkovsky, Elena

    2016-07-01

    This paper continues our efforts to determine which modality is best for presentation of stimuli in the P300-based concealed information test (CIT) called the Complex Trial Protocol (CTP). The first part of the CTP trial involves presentation of the key probe or irrelevant stimuli, and is followed by presentation of target (T) or non-target (NT). In Rosenfeld et al. (2015), probes and irrelevants regularly alternated modality over trials, but Ts and NTs were always visual. In the present study, (in both its experiments, EXP 1 and EXP 2), probes and irrelevants alternated modalities on successive trials, as before. In present EXP 1, Ts and NTs were always auditory, but in EXP 2, they were simultaneously auditory and visual. Probe P300 data were different in each study: In Rosenfeld et al. (2015) and EXP 2 here, the bootstrap-based detection rates based on probe-minus-irrelevant differences, significantly differed favoring visual probe and irrelevant presentation modality. In EXP 1 here, detection rates were the same for the two modalities. In Rosenfeld et al. (2015) there was no main effect of probe modality, visual vs. auditory on probe-minus-irrelevant P300 difference. There were such effects here in EXP 1 (p<0.08, effect size=0.19) and EXP 2 (p<0.02, effect size=0.31), favoring the visual modality. Probe P300 latencies were shorter for visual than for auditory stimuli in Rosenfeld et al. (2015), a trend specifically reversed in the present pair of studies. RT was faster for visual stimuli in the present studies. The T and NT modality appears to interact with probe/irrelevant modality, and the best protocol for detecting concealed information is with the 2015 study protocol or that of EXP 2, using visual stimulus presentation. PMID:27140728

  6. Superiority of visual (verbal) vs. auditory test presentation modality in a P300-based CIT: The Complex Trial Protocol for concealed autobiographical memory detection.

    Science.gov (United States)

    Deng, Xiaohong; Rosenfeld, J Peter; Ward, Anne; Labkovsky, Elena

    2016-07-01

    This paper continues our efforts to determine which modality is best for presentation of stimuli in the P300-based concealed information test (CIT) called the Complex Trial Protocol (CTP). The first part of the CTP trial involves presentation of the key probe or irrelevant stimuli, and is followed by presentation of target (T) or non-target (NT). In Rosenfeld et al. (2015), probes and irrelevants regularly alternated modality over trials, but Ts and NTs were always visual. In the present study, (in both its experiments, EXP 1 and EXP 2), probes and irrelevants alternated modalities on successive trials, as before. In present EXP 1, Ts and NTs were always auditory, but in EXP 2, they were simultaneously auditory and visual. Probe P300 data were different in each study: In Rosenfeld et al. (2015) and EXP 2 here, the bootstrap-based detection rates based on probe-minus-irrelevant differences, significantly differed favoring visual probe and irrelevant presentation modality. In EXP 1 here, detection rates were the same for the two modalities. In Rosenfeld et al. (2015) there was no main effect of probe modality, visual vs. auditory on probe-minus-irrelevant P300 difference. There were such effects here in EXP 1 (pmodality. Probe P300 latencies were shorter for visual than for auditory stimuli in Rosenfeld et al. (2015), a trend specifically reversed in the present pair of studies. RT was faster for visual stimuli in the present studies. The T and NT modality appears to interact with probe/irrelevant modality, and the best protocol for detecting concealed information is with the 2015 study protocol or that of EXP 2, using visual stimulus presentation.

  7. Auditory Neuropathy

    Science.gov (United States)

    ... field differ in their opinions about the potential benefits of hearing aids, cochlear implants, and other technologies for people with auditory neuropathy. Some professionals report that hearing aids and personal listening devices such as frequency modulation (FM) systems are ...

  8. Rugged gap reactor device for postcolumn fluorescence detection in capillary electrophoresis.

    Science.gov (United States)

    Wei, H; Li, S F

    1998-12-01

    In this paper, the construction and performance of a rugged device for postcolumn derivatization in capillary electrophoresis (CE) are described. The device was based on a gap design, and a gap with a very small distance (derivatizing reagents into the reaction capillary was attributable to gravity flow. The concentration of derivatizing reagents can be controlled through manipulating the electroosmotic flow in the reaction capillary and the height of the liquid levels from the derivatizing reagents to the buffer reservoirs. The device has been applied in fluorescence detection of amino acids using a mixture of o-phthaldialdehyde/2-mercaptoethanol as derivatizing reagent. Theoretical plate numbers for 11 amino acids separated in a pH 9.5 borate buffer were obtained in the order of 40 000-250 000. The detection limit for glycine (S/N = 2) was found to be 6.7 × 10(-)(7) mol/L using a commercial HPLC fluorescence detector modified for CE. Free amino acids in a wine sample were also determined. Because the device is quite stable, we believe that it can be used routinely in analytical laboratories. PMID:21644687

  9. Wind Energy Industry Eagle Detection and Deterrents: Research Gaps and Solutions Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeGeorge, Elise [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-13

    The Bald and Golden Eagle Protection Act (BGEPA) prohibits the 'take' of these birds. The act defines take as to 'pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest or disturb.' The 2009 Eagle Permit Rule (74 FR 46836) authorizes the U.S. Fish and Wildlife Service (USFWS) to issue nonpurposeful (i.e., incidental) take permits, and the USFWS 2013 Eagle Conservation Plan Guidance provides a voluntary framework for issuing programmatic take permits to wind facilities that incorporate scientifically supportable advanced conservation practices (ACPs). Under these rules, the Service can issue permits that authorize individual instances of take of bald and golden eagles when the take is associated with, but not the purpose of, an otherwise lawful activity, and cannot practicably be avoided. To date, the USFWS has not approved any ACPs, citing the lack of evidence for 'scientifically supportable measures.' The Eagle Detection and Deterrents Research Gaps and Solutions Workshop was convened at the National Renewable Energy Laboratory in December 2015 with a goal to comprehensively assess the current state of technologies to detect and deter eagles from wind energy sites and the key gaps concerning reducing eagle fatalities and facilitating permitting under the BGEPA. During the workshop, presentations and discussions focused primarily on existing knowledge (and limitations) about the biology of eagles as well as technologies and emerging or novel ideas, including innovative applications of tools developed for use in other sectors, such as the U.S. Department of Defense and aviation. The main activity of the workshop was the breakout sessions, which focused on the current state of detection and deterrent technologies and novel concepts/applications for detecting and minimizing eagle collisions with wind turbines. Following the breakout sessions, participants were asked about their individual impressions of the

  10. Contributing to the early detection of Rett syndrome: the potential role of auditory Gestalt perception.

    Science.gov (United States)

    Marschik, Peter B; Einspieler, Christa; Sigafoos, Jeff

    2012-01-01

    To assess whether there are qualitatively deviant characteristics in the early vocalizations of children with Rett syndrome, we had 400 native Austrian-German speakers listen to audio recordings of vocalizations from typically developing girls and girls with Rett syndrome. The audio recordings were rated as (a) inconspicuous, (b) conspicuous or (c) not able to decide between (a) and (b). The results showed that participants were accurate in differentiating the vocalizations of typically developing children compared to children with Rett syndrome. However, the accuracy for rating verbal behaviors was dependent on the type of vocalization with greater accuracy for canonical babbling compared to cooing vocalizations. The results suggest a potential role for the use of rating child vocalizations for early detection of Rett syndrome. This is important because clinical criteria related to speech and language development remain important for early identification of Rett syndrome.

  11. Reflecting on explanatory ability: A mechanism for detecting gaps in causal knowledge.

    Science.gov (United States)

    Johnson, Dan R; Murphy, Meredith P; Messer, Riley M

    2016-05-01

    People frequently overestimate their understanding-with a particularly large blind-spot for gaps in their causal knowledge. We introduce a metacognitive approach to reducing overestimation, termed reflecting on explanatory ability (REA), which is briefly thinking about how well one could explain something in a mechanistic, step-by-step, causally connected manner. Nine experiments demonstrated that engaging in REA just before estimating one's understanding substantially reduced overestimation. Moreover, REA reduced overestimation with nearly the same potency as generating full explanations, but did so 20 times faster (although only for high complexity objects). REA substantially reduced overestimation by inducing participants to quickly evaluate an object's inherent causal complexity (Experiments 4-7). REA reduced overestimation by also fostering step-by-step, causally connected processing (Experiments 2 and 3). Alternative explanations for REA's effects were ruled out including a general conservatism account (Experiments 4 and 5) and a covert explanation account (Experiment 8). REA's overestimation-reduction effect generalized beyond objects (Experiments 1-8) to sociopolitical policies (Experiment 9). REA efficiently detects gaps in our causal knowledge with implications for improving self-directed learning, enhancing self-insight into vocational and academic abilities, and even reducing extremist attitudes. PMID:26999047

  12. Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS

    International Nuclear Information System (INIS)

    The search for cosmic antideuterons has been proposed as a promising method to indirectly detect dark matter, due to the very small background flux from spallations expected at the energies relevant to experiments. The antideuteron flux from dark matter annihilations or decays is, however, severely constrained by the non-observation of an excess in the antiproton-to-proton fraction measured by PAMELA. In this paper we calculate, for representative dark matter annihilation and decay channels, upper limits on the number of antideuteron events at AMS-02 and GAPS from requiring that the associated antiproton flux is in agreement with the PAMELA data. To this end, we first analyze in detail the formation of antideuterons in the coalescence model using an event-by-event Monte Carlo simulation and using data from various high energy experiments. We find that the resulting coalescence momentum shows a dependence on the underlying process and on the center of mass energy involved. Then, we calculate, using a diffusion model, the flux of antideuterons at the Earth from dark matter annihilations or decays. Our results indicate that, despite the various sources of uncertainty, the observation of an antideuteron flux at AMS-02 or GAPS from dark matter annihilations or decays will be challenging

  13. The effect of head-related filtering and ear-specific decoding bias on auditory attention detection

    Science.gov (United States)

    Das, Neetha; Biesmans, Wouter; Bertrand, Alexander; Francart, Tom

    2016-10-01

    Objective. We consider the problem of Auditory Attention Detection (AAD), where the goal is to detect which speaker a person is attending to, in a multi-speaker environment, based on neural activity. This work aims to analyze the influence of head-related filtering and ear-specific decoding on the performance of an AAD algorithm. Approach. We recorded high-density EEG of 16 normal-hearing subjects as they listened to two speech streams while tasked to attend to the speaker in either their left or right ear. The attended ear was switched between trials. The speech stimuli were administered either dichotically, or after filtering using Head-Related Transfer Functions (HRTFs). A spatio-temporal decoder was trained and used to reconstruct the attended stimulus envelope, and the correlations between the reconstructed and the original stimulus envelopes were used to perform AAD, and arrive at a percentage correct score over all trials. Main results. We found that the HRTF condition resulted in significantly higher AAD performance than the dichotic condition. However, speech intelligibility, measured under the same set of conditions, was lower for the HRTF filtered stimuli. We also found that decoders trained and tested for a specific attended ear performed better, compared to decoders trained and tested for both left and right attended ear simultaneously. In the context of the decoders supporting hearing prostheses, the former approach is less realistic, and studies in which each subject always had to attend to the same ear may find over-optimistic results. Significance. This work shows the importance of using realistic binaural listening conditions and training on a balanced set of experimental conditions to obtain results that are more representative for the true AAD performance in practical applications. This research work was carried out at the ESAT and ExpORL Laboratories of KU Leuven, in the frame of KU Leuven Special Research Fund BOF/STG-14-005, OT/14/119 and C14

  14. Automaticity and Primacy of Auditory Streaming: Concurrent Subjective and Objective Measures

    OpenAIRE

    Billig, Alexander J.; Robert P Carlyon

    2015-01-01

    Two experiments used subjective and objective measures to study the automaticity and primacy of auditory streaming. Listeners heard sequences of “ABA–” triplets, where “A” and “B” were tones of different frequencies and “–” was a silent gap. Segregation was more frequently reported, and rhythmically deviant triplets less well detected, for a greater between-tone frequency separation and later in the sequence. In Experiment 1, performing a competing auditory task for the first part of the sequ...

  15. Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor

    International Nuclear Information System (INIS)

    We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications. (paper)

  16. Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor

    Science.gov (United States)

    Zaffino, R. L.; Mir, M.; Samitier, J.

    2014-03-01

    We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications.

  17. Study on Detection of Negative Corona Discharge Generated in Rod-Plane Air Gap by Using External Electrode Method

    Institute of Scientific and Technical Information of China (English)

    N.ICHIKAWA

    2007-01-01

    A detective method of a negative corona discharge by means of an external electrode is presented.The relationship between an area of the external electrode and a detected voltage waveform is examined experimentally.This experimental study is carried out with the use of a rod-plane air gap.The results obtained will be applicable to problems associated with silos,ducts,and high-voltage equipment.

  18. Gender effect on pre-attentive change detection in major depressive disorder patients revealed by auditory MMN.

    Science.gov (United States)

    Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie

    2015-10-30

    Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon.

  19. On the ``massless gap`` adjustment of detected energy for passive material in front of a calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the ``massless gap`` idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  20. Fraud Detection and Audit Expectation Gap: Empirical Evidence from Iranian Bankers

    OpenAIRE

    Mahdi Salehi; Zhila Azary

    2009-01-01

    Our focus in this study is to determine the expectation gap in auditor’s responsibility between auditors and bankers in Iran. In the view on the fact, the key factor in enhanced credibility is the perception of stakeholders that the external auditors judge to financial statements providing through the management. In recent years corporate scandals were happened, so third parties demand auditors should be as an honest judge. Third parties expect the auditors should have more responsibility to ...

  1. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity.

    Science.gov (United States)

    Eloe-Fadrosh, Emiley A; Ivanova, Natalia N; Woyke, Tanja; Kyrpides, Nikos C

    2016-01-01

    Our view of microbial diversity has expanded greatly over the past 40 years, primarily through the wide application of PCR-based surveys of the small-subunit ribosomal RNA (SSU rRNA) gene. Yet significant gaps in knowledge remain due to well-recognized limitations of this method. Here, we systematically survey primer fidelity in SSU rRNA gene sequences recovered from over 6,000 assembled metagenomes sampled globally. Our findings show that approximately 10% of environmental microbial sequences might be missed from classical PCR-based SSU rRNA gene surveys, mostly members of the Candidate Phyla Radiation (CPR) and as yet uncharacterized Archaea. These results underscore the extent of uncharacterized microbial diversity and provide fruitful avenues for describing additional phylogenetic lineages. PMID:27572438

  2. Auditory midbrain representation of a break in interaural correlation.

    Science.gov (United States)

    Wang, Qian; Li, Liang

    2015-10-01

    The auditory peripheral system filters broadband sounds into narrowband waves and decomposes narrowband waves into quickly varying temporal fine structures (TFSs) and slowly varying envelopes. When a noise is presented binaurally (with the interaural correlation being 1), human listeners can detect a transient break in interaural correlation (BIC), which does not alter monaural inputs substantially. The central correlates of BIC are unknown. This study examined whether phase locking-based frequency-following responses (FFRs) of neuron populations in the rat auditory midbrain [inferior colliculus (IC)] to interaurally correlated steady-state narrowband noises are modulated by introduction of a BIC. The results showed that the noise-induced FFR exhibited both a TFS component (FFRTFS) and an envelope component (FFREnv), signaling the center frequency and bandwidth, respectively. Introduction of either a BIC or an interaurally correlated amplitude gap (which had the summated amplitude matched to the BIC) significantly reduced both FFRTFS and FFREnv. However, the BIC-induced FFRTFS reduction and FFREnv reduction were not correlated with the amplitude gap-induced FFRTFS reduction and FFREnv reduction, respectively. Thus, although introduction of a BIC does not affect monaural inputs, it causes a temporary reduction in sustained responses of IC neuron populations to the noise. This BIC-induced FFR reduction is not based on a simple linear summation of noise signals.

  3. Bridging the gap between detection and confirmation of B. anthracis in blood cultures

    OpenAIRE

    Hawkey, Suzanna

    2015-01-01

    The spore forming bacterium, Bacillus anthracis is the aetiological agent of anthrax. The 2001 US anthrax letter attacks and the 2009‐2010 outbreak of injectional anthrax in the UK highlighted the importance of early detection and confirmation of this agent, both for patient outcome and forensic investigations. A reliable and consistent method was used in this study to safely simulate blood cultures with B. anthracis and used to determine the time to positive detection. This was performed...

  4. Auditory Efferent System Modulates Mosquito Hearing.

    Science.gov (United States)

    Andrés, Marta; Seifert, Marvin; Spalthoff, Christian; Warren, Ben; Weiss, Lukas; Giraldo, Diego; Winkler, Margret; Pauls, Stephanie; Göpfert, Martin C

    2016-08-01

    The performance of vertebrate ears is controlled by auditory efferents that originate in the brain and innervate the ear, synapsing onto hair cell somata and auditory afferent fibers [1-3]. Efferent activity can provide protection from noise and facilitate the detection and discrimination of sound by modulating mechanical amplification by hair cells and transmitter release as well as auditory afferent action potential firing [1-3]. Insect auditory organs are thought to lack efferent control [4-7], but when we inspected mosquito ears, we obtained evidence for its existence. Antibodies against synaptic proteins recognized rows of bouton-like puncta running along the dendrites and axons of mosquito auditory sensory neurons. Electron microscopy identified synaptic and non-synaptic sites of vesicle release, and some of the innervating fibers co-labeled with somata in the CNS. Octopamine, GABA, and serotonin were identified as efferent neurotransmitters or neuromodulators that affect auditory frequency tuning, mechanical amplification, and sound-evoked potentials. Mosquito brains thus modulate mosquito ears, extending the use of auditory efferent systems from vertebrates to invertebrates and adding new levels of complexity to mosquito sound detection and communication. PMID:27476597

  5. Tactile Gap Detection Deteriorates during Bimanual Symmetrical Movements under Mirror Visual Feedback.

    Directory of Open Access Journals (Sweden)

    Janet H Bultitude

    Full Text Available It has been suggested that incongruence between signals for motor intention and sensory input can cause pain and other sensory abnormalities. This claim is supported by reports that moving in an environment of induced sensorimotor conflict leads to elevated pain and sensory symptoms in those with certain painful conditions. Similar procedures can lead to reports of anomalous sensations in healthy volunteers too. In the present study, we used mirror visual feedback to investigate the effects of sensorimotor incongruence on responses to stimuli that arise from sources external to the body, in particular, touch. Incongruence between the sensory and motor signals for the right arm was manipulated by having the participants make symmetrical or asymmetrical movements while watching a reflection of their left arm in a parasagittal mirror, or the left hand surface of a similarly positioned opaque board. In contrast to our prediction, sensitivity to the presence of gaps in tactile stimulation of the right forearm was not reduced when participants made asymmetrical movements during mirror visual feedback, as compared to when they made symmetrical or asymmetrical movements with no visual feedback. Instead, sensitivity was reduced when participants made symmetrical movements during mirror visual feedback relative to the other three conditions. We suggest that small discrepancies between sensory and motor information, as they occur during mirror visual feedback with symmetrical movements, can impair tactile processing. In contrast, asymmetrical movements with mirror visual feedback may not impact tactile processing because the larger discrepancies between sensory and motor information may prevent the integration of these sources of information. These results contrast with previous reports of anomalous sensations during exposure to both low and high sensorimotor conflict, but are nevertheless in agreement with a forward model interpretation of perceptual

  6. Auditory brain-stem responses in syphilis.

    OpenAIRE

    Rosenhall, U; Roupe, G

    1981-01-01

    Analysis of auditory brain-stem electrical responses (BSER) provides an effective means of detecting lesions in the auditory pathways. In the present study the wave patterns were analysed in 11 patients with secondary or latent syphilis with no clinical symptoms referrable to the central nervous system and in two patients with congenital syphilis and general paralysis. Decreased amplitudes and prolonged latencies occurred frequently in patients with secondary and with advanced syphilis. This ...

  7. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    Science.gov (United States)

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches.

  8. Auditory perception modulated by word reading.

    Science.gov (United States)

    Cao, Liyu; Klepp, Anne; Schnitzler, Alfons; Gross, Joachim; Biermann-Ruben, Katja

    2016-10-01

    Theories of embodied cognition positing that sensorimotor areas are indispensable during language comprehension are supported by neuroimaging and behavioural studies. Among others, the auditory system has been suggested to be important for understanding sound-related words (visually presented) and the motor system for action-related words. In this behavioural study, using a sound detection task embedded in a lexical decision task, we show that in participants with high lexical decision performance sound verbs improve auditory perception. The amount of modulation was correlated with lexical decision performance. Our study provides convergent behavioural evidence of auditory cortex involvement in word processing, supporting the view of embodied language comprehension concerning the auditory domain. PMID:27324193

  9. ScanIndel: a hybrid framework for indel detection via gapped alignment, split reads and de novo assembly.

    Science.gov (United States)

    Yang, Rendong; Nelson, Andrew C; Henzler, Christine; Thyagarajan, Bharat; Silverstein, Kevin A T

    2015-01-01

    Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel. PMID:26643039

  10. Reality of auditory verbal hallucinations

    Science.gov (United States)

    Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency. PMID:19620178

  11. On assessing the robustness of an input signal optimization algorithm for damage detection: the Info-Gap Decision Theory approach

    Directory of Open Access Journals (Sweden)

    Stull C.J.

    2012-07-01

    Full Text Available The Info-Gap Decision Theory (IGDT is here adopted to assess the robust- ness of a technique aimed at identifying the optimal excitation signal within a structural health monitoring (SHM procedure. Given limited system response measurements and ever-present physical limits on the level of excitation, the ultimate goal of the mentioned technique is to improve the detectability of the damage increasing the difference between measurable outputs of the undamaged and damaged system. In particular, a 2 DOF mass-spring-damper system characterized by the presence of a nonlinear stiffness is considered. Uncertainty is introduced within the system under the form of deviations of its parameters (mass, stiffness, damping ratio… from their nominal values. Variations in the performance of the mentioned technique are then evaluated both in terms of changes in the estimated difference between the responses of the damaged and undamaged system and in terms of deviations of the identified optimal input signal from its nominal estimation. Finally, plots of the performances of the analyzed algorithm for different levels of uncertainty are obtained, showing which parameters are more sensitive to the presence of uncertainty and thus enabling a clear evaluation of its robustness.

  12. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  13. Testing an auditory illusion in frogs: Perceptual restoration or sensory bias?

    OpenAIRE

    Seeba, Folkert; Schwartz, Joshua J.; Bee, Mark A.

    2010-01-01

    The human auditory system perceptually restores short deleted segments of speech and other sounds (e.g. tones) when the resulting silent gaps are filled by a potential masking noise. When this phenomenon, known as ‘auditory induction’, occurs, listeners experience the illusion of hearing an ongoing sound continuing through the interrupting noise even though the perceived sound is not physically present. Such illusions suggest that a key function of the auditory system is to allow listeners to...

  14. Screening LGI1 in a cohort of 26 lateral temporal lobe epilepsy patients with auditory aura from Turkey detects a novel de novo mutation.

    Science.gov (United States)

    Kesim, Yesim F; Uzun, Gunes Altiokka; Yucesan, Emrah; Tuncer, Feyza N; Ozdemir, Ozkan; Bebek, Nerses; Ozbek, Ugur; Iseri, Sibel A Ugur; Baykan, Betul

    2016-02-01

    Autosomal dominant lateral temporal lobe epilepsy (ADLTE) is an autosomal dominant epileptic syndrome characterized by focal seizures with auditory or aphasic symptoms. The same phenotype is also observed in a sporadic form of lateral temporal lobe epilepsy (LTLE), namely idiopathic partial epilepsy with auditory features (IPEAF). Heterozygous mutations in LGI1 account for up to 50% of ADLTE families and only rarely observed in IPEAF cases. In this study, we analysed a cohort of 26 individuals with LTLE diagnosed according to the following criteria: focal epilepsy with auditory aura and absence of cerebral lesions on brain MRI. All patients underwent clinical, neuroradiological and electroencephalography examinations and afterwards they were screened for mutations in LGI1 gene. The single LGI1 mutation identified in this study is a novel missense variant (NM_005097.2: c.1013T>C; p.Phe338Ser) observed de novo in a sporadic patient. This is the first study involving clinical analysis of a LTLE cohort from Turkey and genetic contribution of LGI1 to ADLTE phenotype. Identification of rare LGI1 gene mutations in sporadic cases supports diagnosis as ADTLE and draws attention to potential familial clustering of ADTLE in suggestive generations, which is especially important for genetic counselling.

  15. Auditory Responses of Infants

    Science.gov (United States)

    Watrous, Betty Springer; And Others

    1975-01-01

    Forty infants, 3- to 12-months-old, participated in a study designed to differentiate the auditory response characteristics of normally developing infants in the age ranges 3 - 5 months, 6 - 8 months, and 9 - 12 months. (Author)

  16. Detecting and estimating rectification of gap junction conductance based on simulations of dual-cell recordings from a pair and a network of coupled cells.

    Science.gov (United States)

    Fortier, Pierre A

    2010-07-21

    Gap junctions can exhibit rectification of conductance. Some reports use inequality of coupling coefficients as the first sign of the possible existence of rectification (Devor and Yarom, 2002; Fan et al., 2005; Levavi-Sivan et al., 2005; Mann-Metzer and Yarom, 1999; Nolan et al., 1999; Szabadics et al., 2001). However, mathematical modeling and simulations of electrotonic coupling between an isolated pair of neurons showed conditions where the coupling coefficients were unreliable indicators of rectification. On the other hand, the transfer resistances were found to be reliable indicators of junctional rectification. The existing mathematical model of cell coupling (Bennett, 1966; Devor and Yarom, 2002; Verselis and Veenstra, 2000) was extended in order to measure rectification of the junctional conductances directly between dual-recorded neurons whether isolated or surrounded by a simulated 3-dimensional network of heterogeneous cells whose gap junctions offered parallel paths for current flow between the recorded neurons. The results showed that the transfer resistances could still detect rectification of the gap junction linking the dual-recorded neurons when embedded in a coupled cell network and that a mathematical model could estimate the conductances in both directions through this gap junction using only data that would be available from real dual-intracellular penetrations which allow electrophysiological recordings and intracellular staining. Rectification of gap junctions in unrecorded cells of a biologically realistic coupled cell network had negligible effects on the voltage responses of the dual-recorded neurons because of minimal current passing through these surrounding cells.

  17. [Central auditory prosthesis].

    Science.gov (United States)

    Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M

    2009-06-01

    Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084

  18. Subcortical neural coding mechanisms for auditory temporal processing.

    Science.gov (United States)

    Frisina, R D

    2001-08-01

    Biologically relevant sounds such as speech, animal vocalizations and music have distinguishing temporal features that are utilized for effective auditory perception. Common temporal features include sound envelope fluctuations, often modeled in the laboratory by amplitude modulation (AM), and starts and stops in ongoing sounds, which are frequently approximated by hearing researchers as gaps between two sounds or are investigated in forward masking experiments. The auditory system has evolved many neural processing mechanisms for encoding important temporal features of sound. Due to rapid progress made in the field of auditory neuroscience in the past three decades, it is not possible to review all progress in this field in a single article. The goal of the present report is to focus on single-unit mechanisms in the mammalian brainstem auditory system for encoding AM and gaps as illustrative examples of how the system encodes key temporal features of sound. This report, following a systems analysis approach, starts with findings in the auditory nerve and proceeds centrally through the cochlear nucleus, superior olivary complex and inferior colliculus. Some general principles can be seen when reviewing this entire field. For example, as one ascends the central auditory system, a neural encoding shift occurs. An emphasis on synchronous responses for temporal coding exists in the auditory periphery, and more reliance on rate coding occurs as one moves centrally. In addition, for AM, modulation transfer functions become more bandpass as the sound level of the signal is raised, but become more lowpass in shape as background noise is added. In many cases, AM coding can actually increase in the presence of background noise. For gap processing or forward masking, coding for gaps changes from a decrease in spike firing rate for neurons of the peripheral auditory system that have sustained response patterns, to an increase in firing rate for more central neurons with

  19. Large cross-sectional study of presbycusis reveals rapid progressive decline in auditory temporal acuity.

    Science.gov (United States)

    Ozmeral, Erol J; Eddins, Ann C; Frisina, D Robert; Eddins, David A

    2016-07-01

    The auditory system relies on extraordinarily precise timing cues for the accurate perception of speech, music, and object identification. Epidemiological research has documented the age-related progressive decline in hearing sensitivity that is known to be a major health concern for the elderly. Although smaller investigations indicate that auditory temporal processing also declines with age, such measures have not been included in larger studies. Temporal gap detection thresholds (TGDTs; an index of auditory temporal resolution) measured in 1071 listeners (aged 18-98 years) were shown to decline at a minimum rate of 1.05 ms (15%) per decade. Age was a significant predictor of TGDT when controlling for audibility (partial correlation) and when restricting analyses to persons with normal-hearing sensitivity (n = 434). The TGDTs were significantly better for males (3.5 ms; 51%) than females when averaged across the life span. These results highlight the need for indices of temporal processing in diagnostics, as treatment targets, and as factors in models of aging. PMID:27255816

  20. Large cross-sectional study of presbycusis reveals rapid progressive decline in auditory temporal acuity.

    Science.gov (United States)

    Ozmeral, Erol J; Eddins, Ann C; Frisina, D Robert; Eddins, David A

    2016-07-01

    The auditory system relies on extraordinarily precise timing cues for the accurate perception of speech, music, and object identification. Epidemiological research has documented the age-related progressive decline in hearing sensitivity that is known to be a major health concern for the elderly. Although smaller investigations indicate that auditory temporal processing also declines with age, such measures have not been included in larger studies. Temporal gap detection thresholds (TGDTs; an index of auditory temporal resolution) measured in 1071 listeners (aged 18-98 years) were shown to decline at a minimum rate of 1.05 ms (15%) per decade. Age was a significant predictor of TGDT when controlling for audibility (partial correlation) and when restricting analyses to persons with normal-hearing sensitivity (n = 434). The TGDTs were significantly better for males (3.5 ms; 51%) than females when averaged across the life span. These results highlight the need for indices of temporal processing in diagnostics, as treatment targets, and as factors in models of aging.

  1. How an online survey on the treatment of allergic rhinitis and its impact on asthma (ARIA) detected specialty-specific knowledge-gaps

    OpenAIRE

    Larenas Linnemann, Désirée ES; Medina Ávalos, Miguel Alejandro; Lozano Sáenz, José

    2015-01-01

    Background To enhance the dissemination of the ARIA document (Allergic rhinitis (AR) and its impact on asthma) in Mexico, a Working Group composed of 35 specialists of 8 professional medical societies developed a transculturized ARIA México 2014 guideline. The ARIA guidelines use the GRADE system, which builds recommendations and suggestions around clinical questions (CQ). Methods As part of the dissemination strategy and to detect the physicians’ view and knowledge-gaps concerning the treatm...

  2. Interhemispheric Auditory Connectivity: Structure and Function Related to Auditory Verbal Hallucinations

    Directory of Open Access Journals (Sweden)

    Saskia eSteinmann

    2014-02-01

    Full Text Available Auditory verbal hallucinations (AVH are one of the most common and most distressing symptoms of schizophrenia. Despite fundamental research, the underlying neurocognitive and neurobiological mechanisms are still a matter of debate. Previous studies suggested that hearing voices is associated with a number of factors including local deficits in the left auditory cortex and a disturbed connectivity of frontal and temporoparietal language-related areas. In addition, it is hypothesized that the interhemispheric pathways connecting right and left auditory cortices might be involved in the pathogenesis of AVH. Findings based on Diffusion-Tensor-Imaging (DTI measurements revealed a remarkable interindividual variability in size and shape of the interhemispheric auditory pathways. Interestingly, schizophrenia patients suffering from AVH exhibited increased fractional anisotropy (FA in the interhemispheric fibers than non-hallucinating patients. Thus, higher FA-values indicate an increased severity of AVH. Moreover, a dichotic listening (DL task showed that the interindividual variability in the interhemispheric auditory pathways was reflected in the behavioral outcome: Stronger pathways supported a better information transfer and consequently improved speech perception. This detection indicates a specific structure-function relationship, which seems to be interindividually variable. This review focuses on recent findings concerning the structure-function relationship of the interhemispheric pathways in controls, hallucinating and non-hallucinating schizophrenia patients and concludes that changes in the structural and functional connectivity of auditory areas are involved in the pathophysiology of AVH.

  3. Experimental study of the application of micro-PIV on the flow characteristics detection of micro-gap rotational flow field

    Directory of Open Access Journals (Sweden)

    Fei Tang

    2015-04-01

    Full Text Available For a micro-gap rotational flow field with a large horizontal extent, tiny gap and fast flow velocity, the two-dimensional images shot by the micro-scale Particle ImageVelocimetry(Micro-PIV technique are not sufficient for the study of local or whole flow characteristics. In this paper, by establishing a test bench of a rotational flow field with the functions of driving, positioning, adjustment and sensing, all the local states of the micro-gap rotational flow field can be obtained by horizontally moving the rotating axis to observe point by point. While measuring some local flow fields, two-dimensional pictures are taken by adjusting the focusing height of the objective lens, and then superposed and interpolated according to their shooting order to obtain a quasi-three-dimensional distribution image of the local flow fields, thus obtaining the flow condition of the vertical section of the flow field. The position of the focusing plane and mutual distance are adjusted to realize the measurement of wall shear force in the flow field, providing a feasible reference method for detecting the rheological property of the gap flow field and the effect of surface drag reduction.

  4. Gap Junctions

    OpenAIRE

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hex...

  5. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  6. Gaps-in-noise detection and gender identification from noise-vocoded vowel segments: Comparing performance of active musicians to non-musicians.

