WorldWideScience

Sample records for auditory forebrain frequency

  1. A songbird forebrain area potentially involved in auditory ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    Auditory discrimination and learning in songbirds. 145. J. Biosci. 33(1) ... formation and/or storage. [Pinaud R and Terleph T A 2008 A songbird forebrain area potentially involved in auditory discrimination and memory formation; J. Biosci. ...... Otol. 96 101–112. Cynx J and Nottebohm F 1992 Role of gender, season, and.

  2. Male song quality modulates c-Fos expression in the auditory forebrain of the female canary.

    Science.gov (United States)

    Monbureau, Marie; Barker, Jennifer M; Leboucher, Gérard; Balthazart, Jacques

    2015-08-01

    In canaries, specific phrases of male song (sexy songs, SS) that are difficult to produce are especially attractive for females. Females exposed to SS produce more copulation displays and deposit more testosterone into their eggs than females exposed to non-sexy songs (NS). Increased expression of the immediate early genes c-Fos or zenk (a.k.a. egr-1) has been observed in the auditory forebrain of female songbirds hearing attractive songs. C-Fos immunoreactive (Fos-ir) cell numbers were quantified here in the brain of female canaries that had been collected 30min after they had been exposed for 60min to the playback of SS or NS or control white noise. Fos-ir cell numbers increased in the caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM) of SS birds as compared to controls. Song playback (pooled SS and NS) also tended to increase average Fos-ir cell numbers in the mediobasal hypothalamus (MBH) but this effect did not reach full statistical significance. At the individual level, Fos expression in CMM was correlated with its expression in NCM and in MBH but also with the frequency of calls that females produced in response to the playbacks. These data thus indicate that male songs of different qualities induce a differential metabolic activation of NCM and CMM. The correlation between activation of auditory regions and of the MBH might reflect the link between auditory stimulation and changes in behavior and reproductive physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Anatomical and Functional Organization of Inhibitory Circuits in the Songbird Auditory Forebrain

    OpenAIRE

    Jeong, Jin Kwon; Tremere, Liisa A.; Ryave, Michael J.; Vuong, Victor C.; Pinaud, Raphael

    2009-01-01

    Recent studies on the anatomical and functional organization of GABAergic networks in central auditory circuits of the zebra finch have highlighted the strong impact of inhibitory mechanisms on both the central encoding and processing of acoustic information in a vocal learning species. Most of this work has focused on the caudomedial nidopallium (NCM), a forebrain area postulated to be the songbird analogue of the mammalian auditory association cortex. NCM houses neurons with selective respo...

  4. Principles of auditory processing differ between sensory and premotor structures of the songbird forebrain.

    Science.gov (United States)

    Soyman, Efe; Vicario, David S

    2017-03-01

    Sensory and motor brain structures work in collaboration during perception. To evaluate their respective contributions, the present study recorded neural responses to auditory stimulation at multiple sites simultaneously in both the higher-order auditory area NCM and the premotor area HVC of the songbird brain in awake zebra finches (Taeniopygia guttata). Bird's own song (BOS) and various conspecific songs (CON) were presented in both blocked and shuffled sequences. Neural responses showed plasticity in the form of stimulus-specific adaptation, with markedly different dynamics between the two structures. In NCM, the response decrease with repetition of each stimulus was gradual and long-lasting and did not differ between the stimuli or the stimulus presentation sequences. In contrast, HVC responses to CON stimuli decreased much more rapidly in the blocked than in the shuffled sequence. Furthermore, this decrease was more transient in HVC than in NCM, as shown by differential dynamics in the shuffled sequence. Responses to BOS in HVC decreased more gradually than to CON stimuli. The quality of neural representations, computed as the mutual information between stimuli and neural activity, was higher in NCM than in HVC. Conversely, internal functional correlations, estimated as the coherence between recording sites, were greater in HVC than in NCM. The cross-coherence between the two structures was weak and limited to low frequencies. These findings suggest that auditory communication signals are processed according to very different but complementary principles in NCM and HVC, a contrast that may inform study of the auditory and motor pathways for human speech processing.NEW & NOTEWORTHY Neural responses to auditory stimulation in sensory area NCM and premotor area HVC of the songbird forebrain show plasticity in the form of stimulus-specific adaptation with markedly different dynamics. These two structures also differ in stimulus representations and internal

  5. Functional changes between seasons in the male songbird auditory forebrain

    Science.gov (United States)

    De Groof, Geert; Poirier, Colline; George, Isabelle; Hausberger, Martine; Van der Linden, Annemie

    2013-01-01

    Songbirds are an excellent model for investigating the perception of learned complex acoustic communication signals. Male European starlings (Sturnus vulgaris) sing throughout the year distinct types of song that bear either social or individual information. Although the relative importance of social and individual information changes seasonally, evidence of functional seasonal changes in neural response to these songs remains elusive. We thus decided to use in vivo functional magnetic resonance imaging (fMRI) to examine auditory responses of male starlings that were exposed to songs that convey different levels of information (species-specific and group identity or individual identity), both during (when mate recognition is particularly important) and outside the breeding season (when group recognition is particularly important). We report three main findings: (1) the auditory area caudomedial nidopallium (NCM), an auditory region that is analogous to the mammalian auditory cortex, is clearly involved in the processing/categorization of conspecific songs; (2) season-related change in differential song processing is limited to a caudal part of NCM; in the more rostral parts, songs bearing individual information induce higher BOLD responses than songs bearing species and group information, regardless of the season; (3) the differentiation between songs bearing species and group information and songs bearing individual information seems to be biased toward the right hemisphere. This study provides evidence that auditory processing of behaviorally-relevant (conspecific) communication signals changes seasonally, even when the spectro-temporal properties of these signals do not change. PMID:24391561

  6. A songbird forebrain area potentially involved in auditory ...

    Indian Academy of Sciences (India)

    Songbirds rely on auditory processing of natural communication signals for a number of social behaviors, including mate selection, individual recognition and the rare behavior of vocal learning – the ability to learn vocalizations through imitation of an adult model, rather than by instinct. Like mammals, songbirds possess a ...

  7. Anatomical and Functional Organization of Inhibitory Circuits in the Songbird Auditory Forebrain

    Directory of Open Access Journals (Sweden)

    Jin Kwon Jeong

    2009-01-01

    Full Text Available Recent studies on the anatomical and functional organization of GABAergic networks in central auditory circuits of the zebra finch have highlighted the strong impact of inhibitory mechanisms on both the central encoding and processing of acoustic information in a vocal learning species. Most of this work has focused on the caudomedial nidopallium (NCM, a forebrain area postulated to be the songbird analogue of the mammalian auditory association cortex. NCM houses neurons with selective responses to conspecific songs and is a site thought to house auditory memories required for vocal learning and, likely, individual identification. Here we review our recent work on the anatomical distribution of GABAergic cells in NCM, their engagement in response to song and the roles for inhibitory transmission in the physiology of NCM at rest and during the processing of natural communication signals. GABAergic cells are highly abundant in the songbird auditory forebrain and account for nearly half of the overall neuronal population in NCM with a large fraction of these neurons activated by song in freely-behaving animals. GABAergic synapses provide considerable local, tonic inhibition to NCM neurons at rest and, during sound processing, may contain the spread of excitation away from un-activated or quiescent parts of the network. Finally, we review our work showing that GABA A -mediated inhibition directly regulates the temporal organization of song-driven responses in awake songbirds, and appears to enhance the reliability of auditory encoding in NCM.

  8. Anatomical and Functional Organization of Inhibitory Circuits in the Songbird Auditory Forebrain.

    Science.gov (United States)

    Jeong, Jin Kwon; Tremere, Liisa A; Ryave, Michael J; Vuong, Victor C; Pinaud, Raphael

    2009-09-16

    Recent studies on the anatomical and functional organization of GABAergic networks in central auditory circuits of the zebra finch have highlighted the strong impact of inhibitory mechanisms on both the central encoding and processing of acoustic information in a vocal learning species. Most of this work has focused on the caudomedial nidopallium (NCM), a forebrain area postulated to be the songbird analogue of the mammalian auditory association cortex. NCM houses neurons with selective responses to conspecific songs and is a site thought to house auditory memories required for vocal learning and, likely, individual identification. Here we review our recent work on the anatomical distribution of GABAergic cells in NCM, their engagement in response to song and the roles for inhibitory transmission in the physiology of NCM at rest and during the processing of natural communication signals. GABAergic cells are highly abundant in the songbird auditory forebrain and account for nearly half of the overall neuronal population in NCM with a large fraction of these neurons activated by song in freely-behaving animals. GABAergic synapses provide considerable local, tonic inhibition to NCM neurons at rest and, during sound processing, may contain the spread of excitation away from un-activated or quiescent parts of the network. Finally, we review our work showing that GABA(A)-mediated inhibition directly regulates the temporal organization of song-driven responses in awake songbirds, and appears to enhance the reliability of auditory encoding in NCM.

  9. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  10. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain

    Directory of Open Access Journals (Sweden)

    Kim Jong H

    2011-05-01

    Full Text Available Abstract Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192 and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p. We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.

  11. Distinct Correlation Structure Supporting a Rate-Code for Sound Localization in the Owl’s Auditory Forebrain

    Science.gov (United States)

    2017-01-01

    Abstract While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space. PMID:28674698

  12. Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain.

    Science.gov (United States)

    Beckers, Gabriël J L; Gahr, Manfred

    2012-08-01

    Auditory systems bias responses to sounds that are unexpected on the basis of recent stimulus history, a phenomenon that has been widely studied using sequences of unmodulated tones (mismatch negativity; stimulus-specific adaptation). Such a paradigm, however, does not directly reflect problems that neural systems normally solve for adaptive behavior. We recorded multiunit responses in the caudomedial auditory forebrain of anesthetized zebra finches (Taeniopygia guttata) at 32 sites simultaneously, to contact calls that recur probabilistically at a rate that is used in communication. Neurons in secondary, but not primary, auditory areas respond preferentially to calls when they are unexpected (deviant) compared with the same calls when they are expected (standard). This response bias is predominantly due to sites more often not responding to standard events than to deviant events. When two call stimuli alternate between standard and deviant roles, most sites exhibit a response bias to deviant events of both stimuli. This suggests that biases are not based on a use-dependent decrease in response strength but involve a more complex mechanism that is sensitive to auditory deviance per se. Furthermore, between many secondary sites, responses are tightly synchronized, a phenomenon that is driven by internal neuronal interactions rather than by the timing of stimulus acoustic features. We hypothesize that this deviance-sensitive, internally synchronized network of neurons is involved in the involuntary capturing of attention by unexpected and behaviorally potentially relevant events in natural auditory scenes.

  13. Auditory adaptation improves tactile frequency perception

    NARCIS (Netherlands)

    Crommett, L.E.; Pérez Bellido, A.; Yau, J.M.

    2017-01-01

    Our ability to process temporal frequency information by touch underlies our capacity to perceive and discriminate surface textures. Auditory signals, which also provide extensive temporal frequency information, can systematically alter the perception of vibrations on the hand. How auditory signals

  14. Auditory streaming by phase relations between components of harmonic complexes: a comparative study of human subjects and bird forebrain neurons.

    Science.gov (United States)

    Dolležal, Lena-Vanessa; Itatani, Naoya; Günther, Stefanie; Klump, Georg M

    2012-12-01

    Auditory streaming describes a percept in which a sequential series of sounds either is segregated into different streams or is integrated into one stream based on differences in their spectral or temporal characteristics. This phenomenon has been analyzed in human subjects (psychophysics) and European starlings (neurophysiology), presenting harmonic complex (HC) stimuli with different phase relations between their frequency components. Such stimuli allow evaluating streaming by temporal cues, as these stimuli only vary in the temporal waveform but have identical amplitude spectra. The present study applied the commonly used ABA- paradigm (van Noorden, 1975) and matched stimulus sets in psychophysics and neurophysiology to evaluate the effects of fundamental frequency (f₀), frequency range (f(LowCutoff)), tone duration (TD), and tone repetition time (TRT) on streaming by phase relations of the HC stimuli. By comparing the percept of humans with rate or temporal responses of avian forebrain neurons, a neuronal correlate of perceptual streaming of HC stimuli is described. The differences in the pattern of the neurons' spike rate responses provide for a better explanation for the percept observed in humans than the differences in the temporal responses (i.e., the representation of the periodicity in the timing of the action potentials). Especially for HC stimuli with a short 40-ms duration, the differences in the pattern of the neurons' temporal responses failed to represent the patterns of human perception, whereas the neurons' rate responses showed a good match. These results suggest that differential rate responses are a better predictor for auditory streaming by phase relations than temporal responses.

  15. Neurophysiological response selectivity for conspecific songs over synthetic sounds in the auditory forebrain of non-singing female songbirds.

    Science.gov (United States)

    Hauber, Mark E; Cassey, Phillip; Woolley, Sarah M N; Theunissen, Frederic E

    2007-07-01

    Female choice plays a critical role in the evolution of male acoustic displays. Yet there is limited information on the neurophysiological basis of female songbirds' auditory recognition systems. To understand the neural mechanisms of how non-singing female songbirds perceive behaviorally relevant vocalizations, we recorded responses of single neurons to acoustic stimuli in two auditory forebrain regions, the caudal lateral mesopallium (CLM) and Field L, in anesthetized adult female zebra finches (Taeniopygia guttata). Using various metrics of response selectivity, we found consistently higher response strengths for unfamiliar conspecific songs compared to tone pips and white noise in Field L but not in CLM. We also found that neurons in the left auditory forebrain had lower response strengths to synthetics sounds, leading to overall higher neural selectivity for song in neurons of the left hemisphere. This laterality effect is consistent with previously published behavioral data in zebra finches. Overall, our results from Field L are in parallel and from CLM are in contrast with the patterns of response selectivity reported for conspecific songs over synthetic sounds in male zebra finches, suggesting some degree of sexual dimorphism of auditory perception mechanisms in songbirds.

  16. Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl.

    Science.gov (United States)

    Reches, Amit; Netser, Shai; Gutfreund, Yoram

    2010-05-19

    Neural adaptation and visual auditory integration are two well studied and common phenomena in the brain, yet little is known about the interaction between them. In the present study, we investigated a visual forebrain area in barn owls, the entopallium (E), which has been shown recently to encompass auditory responses as well. Responses of neurons to sequences of visual, auditory, and bimodal (visual and auditory together) events were analyzed. Sequences comprised two stimuli, one with a low probability of occurrence and the other with a high probability. Neurons in the E tended to respond more strongly to low probability visual stimuli than to high probability stimuli. Such a phenomenon is known as stimulus-specific adaptation (SSA) and is considered to be a neural correlate of change detection. Responses to the corresponding auditory sequences did not reveal an equivalent tendency. Interestingly, however, SSA to bimodal events was stronger than to visual events alone. This enhancement was apparent when the visual and auditory stimuli were presented from matching locations in space (congruent) but not when the bimodal stimuli were spatially incongruent. These findings suggest that the ongoing task of detecting unexpected events can benefit from the integration of visual and auditory information.

  17. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    Prediction and assessment of low-frequency noise problems requires information about the auditory filter characteristics at low-frequencies. Unfortunately, data at low-frequencies is scarce and practically no results have been published for frequencies below 100 Hz. Extrapolation of ERB results...... from previous studies suggests the filter bandwidth keeps decreasing below 100 Hz, although at a relatively lower rate than at higher frequencies. Main characteristics of the auditory filter were studied from below 100 Hz up to 1000 Hz. Center frequencies evaluated were 50, 63, 125, 250, 500, and 1000...... Hz. The notched-noise method was used, with the noise masker at 40 dB spectral density. A rounded exponential auditory filter model (roex(p,r)) was used to fit the masking data. Preliminary data on 1 subject is discussed. Considering the system as a whole (e.g. without removing the assumed middle...

  18. Experience dependence of neural responses to different classes of male songs in the primary auditory forebrain of female songbirds.

    Science.gov (United States)

    Hauber, Mark E; Woolley, Sarah M N; Cassey, Phillip; Theunissen, Frédéric E

    2013-04-15

    There is both extensive species-specificity and critical experience-dependence in the recognition of own species songs in many songbird species. For example, female zebra finches Taeniopygia guttata raised by their parents show behavioral preferences for the songs of the father over unfamiliar conspecific males and for unfamiliar songs of conspecifics over heterospecifics. Behavioral discrimination between different species' songs is also displayed by females raised without exposure to any male songs but it is diminished in females raised by heterospecific foster parents. We tested whether neural responses in the female auditory forebrain paralleled each of these known behavioral patterns in song-class discrimination. We analyzed spike rates, above background levels, recorded from single units in the L2a subregion of the field L complex of female zebra finches. In subjects raised by genetic parents, spike rates were similar to songs of fathers and unfamiliar male zebra finches, and higher to unfamiliar conspecific over unfamiliar heterospecific songs. In females raised in isolation from male songs, we also found higher spike rates to unfamiliar conspecific over heterospecific songs. In females raised by heterospecific foster parents, spike rates were similar in response to songs of the foster father and unfamiliar males of the foster species, similar between unfamiliar songs of conspecifics and the heterospecific foster species, and higher to unfamiliar songs of the foster species over a third finch species. Thus, in parallel to the experience-dependence of females' behaviors in response to different male song classes, differences in social experiences can also alter neural response patterns to male song classes in the auditory forebrain of female zebra finches. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  20. Haloperidol impairs auditory filial imprinting and modulates monoaminergic neurotransmission in an imprinting-relevant forebrain area of the domestic chick.

    Science.gov (United States)

    Gruss, M; Bock, J; Braun, K

    2003-11-01

    In vivo microdialysis and behavioural studies in the domestic chick have shown that glutamatergic as well as monoaminergic neurotransmission in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) is altered after auditory filial imprinting. In the present study, using pharmaco-behavioural and in vivo microdialysis approaches, the role of dopaminergic neurotransmission in this juvenile learning event was further evaluated. The results revealed that: (i) the systemic application of the potent dopamine receptor antagonist haloperidol (7.5 mg/kg) strongly impairs auditory filial imprinting; (ii) systemic haloperidol induces a tetrodotoxin-sensitive increase of extracellular levels of the dopamine metabolite, homovanillic acid, in the MNH, whereas the levels of glutamate, taurine and the serotonin metabolite, 5-hydroxyindole-3-acetic acid, remain unchanged; (iii) haloperidol (0.01, 0.1, 1 mm) infused locally into the MNH increases glutamate, taurine and 5- hydroxyindole-3-acetic acid levels in a dose-dependent manner, whereas homovanillic acid levels remain unchanged; (iv) systemic haloperidol infusion reinforces the N-methyl-d-aspartate receptor-mediated inhibitory modulation of the dopaminergic neurotransmission within the MNH. These results indicate that the modulation of dopaminergic function and its interaction with other neurotransmitter systems in a higher associative forebrain region of the juvenile avian brain displays similar neurochemical characteristics as the adult mammalian prefrontal cortex. Furthermore, we were able to show that the pharmacological manipulation of monoaminergic regulatory mechanisms interferes with learning and memory formation, events which in a similar fashion might occur in young or adult mammals.

  1. A Time-Frequency Auditory Model Using Wavelet Packets

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1996-01-01

    A time-frequency auditory model is presented. The model uses the wavelet packet analysis as the preprocessor. The auditory filters are modelled by the rounded exponential filters, and the excitation is smoothed by a window function. By comparing time-frequency excitation patterns it is shown...... that the change in the time-frequency excitation pattern introduced when a test tone at masked threshold is added to the masker is approximately equal to 7 dB for all types of maskers. The classic detection ratio therefore overrates the detection efficiency of the auditory system....

  2. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  3. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibres...

  4. The Study of Frequency Self Care Strategies against Auditory Hallucinations

    Directory of Open Access Journals (Sweden)

    Mahin Nadem

    2012-03-01

    Full Text Available Background: In schizophrenic clients, self-care strategies against auditory hallucinations can decrease disturbances results in hallucination. This study was aimed to assess frequency of self-care strategies against auditory hallucinations in paranoid schizophrenic patients, hospitalized in Shafa Hospital.Materials and Method: This was a descriptive study on 201 patients with paranoid schizophrenia hospitalized in psychiatry unit with convenience sampling in Rasht. The gathered data consists of two parts, first unit demographic characteristic and the second part, self- report questionnaire include 38 items about self-care strategies.Results: There were statistically significant relationship between demographic variables and knowledg effect and self-care strategies against auditory hallucinaions. Sex with phisical domain p0.07, marriage status with cognitive domain (p>0.07 and life status with behavioural domain (p>0.01. 53.2% of reported type of our auditory hallucinations were command hallucinations, furtheremore the most effective self-care strategies against auditory hallucinations were from physical domain and substance abuse (82.1% was the most effective strategies in this domain.Conclusion: The client with paranoid schizophrenia used more than physical domain strategies against auditory hallucinaions and this result highlight need those to approprait nursing intervention. Instruction and leading about selection the effective self-care strategies against auditory ha

  5. Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training

    Science.gov (United States)

    Phan, Mimi L.; Vicario, David S.

    2014-01-01

    How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions. PMID:25475353

  6. Frequency encoded auditory display of the critical tracking task

    Science.gov (United States)

    Stevenson, J.

    1984-01-01

    The use of auditory displays for selected cockpit instruments was examined. In auditory, visual, and combined auditory-visual compensatory displays of a vertical axis, critical tracking task were studied. The visual display encoded vertical error as the position of a dot on a 17.78 cm, center marked CRT. The auditory display encoded vertical error as log frequency with a six octave range; the center point at 1 kHz was marked by a 20-dB amplitude notch, one-third octave wide. Asymptotic performance on the critical tracking task was significantly better when using combined displays rather than the visual only mode. At asymptote, the combined display was slightly, but significantly, better than the visual only mode. The maximum controllable bandwidth using the auditory mode was only 60% of the maximum controllable bandwidth using the visual mode. Redundant cueing increased the rate of improvement of tracking performance, and the asymptotic performance level. This enhancement increases with the amount of redundant cueing used. This effect appears most prominent when the bandwidth of the forcing function is substantially less than the upper limit of controllability frequency.

  7. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Science.gov (United States)

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  8. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Directory of Open Access Journals (Sweden)

    Dian Zhang

    Full Text Available In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  9. Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training.

    Science.gov (United States)

    Bell, Brittany A; Phan, Mimi L; Vicario, David S

    2015-03-01

    How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions. Copyright © 2015 the American Physiological Society.

  10. Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training

    OpenAIRE

    Bell, Brittany A.; Phan, Mimi L.; Vicario, David S.

    2014-01-01

    How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response t...

  11. Effects of frequency-modulated auditory tones on the voice fundamental frequency in humans.

    Science.gov (United States)

    Sapir, S; McClean, M D; Luschei, E S

    1983-03-01

    The sensitivity of audio-laryngeal reflex pathways to sinusoidal changes in the fundamental frequency of complex auditory tones (AF0) was assessed indirectly in three young adult human subjects. The subjects sustained phonation at constant voice fundamental frequency (VF0) and voice intensity while listening to a sawtooth tone whose AF0 varied over time in a sinusoidal fashion (rates = 5-13 Hz). The subjects phonated at a low voice intensity so that the intensity of the auditory tone (80-85 dB SL) completely masked their voice. Using computer signal averaging and Fourier analysis techniques it was found that the sinusoidally modulated AF0 induced similar modulations in the VF0 signal. The VF0 modulations were extremely small in amplitude and showed large phase shifts relative to the auditory input. These findings are discussed in relation to the role of auditory feedback in phonatory control.

  12. Evidence of auditory insensitivity to vocalization frequencies in two frogs

    DEFF Research Database (Denmark)

    Goutte, Sandra; Mason, Matthew J; Christensen-Dalsgaard, Jakob

    2017-01-01

    The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing discriminat......The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing...... by their high toxicity might help to explain why calling has not yet disappeared, and that visual communication may have replaced auditory in these colourful, diurnal frogs....

  13. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas.

    Science.gov (United States)

    Henry, Kenneth S; Kale, Sushrut; Scheidt, Ryan E; Heinz, Michael G

    2011-10-01

    Noninvasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise-induced hearing loss. ABRs were recorded for 1-8 kHz tone burst stimuli both before and several weeks after 4 h of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity. Copyright © 2011 Elsevier B.V. All

  14. On the synthesis of multiple frequency tone burst stimuli for efficient high frequency auditory brainstem response.

    Science.gov (United States)

    Ellingson, Roger M; Dille, Marilyn L; Leek, Marjorie R; Fausti, Stephen A

    2008-01-01

    The development and digital waveform synthesis of a multiple-frequency tone-burst (MFTB) stimulus is presented. The stimulus is designed to improve the efficiency of monitoring high-frequency auditory-brainstem-response (ABR) hearing thresholds. The pure-tone-based, fractional-octave-bandwidth MFTB supports frequency selective ABR audiometry with a bandwidth that falls between the conventional click and single-frequency tone-burst stimuli. The MFTB is being used to identify high frequency hearing threshold change due to ototoxic medication which most generally starts at the ultra-highest hearing frequencies and progresses downwards but could be useful in general limited-bandwidth testing applications. Included is a Mathcad implementation and analysis of our MFTB synthesis technique and sample performance measurements of the MFTB stimulus configuration used in a clinical research ABR system.

  15. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...

  16. Auditory Cortex Tracks Both Auditory and Visual Stimulus Dynamics Using Low-Frequency Neuronal Phase Modulation

    Science.gov (United States)

    Luo, Huan; Liu, Zuxiang; Poeppel, David

    2010-01-01

    Integrating information across sensory domains to construct a unified representation of multi-sensory signals is a fundamental characteristic of perception in ecological contexts. One provocative hypothesis deriving from neurophysiology suggests that there exists early and direct cross-modal phase modulation. We provide evidence, based on magnetoencephalography (MEG) recordings from participants viewing audiovisual movies, that low-frequency neuronal information lies at the basis of the synergistic coordination of information across auditory and visual streams. In particular, the phase of the 2–7 Hz delta and theta band responses carries robust (in single trials) and usable information (for parsing the temporal structure) about stimulus dynamics in both sensory modalities concurrently. These experiments are the first to show in humans that a particular cortical mechanism, delta-theta phase modulation across early sensory areas, plays an important “active” role in continuously tracking naturalistic audio-visual streams, carrying dynamic multi-sensory information, and reflecting cross-sensory interaction in real time. PMID:20711473

  17. Air and Bone Conduction Frequency-specific Auditory Brainstem Response in Children with Agenesis of the External Auditory Canal.

    Science.gov (United States)

    Sleifer, Pricila; Didoné, Dayane Domeneghini; Keppeler, Ísis Bicca; Bueno, Claudine Devicari; Riesgo, Rudimar Dos Santos

    2017-10-01

    Introduction  The tone-evoked auditory brainstem responses (tone-ABR) enable the differential diagnosis in the evaluation of children until 12 months of age, including those with external and/or middle ear malformations. The use of auditory stimuli with frequency specificity by air and bone conduction allows characterization of hearing profile. Objective  The objective of our study was to compare the results obtained in tone-ABR by air and bone conduction in children until 12 months, with agenesis of the external auditory canal. Method  The study was cross-sectional, observational, individual, and contemporary. We conducted the research with tone-ABR by air and bone conduction in the frequencies of 500 Hz and 2000 Hz in 32 children, 23 boys, from one to 12 months old, with agenesis of the external auditory canal. Results  The tone-ABR thresholds were significantly elevated for air conduction in the frequencies of 500 Hz and 2000 Hz, while the thresholds of bone conduction had normal values in both ears. We found no statistically significant difference between genders and ears for most of the comparisons. Conclusion  The thresholds obtained by bone conduction did not alter the thresholds in children with conductive hearing loss. However, the conductive hearing loss alter all thresholds by air conduction. The tone-ABR by bone conduction is an important tool for assessing cochlear integrity in children with agenesis of the external auditory canal under 12 months.

  18. Basal forebrain activation enhances between-trial reliability of low-frequency local field potentials (LFP) and spiking activity in tree shrew primary visual cortex (V1).

    Science.gov (United States)

    De Luna, Paolo; Veit, Julia; Rainer, Gregor

    2017-12-01

    Brain state has profound effects on neural processing and stimulus encoding in sensory cortices. While the synchronized state is dominated by low-frequency local field potential (LFP) activity, low-frequency LFP power is suppressed in the desynchronized state, where a concurrent enhancement in gamma power is observed. Recently, it has been shown that cortical desynchronization co-occurs with enhanced between-trial reliability of spiking activity in sensory neurons, but it is currently unclear whether this effect is also evident in LFP signals. Here, we address this question by recording both spike trains and LFP in primary visual cortex during natural movie stimulation, and using isoflurane anesthesia and basal forebrain (BF) electrical activation as proxies for synchronized and desynchronized brain states. We show that indeed, low-frequency LFP modulations ("LFP events") also occur more reliably following BF activation. Interestingly, while being more reliable, these LFP events are smaller in amplitude compared to those generated in the synchronized brain state. We further demonstrate that differences in reliability of spiking activity between cortical states can be linked to amplitude and probability of LFP events. The correlated temporal dynamics between low-frequency LFP and spiking response reliability in visual cortex suggests that these effects may both be the result of the same neural circuit activation triggered by BF stimulation, which facilitates switching between processing of incoming sensory information in the desynchronized and reverberation of internal signals in the synchronized state.

  19. Functional MRI of auditory responses in the zebra finch forebrain reveals a hierarchical organisation based on signal strength but not selectivity.

    Directory of Open Access Journals (Sweden)

    Tiny Boumans

    Full Text Available BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM, show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory

  20. Electrically-evoked frequency-following response (EFFR) in the auditory brainstem of guinea pigs.

    Science.gov (United States)

    He, Wenxin; Ding, Xiuyong; Zhang, Ruxiang; Chen, Jing; Zhang, Daoxing; Wu, Xihong

    2014-01-01

    It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.

  1. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  2. Auditory cortical areas activated by slow frequency-modulated sounds in mice.

    Directory of Open Access Journals (Sweden)

    Yuusuke Honma

    Full Text Available Species-specific vocalizations in mice have frequency-modulated (FM components slower than the lower limit of FM direction selectivity in the core region of the mouse auditory cortex. To identify cortical areas selective to slow frequency modulation, we investigated tonal responses in the mouse auditory cortex using transcranial flavoprotein fluorescence imaging. For differentiating responses to frequency modulation from those to stimuli at constant frequencies, we focused on transient fluorescence changes after direction reversal of temporally repeated and superimposed FM sweeps. We found that the ultrasonic field (UF in the belt cortical region selectively responded to the direction reversal. The dorsoposterior field (DP also responded weakly to the reversal. Regarding the responses in UF, no apparent tonotopic map was found, and the right UF responses were significantly larger in amplitude than the left UF responses. The half-max latency in responses to FM sweeps was shorter in UF compared with that in the primary auditory cortex (A1 or anterior auditory field (AAF. Tracer injection experiments in the functionally identified UF and DP confirmed that these two areas receive afferent inputs from the dorsal part of the medial geniculate nucleus (MG. Calcium imaging of UF neurons stained with fura-2 were performed using a two-photon microscope, and the presence of UF neurons that were selective to both direction and direction reversal of slow frequency modulation was demonstrated. These results strongly suggest a role for UF, and possibly DP, as cortical areas specialized for processing slow frequency modulation in mice.

  3. Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Christoforidis, Dimitrios; Dau, Torsten

    2009-01-01

    for some of the HI listeners. The behavioral auditory-filter bandwidths accounted for the across-listener variability in the ABR latencies: Cochlear response time decreased with increasing filter bandwidth, consistent with linear-system theory. The results link cochlear response time and frequency...... response times. For the same listeners, auditory-filter bandwidths at 2 kHz were estimated using a behavioral notched-noise masking paradigm. Generally, shorter derived-band latencies were observed for the HI than for the NH listeners. Only at low click sensation levels, prolonged latencies were obtained...

  4. Modulation-frequency-specific adaptation in awake auditory cortex.

    Science.gov (United States)

    Malone, Brian J; Beitel, Ralph E; Vollmer, Maike; Heiser, Marc A; Schreiner, Christoph E

    2015-04-15

    Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical "modulation masking," in which the presentation of a modulated "masker" signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. Copyright © 2015 the authors 0270-6474/15/355904-13$15.00/0.

  5. Broadened population-level frequency tuning in the auditory cortex of tinnitus patients.

    Science.gov (United States)

    Sekiya, Kenichi; Takahashi, Mariko; Murakami, Shingo; Kakigi, Ryusuke; Okamoto, Hidehiko

    2017-03-01

    Tinnitus is a phantom auditory perception without an external sound source and is one of the most common public health concerns that impair the quality of life of many individuals. However, its neural mechanisms remain unclear. We herein examined population-level frequency tuning in the auditory cortex of unilateral tinnitus patients with similar hearing levels in both ears using magnetoencephalography. We compared auditory-evoked neural activities elicited by a stimulation to the tinnitus and nontinnitus ears. Objective magnetoencephalographic data suggested that population-level frequency tuning corresponding to the tinnitus ear was significantly broader than that corresponding to the nontinnitus ear in the human auditory cortex. The results obtained support the hypothesis that pathological alterations in inhibitory neural networks play an important role in the perception of subjective tinnitus.NEW & NOTEWORTHY Although subjective tinnitus is one of the most common public health concerns that impair the quality of life of many individuals, no standard treatment or objective diagnostic method currently exists. We herein revealed that population-level frequency tuning was significantly broader in the tinnitus ear than in the nontinnitus ear. The results of the present study provide an insight into the development of an objective diagnostic method for subjective tinnitus. Copyright © 2017 the American Physiological Society.

  6. Auditory Discrimination of Frequency Ratios: The Octave Singularity

    Science.gov (United States)

    Bonnard, Damien; Micheyl, Christophe; Semal, Catherine; Dauman, Rene; Demany, Laurent

    2013-01-01

    Sensitivity to frequency ratios is essential for the perceptual processing of complex sounds and the appreciation of music. This study assessed the effect of ratio simplicity on ratio discrimination for pure tones presented either simultaneously or sequentially. Each stimulus consisted of four 100-ms pure tones, equally spaced in terms of…

  7. Human Auditory Frequency-Following Responses to a Missing Fundamental

    Science.gov (United States)

    Smith, James C.; And Others

    1978-01-01

    Results support the concept that perception of a missing fundamental is based on periodic neural activity. Suggests that the pitch of the missing fundamental is mediated by elements sensitive to frequencies other than those within the band of the masking noise. (Author/MA)

  8. Evidence of auditory insensitivity to vocalization frequencies in two frogs

    DEFF Research Database (Denmark)

    Goutte, Sandra; Mason, Matthew J; Christensen-Dalsgaard, Jakob

    2017-01-01

    The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing discriminat...