    Science.gov (United States)

    Donai, Jeremy J; Jennings, Mariah B

    2016-05-01

    This study evaluated performance on a gender identification and temporal resolution task among active musicians and age-matched non-musicians. Brief duration (i.e., 50 and 100 ms) vowel segments produced by four adult male and four adult female speakers were spectro-temporally degraded using various parameters and presented to both groups for gender identification. Gap detection thresholds were measured using the gaps-in-noise (GIN) test. Contrary to the stated hypothesis, a significant difference in gender identification was not observed between the musician and non-musician listeners. A significant difference, however, was observed on the temporal resolution task, with the musician group achieving approximately 2 ms shorter gap detection thresholds on the GIN test compared to the non-musician counterparts. These results provide evidence supporting the potential benefits of musical training on temporal processing abilities, which have implications for the processing of speech in degraded listening environments and the enhanced processing of the fine-grained temporal aspects of the speech signal. The results also support the GIN test as an instrument sensitive to temporal processing differences among active musicians and non-musicians. PMID:27250197

  7. On the massless gap'' adjustment of detected energy for passive material in front of a calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the massless gap'' idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  8. [EFFECT OF HYPOXIA ON THE CHARACTERISTICS OF HUMAN AUDITORY PERCEPTION].

    Science.gov (United States)

    Ogorodnikova, E A; Stolvaroya, E I; Pak, S P; Bogomolova, G M; Korolev, Yu N; Golubev, V N; Lesova, E M

    2015-12-01

    The effect of normobaric hypoxic hypoxia (single and interval training) on the characteristics of human hearing was investigated. The hearing thresholds (tonal audiograms), reaction time of subjects in psychophysical experiments (pause detection, perception of rhythm and target words), and short-term auditory memory were measured before and after hypoxia. The obtained data revealed improvement of the auditory sensitivity and characteristics of working memory, and increasing of response speed. It was demonstrated that interval hypoxic training had positive effect on the processes of auditory perception. PMID:26987233

  9. The neglected neglect: auditory neglect.

    Science.gov (United States)

    Gokhale, Sankalp; Lahoti, Sourabh; Caplan, Louis R

    2013-08-01

    Whereas visual and somatosensory forms of neglect are commonly recognized by clinicians, auditory neglect is often not assessed and therefore neglected. The auditory cortical processing system can be functionally classified into 2 distinct pathways. These 2 distinct functional pathways deal with recognition of sound ("what" pathway) and the directional attributes of the sound ("where" pathway). Lesions of higher auditory pathways produce distinct clinical features. Clinical bedside evaluation of auditory neglect is often difficult because of coexisting neurological deficits and the binaural nature of auditory inputs. In addition, auditory neglect and auditory extinction may show varying degrees of overlap, which makes the assessment even harder. Shielding one ear from the other as well as separating the ear from space is therefore critical for accurate assessment of auditory neglect. This can be achieved by use of specialized auditory tests (dichotic tasks and sound localization tests) for accurate interpretation of deficits. Herein, we have reviewed auditory neglect with an emphasis on the functional anatomy, clinical evaluation, and basic principles of specialized auditory tests.

  10. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  11. Spatial auditory processing in pinnipeds

    Science.gov (United States)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study

  12. Knowledge Gaps

    DEFF Research Database (Denmark)

    Lyles, Marjorie; Pedersen, Torben; Petersen, Bent

    2003-01-01

    , assimilating, and utilizing knowledge - are crucial determinants ofknowledge gap elimination. In contrast, the two factors deemed essential in traditionalinternationalization process theory - elapsed time of operations and experientiallearning - are found to have no or limited effect.Key words......: Internationalization, knowledge gap, absorptive capacity, learning box....

  13. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  14. Detection of gaps in the spatial coverage of coral reef monitoring projects in the US Caribbean and Gulf of Mexico.

    Science.gov (United States)

    Asch, R G; Turgeon, D D

    2003-06-01

    As part of the US Coral Reef Task Force's National Program to Map, Assess, Inventory, and Monitor US Coral Reef Ecosystems, a comprehensive survey of projects/programs monitoring coral reef ecosystems and related habitats (i.e., seagrass beds and mangroves) in the US Caribbean and Pacific was undertaken. Information was gathered on a total of 296 monitoring and assessment projects conducted since 1990 in the US Caribbean and the Gulf of Mexico. Substantial gaps in monitoring coverage of US coral reef ecosystems were revealed through geographic information system (GIS) analysis of survey metadata. Although southern Florida contains approximately two-thirds of all marine monitoring projects found in the US Caribbean and Gulf of Mexico, we were unable to identify any ongoing projects that monitor coral reefs along Florida's western coast and off of the Florida Middle Grounds. Additionally, Florida is covered by approximately 1 900 km2 of mangroves, yet there were only four ongoing projects that monitor this ecosystem, leaving gaps in coverage in the Lower and Middle Keys and along the eastern and western coasts. The Flower Garden Banks National Marine Sanctuary, located offshore of the Texas/Louisiana border, has an integral long-term monitoring program, but lacks a monitoring project that gathers long-term, quantitative data on reef lish abundance and certain water quality parameters. Numerous coral reef monitoring projects in Puerto Rico are concentrated on the island's southwestern coast surrounding La Parguera, while far fewer monitoring projects are conducted along the northern and southeastern coasts and around Vieques Island. In the US Virgin Islands, the paucity of monitoring projects in large areas of St. Croix and St. Thomas contrasts with monitoring activity in three marine protected areas (MPAs), where 66% of the US Virgin Islands' coral reef monitoring sites were found. Only a series of assessments have been conducted at Navassa, a small, uninhabited

  15. Cochlear implantation effect on deaf children with gap junction protein beta 2 gene mutation

    Institute of Scientific and Technical Information of China (English)

    KONG Ying; LIU Sha; WANG Su-ju; Li Shu-jing; LIANG Shuang

    2013-01-01

    Background The popularization and promotion of gene diagnosis technology makes it possible to detect deafness genes for children with congenital hearing impairment,and the proportion of gap junction protein beta 2 (GJB2) gene mutations in cochlear implant patients is 26.5% We did follow-up evaluation on auditory rehabilitation effect for all 31 deaf children with GJB2 gene mutation after cochlear implantation to provide a reference for such patients.Methods Application of “the genetic deafness gene chip detection kit” and “gene complete sequence analysis” were applied to conduct detection on common genetic deafness gene mutation hotspots of the hearing impaired children with cochlear implantation.To conduct auditory rehabilitation effect evaluation on all 31 cases of patients with GJB2 genetic deafness after 3,6 and 12 months of the operation respectively.The single factor repeated measure analysis of variance (ANOVA) was applied to analysis whether there were significant difference among the results of initial consonant of a Chinese syllable recognition at 3 different stages after the operation,the results of vowel of a Chinese syllable recognition at 3 different stages after the operation,and the results of two-syllable recognition at 3 different stages after the operation.Results The 235delC is the high-incidence mutational site in 31 cases of patients with GJB2 genetic deafness,and the total detection rate is up to 90.3% (28/31).There were significant differences in the initial consonant and the vowel of a Chinese syllable recognition rate,and the two-syllable recognition rates at 3,6,and 12 months after the operation (P<0.01).Conclusion Cochlear implantation is a safe and effective measure for auditory reconstruction,enabling patients with GJB2 hereditary severe sensorineural deafness to achieve auditory speech recognition effectively.

  16. Visual–auditory spatial processing in auditory cortical neurons

    OpenAIRE

    Bizley, Jennifer K.; King, Andrew J

    2008-01-01

    Neurons responsive to visual stimulation have now been described in the auditory cortex of various species, but their functions are largely unknown. Here we investigate the auditory and visual spatial sensitivity of neurons recorded in 5 different primary and non-primary auditory cortical areas of the ferret. We quantified the spatial tuning of neurons by measuring the responses to stimuli presented across a range of azimuthal positions and calculating the mutual information (MI) between the ...

  17. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...... of sound as an active component in shaping urban environments. As urban conditions spreads globally, new scales, shapes and forms of communities appear and call for new distinctions and models in the study and representation of sonic environments. Particularly so, since urban environments are increasingly...... presents some terminologies for mapping urban environments through its sonic configuration. Such probing into the practices of acoustic territorialisation may direct attention to some of the conflicting and disharmonious interests defining public inclusive domains. The paper investigates the concept...

  18. The Effect of Short-Term Auditory Training on Speech in Noise Perception and Cortical Auditory Evoked Potentials in Adults with Cochlear Implants.

    Science.gov (United States)

    Barlow, Nathan; Purdy, Suzanne C; Sharma, Mridula; Giles, Ellen; Narne, Vijay

    2016-02-01

    This study investigated whether a short intensive psychophysical auditory training program is associated with speech perception benefits and changes in cortical auditory evoked potentials (CAEPs) in adult cochlear implant (CI) users. Ten adult implant recipients trained approximately 7 hours on psychophysical tasks (Gap-in-Noise Detection, Frequency Discrimination, Spectral Rippled Noise [SRN], Iterated Rippled Noise, Temporal Modulation). Speech performance was assessed before and after training using Lexical Neighborhood Test (LNT) words in quiet and in eight-speaker babble. CAEPs evoked by a natural speech stimulus /baba/ with varying syllable stress were assessed pre- and post-training, in quiet and in noise. SRN psychophysical thresholds showed a significant improvement (78% on average) over the training period, but performance on other psychophysical tasks did not change. LNT scores in noise improved significantly post-training by 11% on average compared with three pretraining baseline measures. N1P2 amplitude changed post-training for /baba/ in quiet (p = 0.005, visit 3 pretraining versus visit 4 post-training). CAEP changes did not correlate with behavioral measures. CI recipients' clinical records indicated a plateau in speech perception performance prior to participation in the study. A short period of intensive psychophysical training produced small but significant gains in speech perception in noise and spectral discrimination ability. There remain questions about the most appropriate type of training and the duration or dosage of training that provides the most robust outcomes for adults with CIs. PMID:27587925

  19. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE

    CERN Document Server

    Ginski, C; Pinilla, P; Dominik, C; Boccaletti, A; de Boer, J; Benisty, M; Biller, B; Feldt, M; Garufi, A; Keller, C U; Kenworthy, M; Maire, A L; Ménard, F; Mesa, D; Milli, J; Min, M; Pinte, C; Quanz, S P; van Boekel, R; Bonnefoy, M; Chauvin, G; Desidera, S; Gratton, R; Girard, J H V; Keppler, M; Kopytova, T; Lagrange, A -M; Langlois, M; Rouan, D; Vigan, A

    2016-01-01

    We studied the well known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk, which may be indicative of disk evolutionary processes such as planet formation. We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation ~270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is well consistent ...

  20. Online contributions of auditory feedback to neural activity in avian song control circuitry

    OpenAIRE

    Sakata, Jon T.; Michael S. Brainard

    2008-01-01

    Birdsong, like human speech, relies critically on auditory feedback to provide information about the quality of vocalizations. Although the importance of auditory feedback to vocal learning is well established, whether and how feedback signals influence vocal premotor circuitry has remained obscure. Previous studies in singing birds have not detected changes to vocal premotor activity following perturbations of auditory feedback, leading to the hypothesis that contributions of feedback to voc...

  1. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    OpenAIRE

    Nielzen, Soren

    2010-01-01

    Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD). In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs) elicited by forward...

  2. Auditory function in individuals within Leber's hereditary optic neuropathy pedigrees.

    Science.gov (United States)

    Rance, Gary; Kearns, Lisa S; Tan, Johanna; Gravina, Anthony; Rosenfeld, Lisa; Henley, Lauren; Carew, Peter; Graydon, Kelley; O'Hare, Fleur; Mackey, David A

    2012-03-01

    The aims of this study are to investigate whether auditory dysfunction is part of the spectrum of neurological abnormalities associated with Leber's hereditary optic neuropathy (LHON) and to determine the perceptual consequences of auditory neuropathy (AN) in affected listeners. Forty-eight subjects confirmed by genetic testing as having one of four mitochondrial mutations associated with LHON (mt11778, mtDNA14484, mtDNA14482 and mtDNA3460) participated. Thirty-two of these had lost vision, and 16 were asymptomatic at the point of data collection. While the majority of individuals showed normal sound detection, >25% (of both symptomatic and asymptomatic participants) showed electrophysiological evidence of AN with either absent or severely delayed auditory brainstem potentials. Abnormalities were observed for each of the mutations, but subjects with the mtDNA11778 type were the most affected. Auditory perception was also abnormal in both symptomatic and asymptomatic subjects, with >20% of cases showing impaired detection of auditory temporal (timing) cues and >30% showing abnormal speech perception both in quiet and in the presence of background noise. The findings of this study indicate that a relatively high proportion of individuals with the LHON genetic profile may suffer functional hearing difficulties due to neural abnormality in the central auditory pathways.

  3. Mythic gaps

    Directory of Open Access Journals (Sweden)

    William Hansen

    2014-11-01

    Full Text Available Different kinds of omissions sometimes occur, or are perceived to occur, in traditional narratives and in tradition-inspired literature. A familiar instance is when a narrator realizes that he or she does not fully remember the story that he or she has begun to tell, and so leaves out part of it, which for listeners may possibly result in an unintelligible narrative. But many instances of narrative gap are not so obvious. From straightforward, objective gaps one can distinguish less-obvious subjective gaps: in many cases narrators do not leave out anything crucial or truly relevant from their exposition, and yet readers perceive gaps and take steps to fill them. The present paper considers four examples of subjective gaps drawn from ancient Greek literature (the Pandora myth, ancient Roman literature (the Pygmalion legend, ancient Hebrew literature (the Joseph legend, and early Christian literature (the Jesus legend. I consider the quite varied ways in which interpreters expand the inherited texts of these stories, such as by devising names, manufacturing motives, creating backstories, and in general filling in biographical ellipses. Finally, I suggest an explanation for the phenomenon of subjective gaps, arguing that, despite their variety, they have a single cause.

  4. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mec

  5. Detecting intraoperative awareness in children by using a special auditory intervention%特殊听觉干预评估小儿术中知晓的准确性

    Institute of Scientific and Technical Information of China (English)

    许路遥; 张建敏; 岳云

    2010-01-01

    Objective To determine the feasibility of using a special auditory intervention to detect intraoperative awareness in children under general anesthesia. Methods Thirty-four ASA Ⅰ or Ⅱ children aged 5-15 yr weighing 16-73 kg undergoing scoliosis were enrolled in this study.Intraoperative wake-up test was performed during operation.Two easily identified animal noises(60 dB,lasting 15 s)were played through head phones before induction of anesthesia and immediately after the intraoperative wake-up test. Children were interviewed on the 1st and 5th-7th days after surgery to assess their awareness of intraoperative wake-up test and special auditory intervention. Results Four children were excluded from the study because of restlessness during the intraoperative wake-up test or their refusal to be interviewed. From the remaining 30 children,4 children were suspected to be aware of intraooperative wake-up test. Awareness was comfirmed in 3 children and suspected in one child.The incidence of awareness of intraoperative wake-up test was 10%.But only one of them could tell the animal sound played during the wake-up test.All the patients in this study had explicit recall of the animal noises played before induction of anesthesia.Conclusion Special auditory intervention can not detect intraoperative awareness in children unnder general anesthesia.%目的 研究特殊听觉干预评估小儿术中知晓的准确性.方法 择期全麻下行脊柱侧弯后路矫形术的患儿34例,年龄5~15岁,体重16~73kg,ASA分级Ⅰ或Ⅱ级.于麻醉诱导前和术中唤醒结束后,通过耳机各给予1次不同的特殊听觉干预(60 dB,15s).于术后24 h内和术后5~7 d时对患儿进行访视,判定患儿对术中唤醒和特殊听觉干预的知晓情况.结果 34例患儿中3例因唤醒后躁动、1例因对访视产生厌恶情绪而排除.30例患儿中3例发生了确证唤醒知晓,1例为可疑唤醒知晓,术中唤醒知晓率为10%,但4例患儿中只有1例对

  6. Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure

    DEFF Research Database (Denmark)

    Mooney, T. Aran; Hanlon, Roger T; Christensen-Dalsgaard, Jakob;

    2010-01-01

    extinguished at all frequencies if (1) water temperatures were less than 8°C, (2) statocysts were ablated, or (3) recording electrodes were placed in locations other than near the statocysts. Both the AEP response characteristics and the range of responses suggest that squid detect sound similarly to most fish......Although hearing has been described for many underwater species, there is much debate regarding if and how cephalopods detect sound. Here we quantify the acoustic sensitivity of the longfin squid (Loligo pealeii) using near-field acoustic and shaker-generated acceleration stimuli. Sound field......, with the statocyst acting as an accelerometer through which squid detect the particle motion component of a sound field. The modality and frequency range indicate that squid probably detect acoustic particle motion stimuli from both predators and prey as well as low-frequency environmental sound signatures that may...

  7. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  8. Deafness in cochlear and auditory nerve disorders.

    Science.gov (United States)

    Hopkins, Kathryn

    2015-01-01

    Sensorineural hearing loss is the most common type of hearing impairment worldwide. It arises as a consequence of damage to the cochlea or auditory nerve, and several structures are often affected simultaneously. There are many causes, including genetic mutations affecting the structures of the inner ear, and environmental insults such as noise, ototoxic substances, and hypoxia. The prevalence increases dramatically with age. Clinical diagnosis is most commonly accomplished by measuring detection thresholds and comparing these to normative values to determine the degree of hearing loss. In addition to causing insensitivity to weak sounds, sensorineural hearing loss has a number of adverse perceptual consequences, including loudness recruitment, poor perception of pitch and auditory space, and difficulty understanding speech, particularly in the presence of background noise. The condition is usually incurable; treatment focuses on restoring the audibility of sounds made inaudible by hearing loss using either hearing aids or cochlear implants.

  9. GAP Analysis Program (GAP) Raster

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas GAP Land Cover database depicts 43 land cover classes for the state of Kansas. The database was generated using a two-stage hybrid classification of...

  10. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  11. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time.

    Science.gov (United States)

    Lüddemann, Helge; Kollmeier, Birger; Riedel, Helmut

    2016-02-01

    Brief deviations of interaural correlation (IAC) can provide valuable cues for detection, segregation and localization of acoustic signals. This study investigated the processing of such "binaural gaps" in continuously running noise (100-2000 Hz), in comparison to silent "monaural gaps", by measuring late auditory evoked potentials (LAEPs) and perceptual thresholds with novel, iteratively optimized stimuli. Mean perceptual binaural gap duration thresholds exhibited a major asymmetry: they were substantially shorter for uncorrelated gaps in correlated and anticorrelated reference noise (1.75 ms and 4.1 ms) than for correlated and anticorrelated gaps in uncorrelated reference noise (26.5 ms and 39.0 ms). The thresholds also showed a minor asymmetry: they were shorter in the positive than in the negative IAC range. The mean behavioral threshold for monaural gaps was 5.5 ms. For all five gap types, the amplitude of LAEP components N1 and P2 increased linearly with the logarithm of gap duration. While perceptual and electrophysiological thresholds matched for monaural gaps, LAEP thresholds were about twice as long as perceptual thresholds for uncorrelated gaps, but half as long for correlated and anticorrelated gaps. Nevertheless, LAEP thresholds showed the same asymmetries as perceptual thresholds. For gap durations below 30 ms, LAEPs were dominated by the processing of the leading edge of a gap. For longer gap durations, in contrast, both the leading and the lagging edge of a gap contributed to the evoked response. Formulae for the equivalent rectangular duration (ERD) of the binaural system's temporal window were derived for three common window shapes. The psychophysical ERD was 68 ms for diotic and about 40 ms for anti- and uncorrelated noise. After a nonlinear Z-transform of the stimulus IAC prior to temporal integration, ERDs were about 10 ms for reference correlations of ±1 and 80 ms for uncorrelated reference. Hence, a physiologically motivated

  12. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J;

    2011-01-01

    order of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed...... cellular study of auditory thalamocortical circuit organization and plasticity in the genetically tractable mouse model....

  13. Auditory change detection in schizophrenia: sources of activity, related neuropsychological function and symptoms in patients with a first episode in adolescence, and patients 14 years after an adolescent illness-onset

    Directory of Open Access Journals (Sweden)

    Sachsse Jan

    2006-02-01

    Full Text Available Abstract Background The event-related brain response mismatch negativity (MMN registers changes in auditory stimulation with temporal lobe sources reflecting short-term echoic memory and frontal sources a deviance-induced switch in processing. Impairment, controversially present at the onset of schizophrenia, develops rapidly and can remain independent of clinical improvement. We examined the characteristics of the scalp-recorded MMN and related these to tests of short-term memory and set-shifting. We assessed whether the equivalent dipole sources are affected already at illness-onset in adolescence and how these features differ after a 14-year course following an adolescent onset. The strength, latency, orientation and location of frontal and temporal lobe sources of MMN activity early and late in the course of adolescent-onset schizophrenia are analysed and illustrated. Methods MMN, a measure of auditory change-detection, was elicited by short deviant tones in a 3-tone oddball-presentation and recorded from 32 scalp electrodes. Four dipole sources were placed following hypothesis-led calculations using brain electrical source analysis on brain atlas and MR-images. A short neuropsychological test battery was administered. We compared 28 adolescent patients with a first episode of schizophrenia and 18 patients 14 years after diagnosis in adolescence with two age-matched control groups from the community (n = 22 and 18, respectively. Results MMN peaked earlier in the younger than the older subjects. The amplitude was reduced in patients, especially the younger group, and was here associated with negative symptoms and slow set-shifting. In first-episode patients the temporal lobe sources were more ventral than in controls, while the left cingular and right inferior-mid frontal sources were more caudal. In the older patients the left temporal locus remained ventral (developmental stasis, the right temporal locus extended more antero

  14. The Perception of Auditory Motion.

    Science.gov (United States)

    Carlile, Simon; Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  15. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  16. Acoustic trauma-induced auditory cortex enhancement and tinnitus

    Institute of Scientific and Technical Information of China (English)

    Erin Laundrie; Wei Sun

    2014-01-01

    There is growing evidence suggests that noise-induced cochlear damage may lead to hyperexcitability in the central auditory system (CAS) which may give rise to tinnitus. However, the correlation between the onset of the neurophysiological changes in the CAS and the onset of tinnitus has not been well studied. To investigate this relationship, chronic electrodes were implanted into the auditory cortex (AC) and sound evoked activities were measured from awake rats before and after noise exposure. The auditory brainstem response (ABR) was used to assess the degree of noise-induced hearing loss. Tinnitus was evaluated by measuring gap-induced prepulse inhibition (gap-PPI). Rats were exposed monaurally to a high-intensity narrowband noise centered at 12 kHz at a level of 120 dB SPL for 1 h. After the noise exposure, all the rats developed either permanent (>2 weeks) or temporary (<3 days) hearing loss in the exposed ear(s). The AC amplitudes increased significantly 4 h after the noise exposure. Most of the exposed rats also showed decreased gap-PPI. The post-exposure AC enhancement showed a positive correlation with the amount of hearing loss. The onset of tinnitus-like behavior was happened after the onset of AC enhancement.

  17. A Psychophysical Imaging Method Evidencing Auditory Cue Extraction during Speech Perception: A Group Analysis of Auditory Classification Images

    OpenAIRE

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique t...

  18. Automaticity and primacy of auditory streaming: Concurrent subjective and objective measures.

    Science.gov (United States)

    Billig, Alexander J; Carlyon, Robert P

    2016-03-01

    Two experiments used subjective and objective measures to study the automaticity and primacy of auditory streaming. Listeners heard sequences of "ABA-" triplets, where "A" and "B" were tones of different frequencies and "-" was a silent gap. Segregation was more frequently reported, and rhythmically deviant triplets less well detected, for a greater between-tone frequency separation and later in the sequence. In Experiment 1, performing a competing auditory task for the first part of the sequence led to a reduction in subsequent streaming compared to when the tones were attended throughout. This is consistent with focused attention promoting streaming, and/or with attention switches resetting it. However, the proportion of segregated reports increased more rapidly following a switch than at the start of a sequence, indicating that some streaming occurred automatically. Modeling ruled out a simple "covert attention" account of this finding. Experiment 2 required listeners to perform subjective and objective tasks concurrently. It revealed superior performance during integrated compared to segregated reports, beyond that explained by the codependence of the two measures on stimulus parameters. We argue that listeners have limited access to low-level stimulus representations once perceptual organization has occurred, and that subjective and objective streaming measures partly index the same processes.

  19. Automaticity and primacy of auditory streaming: Concurrent subjective and objective measures.

    Science.gov (United States)

    Billig, Alexander J; Carlyon, Robert P

    2016-03-01

    Two experiments used subjective and objective measures to study the automaticity and primacy of auditory streaming. Listeners heard sequences of "ABA-" triplets, where "A" and "B" were tones of different frequencies and "-" was a silent gap. Segregation was more frequently reported, and rhythmically deviant triplets less well detected, for a greater between-tone frequency separation and later in the sequence. In Experiment 1, performing a competing auditory task for the first part of the sequence led to a reduction in subsequent streaming compared to when the tones were attended throughout. This is consistent with focused attention promoting streaming, and/or with attention switches resetting it. However, the proportion of segregated reports increased more rapidly following a switch than at the start of a sequence, indicating that some streaming occurred automatically. Modeling ruled out a simple "covert attention" account of this finding. Experiment 2 required listeners to perform subjective and objective tasks concurrently. It revealed superior performance during integrated compared to segregated reports, beyond that explained by the codependence of the two measures on stimulus parameters. We argue that listeners have limited access to low-level stimulus representations once perceptual organization has occurred, and that subjective and objective streaming measures partly index the same processes. PMID:26414168

  20. A loudspeaker-based room auralization system for auditory perception research

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Favrot, Sylvain Emmanuel

    2009-01-01

    . This system provides a flexible research platform for conducting auditory experiments with normal-hearing, hearing-impaired, and aided hearing-impaired listeners in a fully controlled and realistic environment. This includes measures of basic auditory function (e.g., signal detection, distance perception...

  1. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  2. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  3. Teste GIN: detecção de gap em crianças com desvio fonológico Noise test: gap detection in children with phonological deviation

    Directory of Open Access Journals (Sweden)

    Elaine Feltre Assis

    2013-02-01

    Full Text Available OBJETIVO: investigar a resolução temporal: detecção de gaps em crianças com desvios fonológicos por meio do teste GIN e relacionar o grau do desvio fonológico com desempenho no teste GIN. MÉTODO: 6 indivíduos, de ambos os gêneros, 5 meninos e 1 menina, com idade entre 10 e 11 anos, com diagnóstico de desvio fonológico, em atendimento na clínica-escola do curso de Fonoaudiologia da FEAD de Belo Horizonte/MG, todos com ausência de perda auditiva e problemas neurológicos e/ou cognitivos. Os participantes foram submetidos ao Teste GIN, em intensidade de 50dB acima do limiar. RESULTADOS: das 06 crianças avaliadas, 5 (83,33% encontram-se alteradas e apenas 1 (16,67% obteve valores dentro do padrão de normalidade. Apesar da pequena amostra, viu-se que 83,33% das crianças com desvio fonológico tiveram limiares do GIN aquém do esperado para faixa etária. Porém não foi possível estabelecer uma relação direta entre grau de classificação do desvio fonológico e o baixo desempenho obtido no teste GIN, no qual apenas 1 criança com desvio médio moderado apresentou pior desempenho no teste GIN. CONCLUSÃO: crianças com desvio fonológico podem apresentar alteração no processamento temporal.PURPOSE: to investigate the temporal resolution, as for: gaps detection in children with phonological deviation through noise test and related with the degree of phonological performance in noise test. METHOD: 6 patients of both genders, five boys and one girl, aged between 10 and 11 year-old with phonological disorder' diagnosis in attendance at the school clinic of the Speech Therapy course (FEAD Belo Horizonte / MG, all with no hearing loss and no neurological and / or cognitive problems. The subjects underwent the GIN test at intensity of 50dB above the threshold. RESULTS: from the 6 evaluated children, 5 (83.33% had abnormal responses at gin test and only one (16.67% had values within the normal range. Despite the small sample, it was

  4. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    OpenAIRE

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the p...

  5. (Central Auditory Processing: the impact of otitis media

    Directory of Open Access Journals (Sweden)

    Leticia Reis Borges

    2013-07-01

    Full Text Available OBJECTIVE: To analyze auditory processing test results in children suffering from otitis media in their first five years of age, considering their age. Furthermore, to classify central auditory processing test findings regarding the hearing skills evaluated. METHODS: A total of 109 students between 8 and 12 years old were divided into three groups. The control group consisted of 40 students from public school without a history of otitis media. Experimental group I consisted of 39 students from public schools and experimental group II consisted of 30 students from private schools; students in both groups suffered from secretory otitis media in their first five years of age and underwent surgery for placement of bilateral ventilation tubes. The individuals underwent complete audiological evaluation and assessment by Auditory Processing tests. RESULTS: The left ear showed significantly worse performance when compared to the right ear in the dichotic digits test and pitch pattern sequence test. The students from the experimental groups showed worse performance when compared to the control group in the dichotic digits test and gaps-in-noise. Children from experimental group I had significantly lower results on the dichotic digits and gaps-in-noise tests compared with experimental group II. The hearing skills that were altered were temporal resolution and figure-ground perception. CONCLUSION: Children who suffered from secretory otitis media in their first five years and who underwent surgery for placement of bilateral ventilation tubes showed worse performance in auditory abilities, and children from public schools had worse results on auditory processing tests compared with students from private schools.

  6. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26541581

  7. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  8. Tactile feedback improves auditory spatial localization

    OpenAIRE

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds b...

  9. Tactile feedback improves auditory spatial localization

    OpenAIRE

    Monica eGori; Tiziana eVercillo; Giulio eSandini; David eBurr

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds b...

  10. Role of the auditory system in speech production.

    Science.gov (United States)

    Guenther, Frank H; Hickok, Gregory

    2015-01-01

    This chapter reviews evidence regarding the role of auditory perception in shaping speech output. Evidence indicates that speech movements are planned to follow auditory trajectories. This in turn is followed by a description of the Directions Into Velocities of Articulators (DIVA) model, which provides a detailed account of the role of auditory feedback in speech motor development and control. A brief description of the higher-order brain areas involved in speech sequencing (including the pre-supplementary motor area and inferior frontal sulcus) is then provided, followed by a description of the Hierarchical State Feedback Control (HSFC) model, which posits internal error detection and correction processes that can detect and correct speech production errors prior to articulation. The chapter closes with a treatment of promising future directions of research into auditory-motor interactions in speech, including the use of intracranial recording techniques such as electrocorticography in humans, the investigation of the potential roles of various large-scale brain rhythms in speech perception and production, and the development of brain-computer interfaces that use auditory feedback to allow profoundly paralyzed users to learn to produce speech using a speech synthesizer.

  11. Auditory Neuropathy - A Case of Auditory Neuropathy after Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Maliheh Mazaher Yazdi

    2007-12-01

    Full Text Available Background and Aim: Auditory neuropathy is an hearing disorder in which peripheral hearing is normal, but the eighth nerve and brainstem are abnormal. By clinical definition, patient with this disorder have normal OAE, but exhibit an absent or severely abnormal ABR. Auditory neuropathy was first reported in the late 1970s as different methods could identify discrepancy between absent ABR and present hearing threshold. Speech understanding difficulties are worse than can be predicted from other tests of hearing function. Auditory neuropathy may also affect vestibular function. Case Report: This article presents electrophysiological and behavioral data from a case of auditory neuropathy in a child with normal hearing after bilirubinemia in a 5 years follow-up. Audiological findings demonstrate remarkable changes after multidisciplinary rehabilitation. Conclusion: auditory neuropathy may involve damage to the inner hair cells-specialized sensory cells in the inner ear that transmit information about sound through the nervous system to the brain. Other causes may include faulty connections between the inner hair cells and the nerve leading from the inner ear to the brain or damage to the nerve itself. People with auditory neuropathy have OAEs response but absent ABR and hearing loss threshold that can be permanent, get worse or get better.

  12. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  13. Auditory Processing Disorder in Children

    Science.gov (United States)

    ... free publications Find organizations Related Topics Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick ... NIH… Turning Discovery Into Health ® National Institute on Deafness and Other Communication Disorders 31 Center Drive, MSC ...

  14. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... and school. A positive, realistic attitude and healthy self-esteem in a child with APD can work wonders. And kids with APD can go on to ... Parents MORE ON THIS TOPIC Auditory Processing Disorder Special ...

  15. Irrelevant Auditory and Visual Events Induce a Visual Attentional Blink

    NARCIS (Netherlands)

    Van der Burg, Erik; Nieuwenstein, Mark R.; Theeuwes, Jan; Olivers, Christian N. L.

    2013-01-01

    In the present study we investigated whether a task-irrelevant distractor can induce a visual attentional blink pattern. Participants were asked to detect only a visual target letter (A, B, or C) and to ignore the preceding auditory, visual, or audiovisual distractor. An attentional blink was observ

  16. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  17. Effects of multitasking on operator performance using computational and auditory tasks.

    Science.gov (United States)

    Fasanya, Bankole K

    2016-09-01

    This study investigated the effects of multiple cognitive tasks on human performance. Twenty-four students at North Carolina A&T State University participated in the study. The primary task was auditory signal change perception and the secondary task was a computational task. Results showed that participants' performance in a single task was statistically significantly different from their performance in combined tasks: (a) algebra problems (algebra problem primary and auditory perception secondary); (b) auditory perception tasks (auditory perception primary and algebra problems secondary); and (c) mean false-alarm score in auditory perception (auditory detection primary and algebra problems secondary). Using signal detection theory (SDT), participants' performance measured in terms of sensitivity was calculated as -0.54 for combined tasks (algebra problems the primary task) and -0.53 auditory perceptions the primary task. During auditory perception tasks alone, SDT was found to be 2.51. Performance was 83% in a single task compared to 17% when combined tasks. PMID:26886505

  18. Psychology of auditory perception.

    Science.gov (United States)

    Lotto, Andrew; Holt, Lori

    2011-09-01

    Audition is often treated as a 'secondary' sensory system behind vision in the study of cognitive science. In this review, we focus on three seemingly simple perceptual tasks to demonstrate the complexity of perceptual-cognitive processing involved in everyday audition. After providing a short overview of the characteristics of sound and their neural encoding, we present a description of the perceptual task of segregating multiple sound events that are mixed together in the signal reaching the ears. Then, we discuss the ability to localize the sound source in the environment. Finally, we provide some data and theory on how listeners categorize complex sounds, such as speech. In particular, we present research on how listeners weigh multiple acoustic cues in making a categorization decision. One conclusion of this review is that it is time for auditory cognitive science to be developed to match what has been done in vision in order for us to better understand how humans communicate with speech and music. WIREs Cogni Sci 2011 2 479-489 DOI: 10.1002/wcs.123 For further resources related to this article, please visit the WIREs website. PMID:26302301

  19. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  20. Neural Correlates of an Auditory Afterimage in Primary Auditory Cortex

    OpenAIRE

    Noreña, A. J.; Eggermont, J. J.

    2003-01-01

    The Zwicker tone (ZT) is defined as an auditory negative afterimage, perceived after the presentation of an appropriate inducer. Typically, a notched noise (NN) with a notch width of 1/2 octave induces a ZT with a pitch falling in the frequency range of the notch. The aim of the present study was to find potential neural correlates of the ZT in the primary auditory cortex of ketamine-anesthetized cats. Responses of multiunits were recorded simultaneously with two 8-electrode arrays during 1 s...

  1. Experimental study of the application of micro-PIV on the flow characteristics detection of micro-gap rotational flow field

    OpenAIRE

    Fei Tang; Chunze Wang; Yupeng Shi; Xiaohao Wang

    2015-01-01

    For a micro-gap rotational flow field with a large horizontal extent, tiny gap and fast flow velocity, the two-dimensional images shot by the micro-scale Particle ImageVelocimetry(Micro-PIV) technique are not sufficient for the study of local or whole flow characteristics. In this paper, by establishing a test bench of a rotational flow field with the functions of driving, positioning, adjustment and sensing, all the local states of the micro-gap rotational flow field can be obtained by horiz...

  2. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  3. Adaptation in the auditory system: an overview

    OpenAIRE

    David ePérez-González; Malmierca, Manuel S.

    2014-01-01

    The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the s...

  4. Effects of sleep deprivation on central auditory processing

    Directory of Open Access Journals (Sweden)

    Liberalesso Paulo Breno

    2012-07-01

    Full Text Available Abstract Background Sleep deprivation is extremely common in contemporary society, and is considered to be a frequent cause of behavioral disorders, mood, alertness, and cognitive performance. Although the impacts of sleep deprivation have been studied extensively in various experimental paradigms, very few studies have addressed the impact of sleep deprivation on central auditory processing (CAP. Therefore, we examined the impact of sleep deprivation on CAP, for which there is sparse information. In the present study, thirty healthy adult volunteers (17 females and 13 males, aged 30.75 ± 7.14 years were subjected to a pure tone audiometry test, a speech recognition threshold test, a speech recognition task, the Staggered Spondaic Word Test (SSWT, and the Random Gap Detection Test (RGDT. Baseline (BSL performance was compared to performance after 24 hours of being sleep deprived (24hSD using the Student’s t test. Results Mean RGDT score was elevated in the 24hSD condition (8.0 ± 2.9 ms relative to the BSL condition for the whole cohort (6.4 ± 2.8 ms; p = 0.0005, for males (p = 0.0066, and for females (p = 0.0208. Sleep deprivation reduced SSWT scores for the whole cohort in both ears [(right: BSL, 98.4 % ± 1.8 % vs. SD, 94.2 % ± 6.3 %. p = 0.0005(left: BSL, 96.7 % ± 3.1 % vs. SD, 92.1 % ± 6.1 %, p  Conclusion Sleep deprivation impairs RGDT and SSWT performance. These findings confirm that sleep deprivation has central effects that may impair performance in other areas of life.

  5. Animal models of spontaneous activity in the healthy and impaired auditory system

    Directory of Open Access Journals (Sweden)

    Jos J Eggermont

    2015-04-01

    Full Text Available Spontaneous neural activity in the auditory nerve fibers and in auditory cortex in healthy animals is discussed with respect to the question: Is spontaneous activity noise or information carrier? The studies reviewed suggest strongly that spontaneous activity is a carrier of information. Subsequently, I review the numerous findings in the impaired auditory system, particularly with reference to noise trauma and tinnitus. Here the common assumption is that tinnitus reflects increased noise in the auditory system that among others affects temporal processing and interferes with the gap-startle reflex, which is frequently used as a behavioral assay for tinnitus. It is, however, more likely that the increased spontaneous activity in tinnitus, firing rate as well as neural synchrony, carries information that shapes the activity of downstream structures, including non-auditory ones, and leading to the tinnitus percept. The main drivers of that process are bursting and synchronous firing, which facilitates transfer of activity across synapses, and allows formation of auditory objects, such as tinnitus

  6. Resolução temporal auditiva em idosos Auditory temporal resolution in elderly people

    Directory of Open Access Journals (Sweden)

    Flávia Duarte Liporaci

    2010-12-01

    Full Text Available OBJETIVO: Avaliar o processamento auditivo em idosos por meio do teste de resolução temporal Gaps in Noise e verificar se a presença de perda auditiva influencia no desempenho nesse teste. MÉTODOS: Sessenta e cinco ouvintes idosos, entre 60 e 79 anos, foram avaliados por meio do teste Gaps In Noise. Para seleção da amostra foram realizados: anamnese, mini-exame do estado mental e avaliação audiológica básica. Os participantes foram alocados e estudados em um grupo único e posteriormente divididos em três grupos segundo os resultados audiométricos nas frequências de 500 Hz, 1, 2, 3, 4 e 6 kHz. Assim, classificou-se o G1 com audição normal, o G2 com perda auditiva de grau leve e o G3 com perda auditiva de grau moderado. RESULTADOS: Em toda a amostra, as médias de limiar de detecção de gap e de porcentagem de acertos foram de 8,1 ms e 52,6% para a orelha direita e de 8,2 ms e 52,2% para a orelha esquerda. No G1, estas medidas foram de 7,3 ms e 57,6% para a orelha direita e de 7,7 ms e 55,8% para a orelha esquerda. No G2, estas medidas foram de 8,2 ms e 52,5% para a orelha direita e de 7,9 ms e 53,2% para a orelha esquerda. No G3, estas medidas foram de 9,2 ms e 45,2% para as orelhas direita e esquerda. CONCLUSÃO: A presença de perda auditiva elevou os limiares de detecção de gap e diminuiu a porcentagem de acertos no teste Gaps In Noise.PURPOSE: To assess the auditory processing of elderly patients using the temporal resolution Gaps-in-Noise test, and to verify if the presence of hearing loss influences the performance on this test. METHODS: Sixty-five elderly listeners, with ages between 60 and 79 years, were assessed with the Gaps-in-Noise test. To meet the inclusion criteria, the following procedures were carried out: anamnesis, mini-mental state examination, and basic audiological evaluation. The participants were allocated and studied as a group, and then were divided into three groups, according to audiometric results

  7. Functional magnetic resonance imaging of the ascending stages of the auditory system in dogs

    OpenAIRE

    Bach, Jan-Peter; Lüpke, Matthias; Dziallas, Peter; Wefstaedt, Patrick; Uppenkamp, Stefan; Seifert, Hermann; Nolte, Ingo

    2013-01-01

    Background Functional magnetic resonance imaging (fMRI) is a technique able to localize neural activity in the brain by detecting associated changes in blood flow. It is an essential tool for studying human functional neuroanatomy including the auditory system. There are only a few studies, however, using fMRI to study canine brain functions. In the current study ten anesthetized dogs were scanned during auditory stimulation. Two functional sequences, each in combination with a suitable stimu...

  8. 基于听觉E RP功能脑网络特征和SVM的测谎方法研究%Study on Lie Detection Method Based on Auditory ERP Fu nctionaI Brain Network Characteristic and SVM

    Institute of Scientific and Technical Information of China (English)

    常文文; 王宏; 化成诚

    2016-01-01

    Recently,brain network method,which based on grapy theory,has played an important role in cognitive science research.And the traditional lie detection methods,which based on ERP signals,usually focus on the EEG from one channel,this has some shortcomings,that use few channels are not able to reflect the whole cognitive characteristic underly-ing lie condition.In this paper,we proposed a method based on brain network characteristics.We used the auditory stimuli to evoke the ERP signals and it was recorded from different channels.In order to build the functional brain network,we calcu-lated the phase lag index between these channels,and seven network parameters were calculated as the index for lie detec-tion.Those network parameters were compared between guilty and innocent subjects,and support vector machine was used as the classifier to the test date.The result shows that this method has a higher identify accuracy than the average accuracy of existing method,proved the validity of the method.%基于图论理论的脑网络分析方法近年来在认知脑科学研究中起到了非常重要的作用,而基于事件相关电位(Event-Related Potentials,ERP)的传统测谎方法一直都专注于对某一特定通道上的脑电信号进行分析,针对传统方法中使用少数通道并不能够全面的反映人在说谎状态下大脑整体认知功能特征的缺点,本文提出了基于脑网络特征的测谎方法,通过听觉刺激诱发事件相关电位ERP,记录脑区多通道脑电信号,通过讨论各导联之间的相位延迟指数来构建脑功能网络,计算7类脑网络特征参数作为判别指标。分析被试在说谎和无辜状态下的网络特征参数,使用支持向量机对实验数据进行分类判断,结果表明:本文提出的方法有较高的判别准确率,优于目前判别方法的平均值,证明了本方法的测谎有效性。

  9. Synchronization and phonological skills: precise auditory timing hypothesis (PATH

    Directory of Open Access Journals (Sweden)

    Adam eTierney

    2014-11-01

    Full Text Available Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel 2011, 2012, 2014. There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The precise auditory timing hypothesis predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.

  10. Brainstem auditory evoked potential abnormalities in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Sharat Gupta

    2013-01-01

    Full Text Available Background: Diabetes mellitus represents a syndrome complex in which multiple organ systems, including the central nervous system, are affected. Aim: The study was conducted to determine the changes in the brainstem auditory evoked potentials in type 2 diabetes mellitus. Materials and Methods: A cross sectional study was conducted on 126 diabetic males, aged 35-50 years, and 106 age-matched, healthy male volunteers. Brainstem auditory evoked potentials were recorded and the results were analyzed statistically using student′s unpaired t-test. The data consisted of wave latencies I, II, III, IV, V and interpeak latencies I-III, III-V and I-V, separately for both ears. Results: The latency of wave IV was significantly delayed only in the right ear, while the latency of waves III, V and interpeak latencies III-V, I-V showed a significant delay bilaterally in diabetic males. However, no significant difference was found between diabetic and control subjects as regards to the latency of wave IV unilaterally in the left ear and the latencies of waves I, II and interpeak latency I-III bilaterally. Conclusion: Diabetes patients have an early involvement of central auditory pathway, which can be detected with fair accuracy with auditory evoked potential studies.

  11. On Optimality in Auditory Information Processing

    CERN Document Server

    Karlsson, M

    2000-01-01

    We study limits for the detection and estimation of weak sinusoidal signals in the primary part of the mammalian auditory system using a stochastic Fitzhugh-Nagumo (FHN) model and an action-reaction model for synaptic plasticity. Our overall model covers the chain from a hair cell to a point just after the synaptic connection with a cell in the cochlear nucleus. The information processing performance of the system is evaluated using so called phi-divergences from statistics which quantify a dissimilarity between probability measures and are intimately related to a number of fundamental limits in statistics and information theory (IT). We show that there exists a set of parameters that can optimize several important phi-divergences simultaneously and that this set corresponds to a constant quiescent firing rate (QFR) of the spiral ganglion neuron. The optimal value of the QFR is frequency dependent but is essentially independent of the amplitude of the signal (for small amplitudes). Consequently, optimal proce...

  12. Changes of brainstem auditory and somatosensory evoked

    Institute of Scientific and Technical Information of China (English)

    Yang Jian

    2000-01-01

    Objective: to investigate the characteristics and clinical value of evoked potentials in late infantile form of metachromatic leukodystrophy. Methods: Brainstem auditory, and somatosensory evoked potentials were recorded in 6 patients, and compared with the results of CT scan. Results: All of the 6 patients had abnormal results of BAEP and MNSEP. The main abnormal parameters in BAEP were latency prolongation in wave I, inter-peak latency prolongation in Ⅰ-Ⅲ and Ⅰ-Ⅴ. The abnormal features of MNSEP were low amplitude and absence of wave N9, inter-Peak latency prolongation in Ng-N13 and N13-N20, but no significant change of N20 amplitude. The results also revealed that abnormal changes in BAEP and MNSEP were earlier than that in CT. Conclusion: The detection of BAEP and MNSEP in late infantile form of metachromatic leukodystrophy might early reveal the abnormality of conductive function in nervous system and might be a useful method in diagnosis.

  13. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. PMID:24378910

  14. Neurofilament heavy chain expression and neuroplasticity in rat auditory cortex after unilateral and bilateral deafness.

    Science.gov (United States)

    Park, Min-Hyun; Jang, Jeong Hun; Song, Jae-Jin; Lee, Ho Sun; Oh, Seung Ha

    2016-09-01

    Deafness induces many plastic changes in the auditory neural system. For instance, dendritic changes cause synaptic changes in neural cells. SMI-32, a monoclonal antibody reveals auditory areas and recognizes non-phosphorylated epitopes on medium- and high-molecular-weight subunits of neurofilament proteins in cortical pyramidal neuron dendrites. We investigated SMI-32-immunoreactive (-ir) protein levels in the auditory cortices of rats with induced unilateral and bilateral deafness. Adult male Sprague-Dawley rats were divided into unilateral deafness (UD), bilateral deafness (BD), and control groups. Deafness was induced by cochlear ablation. All rats were sacrificed, and the auditory cortices were harvested for real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analyses at 2, 4, 6, and 12 weeks after deafness was induced. Immunohistochemical staining was performed to evaluate the location of SMI-32-ir neurons. Neurofilament heavy chain (NEFH) mRNA expression and SMI-32-ir protein levels were increased in the BD group. In particular, SMI-32-ir protein levels increased significantly 6 and 12 weeks after deafness was induced. In contrast, no significant changes in protein level were detected in the right or left auditory cortices at any time point in the UD group. NEFH mRNA level decreased at 4 weeks after deafness was induced in the UD group, but recovered thereafter. Taken together, BD induced plastic changes in the auditory cortex, whereas UD did not affect the auditory neural system sufficiently to show plastic changes, as measured by neurofilament protein level.

  15. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  16. Psychophysiological responses to auditory change.

    Science.gov (United States)

    Chuen, Lorraine; Sears, David; McAdams, Stephen

    2016-06-01

    A comprehensive characterization of autonomic and somatic responding within the auditory domain is currently lacking. We studied whether simple types of auditory change that occur frequently during music listening could elicit measurable changes in heart rate, skin conductance, respiration rate, and facial motor activity. Participants heard a rhythmically isochronous sequence consisting of a repeated standard tone, followed by a repeated target tone that changed in pitch, timbre, duration, intensity, or tempo, or that deviated momentarily from rhythmic isochrony. Changes in all parameters produced increases in heart rate. Skin conductance response magnitude was affected by changes in timbre, intensity, and tempo. Respiratory rate was sensitive to deviations from isochrony. Our findings suggest that music researchers interpreting physiological responses as emotional indices should consider acoustic factors that may influence physiology in the absence of induced emotions. PMID:26927928

  17. Auditory distraction and serial memory

    OpenAIRE

    Jones, D M; Hughes, Rob; Macken, W.J.

    2010-01-01

    One mental activity that is very vulnerable to auditory distraction is serial recall. This review of the contemporary findings relating to serial recall charts the key determinants of distraction. It is evident that there is one form of distraction that is a joint product of the cognitive characteristics of the task and of the obligatory cognitive processing of the sound. For sequences of sound, distraction appears to be an ineluctable product of similarity-of-process, specifically, the seria...

  18. Reality of auditory verbal hallucinations

    OpenAIRE

    Raij TT; Valkonen-Korhonen M; Holi M; Therman S; Lehtonen J; Hari R

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation st...

  19. Auditory sequence analysis and phonological skill.

    Science.gov (United States)

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E; Turton, Stuart; Griffiths, Timothy D

    2012-11-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  20. Electrostimulation mapping of comprehension of auditory and visual words.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. PMID:26332785

  1. Electrostimulation mapping of comprehension of auditory and visual words.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing.

  2. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  3. Speech distortion measure based on auditory properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo; HU Xiulin; ZHANG Yunyu; ZHU Yaoting

    2000-01-01

    The Perceptual Spectrum Distortion (PSD), based on auditory properties of human being, is presented to measure speech distortion. The PSD measure calculates the speech distortion distance by simulating the auditory properties of human being and converting short-time speech power spectrum to auditory perceptual spectrum. Preliminary simulative experiments in comparison with the Itakura measure have been done. The results show that the PSD measure is a perferable speech distortion measure and more consistent with subjective assessment of speech quality.

  4. Auditory stimulation and cardiac autonomic regulation

    OpenAIRE

    Vitor E Valenti; Guida, Heraldo L.; Frizzo, Ana C F; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M; Luiz Carlos de Abreu

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation bet...

  5. Mechanisms of Auditory Verbal Hallucination in Schizophrenia

    OpenAIRE

    Raymond eCho; Wayne eWu

    2013-01-01

    Recent work on the mechanisms underlying auditory verbal hallucination (AVH) has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two...

  6. Auditory Training and Its Effects upon the Auditory Discrimination and Reading Readiness of Kindergarten Children.

    Science.gov (United States)

    Cullen, Minga Mustard

    The purpose of this investigation was to evaluate the effects of a systematic auditory training program on the auditory discrimination ability and reading readiness of 55 white, middle/upper middle class kindergarten students. Following pretesting with the "Wepman Auditory Discrimination Test,""The Clymer-Barrett Prereading Battery," and the…

  7. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    Science.gov (United States)

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  8. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  9. Neuroanatomy of auditory verbal hallucinations in schizophrenia : A quantitative meta-analysis of voxel-based morphometry studies

    NARCIS (Netherlands)

    Modinos, Gemma; Costafreda, Sergi G.; van Tol, Marie-Jose; McGuire, Philip K.; Aleman, Andre; Allen, Paul

    2013-01-01

    Introduction: Voxel-based morphometry (VBM) studies demonstrate grey matter volume (GMV) deficits in schizophrenia. This method is also applied for detecting associations between specific psychotic symptoms and brain structure, such as auditory verbal hallucinations (AVHs). However, due to differing

  10. Central auditory function of deafness genes.

    Science.gov (United States)

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  11. Temporal asymmetries in auditory coding and perception reflect multi-layered nonlinearities.

    Science.gov (United States)

    Deneux, Thomas; Kempf, Alexandre; Daret, Aurélie; Ponsot, Emmanuel; Bathellier, Brice

    2016-01-01

    Sound recognition relies not only on spectral cues, but also on temporal cues, as demonstrated by the profound impact of time reversals on perception of common sounds. To address the coding principles underlying such auditory asymmetries, we recorded a large sample of auditory cortex neurons using two-photon calcium imaging in awake mice, while playing sounds ramping up or down in intensity. We observed clear asymmetries in cortical population responses, including stronger cortical activity for up-ramping sounds, which matches perceptual saliency assessments in mice and previous measures in humans. Analysis of cortical activity patterns revealed that auditory cortex implements a map of spatially clustered neuronal ensembles, detecting specific combinations of spectral and intensity modulation features. Comparing different models, we show that cortical responses result from multi-layered nonlinearities, which, contrary to standard receptive field models of auditory cortex function, build divergent representations of sounds with similar spectral content, but different temporal structure. PMID:27580932

  12. Between the Gap

    OpenAIRE

    McDevitt, Mary Jean

    2009-01-01

    The reveal is an important architectural element. In many buildings, reveals define transitions between dissimilar materials, textures, finishes or planes. A reveal can also be thought of as a gap. Webster's dictionary defines a gap as "an opening made by breaking or parting." Often the word "gap" is associated with a deficiency or failure, but a gap similar to a reveal, can be intentional and essential to the success of a building. The visually impaired experience a "gap" with the sight...

  13. Auditory-Verbal Comprehension Development of 2-5 Year Old Normal Persian Speaking Children in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Fariba Yadegari

    2011-06-01

    Full Text Available Background and Aim: Understanding and defining developmental norms of auditory comprehension is a necessity for detecting auditory-verbal comprehension impairments in children. We hereby investigated lexical auditory development of Persian (Farsi speaking children.Methods: In this cross-sectional study, auditory comprehension of four 2-5 year old normal children of adult’s child-directed utterance at available nurseries was observed by researchers primarily to gain a great number of comprehendible words for the children of the same age. The words were classified into nouns, verbs and adjectives. Auditory-verbal comprehension task items were also considered in 2 sections of subordinates and superordinates auditory comprehension. Colored pictures were provided for each item. Thirty 2-5 year old normal children were randomly selected from nurseries all over Tehran. Children were tested by this task and subsequently, mean of their correct response were analyzed. Results: The findings revealed that there is a high positive correlation between auditory-verbal comprehension and age (r=0.804, p=0.001. Comparing children in 3 age groups of 2-3, 3-4 and 4-5 year old, showed that subordinate and superordinate auditory comprehension of the former group is significantly lower (p0.05, while the difference between subordinate and superordinate auditory comprehension was significant in all age groups (p<0.05.Conclusion: Auditory-verbal comprehension develop much faster at lower than older ages and there is no prominent difference between word linguistic classes including nouns, verbs and adjectives. Slower development of superordinate auditory comprehension implies semantic hierarchical evolution of words.

  14. Auditory hallucinations suppressed by etizolam in a patient with schizophrenia.

    Science.gov (United States)

    Benazzi, F; Mazzoli, M; Rossi, E

    1993-10-01

    A patient presented with a 15 year history of schizophrenia with auditory hallucinations. Though unresponsive to prolonged trials of neuroleptics, the auditory hallucinations disappeared with etizolam. PMID:7902201

  15. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  16. Task engagement selectively modulates neural correlations in primary auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2015-05-13

    Noise correlations (r(noise)) between neurons can affect a neural population's discrimination capacity, even without changes in mean firing rates of neurons. r(noise), the degree to which the response variability of a pair of neurons is correlated, has been shown to change with attention with most reports showing a reduction in r(noise). However, the effect of reducing r(noise) on sensory discrimination depends on many factors, including the tuning similarity, or tuning correlation (r(tuning)), between the pair. Theoretically, reducing r(noise) should enhance sensory discrimination when the pair exhibits similar tuning, but should impair discrimination when tuning is dissimilar. We recorded from pairs of neurons in primary auditory cortex (A1) under two conditions: while rhesus macaque monkeys (Macaca mulatta) actively performed a threshold amplitude modulation (AM) detection task and while they sat passively awake. We report that, for pairs with similar AM tuning, average r(noise) in A1 decreases when the animal performs the AM detection task compared with when sitting passively. For pairs with dissimilar tuning, the average r(noise) did not significantly change between conditions. This suggests that attention-related modulation can target selective subcircuits to decorrelate noise. These results demonstrate that engagement in an auditory task enhances population coding in primary auditory cortex by selectively reducing deleterious r(noise) and leaving beneficial r(noise) intact.

  17. Omnidirectional Measurements of Angle-Resolved Heat Capacity for Complete Detection of Superconducting Gap Structure in the Heavy-Fermion Antiferromagnet UPd_{2}Al_{3}.

    Science.gov (United States)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige; Homma, Yoshiya; Aoki, Dai

    2016-07-15

    Quasiparticle excitations in UPd_{2}Al_{3} were studied by means of heat-capacity (C) measurements under rotating magnetic fields using a high-quality single crystal. The field dependence shows C(H)∝H^{1/2}-like behavior at low temperatures for both two hexagonal crystal axes, i.e., H∥[0001] (c axis) and H∥[112[over ¯]0] (a axis), suggesting the presence of nodal quasiparticle excitations from heavy bands. At low temperatures, the polar-angle (θ) dependence of C exhibits a maximum along H∥[0001] with a twofold symmetric oscillation below 0.5 T, and an unusual shoulder or hump anomaly has been found around 30°-60° from the c axis in C(θ) at intermediate fields (1≲μ_{0}H≲2  T). These behaviors in UPd_{2}Al_{3} purely come from the superconducting nodal quasiparticle excitations, and can be successfully reproduced by theoretical calculations assuming the gap symmetry with a horizontal linear line node. We demonstrate the whole angle-resolved heat-capacity measurements done here as a novel spectroscopic method for nodal gap determination, which can be applied to other exotic superconductors. PMID:27472129

  18. The 0.5-2.22-micron Scattered Light Spectrum of the Disk Around TW Hya: Detection of a Partially Filled Disk Gap at 80 AU

    CERN Document Server

    Debes, J H; Weinberger, A J; Roberge, A; Schneider, G

    2013-01-01

    We present a 0.5-2.2 micron scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved HST STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances > 40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at ~80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady alpha-disk with an ad hoc gap structure. The thermal properties of the disk are self-consistently calculated using a three-dimensional radiative transfer code that uses ray-tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star...

  19. Classification of Underwater Target Echoes Based on Auditory Perception Characteristics

    Institute of Scientific and Technical Information of China (English)

    Xiukun Li; Xiangxia Meng; Hang Liu; Mingye Liu

    2014-01-01

    In underwater target detection, the bottom reverberation has some of the same properties as the target echo, which has a great impact on the performance. It is essential to study the difference between target echo and reverberation. In this paper, based on the unique advantage of human listening ability on objects distinction, the Gammatone filter is taken as the auditory model. In addition, time-frequency perception features and auditory spectral features are extracted for active sonar target echo and bottom reverberation separation. The features of the experimental data have good concentration characteristics in the same class and have a large amount of differences between different classes, which shows that this method can effectively distinguish between the target echo and reverberation.

  20. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  1. Auditory hallucinations in nonverbal quadriplegics.

    Science.gov (United States)

    Hamilton, J

    1985-11-01

    When a system for communicating with nonverbal, quadriplegic, institutionalized residents was developed, it was discovered that many were experiencing auditory hallucinations. Nine cases are presented in this study. The "voices" described have many similar characteristics, the primary one being that they give authoritarian commands that tell the residents how to behave and to which the residents feel compelled to respond. Both the relationship of this phenomenon to the theoretical work of Julian Jaynes and its effect on the lives of the residents are discussed.

  2. Autosomal recessive hereditary auditory neuropathy

    Institute of Scientific and Technical Information of China (English)

    王秋菊; 顾瑞; 曹菊阳

    2003-01-01

    Objectives: Auditory neuropathy (AN) is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses (ABRs) and normal cochlear outer hair cell function as measured by otoacoustic emissions (OAEs). Many risk factors are thought to be involved in its etiology and pathophysiology. Three Chinese pedigrees with familial AN are presented herein to demonstrate involvement of genetic factors in AN etiology. Methods: Probands of the above - mentioned pedigrees, who had been diagnosed with AN, were evaluated and followed up in the Department of Otolaryngology Head and Neck Surgery, China PLA General Hospital. Their family members were studied and the pedigree diagrams were established. History of illness, physical examination,pure tone audiometry, acoustic reflex, ABRs and transient evoked and distortion- product otoacoustic emissions (TEOAEs and DPOAEs) were obtained from members of these families. DPOAE changes under the influence of contralateral sound stimuli were observed by presenting a set of continuous white noise to the non - recording ear to exam the function of auditory efferent system. Some subjects received vestibular caloric test, computed tomography (CT)scan of the temporal bone and electrocardiography (ECG) to exclude other possible neuropathy disorders. Results: In most affected subjects, hearing loss of various degrees and speech discrimination difficulties started at 10 to16 years of age. Their audiological evaluation showed absence of acoustic reflex and ABRs. As expected in AN, these subjects exhibited near normal cochlear outer hair cell function as shown in TEOAE & DPOAE recordings. Pure- tone audiometry revealed hearing loss ranging from mild to severe in these patients. Autosomal recessive inheritance patterns were observed in the three families. In Pedigree Ⅰ and Ⅱ, two affected brothers were found respectively, while in pedigree Ⅲ, 2 sisters were affected. All the patients were otherwise normal without

  3. GRM7 variants associated with age-related hearing loss based on auditory perception.

    Science.gov (United States)

    Newman, Dina L; Fisher, Laurel M; Ohmen, Jeffrey; Parody, Robert; Fong, Chin-To; Frisina, Susan T; Mapes, Frances; Eddins, David A; Robert Frisina, D; Frisina, Robert D; Friedman, Rick A

    2012-12-01

    Age-related hearing impairment (ARHI), or presbycusis, is a common condition of the elderly that results in significant communication difficulties in daily life. Clinically, it has been defined as a progressive loss of sensitivity to sound, starting at the high frequencies, inability to understand speech, lengthening of the minimum discernable temporal gap in sounds, and a decrease in the ability to filter out background noise. The causes of presbycusis are likely a combination of environmental and genetic factors. Previous research into the genetics of presbycusis has focused solely on hearing as measured by pure-tone thresholds. A few loci have been identified, based on a best ear pure-tone average phenotype, as having a likely role in susceptibility to this type of hearing loss; and GRM7 is the only gene that has achieved genome-wide significance. We examined the association of GRM7 variants identified from the previous study, which used an European cohort with Z-scores based on pure-tone thresholds, in a European-American population from Rochester, NY (N = 687), and used novel phenotypes of presbycusis. In the present study mixed modeling analyses were used to explore the relationship of GRM7 haplotype and SNP genotypes with various measures of auditory perception. Here we show that GRM7 alleles are associated primarily with peripheral measures of hearing loss, and particularly with speech detection in older adults.

  4. Idea Gaps, Object Gaps, and Trust Gaps in Economic Development

    OpenAIRE

    Barrett, Christopher B.

    1995-01-01

    Growth theory emphasizes capital accumulation and technological change or, as Romer [1993] describes them, idea gaps and object gaps. This paper makes the case for a third and final crucial element: trust. Trust has both direct effects on the process of economic development, especially in facilitating increased exchange, and indirect effects through its influence on incentives to investment in human and physical capital (objects) and to the acquisition and processing of knowledge (ideas). Int...

  5. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  6. Mapping tonotopy in human auditory cortex

    NARCIS (Netherlands)

    van Dijk, Pim; Langers, Dave R M; Moore, BCJ; Patterson, RD; Winter, IM; Carlyon, RP; Gockel, HE

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier

  7. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  8. Speech perception as complex auditory categorization

    Science.gov (United States)

    Holt, Lori L.

    2002-05-01

    Despite a long and rich history of categorization research in cognitive psychology, very little work has addressed the issue of complex auditory category formation. This is especially unfortunate because the general underlying cognitive and perceptual mechanisms that guide auditory category formation are of great importance to understanding speech perception. I will discuss a new methodological approach to examining complex auditory category formation that specifically addresses issues relevant to speech perception. This approach utilizes novel nonspeech sound stimuli to gain full experimental control over listeners' history of experience. As such, the course of learning is readily measurable. Results from this methodology indicate that the structure and formation of auditory categories are a function of the statistical input distributions of sound that listeners hear, aspects of the operating characteristics of the auditory system, and characteristics of the perceptual categorization system. These results have important implications for phonetic acquisition and speech perception.

  9. AFM lithography for the definition of nanometre scale gaps: application to the fabrication of a cantilever-based sensor with electrochemical current detection

    Science.gov (United States)

    Villarroya, María; Pérez-Murano, Francesc; Martín, Cristina; Davis, Zachary; Boisen, Anja; Esteve, Jaume; Figueras, Eduard; Montserrat, Josep; Barniol, Núria

    2004-07-01

    The concept, design and fabrication of a cantilever-based sensor operating in liquid for biochemical applications are reported. A novel approach for detecting the deflection of a functionalized cantilever is proposed. It consists of detecting the change of the electrochemical current level when a voltage is applied between a deflecting cantilever, acting as one of the electrodes, and a reference fixed electrode placed in close proximity to the free extreme of the cantilever. The detection is possible since the distance between the two electrodes is smaller than 50 nm. The sensor is fabricated by using a combination of MEMS technology and AFM-based lithography.

  10. Tactile feedback improves auditory spatial localization.

    Science.gov (United States)

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality. PMID:25368587

  11. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  12. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  13. Hearing aid fitting results in a case of a patient with auditory neuropathy

    Directory of Open Access Journals (Sweden)

    Dell´Aringa, Ana Helena Bannwart

    2009-03-01

    Full Text Available Introduction: The Auditory Neuropathy is described recently as a hearing loss characterized by the preservation of outer hair cells and absence of auditory brainstem responses. Objective: To present a case report of hearing aid fitting in a patient with Auditory Neuropathy. Case Report: S.A.P., male, 32 years old, sought the Otorhinolaryngology Service after five years of Guillain-Barré syndrome, complaining of progressive and bilateral tinnitus auditory loss in both ears. The audiological evaluation resulted in: severe sensorioneural hearing deficiency with bilateral irregular configuration; speech recognition rate of 0% and speech detection rate in 35dB in both ears; type A tympanometric curve and absent ipsilateral, bilateral and contralateral reflexes; absence of waves and presence of cochlear microphonics in both ears in the auditory evoked potential and present bilateral distortion product-evoked otoacoustic emissions. The speech perception test was performed with polysyllabic words and lip reading, and presented 44% of hit with hearing aid and 12% without it. Final Comments: Despite the differences in the process of hearing aid habilitation and rehabilitation, we conclude that sound amplification brought benefits to the patient with auditory neuropathy.