  9. Auditory rehabilitation after stroke: treatment of auditory processing disorders in stroke patients with personal frequency-modulated (FM) systems.

    Science.gov (United States)

    Koohi, Nehzat; Vickers, Deborah; Chandrashekar, Hoskote; Tsang, Benjamin; Werring, David; Bamiou, Doris-Eva

    2017-03-01

    Auditory disability due to impaired auditory processing (AP) despite normal pure-tone thresholds is common after stroke, and it leads to isolation, reduced quality of life and physical decline. There are currently no proven remedial interventions for AP deficits in stroke patients. This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. Fifty stroke patients had baseline audiological assessments, AP tests and completed the (modified) Amsterdam Inventory for Auditory Disability and Hearing Handicap Inventory for Elderly questionnaires. Nine out of these 50 patients were diagnosed with disordered AP based on severe deficits in understanding speech in background noise but with normal pure-tone thresholds. These nine patients underwent spatial speech-in-noise testing in a sound-attenuating chamber (the "crescent of sound") with and without FM systems. The signal-to-noise ratio (SNR) for 50% correct speech recognition performance was measured with speech presented from 0° azimuth and competing babble from ±90° azimuth. Spatial release from masking (SRM) was defined as the difference between SNRs measured with co-located speech and babble and SNRs measured with spatially separated speech and babble. The SRM significantly improved when babble was spatially separated from target speech, while the patients had the FM systems in their ears compared to without the FM systems. Personal FM systems may substantially improve speech-in-noise deficits in stroke patients who are not eligible for conventional hearing aids. FMs are feasible in stroke patients and show promise to address impaired AP after stroke. Implications for Rehabilitation This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. All cases significantly improved speech perception in noise with the FM systems, when noise was spatially separated from the

  10. Observations on auditory learning in amplitude- and frequency-modulation rate discrimination

    DEFF Research Database (Denmark)

    Hoffmann, Pablo F.

    2010-01-01

    . One of the key issues when designing such training systems is in the assessment of transfer of learning. In this study we present data on the learning of an auditory task involving sinusoidal amplitude- and frequency-modulated tones. Modulation rate discrimination thresholds were measured during pre......-training, training, a post-training stages. During training, listeners were divided into two groups; one group trained on amplitude-modulation rate discrimination and the other group trained on frequency-modulation rate discrimination. Results will be discussed in terms of their implications for training...... applications by addressing the transfer of learning across carrier frequency, modulation rate, and modulation type....

  11. Left auditory cortex is involved in pairwise comparisons of the direction of frequency modulated tones

    Directory of Open Access Journals (Sweden)

    Nicole eAngenstein

    2013-07-01

    Full Text Available Evaluating series of complex sounds like those in speech and music requires sequential comparisons to extract task-relevant relations between subsequent sounds. With the present functional magnetic resonance imaging (fMRI study, we investigated whether sequential comparison of a specific acoustic feature within pairs of tones leads to a change in lateralized processing in the auditory cortex of humans. For this we used the active categorization of the direction (up versus down of slow frequency modulated (FM tones. Several studies suggest that this task is mainly processed in the right auditory cortex. These studies, however, tested only the categorization of the FM direction of each individual tone. In the present study we ask the question whether the right lateralized processing changes when, in addition, the FM direction is compared within pairs of successive tones. For this we use an experimental approach involving contralateral noise presentation in order to explore the contributions made by the left and right auditory cortex in the completion of the auditory task. This method has already been applied to confirm the right-lateralized processing of the FM direction of individual tones. In the present study, the subjects were required to perform, in addition, a sequential comparison of the FM-direction in pairs of tones. The results suggest a division of labor between the two hemispheres such that the FM direction of each individual tone is mainly processed in the right auditory cortex whereas the sequential comparison of this feature between tones in a pair is probably performed in the left auditory cortex.

  12. Effects of Signal-to-Noise Ratio on Auditory Cortical Frequency Processing.

    Science.gov (United States)

    Teschner, Magnus J; Seybold, Bryan A; Malone, Brian J; Hüning, Jana; Schreiner, Christoph E

    2016-03-02

    The neural mechanisms that support the robust processing of acoustic signals in the presence of background noise in the auditory system remain largely unresolved. Psychophysical experiments have shown that signal detection is influenced by the signal-to-noise ratio (SNR) and the overall stimulus level, but this relationship has not been fully characterized. We evaluated the neural representation of frequency in rat primary auditory cortex by constructing tonal frequency response areas (FRAs) in primary auditory cortex for different SNRs, tone levels, and noise levels. We show that response strength and selectivity for frequency and sound level depend on interactions between SNRs and tone levels. At low SNRs, jointly increasing the tone and noise levels reduced firing rates and narrowed FRA bandwidths; at higher SNRs, however, increasing the tone and noise levels increased firing rates and expanded bandwidths, as is usually seen for FRAs obtained without background noise. These changes in frequency and intensity tuning decreased tone level and tone frequency discriminability at low SNRs. By contrast, neither response onset latencies nor noise-driven steady-state firing rates meaningfully interacted with SNRs or overall sound levels. Speech detection performance in humans was also shown to depend on the interaction between overall sound level and SNR. Together, these results indicate that signal processing difficulties imposed by high noise levels are quite general and suggest that the neurophysiological changes we see for simple sounds generalize to more complex stimuli. Effective processing of sounds in background noise is an important feature of the mammalian auditory system and a necessary feature for successful hearing in many listening conditions. Even mild hearing loss strongly affects this ability in humans, seriously degrading the ability to communicate. The mechanisms involved in achieving high performance in background noise are not well understood. We

  13. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain

    Directory of Open Access Journals (Sweden)

    Li eShen

    2015-10-01

    Full Text Available Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA. However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron’s best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry.

  14. Broadened population-level frequency tuning in human auditory cortex of portable music player users.

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    Full Text Available Nowadays, many people use portable players to enrich their daily life with enjoyable music. However, in noisy environments, the player volume is often set to extremely high levels in order to drown out the intense ambient noise and satisfy the appetite for music. Extensive and inappropriate usage of portable music players might cause subtle damages in the auditory system, which are not behaviorally detectable in an early stage of the hearing impairment progress. Here, by means of magnetoencephalography, we objectively examined detrimental effects of portable music player misusage on the population-level frequency tuning in the human auditory cortex. We compared two groups of young people: one group had listened to music with portable music players intensively for a long period of time, while the other group had not. Both groups performed equally and normally in standard audiological examinations (pure tone audiogram, speech test, and hearing-in-noise test. However, the objective magnetoencephalographic data demonstrated that the population-level frequency tuning in the auditory cortex of the portable music player users was significantly broadened compared to the non-users, when attention was distracted from the auditory modality; this group difference vanished when attention was directed to the auditory modality. Our conclusion is that extensive and inadequate usage of portable music players could cause subtle damages, which standard behavioral audiometric measures fail to detect in an early stage. However, these damages could lead to future irreversible hearing disorders, which would have a huge negative impact on the quality of life of those affected, and the society as a whole.

  15. Volume Attenuation and High Frequency Loss as Auditory Depth Cues in Stereoscopic 3D Cinema

    Science.gov (United States)

    Manolas, Christos; Pauletto, Sandra

    2014-09-01

    Assisted by the technological advances of the past decades, stereoscopic 3D (S3D) cinema is currently in the process of being established as a mainstream form of entertainment. The main focus of this collaborative effort is placed on the creation of immersive S3D visuals. However, with few exceptions, little attention has been given so far to the potential effect of the soundtrack on such environments. The potential of sound both as a means to enhance the impact of the S3D visual information and to expand the S3D cinematic world beyond the boundaries of the visuals is large. This article reports on our research into the possibilities of using auditory depth cues within the soundtrack as a means of affecting the perception of depth within cinematic S3D scenes. We study two main distance-related auditory cues: high-end frequency loss and overall volume attenuation. A series of experiments explored the effectiveness of these auditory cues. Results, although not conclusive, indicate that the studied auditory cues can influence the audience judgement of depth in cinematic 3D scenes, sometimes in unexpected ways. We conclude that 3D filmmaking can benefit from further studies on the effectiveness of specific sound design techniques to enhance S3D cinema.

  16. Audlet Filter Banks: A Versatile Analysis/Synthesis Framework Using Auditory Frequency Scales

    Directory of Open Access Journals (Sweden)

    Thibaud Necciari

    2018-01-01

    Full Text Available Many audio applications rely on filter banks (FBs to analyze, process, and re-synthesize sounds. For these applications, an important property of the analysis–synthesis system is the reconstruction error; it has to be minimized to avoid audible artifacts. Other advantageous properties include stability and low redundancy. To exploit some aspects of auditory perception in the signal chain, some applications rely on FBs that approximate the frequency analysis performed in the auditory periphery, the gammatone FB being a popular example. However, current gammatone FBs only allow partial reconstruction and stability at high redundancies. In this article, we construct an analysis–synthesis system for audio applications. The proposed system, referred to as Audlet, is an oversampled FB with filters distributed on auditory frequency scales. It allows perfect reconstruction for a wide range of FB settings (e.g., the shape and density of filters, efficient FB design, and adaptable redundancy. In particular, we show how to construct a gammatone FB with perfect reconstruction. Experiments demonstrate performance improvements of the proposed gammatone FB when compared to current gammatone FBs in terms of reconstruction error and stability, especially at low redundancies. An application of the framework to audio source separation illustrates its utility for audio processing.

  17. Psychophysical Estimates of Frequency Discrimination: More than Just Limitations of Auditory Processing

    Directory of Open Access Journals (Sweden)

    Beate Sabisch

    2013-07-01

    Full Text Available Efficient auditory processing is hypothesized to support language and literacy development. However, behavioral tasks used to assess this hypothesis need to be robust to non-auditory specific individual differences. This study compared frequency discrimination abilities in a heterogeneous sample of adults using two different psychoacoustic task designs, referred to here as: 2I_6A_X and 3I_2AFC designs. The role of individual differences in nonverbal IQ (NVIQ, socioeconomic status (SES and musical experience in predicting frequency discrimination thresholds on each task were assessed using multiple regression analyses. The 2I_6A_X task was more cognitively demanding and hence more susceptible to differences specifically in SES and musical training. Performance on this task did not, however, relate to nonword repetition ability (a measure of language learning capacity. The 3I_2AFC task, by contrast, was only susceptible to musical training. Moreover, thresholds measured using it predicted some variance in nonword repetition performance. This design thus seems suitable for use in studies addressing questions regarding the role of auditory processing in supporting language and literacy development.

  18. A map of periodicity orthogonal to frequency representation in the cat auditory cortex

    Directory of Open Access Journals (Sweden)

    Gerald Langner

    2009-11-01

    Full Text Available Harmonic sounds, such as voiced speech sounds and many animal communication signals, are characterized by a pitch related to the periodicity of their envelopes. While frequency information is extracted by mechanical filtering of the cochlea, periodicity information is analyzed by temporal filter mechanisms in the brainstem. In the mammalian auditory midbrain envelope periodicity is represented in maps orthogonal to the representation of sound frequency. However, how periodicity is represented across the cortical surface of primary auditory cortex remains controversial. Using optical recording of intrinsic signals, we here demonstrate that a periodicity map exists in primary auditory cortex (AI of the cat. While pure tone stimulation confirmed the well-known frequency gradient along the rostro-caudal axis of AI, stimulation with harmonic sounds revealed segregated bands of activation, indicating spatially localized preferences to specific periodicities along a dorso-ventral axis, nearly orthogonal to the tonotopic gradient. Analysis of the response locations revealed an average gradient of -100° ± 10° for the periodotopic, and –12°±18° for the tonotopic map resulting in a mean angle difference of 88°. The gradients were 0.65±0.08 mm/octave for periodotopy and 1.07 ± 0.16 mm/octave for tonotopy indicating that more cortical territory is devoted to the representation of an octave along the tonotopic than along the periodotopic gradient. Our results suggest that the fundamental importance of pitch, as evident in human perception, is also reflected in the layout of cortical maps and that the orthogonal spatial organization of frequency and periodicity might be a more general cortical organization principle.

  19. Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing

    Science.gov (United States)

    Edri, Yuval; Bozovic, Dolores; Yochelis, Arik

    2016-10-01

    The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.

  20. Auditory nerve frequency tuning measured with forward-masked compound action potentials.

    Science.gov (United States)

    Verschooten, Eric; Robles, Luis; Kovačić, Damir; Joris, Philip X

    2012-12-01

    Frequency selectivity is a fundamental cochlear property. Recent studies using otoacoustic emissions and psychophysical forward masking suggest that frequency selectivity is sharper in human than in common laboratory species. This has been disputed based on reports using compound action potentials (CAPs), which reflect activity in the auditory nerve and can be measured in humans. Comparative data of CAPs, obtained with a variety of simultaneous masking protocols, have been interpreted to indicate similarity of frequency tuning across mammals and even birds. Unfortunately, there are several issues with the available CAP measurements which hamper a straightforward comparison across species. We investigate sharpness of CAP tuning in cat and chinchilla using a forward masking notched-noise paradigm--which is less confounded by cochlear nonlinearities than simultaneous masking paradigms and similar to what was used in the psychophysical study reporting sharper tuning in humans. Our parametric study, using different probe frequencies and notch widths, shows relationships consistent with those of auditory nerve fibers (ANFs). The sharpness of tuning, quantified by Q(10) factors, is negatively correlated with probe level and increases with probe frequency, but the Q(10) values are generally lower than the average trend for ANFs. Like the single fiber data, tuning for CAPs is sharper in cat than in chinchilla, but the two species are similar in the dependence of tuning on probe frequency and in the relationship between tuning in ANFs and CAP. Growth-of-maskability functions show slopes <1 indicating that with increasing probe level the probe is more susceptible to cochlear compression than the masker. The results support the use of forward-masked CAPs as an alternative measure to estimate ANF tuning and to compare frequency tuning across species.

  1. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).

    Science.gov (United States)

    Ostrowski, Tim Daniel; Stumpner, Andreas

    2010-08-01

    We asked how processing of male signals in the auditory pathway of the bush cricket Ancistrura nigrovittata (Phaneropterinae, Tettigoniidae) changes from the ear to the brain. From 37 sensory neurons in the crista acustica single elements (cells 8 or 9) have frequency tuning corresponding closely to the behavioral tuning of the females. Nevertheless, one-quarter of sensory neurons (approximately cells 9 to 18) excite the ascending neuron 1 (AN1), which is best tuned to the male's song carrier frequency. AN1 receives frequency-dependent inhibition, reducing sensitivity especially in the ultrasound. When recorded in the brain, AN1 shows slightly lower overall activity than when recorded in the prothoracic ganglion close to the spike-generating zone. This difference is significant in the ultrasonic range. The first identified local brain neuron in a bush cricket (LBN1) is described. Its dendrites overlap with some of AN1-terminations in the brain. Its frequency tuning and intensity dependence strongly suggest a direct postsynaptic connection to AN1. Spiking in LBN1 is only elicited after summation of excitatory postsynaptic potentials evoked by individual AN1-action potentials. This serves a filtering mechanism that reduces the sensitivity of LBN1 and also its responsiveness to ultrasound as compared to AN1. Consequently, spike latencies of LBN1 are long (>30 ms) despite its being a second-order interneuron. Additionally, LBN1 receives frequency-specific inhibition, most likely further reducing its responses to ultrasound. This demonstrates that frequency-specific inhibition is redundant in two directly connected interneurons on subsequent levels in the auditory system. (c) 2010 Wiley-Liss, Inc.

  2. Notched-noise embedded frequency specific chirps for objective audiometry using auditory brainstem responses

    Directory of Open Access Journals (Sweden)

    Farah I. Corona-Strauss

    2012-02-01

    Full Text Available It has been shown recently that chirp-evoked auditory brainstem responses (ABRs show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs.

  3. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners.

    Science.gov (United States)

    Park, Hyojin; Ince, Robin A A; Schyns, Philippe G; Thut, Gregor; Gross, Joachim

    2015-06-15

    Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. The impact of variation in low-frequency interaural cross correlation on auditory spatial imagery in stereophonic loudspeaker reproduction

    Science.gov (United States)

    Martens, William

    2005-04-01

    Several attributes of auditory spatial imagery associated with stereophonic sound reproduction are strongly modulated by variation in interaural cross correlation (IACC) within low frequency bands. Nonetheless, a standard practice in bass management for two-channel and multichannel loudspeaker reproduction is to mix low-frequency musical content to a single channel for reproduction via a single driver (e.g., a subwoofer). This paper reviews the results of psychoacoustic studies which support the conclusion that reproduction via multiple drivers of decorrelated low-frequency signals significantly affects such important spatial attributes as auditory source width (ASW), auditory source distance (ASD), and listener envelopment (LEV). A variety of methods have been employed in these tests, including forced choice discrimination and identification, and direct ratings of both global dissimilarity and distinct attributes. Contrary to assumptions that underlie industrial standards established in 1994 by ITU-R. Recommendation BS.775-1, these findings imply that substantial stereophonic spatial information exists within audio signals at frequencies below the 80 to 120 Hz range of prescribed subwoofer cutoff frequencies, and that loudspeaker reproduction of decorrelated signals at frequencies as low as 50 Hz can have an impact upon auditory spatial imagery. [Work supported by VRQ.