  14. Hearing Mechanisms and Noise Metrics Related to Auditory Masking in Bottlenose Dolphins (Tursiops truncatus).

    Science.gov (United States)

    Branstetter, Brian K; Bakhtiari, Kimberly L; Trickey, Jennifer S; Finneran, James J

    2016-01-01

    Odontocete cetaceans are acoustic specialists that depend on sound to hunt, forage, navigate, detect predators, and communicate. Auditory masking from natural and anthropogenic sound sources may adversely affect these fitness-related capabilities. The ability to detect a tone in a broad range of natural, anthropogenic, and synthesized noise was tested with bottlenose dolphins using a psychophysical, band-widening procedure. Diverging masking patterns were found for noise bandwidths greater than the width of an auditory filter. Despite different noise types having equal-pressure spectral-density levels (95 dB re 1 μPa(2)/Hz), masked detection threshold differences were as large as 22 dB. Consecutive experiments indicated that noise types with increased levels of amplitude modulation resulted in comodulation masking release due to within-channel and across-channel auditory mechanisms. The degree to which noise types were comodulated (comodulation index) was assessed by calculating the magnitude-squared coherence between the temporal envelope from an auditory filter centered on the signal and temporal envelopes from flanking filters. Statistical models indicate that masked thresholds in a variety of noise types, at a variety of levels, can be explained with metrics related to the comodulation index in addition to the pressure spectral-density level of noise. This study suggests that predicting auditory masking from ocean noise sources depends on both spectral and temporal properties of the noise. PMID:26610950

  15. Auditory training during development mitigates a hearing loss-induced perceptual deficit.

    Science.gov (United States)

    Kang, Ramanjot; Sarro, Emma C; Sanes, Dan H

    2014-01-01

    Sensory experience during early development can shape the central nervous system and this is thought to influence adult perceptual skills. In the auditory system, early induction of conductive hearing loss (CHL) leads to deficits in central auditory coding properties in adult animals, and this is accompanied by diminished perceptual thresholds. In contrast, a brief regimen of auditory training during development can enhance the perceptual skills of animals when tested in adulthood. Here, we asked whether a brief period of training during development could compensate for the perceptual deficits displayed by adult animals reared with CHL. Juvenile gerbils with CHL, and age-matched controls, were trained on a frequency modulation (FM) detection task for 4 or 10 days. The performance of each group was subsequently assessed in adulthood, and compared to adults with normal hearing (NH) or adults raised with CHL that did not receive juvenile training. We show that as juveniles, both CHL and NH animals display similar FM detection thresholds that are not immediately impacted by the perceptual training. However, as adults, detection thresholds and psychometric function slopes of these animals were significantly improved. Importantly, CHL adults with juvenile training displayed thresholds that approached NH adults. Additionally, we found that hearing impaired animals trained for 10 days displayed adult thresholds closer to untrained adults than those trained for 4 days. Thus, a relatively brief period of auditory training may compensate for the deleterious impact of hearing deprivation on auditory perception on the trained task.

  16. Assessing the development gap

    OpenAIRE

    Sinitsina, Irina; Chubrik, Alexander; Denisova, Irina; Dubrovskiy, Vladimir; Kartseva, Marina; Makenbaeva, Irina; Rokicka, Magdalena; Tokmazishvili, Michael

    2007-01-01

    Current report aims to identify major existing gaps in the four socio-economic dimensions (economic, human, environmental, and institutional) and to reveal those gaps which could potentially hinder social and economic integration of neighbor states with the EU. To achieve this, the authors aim to assess the existing trends in the size of the gaps across countries and problem areas, taking into consideration the specific origin of the gap between EU15/EU12, on the one hand, and FSU republics, ...

  17. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli.

    Science.gov (United States)

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-07-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli.

  18. Behind the Pay Gap

    Science.gov (United States)

    Dey, Judy Goldberg; Hill, Catherine

    2007-01-01

    Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…

  19. Auditory Neural Prostheses – A Window to the Future

    Directory of Open Access Journals (Sweden)

    Mohan Kameshwaran

    2015-06-01

    Full Text Available Hearing loss is one of the commonest congenital anomalies to affect children world-over. The incidence of congenital hearing loss is more pronounced in developing countries like the Indian sub-continent, especially with the problems of consanguinity. Hearing loss is a double tragedy, as it leads to not only deafness but also language deprivation. However, hearing loss is the only truly remediable handicap, due to remarkable advances in biomedical engineering and surgical techniques. Auditory neural prostheses help to augment or restore hearing by integration of an external circuitry with the peripheral hearing apparatus and the central circuitry of the brain. A cochlear implant (CI is a surgically implantable device that helps restore hearing in patients with severe-profound hearing loss, unresponsive to amplification by conventional hearing aids. CIs are electronic devices designed to detect mechanical sound energy and convert it into electrical signals that can be delivered to the coch­lear nerve, bypassing the damaged hair cells of the coch­lea. The only true prerequisite is an intact auditory nerve. The emphasis is on implantation as early as possible to maximize speech understanding and perception. Bilateral CI has significant benefits which include improved speech perception in noisy environments and improved sound localization. Presently, the indications for CI have widened and these expanded indications for implantation are related to age, additional handicaps, residual hearing, and special etiologies of deafness. Combined electric and acoustic stimulation (EAS / hybrid device is designed for individuals with binaural low-frequency hearing and severe-to-profound high-frequency hearing loss. Auditory brainstem implantation (ABI is a safe and effective means of hearing rehabilitation in patients with retrocochlear disorders, such as neurofibromatosis type 2 (NF2 or congenital cochlear nerve aplasia, wherein the cochlear nerve is damaged

  20. Antideuteron Sensitivity for the GAPS Experiment

    CERN Document Server

    Aramaki, T; Boggs, S E; von Doetinchem, P; Fuke, H; Mognet, S I; Ong, R A; Perez, K; Zweerink, J

    2015-01-01

    The General Antiparticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antiparticles, especially antideuterons. The GAPS antideuteron measurement utilizes distinctive detection methods using atomic X-rays and charged particles from the decay of exotic atoms as well as the timing and stopping range of the incoming particle, which together provide excellent antideuteron identification. Prior to the future balloon experiment, an accelerator test and a prototype flight were successfully conducted in 2005 and 2012 respectively, in order to verify the GAPS detection concept. This paper describes how the sensitivity of GAPS to antideuterons was estimated using a Monte Carlo simulation along with the atomic cascade model and the Intra-Nuclear Cascade model. The sensitivity for the GAPS antideuteron search obtained using this method is 2.0 $\\times 10^{-6}$ [m$^{-2}$s$^{-1}$sr$^{-1}$(GeV/$n$)$^{-1}$] for the proposed long duration balloon program (LDB, 35 days $\\times$ 3...

  1. An Auditory Model of Improved Adaptive ZCPA

    Directory of Open Access Journals (Sweden)

    Jinping Zhang

    2013-07-01

    Full Text Available An improved ZCAP auditory model with adaptability is proposed in this paper, and the  adaptive method designed for ZCPA model is suitable for other auditory model with inner-hair-cell sub-model. The first step in the implement process of the proposed ZCPA model is to carry out the calculation of inner product between signal and complex Gammatone filters to obtain important frequency components  of signal. And then, according to  the result of the first step, the parameters of the basilar membrane sub-model and frequency box are automatically adjusted, such as the number of the basilar membrane filters, center frequency and bandwith of each basilar membrane filter, position of each frequency box, and so on. Lastly  an auditory model is built, and the final output is auditory spectrum.The results of numerical simulation and experiments have showed that the proposed model could realize accurate frequency selection, and the auditory spectrum is more distinctly than that of conventional ZCPA model. Moreover, the proposed model can completely avoided the influence of the number of filter on the shape of auditory spectrum existing in conventional ZCPA model so that the shape of auditory spectrum is steady, and the data quantity is small.

  2. A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap

    CERN Document Server

    Pinilla, Paola; Birnstiel, Tilman; Benisty, Myriam; Dominik, Carsten; Dullemond, Cornelis P

    2016-01-01

    We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myrs within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1$M_{\\rm{Jup}}$), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through t...

  3. Investigating the role of visual and auditory search in reading and developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Marie eLallier

    2013-09-01

    Full Text Available It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9 or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a serial search condition only: the intercepts (but not the slopes of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts but also low auditory search performance (d´ strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in serial search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.

  4. Rapid context-based identification of target sounds in an auditory scene

    Science.gov (United States)

    Gamble, Marissa L.; Woldorff, Marty G.

    2015-01-01

    To make sense of our dynamic and complex auditory environment, we must be able to parse the sensory input into usable parts and pick out relevant sounds from all the potentially distracting auditory information. While it is unclear exactly how we accomplish this difficult task, Gamble and Woldorff (2014) recently reported an ERP study of an auditory target-search task in a temporally and spatially distributed, rapidly presented, auditory scene. They reported an early, differential, bilateral activation (beginning ~60 ms) between feature-deviating Target stimuli and physically equivalent feature-deviating Nontargets, reflecting a rapid Target-detection process. This was followed shortly later (~130 ms) by the lateralized N2ac ERP activation, reflecting the focusing of auditory spatial attention toward the Target sound and paralleling attentional-shifting processes widely studied in vision. Here we directly examined the early, bilateral, Target-selective effect to better understand its nature and functional role. Participants listened to midline-presented sounds that included Target and Nontarget stimuli that were randomly either embedded in a brief rapid stream or presented alone. The results indicate that this early bilateral effect results from a template for the Target that utilizes its feature deviancy within a stream to enable rapid identification. Moreover, individual-differences analysis showed that the size of this effect was larger for subjects with faster response times. The findings support the hypothesis that our auditory attentional systems can implement and utilize a context-based relational template for a Target sound, making use of additional auditory information in the environment when needing to rapidly detect a relevant sound. PMID:25848684

  5. Functional Neurochemistry of the Auditory System

    Directory of Open Access Journals (Sweden)

    Nourollah Agha Ebrahimi

    1993-03-01

    Full Text Available Functional Neurochemistry is one of the fields of studies in the auditory system which has had an outstanding development in the recent years. Many of the findings in the mentioned field had led not only the basic auditory researches but also the clinicians to new points of view in audiology.Here, we are aimed at discussing the latest investigations in the Functional Neurochemistry of the auditory system and have focused this review mainly on the researches which will arise flashes of hope for future clinical studies

  6. Auditory Neuropathy/Dyssynchrony in Biotinidase Deficiency

    Science.gov (United States)

    Yaghini, Omid

    2016-01-01

    Biotinidase deficiency is a disorder inherited autosomal recessively showing evidence of hearing loss and optic atrophy in addition to seizures, hypotonia, and ataxia. In the present study, a 2-year-old boy with Biotinidase deficiency is presented in which clinical symptoms have been reported with auditory neuropathy/auditory dyssynchrony (AN/AD). In this case, transient-evoked otoacoustic emissions showed bilaterally normal responses representing normal function of outer hair cells. In contrast, acoustic reflex test showed absent reflexes bilaterally, and visual reinforcement audiometry and auditory brainstem responses indicated severe to profound hearing loss in both ears. These results suggest AN/AD in patients with Biotinidase deficiency. PMID:27144235

  7. Functional Neurochemistry of the Auditory System

    OpenAIRE

    Nourollah Agha Ebrahimi

    1993-01-01

    Functional Neurochemistry is one of the fields of studies in the auditory system which has had an outstanding development in the recent years. Many of the findings in the mentioned field had led not only the basic auditory researches but also the clinicians to new points of view in audiology.Here, we are aimed at discussing the latest investigations in the Functional Neurochemistry of the auditory system and have focused this review mainly on the researches which will arise flashes of hope f...

  8. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    Prediction and assessment of low-frequency noise problems requires information about the auditory filter characteristics at low-frequencies. Unfortunately, data at low-frequencies is scarce and practically no results have been published for frequencies below 100 Hz. Extrapolation of ERB results......-ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...

  9. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  10. AUDITORY CORTICAL PLASTICITY: DOES IT PROVIDE EVIDENCE FOR COGNITIVE PROCESSING IN THE AUDITORY CORTEX?

    OpenAIRE

    Irvine, Dexter R. F.

    2007-01-01

    The past 20 years have seen substantial changes in our view of the nature of the processing carried out in auditory cortex. Some processing of a cognitive nature, previously attributed to higher order “association” areas, is now considered to take place in auditory cortex itself. One argument adduced in support of this view is the evidence indicating a remarkable degree of plasticity in the auditory cortex of adult animals. Such plasticity has been demonstrated in a wide range of paradigms, i...

  11. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  12. Mismatch responses in the awake rat: evidence from epidural recordings of auditory cortical fields.

    Directory of Open Access Journals (Sweden)

    Fabienne Jung

    Full Text Available Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN, a component of auditory evoked potentials (AEPs, reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing valid animal models that allow for detailed investigation of its neurophysiological mechanisms is important. Rodent studies, so far almost exclusively under anesthesia, have not provided decisive evidence whether an MMN analogue exists in rats. This may be due to several factors, including the effect of anesthesia. We therefore used epidural recordings in awake black hooded rats, from two auditory cortical areas in both hemispheres, and with bandpass filtered noise stimuli that were optimized in frequency and duration for eliciting MMN in rats. Using a classical oddball paradigm with frequency deviants, we detected mismatch responses at all four electrodes in primary and secondary auditory cortex, with morphological and functional properties similar to those known in humans, i.e., large amplitude biphasic differences that increased in amplitude with decreasing deviant probability. These mismatch responses significantly diminished in a control condition that removed the predictive context while controlling for presentation rate of the deviants. While our present study does not allow for disambiguating precisely the relative contribution of adaptation and prediction error processing to the observed mismatch responses, it demonstrates that MMN-like potentials can be obtained in awake and unrestrained rats.

  13. Auditory place theory and frequency difference limen

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jialu

    2006-01-01

    It has been a barrier that the place code is far too coarse a mechanism to account for the finest frequency difference limen for place theory of hearing since it was proposed in 19th century. A place correlation model, which takes the energy distribution of a pure tone in neighboring bands of auditory filters into full account, was presented in this paper. The model based on the place theory and some experimental results of the psychophysical tuning curves of hearing can explain the finest difference limen for frequency (about 0.02 or 0.3% at 1000 Hz)easily. Using a standard 1/3 octave filter bank of which the relationship between the frequency of a input pure tone apart from the centre frequency of K-th filter band, △f, and the output intensity difference between K-th and (K + 1)-th filters, △E, was established in order to show the fine frequency detection ability of the filter bank. This model can also be used to abstract the fundamental frequency of speech and to measure the frequency of pure tone precisely.

  14. Frequency band-importance functions for auditory and auditory-visual speech recognition

    Science.gov (United States)

    Grant, Ken W.

    2005-04-01

    In many everyday listening environments, speech communication involves the integration of both acoustic and visual speech cues. This is especially true in noisy and reverberant environments where the speech signal is highly degraded, or when the listener has a hearing impairment. Understanding the mechanisms involved in auditory-visual integration is a primary interest of this work. Of particular interest is whether listeners are able to allocate their attention to various frequency regions of the speech signal differently under auditory-visual conditions and auditory-alone conditions. For auditory speech recognition, the most important frequency regions tend to be around 1500-3000 Hz, corresponding roughly to important acoustic cues for place of articulation. The purpose of this study is to determine the most important frequency region under auditory-visual speech conditions. Frequency band-importance functions for auditory and auditory-visual conditions were obtained by having subjects identify speech tokens under conditions where the speech-to-noise ratio of different parts of the speech spectrum is independently and randomly varied on every trial. Point biserial correlations were computed for each separate spectral region and the normalized correlations are interpreted as weights indicating the importance of each region. Relations among frequency-importance functions for auditory and auditory-visual conditions will be discussed.

  15. In search of an auditory engram

    Science.gov (United States)

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory. PMID:15967995

  16. Effect of omega-3 on auditory system

    Directory of Open Access Journals (Sweden)

    Vida Rahimi

    2014-01-01

    Full Text Available Background and Aim: Omega-3 fatty acid have structural and biological roles in the body 's various systems . Numerous studies have tried to research about it. Auditory system is affected a s well. The aim of this article was to review the researches about the effect of omega-3 on auditory system.Methods: We searched Medline , Google Scholar, PubMed, Cochrane Library and SID search engines with the "auditory" and "omega-3" keywords and read textbooks about this subject between 19 70 and 20 13.Conclusion: Both excess and deficient amounts of dietary omega-3 fatty acid can cause harmful effects on fetal and infant growth and development of brain and central nervous system esspesially auditory system. It is important to determine the adequate dosage of omega-3.

  17. [Approaches to therapy of auditory agnosia].

    Science.gov (United States)

    Fechtelpeter, A; Göddenhenrich, S; Huber, W; Springer, L

    1990-01-01

    In a 41-year-old stroke patient with bitemporal brain damage, we found severe signs of auditory agnosia 6 months after onset. Recognition of environmental sounds was extremely impaired when tested in a multiple choice sound-picture matching task, whereas auditory discrimination between sounds and picture identifications by written names was almost undisturbed. In a therapy experiment, we tried to enhance sound recognition via semantic categorization and association, imitation of sound and analysis of auditory features, respectively. The stimulation of conscious auditory analysis proved to be increasingly effective over a 4-week period of therapy. We were able to show that the patient's improvement was not only a simple effect of practicing, but it was stable and carried over to nontrained items.

  18. Auditory-visual spatial interaction and modularity

    Science.gov (United States)

    Radeau, M

    1994-02-01

    The results of dealing with the conditions for pairing visual and auditory data coming from spatially separate locations argue for cognitive impenetrability and computational autonomy, the pairing rules being the Gestalt principles of common fate and proximity. Other data provide evidence for pairing with several properties of modular functioning. Arguments for domain specificity are inferred from comparison with audio-visual speech. Suggestion of innate specification can be found in developmental data indicating that the grouping of visual and auditory signals is supported very early in life by the same principles that operate in adults. Support for a specific neural architecture comes from neurophysiological studies of the bimodal (auditory-visual) neurons of the cat superior colliculus. Auditory-visual pairing thus seems to present the four main properties of the Fodorian module.

  19. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  20. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  1. Auditory sequence analysis and phonological skill

    OpenAIRE

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E.; Turton, Stuart; Griffiths, Timothy D

    2012-01-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between ...

  2. Auditory memory function in expert chess players

    OpenAIRE

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Background: Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert...

  3. Auditory model inversion and its application

    Institute of Scientific and Technical Information of China (English)

    ZHAO Heming; WANG Yongqi; CHEN Xueqin

    2005-01-01

    Auditory model has been applied to several aspects of speech signal processing field, and appears to be effective in performance. This paper presents the inverse transform of each stage of one widely used auditory model. First of all it is necessary to invert correlogram and reconstruct phase information by repetitious iterations in order to get auditory-nerve firing rate. The next step is to obtain the negative parts of the signal via the reverse process of the HWR (Half Wave Rectification). Finally the functions of inner hair cell/synapse model and Gammatone filters have to be inverted. Thus the whole auditory model inversion has been achieved. An application of noisy speech enhancement based on auditory model inversion algorithm is proposed. Many experiments show that this method is effective in reducing noise.Especially when SNR of noisy speech is low it is more effective than other methods. Thus this auditory model inversion method given in this paper is applicable to speech enhancement field.

  4. Bridging the Gap

    DEFF Research Database (Denmark)

    Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska;

    Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures.......Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures....

  5. Bridging the Gap

    OpenAIRE

    Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska; Murdock, Karen; Schmidt, Iben Julie

    2015-01-01

    Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures. Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ve...

  6. Educational Testing of an Auditory Display of Mars Gamma Ray Spectrometer Data

    Science.gov (United States)

    Keller, J. M.; Pompea, S. M.; Prather, E. E.; Slater, T. F.; Boynton, W. V.; Enos, H. L.; Quinn, M.

    2003-12-01

    A unique, alternative educational and public outreach product was created to investigate the use and effectiveness of auditory displays in science education. The product, which allows students to both visualize and hear seasonal variations in data detected by the Gamma Ray Spectrometer (GRS) aboard the Mars Odyssey spacecraft, consists of an animation of false-color maps of hydrogen concentrations on Mars along with a musical presentation, or sonification, of the same data. Learners can access this data using the visual false-color animation, the auditory false-pitch sonification, or both. Central to the development of this product is the question of its educational effectiveness and implementation. During the spring 2003 semester, three sections of an introductory astronomy course, each with ˜100 non-science undergraduates, were presented with one of three different exposures to GRS hydrogen data: one auditory, one visual, and one both auditory and visual. Student achievement data was collected through use of multiple-choice and open-ended surveys administered before, immediately following, and three and six weeks following the experiment. It was found that the three student groups performed equally well in their ability to perceive and interpret the data presented. Additionally, student groups exposed to the auditory display reported a higher interest and engagement level than the student group exposed to the visual data alone. Based upon this preliminary testing,we have made improvements to both the educational product and our evaluation protocol. This fall, we will conduct further testing with ˜100 additional students, half receiving auditory data and half receiving visual data, and we will conduct interviews with individual students as they interface with the auditory display. Through this process, we hope to further assess both learning and engagement gains associated with alternative and multi-modal representations of scientific data that extend beyond

  7. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention

    NARCIS (Netherlands)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten; Martens, Sander

    2010-01-01

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were

  8. Studying Effects of Transcranial Alternating Current Stimulation on Hearing and Auditory Scene Analysis

    NARCIS (Netherlands)

    Riecke, Lars

    2016-01-01

    Recent studies have shown that perceptual detection of near-threshold auditory events may depend on the relative timing of the event and ongoing brain oscillations. Furthermore, transcranial alternating current stimulation (tACS), a non-invasive and silent brain stimulation technique, can entrain co

  9. Cortical mapping of mismatch negativity with deviance detection property in rat.

    Directory of Open Access Journals (Sweden)

    Tomoyo Isoguchi Shiramatsu

    Full Text Available Mismatch Negativity (MMN is an N-methyl-d-aspartic acid (NMDA-mediated, negative deflection in human auditory evoked potentials in response to a cognitively discriminable change. MMN-like responses have been extensively investigated in animal models, but the existence of MMN equivalent is still controversial. In this study, we aimed to investigate how closely the putative MMN (MMNp in rats exhibited the comparable properties of human MMN. We used a surface microelectrode array with a grid of 10 × 7 recording sites within an area of 4.5 × 3.0 mm to densely map evoked potentials in the auditory cortex of anesthetized rats under the oddball paradigm. Firstly, like human MMN, deviant stimuli elicited negative deflections in auditory evoked potentials following the positive middle-latency response, termed P1. Secondly, MMNp exhibited deviance-detecting property, which could not be explained by simple stimulus specific adaptation (SSA. Thirdly, this MMNp occurred focally in the auditory cortex, including both the core and belt regions, while P1 activation focus was obtained in the core region, indicating that both P1 and MMNp are generated in the auditory cortex, yet the sources of these signals do not completely overlap. Fourthly, MMNp significantly decreased after the application of AP5 (D-(--2-amino-5-phosphonopentanoic acid, an antagonist at NMDA receptors. In stark contrast, AP5 affected neither P1 amplitude nor SSA of P1. These results provide compelling evidence that the MMNp we have examined in rats is functionally comparable to human MMN. The present work will stimulate translational research into MMN, which may help bridge the gap between electroencephalography (EEG/magnetoencephalography (MEG studies in humans and electrophysiological studies in animals.

  10. Finding the missing stimulus mismatch negativity (MMN): emitted MMN to violations of an auditory gestalt.

    Science.gov (United States)

    Salisbury, Dean F

    2012-04-01

    Deviations from repetitive auditory stimuli evoke a mismatch negativity (MMN). Counterintuitively, omissions of repetitive stimuli do not. Violations of patterns reflecting complex rules also evoke MMN. To detect a MMN to missing stimuli, we developed an auditory gestalt task using one stimulus. Groups of six pips (50 ms duration, 330 ms stimulus onset asynchrony [SOA], 400 trials), were presented with an intertrial interval (ITI) of 750 ms while subjects (n=16) watched a silent video. Occasional deviant groups had missing 4th or 6th tones (50 trials each). Missing stimuli evoked a MMN (pgestalt grouping rule. Patterned stimuli appear more sensitive to omissions and ITI than homogenous streams.

  11. Age differences in visual-auditory self-motion perception during a simulated driving task

    Directory of Open Access Journals (Sweden)

    Robert eRamkhalawansingh

    2016-04-01

    Full Text Available Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e. optic flow and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e. engine, tire, and wind sounds. Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion.

  12. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.

    Science.gov (United States)

    Kraus, Kari Suzanne; Canlon, Barbara

    2012-06-01

    Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma. PMID:22440225

  13. Age-related dissociation of sensory and decision-based auditory motion processing

    Directory of Open Access Journals (Sweden)

    Alexandra Annemarie Ludwig

    2012-03-01

    Full Text Available Studies on the maturation of auditory motion processing in children have yielded inconsistent reports. The present study combines subjective and objective measurements to investigate how the auditory perceptual abilities of children change during development and whether these changes are paralleled by changes in the event-related brain potential (ERP.We employed the mismatch negativity (MMN to determine maturational changes in the discrimination of interaural time differences (ITD that generate lateralized moving auditory percepts. MMNs were elicited in children, teenagers, and adults, using a small and a large ITD at stimulus offset with respect to each subject’s discrimination threshold. In adults and teenagers large deviants elicited prominent MMNs, whereas small deviants at the behavioral threshold elicited only a marginal or no MMN. In contrast, pronounced MMNs for both deviant sizes were found in children. Behaviourally, however, most of the children showed higher discrimination thresholds than teens and adults.Although automatic ITD detection is functional, active discrimination is still limited in children. The lack of MMN deviance dependency in children suggests that unlike in teenagers and adults, neural signatures of automatic auditory motion processing do not mirror discrimination abilities.The study critically accounts for advanced understanding of children’s central auditory development.

  14. Across-ear stimulus-specific adaptation in the auditory cortex

    Directory of Open Access Journals (Sweden)

    Xinxiu eXu

    2014-07-01

    Full Text Available The ability to detect unexpected or deviant events in natural scenes is critical for survival. In the auditory system, neurons from the midbrain to cortex adapt quickly to repeated stimuli but this adaptation does not fully generalize to other, rare stimuli, a phenomenon called stimulus-specific adaptation (SSA. Most studies of SSA were conducted with pure tones of different frequencies, and it is by now well-established that SSA to tone frequency is strong and robust in auditory cortex. Here we tested SSA in the auditory cortex to the ear of stimulation using broadband noise. We show that cortical neurons adapt specifically to the ear of stimulation, and that the contrast between the responses to stimulation of the same ear when rare and when common depends on the binaural interaction class of the neurons.

  15. Biocompatibility and preliminary clinical application of HA/HDPE nanocomposites synthetic auditory ossicle

    Institute of Scientific and Technical Information of China (English)

    ZHU Shai-hong; WANG Guo-hui; ZHAO Yan-zhong; QI You-fei; ZHOU Ke-chao; HUANG Su-ping; LI Zhi-you; HUANG Bai-yun

    2006-01-01

    The biocompatibility of the hydroxyapatite/high density polyethtlene(HA/HDPE) nanocomposites synthetic auditory ossicle was evaluated, the percentage of S-period cells was detected by flow cytometry after L929 incubated with extraction of the HA/HDPE nanocomposites, titanium materials of clinical application as the control. Both of them were implanted in the animals and the histopathological evaluations were carried out, and the preliminary clinical trials about HA/HDPE nanocomposites synthetic auditory ossicles were also carried out. The statistical analysis show that there are no statistically significant differences between HA/HDPE test groups and control groups (P>0.05), which demonstrates that the HA/HDPE nanocomposites synthetic auditory ossicle has a good biocompatibility and clinical application outlook.

  16. Auditory sustained field responses to periodic noise

    Directory of Open Access Journals (Sweden)

    Keceli Sumru

    2012-01-01

    Full Text Available Abstract Background Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. Results Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. Conclusions The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.

  17. Effectiveness of Geoelectrical Resistivity Surveys for the Detection of a Debris Flow Causative Water Conducting Zone at KM 9, Gap-Fraser’s Hill Road (FT 148, Fraser’s Hill, Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohamad Anuri Ghazali

    2013-01-01

    Full Text Available This study reports the findings of resistivity surveys which were conducted at the initiation area of debris flow at KM 9, Fraser’s Hill Gap road (FT148. The study involves three slope parallel survey lines and two lines perpendicular to the slope face. The parallel lines are FH01, FH02, and FH03, while the lines FH04 and FH05 are perpendicular. A granite body was detected at the central part of the east line and is nearest to the ground surface along FH02. The existence of low resistivity zones within the granite body is interpreted as highly fractured, water conducting zones. These zones are continuous as they have been detected in both the east-west as well as the north-south lines. The residual soil layer is relatively thin at zones where weathered granite dominates the slope face of the failure mass. The weak layer is relatively thick with an estimated thickness of 80 m and water flow occurs at the base of it. The high water flow recorded from the horizontal drains further supports the possible existence of these highly fractured, water conducting zones located within the granite. The shallow fractured granite is virtually “floating” above the water saturated zone and therefore is considered unstable.

  18. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  19. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  20. Acoustic Shadows: An Auditory Exploration of the Sense of Space

    Directory of Open Access Journals (Sweden)

    Frank Dufour

    2011-12-01

    Full Text Available This paper examines the question of auditory detection of the movements of silent objects in noisy environments. The approach to studying and exploring this phenomenon is primarily based on the framework of the ecology of perception defined by James Gibson (Gibson, 1979 in the sense that it focuses on the direct auditory perception of events, or “structured energy that specifies properties of the environment” (Michaels & Carello, 1981 P. 157. The goal of this study is triple: -Theoretical; for various reasons, this kind of acoustic situations has not been extensively studied by traditional acoustics and psychoacoustics, therefore, this project demonstrates and supports the pertinence of the Ecology of Perception for the description and explanation of such complex phenomena. -Practical; like echolocation, perception of acoustic shadows can be improved by practice, this project intends to contribute to the acknowledgment of this way of listening and to help individuals placed in noisy environments without the support of vision acquiring a detailed detection of the movements occurring in these environments. -Artistic; this project explores a new artistic expression based on the creation and exploration of complex multisensory environments. Acoustic Shadows, a multimedia interactive composition is being developed on the premises of the ecological approach to perception. The last dimension of this project is meant to be a contribution to the sonic representation of space in films and in computer generated virtual environments by producing simulations of acoustic shadows.

  1. Auditory display of knee-joint vibration signals

    Science.gov (United States)

    Krishnan, Sridhar; Rangayyan, Rangaraj M.; Bell, G. Douglas; Frank, Cyril B.

    2001-12-01

    Sounds generated due to rubbing of knee-joint surfaces may lead to a potential tool for noninvasive assessment of articular cartilage degeneration. In the work reported in the present paper, an attempt is made to perform computer-assisted auscultation of knee joints by auditory display (AD) of vibration signals (also known as vibroarthrographic or VAG signals) emitted during active movement of the leg. Two types of AD methods are considered: audification and sonification. In audification, the VAG signals are scaled in time and frequency using a time-frequency distribution to facilitate aural analysis. In sonification, the instantaneous mean frequency and envelope of the VAG signals are derived and used to synthesize sounds that are expected to facilitate more accurate diagnosis than the original signals by improving their aural quality. Auditory classification experiments were performed by two orthopedic surgeons with 37 VAG signals including 19 normal and 18 abnormal cases. Sensitivity values (correct detection of abnormality) of 31%, 44%, and 83%, and overall classification accuracies of 53%, 40%, and 57% were obtained with the direct playback, audification, and sonification methods, respectively. The corresponding d' scores were estimated to be 1.10, -0.36, and 0.55. The high sensitivity of the sonification method indicates that the technique could lead to improved detection of knee-joint abnormalities; however, additional work is required to improve its specificity and achieve better overall performance.

  2. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  3. The harmonic organization of auditory cortex.

    Science.gov (United States)

    Wang, Xiaoqin

    2013-01-01

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544

  4. Detonation propagation in narrow gaps with various configurations

    Science.gov (United States)

    Monwar, M.; Yamamoto, Y.; Ishii, K.; Tsuboi, T.

    2007-08-01

    In general all detonation waves have cellular structure formed by the trajectory of the triple points. This paper aims to investigate experimentally the propagation of detonation in narrow gaps for hydrogen-oxygen-argon mixtures in terms of various gap heights and gap widths. The gap of total length 1500 mm was constructed by three pair of stainless plates, each of them was 500 mm in length, which were inserted in a detonation tube. The gap heights were varied from 1.2 mm to 3.0 mm while the gap widths were varied from 10 mm to 40 mm. Various argon dilution rates were tested in the present experiments to change the size of cellular structure. Attempts have been made by means of reaction front velocity, shock front velocity, and smoked foil to record variations of cellular structure inside the gaps. A combination probe composed of a pressure and an ion probe detected the arrival of the shock and the reaction front individually at one measurement point. Experimental results show that the number of the triple points contained in detonation front decreases with decrease in the gap heights and gap widths, which lead to larger cellular structures. For mixtures with low detonability, cell size is affected by a certain gap width although conversely cell size is almost independent of gap width. From the present result it was found that detonation propagation inside the gaps is strongly governed by the gap height and effects of gap width is dependent on detonability of mixtures.