  5. Mode of recording and modulation frequency effects of auditory steady state response thresholds.

    Science.gov (United States)

    Jalaei, Bahram; Shaabani, Moslem; Zakaria, Mohd Normani

    The performance of auditory steady state response (ASSR) in threshold testing when recorded ipsilaterally and contralaterally, as well as at low and high modulation frequencies (MFs), has not been systematically studied. To verify the influences of mode of recording (ipsilateral vs. contralateral) and modulation frequency (40Hz vs. 90Hz) on ASSR thresholds. Fifteen female and 14 male subjects (aged 18-30 years) with normal hearing bilaterally were studied. Narrow-band CE-chirp(®) stimuli (centerd at 500, 1000, 2000, and 4000Hz) modulated at 40 and 90Hz MFs were presented to the participants' right ear. The ASSR thresholds were then recorded at each test frequency in both ipsilateral and contralateral channels. Due to pronounced interaction effects between mode of recording and MF (p<0.05 by two-way repeated measures ANOVA), mean ASSR thresholds were then compared among four conditions (ipsi-40Hz, ipsi-90Hz, contra-40Hz, and contra-90Hz) using one-way repeated measures ANOVA. At the 500 and 1000Hz test frequencies, contra-40Hz condition produced the lowest mean ASSR thresholds. In contrast, at high frequencies (2000 and 4000Hz), ipsi-90Hz condition revealed the lowest mean ASSR thresholds. At most test frequencies, contra-90Hz produced the highest mean ASSR thresholds. Based on the findings, the present study recommends two different protocols for an optimum threshold testing with ASSR, at least when testing young adults. This includes the use of contra-40Hz recording mode due to its promising performance in hearing threshold estimation. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Bottlenose dolphin (Tursiops truncatus) auditory brainstem responses to frequency-modulated "chirp" stimuli.

    Science.gov (United States)

    Finneran, James J; Mulsow, Jason; Jones, Ryan; Houser, Dorian S; Burkard, Robert F

    2017-08-01

    Previous studies have demonstrated that increasing-frequency chirp stimuli (up-chirps) can enhance human auditory brainstem response (ABR) amplitudes by compensating for temporal dispersion occurring along the cochlear partition. In this study, ABRs were measured in two bottlenose dolphins (Tursiops truncatus) in response to spectrally white clicks, up-chirps, and decreasing-frequency chirps (down-chirps). Chirp durations varied from 125 to 2000 μs. For all stimuli, frequency bandwidth was constant (10-180 kHz) and peak-equivalent sound pressure levels (peSPLs) were 115, 125, and 135 dB re 1 μPa. Up-chirps with durations less than ∼1000 μs generally increased ABR peak amplitudes compared to clicks with the same peSPL or energy flux spectral density level, while down-chirps with durations from above ∼250 to 500 μs decreased ABR amplitudes relative to clicks. The findings generally mirror those from human studies and suggest that the use of chirp stimuli may be an effective way to enhance broadband ABR amplitudes in larger marine mammals.

  7. Brain dynamics in the auditory Go/NoGo task as a function of EEG frequency.

    Science.gov (United States)

    Barry, Robert J; De Blasio, Frances; Rushby, Jacqueline A; Clarke, Adam R

    2010-11-01

    We examined relationships between the phase of narrow-band electroencephalographic (EEG) activity at stimulus onset and the resultant event-related potentials (ERPs) in an equiprobable auditory Go/NoGo task with a fixed SOA, in the context of a novel conceptualisation of orthogonal phase effects (cortical negativity vs. positivity, negative driving vs. positive driving, waxing vs. waning). ERP responses to each stimulus type were analysed. Prestimulus narrow-band EEG activity (in 1Hz bands from 1 to 13Hz) at Cz was assessed for each trial using FFT decomposition of the EEG data. For each frequency, the cycle at stimulus onset was used to sort trials into four phases, for which ERPs were derived from the raw EEG activity at 9 central sites. The occurrence of preferred phase-defined brain states was confirmed at a number of frequencies, crossing the traditional frequency bands. As expected, these did not differ between Go and NoGo stimuli. These preferred states were associated with more efficient processing of the stimulus, as reflected in differences in latency and amplitude of the N1 and P3 ERP components. The present results, although derived in a different paradigm by EEG decomposition methods different from those used previously, confirm the existence of preferred brain states and their impact on the efficiency of brain dynamics involved in perceptual and cognitive processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Comparisons of Stuttering Frequency during and after Speech Initiation in Unaltered Feedback, Altered Auditory Feedback and Choral Speech Conditions

    Science.gov (United States)

    Saltuklaroglu, Tim; Kalinowski, Joseph; Robbins, Mary; Crawcour, Stephen; Bowers, Andrew

    2009-01-01

    Background: Stuttering is prone to strike during speech initiation more so than at any other point in an utterance. The use of auditory feedback (AAF) has been found to produce robust decreases in the stuttering frequency by creating an electronic rendition of choral speech (i.e., speaking in unison). However, AAF requires users to self-initiate…

  9. Aerial low-frequency hearing in captive and free-ranging harbour seals (Phoca vitulina) measured using auditory brainstem responses

    NARCIS (Netherlands)

    Lucke, K.; Hastie, Gordon D.; Ternes, Kerstin; McConnell, Bernie; Moss, Simon; Russell, Deborah J.F.; Weber, Heike; Janik, Vincent M.

    2016-01-01

    The hearing sensitivity of 18 free-ranging and 10 captive harbour seals (Phoca vitulina) to aerial sounds was measured in the presence of typical environmental noise through auditory brainstem response measurements. A focus was put on the comparative hearing sensitivity at low frequencies. Low-

  10. Auditory cortical and hippocampal local-field potentials to frequency deviant tones in urethane-anesthetized rats: An unexpected role of the sound frequencies themselves.

    Science.gov (United States)

    Ruusuvirta, Timo; Lipponen, Arto; Pellinen, Eeva-Kaarina; Penttonen, Markku; Astikainen, Piia

    2015-06-01

    The human brain can automatically detect auditory changes, as indexed by the mismatch negativity of event-related potentials. The mechanisms that underlie this response are poorly understood. We recorded primary auditory cortical and hippocampal (dentate gyrus, CA1) local-field potentials to serial tones in urethane-anesthetized rats. In an oddball condition, a rare (deviant) tone (p=0.11) randomly replaced a repeated (standard) tone. The deviant tone was either lower (2200, 2700, 3200, 3700Hz) or higher (4300, 4800, 5300, 5800Hz) in frequency than the standard tone (4000Hz). In an equiprobability control condition, all nine tones were presented at random (p=0.11). Differential responses to deviant tones relative to the standard tone were found in the auditory cortex and the dentate gyrus but not in CA1. Only in the dentate gyrus, the responses were found to be standard- (i.e., oddball condition-) specific. In the auditory cortex, the sound frequencies themselves sufficed to explain their generation. These findings tentatively suggest dissociation among non-contextual afferent, contextual afferent and auditory change detection processes. Most importantly, they remind us about the importance of strict control of physical sound features in mismatch negativity studies in animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. BOLD responses to tactile stimuli in visual and auditory cortex depend on the frequency content of stimulation.

    Science.gov (United States)

    Nordmark, Per F; Pruszynski, J Andrew; Johansson, Roland S

    2012-10-01

    Although some brain areas preferentially process information from a particular sensory modality, these areas can also respond to other modalities. Here we used fMRI to show that such responsiveness to tactile stimuli depends on the temporal frequency of stimulation. Participants performed a tactile threshold-tracking task where the tip of either their left or right middle finger was stimulated at 3, 20, or 100 Hz. Whole-brain analysis revealed an effect of stimulus frequency in two regions: the auditory cortex and the visual cortex. The BOLD response in the auditory cortex was stronger during stimulation at hearable frequencies (20 and 100 Hz) whereas the response in the visual cortex was suppressed at infrasonic frequencies (3 Hz). Regardless of which hand was stimulated, the frequency-dependent effects were lateralized to the left auditory cortex and the right visual cortex. Furthermore, the frequency-dependent effects in both areas were abolished when the participants performed a visual task while receiving identical tactile stimulation as in the tactile threshold-tracking task. We interpret these findings in the context of the metamodal theory of brain function, which posits that brain areas contribute to sensory processing by performing specific computations regardless of input modality.

  12. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.

    Science.gov (United States)

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.

  13. Can Low-Frequency Repetitive Transcranial Magnetic Stimulation Really Relieve Medication-Resistant Auditory Verbal Hallucinations? Negative Results from a Large Randomized Controlled Trial

    NARCIS (Netherlands)

    Slotema, Christina W.; Blom, Jan Dirk; de Weijer, Antoin D.; Diederen, Kelly M.; Goekoop, Rutger; Looijestijn, Jasper; Daalman, Kirstin; Rijkaart, Anne-Marije; Kahn, Rene S.; Hoek, Hans W.; Sommer, Iris E. C.

    2011-01-01

    Background: Several studies have applied low-frequency repetitive transcranial magnetic stimulation (rTMS) directed at the left temporoparietal area (TP) for the treatment of auditory verbal hallucinations (AVH), but findings on efficacy are inconsistent. Furthermore, recent functional magnetic

  14. Methodological aspects in the determination of the auditory filters and critical band at low and mid-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Møller, Henrik; Pedersen, Christian Sejer

    2008-01-01

    or after the experiment, normally being applied afterwards. Due to the non-linear characteristics of the cochlear amplifier, it is arguable whether postexperimental weighting is a proper approach, or whether at low frequencies there will be any difference between pre or post stimuli weighting. Listening......In order to evaluate loudness or audibility of complex sounds, knowledge of the auditory filter characteristics is necessary. At low frequencies, where both the threshold of hearing and dynamic range become considerably frequency dependent, care must be taken to account for this both in the psycho......-acoustical model and the methodological approach. To account for variation in hearing sensitivity at low frequencies, equal loudness contours have been used to weight the stimuli accordingly. At mid and high frequencies, threshold of hearing curves have been used. These stimuli weightings can be applied before...

  15. High-frequency ex vivo ultrasound imaging of the auditory system.

    NARCIS (Netherlands)

    Brown, J.A.; Torbatian, Z.; Adamson, R.B.; Wijhe, R. Van; Pennings, R.J.E.; Lockwood, G.R.; Bance, M.L.

    2009-01-01

    A 50MHz array-based imaging system was used to obtain high-resolution images of the ear and auditory system. This previously described custom built imaging system (Brown et al. 2004a, 2004b; Brown and Lockwood 2005) is capable of 50 microm axial resolution, and lateral resolution varying from 80

  16. Nonlinear cross-frequency interactions in primary auditory cortex spectrotemporal receptive fields: a Wiener-Volterra analysis.

    Science.gov (United States)

    Pienkowski, Martin; Eggermont, Jos J

    2010-04-01

    The effects of nonlinear interactions between different sound frequencies on the responses of neurons in primary auditory cortex (AI) have only been investigated using two-tone paradigms. Here we stimulated with relatively dense, Poisson-distributed trains of tone pips (with frequency ranges spanning five octaves, 16 frequencies /octave, and mean rates of 20 or 120 pips /s), and examined within-frequency (or auto-frequency) and cross-frequency interactions in three types of AI unit responses by computing second-order "Poisson-Wiener" auto- and cross-kernels. Units were classified on the basis of their spectrotemporal receptive fields (STRFs) as "double-peaked", "single-peaked" or "peak-valley". Second-order interactions were investigated between the two bands of excitatory frequencies on double-peaked STRFs, between an excitatory band and various non-excitatory bands on single-peaked STRFs, and between an excitatory band and an inhibitory sideband on peak-valley STRFs. We found that auto-frequency interactions (i.e., those within a single excitatory band) were always characterized by a strong depression of (first-order) excitation that decayed with the interstimulus lag up to approximately 200 ms. That depression was weaker in cross-frequency compared to auto-frequency interactions for approximately 25% of dual-peaked STRFs, evidence of "combination sensitivity" for the two bands. Non-excitatory and inhibitory frequencies (on single-peaked and peak-valley STRFs, respectively) typically weakly depressed the excitatory response at short interstimulus lags (interactions with inhibitory frequencies rather than just non-excitatory ones. Finally, facilitation in single-peaked and peak-valley units decreased with increasing stimulus density. Our results indicate that the strong combination sensitivity and cross-frequency facilitation suggested by previous two-tone-paradigm studies are much less pronounced when using more temporally-dense stimuli.

  17. Response properties underlying selectivity for the rate of frequency modulated sweeps in the auditory cortex of the mouse.

    Science.gov (United States)

    Trujillo, Michael; Carrasco, Maria Magdalena; Razak, Khaleel

    2013-04-01

    This study focused on the response properties underlying selectivity for the rate of frequency modulated (FM) sweeps in the auditory cortex of anesthetized C57bl/6 (C57) mice. Linear downward FM sweeps with rates between 0.08 and 20 kHz/ms were tested. We show that at least two different response properties predict FM rate selectivity: sideband inhibition and duration tuning. Sideband inhibition was determined using the two-tone inhibition paradigm in which excitatory and inhibitory tones were presented with different delays. Sideband inhibition was present in the majority (88%, n = 53) of neurons. The spectrotemporal properties of sideband inhibition predicted rate selectivity and exclusion of the sideband from the sweep reduced/eliminated rate tuning. The second property predictive of sweep rate selectivity was duration tuning for tones. Theoretically, if a neuron is selective for the duration that a sweep spends in the excitatory frequency tuning curve, then rate selectivity will ensue. Duration tuning for excitatory tones was present and predicted rate selectivity in ∼34% of neurons (n = 97). Both sideband inhibition and duration tuning predicted rate selectivity equally well, but sideband inhibition was present in a larger percentage of neurons suggesting that it is the dominant mechanism in the C57 mouse auditory cortex. Similar mechanisms shape sweep rate selectivity in the auditory system of bats and mice and movement-velocity selectivity in the visual system, suggesting similar solutions to analogous problems across sensory systems. This study provides baseline data on basic spectrotemporal processing in the C57 strain for elucidation of changes that occur in presbycusis. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level

    Directory of Open Access Journals (Sweden)

    Berg Patrick

    2004-03-01

    Full Text Available Abstract Background Tinnitus is an auditory sensation frequently following hearing loss. After cochlear injury, deafferented neurons become sensitive to neighbouring intact edge-frequencies, guiding an enhanced central representation of these frequencies. As psychoacoustical data 123 indicate enhanced frequency discrimination ability for edge-frequencies that may be related to a reorganization within the auditory cortex, the aim of the present study was twofold: 1 to search for abnormal auditory mismatch responses in tinnitus sufferers and 2 relate these to subjective indicators of tinnitus. Results Using EEG-mismatch negativity, we demonstrate abnormalities (N = 15 in tinnitus sufferers that are specific to frequencies located at the audiometrically normal lesion-edge as compared to normal hearing controls (N = 15. Groups also differed with respect to the cortical locations of mismatch responsiveness. Sources in the 90–135 ms latency window were generated in more anterior brain regions in the tinnitus group. Both measures of abnormality correlated with emotional-cognitive distress related to tinnitus (r ~ .76. While these two physiological variables were uncorrelated in the control group, they were correlated in the tinnitus group (r = .72. Concerning relationships with parameters of hearing loss (depth and slope, slope turned out to be an important variable. Generally, the steeper the hearing loss is the less distress related to tinnitus was reported. The associations between slope and the relevant neurophysiological variables are in agreement with this finding. Conclusions The present study is the first to show near-to-complete separation of tinnitus sufferers from a normal hearing control group based on neurophysiological variables. The finding of lesion-edge specific effects and associations with slope of hearing loss corroborates the assumption that hearing loss is the basis for tinnitus development. It is likely that some central

  19. Systematic Review of the Effectiveness of Frequency Modulation Devices in Improving Academic Outcomes in Children With Auditory Processing Difficulties.

    Science.gov (United States)

    Reynolds, Stacey; Miller Kuhaneck, Heather; Pfeiffer, Beth

    2016-01-01

    This systematic review describes the published evidence related to the effectiveness of frequency modulation (FM) devices in improving academic outcomes in children with auditory processing difficulties. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses standards were used to identify articles published between January 2003 and March 2014. The Cochrane Population, Intervention, Control, Outcome, Study Design approach and the American Occupational Therapy Association process forms were used to guide the article selection and evaluation process. Of the 83 articles screened, 7 matched the systematic review inclusion criteria. Findings were consistently positive, although limitations were identified. Results of this review indicate moderate support for the use of FM devices to improve children's ability to listen and attend in the classroom and mixed evidence to improve specific academic performance areas. FM technology should be considered for school-age children with auditory processing impairments who are receiving occupational therapy services to improve functioning in the school setting. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  20. The neural code for auditory space depends on sound frequency and head size in an optimal manner.