  5. Asymmetric transfer of auditory perceptual learning

    Directory of Open Access Journals (Sweden)

    Sygal eAmitay

    2012-11-01

    Full Text Available Perceptual skills can improve dramatically even with minimal practice. A major and practical benefit of learning, however, is in transferring the improvement on the trained task to untrained tasks or stimuli, yet the mechanisms underlying this process are still poorly understood. Reduction of internal noise has been proposed as a mechanism of perceptual learning, and while we have evidence that frequency discrimination (FD learning is due to a reduction of internal noise, the source of that noise was not determined. In this study, we examined whether reducing the noise associated with neural phase locking to tones can explain the observed improvement in behavioural thresholds. We compared FD training between two tone durations (15 and 100 ms that straddled the temporal integration window of auditory nerve fibers upon which computational modeling of phase locking noise was based. Training on short tones resulted in improved FD on probe tests of both the long and short tones. Training on long tones resulted in improvement only on the long tones. Simulations of FD learning, based on the computational model and on signal detection theory, were compared with the behavioral FD data. We found that improved fidelity of phase locking accurately predicted transfer of learning from short to long tones, but also predicted transfer from long to short tones. The observed lack of transfer from long to short tones suggests the involvement of a second mechanism. Training may have increased the temporal integration window which could not transfer because integration time for the short tone is limited by its duration. Current learning models assume complex relationships between neural populations that represent the trained stimuli. In contrast, we propose that training-induced enhancement of the signal-to-noise ratio offers a parsimonious explanation of learning and transfer that easily accounts for asymmetric transfer of learning.

  6. Introduction to detection systems

    DEFF Research Database (Denmark)

    Larsen, Jan

    Presentation of the information processing pipleline for detection including discussing of various issues and the use of mathematical modeling. A simple example of detection a signal in noise illustrated that simple modeling outperforms human visual and auditory perception. Particiants are going...

  7. The effect of background music in auditory health persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2013-01-01

    In auditory health persuasion, threatening information regarding health is communicated by voice only. One relevant context of auditory persuasion is the addition of background music. There are different mechanisms through which background music might influence persuasion, for example through mood (

  8. Auditory Discrimination Development through Vestibulo-Cochlear Stimulation.

    Science.gov (United States)

    Palmer, Lyelle L.

    1980-01-01

    Three types of vestibular activities (active, adaptive, and passively imposed) to improve auditory discrimination development are described and results of a study using the vestibular stimulation techniques with 20 Ss (average age 9) having abnormal auditory discrimination. (PHR)

  9. SPARK GAP SWITCH

    Science.gov (United States)

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  10. Filling the Income Gap

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Income distribution has become one of the people's main concerns in China where more than 30years of reform and opening up have also resulted in an ever-expanding wealth gap.But narrowing down the rich-poor disparity will prove to be no easy task.Wei Zhong,a researcher with the Institute of Economics under the Chinese Academy of Social Sciences,elaborated on the origins and trends of China's widening income gap,and discussed solutions to curb the gap,in a recent article.Edited excerpts follow:

  11. Modelling Gender Pay Gaps

    OpenAIRE

    Olsen, W K., Jamie Morgan.

    2004-01-01

    EXECUTIVE SUMMARYIntroductionThere has been little change in the full-time gender pay gap since the mid 1990s andin the female part-time/male full-time pay gap since the mid 1970s. The gender gapin hourly earnings for those employed full-time in Britain in 2003 was 18 per cent,while that between women working part-time and men working full-time was 40 percent.This research uses statistical methods to identify how much of the gender pay gap isassociated with different factors. The data set ana...

  12. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. PMID:20018234

  13. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  14. Applied research in auditory data representation

    Science.gov (United States)

    Frysinger, Steve P.

    1990-08-01

    A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.

  15. Are auditory percepts determined by experience?

    Science.gov (United States)

    Monson, Brian B; Han, Shui'Er; Purves, Dale

    2013-01-01

    Audition--what listeners hear--is generally studied in terms of the physical properties of sound stimuli and physiological properties of the auditory system. Based on recent work in vision, we here consider an alternative perspective that sensory percepts are based on past experience. In this framework, basic auditory qualities (e.g., loudness and pitch) are based on the frequency of occurrence of stimulus patterns in natural acoustic stimuli. To explore this concept of audition, we examined five well-documented psychophysical functions. The frequency of occurrence of acoustic patterns in a database of natural sound stimuli (speech) predicts some qualitative aspects of these functions, but with substantial quantitative discrepancies. This approach may offer a rationale for auditory phenomena that are difficult to explain in terms of the physical attributes of the stimuli as such.

  16. Are auditory percepts determined by experience?

    Directory of Open Access Journals (Sweden)

    Brian B Monson

    Full Text Available Audition--what listeners hear--is generally studied in terms of the physical properties of sound stimuli and physiological properties of the auditory system. Based on recent work in vision, we here consider an alternative perspective that sensory percepts are based on past experience. In this framework, basic auditory qualities (e.g., loudness and pitch are based on the frequency of occurrence of stimulus patterns in natural acoustic stimuli. To explore this concept of audition, we examined five well-documented psychophysical functions. The frequency of occurrence of acoustic patterns in a database of natural sound stimuli (speech predicts some qualitative aspects of these functions, but with substantial quantitative discrepancies. This approach may offer a rationale for auditory phenomena that are difficult to explain in terms of the physical attributes of the stimuli as such.

  17. Phonetic categorization in auditory word perception.

    Science.gov (United States)

    Ganong, W F

    1980-02-01

    To investigate the interaction in speech perception of auditory information and lexical knowledge (in particular, knowledge of which phonetic sequences are words), acoustic continua varying in voice onset time were constructed so that for each acoustic continuum, one of the two possible phonetic categorizations made a word and the other did not. For example, one continuum ranged between the word dash and the nonword tash; another used the nonword dask and the word task. In two experiments, subjects showed a significant lexical effect--that is, a tendency to make phonetic categorizations that make words. This lexical effect was greater at the phoneme boundary (where auditory information is ambiguous) than at the ends of the condinua. Hence the lexical effect must arise at a stage of processing sensitive to both lexical knowledge and auditory information.

  18. Auditory temporal processes in the elderly

    Directory of Open Access Journals (Sweden)

    E. Ben-Artzi

    2011-03-01

    Full Text Available Several studies have reported age-related decline in auditory temporal resolution and in working memory. However, earlier studies did not provide evidence as to whether these declines reflect overall changes in the same mechanisms, or reflect age-related changes in two independent mechanisms. In the current study we examined whether the age-related decline in auditory temporal resolution and in working memory would remain significant even after controlling for their shared variance. Eighty-two participants, aged 21-82 performed the dichotic temporal order judgment task and the backward digit span task. The findings indicate that age-related decline in auditory temporal resolution and in working memory are two independent processes.

  19. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  20. Auditory Neuropathy Spectrum Disorder Masquerading as Social Anxiety

    OpenAIRE

    Behere, Rishikesh V.; Rao, Mukund G.; Mishra, Shree; Varambally, Shivarama; Nagarajarao, Shivashankar; Bangalore N Gangadhar

    2015-01-01

    The authors report a case of a 47-year-old man who presented with treatment-resistant anxiety disorder. Behavioral observation raised clinical suspicion of auditory neuropathy spectrum disorder. The presence of auditory neuropathy spectrum disorder was confirmed on audiological investigations. The patient was experiencing extreme symptoms of anxiety, which initially masked the underlying diagnosis of auditory neuropathy spectrum disorder. Challenges in diagnosis and treatment of auditory neur...

  1. ABR and auditory P300 findings inchildren with ADHD

    OpenAIRE

    Schochat Eliane; Scheuer Claudia Ines; Andrade Ênio Roberto de

    2002-01-01

    Auditory processing disorders (APD), also referred as central auditory processing disorders (CAPD) and attention deficit hyperactivity disorders (ADHD) have become popular diagnostic entities for school age children. It has been demonstrated a high incidence of comorbid ADHD with communication disorders and auditory processing disorder. The aim of this study was to investigate ABR and P300 auditory evoked potentials in children with ADHD, in a double-blind study. Twenty-one children, ages bet...

  2. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    OpenAIRE

    Golden, Hannah L.; Jennifer L. Agustus; Johanna C. Goll; Downey, Laura E; Mummery, Catherine J.; Jonathan M Schott; Crutch, Sebastian J.; Jason D Warren

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘back...

  3. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  4. Auditory Brainstem Response Improvements in Hyperbillirubinemic Infants

    Science.gov (United States)

    Abdollahi, Farzaneh Zamiri; Manchaiah, Vinaya; Lotfi, Yones

    2016-01-01

    Background and Objectives Hyperbillirubinemia in infants have been associated with neuronal damage including in the auditory system. Some researchers have suggested that the bilirubin-induced auditory neuronal damages may be temporary and reversible. This study was aimed at investigating the auditory neuropathy and reversibility of auditory abnormalities in hyperbillirubinemic infants. Subjects and Methods The study participants included 41 full term hyperbilirubinemic infants (mean age 39.24 days) with normal birth weight (3,200-3,700 grams) that admitted in hospital for hyperbillirubinemia and 39 normal infants (mean age 35.54 days) without any hyperbillirubinemia or other hearing loss risk factors for ruling out maturational changes. All infants in hyperbilirubinemic group had serum bilirubin level more than 20 milligram per deciliter and undergone one blood exchange transfusion. Hearing evaluation for each infant was conducted twice: the first one after hyperbilirubinemia treatment and before leaving hospital and the second one three months after the first hearing evaluation. Hearing evaluations included transient evoked otoacoustic emission (TEOAE) screening and auditory brainstem response (ABR) threshold tracing. Results The TEOAE and ABR results of control group and TEOAE results of the hyperbilirubinemic group did not change significantly from the first to the second evaluation. However, the ABR results of the hyperbilirubinemic group improved significantly from the first to the second assessment (p=0.025). Conclusions The results suggest that the bilirubin induced auditory neuronal damage can be reversible over time so we suggest that infants with hyperbilirubinemia who fail the first hearing tests should be reevaluated after 3 months of treatment. PMID:27144228

  5. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel

    A loudspeaker-based virtual auditory environment (VAE) has been developed to provide a realistic versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room reverberation. The VAE allows a full control of...... the acoustic scenario in order to systematically study the auditory processing of reverberant sounds. It is based on the ODEON software, which is state-of-the-art software for room acoustic simulations developed at Acoustic Technology, DTU. First, a MATLAB interface to the ODEON software has been...

  6. Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig

    OpenAIRE

    Christianson, G. B.; Chait, M; De CheveignÉ, A.; Linden, J. F.

    2014-01-01

    In animal models, single-neuron response properties such as stimulus-specific adaptation (SSA) have been described as possible precursors to the mismatch negativity (MMN), a human brain response to stimulus change. Here, we attempt to bridge the gap between human and animal studies by characterising responses to changes in the frequency of repeated tone series in the anaesthetised guinea pig using small-animal magnetoencephalography (MEG). We show that: (1) auditory evoked fields (AEFs) quali...

  7. Wide-Gap Chalcopyrites

    CERN Document Server

    Siebentritt, Susanne

    2006-01-01

    Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.

  8. Gaps in Oncology

    Science.gov (United States)

    The first plenary of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study Original Version provides background for the curriculum and identifies gaps in current and desired comprehensive cancer care.

  9. Filling the Income Gap

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Income distribution has become one of the people’s main concerns in China where more than 30 years of reform and opening up have also resulted in an ever-expanding wealth gap. But narrowing down the

  10. Transient auditory hallucinations in an adolescent.

    Science.gov (United States)

    Skokauskas, Norbert; Pillay, Devina; Moran, Tom; Kahn, David A

    2010-05-01

    In adolescents, hallucinations can be a transient illness or can be associated with non-psychotic psychopathology, psychosocial adversity, or a physical illness. We present the case of a 15-year-old secondary-school student who presented with a 1-month history of first onset auditory hallucinations, which had been increasing in frequency and severity, and mild paranoid ideation. Over a 10-week period, there was a gradual diminution, followed by a complete resolution, of symptoms. We discuss issues regarding the diagnosis and prognosis of auditory hallucinations in adolescents.

  11. Do dyslexics have auditory input processing difficulties?

    DEFF Research Database (Denmark)

    Poulsen, Mads

    2011-01-01

    Word production difficulties are well documented in dyslexia, whereas the results are mixed for receptive phonological processing. This asymmetry raises the possibility that the core phonological deficit of dyslexia is restricted to output processing stages. The present study investigated whether...... a group of dyslexics had word level receptive difficulties using an auditory lexical decision task with long words and nonsense words. The dyslexics were slower and less accurate than chronological age controls in an auditory lexical decision task, with disproportionate low performance on nonsense words...

  12. Subsymmetries predict auditory and visual pattern complexity.

    Science.gov (United States)

    Toussaint, Godfried T; Beltran, Juan F

    2013-01-01

    A mathematical measure of pattern complexity based on subsymmetries possessed by the pattern, previously shown to correlate highly with empirically derived measures of cognitive complexity in the visual domain, is found to also correlate significantly with empirically derived complexity measures of perception and production of auditory temporal and musical rhythmic patterns. Not only does the subsymmetry measure correlate highly with the difficulty of reproducing the rhythms by tapping after listening to them, but also the empirical measures exhibit similar behavior, for both the visual and auditory patterns, as a function of the relative number of subsymmetries present in the patterns. PMID:24494441

  13. AN EVALUATION OF AUDITORY LEARNING IN FILIAL IMPRINTING

    NARCIS (Netherlands)

    BOLHUIS, JJ; VANKAMPEN, HS

    1992-01-01

    The characteristics of auditory learning in filial imprinting in precocial birds are reviewed. Numerous studies have demonstrated that the addition of an auditory stimulus improves following of a visual stimulus. This paper evaluates whether there is genuine auditory imprinting, i.e. the formation o

  14. Gap polariton solitons

    CERN Document Server

    Gorbach, A V; Skryabin, D V

    2009-01-01

    We report the existence, and study mobility and interactions of gap polariton solitons in a microcavity with a periodic potential, where the light field is strongly coupled to excitons. Gap solitons are formed due to the interplay between the repulsive exciton-exciton interaction and cavity dispersion. The analysis is carried out in an analytical form, using the coupled-mode (CM) approximation, and also by means of numerical methods.

  15. Robotic Tube-Gap Inspector

    Science.gov (United States)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  16. Comparison of videonasoendoscopy and auditory-perceptual evaluation of speech in individuals with cleft lip/palate

    Directory of Open Access Journals (Sweden)

    Paniagua, Lauren Medeiros

    2014-01-01

    Full Text Available Introduction: The velopharyngeal sphincter (VPS is a muscle belt located between the oropharynx and the nasopharynx. Investigations of velopharyngeal function should include an auditory-perceptual evaluation and at least 1 instrument-based evaluation such as videonasoendoscopy. Aim:To compare the findings of auditory-perceptual evaluation (hypernasality and videonasoendoscopy (gap size in individuals with cleft lip/palate. Method: This was a retrospective, cross-sectional study assessing 49 subjects, of both sexes, with cleft lip/palate followed up at the Otorhinolaryngology Service and the Speech Therapy outpatient clinic of Hospital de Clínicas de Porto Alegre (HCPA. The results from the auditory-perceptual evaluation and the videonasoendoscopy test were compared with respect to the VPS gap size. Results: Subjects with moderate/severe hypernasality had more severe velopharyngeal closure impairment than those with a less severe condition. The interaction between hypernasality severity and the presence of other speech disorders (p = 0.035, whether compensatory and/or obligatory, increased the likelihood of having a moderate-to-large gap in the velopharyngeal closure. Conclusions: We observed an association between the findings of these 2 evaluation methods.

  17. The effect of auditory memory load on intensity resolution in individuals with Parkinson's disease

    Science.gov (United States)

    Richardson, Kelly C.

    Purpose: The purpose of the current study was to investigate the effect of auditory memory load on intensity resolution in individuals with Parkinson's disease (PD) as compared to two groups of listeners without PD. Methods: Nineteen individuals with Parkinson's disease, ten healthy age- and hearing-matched adults, and ten healthy young adults were studied. All listeners participated in two intensity discrimination tasks differing in auditory memory load; a lower memory load, 4IAX task and a higher memory load, ABX task. Intensity discrimination performance was assessed using a bias-free measurement of signal detectability known as d' (d-prime). Listeners further participated in a continuous loudness scaling task where they were instructed to rate the loudness level of each signal intensity using a computerized 150mm visual analogue scale. Results: Group discrimination functions indicated significantly lower intensity discrimination sensitivity (d') across tasks for the individuals with PD, as compared to the older and younger controls. No significant effect of aging on intensity discrimination was observed for either task. All three listeners groups demonstrated significantly lower intensity discrimination sensitivity for the higher auditory memory load, ABX task, compared to the lower auditory memory load, 4IAX task. Furthermore, a significant effect of aging was identified for the loudness scaling condition. The younger controls were found to rate most stimuli along the continuum as significantly louder than the older controls and the individuals with PD. Conclusions: The persons with PD showed evidence of impaired auditory perception for intensity information, as compared to the older and younger controls. The significant effect of aging on loudness perception may indicate peripheral and/or central auditory involvement.

  18. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  19. Stability of auditory event-related potentials in coma research.

    Science.gov (United States)

    Schorr, Barbara; Schlee, Winfried; Arndt, Marion; Lulé, Dorothée; Kolassa, Iris-Tatjana; Lopez-Rolon, Alex; Lopez-Rolon, Alexander; Bender, Andreas

    2015-02-01

    Patients with unresponsive wakefulness syndrome (UWS) or in minimally conscious state (MCS) after brain injury show significant fluctuations in their behavioural abilities over time. As the importance of event-related potentials (ERPs) in the detection of traces of consciousness increases, we investigated the retest reliability of ERPs with repeated tests at four different time points. Twelve healthy controls and 12 inpatients (8 UWS, 4 MCS; 6 traumatic, 6 non-traumatic) were tested twice a day (morning, afternoon) for 2 days with an auditory oddball task. ERPs were recorded with a 256-channel-EEG system, and correlated with behavioural test scores in the Coma Recovery Scale-revised (CRS-R). The number of identifiable P300 responses varied between zero and four in both groups. Reliabilities varied between Krippendorff's α = 0.43 for within-day comparison, and α = 0.25 for between-day comparison in the patient group. Retest reliability was strong for the CRS-R scores for all comparisons (α = 0.83-0.95). The stability of auditory information processing in patients with disorders of consciousness is the basis for other, even more demanding tasks and cognitive potentials. The relatively low ERP-retest reliability suggests that it is necessary to perform repeated tests, especially when probing for consciousness with ERPs. A single negative ERP test result may be mistaken for proof that a UWS patient truly is unresponsive.

  20. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    Science.gov (United States)

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  1. Lecture recording system in anatomy: possible benefit to auditory learners.

    Science.gov (United States)

    Bacro, Thierry R H; Gebregziabher, Mulugeta; Ariail, Jennie

    2013-01-01

    The literature reports that using Learning Recording Systems (LRS) is usually well received by students but that the pedagogical value of LRS in academic settings remains somewhat unclear. The primary aim of the current study is to document students' perceptions, actual pattern of usage, and impact of use of LRS on students' grade in a dental gross and neuroanatomy course. Other aims are to determine if students' learning preference correlated with final grades and to see if other factors like gender, age, overall academic score on the Dental Aptitude Test (DAT), lecture levels of difficulty, type of lecture, category of lecture, or teaching faculty could explain the impact, if any, of the use of LRS on the course final grade. No significant correlation was detected between the final grades and the variables studied except for a significant but modest correlation between final grades and the number of times the students accessed the lecture recordings (r=0.33 with P=0.01). Also, after adjusting for gender, age, learning style, and academic DAT, a significant interaction between auditory and average usage time was found for final grade (P=0.03). Students who classified themselves as auditory and who used the LRS on average for fewer than 10 minutes per access, scored an average final grade of 16.43 % higher than the nonauditory students using the LRS for the same amount of time per access. Based on these findings, implications for teaching are discussed and recommendations for use of LRS are proposed. PMID:23508921

  2. Auditory steady-state responses in the rabbit.

    Science.gov (United States)

    Ottaviani, F; Paludetti, G; Grassi, S; Draicchio, F; Santarelli, R M; Serafini, G; Pettorossi, V E

    1990-01-01

    The authors have studied auditory brainstem (ABRs), middle latency (MLRs) and steady-state potentials (SSRs) in 15 adult male rabbits weighing between 2.5 and 3 kg in order to verify if SSRs are due to a mere superimposition of ABRs and MLRs or to a resonance phenomenon. Ten of them were awake while 5 were studied under urethane anesthesia. Acoustic stimuli consisted in 0.1-ms square-wave pulses delivered at presentation rates ranging between 1 and 80/s at a stimulus intensity of 80 dB p.e. SPL. Our data show that reliable auditory SSRs can be obtained in the rabbit at a presentation rate of 30 stimuli/s, probably due to the superimposition of ABRs and MLR Pb waves which show an interwave interval of about 35 ms. The nonlinear aspects which can be detected are probably due to the effect of decreasing interstimulus intervals on the duration and amplitude of the Pb wave. It can then be concluded that SSRs in the rabbit are due more to a superimposition of ABR and MLR waves than to a resonance phenomenon.

  3. The Goldilocks Effect in Infant Auditory Attention

    Science.gov (United States)

    Kidd, Celeste; Piantadosi, Steven T.; Aslin, Richard N.

    2014-01-01

    Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, yet capacity limits on their cognitive resources restrict the quantity that they can encode. Previous research has established that infants can attend to only a subset of available acoustic input. Yet few previous studies have directly examined infant…

  4. Reading adn Auditory-Visual Equivalences

    Science.gov (United States)

    Sidman, Murray

    1971-01-01

    A retarded boy, unable to read orally or with comprehension, was taught to match spoken to printed words and was then capable of reading comprehension (matching printed words to picture) and oral reading (naming printed words aloud), demonstrating that certain learned auditory-visual equivalences are sufficient prerequisites for reading…

  5. Development of Receiver Stimulator for Auditory Prosthesis

    Directory of Open Access Journals (Sweden)

    K. Raja Kumar

    2010-05-01

    Full Text Available The Auditory Prosthesis (AP is an electronic device that can provide hearing sensations to people who are profoundly deaf by stimulating the auditory nerve via an array of electrodes with an electric current allowing them to understand the speech. The AP system consists of two hardware functional units such as Body Worn Speech Processor (BWSP and Receiver Stimulator. The prototype model of Receiver Stimulator for Auditory Prosthesis (RSAP consists of Speech Data Decoder, DAC, ADC, constant current generator, electrode selection logic, switch matrix and simulated electrode resistance array. The laboratory model of speech processor is designed to implement the Continuous Interleaved Sampling (CIS speech processing algorithm which generates the information required for electrode stimulation based on the speech / audio data. Speech Data Decoder receives the encoded speech data via an inductive RF transcutaneous link from speech processor. Twelve channels of auditory Prosthesis with selectable eight electrodes for stimulation of simulated electrode resistance array are used for testing. The RSAP is validated by using the test data generated by the laboratory prototype of speech processor. The experimental results are obtained from specific speech/sound tests using a high-speed data acquisition system and found satisfactory.

  6. Auditory Training with Frequent Communication Partners

    Science.gov (United States)

    Tye-Murray, Nancy; Spehar, Brent; Sommers, Mitchell; Barcroft, Joe

    2016-01-01

    Purpose: Individuals with hearing loss engage in auditory training to improve their speech recognition. They typically practice listening to utterances spoken by unfamiliar talkers but never to utterances spoken by their most frequent communication partner (FCP)--speech they most likely desire to recognize--under the assumption that familiarity…

  7. Auditory Perception of Statistically Blurred Sound Textures

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; MacDonald, Ewen; Dau, Torsten

    Sound textures have been identified as a category of sounds which are processed by the peripheral auditory system and captured with running timeaveraged statistics. Although sound textures are temporally homogeneous, they offer a listener with enough information to identify and differentiate sour...

  8. Auditory confrontation naming in Alzheimer's disease.

    Science.gov (United States)

    Brandt, Jason; Bakker, Arnold; Maroof, David Aaron

    2010-11-01

    Naming is a fundamental aspect of language and is virtually always assessed with visual confrontation tests. Tests of the ability to name objects by their characteristic sounds would be particularly useful in the assessment of visually impaired patients, and may be particularly sensitive in Alzheimer's disease (AD). We developed an auditory naming task, requiring the identification of the source of environmental sounds (i.e., animal calls, musical instruments, vehicles) and multiple-choice recognition of those not identified. In two separate studies mild-to-moderate AD patients performed more poorly than cognitively normal elderly on the auditory naming task. This task was also more difficult than two versions of a comparable visual naming task, and correlated more highly with Mini-Mental State Exam score. Internal consistency reliability was acceptable, although ROC analysis revealed auditory naming to be slightly less successful than visual confrontation naming in discriminating AD patients from normal participants. Nonetheless, our auditory naming task may prove useful in research and clinical practice, especially with visually impaired patients. PMID:20981630

  9. Lateralization of auditory-cortex functions.

    Science.gov (United States)

    Tervaniemi, Mari; Hugdahl, Kenneth

    2003-12-01

    In the present review, we summarize the most recent findings and current views about the structural and functional basis of human brain lateralization in the auditory modality. Main emphasis is given to hemodynamic and electromagnetic data of healthy adult participants with regard to music- vs. speech-sound encoding. Moreover, a selective set of behavioral dichotic-listening (DL) results and clinical findings (e.g., schizophrenia, dyslexia) are included. It is shown that human brain has a strong predisposition to process speech sounds in the left and music sounds in the right auditory cortex in the temporal lobe. Up to great extent, an auditory area located at the posterior end of the temporal lobe (called planum temporale [PT]) underlies this functional asymmetry. However, the predisposition is not bound to informational sound content but to rapid temporal information more common in speech than in music sounds. Finally, we obtain evidence for the vulnerability of the functional specialization of sound processing. These altered forms of lateralization may be caused by top-down and bottom-up effects inter- and intraindividually In other words, relatively small changes in acoustic sound features or in their familiarity may modify the degree in which the left vs. right auditory areas contribute to sound encoding. PMID:14629926

  10. Self-affirmation in auditory persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2011-01-01

    Persuasive health information can be presented through an auditory channel. Curiously enough, the effect of voice cues in health persuasion has hardly been studied. Research concerning visual persuasive messages showed that self-affirmation results in a more open-minded reaction to threatening infor

  11. Affective priming with auditory speech stimuli

    NARCIS (Netherlands)

    J. Degner

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In

  12. Auditory risk estimates for youth target shooting

    Science.gov (United States)

    Meinke, Deanna K.; Murphy, William J.; Finan, Donald S.; Lankford, James E.; Flamme, Gregory A.; Stewart, Michael; Soendergaard, Jacob; Jerome, Trevor W.

    2015-01-01

    Objective To characterize the impulse noise exposure and auditory risk for youth recreational firearm users engaged in outdoor target shooting events. The youth shooting positions are typically standing or sitting at a table, which places the firearm closer to the ground or reflective surface when compared to adult shooters. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 26 firearm/ammunition configurations representing rifles, shotguns, and pistols used by youth. Measurements were obtained relative to a youth shooter’s left ear. Results All firearms generated peak levels that exceeded the 120 dB peak limit suggested by the WHO for children. In general, shooting from the seated position over a tabletop increases the peak levels, LAeq8 and reduces the unprotected maximum permissible exposures (MPEs) for both rifles and pistols. Pistols pose the greatest auditory risk when fired over a tabletop. Conclusion Youth should utilize smaller caliber weapons, preferably from the standing position, and always wear hearing protection whenever engaging in shooting activities to reduce the risk for auditory damage. PMID:24564688

  13. Few juvenile auditory perceptual skills correlate with adult performance.

    Science.gov (United States)

    Sarro, Emma C; Sanes, Dan H

    2014-02-01

    Measures of human mental development suggest that behavioral skills displayed during early life can predict an individual's subsequent cognitive performance. Support for this draws from longitudinal studies that reveal compelling within-subject correlations during childhood. If this idea applies across the life span, then correlations in performance should persist into adulthood. Here, we address this prediction in juvenile and adult gerbils by evaluating within-subject measures of auditory learning and perception. Animals were trained and tested as juveniles on either an amplitude modulation (AM) or a frequency modulation (FM) detection task. Measures of learning and perception obtained from juveniles were then compared to similar measures obtained when each subject was tested in adulthood on either the same task or the untrained task. For animals trained and tested on the AM detection task as juveniles and adults, there was no correlation between juvenile and adult learning metrics, or perceptual sensitivity. For animals trained and tested on FM detection as juveniles, we observed a significant relationship to their adult performance. Juveniles that performed the best on FM detection were the poorest at AM detection, and the best at FM detection, when tested as adults. Thus, across-age correlations for sensory and cognitive measures, obtained during development and in adulthood, depend heavily on the specific type of developmental experience and the outcome measure.

  14. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function. PMID:23988583

  15. 40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.

    Science.gov (United States)

    Ying, Jun; Yan, Zheng; Gao, Xiao-rong

    2013-10-01

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic. PMID:24142731

  16. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina

    2014-02-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.

  17. McGurk illusion recalibrates subsequent auditory perception.

    Science.gov (United States)

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of 'ada'. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as 'ada'. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as 'ada', activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  18. McGurk illusion recalibrates subsequent auditory perception

    Science.gov (United States)

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  19. Representation of Reward Feedback in Primate Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Michael eBrosch

    2011-02-01

    Full Text Available It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1 the reward expectancy for each trial, (2 the reward size received and (3 the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  20. Representation of reward feedback in primate auditory cortex.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  1. Characterization of auditory synaptic inputs to gerbil perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Vibhakar C Kotak

    2015-08-01

    Full Text Available The representation of acoustic cues involves regions downstream from the auditory cortex (ACx. One such area, the perirhinal cortex (PRh, processes sensory signals containing mnemonic information. Therefore, our goal was to assess whether PRh receives auditory inputs from the auditory thalamus (MG and ACx in an auditory thalamocortical brain slice preparation and characterize these afferent-driven synaptic properties. When the MG or ACx was electrically stimulated, synaptic responses were recorded from the PRh neurons. Blockade of GABA-A receptors dramatically increased the amplitude of evoked excitatory potentials. Stimulation of the MG or ACx also evoked calcium transients in most PRh neurons. Separately, when fluoro ruby was injected in ACx in vivo, anterogradely labeled axons and terminals were observed in the PRh. Collectively, these data show that the PRh integrates auditory information from the MG and ACx and that auditory driven inhibition dominates the postsynaptic responses in a non-sensory cortical region downstream from the auditory cortex.

  2. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  3. Testosterone alters genomic responses to song and monoaminergic innervation of auditory areas in a seasonally breeding songbird.

    Science.gov (United States)

    Matragrano, Lisa L; LeBlanc, Meredith M; Chitrapu, Anjani; Blanton, Zane E; Maney, Donna L

    2013-06-01

    Behavioral responses to social stimuli often vary according to endocrine state. Our previous work has suggested that such changes in behavior may be due in part to hormone-dependent sensory processing. In the auditory forebrain of female white-throated sparrows, expression of the immediate early gene ZENK (egr-1) is higher in response to conspecific song than to a control sound only when plasma estradiol reaches breeding-typical levels. Estradiol also increases the number of detectable noradrenergic neurons in the locus coeruleus and the density of noradrenergic and serotonergic fibers innervating auditory areas. We hypothesize, therefore, that reproductive hormones alter auditory responses by acting on monoaminergic systems. This possibility has not been examined in males. Here, we treated non-breeding male white-throated sparrows with testosterone to mimic breeding-typical levels and then exposed them to conspecific male song or frequency-matched tones. We observed selective ZENK responses in the caudomedial nidopallium only in the testosterone-treated males. Responses in another auditory area, the caudomedial mesopallium, were selective regardless of hormone treatment. Testosterone treatment reduced serotonergic fiber density in the auditory forebrain, thalamus, and midbrain, and although it increased the number of noradrenergic neurons detected in the locus coeruleus, it reduced noradrenergic fiber density in the auditory midbrain. Thus, whereas we previously reported that estradiol enhances monoaminergic innervation of the auditory pathway in females, we show here that testosterone decreases it in males. Mechanisms underlying testosterone-dependent selectivity of the ZENK response may differ from estradiol-dependent ones

  4. Semantic Gaps Are Dangerous

    DEFF Research Database (Denmark)

    Ejstrup, Michael; le Fevre Jakobsen, Bjarne

    Semantic gaps are dangerous Language adapts to the environment where it serves as a tool to communication. Language is a social agreement, and we all have to stick to both grammaticalized and non-grammaticalized rules in order to pass information about the world around us. As such language develops...... unpolite language and tend to create dangerous relations where specialy language creates problems and trouble that could be avoided if we had better language tools at hand. But we have not these tools of communication, and we are in a situation today where media and specially digital and social media......, supported by new possibilities of migration, create dangerous situations. How can we avoid these accidental gaps in language and specially the gaps in semantic and metaphoric tools. Do we have to keep silent and stop discusing certain isues, or do we have other ways to get acces to sufficient language tools...

  5. Gap Cycling for SWIFT

    CERN Document Server

    Corum, Curtis A; Snyder, Carl J; Garwood, Michael

    2013-01-01

    Purpose: SWIFT (SWeep Imaging with Fourier Transformation) is a non- Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a "bulls-eye" artifact in SWIFT images. We present a method to cancel this inter-band crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy "gap cycling." Methods: We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Results: Theoretical analysis reveals t...

  6. Erraticity of rapidity gaps

    International Nuclear Information System (INIS)

    The use of rapidity gaps is proposed as a measure of the spatial pattern of an event. When the event multiplicity is low, the gaps between neighboring particles carry far more information about an event than multiplicity spikes, which may occur very rarely. Two moments of the gap distribution are suggested for characterizing an event. The fluctuations of those moments from event to event are then quantified by an entropy-like measure, which serves to describe erraticity. We use ECOMB to simulate the exclusive rapidity distribution of each event, from which the erraticity measures are calculated. The dependences of those measures on the order q of the moments provide single-parameter characterizations of erraticity. (c) 2000 The American Physical Society

  7. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Hs 224, Rotterdam (Netherlands); Kovacs, Silvia; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [University Hospitals of the Catholic University Leuven, Department of Radiology, Leuven (Belgium); Ridder, Dirk de [University of Antwerp, Department of Neurosurgery, Edegem (Belgium)

    2007-08-15

    Tinnitus is hypothesized to be an auditory phantom phenomenon resulting from spontaneous neuronal activity somewhere along the auditory pathway. We performed fMRI of the entire auditory pathway, including the inferior colliculus (IC), the medial geniculate body (MGB) and the auditory cortex (AC), in 42 patients with tinnitus and 10 healthy volunteers to assess lateralization of fMRI activation. Subjects were scanned on a 3T MRI scanner. A T2*-weighted EPI silent gap sequence was used during the stimulation paradigm, which consisted of a blocked design of 12 epochs in which music presented binaurally through headphones, which was switched on and off for periods of 50 s. Using SPM2 software, single subject and group statistical parametric maps were calculated. Lateralization of activation was assessed qualitatively and quantitatively. Tinnitus was lateralized in 35 patients (83%, 13 right-sided and 22 left-sided). Significant signal change (P{sub corrected} < 0.05) was found bilaterally in the primary and secondary AC, the IC and the MGB. Signal change was symmetrical in patients with bilateral tinnitus. In patients with lateralized tinnitus, fMRI activation was lateralized towards the side of perceived tinnitus in the primary AC and IC in patients with right-sided tinnitus, and in the MGB in patients with left-sided tinnitus. In healthy volunteers, activation in the primary AC was left-lateralized. Our paradigm adequately visualized the auditory pathways in tinnitus patients. In lateralized tinnitus fMRI activation was also lateralized, supporting the hypothesis that tinnitus is an auditory phantom phenomenon. (orig.)

  8. Missing the gap

    DEFF Research Database (Denmark)

    Tanggaard, Lene; Glaveanu, Vlad Petre

    creative learning at the borders need not minimize differences, but handle and learn from them? If not, schools and educational institutions risk becoming bad copies of the labour marked instead of enabling students to enter the market with something new, something radically dissimilar from what...... by the premise that difference and gaps are places where creative learning is intensified (Glaveanu & Gillespie, 2015). The public discourse around education is often concerned with minding or avoiding the gap by making education more relevant for or similar to the labour market, but what if facilitating...

  9. The longevity gender gap

    DEFF Research Database (Denmark)

    Aviv, Abraham; Shay, Jerry; Christensen, Kaare;

    2005-01-01

    In this Perspective, we focus on the greater longevity of women as compared with men. We propose that, like aging itself, the longevity gender gap is exceedingly complex and argue that it may arise from sex-related hormonal differences and from somatic cell selection that favors cells more...... resistant to the ravages of time. We discuss the interplay of these factors with telomere biology and oxidative stress and suggest that an explanation for the longevity gender gap may arise from a better understanding of the differences in telomere dynamics between men and women....

  10. Broadened population-level frequency tuning in human auditory cortex of portable music player users.

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    Full Text Available Nowadays, many people use portable players to enrich their daily life with enjoyable music. However, in noisy environments, the player volume is often set to extremely high levels in order to drown out the intense ambient noise and satisfy the appetite for music. Extensive and inappropriate usage of portable music players might cause subtle damages in the auditory system, which are not behaviorally detectable in an early stage of the hearing impairment progress. Here, by means of magnetoencephalography, we objectively examined detrimental effects of portable music player misusage on the population-level frequency tuning in the human auditory cortex. We compared two groups of young people: one group had listened to music with portable music players intensively for a long period of time, while the other group had not. Both groups performed equally and normally in standard audiological examinations (pure tone audiogram, speech test, and hearing-in-noise test. However, the objective magnetoencephalographic data demonstrated that the population-level frequency tuning in the auditory cortex of the portable music player users was significantly broadened compared to the non-users, when attention was distracted from the auditory modality; this group difference vanished when attention was directed to the auditory modality. Our conclusion is that extensive and inadequate usage of portable music players could cause subtle damages, which standard behavioral audiometric measures fail to detect in an early stage. However, these damages could lead to future irreversible hearing disorders, which would have a huge negative impact on the quality of life of those affected, and the society as a whole.

  11. How does the extraction of local and global auditory regularities vary with context?

    Directory of Open Access Journals (Sweden)

    Sébastien Marti

    Full Text Available How does the human brain extract regularities from its environment? There is evidence that short range or 'local' regularities (within seconds are automatically detected by the brain while long range or 'global' regularities (over tens of seconds or more require conscious awareness. In the present experiment, we asked whether participants' attention was needed to acquire such auditory regularities, to detect their violation or both. We designed a paradigm in which participants listened to predictable sounds. Subjects could be distracted by a visual task at two moments: when they were first exposed to a regularity or when they detected violations of this regularity. MEG recordings revealed that early brain responses (100-130 ms to violations of short range regularities were unaffected by visual distraction and driven essentially by local transitional probabilities. Based on global workspace theory and prior results, we expected that visual distraction would eliminate the long range global effect, but unexpectedly, we found the contrary, i.e. late brain responses (300-600 ms to violations of long range regularities on audio-visual trials but not on auditory only trials. Further analyses showed that, in fact, visual distraction was incomplete and that auditory and visual stimuli interfered in both directions. Our results show that conscious, attentive subjects can learn the long range dependencies present in auditory stimuli even while performing a visual task on synchronous visual stimuli. Furthermore, they acquire a complex regularity and end up making different predictions for the very same stimulus depending on the context (i.e. absence or presence of visual stimuli. These results suggest that while short-range regularity detection is driven by local transitional probabilities between stimuli, the human brain detects and stores long-range regularities in a highly flexible, context dependent manner.

  12. DEVELOPING ‘STANDARD NOVEL ‘VAD’ TECHNIQUE’ AND ‘NOISE FREE SIGNALS’ FOR SPEECH AUDITORY BRAINSTEM RESPONSES FOR HUMAN SUBJECTS

    OpenAIRE

    Ranganadh Narayanam*

    2016-01-01

    In this research as a first step we have concentrated on collecting non-intra cortical EEG data of Brainstem Speech Evoked Potentials from human subjects in an Audiology Lab in University of Ottawa. The problems we have considered are the most advanced and most essential problems of interest in Auditory Neural Signal Processing area in the world: The first problem is the Voice Activity Detection (VAD) in Speech Auditory Brainstem Responses (ABR); The second problem is to identify the best De-...

  13. Investigating Verbal and Visual Auditory Learning After Conformal Radiation Therapy for Childhood Ependymoma

    International Nuclear Information System (INIS)

    Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant decline on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.

  14. Perceptual grouping over time within and across auditory and tactile modalities.

    Directory of Open Access Journals (Sweden)

    I-Fan Lin

    Full Text Available In auditory scene analysis, population separation and temporal coherence have been proposed to explain how auditory features are grouped together and streamed over time. The present study investigated whether these two theories can be applied to tactile streaming and whether temporal coherence theory can be applied to crossmodal streaming. The results show that synchrony detection between two tones/taps at different frequencies/locations became difficult when one of the tones/taps was embedded in a perceptual stream. While the taps applied to the same location were streamed over time, the taps applied to different locations were not. This observation suggests that tactile stream formation can be explained by population-separation theory. On the other hand, temporally coherent auditory stimuli at different frequencies were streamed over time, but temporally coherent tactile stimuli applied to different locations were not. When there was within-modality streaming, temporally coherent auditory stimuli and tactile stimuli were not streamed over time, either. This observation suggests the limitation of temporal coherence theory when it is applied to perceptual grouping over time.

  15. ERPs reveal the temporal dynamics of auditory word recognition in specific language impairment.

    Science.gov (United States)

    Malins, Jeffrey G; Desroches, Amy S; Robertson, Erin K; Newman, Randy Lynn; Archibald, Lisa M D; Joanisse, Marc F

    2013-07-01

    We used event-related potentials (ERPs) to compare auditory word recognition in children with specific language impairment (SLI group; N=14) to a group of typically developing children (TD group; N=14). Subjects were presented with pictures of items and heard auditory words that either matched or mismatched the pictures. Mismatches overlapped expected words in word-onset (cohort mismatches; see: DOLL, hear: dog), rhyme (CONE -bone), or were unrelated (SHELL -mug). In match trials, the SLI group showed a different pattern of N100 responses to auditory stimuli compared to the TD group, indicative of early auditory processing differences in SLI. However, the phonological mapping negativity (PMN) response to mismatching items was comparable across groups, suggesting that just like TD children, children with SLI are capable of establishing phonological expectations and detecting violations of these expectations in an online fashion. Perhaps most importantly, we observed a lack of attenuation of the N400 for rhyming words in the SLI group, which suggests that either these children were not as sensitive to rhyme similarity as their typically developing peers, or did not suppress lexical alternatives to the same extent. These findings help shed light on the underlying deficits responsible for SLI.

  16. Vocal responses to perturbations in voice auditory feedback in individuals with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Hanjun Liu

    Full Text Available BACKGROUND: One of the most common symptoms of speech deficits in individuals with Parkinson's disease (PD is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency. METHODOLOGY/PRINCIPAL FINDINGS: Twelve individuals with Parkinson's disease and 13 age- and sex-matched healthy control subjects sustained a vowel sound (/α/ and received unexpected, brief (200 ms perturbations in voice loudness (±3 or 6 dB or pitch (±100 cents auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD. CONCLUSIONS/SIGNIFICANCE: The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing.

  17. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  18. Auditory and visual sustained attention in children with speech sound disorder.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Although research has demonstrated that children with specific language impairment (SLI and reading disorder (RD exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD. Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11 ± 1.231 and 37 typically developing children (8.76 ± 1.461 were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications.

  19. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    Science.gov (United States)

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  20. 'Mind the Gap!'

    DEFF Research Database (Denmark)

    Persson, Karl Gunnar

    This paper challenges the widely held view that sharply falling real transport costs closed the transatlantic gap in grain prices in the second half of the 19th century. Several new results emerge from an analysis of a new data set of weekly wheat prices and freight costs from New York to UK mark...

  1. Closing the Gap

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China's recent economic success has brought positive changes to its urban population,but left those in the countryside way behind.The gap in income and living standrs that always existed between urban and rural dwellers has widened alarmingly in the past two decades,causing serious problems.

  2. Estimating Gender Wage Gaps

    Science.gov (United States)

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  3. Expected gaps between prime numbers

    OpenAIRE

    Holt, Fred B.

    2007-01-01

    We study the gaps between consecutive prime numbers directly through Eratosthenes sieve. Using elementary methods, we identify a recursive relation for these gaps and for specific sequences of consecutive gaps, known as constellations. Using this recursion we can estimate the numbers of a gap or of a constellation that occur between a prime and its square. This recursion also has explicit implications for open questions about gaps between prime numbers, including three questions posed by Erd\\...

  4. A test battery measuring auditory capabilities of listening panels

    DEFF Research Database (Denmark)

    Ghani, Jody; Ellermeier, Wolfgang; Zimmer, Karin

    2005-01-01

    battery of tests covering a larger range of auditory capabilities in order to assess individual listeners. The format of all tests is kept as 'objective' as possible by using a three-alternative forced-choice paradigm in which the subject must choose which of the sound samples is different, thus keeping...... the instruction to the subjects simple and common for all tests. Both basic (e.g. frequency discrimination) and complex (e.g. profile analysis) psychoacoustic tests are covered in the battery and a threshold of discrimination or detection is obtained for each test. Data were collected on 24 listeners...... who had been recruited for participation in an expert listening panel for evaluating the sound quality of hi-fi audio systems. The test battery data were related to the actual performance of the listeners when judging the degradation in quality produced by audio codecs....

  5. Auditory sensitivity in aquatic animals.

    Science.gov (United States)

    Lucke, Klaus; Popper, Arthur N; Hawkins, Anthony D; Akamatsu, Tomonari; André, Michel; Branstetter, Brian K; Lammers, Marc; Radford, Craig A; Stansbury, Amanda L; Aran Mooney, T

    2016-06-01

    A critical concern with respect to marine animal acoustics is the issue of hearing "sensitivity," as it is widely used as a criterion for the onset of noise-induced effects. Important aspects of research on sensitivity to sound by marine animals include: uncertainties regarding how well these species detect and respond to different sounds; the masking effects of man-made sounds on the detection of biologically important sounds; the question how internal state, motivation, context, and previous experience affect their behavioral responses; and the long-term and cumulative effects of sound exposure. If we are to better understand the sensitivity of marine animals to sound we must concentrate research on these questions. In order to assess population level and ecological community impacts new approaches can possibly be adopted from other disciplines and applied to marine fauna.

  6. Comparison of Gap in Noise Test Results in Musicians and Non-Musician Controls

    OpenAIRE

    Ghassem Mohamadkhani; Mohammad Hossein Nilforoushkhoshk; Ali Zadeh Mohammadi; Soghrat Faghihzadeh; Mahsa Sepehrnejhad

    2011-01-01

    Background and Aim: Main feature of auditory processing abilities is temporal processing including temporal resolution, temporal ordering, temporal integration and temporal masking. Many studies have shown the superiority of musicians in temporal discrimination over non-musicians. In this study we compared temporal processing in musicians and non-musician controls via Gap in Noise (GIN) test.Methods: This cohort study was conducted on 24 musicians with mean age of 25.3 years and 24 normal hea...

  7. Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    2014-02-01

    Full Text Available The extended phenotype of autism spectrum disorders (ASD includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs and magnetic fields (ERFs may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response - automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN, and evaluation of stimulus novelty, indexed by P3a component, - found in individuals with ASD either increased, decreased or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, ‘sensory gating’ studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants at risk who can potentially benefit from particular types of therapies or interventions.

  8. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  9. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  10. An Auditory Model with Hearing Loss

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    An auditory model based on the psychophysics of hearing has been developed and tested. The model simulates the normal ear or an impaired ear with a given hearing loss. Based on reviews of the current literature, the frequency selectivity and loudness growth as functions of threshold and stimulus...... level have been found and implemented in the model. The auditory model was verified against selected results from the literature, and it was confirmed that the normal spread of masking and loudness growth could be simulated in the model. The effects of hearing loss on these parameters was also...... in qualitative agreement with recent findings. The temporal properties of the ear have currently not been included in the model. As an example of a real-world application of the model, loudness spectrograms for a speech utterance were presented. By introducing hearing loss, the speech sounds became less audible...

  11. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  12. Anatomy and Physiology of the Auditory Tracts

    Directory of Open Access Journals (Sweden)

    Mohammad hosein Hekmat Ara

    1999-03-01

    Full Text Available Hearing is one of the excel sense of human being. Sound waves travel through the medium of air and enter the ear canal and then hit the tympanic membrane. Middle ear transfer almost 60-80% of this mechanical energy to the inner ear by means of “impedance matching”. Then, the sound energy changes to traveling wave and is transferred based on its specific frequency and stimulates organ of corti. Receptors in this organ and their synapses transform mechanical waves to the neural waves and transfer them to the brain. The central nervous system tract of conducting the auditory signals in the auditory cortex will be explained here briefly.

  13. Delayed auditory feedback in polyglot simultaneous interpreters.

    Science.gov (United States)

    Fabbro, F; Darò, V

    1995-03-01

    Twelve polyglot students of simultaneous interpretation and 12 controls (students of the faculty of Medicine) were submitted to a task of verbal fluency under amplified normal auditory feedback (NAF) and under three delayed auditory feedback (DAF) conditions with three different delay intervals (150, 200, and 250 msec). The control group showed a significant reduction in verbal fluency and a significant increase in the number of mistakes in all three DAF conditions. The interpreters' group, however, did not show any significant speech disruption neither in the subjects' mother tongue (L1) nor in their second language (L2) across all DAF conditions. Interpreters' general high verbal fluency along with their ability to pay less attention to their own verbal output make them more resistant to the interfering effects of DAF on speech. PMID:7757448

  14. Right cerebral hemisphere and central auditory processing in children with developmental dyslexia

    OpenAIRE

    Paulina C. Murphy-Ruiz; Yolanda R. Penaloza-Lopez; Felipe Garcia-Pedroza; Adrian Poblano

    2013-01-01

    Objective We hypothesized that if the right hemisphere auditory processing abilities can be altered in children with developmental dyslexia (DD), we can detect dysfunction using specific tests. Method We performed an analytical comparative cross-sectional study. We studied 20 right-handed children with DD and 20 healthy right-handed control subjects (CS). Children in both groups were age, gender, and school-grade matched. Focusing on the right hemisphere’s contribution, we utilized tests to...

  15. Response recovery in the locust auditory pathway.

    Science.gov (United States)

    Wirtssohn, Sarah; Ronacher, Bernhard

    2016-01-01

    Temporal resolution and the time courses of recovery from acute adaptation of neurons in the auditory pathway of the grasshopper Locusta migratoria were investigated with a response recovery paradigm. We stimulated with a series of single click and click pair stimuli while performing intracellular recordings from neurons at three processing stages: receptors and first and second order interneurons. The response to the second click was expressed relative to the single click response. This allowed the uncovering of the basic temporal resolution in these neurons. The effect of adaptation increased with processing layer. While neurons in the auditory periphery displayed a steady response recovery after a short initial adaptation, many interneurons showed nonlinear effects: most prominent a long-lasting suppression of the response to the second click in a pair, as well as a gain in response if a click was preceded by a click a few milliseconds before. Our results reveal a distributed temporal filtering of input at an early auditory processing stage. This set of specified filters is very likely homologous across grasshopper species and thus forms the neurophysiological basis for extracting relevant information from a variety of different temporal signals. Interestingly, in terms of spike timing precision neurons at all three processing layers recovered very fast, within 20 ms. Spike waveform analysis of several neuron types did not sufficiently explain the response recovery profiles implemented in these neurons, indicating that temporal resolution in neurons located at several processing layers of the auditory pathway is not necessarily limited by the spike duration and refractory period.

  16. Neural correlates of auditory scale illusion.

    Science.gov (United States)

    Kuriki, Shinya; Numao, Ryousuke; Nemoto, Iku

    2016-09-01

    The auditory illusory perception "scale illusion" occurs when ascending and descending musical scale tones are delivered in a dichotic manner, such that the higher or lower tone at each instant is presented alternately to the right and left ears. Resulting tone sequences have a zigzag pitch in one ear and the reversed (zagzig) pitch in the other ear. Most listeners hear illusory smooth pitch sequences of up-down and down-up streams in the two ears separated in higher and lower halves of the scale. Although many behavioral studies have been conducted, how and where in the brain the illusory percept is formed have not been elucidated. In this study, we conducted functional magnetic resonance imaging using sequential tones that induced scale illusion (ILL) and those that mimicked the percept of scale illusion (PCP), and we compared the activation responses evoked by those stimuli by region-of-interest analysis. We examined the effects of adaptation, i.e., the attenuation of response that occurs when close-frequency sounds are repeated, which might interfere with the changes in activation by the illusion process. Results of the activation difference of the two stimuli, measured at varied tempi of tone presentation, in the superior temporal auditory cortex were not explained by adaptation. Instead, excess activation of the ILL stimulus from the PCP stimulus at moderate tempi (83 and 126 bpm) was significant in the posterior auditory cortex with rightward superiority, while significant prefrontal activation was dominant at the highest tempo (245 bpm). We suggest that the area of the planum temporale posterior to the primary auditory cortex is mainly involved in the illusion formation, and that the illusion-related process is strongly dependent on the rate of tone presentation. PMID:27292114

  17. Inhibition in the Human Auditory Cortex

    OpenAIRE

    Koji Inui; Kei Nakagawa; Makoto Nishihara; Eishi Motomura; Ryusuke Kakigi

    2016-01-01

    Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI) in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observe...

  18. Lesions in the external auditory canal

    Directory of Open Access Journals (Sweden)

    Priyank S Chatra

    2011-01-01

    Full Text Available The external auditory canal is an S- shaped osseo-cartilaginous structure that extends from the auricle to the tympanic membrane. Congenital, inflammatory, neoplastic, and traumatic lesions can affect the EAC. High-resolution CT is well suited for the evaluation of the temporal bone, which has a complex anatomy with multiple small structures. In this study, we describe the various lesions affecting the EAC.

  19. Midbrain auditory selectivity to natural sounds.

    Science.gov (United States)

    Wohlgemuth, Melville J; Moss, Cynthia F

    2016-03-01

    This study investigated auditory stimulus selectivity in the midbrain superior colliculus (SC) of the echolocating bat, an animal that relies on hearing to guide its orienting behaviors. Multichannel, single-unit recordings were taken across laminae of the midbrain SC of the awake, passively listening big brown bat, Eptesicus fuscus. Species-specific frequency-modulated (FM) echolocation sound sequences with dynamic spectrotemporal features served as acoustic stimuli along with artificial sound sequences matched in bandwidth, amplitude, and duration but differing in spectrotemporal structure. Neurons in dorsal sensory regions of the bat SC responded selectively to elements within the FM sound sequences, whereas neurons in ventral sensorimotor regions showed broad response profiles to natural and artificial stimuli. Moreover, a generalized linear model (GLM) constructed on responses in the dorsal SC to artificial linear FM stimuli failed to predict responses to natural sounds and vice versa, but the GLM produced accurate response predictions in ventral SC neurons. This result suggests that auditory selectivity in the dorsal extent of the bat SC arises through nonlinear mechanisms, which extract species-specific sensory information. Importantly, auditory selectivity appeared only in responses to stimuli containing the natural statistics of acoustic signals used by the bat for spatial orientation-sonar vocalizations-offering support for the hypothesis that sensory selectivity enables rapid species-specific orienting behaviors. The results of this study are the first, to our knowledge, to show auditory spectrotemporal selectivity to natural stimuli in SC neurons and serve to inform a more general understanding of mechanisms guiding sensory selectivity for natural, goal-directed orienting behaviors.

  20. Predictive uncertainty in auditory sequence processing

    OpenAIRE

    Niels Chr.Hansen; MarcusT.Pearce

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty - a property of listeners’ prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic e...

  1. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  2. Deterministic multidimensional nonuniform gap sampling

    Science.gov (United States)

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.

  3. Hierarchical processing of auditory objects in humans.

    Directory of Open Access Journals (Sweden)

    Sukhbinder Kumar

    2007-06-01

    Full Text Available This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG, containing the primary auditory cortex, planum temporale (PT, and superior temporal sulcus (STS, and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

  4. Concentric scheme of monkey auditory cortex

    Science.gov (United States)

    Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer

    2003-04-01

    The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.

  5. Mechanisms of auditory verbal hallucination in schizophrenia

    Directory of Open Access Journals (Sweden)

    Raymond eCho

    2013-11-01

    Full Text Available Recent work on the mechanisms underlying auditory verbal hallucination (AVH has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two models of AVH can generate sharper questions that will lead to new avenues of investigation. In this paper, we provide such a theoretical discussion of the two models, drawing strong contrasts between them. We identify a set of challenges for the self-monitoring account and argue that the spontaneous activation account has much in favor of it and should be the default account. Our theoretical overview leads to new questions and issues regarding the explanation of AVH as a subjective phenomenon and its neural basis. Accordingly, we suggest a set of experimental strategies to dissect the underlying mechanisms of AVH in light of the two competing models.

  6. Mechanisms of auditory verbal hallucination in schizophrenia.

    Science.gov (United States)

    Cho, Raymond; Wu, Wayne

    2013-01-01

    Recent work on the mechanisms underlying auditory verbal hallucination (AVH) has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two models of AVH can generate sharper questions that will lead to new avenues of investigation. In this paper, we provide such a theoretical discussion of the two models, drawing strong contrasts between them. We identify a set of challenges for the self-monitoring account and argue that the spontaneous activation account has much in favor of it and should be the default account. Our theoretical overview leads to new questions and issues regarding the explanation of AVH as a subjective phenomenon and its neural basis. Accordingly, we suggest a set of experimental strategies to dissect the underlying mechanisms of AVH in light of the two competing models. PMID:24348430

  7. The Effect of Delayed Auditory Feedback on Activity in the Temporal Lobe while Speaking: A Positron Emission Tomography Study

    Science.gov (United States)

    Takaso, Hideki; Eisner, Frank; Wise, Richard J. S.; Scott, Sophie K.

    2010-01-01

    Purpose: Delayed auditory feedback is a technique that can improve fluency in stutterers, while disrupting fluency in many nonstuttering individuals. The aim of this study was to determine the neural basis for the detection of and compensation for such a delay, and the effects of increases in the delay duration. Method: Positron emission…

  8. Basic Auditory Processing Deficits in Dyslexia: Systematic Review of the Behavioral and Event-Related Potential/Field Evidence

    Science.gov (United States)

    Hämäläinen, Jarmo A.; Salminen, Hanne K.; Leppänen, Paavo H. T.

    2013-01-01

    A review of research that uses behavioral, electroencephalographic, and/or magnetoencephalographic methods to investigate auditory processing deficits in individuals with dyslexia is presented. Findings show that measures of frequency, rise time, and duration discrimination as well as amplitude modulation and frequency modulation detection were…

  9. Auditory temporal processing skills in musicians with dyslexia.

    Science.gov (United States)

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia.

  10. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...... on the stream segregation process was analysed. The model analysis showed that auditory frequency selectivity and physiological forward masking play a significant role in stream segregation based on frequency separation and tone rate. Secondly, the model analysis suggested that neural adaptation...

  11. Mind the Gap!

    DEFF Research Database (Denmark)

    Schmidt, Kjeld; Simone, Carla

    2000-01-01

    CSCW at large seems to be pursuing two diverging strategies: on one hand a strategy aiming at coordination technologies that reduce the complexity of coordinating cooperative activities by regulating the coordinative interactions, and on the other hand a strategy that aims at radically flexible m...... and blended in the course of real world cooperative activities. On the basis of this discussion the paper outlines an approach which may help CSCW research to bridge this gap....... means of interaction which do not regulate interaction but rather leave it to the users to cope with the complexity of coordinating their activities. As both strategies reflect genuine requirements, we need to address the issue of how the gap can be bridged, that is, how the two strategies can...

  12. SUBORDINATE GAPS IN MANDARIN CHINESE

    Directory of Open Access Journals (Sweden)

    Ting-Chi Wei

    2011-06-01

    Full Text Available The existence of subordinate gaps in Mandarin Chinese casts doubt on analyses built on canonical coordinate gapping. We observe that the minimality of contrastive focus and the type of subordinate clause determine the acceptability of a missing gap in subordinate structure. Along this vein, we propose that a semantic-based deletion account can be used to interpret gapping in Mandarin. Such account relies on two violable constraints, AvoidF and Focus condition on gapping (Schwarzchild 1999, Merchant 2001 to compute the acceptability of a gap.

  13. Beyond the gap

    OpenAIRE

    Büger, Christian; Villumsen, Trine

    2015-01-01

    International Relations (IR) has cultivated the idea of a gap between the theory and the practice/praxis of IR. This division into two different spheres of knowledge is related to the predominant objectivist conception of science in IR, where the scientist is said to be observing reality from a distance without affecting it. Poststructuralists have denied that this distinction is meaningful and have even argued that it is dangerous to be oblivious to the structuring effects science may have o...

  14. BRIDGING SERVICE QUALITY GAPS

    OpenAIRE

    BARKATH UNISSA

    2012-01-01

    Bridging the Service quality gaps is one of the foremost areas of concern for amarketer. Service marketing is inherently different from product or goods marketing.Services are distinctively characterized by their intangible, heterogeneous, inseparableand perishable nature. The importance of the service sector in today's world is a verywidely accepted and renowned idea. “We are already experiencing a service society“services do have some basic characteristics which make them fundamentally diff...

  15. The influence of visual information on auditory processing in individuals with congenital amusia: An ERP study.

    Science.gov (United States)

    Lu, Xuejing; Ho, Hao T; Sun, Yanan; Johnson, Blake W; Thompson, William F

    2016-07-15

    While most normal hearing individuals can readily use prosodic information in spoken language to interpret the moods and feelings of conversational partners, people with congenital amusia report that they often rely more on facial expressions and gestures, a strategy that may compensate for deficits in auditory processing. In this investigation, we used EEG to examine the extent to which individuals with congenital amusia draw upon visual information when making auditory or audio-visual judgments. Event-related potentials (ERP) were elicited by a change in pitch (up or down) between two sequential tones paired with a change in spatial position (up or down) between two visually presented dots. The change in dot position was either congruent or incongruent with the change in pitch. Participants were asked to judge (1) the direction of pitch change while ignoring the visual information (AV implicit task), and (2) whether the auditory and visual changes were congruent (AV explicit task). In the AV implicit task, amusic participants performed significantly worse in the incongruent condition than control participants. ERPs showed an enhanced N2-P3 response to incongruent AV pairings for control participants, but not for amusic participants. However when participants were explicitly directed to detect AV congruency, both groups exhibited enhanced N2-P3 responses to incongruent AV pairings. These findings indicate that amusics are capable of extracting information from both modalities in an AV task, but are biased to rely on visual information when it is available, presumably because they have learned that auditory information is unreliable. We conclude that amusic individuals implicitly draw upon visual information when judging auditory information, even though they have the capacity to explicitly recognize conflicts between these two sensory channels. PMID:27132045

  16. Auditory stimuli mimicking ambient sounds drive temporal "delta-brushes" in premature infants.

    Directory of Open Access Journals (Sweden)

    Mathilde Chipaux

    Full Text Available In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG pattern, "delta-brushes," in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW during routine EEG recording. Stimuli consisted of either low-volume technogenic "clicks" near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus ("click" and voice was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and "click" stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for "click" and voice stimuli: responses to "clicks" became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory, these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex

  17. Perspectives on the design of musical auditory interfaces

    OpenAIRE

    Leplatre, G.; Brewster, S.A.

    1998-01-01

    This paper addresses the issue of music as a communication medium in auditory human-computer interfaces. So far, psychoacoustics has had a great influence on the development of auditory interfaces, directly and through music cognition. We suggest that a better understanding of the processes involved in the perception of actual musical excerpts should allow musical auditory interface designers to exploit the communicative potential of music. In this respect, we argue that the real advantage of...

  18. [Auditory guidance systems for the visually impaired people].

    Science.gov (United States)

    He, Jing; Nie, Min; Luo, Lan; Tong, Shanbao; Niu, Jinhai; Zhu, Yisheng

    2010-04-01

    Visually impaired people face many inconveniences because of the loss of vision. Therefore, scientists are trying to design various guidance systems for improving the lives of the blind. Based on sensory substitution, auditory guidance has become an interesting topic in the field of biomedical engineering. In this paper, we made a state-of-technique review of the auditory guidance system. Although there have been many technical challenges, the auditory guidance system would be a useful alternative for the visually impaired people.

  19. Time course of dynamic range adaptation in the auditory nerve

    OpenAIRE

    Wen, Bo; Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common ...

  20. Using Facebook to Reach People Who Experience Auditory Hallucinations

    OpenAIRE

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging...

  1. Speech Perception Within an Auditory Cognitive Science Framework

    OpenAIRE

    Holt, Lori L.; Lotto, Andrew J.

    2008-01-01

    The complexities of the acoustic speech signal pose many significant challenges for listeners. Although perceiving speech begins with auditory processing, investigation of speech perception has progressed mostly independently of study of the auditory system. Nevertheless, a growing body of evidence demonstrates that cross-fertilization between the two areas of research can be productive. We briefly describe research bridging the study of general auditory processing and speech perception, show...

  2. Effect of auditory training on the middle latency response in children with (central) auditory processing disorder.

    Science.gov (United States)

    Schochat, E; Musiek, F E; Alonso, R; Ogata, J

    2010-08-01

    The purpose of this study was to determine the middle latency response (MLR) characteristics (latency and amplitude) in children with (central) auditory processing disorder [(C)APD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (C)APD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (C)APD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (C)APD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 microV (mean), 0.39 (SD--standard deviation) for the (C)APD group and 1.18 microV (mean), 0.65 (SD) for the control group; C3-A2, 0.69 microV (mean), 0.31 (SD) for the (C)APD group and 1.00 microV (mean), 0.46 (SD) for the control group]. After training, the MLR C3-A1 [1.59 microV (mean), 0.82 (SD)] and C3-A2 [1.24 microV (mean), 0.73 (SD)] wave amplitudes of the (C)APD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (C)APD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (C)APD.

  3. Effect of auditory training on the middle latency response in children with (central auditory processing disorder

    Directory of Open Access Journals (Sweden)

    E. Schochat

    2010-08-01

    Full Text Available The purpose of this study was to determine the middle latency response (MLR characteristics (latency and amplitude in children with (central auditory processing disorder [(CAPD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (CAPD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (CAPD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (CAPD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 µV (mean, 0.39 (SD - standard deviation for the (CAPD group and 1.18 µV (mean, 0.65 (SD for the control group; C3-A2, 0.69 µV (mean, 0.31 (SD for the (CAPD group and 1.00 µV (mean, 0.46 (SD for the control group]. After training, the MLR C3-A1 [1.59 µV (mean, 0.82 (SD] and C3-A2 [1.24 µV (mean, 0.73 (SD] wave amplitudes of the (CAPD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (CAPD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (CAPD.

  4. Bulk band gaps in divalent hexaborides

    Energy Technology Data Exchange (ETDEWEB)

    Denlinger, Jonathan; Clack, Jules A.; Allen, James W.; Gweon, Gey-Hong; Poirier, Derek M.; Olson, Cliff G.; Sarrao, John L.; Bianchi, Andrea D.; Fisk, Zachary

    2002-08-01

    Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for proper inclusion of many-body effects in quasi-particle band calculations.

  5. Effects of Presentation Rate and Attention on Auditory Discrimination: A Comparison of Long-Latency Auditory Evoked Potentials in School-Aged Children and Adults.