    Directory of Open Access Journals (Sweden)

    Nicol S Harper

    Full Text Available A major cue to the location of a sound source is the interaural time difference (ITD-the difference in sound arrival time at the two ears. The neural representation of this auditory cue is unresolved. The classic model of ITD coding, dominant for a half-century, posits that the distribution of best ITDs (the ITD evoking a neuron's maximal response is unimodal and largely within the range of ITDs permitted by head-size. This is often interpreted as a place code for source location. An alternative model, based on neurophysiology in small mammals, posits a bimodal distribution of best ITDs with exquisite sensitivity to ITDs generated by means of relative firing rates between the distributions. Recently, an optimal-coding model was proposed, unifying the disparate features of these two models under the framework of efficient coding by neural populations. The optimal-coding model predicts that distributions of best ITDs depend on head size and sound frequency: for high frequencies and large heads it resembles the classic model, for low frequencies and small head sizes it resembles the bimodal model. The optimal-coding model makes key, yet unobserved, predictions: for many species, including humans, both forms of neural representation are employed, depending on sound frequency. Furthermore, novel representations are predicted for intermediate frequencies. Here, we examine these predictions in neurophysiological data from five mammalian species: macaque, guinea pig, cat, gerbil and kangaroo rat. We present the first evidence supporting these untested predictions, and demonstrate that different representations appear to be employed at different sound frequencies in the same species.

  1. Relationship between pure tone audiometry and tone burst auditory brainstem response at low frequencies gated with Blackman window.

    Science.gov (United States)

    Canale, Andrea; Dagna, Federico; Lacilla, Michelangelo; Piumetto, Elena; Albera, Roberto

    2012-03-01

    To assess the reliability of Blackman windowed tone burst auditory brainstem response (ABR) as a predictor of hearing threshold at low frequencies. Fifty-six subjects were divided in to three groups (normal hearing, conductive hearing loss, sensorineural hearing loss) after pure tone audiometry (PTA) testing. Then they underwent tone burst ABR using Blackman windowed stimuli at 0.5 kHz and 1 kHz. Results were compared with PTA threshold. Mean threshold differences between PTA and ABR ranged between 11 dB at 0.5 kHz and 14 dB at 1 kHz. ABR threshold was worse than PTA in each but 2 cases. Mean discrepancy between the two thresholds was about 20 dB in normal hearing, reducing in presence of hearing loss, without any differences in conductive and sensorineural cases. Tone burst ABR is a good predictor of hearing threshold at low frequencies, in case of suspected hearing loss. Further studies are recommended to evaluate an ipsilateral masking such as notched noise to ensure greater frequency specificity.

  2. Comment on "An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity" [J. Acoust. Soc. Am. 114, 2112-21171 (L)

    NARCIS (Netherlands)

    Duifhuis, H

    This letter concerns the paper "An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity" [E. A. Lopez-Poveda, J. Acoust. Soc. Am. 114, 2112-2117 (2003)]. It proposes a correction of the historical framework in which the paper is presented.

  3. Envelope contributions to the representation of interaural time difference in the forebrain of barn owls.

    Science.gov (United States)

    Tellers, Philipp; Lehmann, Jessica; Führ, Hartmut; Wagner, Hermann

    2017-09-01

    Birds and mammals use the interaural time difference (ITD) for azimuthal sound localization. While barn owls can use the ITD of the stimulus carrier frequency over nearly their entire hearing range, mammals have to utilize the ITD of the stimulus envelope to extend the upper frequency limit of ITD-based sound localization. ITD is computed and processed in a dedicated neural circuit that consists of two pathways. In the barn owl, ITD representation is more complex in the forebrain than in the midbrain pathway because of the combination of two inputs that represent different ITDs. We speculated that one of the two inputs includes an envelope contribution. To estimate the envelope contribution, we recorded ITD response functions for correlated and anticorrelated noise stimuli in the barn owl's auditory arcopallium. Our findings indicate that barn owls, like mammals, represent both carrier and envelope ITDs of overlapping frequency ranges, supporting the hypothesis that carrier and envelope ITD-based localization are complementary beyond a mere extension of the upper frequency limit.NEW & NOTEWORTHY The results presented in this study show for the first time that the barn owl is able to extract and represent the interaural time difference (ITD) information conveyed by the envelope of a broadband acoustic signal. Like mammals, the barn owl extracts the ITD of the envelope and the carrier of a signal from the same frequency range. These results are of general interest, since they reinforce a trend found in neural signal processing across different species. Copyright © 2017 the American Physiological Society.

  4. Dichotic multiple-frequency auditory steady-state responses in evaluating the hearing thresholds of occupational noise-exposed workers

    Directory of Open Access Journals (Sweden)

    Ruey-Fen Hsu

    2011-08-01

    Full Text Available An objective, fast, and reasonably accurate assessment test that allows for easy interpretation of the responses of the hearing thresholds at all frequencies of a conventional audiogram is needed to resolve the medicolegal aspects of an occupational hearing injury. This study evaluated the use of dichotic multiple-frequency auditory steady-state responses (Mf-ASSR to predict the hearing thresholds in workers exposed to high levels of noise. The study sample included 34 workers with noise-induced hearing impairment. Thresholds of pure-tone audiometry (PTA and Mf-ASSRs at four frequencies were assessed. The differences and correlations between the thresholds of Mf-ASSRs and PTA were determined. The results showed that, on average, Mf-ASSR curves corresponded well with the thresholds of the PTA contours averaged across subjects. The Mf-ASSRs were 20±8 dB, 16±9 dB, 12±9 dB, and 11±12 dB above the thresholds of the PTA for 500 Hz, 1,000 Hz, 2,000 Hz, and 4,000 Hz, respectively. The thresholds of the PTA and the Mf-ASSRs were significantly correlated (r=0.77–0.89. We found that the measurement of Mf-ASSRs is easy and potentially time saving, provides a response at all dichotic multiple frequencies of the conventional audiogram, reduces variability in the interpretation of the responses, and correlates well with the behavioral hearing thresholds in subjects with occupational noise-induced hearing impairment. Mf-ASSR can be a valuable aid in the adjustment of compensation cases.

  5. Auditory perceptual efficacy of nonlinear frequency compression used in hearing aids: A review

    Directory of Open Access Journals (Sweden)

    Yitao Mao

    2017-09-01

    Full Text Available Many patients with sensorineural hearing loss have a precipitous high-frequency loss with relatively good thresholds in the low frequencies. This present paper briefly introduces and compares the basic principles of four types of frequency lowering algorithms with emphasis on nonlinear frequency compression (NLFC. A review of the effects of the NLFC algorithm on speech and music perception and sound quality appraisal is then provided. For vowel perception, it seems that the benefits provided by NLFC are limited, which are probably related to the parameter settings of the compression. For consonant perception, several studies have shown that NLFC provides improved perception of high-frequency consonants such as /s/ and /z/. However, a few other studies have demonstrated negative results in consonant perception. In terms of sentence recognition, persistent use of NLFC might provide improved performance. Compared to the conventional processing, NLFC does not alter the speech sound quality appraisal and music perception as long as the compression setting is not too aggressive. In the subsequent section, the relevant factors with regard to NLFC settings, time-course of acclimatization, listener characteristics, and perceptual tasks are discussed. Although the literature shows mixed results on the perceptual efficacy of NLFC, this technique improved certain aspects of speech understanding in certain hearing-impaired listeners. Little research is available on speech perception outcomes in languages other than English. More clinical data are needed to verify the perceptual efficacy of NLFC in patients with precipitous high-frequency hearing loss. Such knowledge will help guide clinical rehabilitation of those patients.

  6. A Pilot Study on Cortical Auditory Evoked Potentials in Children: Aided CAEPs Reflect Improved High-Frequency Audibility with Frequency Compression Hearing Aid Technology.

    Science.gov (United States)

    Glista, Danielle; Easwar, Vijayalakshmi; Purcell, David W; Scollie, Susan

    2012-01-01

    Background. This study investigated whether cortical auditory evoked potentials (CAEPs) could reliably be recorded and interpreted using clinical testing equipment, to assess the effects of hearing aid technology on the CAEP. Methods. Fifteen normal hearing (NH) and five hearing impaired (HI) children were included in the study. NH children were tested unaided; HI children were tested while wearing hearing aids. CAEPs were evoked with tone bursts presented at a suprathreshold level. Presence/absence of CAEPs was established based on agreement between two independent raters. Results. Present waveforms were interpreted for most NH listeners and all HI listeners, when stimuli were measured to be at an audible level. The younger NH children were found to have significantly different waveform morphology, compared to the older children, with grand averaged waveforms differing in the later part of the time window (the N2 response). Results suggest that in some children, frequency compression hearing aid processing improved audibility of specific frequencies, leading to increased rates of detectable cortical responses in HI children. Conclusions. These findings provide support for the use of CAEPs in measuring hearing aid benefit. Further research is needed to validate aided results across a larger group of HI participants and with speech-based stimuli.

  7. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats

    Science.gov (United States)

    Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M.; Graversen, Carina; Sørensen, Helge B. D.; Bastlund, Jesper F.

    2017-04-01

    Objective. Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. Approach. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. Main results. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. Significance. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.

  8. Time-frequency analysis with temporal and spectral resolution as the human auditory system

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    1992-01-01

    The human perception of sound is a suitable area for the application of a simultaneous time-frequency analysis, since the ear is selective in both domains. A perfect reconstruction filter bank with bandwidths approximating the critical bands is presented. The orthogonality of the filter makes it ...... it possible to examine the masking effect with realistic signals. The tree structure of the filter bank makes it difficult to obtain well-attenuated stop-bands. The use of filters of different length solves this problem...

  9. Octave effect in auditory attention

    National Research Council Canada - National Science Library

    Tobias Borra; Huib Versnel; Chantal Kemner; A. John van Opstal; Raymond van Ee

    2013-01-01

    ... tones. Current auditory models explain this phenomenon by a simple bandpass attention filter. Here, we demonstrate that auditory attention involves multiple pass-bands around octave-related frequencies above and below the cued tone...

  10. Cortical Auditory Evoked Potentials Reveal Changes in Audibility with Nonlinear Frequency Compression in Hearing Aids for Children: Clinical Implications.

    Science.gov (United States)

    Ching, Teresa Y C; Zhang, Vicky W; Hou, Sanna; Van Buynder, Patricia

    2016-02-01

    Hearing loss in children is detected soon after birth via newborn hearing screening. Procedures for early hearing assessment and hearing aid fitting are well established, but methods for evaluating the effectiveness of amplification for young children are limited. One promising approach to validating hearing aid fittings is to measure cortical auditory evoked potentials (CAEPs). This article provides first a brief overview of reports on the use of CAEPs for evaluation of hearing aids. Second, a study that measured CAEPs to evaluate nonlinear frequency compression (NLFC) in hearing aids for 27 children (between 6.1 and 16.8 years old) who have mild to severe hearing loss is reported. There was no significant difference in aided sensation level or the detection of CAEPs for /g/ between NLFC on and off conditions. The activation of NLFC was associated with a significant increase in aided sensation levels for /t/ and /s/. It also was associated with an increase in detection of CAEPs for /t/ and /s/. The findings support the use of CAEPs for checking audibility provided by hearing aids. Based on the current data, a clinical protocol for using CAEPs to validate audibility with amplification is presented.

  11. Auditory mismatch negativity and P3a in response to duration and frequency changes in the early stages of psychosis.

    Science.gov (United States)

    Nagai, Tatsuya; Tada, Mariko; Kirihara, Kenji; Yahata, Noriaki; Hashimoto, Ryuichiro; Araki, Tsuyoshi; Kasai, Kiyoto

    2013-11-01

    A shorter duration of untreated psychosis in patients with schizophrenia results in better symptomatic and functional outcomes. Therefore, identifying biological markers in the early stages of psychosis is an important step toward early detection and intervention. Mismatch negativity (MMN) and P3a are leading candidate biomarkers. MMN measures differ in their sensitivity to varying deviants. However, this has not been fully addressed in assessing the early stages of psychosis. In the current study, we examined MMN/P3a to duration deviant (dMMN/dP3a) and frequency deviant (fMMN/fP3a) in the early stages of psychosis. To our knowledge, this is the first study that examined both MMN/P3a to duration deviant (dMMN/dP3a) and frequency deviant (fMMN/fP3a) in the early stages of psychosis. Participants consisted of 20 patients with first episode schizophrenia (FES), 21 ultra-high risk (UHR) individuals, and 22 healthy controls (HC). We measured dMMN/dP3a and fMMN/fP3a ERP components by means of a 64 electrodes-cap for EEG recording, and we used two-tone auditory oddball paradigms with 2000 stimuli. The amplitude of dMMN was significantly reduced in FES and UHR compared to HC. The amplitude of fMMN showed no significant difference among the three groups. The amplitudes of dP3a and fP3a were significantly reduced in FES and UHR compared to HC. These findings suggest that dMMN may have higher sensitivity than fMMN whereas dP3a and fP3a may have similar sensitivity in the early stages of psychosis. © 2013 Elsevier B.V. All rights reserved.

  12. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.

    Science.gov (United States)

    Metzner, Walter; Zhang, Shuyi; Smotherman, Michael

    2002-06-01

    Among mammals, echolocation in bats illustrates the vital role of proper audio-vocal feedback control particularly well. Bats adjust the temporal, spectral and intensity parameters of their echolocation calls depending on the characteristics of the returning echo signal. The mechanism of audio-vocal integration in both mammals and birds is, however, still largely unknown. Here, we present behavioral evidence suggesting a novel audio-vocal control mechanism in echolocating horseshoe bats (Rhinolophus ferrumequinum). These bats compensate for even subtle frequency shifts in the echo caused by flight-induced Doppler effects by adjusting the frequency of their echolocation calls. Under natural conditions, when approaching background targets, the bats usually encounter only positive Doppler shifts. Hence, we commonly believed that, during this Doppler-shift compensation behavior, horseshoe bats use auditory feedback to compensate only for these increases in echo frequency (=positive shifts) by actively lowering their call frequency below the resting frequency (the call frequency emitted when not flying and not experiencing Doppler shifts). Re-investigation of the Doppler-shift compensation behavior, however, shows that decreasing echo frequencies (=negative shifts) are involved as well: auditory feedback from frequencies below the resting frequency, when presented at similar suprathreshold intensity levels as higher echo frequencies, cause the bat's call frequency to increase above the resting frequency. However, compensation for negative shifts is less complete than for positive shifts (22% versus 95%), probably because of biomechanical restrictions in the larynx of bats. Therefore, Doppler-shift compensation behavior involves a quite different neural substrate and audio-vocal control mechanism from those previously assumed. The behavioral results are no longer consistent with solely inhibitory feedback originating from frequencies above the resting frequency. Instead

  13. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    OpenAIRE

    Patrick eMcConnell; Patrick eMcConnell; Brett eFroeliger; Eric L. Garland; Jeffrey C. Ives; Gary A. Sforzo

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics (heart-rate variability (HRV)) during post-exercise relaxation...

  14. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    OpenAIRE

    McConnell, Patrick A.; Froeliger, Brett; Garland, Eric L.; Ives, Jeffrey C.; Sforzo, Gary A.

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation...

  15. Frequency of auditory involvement and of associated factors in patients with juvenile idiopathic arthritis.

    Science.gov (United States)

    Céspedes Cruz, Adriana Ivonne; Méndez Núñez, Myriam; Solís Vallejo, Eunice; Zeferino Cruz, Maritza; Torres Jiménez, Alfonso Ragnar; Ocampo Sánchez, Verónica; Flores Meza, Beatriz; Quintana Ruiz, Norma

    2017-09-08

    Juvenile idiopathic arthritis (JIA) is a chronic autoimmune disease characterized by the presence of arthritis in children under 16 years of age for more than 6 weeks in the absence of any other known cause. The extra-articular manifestations, especially in the audiovestibular system, are related to the involvement of the joints of the ossicular chain as a result of the inflammatory process in the synovium. Previous clinical studies in pediatric patients have shown conductive or sensorineural hearing loss. The aim of this study was to assess the frequency of hearing impairment and of associated factors in patients with JIA. A prospective, analytical study was conducted from January 2013 to August 2014 in 62 patients with JIA aged between 5 and 15 years. The study was approved by the local ethics committee and parents signed their informed consent. All subjects underwent audiological examination involving otomicroscopy, audiometry, tympanometry, stapedius reflex and test for transient otoacoustic emissions (TOAE); rheumatologic evaluation included joint examination and the application of a measure of functional ability (disability) using the Childhood Health Assessment Questionnaire (CHAQ). Measures of central tendency and of dispersion were used (chi-square for associations and P<.05 for statistical significance). Sixty-two patients were included: 56 girls and 6 boys, mean age 11.9 years and mean disease duration of 3.4 years; 46% had rheumatoid factor (RF)- positive polyarticular JIA, 40% had RF-negative polyarticular JIA, 15% had disease of systemic onset and 3% had oligoarthritis. Active disease was found in 29 patients and 33 were in remission with medication. Of the total of 124 ears evaluated according to the Jerger classification for tympanometry, abnormal findings were observed in 78 that were type As and in 1 that was type Ad, whereas there were 45 type A ears. Hearing loss was disclosed by speech audiometry, rather than by pure tone audiometry. The TOAE

  16. A Pilot Study on Cortical Auditory Evoked Potentials in Children: Aided CAEPs Reflect Improved High-Frequency Audibility with Frequency Compression Hearing Aid Technology

    National Research Council Canada - National Science Library

    Glista, Danielle; Easwar, Vijayalakshmi; Purcell, David W; Scollie, Susan

    2012-01-01

    Background. This study investigated whether cortical auditory evoked potentials (CAEPs) could reliably be recorded and interpreted using clinical testing equipment, to assess the effects of hearing aid technology on the CAEP...