    Science.gov (United States)

    Choudhury, Naseem A; Parascando, Jessica A; Benasich, April A

    2015-01-01

    Decoding human speech requires both perception and integration of brief, successive auditory stimuli that enter the central nervous system as well as the allocation of attention to language-relevant signals. This study assesses the role of attention on processing rapid transient stimuli in adults and children. Cortical responses (EEG/ERPs), specifically mismatch negativity (MMN) responses, to paired tones (standard 100-100 Hz; deviant 100-300 Hz) separated by a 300, 70 or 10 ms silent gap (ISI) were recorded under Ignore and Attend conditions in 21 adults and 23 children (6-11 years old). In adults, an attention-related enhancement was found for all rate conditions and laterality effects (L>R) were observed. In children, 2 auditory discrimination-related peaks were identified from the difference wave (deviant-standard): an early peak (eMMN) at about 100-300 ms indexing sensory processing, and a later peak (LDN), at about 400-600 ms, thought to reflect reorientation to the deviant stimuli or "second-look" processing. Results revealed differing patterns of activation and attention modulation for the eMMN in children as compared to the MMN in adults: The eMMN had a more frontal topography as compared to adults and attention played a significantly greater role in childrens' rate processing. The pattern of findings for the LDN was consistent with hypothesized mechanisms related to further processing of complex stimuli. The differences between eMMN and LDN observed here support the premise that separate cognitive processes and mechanisms underlie these ERP peaks. These findings are the first to show that the eMMN and LDN differ under different temporal and attentional conditions, and that a more complete understanding of children's responses to rapid successive auditory stimulation requires an examination of both peaks. PMID:26368126

  6. Effects of Presentation Rate and Attention on Auditory Discrimination: A Comparison of Long-Latency Auditory Evoked Potentials in School-Aged Children and Adults.

    Directory of Open Access Journals (Sweden)

    Naseem A Choudhury

    Full Text Available Decoding human speech requires both perception and integration of brief, successive auditory stimuli that enter the central nervous system as well as the allocation of attention to language-relevant signals. This study assesses the role of attention on processing rapid transient stimuli in adults and children. Cortical responses (EEG/ERPs, specifically mismatch negativity (MMN responses, to paired tones (standard 100-100 Hz; deviant 100-300 Hz separated by a 300, 70 or 10 ms silent gap (ISI were recorded under Ignore and Attend conditions in 21 adults and 23 children (6-11 years old. In adults, an attention-related enhancement was found for all rate conditions and laterality effects (L>R were observed. In children, 2 auditory discrimination-related peaks were identified from the difference wave (deviant-standard: an early peak (eMMN at about 100-300 ms indexing sensory processing, and a later peak (LDN, at about 400-600 ms, thought to reflect reorientation to the deviant stimuli or "second-look" processing. Results revealed differing patterns of activation and attention modulation for the eMMN in children as compared to the MMN in adults: The eMMN had a more frontal topography as compared to adults and attention played a significantly greater role in childrens' rate processing. The pattern of findings for the LDN was consistent with hypothesized mechanisms related to further processing of complex stimuli. The differences between eMMN and LDN observed here support the premise that separate cognitive processes and mechanisms underlie these ERP peaks. These findings are the first to show that the eMMN and LDN differ under different temporal and attentional conditions, and that a more complete understanding of children's responses to rapid successive auditory stimulation requires an examination of both peaks.

  7. GapBlaster—A Graphical Gap Filler for Prokaryote Genomes

    Science.gov (United States)

    Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T. J.

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer. PMID:27171416

  8. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    Science.gov (United States)

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  9. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    Directory of Open Access Journals (Sweden)

    Pablo H C G de Sá

    Full Text Available The advent of NGS (Next Generation Sequencing technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  10. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    Science.gov (United States)

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer. PMID:27171416

  11. Monitoramento auditivo na ototoxidade Auditory monitoring in ototoxicity

    Directory of Open Access Journals (Sweden)

    Lilian Cassia Bornia Jacob

    2006-12-01

    pertaining literature analysis identified two procedures often used worldwide for the early detection of auditory lesions induced by ototoxic pharmaceutical drugs: high-frequency audiometry and evoked otoacoustic emissions. Both allow early identification of hearing disorders before changes are seen in conventional pure-tone audiometry and, consequently, before speech understanding is compromised. CONCLUSION: we suggest a hearing monitoring protocol, considering the patient’s capability to respond to behavioral tests and monitoring timing (first test/follow up. For cancer patients, hearing monitoring should be performed in the patient’s treatment venue.

  12. Evaluation of peripheral compression and auditory nerve fiber intensity coding using auditory steady-state responses

    DEFF Research Database (Denmark)

    Encina Llamas, Gerard; M. Harte, James; Epp, Bastian

    2015-01-01

    . Evaluation of these properties provides information about the health state of the system. It has been shown that a loss of outer hair cells leads to a reduction in peripheral compression. It has also recently been shown in animal studies that noise over-exposure, producing temporary threshold shifts, can......The compressive nonlinearity of the auditory system is assumed to be an epiphenomenon of a healthy cochlea and, particularly, of outer-hair cell function. Another ability of the healthy auditory system is to enable communication in acoustical environments with high-level background noises...

  13. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2015-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  14. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2016-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  15. Extrinsic sound stimulations and development of periphery auditory synapses

    Institute of Scientific and Technical Information of China (English)

    Kun Hou; Shiming Yang; Ke Liu

    2015-01-01

    The development of auditory synapses is a key process for the maturation of hearing function. However, it is still on debate regarding whether the development of auditory synapses is dominated by acquired sound stimulations. In this review, we summarize relevant publications in recent decades to address this issue. Most reported data suggest that extrinsic sound stimulations do affect, but not govern the development of periphery auditory synapses. Overall, periphery auditory synapses develop and mature according to its intrinsic mechanism to build up the synaptic connections between sensory neurons and/or interneurons.

  16. Top-down modulation of the auditory steady-state response in a task-switch paradigm

    Directory of Open Access Journals (Sweden)

    Nadia Müller

    2009-02-01

    Full Text Available Auditory selective attention is an important mechanism for top-down selection of the vast amount of auditory information our perceptual system is exposed to. In the present study, the impact of attention on auditory steady-state responses - previously shown to be generated in primary auditory regions - was investigated. This issue is still a matter of debate and recent findings point to a complex pattern of attentional effects on the aSSR. The present study aimed at shedding light on the involvement of ipsilateral and contralateral activations to the attended sound taking into account hemispheric differences and a possible dependency on modulation frequency. In aid of this, a dichotic listening experiment was designed using amplitude-modulated tones that were presented to the left and right ear simultaneously. Participants had to detect target tones in a cued ear while their brain activity was assessed using MEG. Thereby, a modulation of the aSSR by attention could be revealed, interestingly restricted to the left hemisphere and 20 Hz responses: Contralateral activations were enhanced while ipsilateral activations turned out to be reduced. Thus, our findings support and extend recent findings, showing that auditory attention can influence the aSSR, but only under specific circumstances and in a complex pattern regarding the different effects for ipsilateral and contralateral activations.

  17. Auditory hallucinations as ictal phenomena in a patient with voltage-gated potassium channel antibody-associated limbic encephalitis.

    Science.gov (United States)

    Boyd, Michael; Attarian, Hrayr; Raizer, Jeffrey; Kumthekar, Priya; Macken, Micheal P; Schuele, Stephan U; Gerard, Elizabeth

    2013-12-01

    Limbic encephalitis involving anti-voltage-gated potassium channel antibodies (VGKC-LE) has become increasingly recognised, with seizures and psychotic features, such as hallucinations being typical clinical manifestations. Though the literature supports auditory hallucinations as ictal phenomena, there are no reported cases of these hallucinations correlating with electrographic seizure for this disease entity. Early recognition of auditory hallucinations as seizures could alter treatment and subsequently affect short-term outcomes in these patients. We report the case of a patient with auditory hallucinations and progressive cognitive decline, as well as serological evidence of VGKC antibodies, in whom ictal hallucinations were identified by continuous video-EEG monitoring. This case highlights the subtlety of this entity, in both clinical and electrographic detection. [Published with video sequences]. PMID:24571022

  18. Differential gene expression during compensatory sprouting of dendrites in the auditory system of the cricket Gryllus bimaculatus.

    Science.gov (United States)

    Horch, H W; McCarthy, S S; Johansen, S L; Harris, J M

    2009-08-01

    Neurones that lose their presynaptic partners because of injury usually retract or die. However, when the auditory interneurones of the cricket Gryllus bimaculatus are denervated, dendrites respond by growing across the midline and forming novel synapses with the opposite auditory afferents. Suppression subtractive hybridization was used to detect transcriptional changes 3 days after denervation. This is a stage at which we demonstrate robust compensatory dendritic sprouting. Whereas 49 unique candidates were down-regulated, no sufficiently up-regulated candidates were identified at this time point. Several candidates identified in this study are known to influence the translation and degradation of proteins in other systems. The potential role of these factors in the compensatory sprouting of cricket auditory interneurones in response to denervation is discussed.

  19. Ubiquitous crossmodal Stochastic Resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations.

    Directory of Open Access Journals (Sweden)

    Eduardo Lugo

    Full Text Available BACKGROUND: Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. METHODOLOGY/PRINCIPAL FINDINGS: Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. CONCLUSIONS/SIGNIFICANCE: We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically

  20. Detecting anxiety and defensiveness from visual and auditory cues.

    Science.gov (United States)

    Harrigan, J A; Harrigan, K M; Sale, B A; Rosenthal, R

    1996-09-01

    Defensive individuals have been shown to differ from nondefensive individuals on a number of physiological and behavioral measures. We report two studies on observers' inferences of defensiveness, and the contribution of communication channels in the inference of defensiveness. Observers judged high and low state anxious segments of high and low trait anxious defensive and nondefensive individuals. Accurate assessments were made of (a) defensiveness, (b) state anxiety, and (c) trait anxiety: Individuals with higher levels of each variable were perceived as more anxious compared with the lower level. Effects for defensiveness and state anxiety were greater in audio-only segments, while effects for trait anxiety were greater in video-only segments. Inferences of defensiveness were greater at higher levels of state anxiety and trait anxiety. Low trait anxious defensive individuals were perceived as more anxious than the true low trait anxious. Results for defensiveness and trait anxiety were replicated in Study 2, and observers' perceptions of state anxiety matched individuals' self-reports: Defensive individuals with maximal differences between high and low state anxiety were seen as more anxious in high state anxiety, while defensive individuals with minimal differences between high and low state anxiety were regarded as less anxious in high state anxiety. PMID:8776883

  1. Personal Computer Based Clinical Programming Software for Auditory Prostheses

    Directory of Open Access Journals (Sweden)

    K. Rajakumar

    2009-01-01

    Full Text Available Auditory Prostheses (AP are widely used electronic devices for patients suffering with severe to profound senosorineural deafness by electrically stimulating the auditory nerve using an electrode array surgically placed in the inner ear. AP mainly contains external Body Worn Speech Processor (BWSP and internal Implantable Receiver Stimulator (IRS. BWSP receives an external sound or speech and generates encoded speech data bits for transmission to IRS via radio frequency transcutaneous link for excitation of electrode array. After surgical placement electrode array in the inner ear, BWSP should be fine tuned to achieve the 80-100% speech reception abilities of patient by an audiologist. Problem statement: Basic objective of this research was to develop a simple personal computer based user friendly hardware and software interface to fine tune the BWSP to achieve the best possible speech reception abilities of each individual patient. Approach: Tuning process involved several tasks such as identifying the active electrode contacts, determination of detection and pain thresholds of each active electrode and loads these values into BWSP by reprogramming the BWSP. This study contracted with development of easy and simple user friendly hardware and software interface for audiologist to perform post operation tuning procedures. A microcontroller based impedance telemetry with bidirectional RF transceiver was developed as a hardware interface between PC and IRS. The clinical programming software was developed using VB.NET 2008 to perform the post-operative tuning procedures such as (i impedance measurement, (ii fitting to determine the threshold and comfort levels for each active electrodes and (iii reprogramming the speech processor. Results: Simple hardware and software interfaces for audiologist were constructed and tested with laboratory model BWSP and IRS using simulated resistance electrode array. All the functional aspects were tested and results

  2. EVALUATION OF AUDITORY & BRAINSTEM RESPONSES IN HYPERBILIRUBINEMIC INFANTS

    Directory of Open Access Journals (Sweden)

    Bhagya

    2014-07-01

    Full Text Available OBJECTIVE: Jaundice is a common finding in neonates affecting 70% of term and 80% of preterm neonates during the first week of life. So the objective of this study is to evaluate auditory and brainstem responses in hyper bilirubinemic infants and to see if there is any statistically significant increase in latencies of wave I and V waves. To initiate rehabilitative procedure as early in life as possible a screening method to detect auditory disabilities in hyper bilirubinemic infants is of great importance. So the present study is done to know the incidence of hearing loss in hyper bilirubinemic infants & to evaluate the waves I and V in those subjects. METHODS: 45 Infants with hyper bilirubinemia>12mg% & with no other risk factor who visited pediatric OPD of Bapuji Child Health Centre were evaluated using RMS EMG. EP MARK –II machine. Latencies of Waves I and V and interpeak latency of I-V were recorded. RESULTS: On one sample t-test, latency of wave I and IPL I-V were significantly increased (p-value <0.001, latency of V was prolonged which was statistically significant (p-value <0.01. Hearing impairment in the affected infants and complete deafness where none of the waves were recorded signify that it is a risk factor for deafness. CONCLUSION: Since hyper bilirubinemia is a risk factor for hearing impairment, their hearing screening by BERA at the earliest will help in their earliest initiation of rehabilitation when the brain is sensitive to the development of speech & language.

  3. The Infrastructure Gap and Decentralization

    OpenAIRE

    Luis Andres; Dan Biller; Jordan Schwartz

    2014-01-01

    This paper proposes an economic logic for underpinning decentralization in the infrastructure sectors. It starts by detailing the definition of the infrastructure gap and the methodologies to calculate it. It provides some global trends for developing countries in terms of the gap and briefly discusses financing possibilities for developing countries to address the gap. Then it turns to the discussion of the link between the infrastructure gap and decentralization, providing a typology infras...

  4. The Role of Auditory and Kinaesthetic Feedback Mechanisms on Phonatory Stability in Children

    OpenAIRE

    Rathna Kumar, S. B.; Azeem, Suhail; Choudhary, Abhishek Kumar; Prakash, S. G. R.

    2012-01-01

    Auditory feedback plays an important role in phonatory control. When auditory feedback is disrupted, various changes are observed in vocal motor control. Vocal intensity and fundamental frequency (F0) levels tend to increase in response to auditory masking. Because of the close reflexive links between the auditory and phonatory systems, it is likely that phonatory stability may be disrupted when auditory feedback is disrupted or altered. However, studies on phonatory stability under auditory ...

  5. Gap Opening in 3D: Single Planet Gaps

    CERN Document Server

    Fung, Jeffrey

    2016-01-01

    Giant planets can clear deep gaps when embedded in 2D (razor-thin) viscous circumstellar disks. We show by direct simulation that giant planets are just as capable of carving out gaps in 3D. Surface density maps are similar between 2D and 3D, even in detail. In particular, the scaling $\\Sigma_{\\rm gap} \\propto q^{-2}$ of gap surface density with planet mass, derived from a global "zero-dimensional" balance of Lindblad and viscous torques, applies equally well to results obtained at higher dimensions. Our 3D simulations reveal extensive, near-sonic, meridional flows both inside and outside the gaps; these large-scale circulations might bear on disk compositional gradients, in dust or other chemical species. At high planet mass, gap edges are mildly Rayleigh unstable and intermittently shed streams of material into the gap - less so in 3D than in 2D.

  6. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  7. Mind the gap

    Energy Technology Data Exchange (ETDEWEB)

    Bhagwat, M.S.; Roberts, C.D. [Argonne National Laboratory, Physics Division, Argonne, IL (United States); Krassnigg, A. [Universitaet Graz, Fachbereich Theoretische Physik, Graz (Austria); Maris, P. [University of Pittsburgh, Department of Physics and Astronomy, PA (United States)

    2007-03-15

    In this summary of the application of Dyson-Schwinger equations to the theory and phenomenology of hadrons, some deductions following from a nonperturbative, symmetry-preserving truncation are highlighted, notable amongst which are results for pseudoscalar mesons. We also describe inferences from the gap equation relating to the radius of convergence of a chiral expansion, applications to heavy-light and heavy-heavy mesons, and quantitative estimates of the contribution of quark orbital angular momentum in pseudoscalar mesons; and recapitulate upon studies of nucleon electromagnetic form factors. (orig.)

  8. Mind the gap.

    Energy Technology Data Exchange (ETDEWEB)

    Bhagwat, M. S.; Krassnigg, A.; Maris, P.; Roberts, C. D.; Physics; Univ. Graz; Univ. of Pittsburgh

    2007-03-01

    In this summary of the application of Dyson-Schwinger equations to the theory and phenomenology of hadrons, some deductions following from a nonperturbative, symmetry-preserving truncation are highlighted, notable amongst which are results for pseudoscalar mesons. We also describe inferences from the gap equation relating to the radius of convergence of a chiral expansion, applications to heavy-light and heavy-heavy mesons, and quantitative estimates of the contribution of quark orbital angular momentum in pseudoscalar mesons; and recapitulate upon studies of nucleon electromagnetic form factors.

  9. Mind the Gap

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    While a growing number of Chinese people are enjoying the benefits brought by economic reform and social development, some are being left behind. The divide between the rich and the poor is widening in China, resulting in an increasingly dissatisfied populace. Some argue that a wealth gap is not a big deal in a market economy and that the problem in China has been exaggerated. But in an article published by China Economic Times, Wu Zhongmin, a sociology professor at the Central Party School of the Commun...

  10. Closing the stop gap

    Energy Technology Data Exchange (ETDEWEB)

    Czakon, Michal [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchnphysik und Kosmologie; Mitov, Alexander [Univ. of Cambridge (United Kingdom). Cavendish Lab.; Papucci, Michele [Lawrence Berkeley National Laboratory, CA (United States). Theoretical Physics Group; California Univ., Berkeley, CA (United States). Dept. of Physics; Ruderman, Joshua T. [Lawrence Berkeley National Laboratory, CA (United States). Theoretical Physics Group; California Univ., Berkeley, CA (United States). Dept. of Physics; New York Univ., NY (United States). Center for Cosmology and Particle Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.

    2014-07-15

    Light stops are a hallmark of the most natural realizations of weak-scale supersymmetry. While stops have been extensively searched for, there remain open gaps around and below the top mass, due to similarities of stop and top signals with current statistics. We propose a new fast-track avenue to improve light stop searches for R-parity conserving supersymmetry, by comparing top cross section measurements to the theoretical prediction. Stop masses below ∝180 GeV can now be ruled out for a light neutralino. The possibility of a stop signal contaminating the top mass measurement is also briefly addressed.

  11. Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: a randomized controlled pilot study.

    Science.gov (United States)

    Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta

    2014-03-15

    Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. PMID:24388435

  12. Auditory excitation patterns : the significance of the pulsation threshold method for the measurement of auditory nonlinearity

    NARCIS (Netherlands)

    H. Verschuure (Hans)

    1978-01-01

    textabstractThe auditory system is the toto[ of organs that translates an acoustical signal into the perception of a sound. An acoustic signal is a vibration. It is decribed by physical parameters. The perception of sound is the awareness of a signal being present and the attribution of certain qual

  13. SoundView: an auditory guidance system based on environment understanding for the visually impaired people.

    Science.gov (United States)

    Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2009-01-01

    Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization. PMID:19965094

  14. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y. (Queen Mary Hospital, Hong Kong (Hong Kong))

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  15. Board affiliation and pay gap

    Institute of Scientific and Technical Information of China (English)

    Shenglan; Chen; Hui; Ma; Danlu; Bu

    2014-01-01

    This paper examines the effects of board affiliation on the corporate pay gap.Using a sample of Chinese listed firms from 2005 to 2011, we find that boards with a greater presence of directors appointed by block shareholders have lower pay gaps. Furthermore, the governance effects of board affiliation with and without pay are distinguished. The empirical results show that board affiliation without pay is negatively related to the pay gap, while board affiliation with pay is positively related to the pay gap. Overall, the results shed light on how block shareholders affect their companies’ pay gaps through board affiliation.

  16. Closing the value gap

    International Nuclear Information System (INIS)

    It's a predicament. For the most part, investor-owned electric utilities trade at a deep discount to the actual (that is, replacement-cost) value to their assets. That's because most utilities fail to earn real returns large enough to justify raising and investing capital. The result is a value gap, where overall market value is significantly lower than the replacement costs of the assets. This gap is wider for utilities than for virtually any other industry in our economy. In addition to providing education and awareness, senior management must determine which businesses and activities create value and which diminish it. Then, management must allocate capital and human resources appropriately, holding down investments in value-diminishing areas until they can improve their profitability, and aggressively investing in value-enhancing businesses while preserving their profitability. But value management must not stop with resource-allocation decisions. To create a lasting transition to a value management philosophy, the utility's compensation system must also change: executives will have motivation to create value when compensation stems from this goal, not from such misleading accounting measures as earnings-per-share growth or ROE. That requires clear value-creation goals, and the organization must continuously evaluate top management's performance in light of the progress made toward those goals

  17. Gap Task Force

    CERN Multimedia

    Lissuaer, D

    One of the more congested areas in the ATLAS detector is the GAP region (the area between the Barrel Calorimeter and the End Cap calorimeter) where Inner Detector services, LAr Services and some Tile services all must co-habitat in a very limited area. It has been clear for some time that the space in the GAP region is not sufficient to accommodate all that is needed. In the last few month additional problems of routing all the services to Z=0 have been encountered due to the very limited space between the Tile Calorimeter and the first layer of Muon chambers. The Technical Management Board (TMB) and the Executive Board (EB) decided in the middle of March to establish a Task Force to look at this problem and come up with a solution within well-specified guidelines. The task force consisted of experts from the ID, Muon, Liquid Argon and Tile systems in addition to experts from the Technical Coordination team and the Physics coordinator. The task force held many meetings and in general there were some very l...

  18. A critical period for auditory thalamocortical connectivity

    DEFF Research Database (Denmark)

    Rinaldi Barkat, Tania; Polley, Daniel B; Hensch, Takao K

    2011-01-01

    connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene......-targeted deletion of a forebrain-specific cell-adhesion molecule (Icam5) accelerated plasticity in this critical period. Consistent with its normal role of slowing spinogenesis, loss of Icam5 induced precocious stubby spine maturation on pyramidal cell dendrites in neocortical layer 4 (L4), identifying a primary...

  19. CAVERNOUS HEMANGIOMA OF THE INTERNAL AUDITORY CANAL

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Hekmatara

    1993-06-01

    Full Text Available Cavernous hemangioma is a rare benign tumor of the internal auditory canal (IAC of which fourteen cases have been reported so far."nTinnitus and progressive sensorineural hearing loss (SNHL are the chief complaints of the patients. Audiological and radiological planes, CTScan, and magnetic resonance image (MRI studies are helpful in diagnosis. The only choice of treatment is surgery with elective transmastoid trans¬labyrinthine approach. And if tumor is very large, the method of choice will be retrosigmoid approach.

  20. INFLUENCE ON VESTIBULAR FUNCTION BY AUDITORY NEUROPATHY

    Institute of Scientific and Technical Information of China (English)

    WANG Jingmiao; JIANG Xinxia; SHAN Chunguang

    2013-01-01

    Objective The main purpose of the present study was to describe the vestibular function in patients with auditory neuropathy (AN), and to assess their ability to maintain balance. Methods Vestibular function tests were performed on 32 patients with AN and 36 normal subjects including electronystagmopraphy(ENG) and static postrography(SPG). The results from the two groups were compared. Results Equilibrium function in patients with AN, was abnormal, compared to normal subjects. Conclusion Vestibular function tests, espe-cially static postrography, should be performed on patients with AN.

  1. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  2. From ear to hand: the role of the auditory-motor loop in pointing to an auditory source

    Science.gov (United States)

    Boyer, Eric O.; Babayan, Bénédicte M.; Bevilacqua, Frédéric; Noisternig, Markus; Warusfel, Olivier; Roby-Brami, Agnes; Hanneton, Sylvain; Viaud-Delmon, Isabelle

    2013-01-01

    Studies of the nature of the neural mechanisms involved in goal-directed movements tend to concentrate on the role of vision. We present here an attempt to address the mechanisms whereby an auditory input is transformed into a motor command. The spatial and temporal organization of hand movements were studied in normal human subjects as they pointed toward unseen auditory targets located in a horizontal plane in front of them. Positions and movements of the hand were measured by a six infrared camera tracking system. In one condition, we assessed the role of auditory information about target position in correcting the trajectory of the hand. To accomplish this, the duration of the target presentation was varied. In another condition, subjects received continuous auditory feedback of their hand movement while pointing to the auditory targets. Online auditory control of the direction of pointing movements was assessed by evaluating how subjects reacted to shifts in heard hand position. Localization errors were exacerbated by short duration of target presentation but not modified by auditory feedback of hand position. Long duration of target presentation gave rise to a higher level of accuracy and was accompanied by early automatic head orienting movements consistently related to target direction. These results highlight the efficiency of auditory feedback processing in online motor control and suggest that the auditory system takes advantages of dynamic changes of the acoustic cues due to changes in head orientation in order to process online motor control. How to design an informative acoustic feedback needs to be carefully studied to demonstrate that auditory feedback of the hand could assist the monitoring of movements directed at objects in auditory space. PMID:23626532

  3. Auditory perceptual simulation: Simulating speech rates or accents?

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. PMID:27177077

  4. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  5. Auditory Processing Theories of Language Disorders: Past, Present, and Future

    Science.gov (United States)

    Miller, Carol A.

    2011-01-01

    Purpose: The purpose of this article is to provide information that will assist readers in understanding and interpreting research literature on the role of auditory processing in communication disorders. Method: A narrative review was used to summarize and synthesize the literature on auditory processing deficits in children with auditory…

  6. Quantification of the auditory startle reflex in children

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; van der Meer, Johan N.; Koelman, Johannes H. T. M.; Boeree, Thijs; Bour, Lo; Tijssen, Marina A. J.

    2009-01-01

    Objective: To find an adequate tool to assess the auditory startle reflex (ASR) in children. Methods: We investigated the effect of stimulus repetition, gender and age on several quantifications of the ASR. ASR's were elicited by eight consecutive auditory stimuli in 27 healthy children. Electromyog

  7. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    Science.gov (United States)

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  8. Effect of Auditory Interference on Memory of Haptic Perceptions.

    Science.gov (United States)

    Anater, Paul F.

    1980-01-01

    The effect of auditory interference on the processing of haptic information by 61 visually impaired students (8 to 20 years old) was the focus of the research described in this article. It was assumed that as the auditory interference approximated the verbalized activity of the haptic task, accuracy of recall would decline. (Author)

  9. A Pilot Study of Auditory Integration Training in Autism.

    Science.gov (United States)

    Rimland, Bernard; Edelson, Stephen M.

    1995-01-01

    The effectiveness of Auditory Integration Training (AIT) in 8 autistic individuals (ages 4-21) was evaluated using repeated multiple criteria assessment over a 3-month period. Compared to matched controls, subjects' scores improved on the Aberrant Behavior Checklist and Fisher's Auditory Problems Checklist. AIT did not decrease sound sensitivity.…

  10. Statistical representation of sound textures in the impaired auditory system

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2015-01-01

    homogenous sounds such as rain, birds, or fire. It has been suggested that sound texture perception is mediated by time-averaged statistics measured from early auditory representations (McDermott et al., 2013). Changes to early auditory processing, such as broader “peripheral” filters or reduced compression...

  11. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a bas

  12. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  13. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  14. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    Science.gov (United States)

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  15. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  16. Auditory Processing Learning Disability, Suicidal Ideation, and Transformational Faith

    Science.gov (United States)

    Bailey, Frank S.; Yocum, Russell G.

    2015-01-01

    The purpose of this personal experience as a narrative investigation is to describe how an auditory processing learning disability exacerbated--and how spirituality and religiosity relieved--suicidal ideation, through the lived experiences of an individual born and raised in the United States. The study addresses: (a) how an auditory processing…

  17. Loudspeaker-based room auralization in auditory perception research

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Favrot, Sylvain Emmanuel

    2010-01-01

    , and aided-impaired auditory system in realistic environments and (ii) a framework to evaluate the effect of different room modeling and auralisation methods on auditory perception. The applicability of such environment is demonstrated using different objective room acoustic measures. Different experimental...... results are presented, including measures of distance perception and the effect of early reflections on speech intelligibility....

  18. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James;

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory-nerve ...

  19. Subdividing the beat: auditory and motor contributions to synchronization

    NARCIS (Netherlands)

    Loehr, J.D.; Palmer, C.

    2009-01-01

    THE CURRENT STUDY EXAMINED HOW AUDITORY AND kinematic information influenced pianists' ability to synchronize musical sequences with a metronome. Pianists performed melodies in which quarter-note beats were subdivided by intervening eighth notes that resulted from auditory information (heard tones),

  20. Deactivation of the Parahippocampal Gyrus Preceding Auditory Hallucinations in Schizophrenia

    NARCIS (Netherlands)

    Diederen, Kelly M. J.; Neggers, Sebastiaan F. W.; Daalman, Kirstin; Blom, Jan Dirk; Goekoop, Rutger; Kahn, Rene S.; Sommer, Iris E. C.

    2010-01-01

    Objective: Activation in a network of language-related regions has been reported during auditory verbal hallucinations. It remains unclear, however, how this activation is triggered. Identifying brain regions that show significant signal changes preceding auditory hallucinations might reveal the ori

  1. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to age-m

  2. Comparison of auditory hallucinations across different disorders and syndromes

    NARCIS (Netherlands)

    Sommer, Iris E. C.; Koops, Sanne; Blom, Jan Dirk

    2012-01-01

    Auditory hallucinations can be experienced in the context of many different disorders and syndromes. The differential diagnosis basically rests on the presence or absence of accompanying symptoms. In terms of clinical relevance, the most important distinction to be made is between auditory hallucina

  3. Auditory-Visual Transfer in Four-Month-Old Infants.

    Science.gov (United States)

    Mendelson, Morton J.; Ferland, Mark B.

    1982-01-01

    Twenty-seven 4-month-old infants heard a repetitive auditory rhythm, then viewed silent film of puppet opening/closing its mouth, either in the familiar rhythm or a novel rhythm. Results showed infants exposed to the novel condition watched the film longer than infants shown the familiar condition, providing evidence for auditory-visual transfer…

  4. A Time-Frequency Auditory Model Using Wavelet Packets

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1996-01-01

    A time-frequency auditory model is presented. The model uses the wavelet packet analysis as the preprocessor. The auditory filters are modelled by the rounded exponential filters, and the excitation is smoothed by a window function. By comparing time-frequency excitation patterns it is shown...

  5. Auditory perceptual simulation: Simulating speech rates or accents?

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects.

  6. Auditory Dysfunction and Its Communicative Impact in the Classroom.

    Science.gov (United States)

    Friedrich, Brad W.

    1982-01-01

    The origins and nature of auditory dysfunction in school age children and the role of the audiologist in the evaluation of the learning disabled child are reviewed. Specific structures and mechanisms responsible for the reception and perception of auditory signals are specified. (Author/SEW)

  7. Preparation and Culture of Chicken Auditory Brainstem Slices

    OpenAIRE

    Sanchez, Jason T.; Seidl, Armin H.; Rubel, Edwin W.; Barria, Andres

    2011-01-01

    The chicken auditory brainstem is a well-established model system that has been widely used to study the anatomy and physiology of auditory processing at discreet periods of development 1-4 as well as mechanisms for temporal coding in the central nervous system 5-7.

  8. Auditory signal design for automatic number plate recognition system

    NARCIS (Netherlands)

    Heydra, C.G.; Jansen, R.J.; Van Egmond, R.