  17. Effect of low-frequency rTMS on electromagnetic tomography (LORETA) and regional brain metabolism (PET) in schizophrenia patients with auditory hallucinations.

    Science.gov (United States)

    Horacek, Jiri; Brunovsky, Martin; Novak, Tomas; Skrdlantova, Lucie; Klirova, Monika; Bubenikova-Valesova, Vera; Krajca, Vladimir; Tislerova, Barbora; Kopecek, Milan; Spaniel, Filip; Mohr, Pavel; Höschl, Cyril

    2007-01-01

    Auditory hallucinations are characteristic symptoms of schizophrenia with high clinical importance. It was repeatedly reported that low frequency (effect of rTMS in auditory hallucinations has yet to be published. To evaluate the distribution of neuronal electrical activity and the brain metabolism changes after low-frequency rTMS in patients with auditory hallucinations. Low-frequency rTMS (0.9 Hz, 100% of motor threshold, 20 min) applied to the left temporoparietal cortex was used for 10 days in the treatment of medication-resistant auditory hallucinations in schizophrenia (n = 12). The effect of rTMS on the low-resolution brain electromagnetic tomography (LORETA) and brain metabolism ((18)FDG PET) was measured before and after 2 weeks of treatment. We found a significant improvement in the total and positive symptoms (PANSS), and on the hallucination scales (HCS, AHRS). The rTMS decreased the brain metabolism in the left superior temporal gyrus and in interconnected regions, and effected increases in the contralateral cortex and in the frontal lobes. We detected a decrease in current densities (LORETA) for the beta-1 and beta-3 bands in the left temporal lobe whereas an increase was found for beta-2 band contralaterally. Our findings implicate that the effect is connected with decreased metabolism in the cortex underlying the rTMS site, while facilitation of metabolism is propagated by transcallosal and intrahemispheric connections. The LORETA indicates that the neuroplastic changes affect the functional laterality and provide the substrate for a metabolic effect. (c) 2007 S. Karger AG, Basel.

  18. Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands

    Science.gov (United States)

    Belitski, Andrei; Magri, Cesare; Logothetis, Nikos K.

    2010-01-01

    Studies analyzing sensory cortical processing or trying to decode brain activity often rely on a combination of different electrophysiological signals, such as local field potentials (LFPs) and spiking activity. Understanding the relation between these signals and sensory stimuli and between different components of these signals is hence of great interest. We here provide an analysis of LFPs and spiking activity recorded from visual and auditory cortex during stimulation with natural stimuli. In particular, we focus on the time scales on which different components of these signals are informative about the stimulus, and on the dependencies between different components of these signals. Addressing the first question, we find that stimulus information in low frequency bands (50 Hz), in contrast, is scale dependent, and is larger when the energy is averaged over several hundreds of milliseconds. Indeed, combined analysis of signal reliability and information revealed that the energy of slow LFP fluctuations is well related to the stimulus even when considering individual or few cycles, while the energy of fast LFP oscillations carries information only when averaged over many cycles. Addressing the second question, we find that stimulus information in different LFP bands, and in different LFP bands and spiking activity, is largely independent regardless of time scale or sensory system. Taken together, these findings suggest that different LFP bands represent dynamic natural stimuli on distinct time scales and together provide a potentially rich source of information for sensory processing or decoding brain activity. Electronic supplementary material The online version of this article (doi:10.1007/s10827-010-0230-y) contains supplementary material, which is available to authorized users. PMID:20232128

  19. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  20. The forebrain of the Pacific hagfish: a cladistic reconstruction of the ancestral craniate forebrain.

    Science.gov (United States)

    Wicht, H; Northcutt, R G

    1992-01-01

    The forebrain of the Pacific hagfish is described with regard to its morphology, cytoarchitecture, and secondary olfactory projections. The forebrain ventricular system is greatly reduced in adult hagfishes, although vestiges of ventricular structures can still be recognized. In order to clarify topographical relationships within the forebrain, we provide a three-dimensional reconstruction of the ventricular system, including the vestigial portions. Topography and embryology lead us to conclude that the 'primordium hippocampi' of previous authors is a diencephalic structure. For topographical and hodological reasons, we interpret the 'area basalis' of previous authors to be part of the preoptic region, and we identify a part of the so-called 'nucleus olfactorius anterior' as the homologue of the striatum. The laminated pallium is dominated by secondary olfactory projections and shows a high degree of regional cytoarchitectural specialization, as does the entire forebrain. In all, 42 cell groups are identified in the forebrain of hagfishes (compared to only about 25 in lampreys, for example). This surprisingly high degree of cytoarchitectural complexity prompted us to re-examine the phylogenetic history of craniate brains with this complexity in mind. In this paper we use cladistic methodology to reconstruct a morphotype, and we conclude that the forebrains of the earliest craniates may have been more complex than previously believed. This reconstruction includes hypotheses regarding the general morphology, secondary olfactory system, and visual system, as well as the relative sizes of major divisions of the forebrain in the earliest craniates.

  1. A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise.

    Science.gov (United States)

    Clark, Nicholas R; Brown, Guy J; Jürgens, Tim; Meddis, Ray

    2012-09-01

    The potential contribution of the peripheral auditory efferent system to our understanding of speech in a background of competing noise was studied using a computer model of the auditory periphery and assessed using an automatic speech recognition system. A previous study had shown that a fixed efferent attenuation applied to all channels of a multi-channel model could improve the recognition of connected digit triplets in noise [G. J. Brown, R. T. Ferry, and R. Meddis, J. Acoust. Soc. Am. 127, 943-954 (2010)]. In the current study an anatomically justified feedback loop was used to automatically regulate separate attenuation values for each auditory channel. This arrangement resulted in a further enhancement of speech recognition over fixed-attenuation conditions. Comparisons between multi-talker babble and pink noise interference conditions suggest that the benefit originates from the model's ability to modify the amount of suppression in each channel separately according to the spectral shape of the interfering sounds.

  2. Audiograms of three subterranean rodent species (gen. Fukomys) determined by auditory brainstem responses reveal extremely low high-frequency cut-offs.

    Science.gov (United States)

    Gerhardt, Patricia; Henning, Yoshiyuki; Begall, Sabine; Malkemper, E Pascal

    2017-10-12

    Life underground has shaped the auditory sense of subterranean mammals, shifting their hearing range to low frequencies. Mole-rats of the genus Fukomys have, however, been suggested to hear up to 18.5 kHz, unusually high for a subterranean rodent. We present audiograms of three mole-rat species, Fukomys anselli, Fukomys micklemi and the giant mole-rat Fukomys mechowii, based on evoked auditory brainstem potentials. All species showed low sensitivity and restricted hearing ranges at 60 dB SPL extending from 125 Hz to 4 kHz (5 octaves) with most sensitive hearing between 0.8 kHz and 1.4 kHz. The high frequency cut-offs are the lowest found in mammals to date. In contrast to predictions from middle ear morphology, F. mechowii did not show higher sensitivity in the low frequency range than F. anselli These data suggest that the hearing range of Fukomys mole-rats is highly restricted to low frequencies and similar to other subterranean mammals. © 2017. Published by The Company of Biologists Ltd.

  3. Acoustic imprinting leads to differential 2-deoxy-D-glucose uptake in the chick forebrain.

    Science.gov (United States)

    Maier, V; Scheich, H

    1983-01-01

    This report describes experiments in which successful acoustic imprinting correlates with differential uptake of D-2-deoxy[14C]glucose in particular forebrain areas that are not considered primarily auditory. Newly hatched guinea chicks (Numida meleagris meleagris) were imprinted by playing 1.8-kHz or 2.5-kHz tone bursts for prolonged periods. Those chicks were considered to be imprinted who approached the imprinting stimulus (emitted from a loudspeaker) and preferred it over a new stimulus in a simultaneous discrimination test. In the 2-deoxy-D-glucose experiment all chicks, imprinted and naive, were exposed to 1.8-kHz tone bursts for 1 hr. As shown by the autoradiographic analysis of the brains, neurons in the 1.8-kHz isofrequency plane of the auditory "cortex" (field L) were activated in all chicks, whether imprinted or not. However, in the most rostral forebrain striking differences were found. Imprinted chicks showed an increased 2-deoxy-D-glucose uptake in three areas, as compared to naive chicks: (i) the lateral neostriatum and hyperstriatum ventrale, (ii) a medial magnocellular field (medial neostriatum/hyperstriatum ventrale), and (iii) the most dorsal layers of the hyperstriatum. Based on these findings we conclude that these areas are involved in the processing of auditory stimuli once they have become meaningful by experience. Images PMID:6574519

  4. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats

    DEFF Research Database (Denmark)

    Richard, Nelly; Laursen, Bettina; Grupe, Morten

    2017-01-01

    ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. Main results. While only early ERP frequency changes between responses to target and non...... developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. Approach. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated......-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. Significance. The study suggests...

  5. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons

    Science.gov (United States)

    Hawryluk, J. M.; Ferrari, L. L.; Keating, S. A.

    2012-01-01

    Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A1 receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated. PMID:22357797

  6. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.

    Science.gov (United States)

    Bronsert, Michael; Bingol, Hilary; Atkins, Gordon; Stout, John

    2003-03-01

    L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate. Copyright 2003 Wiley-Liss, Inc.

  7. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  8. Microglia Modulate Wiring of the Embryonic Forebrain

    Directory of Open Access Journals (Sweden)

    Paola Squarzoni

    2014-09-01

    Full Text Available Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1−/−, CR3−/−, and DAP12−/− mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.

  9. Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions.

    Science.gov (United States)

    Knight, Kristin R; Kraemer, Dale F; Winter, Christiane; Neuwelt, Edward A

    2007-04-01

    The objective is to describe progressive changes in hearing and cochlear function in children and adolescents treated with platinum-based chemotherapy and to begin preliminary evaluation of the feasibility of extended high-frequency audiometry and distortion product otoacoustic emissions for ototoxicity monitoring in children. Baseline and serial measurement of conventional pure-tone audiometry (0.5 to 8 kHz) and evoked distortion product otoacoustic emissions (DPOAEs) were conducted for 32 patients age 8 months to 20 years who were treated with cisplatin and/or carboplatin chemotherapy. Seventeen children also had baseline and serial measurement of extended high-frequency (EHF) audiometry (9 to 16 kHz). Audiologic data were analyzed to determine the incidence of ototoxicity using the American Speech-Language-Hearing Association criteria, and the relationships between the different measures of ototoxicity. Of the 32 children, 20 (62.5%) acquired bilateral ototoxicity in the conventional frequency range during chemotherapy treatment, and 26 (81.3%) had bilateral decreases in DPOAE amplitudes and dynamic range. Of the 17 children with EHF audiometry results, 16 (94.1%) had bilateral ototoxicity in the EHF range. Pilot data suggest that EHF thresholds and DPOAEs show ototoxic changes before hearing loss is detected by conventional audiometry. EHF audiometry and DPOAEs have the potential to reveal earlier changes in auditory function than conventional frequency audiometry during platinum chemotherapy in children.

  10. Non-auditory Effect of Noise Pollution and Its Risk on Human Brain Activity in Different Audio Frequency Using Electroencephalogram Complexity.

    Science.gov (United States)

    Allahverdy, Armin; Jafari, Amir Homayoun

    2016-10-01

    Noise pollution is one of the most harmful ambiance disturbances. It may cause many deficits in ability and activity of persons in the urban and industrial areas. It also may cause many kinds of psychopathies. Therefore, it is very important to measure the risk of this pollution in different area. This study was conducted in the Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences from June to September of 2015, in which, different frequencies of noise pollution were played for volunteers. 16-channel EEG signal was recorded synchronously, then by using fractal dimension and relative power of Beta sub-band of EEG, the complexity of EEG signals was measured. As the results, it is observed that the average complexity of brain activity is increased in the middle of audio frequency range and the complexity map of brain activity changes in different frequencies, which can show the effects of frequency changes on human brain activity. The complexity of EEG is a good measure for ranking the annoyance and non-auditory risk of noise pollution on human brain activity.

  11. TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Cykowski, Matthew D; Takei, Hidehiro; Schulz, Paul E; Appel, Stanley H; Powell, Suzanne Z

    2014-12-24

    Amyotrophic lateral sclerosis is a neurodegenerative disease characterized clinically by motor symptoms including limb weakness, dysarthria, dysphagia, and respiratory compromise, and pathologically by inclusions of transactive response DNA-binding protein 43 kDa (TDP-43). Patients with amyotrophic lateral sclerosis also may demonstrate non-motor symptoms and signs of autonomic and energy dysfunction as hypermetabolism and weight loss that suggest the possibility of pathology in the forebrain, including hypothalamus. However, this region has received little investigation in amyotrophic lateral sclerosis. In this study, the frequency, topography, and clinical associations of TDP-43 inclusion pathology in the basal forebrain and hypothalamus were examined in 33 patients with amyotrophic lateral sclerosis: 25 men and 8 women; mean age at death of 62.7 years, median disease duration of 3.1 years (range of 1.3 to 9.8 years). TDP-43 pathology was present in 11 patients (33.3%), including components in both basal forebrain (n=10) and hypothalamus (n=7). This pathology was associated with non-motor system TDP-43 pathology (Χ2=17.5, p=0.00003) and bulbar symptoms at onset (Χ2=4.04, p=0.044), but not age or disease duration. Furthermore, TDP-43 pathology in the lateral hypothalamic area was associated with reduced body mass index (W=11, p=0.023). This is the first systematic demonstration of pathologic involvement of the basal forebrain and hypothalamus in amyotrophic lateral sclerosis. Furthermore, the findings suggest that involvement of the basal forebrain and hypothalamus has significant phenotypic associations in amyotrophic lateral sclerosis, including site of symptom onset, as well as deficits in energy metabolism with loss of body mass index.

  12. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine

    Science.gov (United States)

    Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.

    2015-01-01

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity

  13. Finding your mate at a cocktail party: frequency separation promotes auditory stream segregation of concurrent voices in multi-species frog choruses.

    Directory of Open Access Journals (Sweden)

    Vivek Nityananda

    Full Text Available Vocal communication in crowded social environments is a difficult problem for both humans and nonhuman animals. Yet many important social behaviors require listeners to detect, recognize, and discriminate among signals in a complex acoustic milieu comprising the overlapping signals of multiple individuals, often of multiple species. Humans exploit a relatively small number of acoustic cues to segregate overlapping voices (as well as other mixtures of concurrent sounds, like polyphonic music. By comparison, we know little about how nonhuman animals are adapted to solve similar communication problems. One important cue enabling source segregation in human speech communication is that of frequency separation between concurrent voices: differences in frequency promote perceptual segregation of overlapping voices into separate "auditory streams" that can be followed through time. In this study, we show that frequency separation (ΔF also enables frogs to segregate concurrent vocalizations, such as those routinely encountered in mixed-species breeding choruses. We presented female gray treefrogs (Hyla chrysoscelis with a pulsed target signal (simulating an attractive conspecific call in the presence of a continuous stream of distractor pulses (simulating an overlapping, unattractive heterospecific call. When the ΔF between target and distractor was small (e.g., ≤3 semitones, females exhibited low levels of responsiveness, indicating a failure to recognize the target as an attractive signal when the distractor had a similar frequency. Subjects became increasingly more responsive to the target, as indicated by shorter latencies for phonotaxis, as the ΔF between target and distractor increased (e.g., ΔF = 6-12 semitones. These results support the conclusion that gray treefrogs, like humans, can exploit frequency separation as a perceptual cue to segregate concurrent voices in noisy social environments. The ability of these frogs to segregate

  14. Influence of the auditory canal number of segments and radius variation on the outer ear frequency response

    CSIR Research Space (South Africa)

    Thejane, T

    2012-01-01

    Full Text Available distortion in the frequency response. The results obtained when using the radius-length mapping function show that the response found closely correlates with other literature results. The optimum representation of the frequency response was found when four...

  15. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    Science.gov (United States)

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  16. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  17. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    Science.gov (United States)

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  18. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    Directory of Open Access Journals (Sweden)

    Patrick eMcConnell

    2014-11-01

    Full Text Available Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation, few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics (heart-rate variability (HRV during post-exercise relaxation. Subjects (n = 21; 18-29 years old participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design. At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-frequency binaural beats or placebo (carrier tone for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high frequency (HF, reflecting parasympathetic activity, low frequency (LF, reflecting sympathetic and parasympathetic activity and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural beat visit resulted in greater self-reported relaxation, as well as increased parasympathetic activation and sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  19. The frequency modulated auditory evoked response (FMAER, a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    Directory of Open Access Journals (Sweden)

    Duffy Frank H

    2013-01-01

    Full Text Available Abstract Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS, and autism spectrum disorder (ASD and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent

  20. Calcium imaging of basal forebrain activity during innate and learned behaviors

    Directory of Open Access Journals (Sweden)

    Thomas Clarke Harrison

    2016-05-01

    Full Text Available The basal forebrain (BF plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate or performed a go/no-go auditory discrimination task (learned. Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors.

  1. Unexpected Improvement of Hand Motor Function with a Left Temporoparietal Low-Frequency Repetitive Transcranial Magnetic Stimulation Regime Suppressing Auditory Hallucinations in a Brainstem Chronic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Fanny Thomas

    2017-11-01

    Full Text Available We here report paradoxical hand function recovery in a 61-year-old male tetra-paretic chronic patient following a stroke of the brainstem (with highly degraded right and abolished left-hand finger flexion/extension disabling him to manipulate objects who experienced insidious auditory hallucinations (AHs 4 years after such event. Symptomatic treatment for AHs was provided with periodical double sessions of low-frequency repetitive transcranial magnetic stimulation (rTMS (daily 1 Hz, 2 × 1,200 pulses interleaved by 1 h interval delivered to the left temporoparietal junction across two periods of 5 and 3 weeks, respectively. At the end of each stimulation period, AHs disappeared completely. Most surprisingly and totally unexpectedly, the patient experienced beneficial improvements of long-lasting impairments in his right-hand function. Detailed examination of onset and offset of rTMS stimulation regimes strongly suggests a temporal relation with the remission and re-appearance of AHs and also with a fragile but clinically meaningful improvements of right (but not left hand function contingent to the accrual of stimulation sessions. On the basis of post-recovery magnetic resonance imaging structural and functional evidence, mechanistic hypotheses that could subtend such unexpected motor recovery are critically discussed.

  2. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  3. Auditory and multisensory responses in the tectofugal pathway of the barn owl.

    Science.gov (United States)

    Reches, Amit; Gutfreund, Yoram

    2009-07-29

    A common visual pathway in all amniotes is the tectofugal pathway connecting the optic tectum with the forebrain. The tectofugal pathway has been suggested to be involved in tasks such as orienting and attention, tasks that may benefit from integrating information across senses. Nevertheless, previous research has characterized the tectofugal pathway as strictly visual. Here we recorded from two stations along the tectofugal pathway of the barn owl: the thalamic nucleus rotundus (nRt) and the forebrain entopallium (E). We report that neurons in E and nRt respond to auditory stimuli as well as to visual stimuli. Visual tuning to the horizontal position of the stimulus and auditory tuning to the corresponding spatial cue (interaural time difference) were generally broad, covering a large portion of the contralateral space. Responses to spatiotemporally coinciding multisensory stimuli were mostly enhanced above the responses to the single modality stimuli, whereas spatially misaligned stimuli were not. Results from inactivation experiments suggest that the auditory responses in E are of tectal origin. These findings support the notion that the tectofugal pathway is involved in multisensory processing. In addition, the findings suggest that the ascending auditory information to the forebrain is not as bottlenecked through the auditory thalamus as previously thought.

  4. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  5. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  6. Context effects on auditory distraction

    Science.gov (United States)

    Chen, Sufen; Sussman, Elyse S.

    2014-01-01

    The purpose of the study was to test the hypothesis that sound context modulates the magnitude of auditory distraction, indexed by behavioral and electrophysiological measures. Participants were asked to identify tone duration, while irrelevant changes occurred in tone frequency, tone intensity, and harmonic structure. Frequency deviants were randomly intermixed with standards (Uni-Condition), with intensity deviants (Bi-Condition), and with both intensity and complex deviants (Tri-Condition). Only in the Tri-Condition did the auditory distraction effect reflect the magnitude difference among the frequency and intensity deviants. The mixture of the different types of deviants in the Tri-Condition modulated the perceived level of distraction, demonstrating that the sound context can modulate the effect of deviance level on processing irrelevant acoustic changes in the environment. These findings thus indicate that perceptual contrast plays a role in change detection processes that leads to auditory distraction. PMID:23886958

  7. File list: His.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Forebrain.bed ...

  8. File list: ALL.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377674,SRX317036,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Forebrain.bed ...

  9. File list: His.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Forebrain.bed ...

  10. File list: InP.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX669236,S...RX377677,SRX377675,SRX377673,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Forebrain.bed ...

  11. File list: His.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Forebrain.bed ...

  12. File list: InP.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX377675,S...RX377677,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Forebrain.bed ...

  13. File list: His.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377678,SRX3776...72,SRX377670,SRX377676,SRX377674,SRX093314 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Forebrain.bed ...

  14. File list: ALL.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377671,SRX377674,SRX669235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Forebrain.bed ...

  15. File list: ALL.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377673,SRX377671,SRX317036 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Forebrain.bed ...

  16. File list: ALL.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX002660,SRX093315,SR...SRX377673,SRX669235,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Forebrain.bed ...

  17. File list: InP.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Forebrain mm9 Input control Neural Forebrain SRX669236,SRX377679,S...RX377677,SRX377675,SRX377673,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Forebrain.bed ...

  18. File list: InP.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377677,SRX377675,S...RX377679,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Forebrain.bed ...

  19. Effects of low frequency rTMS treatment on brain networks for inner speech in patients with schizophrenia and auditory verbal hallucinations

    NARCIS (Netherlands)

    Bais, Leonie; Liemburg, Edith; Vercammen, Ans; Bruggeman, Richard; Knegtering, Henderikus; Aleman, Andre

    2017-01-01

    Introduction: Efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) targeting the temporo-parietal junction (TPJ) for the treatment of auditory verbal hallucinations (AVH) remains under debate. We assessed the influence of a 1 Hz rTMS treatment on neural networks involved in a cognitive

  20. Early hominin auditory capacities.

    Science.gov (United States)

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats.

  1. Early hominin auditory capacities

    Science.gov (United States)

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

    2015-01-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  2. Neurodegeneration Triggers Peripheral Immune Cell Recruitment into the Forebrain.

    Science.gov (United States)

    Scheld, Miriam; Rüther, Bernhard Josef; Große-Veldmann, René; Ohl, Kim; Tenbrock, Klaus; Dreymüller, Daniela; Fallier-Becker, Petra; Zendedel, Adib; Beyer, Cordian; Clarner, Tim; Kipp, Markus

    2016-01-27

    Brain-intrinsic degenerative cascades have been proposed to be an initial factor driving lesion formation in multiple sclerosis (MS). Here, we identify neurodegeneration as a potent trigger for peripheral immune cell recruitment into the mouse forebrain. Female C57BL/6 mice were fed cuprizone for 3 weeks, followed by a period of 2 weeks on normal chow to induce the formation of lesion foci in the forebrain. Subsequent immunization with myelin oligodendrocyte glycoprotein 35-55 peptide, which induces myelin autoreactive T cells in the periphery, resulted in massive immune cell recruitment into the affected forebrain. Additional adoptive transfer experiments together with flow cytometry analysis underline the importance of brain-derived signals for immune cell recruitment. This study clearly illustrates the significance of brain-intrinsic degenerative cascades for immune cell recruitment and MS lesion formation. Additional studies have to address the signaling cascades and mechanistic processes that form the top-down communication between the affected brain area, neurovascular unit, and peripheral immune cells. We identify neurodegeneration as a potent trigger for peripheral immune cell recruitment into the forebrain. Thus, immune cell recruitment might be a second step during the formation of new inflammatory lesions in multiple sclerosis. A better understanding of factors regulating neurodegeneration-induced immune cell recruitment will pave the way for the development of novel therapeutic treatment strategies. Copyright © 2016 the authors 0270-6474/16/361410-06$15.00/0.

  3. [Auditory threshold for white noise].

    Science.gov (United States)

    Carrat, R; Thillier, J L; Durivault, J

    1975-01-01

    The liminal auditory threshold for white noise and for coloured noise was determined from a statistical survey of a group of 21 young people with normal hearing. The normal auditory threshold for white noise with a spectrum covering the whole of the auditory field is between -- 0.57 dB +/- 8.78. The normal auditory threshold for bands of filtered white noise (coloured noise with a central frequency corresponding to the pure frequencies usually employed in tonal audiometry) describes a typical curve which, instead of being homothetic to the usual tonal curves, sinks to low frequencies and then rises. The peak of this curve is replaced by a broad plateau ranging from 750 to 6000 Hz and contained in the concavity of the liminal tonal curves. The ear is therefore less sensitive but, at limited acoustic pressure, white noise first impinges with the same discrimination upon the whole of the conversational zone of the auditory field. Discovery of the audiometric threshold for white noise constitutes a synthetic method of measuring acuteness of hearing which considerably reduces the amount of manipulation required.

  4. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    Science.gov (United States)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  5. Volume of the human septal forebrain region is a predictor of source memory accuracy.

    Science.gov (United States)

    Butler, Tracy; Blackmon, Karen; Zaborszky, Laszlo; Wang, Xiuyuan; DuBois, Jonathan; Carlson, Chad; Barr, William B; French, Jacqueline; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric; Thesen, Thomas

    2012-01-01

    Septal nuclei, components of basal forebrain, are strongly and reciprocally connected with hippocampus, and have been shown in animals to play a critical role in memory. In humans, the septal forebrain has received little attention. To examine the role of human septal forebrain in memory, we acquired high-resolution magnetic resonance imaging scans from 25 healthy subjects and calculated septal forebrain volume using recently developed probabilistic cytoarchitectonic maps. We indexed memory with the California Verbal Learning Test-II. Linear regression showed that bilateral septal forebrain volume was a significant positive predictor of recognition memory accuracy. More specifically, larger septal forebrain volume was associated with the ability to recall item source/context accuracy. Results indicate specific involvement of septal forebrain in human source memory, and recall the need for additional research into the role of septal nuclei in memory and other impairments associated with human diseases.

  6. Octave effect in auditory attention.

    Science.gov (United States)

    Borra, Tobias; Versnel, Huib; Kemner, Chantal; van Opstal, A John; van Ee, Raymond

    2013-09-17

    After hearing a tone, the human auditory system becomes more sensitive to similar tones than to other tones. Current auditory models explain this phenomenon by a simple bandpass attention filter. Here, we demonstrate that auditory attention involves multiple pass-bands around octave-related frequencies above and below the cued tone. Intriguingly, this "octave effect" not only occurs for physically presented tones, but even persists for the missing fundamental in complex tones, and for imagined tones. Our results suggest neural interactions combining octave-related frequencies, likely located in nonprimary cortical regions. We speculate that this connectivity scheme evolved from exposure to natural vibrations containing octave-related spectral peaks, e.g., as produced by vocal cords.

  7. Linear Stimulus-Invariant Processing and Spectrotemporal Reverse Correlation in Primary Auditory Cortex

    Science.gov (United States)

    2003-01-01

    zebra finch auditory forebrain in response to random tone sequences and bird songs, and used the STRF from one stimulus to predict the responses to the...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing...and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information

  8. Auditory Hallucination

    Directory of Open Access Journals (Sweden)

    MohammadReza Rajabi

    2003-09-01

    Full Text Available Auditory Hallucination or Paracusia is a form of hallucination that involves perceiving sounds without auditory stimulus. A common is hearing one or more talking voices which is associated with psychotic disorders such as schizophrenia or mania. Hallucination, itself, is the most common feature of perceiving the wrong stimulus or to the better word perception of the absence stimulus. Here we will discuss four definitions of hallucinations:1.Perceiving of a stimulus without the presence of any subject; 2. hallucination proper which are the wrong perceptions that are not the falsification of real perception, Although manifest as a new subject and happen along with and synchronously with a real perception;3. hallucination is an out-of-body perception which has no accordance with a real subjectIn a stricter sense, hallucinations are defined as perceptions in a conscious and awake state in the absence of external stimuli which have qualities of real perception, in that they are vivid, substantial, and located in external objective space. We are going to discuss it in details here.

  9. Bilateral Pathways from the Basal Forebrain to Sensory Cortices May Contribute to Synchronous Sensory Processing

    Directory of Open Access Journals (Sweden)

    Irene Chaves-Coira

    2018-01-01

    Full Text Available Sensory processing in the cortex should integrate inputs arriving from receptive fields located on both sides of the body. This role could be played by the corpus callosum through precise projections between both hemispheres. However, different studies suggest that cholinergic projections from the basal forebrain (BF could also contribute to the synchronization and integration of cortical activities. Using tracer injections and optogenetic techniques in transgenic mice, we investigated whether the BF cells project bilaterally to sensory cortical areas, and have provided anatomical evidence to support a modulatory role for the cholinergic projections in sensory integration. Application of the retrograde tracer Fluor-Gold or Fast Blue in both hemispheres of the primary somatosensory (S1, auditory or visual cortical areas showed labeled neurons in the ipsi- and contralateral areas of the diagonal band of Broca and substantia innominata. The nucleus basalis magnocellularis only showed ipsilateral projections to the cortex. Optogenetic stimulation of the horizontal limb of the diagonal band of Broca facilitated whisker responses in the S1 cortex of both hemispheres through activation of muscarinic cholinergic receptors and this effect was diminished by atropine injection. In conclusion, our findings have revealed that specific areas of the BF project bilaterally to sensory cortices and may contribute to the coordination of neuronal activity on both hemispheres.

  10. Basal forebrain thermoregulatory mechanism modulates auto-regulated sleep

    Directory of Open Access Journals (Sweden)

    Hruda N Mallick

    2012-06-01

    Full Text Available Regulation of body temperature and sleep are two physiological mechanisms that are vital for our survival. Interestingly neural structures implicated in both these functions are common. These areas include the medial preoptic area, the lateral preoptic area, the ventrolateral preoptic area, the median preoptic nucleus and the medial septum, which form part of the basal forebrain.When given a choice, rats prefer to stay at an ambient temperature of 270C, though the maximum sleep was observed when they were placed at 300C. Ambient temperature around 270C should be considered as the thermoneutral temperature for rats in all sleep studies. At this temperature the diurnal oscillations of sleep and body temperature are properly expressed. The warm sensitive neurons of the preoptic area mediate the increase in sleep at 300C. Promotion of sleep during the rise in ambient temperature from 270C to 300C, serve a thermoregulatory function. Autonomous thermoregulatory changes in core body temperature and skin temperature could act as an input signal to modulate neuronal activity in sleep-promoting brain areas. The studies presented here show that the neurons of the basal forebrain play a key role in regulating sleep. Basal forebrain thermoregulatory system is a part of the global homeostatic sleep regulatory mechanism, which is auto-regulated.

  11. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  12. Current status of auditory aging and anti-aging research.

    Science.gov (United States)

    Ruan, Qingwei; Ma, Cheng; Zhang, Ruxin; Yu, Zhuowei

    2014-01-01

    The development of presbycusis, or age-related hearing loss, is determined by a combination of genetic and environmental factors. The auditory periphery exhibits a progressive bilateral, symmetrical reduction of auditory sensitivity to sound from high to low frequencies. The central auditory nervous system shows symptoms of decline in age-related cognitive abilities, including difficulties in speech discrimination and reduced central auditory processing, ultimately resulting in auditory perceptual abnormalities. The pathophysiological mechanisms of presbycusis include excitotoxicity, oxidative stress, inflammation, aging and oxidative stress-induced DNA damage that results in apoptosis in the auditory pathway. However, the originating signals that trigger these mechanisms remain unclear. For instance, it is still unknown whether insulin is involved in auditory aging. Auditory aging has preclinical lesions, which manifest as asymptomatic loss of periphery auditory nerves and changes in the plasticity of the central auditory nervous system. Currently, the diagnosis of preclinical, reversible lesions depends on the detection of auditory impairment by functional imaging, and the identification of physiological and molecular biological markers. However, despite recent improvements in the application of these markers, they remain under-utilized in clinical practice. The application of antisenescent approaches to the prevention of auditory aging has produced inconsistent results. Future research will focus on the identification of markers for the diagnosis of preclinical auditory aging and the development of effective interventions. © 2013 Japan Geriatrics Society.

  13. Top-down gain control of the auditory space map by gaze control circuitry in the barn owl.

    Science.gov (United States)

    Winkowski, Daniel E; Knudsen, Eric I

    2006-01-19

    High-level circuits in the brain that control the direction of gaze are intimately linked with the control of visual spatial attention. Immediately before an animal directs its gaze towards a stimulus, both psychophysical sensitivity to that visual stimulus and the responsiveness of high-order neurons in the cerebral cortex that represent the stimulus increase dramatically. Equivalent effects on behavioural sensitivity and neuronal responsiveness to visual stimuli result from focal electrical microstimulation of gaze control centres in monkeys. Whether the gaze control system modulates neuronal responsiveness in sensory modalities other than vision is unknown. Here we show that electrical microstimulation applied to gaze control circuitry in the forebrain of barn owls regulates the gain of midbrain auditory responses in an attention-like manner. When the forebrain circuit was activated, midbrain responses to auditory stimuli at the location encoded by the forebrain site were enhanced and spatial selectivity was sharpened. The same stimulation suppressed responses to auditory stimuli represented at other locations in the midbrain map. Such space-specific, top-down regulation of auditory responses by gaze control circuitry in the barn owl suggests that the central nervous system uses a common strategy for dynamically regulating sensory gain that applies across modalities, brain areas and classes of vertebrate species. This approach provides a path for discovering mechanisms that underlie top-down gain control in the central nervous system.

  14. [Symptoms and diagnosis of auditory processing disorder].

    Science.gov (United States)

    Keilmann, A; Läßig, A K; Nospes, S

    2013-08-01

    The definition of an auditory processing disorder (APD) is based on impairments of auditory functions. APDs are disturbances in processes central to hearing that cannot be explained by comorbidities such as attention deficit or language comprehension disorders. Symptoms include difficulties in differentiation and identification of changes in time, structure, frequency and intensity of sounds; problems with sound localization and lateralization, as well as poor speech comprehension in adverse listening environments and dichotic situations. According to the German definition of APD (as opposed to central auditory processing disorder, CAPD), peripheral hearing loss or cognitive impairment also exclude APD. The diagnostic methodology comprises auditory function tests and the required diagnosis of exclusion. APD is diagnosed if a patient's performance is two standard deviations below the normal mean in at least two areas of auditory processing. The treatment approach for an APD depends on the patient's particular deficits. Training, compensatory strategies and improvement of the listening conditions can all be effective.