    2014-01-01

    This paper focuses on the design of an auditory signal for the Automatic Number Plate Recognition system of Dutch national police. The auditory signal is designed to alert police officers of suspicious cars in their proximity, communicating priority level and location of the suspicious car and takin

  9. Prolonged maturation of auditory perception and learning in gerbils.

    Science.gov (United States)

    Sarro, Emma C; Sanes, Dan H

    2010-08-01

    In humans, auditory perception reaches maturity over a broad age range, extending through adolescence. Despite this slow maturation, children are considered to be outstanding learners, suggesting that immature perceptual skills might actually be advantageous to improvement on an acoustic task as a result of training (perceptual learning). Previous non-human studies have not employed an identical task when comparing perceptual performance of young and mature subjects, making it difficult to assess learning. Here, we used an identical procedure on juvenile and adult gerbils to examine the perception of amplitude modulation (AM), a stimulus feature that is an important component of most natural sounds. On average, Adult animals could detect smaller fluctuations in amplitude (i.e., smaller modulation depths) than Juveniles, indicating immature perceptual skills in Juveniles. However, the population variance was much greater for Juveniles, a few animals displaying adult-like AM detection. To determine whether immature perceptual skills facilitated learning, we compared naïve performance on the AM detection task with the amount of improvement following additional training. The amount of improvement in Adults correlated with naïve performance: those with the poorest naïve performance improved the most. In contrast, the naïve performance of Juveniles did not predict the amount of learning. Those Juveniles with immature AM detection thresholds did not display greater learning than Adults. Furthermore, for several of the Juveniles with adult-like thresholds, AM detection deteriorated with repeated testing. Thus, immature perceptual skills in young animals were not associated with greater learning. PMID:20506133

  10. Overview of Central Auditory Processing Deficits in Older Adults.

    Science.gov (United States)

    Atcherson, Samuel R; Nagaraj, Naveen K; Kennett, Sarah E W; Levisee, Meredith

    2015-08-01

    Although there are many reported age-related declines in the human body, the notion that a central auditory processing deficit exists in older adults has not always been clear. Hearing loss and both structural and functional central nervous system changes with advancing age are contributors to how we listen, hear, and process auditory information. Even older adults with normal or near normal hearing sensitivity may exhibit age-related central auditory processing deficits as measured behaviorally and/or electrophysiologically. The purpose of this article is to provide an overview of assessment and rehabilitative approaches for central auditory processing deficits in older adults. It is hoped that the outcome of the information presented here will help clinicians with older adult patients who do not exhibit the typical auditory processing behaviors exhibited by others at the same age and with comparable hearing sensitivity all in the absence of other health-related conditions. PMID:27516715

  11. Formal auditory training in adult hearing aid users

    Directory of Open Access Journals (Sweden)

    Daniela Gil

    2010-01-01

    Full Text Available INTRODUCTION: Individuals with sensorineural hearing loss are often able to regain some lost auditory function with the help of hearing aids. However, hearing aids are not able to overcome auditory distortions such as impaired frequency resolution and speech understanding in noisy environments. The coexistence of peripheral hearing loss and a central auditory deficit may contribute to patient dissatisfaction with amplification, even when audiological tests indicate nearly normal hearing thresholds. OBJECTIVE: This study was designed to validate the effects of a formal auditory training program in adult hearing aid users with mild to moderate sensorineural hearing loss. METHODS: Fourteen bilateral hearing aid users were divided into two groups: seven who received auditory training and seven who did not. The training program was designed to improve auditory closure, figure-to-ground for verbal and nonverbal sounds and temporal processing (frequency and duration of sounds. Pre- and post-training evaluations included measuring electrophysiological and behavioral auditory processing and administration of the Abbreviated Profile of Hearing Aid Benefit (APHAB self-report scale. RESULTS: The post-training evaluation of the experimental group demonstrated a statistically significant reduction in P3 latency, improved performance in some of the behavioral auditory processing tests and higher hearing aid benefit in noisy situations (p-value < 0,05. No changes were noted for the control group (p-value <0,05. CONCLUSION: The results demonstrated that auditory training in adult hearing aid users can lead to a reduction in P3 latency, improvements in sound localization, memory for nonverbal sounds in sequence, auditory closure, figure-to-ground for verbal sounds and greater benefits in reverberant and noisy environments.

  12. The GAP-TPC

    CERN Document Server

    Rossi, B; Boiano, A; Catalanotti, S; Cocco, A G; Covone, G; Di Meo, P; Longo, G; Vanzanella, A; Walker, S; Wang, H; Wang, Y; Fiorillo, G

    2016-01-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency

  13. Auditory complaints in scuba divers: an overview.

    Science.gov (United States)

    Evens, Rachel A; Bardsley, Barry; C Manchaiah, Vinaya K

    2012-03-01

    Pre-1970s, diving was seen as a predominantly male working occupation. Since then it has become a popular hobby, with increasing access to SCUBA diving while on holiday. For a leisure activity, diving puts the auditory system at the risk of a wide variety of complaints. However, there is still insufficient consensus on the frequency of these conditions, which ultimately would require more attention from hearing-healthcare professionals. A literature search of epidemiology studies of eight auditory complaints was conducted, using both individual and large-scale diving studies, with some reference to large-scale non-diving populations . A higher incidence was found for middle ear barotrauma, eustachian tube dysfunction, and alternobaric vertigo with a high correlation among females. Comparing these findings with a non-diving population found no statistically significant difference for hearing loss or tinnitus. Increased awareness of health professionals is required, training, and implementation of the Frenzel technique would help resolve the ambiguities of the Valsalva technique underwater. PMID:23448900

  14. Happiness increases distraction by auditory deviant stimuli.

    Science.gov (United States)

    Pacheco-Unguetti, Antonia Pilar; Parmentier, Fabrice B R

    2016-08-01

    Rare and unexpected changes (deviants) in an otherwise repeated stream of task-irrelevant auditory distractors (standards) capture attention and impair behavioural performance in an ongoing visual task. Recent evidence indicates that this effect is increased by sadness in a task involving neutral stimuli. We tested the hypothesis that such effect may not be limited to negative emotions but reflect a general depletion of attentional resources by examining whether a positive emotion (happiness) would increase deviance distraction too. Prior to performing an auditory-visual oddball task, happiness or a neutral mood was induced in participants by means of the exposure to music and the recollection of an autobiographical event. Results from the oddball task showed significantly larger deviance distraction following the induction of happiness. Interestingly, the small amount of distraction typically observed on the standard trial following a deviant trial (post-deviance distraction) was not increased by happiness. We speculate that happiness might interfere with the disengagement of attention from the deviant sound back towards the target stimulus (through the depletion of cognitive resources and/or mind wandering) but help subsequent cognitive control to recover from distraction. PMID:26302716

  15. Selective attention in an insect auditory neuron.

    Science.gov (United States)

    Pollack, G S

    1988-07-01

    Previous work (Pollack, 1986) showed that an identified auditory neuron of crickets, the omega neuron, selectively encodes the temporal structure of an ipsilateral sound stimulus when a contralateral stimulus is presented simultaneously, even though the contralateral stimulus is clearly encoded when it is presented alone. The present paper investigates the physiological basis for this selective response. The selectivity for the ipsilateral stimulus is a result of the apparent intensity difference of ipsi- and contralateral stimuli, which is imposed by auditory directionality; when simultaneous presentation of stimuli from the 2 sides is mimicked by presenting low- and high-intensity stimuli simultaneously from the ipsilateral side, the neuron responds selectively to the high-intensity stimulus, even though the low-intensity stimulus is effective when it is presented alone. The selective encoding of the more intense (= ipsilateral) stimulus is due to intensity-dependent inhibition, which is superimposed on the cell's excitatory response to sound. Because of the inhibition, the stimulus with lower intensity (i.e., the contralateral stimulus) is rendered subthreshold, while the stimulus with higher intensity (the ipsilateral stimulus) remains above threshold. Consequently, the temporal structure of the low-intensity stimulus is filtered out of the neuron's spike train. The source of the inhibition is not known. It is not a consequence of activation of the omega neuron. Its characteristics are not consistent with those of known inhibitory inputs to the omega neuron.

  16. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low...

  17. Auditory Preferences of Young Children with and without Hearing Loss for Meaningful Auditory-Visual Compound Stimuli

    Science.gov (United States)

    Zupan, Barbra; Sussman, Joan E.

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…

  18. Auditory Masking Effects on Speech Fluency in Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback

    Science.gov (United States)

    Jacks, Adam; Haley, Katarina L.

    2015-01-01

    Purpose: To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not…

  19. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus;

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements. The mi...

  20. Functional studies of the human auditory cortex, auditory memory and musical hallucinations

    International Nuclear Information System (INIS)

    Objectives. 1. To determine which areas of the cerebral cortex are activated stimulating the left ear with pure tones, and what type of stimulation occurs (eg. excitatory or inhibitory) in these different areas. 2. To use this information as an initial step to develop a normal functional data base for future studies. 3. To try to determine if there is a biological substrate to the process of recalling previous auditory perceptions and if possible, suggest a locus for auditory memory. Method. Brain perfusion single photon emission computerized tomography (SPECT) evaluation was conducted: 1-2) Using auditory stimulation with pure tones in 4 volunteers with normal hearing. 3) In a patient with bilateral profound hearing loss who had auditory perception of previous musical experiences; while injected with Tc99m HMPAO while she was having the sensation of hearing a well known melody. Results. Both in the patient with auditory hallucinations and the normal controls -stimulated with pure tones- there was a statistically significant increase in perfusion in Brodmann's area 39, more intense on the right side (right to left p < 0.05). With a lesser intensity there was activation in the adjacent area 40 and there was intense activation also in the executive frontal cortex areas 6, 8, 9, and 10 of Brodmann. There was also activation of area 7 of Brodmann; an audio-visual association area; more marked on the right side in the patient and the normal stimulated controls. In the subcortical structures there was also marked activation in the patient with hallucinations in both lentiform nuclei, thalamus and caudate nuclei also more intense in the right hemisphere, 5, 4.7 and 4.2 S.D. above the mean respectively and 5, 3.3, and 3 S.D. above the normal mean in the left hemisphere respectively. Similar findings were observed in normal controls. Conclusions. After auditory stimulation with pure tones in the left ear of normal female volunteers, there is bilateral activation of area 39

  1. An Auditory BCI System for Assisting CRS-R Behavioral Assessment in Patients with Disorders of Consciousness

    Science.gov (United States)

    Xiao, Jun; Xie, Qiuyou; He, Yanbin; Yu, Tianyou; Lu, Shenglin; Huang, Ningmeng; Yu, Ronghao; Li, Yuanqing

    2016-09-01

    The Coma Recovery Scale-Revised (CRS-R) is a consistent and sensitive behavioral assessment standard for disorders of consciousness (DOC) patients. However, the CRS-R has limitations due to its dependence on behavioral markers, which has led to a high rate of misdiagnosis. Brain-computer interfaces (BCIs), which directly detect brain activities without any behavioral expression, can be used to evaluate a patient’s state. In this study, we explored the application of BCIs in assisting CRS-R assessments of DOC patients. Specifically, an auditory passive EEG-based BCI system with an oddball paradigm was proposed to facilitate the evaluation of one item of the auditory function scale in the CRS-R – the auditory startle. The results obtained from five healthy subjects validated the efficacy of the BCI system. Nineteen DOC patients participated in the CRS-R and BCI assessments, of which three patients exhibited no responses in the CRS-R assessment but were responsive to auditory startle in the BCI assessment. These results revealed that a proportion of DOC patients who have no behavioral responses in the CRS-R assessment can generate neural responses, which can be detected by our BCI system. Therefore, the proposed BCI may provide more sensitive results than the CRS-R and thus assist CRS-R behavioral assessments.

  2. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    Science.gov (United States)

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26707975

  3. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    Science.gov (United States)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  4. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Directory of Open Access Journals (Sweden)

    Georg Berding

    Full Text Available Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation. The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  5. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Science.gov (United States)

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763

  6. The Adaptation Finance Gap Report

    DEFF Research Database (Denmark)

    Environment Programme (UNEP), which laid out the concept of ‘adaptation gaps’ and outlined three such gaps: technology, finance and knowledge. The 2016 Adaptation Gap Report assesses the difference between the financial costs of adapting to climate change in developing countries and the amount of money......UNEP’s Adaptation Gap Report series focuses on Finance, Technology and Knowledge gaps in climate change adaptation. It compliments the Emissions Gap Report series, and explores the implications of failing to close the emissions gap. The report builds on a 2014 assessment by the United Nations...... actually available to meet these costs – a difference known as the “adaptation finance gap”. Like the 2014 report, the 2016 report focuses on developing countries, where adaptation capacity is often the lowest and needs the highest, and concentrates on the period up to 2050. The report identifies trends...

  7. Understanding the Tax Gap1

    OpenAIRE

    Mazur, Mark J.; Plumley, Alan H.

    2007-01-01

    The Tax Gap is defined as the difference between the amount of tax imposed by the Tax Code and the amount that is reported and paid with timely filed returns. For the federal government, the gross tax gap is estimated at $345 billion for Tax Year 2001 (after the collection of late and enforced payments, the net tax gap is estimated at $290 billion for Tax Year 2001). This paper explains the concept of the tax gap, discusses how it is estimated, and points out some limitations with the estimates.

  8. Axial gap rotating electrical machine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  9. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  10. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    Science.gov (United States)

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  11. Using an auditory sensory substitution device to augment vision: evidence from eye movements.

    Science.gov (United States)

    Wright, Thomas D; Margolis, Aaron; Ward, Jamie

    2015-03-01

    Sensory substitution devices convert information normally associated with one sense into another sense (e.g. converting vision into sound). This is often done to compensate for an impaired sense. The present research uses a multimodal approach in which both natural vision and sound-from-vision ('soundscapes') are simultaneously presented. Although there is a systematic correspondence between what is seen and what is heard, we introduce a local discrepancy between the signals (the presence of a target object that is heard but not seen) that the participant is required to locate. In addition to behavioural responses, the participants' gaze is monitored with eye-tracking. Although the target object is only presented in the auditory channel, behavioural performance is enhanced when visual information relating to the non-target background is presented. In this instance, vision may be used to generate predictions about the soundscape that enhances the ability to detect the hidden auditory object. The eye-tracking data reveal that participants look for longer in the quadrant containing the auditory target even when they subsequently judge it to be located elsewhere. As such, eye movements generated by soundscapes reveal the knowledge of the target location that does not necessarily correspond to the actual judgment made. The results provide a proof of principle that multimodal sensory substitution may be of benefit to visually impaired people with some residual vision and, in normally sighted participants, for guiding search within complex scenes. PMID:25511162

  12. Perceptual demand modulates activation of human auditory cortex in response to task-irrelevant sounds.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Mangalathu, Jain; Desai, Anjali; Binder, Jeffrey R; Liebenthal, Einat

    2013-09-01

    In the visual modality, perceptual demand on a goal-directed task has been shown to modulate the extent to which irrelevant information can be disregarded at a sensory-perceptual stage of processing. In the auditory modality, the effect of perceptual demand on neural representations of task-irrelevant sounds is unclear. We compared simultaneous ERPs and fMRI responses associated with task-irrelevant sounds across parametrically modulated perceptual task demands in a dichotic-listening paradigm. Participants performed a signal detection task in one ear (Attend ear) while ignoring task-irrelevant syllable sounds in the other ear (Ignore ear). Results revealed modulation of syllable processing by auditory perceptual demand in an ROI in middle left superior temporal gyrus and in negative ERP activity 130-230 msec post stimulus onset. Increasing the perceptual demand in the Attend ear was associated with a reduced neural response in both fMRI and ERP to task-irrelevant sounds. These findings are in support of a selection model whereby ongoing perceptual demands modulate task-irrelevant sound processing in auditory cortex.

  13. Neuronal correlates of visual and auditory alertness in the DMT and ketamine model of psychosis.

    Science.gov (United States)

    Daumann, J; Wagner, D; Heekeren, K; Neukirch, A; Thiel, C M; Gouzoulis-Mayfrank, E

    2010-10-01

    Deficits in attentional functions belong to the core cognitive symptoms in schizophrenic patients. Alertness is a nonselective attention component that refers to a state of general readiness that improves stimulus processing and response initiation. The main goal of the present study was to investigate cerebral correlates of alertness in the human 5HT(2A) agonist and N-methyl-D-aspartic acid (NMDA) antagonist model of psychosis. Fourteen healthy volunteers participated in a randomized double-blind, cross-over event-related functional magnetic resonance imaging (fMRI) study with dimethyltryptamine (DMT) and S-ketamine. A target detection task with cued and uncued trials in both the visual and the auditory modality was used. Administration of DMT led to decreased blood oxygenation level-dependent response during performance of an alertness task, particularly in extrastriate regions during visual alerting and in temporal regions during auditory alerting. In general, the effects for the visual modality were more pronounced. In contrast, administration of S-ketamine led to increased cortical activation in the left insula and precentral gyrus in the auditory modality. The results of the present study might deliver more insight into potential differences and overlapping pathomechanisms in schizophrenia. These conclusions must remain preliminary and should be explored by further fMRI studies with schizophrenic patients performing modality-specific alertness tasks.

  14. Nerve growth factor and inducible nitric oxide synthase expression in the mesencephalon and diencephalon, as well as visual- and auditory-related nervous tissues, in a macaque model of type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Qihui Luo; Wentao Liu; Jingyao Chen; Mingshu Wang; Wen Zeng; Zhengli Chen; Anchun Cheng

    2012-01-01

    The present study detected distribution and expression of nerve growth factor and inducible nitric oxide synthase in the mesencephalon and diencephalon, as well as visual- and auditory-related nervous tissues, in a macaque model of type 2 diabetes using immunohistochemistry. Results showed that nerve growth factor expression decreased, but inducible nitric oxide synthase expression increased, in the mesencephalon and diencephalon, as well as visual- and auditory- related nervous tissues. These results suggested that nerve growth factor and inducible nitric oxide synthase play an important role in regulating the development of diabetic visual- and auditory-related diseases.

  15. Auditory-perceptual learning improves speech motor adaptation in children.

    Science.gov (United States)

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  16. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  17. Functional sex differences in human primary auditory cortex

    International Nuclear Information System (INIS)

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  18. A corollary discharge maintains auditory sensitivity during sound production.

    Science.gov (United States)

    Poulet, James F A; Hedwig, Berthold

    2002-08-22

    Speaking and singing present the auditory system of the caller with two fundamental problems: discriminating between self-generated and external auditory signals and preventing desensitization. In humans and many other vertebrates, auditory neurons in the brain are inhibited during vocalization but little is known about the nature of the inhibition. Here we show, using intracellular recordings of auditory neurons in the singing cricket, that presynaptic inhibition of auditory afferents and postsynaptic inhibition of an identified auditory interneuron occur in phase with the song pattern. Presynaptic and postsynaptic inhibition persist in a fictively singing, isolated cricket central nervous system and are therefore the result of a corollary discharge from the singing motor network. Mimicking inhibition in the interneuron by injecting hyperpolarizing current suppresses its spiking response to a 100-dB sound pressure level (SPL) acoustic stimulus and maintains its response to subsequent, quieter stimuli. Inhibition by the corollary discharge reduces the neural response to self-generated sound and protects the cricket's auditory pathway from self-induced desensitization.

  19. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  20. Cochlear Responses and Auditory Brainstem Response Functions in Adults with Auditory Neuropathy/ Dys-Synchrony and Individuals with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-06-01

    Full Text Available Background and Aim: Physiologic measures of cochlear and auditory nerve function may be of assis¬tance in distinguishing between hearing disorders due primarily to auditory nerve impairment from those due primarily to cochlear hair cells dysfunction. The goal of present study was to measure of co-chlear responses (otoacoustic emissions and cochlear microphonics and auditory brainstem response in some adults with auditory neuropathy/ dys-synchrony and subjects with normal hearing. Materials and Methods: Patients were 16 adults (32 ears in age range of 14-30 years with auditory neu¬ropathy/ dys-synchrony and 16 individuals in age range of 16-30 years from both sexes. The results of transient otoacoustic emissions, cochlear microphonics and auditory brainstem response measures were compared in both groups and the effects of age, sex, ear and degree of hearing loss were studied. Results: The pure-tone average was 48.1 dB HL in auditory neuropathy/dys-synchrony group and the fre¬quency of low tone loss and flat audiograms were higher among other audiogram's shapes. Transient oto¬acoustic emissions were shown in all auditory neuropathy/dys-synchrony people except two cases and its average was near in both studied groups. The latency and amplitude of the biggest reversed co-chlear microphonics response were higher in auditory neuropathy/dys-synchrony patients than control peo¬ple significantly. The correlation between cochlear microphonics amplitude and degree of hearing loss was not significant, and age had significant effect in some cochlear microphonics measures. Audi-tory brainstem response had no response in auditory neuropathy/dys-synchrony patients even with low stim¬uli rates. Conclusion: In adults with speech understanding worsen than predicted from the degree of hearing loss that suspect to auditory neuropathy/ dys-synchrony, the frequency of low tone loss and flat audiograms are higher. Usually auditory brainstem response is absent in

  1. Counting Dark Sub-halos with Star Stream Gaps

    CERN Document Server

    Carlberg, Raymond G

    2012-01-01

    The Cold Dark Matter paradigm predicts vast numbers of dark matter sub-halos to be orbiting in galactic halos. The sub-halos are detectable through the gaps they create gaps in stellar streams. The gap-rate is an integral over the density of sub-halos, their mass function, velocity distribution and the dynamical age of the stream. The rate of visible gap creation is a function of the width of the stream. The available data for four streams: the NW stream of M31, the Pal~5 stream, the Orphan Stream and the Eastern Banded Structure, are compared to the LCDM predicted relation. We find a remarkably good agreement, although there remains much to be done to improve the quality of the result. The narrower streams require that there is a total population of order 10^5 sub-halos above 10^5 M_sun to create the gaps.

  2. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    OpenAIRE

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J.; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M.; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p

  3. Auditory tasks for assessment of sensory function and affective prosody in schizophrenia.

    Science.gov (United States)

    Petkova, Eva; Lu, Feihan; Kantrowitz, Joshua; Sanchez, Jamie L; Lehrfeld, Jonathan; Scaramello, Nayla; Silipo, Gail; DiCostanza, Joanna; Ross, Marina; Su, Zhe; Javitt, Daniel C; Butler, Pamela D

    2014-11-01

    Schizophrenia patients exhibit impairments in auditory-based social cognition, indicated by deficits in detection of prosody, such as affective prosody and basic pitch perception. However, little is known about the psychometric properties of behavioral tests used to assess these functions. The goal of this paper is to characterize the properties of prosody and pitch perception tasks and to investigate whether they can be shortened. The pitch perception test evaluated is a tone-matching task developed by Javitt and colleagues (J-TMT). The prosody test evaluated is the auditory emotion recognition task developed by Juslin and Laukka (JL-AER). The sample includes 124 schizophrenia patients (SZ) and 131 healthy controls (HC). Properties, including facility and discrimination, of each item were assessed. Effects of item characteristics (e.g., emotion) were also evaluated. Shortened versions of the tests are proposed based on facility, discrimination, and/or ability of item characteristics to discriminate between patients and controls. Test-retest reliability is high for patients and controls for both the original and short forms of the J-TMT and JL-AER. Thus, the original as well as short forms of the J-TMT and JL-AER are suggested for inclusion in clinical trials of social cognitive and perceptual treatments. The development of short forms further increases the utility of these auditory tasks in clinical trials and clinical practice. The large SZ vs. HC differences reported here also highlight the profound nature of auditory deficits and a need for remediation. PMID:25214372

  4. Near-infrared spectroscopic imaging of stimulus-related hemodynamic responses on the neonatal auditory cortices

    Science.gov (United States)

    Kotilahti, Kalle; Nissila, Ilkka; Makela, Riikka; Noponen, Tommi; Lipiainen, Lauri; Gavrielides, Nasia; Kajava, Timo; Huotilainen, Minna; Fellman, Vineta; Merilainen, Pekka; Katila, Toivo

    2005-04-01

    We have used near-infrared spectroscopy (NIRS) to study hemodynamic auditory evoked responses on 7 full-term neonates. Measurements were done simultaneously above both auditory cortices to study the distribution of speech and music processing between hemispheres using a 16-channel frequency-domain instrument. The stimulation consisted of 5-second samples of music and speech with a 25-second silent interval. In response to stimulation, a significant increase in the concentration of oxygenated hemoglobin ([HbO2]) was detected in 6 out of 7 subjects. The strongest responses in [HbO2] were seen near the measurement location above the ear on both hemispheres. The mean latency of the maximum responses was 9.42+/-1.51 s. On the left hemisphere (LH), the maximum amplitude of the average [HbO2] response to the music stimuli was 0.76+/- 0.38 μ M (mean+/-std.) and to the speech stimuli 1.00+/- 0.45 μ+/- μM. On the right hemisphere (RH), the maximum amplitude of the average [HbO2] response was 1.29+/- 0.85 μM to the music stimuli and 1.23+/- 0.93 μM to the speech stimuli. The results indicate that auditory information is processed on both auditory cortices, but LH is more concentrated to process speech than music information. No significant differences in the locations and the latencies of the maximum responses relative to the stimulus type were found.

  5. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    Science.gov (United States)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  6. Continuity of visual and auditory rhythms influences sensorimotor coordination.

    Directory of Open Access Journals (Sweden)

    Manuel Varlet

    Full Text Available People often coordinate their movement with visual and auditory environmental rhythms. Previous research showed better performances when coordinating with auditory compared to visual stimuli, and with bimodal compared to unimodal stimuli. However, these results have been demonstrated with discrete rhythms and it is possible that such effects depend on the continuity of the stimulus rhythms (i.e., whether they are discrete or continuous. The aim of the current study was to investigate the influence of the continuity of visual and auditory rhythms on sensorimotor coordination. We examined the dynamics of synchronized oscillations of a wrist pendulum with auditory and visual rhythms at different frequencies, which were either unimodal or bimodal and discrete or continuous. Specifically, the stimuli used were a light flash, a fading light, a short tone and a frequency-modulated tone. The results demonstrate that the continuity of the stimulus rhythms strongly influences visual and auditory motor coordination. Participants' movement led continuous stimuli and followed discrete stimuli. Asymmetries between the half-cycles of the movement in term of duration and nonlinearity of the trajectory occurred with slower discrete rhythms. Furthermore, the results show that the differences of performance between visual and auditory modalities depend on the continuity of the stimulus rhythms as indicated by movements closer to the instructed coordination for the auditory modality when coordinating with discrete stimuli. The results also indicate that visual and auditory rhythms are integrated together in order to better coordinate irrespective of their continuity, as indicated by less variable coordination closer to the instructed pattern. Generally, the findings have important implications for understanding how we coordinate our movements with visual and auditory environmental rhythms in everyday life.

  7. Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats.

    Science.gov (United States)

    Yang, Guang; Lobarinas, Edward; Zhang, Liyan; Turner, Jeremy; Stolzberg, Daniel; Salvi, Richard; Sun, Wei

    2007-04-01

    Neurophysiological studies of salicylate-induced tinnitus have generally been carried out under anesthesia, a condition that abolishes the perception of tinnitus and depresses neural activity. To overcome these limitations, measurement of salicylate induced tinnitus were obtained from rats using schedule induced polydipsia avoidance conditioning (SIPAC) and gap pre-pulse inhibition of acoustic startle (GPIAS). Both behavioral measures indicated that tinnitus was present after treatment with 150 and 250 mg/kg of salicylate; measurements with GPIAS indicated that the pitch of the tinnitus was near 16 kHz. Chronically implanted microwire electrode arrays were used to monitor the local field potentials and spontaneous discharge rate from multiunit clusters in the auditory cortex of awake rats before and after treatment with 150 mg/kg of salicylate. The amplitude of the local field potential elicited with 60 dB SPL tone bursts increased significantly 2h after salicylate treatment particularly at 16-20 kHz; frequencies associated with the tinnitus pitch. Field potential amplitudes had largely recovered 1-2 days post-salicylate when behavioral results showed that tinnitus was absent. The mean spontaneous spike recorded from the same multiunit cluster pre- and post-salicylate decreased from 22 spikes/s before treatment to 14 spikes/s 2h post-salicylate and recovered 1 day post-treatment. These preliminary physiology data suggest that salicylate induced tinnitus is associated with sound evoked hyperactivity in auditory cortex and spontaneous hypoactivity.

  8. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  9. Auditory pitch imagery and its relationship to musical synchronization.

    Science.gov (United States)

    Pecenka, Nadine; Keller, Peter E

    2009-07-01

    Musical ensemble performance requires precise coordination of action. To play in synchrony, ensemble musicians presumably anticipate the sounds that will be produced by their co-performers. These predictions may be based on auditory images in working memory. This study examined the contribution of auditory imagery abilities to sensorimotor synchronization (SMS) in 20 musicians. The acuity of single-tone pitch images was measured by an adjustment method and by adaptive threshold estimation. Different types of finger tapping tasks were administered to assess SMS. Auditory imagery and SMS abilities were found to be positively correlated with one another and with musical experience. PMID:19673794

  10. [Auditory guidance systems for the visually impaired people].

    Science.gov (United States)

    He, Jing; Nie, Min; Luo, Lan; Tong, Shanbao; Niu, Jinhai; Zhu, Yisheng

    2010-04-01

    Visually impaired people face many inconveniences because of the loss of vision. Therefore, scientists are trying to design various guidance systems for improving the lives of the blind. Based on sensory substitution, auditory guidance has become an interesting topic in the field of biomedical engineering. In this paper, we made a state-of-technique review of the auditory guidance system. Although there have been many technical challenges, the auditory guidance system would be a useful alternative for the visually impaired people. PMID:20481341

  11. Tiapride for the treatment of auditory hallucinations in schizophrenia

    Directory of Open Access Journals (Sweden)

    Sagar Karia

    2013-01-01

    Full Text Available Hallucinations are considered as core symptoms of psychosis by both International Classification of Diseases-10 (ICD-10 and Diagnostic and Statistical Manual for the Classification of Psychiatric Disorders - 4 th edition text revised (DSM-IV TR. The most common types of hallucinations in patients with schizophrenia are auditory in nature followed by visual hallucinations. Few patients with schizophrenia have persisting auditory hallucinations despite all other features of schizophrenia having being improved. Here, we report two cases where tiapride was useful as an add-on drug for treating persistent auditory hallucinations.

  12. Predictive uncertainty in auditory sequence processing

    DEFF Research Database (Denmark)

    Hansen, Niels Chr.; Pearce, Marcus T

    2014-01-01

    and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note......Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty—a property of listeners' prospective state of expectation prior to the onset of an event. We examine...... the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using...

  13. An analysis of auditory alphabet confusions.

    Science.gov (United States)

    Walker, M E

    1989-04-01

    The present study, using the nonhierarchical overlapping clustering algorithm MAPCLUS to fit the Shepard-Arabie (1979) ADCLUS model, attempted to derive a set of features that would accurately describe the auditory alphabet confusions present in the data matrices of Conrad (1964) and Hull (1973). Separate nine-cluster solutions accounted for 80% and 89% of the variance in the matrices, respectively. The clusters revealed that the most frequently confused letter names contained common vowels and phonetically similar consonants. Further analyses using INDCLUS, an individual differences extension of the MAPCLUS algorithm and ADCLUS model, indicated that while the patterns of errors in the two matrices were remarkably similar, some differences were also apparent. These differences reflected the differing amounts of background noise present in the two studies. PMID:2710632

  14. Discrimination of auditory stimuli during isoflurane anesthesia.

    Science.gov (United States)

    Rojas, Manuel J; Navas, Jinna A; Greene, Stephen A; Rector, David M

    2008-10-01

    Deep isoflurane anesthesia initiates a burst suppression pattern in which high-amplitude bursts are preceded by periods of nearly silent electroencephalogram. The burst suppression ratio (BSR) is the percentage of suppression (silent electroencephalogram) during the burst suppression pattern and is one parameter used to assess anesthesia depth. We investigated cortical burst activity in rats in response to different auditory stimuli presented during the burst suppression state. We noted a rapid appearance of bursts and a significant decrease in the BSR during stimulation. The BSR changes were distinctive for the different stimuli applied, and the BSR decreased significantly more when stimulated with a voice familiar to the rat as compared with an unfamiliar voice. These results show that the cortex can show differential sensory responses during deep isoflurane anesthesia.

  15. Cancer of the external auditory canal

    DEFF Research Database (Denmark)

    Nyrop, Mette; Grøntved, Aksel

    2002-01-01

    . PATIENTS: Ten women and 10 men with previously untreated primary cancer. Median age at diagnosis was 67 years (range, 31-87 years). Survival data included 18 patients with at least 2 years of follow-up or recurrence. INTERVENTION: Local canal resection or partial temporal bone resection. MAIN OUTCOME......OBJECTIVE: To evaluate the outcome of surgery for cancer of the external auditory canal and relate this to the Pittsburgh staging system used both on squamous cell carcinoma and non-squamous cell carcinoma. DESIGN: Retrospective case series of all patients who had surgery between 1979 and 2000...... MEASURE: Recurrence rate. RESULTS: Half of the patients had squamous cell carcinoma. Thirteen of the patients had stage I tumor (65%), 2 had stage II (10%), 2 had stage III (10%), and 3 had stage IV tumor (15%). Twelve patients were cured. All patients with stage I or II cancers were cured except 1...

  16. Biomedical Simulation Models of Human Auditory Processes

    Science.gov (United States)

    Bicak, Mehmet M. A.

    2012-01-01

    Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.

  17. Practiced musical style shapes auditory skills.

    Science.gov (United States)

    Vuust, Peter; Brattico, Elvira; Seppänen, Miia; Näätänen, Risto; Tervaniemi, Mari

    2012-04-01

    Musicians' processing of sounds depends highly on instrument, performance practice, and level of expertise. Here, we measured the mismatch negativity (MMN), a preattentive brain response, to six types of musical feature change in musicians playing three distinct styles of music (classical, jazz, and rock/pop) and in nonmusicians using a novel, fast, and musical sounding multifeature MMN paradigm. We found MMN to all six deviants, showing that MMN paradigms can be adapted to resemble a musical context. Furthermore, we found that jazz musicians had larger MMN amplitude than all other experimental groups across all sound features, indicating greater overall sensitivity to auditory outliers. Furthermore, we observed a tendency toward shorter latency of the MMN to all feature changes in jazz musicians compared to band musicians. These findings indicate that the characteristics of the style of music played by musicians influence their perceptual skills and the brain processing of sound features embedded in music. PMID:22524351

  18. Resting Heart Rate and Auditory Evoked Potential

    Directory of Open Access Journals (Sweden)

    Simone Fiuza Regaçone

    2015-01-01

    Full Text Available The objective of this study was to evaluate the association between rest heart rate (HR and the components of the auditory evoked-related potentials (ERPs at rest in women. We investigated 21 healthy female university students between 18 and 24 years old. We performed complete audiological evaluation and measurement of heart rate for 10 minutes at rest (heart rate monitor Polar RS800CX and performed ERPs analysis (discrepancy in frequency and duration. There was a moderate negative correlation of the N1 and P3a with rest HR and a strong positive correlation of the P2 and N2 components with rest HR. Larger components of the ERP are associated with higher rest HR.

  19. Predictive uncertainty in auditory sequence processing.

    Science.gov (United States)

    Hansen, Niels Chr; Pearce, Marcus T

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty-a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music.

  20. Predictive uncertainty in auditory sequence processing

    Directory of Open Access Journals (Sweden)

    Niels Chr. eHansen

    2014-09-01

    Full Text Available Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty - a property of listeners’ prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure.Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex. Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty. We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty. Finally, we simulate listeners’ perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature.The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music.