  15. Estimating auditory filter bandwidth using distortion product otoacoustic emissions

    DEFF Research Database (Denmark)

    Rukjær, Andreas Harbo; Hauen, Sigurd van; Ordoñez Pizarro, Rodrigo Eduardo

    2017-01-01

    The basic frequency selectivity in the listener’s hearing is often characterized by auditory filters. These filters are determined through listening tests, which estimate the masking threshold as a function of frequency of the tone and the bandwidth of the masking sound. The auditory filters have...... at 1, 2, and 4 kHz for 10 young normal-hearing subjects....

  16. Visualization of the medial forebrain bundle using diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Ardian eHana

    2015-10-01

    Full Text Available Diffusion tensor imaging is a technique that enables physicians the portrayal of white matter tracts in vivo. We used this technique in order to depict the medial forebrain bundle in 15 consecutive patients between 2012 and 2015. Men and women of all ages were included. There were 6 women and 9 men. The mean age was 58,6 years (39-77. Nine patients were candidates for an eventual deep brain stimulation. Eight of them suffered from Parkinson`s disease and one had multiple sclerosis. The remaining 6 patients suffered from different lesions which were situated in the frontal lobe. These were 2 metastasis, 2 meningiomas, 1 cerebral bleeding and 1 glioblastoma. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI- sequences were performed. The FOV was 200 x 200 mm², slice thickness 2 mm, and an acquisition matrix of 96 x 96 yielding nearly isotropic voxels of 2 x 2 x 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI and ASSET parallel imaging with an acceleration factor of 2. b-value was 800 s/mm². The maximal angle was 50°. Additional scanning time was less than 9 minutes. We were able to visualize the medial forebrain bundle in 12 of our patients bilaterally and in the remaining 3 patients we depicted the medial forebrain bundle on one side. It was the contralateral side of the lesion. These were 2 meningiomas and one metastasis. Portrayal of the medial forebrain bundle is possible for everyday routine for neurosurgical interventions. As part of the reward circuitry it might be of substantial importance for neurosurgeons during deep brain stimulation in patients with psychiatric disorders. Furthermore it might explain at a certain extent character changes in patients with lesions in the frontal lobe. Surgery in this part of the brain should always take the preservation of this white matter tract into account.

  17. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  18. Effects of Context on Auditory Stream Segregation

    Science.gov (United States)

    Snyder, Joel S.; Carter, Olivia L.; Lee, Suh-Kyung; Hannon, Erin E.; Alain, Claude

    2008-01-01

    The authors examined the effect of preceding context on auditory stream segregation. Low tones (A), high tones (B), and silences (-) were presented in an ABA-pattern. Participants indicated whether they perceived 1 or 2 streams of tones. The A tone frequency was fixed, and the B tone was the same as the A tone or had 1 of 3 higher frequencies.…

  19. Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jingxia Gao

    Full Text Available The guidance receptor DCC (deleted in colorectal cancer ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.

  20. A cholinergic basal forebrain feeding circuit modulates appetite suppression.

    Science.gov (United States)

    Herman, Alexander M; Ortiz-Guzman, Joshua; Kochukov, Mikhail; Herman, Isabella; Quast, Kathleen B; Patel, Jay M; Tepe, Burak; Carlson, Jeffrey C; Ung, Kevin; Selever, Jennifer; Tong, Qingchun; Arenkiel, Benjamin R

    2016-10-13

    Atypical food intake is a primary cause of obesity and other eating and metabolic disorders. Insight into the neural control of feeding has previously focused mainly on signalling mechanisms associated with the hypothalamus, the major centre in the brain that regulates body weight homeostasis. However, roles of non-canonical central nervous system signalling mechanisms in regulating feeding behaviour have been largely uncharacterized. Acetylcholine has long been proposed to influence feeding owing in part to the functional similarity between acetylcholine and nicotine, a known appetite suppressant. Nicotine is an exogenous agonist for acetylcholine receptors, suggesting that endogenous cholinergic signalling may play a part in normal physiological regulation of feeding. However, it remains unclear how cholinergic neurons in the brain regulate food intake. Here we report that cholinergic neurons of the mouse basal forebrain potently influence food intake and body weight. Impairment of cholinergic signalling increases food intake and results in severe obesity, whereas enhanced cholinergic signalling decreases food consumption. We found that cholinergic circuits modulate appetite suppression on downstream targets in the hypothalamus. Together our data reveal the cholinergic basal forebrain as a major modulatory centre underlying feeding behaviour.

  1. Altered auditory BOLD response to conspecific birdsong in zebra finches with stuttered syllables.

    Directory of Open Access Journals (Sweden)

    Henning U Voss

    2010-12-01

    Full Text Available How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song. These findings are consistent with the presence of a sensory song template critical for song learning in auditory areas of the zebra finch forebrain. In addition, they suggest a relationship between an altered response related to familiarity and/or saliency of song stimuli and the production of variant songs with stuttered syllables.

  2. Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure

    DEFF Research Database (Denmark)

    Mooney, T. Aran; Hanlon, Roger T; Christensen-Dalsgaard, Jakob

    2010-01-01

    Although hearing has been described for many underwater species, there is much debate regarding if and how cephalopods detect sound. Here we quantify the acoustic sensitivity of the longfin squid (Loligo pealeii) using near-field acoustic and shaker-generated acceleration stimuli. Sound field...... of two wave types: (1) rapid stimulus-following waves, and (2) slower, high-amplitude waves, similar to some fish AEPs. Responses were obtained between 30 and 500 Hz with lowest thresholds between 100 and 200 Hz. At the best frequencies, AEP amplitudes were often >20 µV. Evoked potentials were...... extinguished at all frequencies if (1) water temperatures were less than 8°C, (2) statocysts were ablated, or (3) recording electrodes were placed in locations other than near the statocysts. Both the AEP response characteristics and the range of responses suggest that squid detect sound similarly to most fish...

  3. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    Science.gov (United States)

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  5. Patterns of cell death in the perinatal mouse forebrain.

    Science.gov (United States)

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G

    2017-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Auditory sustained field responses to periodic noise

    Directory of Open Access Journals (Sweden)

    Keceli Sumru

    2012-01-01

    Full Text Available Abstract Background Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. Results Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. Conclusions The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.

  7. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of lo...

  8. Auditory Masking Effects on Speech Fluency in Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback

    Science.gov (United States)

    Jacks, Adam; Haley, Katarina L.

    2015-01-01

    Purpose: To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not…

  9. Fragile Spectral and Temporal Auditory Processing in Adolescents with Autism Spectrum Disorder and Early Language Delay

    Science.gov (United States)

    Boets, Bart; Verhoeven, Judith; Wouters, Jan; Steyaert, Jean

    2015-01-01

    We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM)…

  10. BAER - brainstem auditory evoked response

    Science.gov (United States)

    ... auditory potentials; Brainstem auditory evoked potentials; Evoked response audiometry; Auditory brainstem response; ABR; BAEP ... Normal results vary. Results will depend on the person and the instruments used to perform the test.

  11. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  12. Song competition affects monoamine levels in sensory and motor forebrain regions of male Lincoln's sparrows (Melospiza lincolnii.

    Directory of Open Access Journals (Sweden)

    Kendra B Sewall

    Full Text Available Male animals often change their behavior in response to the level of competition for mates. Male Lincoln's sparrows (Melospiza lincolnii modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln's sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM, because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA, because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state.

  13. The Molecular and Developmental Basis of the Evolution of the Vertebrate Auditory System

    OpenAIRE

    FRITZSCH, B.; Pauley, S.; Feng, F.; Matei, V.; Nichols, D. H.

    2006-01-01

    We review the molecular basis of the auditory system development and evolution. The auditory periphery evolved by building on the capacity of vestibular hair cells to respond to higher frequency mechanical stimulation. Evolution altered accessory structures to transform vestibular to auditory receptors. Auditory neurons are derived from vestibular neurons, possibly through the expression of the zinc finger protein GATA3. The bHLH gene Neurogenin1 is expressed in the area of the developing ves...

  14. Corticosteroid therapy in regressive autism: a retrospective study of effects on the Frequency Modulated Auditory Evoked Response (FMAER), language, and behavior.

    Science.gov (United States)

    Duffy, Frank H; Shankardass, Aditi; McAnulty, Gloria B; Eksioglu, Yaman Z; Coulter, David; Rotenberg, Alexander; Als, Heidelise

    2014-05-15

    Up to a third of children with Autism Spectrum Disorder (ASD) manifest regressive autism (R-ASD).They show normal early development followed by loss of language and social skills. Absent evidence-based therapies, anecdotal evidence suggests improvement following use of corticosteroids. This study examined the effects of corticosteroids for R-ASD children upon the 4 Hz frequency modulated evoked response (FMAER) arising from language cortex of the superior temporal gyrus (STG) and upon EEG background activity, language, and behavior. An untreated clinical convenience sample of ASD children served as control sample. Twenty steroid-treated R-ASD (STAR) and 24 not-treated ASD patients (NSA), aged 3 - 5 years, were retrospectively identified from a large database. All study participants had two sequential FMAER and EEG studies;Landau-Kleffner syndrome diagnosis was excluded. All subjects' records contained clinical receptive and expressive language ratings based upon a priori developed metrics. The STAR group additionally was scored behaviorally regarding symptom severity as based on the Diagnostic and Statistical Manual IV (DSM-IV) ASD criteria list. EEGs were visually scored for abnormalities. FMAER responses were assessed quantitatively by spectral analysis. Treated and untreated group means and standard deviations for the FMAER, EEG, language, and behavior, were compared by paired t-test and Fisher's exact tests. The STAR group showed a significant increase in the 4 Hz FMAER spectral response and a significant reduction in response distortion compared to the NSA group. Star group subjects' language ratings were significantly improved and more STAR than NSA group subjects showed significant language improvement. Most STAR group children showed significant behavioral improvement after treatment. STAR group language and behavior improvement was retained one year after treatment. Groups did not differ in terms of minor EEG abnormalities. Steroid treatment produced no

  15. From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells.

    Science.gov (United States)

    Lupo, Giuseppe; Bertacchi, Michele; Carucci, Nicoletta; Augusti-Tocco, Gabriella; Biagioni, Stefano; Cremisi, Federico

    2014-08-01

    Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.

  16. Induction of oligodendrocyte progenitors in dorsal forebrain by intraventricular microinjection of FGF-2.

    Science.gov (United States)

    Naruse, Masae; Nakahira, Eiko; Miyata, Takaki; Hitoshi, Seiji; Ikenaka, Kazuhiro; Bansal, Rashmi

    2006-09-01

    During embryonic development, oligodendrocyte progenitors (OLPs) originate from the ventral forebrain under the regulation of Sonic hedgehog (Shh). Shh controls the expression of transcription factor Olig2, which is strongly implicated in OLP generation. Studies of mice deficient in Shh expression suggest, however, that an alternative pathway for OLP generation may exist. The generation of OLPs in dorsal forebrain has been suggested since treatment of dorsal-neural progenitor cells in culture with fibroblast growth factor (FGF-2) results in OLP induction. To ask if dorsal induction of OLPs in embryonic forebrain can occur in vivo and if FGF-2 could initiate an alternative pathway of regulation, we used in utero microinjection of FGF-2 into the lateral ventricles of mouse fetal forebrain. A single injection of FGF-2 at E13.5 resulted in the expression of the OLP markers Olig2 and PDGFRalpha mRNA in dorsal forebrain ventricular and intermediate zones. However, FGF-2 did not induce dorsal expression of Shh, Patched1 or Nkx2.1, and co-injection of FGF-2 and a Shh inhibitor did not attenuate the induction of Olig2 and PDGFRalpha, suggesting that Shh signaling was not involved in this FGF-2-mediated dorsal induction. These results demonstrate that the dorsal embryonic forebrain in vivo has the potential to generate OLPs in the presence of normal positional cues and that this can be driven by FGF-2 independent of Shh signaling.

  17. Auditory object formation affects modulation perception

    DEFF Research Database (Denmark)

    Piechowiak, Tobias

    2005-01-01

    the target sound in time determine whether or not across-frequency modulation effects are observed. The results suggest that the binding of sound elements into coherent auditory objects precedes aspects of modulation analysis and imply a cortical locus involving integration times of several hundred...

  18. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...

  19. Active Auditory Mechanics in Insects

    Science.gov (United States)

    Robert, D.; Göpfert, M. C.

    2003-02-01

    Evidence is presented that hearing in some insects is an active process. Audition in mosquitoes is used for mate-detection and is supported by antennal receivers, whose sound-induced vibrations are transduced by Johnston's organs. Each of these sensory organs contains ca. 15,000 sensory neurons. As shown by mechanical analysis, a physiologically vulnerable mechanism is at work that nonlinearly enhances the sensitivity and frequency selectivity of antennal hearing. This process of amplification correlates with the electrical activity of the auditory mechanoreceptor units in Johnston's organ.

  20. Modulation of specific sensory cortical areas by segregated basal forebrain cholinergic neurons demonstrated by neuronal tracing and optogenetic stimulation in mice

    Directory of Open Access Journals (Sweden)

    Irene eChaves-Coira

    2016-04-01

    Full Text Available Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-gold and Fast Blue fluorescent retrograde tracers were deposited into the primary somatosensory (S1 and primary auditory (A1 cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP under the control of the choline-acetyl transferase promoter (ChAT. Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  1. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  2. The Input-Output Relationship of the Cholinergic Basal Forebrain

    Directory of Open Access Journals (Sweden)

    Matthew R. Gielow

    2017-02-01

    Full Text Available Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.

  3. Unique spatiotemporal requirements for intraflagellar transport genes during forebrain development.

    Directory of Open Access Journals (Sweden)

    John Snedeker

    Full Text Available Primary cilia are organelles extended from virtually all cells and are required for the proper regulation of a number of canonical developmental pathways. The role in cortical development of proteins important for ciliary form and function is a relatively understudied area. Here we have taken a genetic approach to define the role in forebrain development of three intraflagellar transport proteins known to be important for primary cilia function. We have genetically ablated Kif3a, Ift88, and Ttc21b in a series of specific spatiotemporal domains. The resulting phenotypes allow us to draw several conclusions. First, we conclude that the Ttc21b cortical phenotype is not due to the activity of Ttc21b within the brain itself. Secondly, some of the most striking phenotypes are from ablations in the neural crest cells and the adjacent surface ectoderm indicating that cilia transduce critical tissue-tissue interactions in the developing embryonic head. Finally, we note striking differences in phenotypes from ablations only one embryonic day apart, indicating very discrete spatiotemporal requirements for these three genes in cortical development.

  4. KCC3 and KCC4 expression in rat adult forebrain.

    Science.gov (United States)

    Le Rouzic, P; Ivanov, T R; Stanley, P J; Baudoin, F M-H; Chan, F; Pinteaux, E; Brown, P D; Luckman, S M

    2006-09-19

    Potassium chloride ion cotransporters (KCCs) are part of a family of transporters classically described as being involved in cell volume regulation. Recently, KCC2 has been shown to have a role in the development of the inhibitory actions of amine transmitters, whereas KCC3 also plays a fundamental role in the development and function of the central and peripheral nervous system. We have re-assessed the expression of each of the known KCCs in the rat forebrain using RT-PCR and in situ hybridisation histochemistry. As well as confirming the widespread expression of KCC1 and KCC2 throughout the brain, we now show a more restricted expression of KCC3a in the hippocampus, choroid plexus and piriform cortex, as well as KCC4 in the choroid plexus and the suprachiasmatic nucleus of the hypothalamus. The expression of KCC4 in the latter and KCC2 in the lateral hypothalamic and ventromedial hypothalamic nuclei suggests that these cotransporters may have selective roles in neuroendocrine or homeostatic functions. Finally, we demonstrate the existence of a truncated splice variation of KCC3a in the rat that appears to be expressed exclusively in neurons (as is KCC2), whereas the native form of KCC3a and KCC4 appears to be expressed in glial cells.

  5. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  6. Auditory brain-stem responses in adrenomyeloneuropathy.

    Science.gov (United States)

    Grimes, A M; Elks, M L; Grunberger, G; Pikus, A M

    1983-09-01

    We studied three patients with adrenomyeloneuropathy. Complete audiologic assessment was obtained: two patients showed unimpaired peripheral hearing and one showed a mild high-frequency hearing loss. Auditory brain-stem responses were abnormal in both ears of all subjects, with one subject showing no response above wave I, and the other two having significant wave I to III and wave III to V interval prolongations. We concluded that auditory brain-stem response testing provides a simple, valid, reliable method for demonstrating neurologic abnormality in adrenomyeloneuropathy even prior to evidence of clinical signs.

  7. Cigarette smoking as a risk factor for auditory problems.

    Science.gov (United States)

    Paschoal, Carolina Pamplona; Azevedo, Marisa Frasson de

    2009-01-01

    Smoking is a public health concern and we are still unsure of its relation with auditory problems. To study the effects of cigarette smoking in auditory thresholds, in otoacoustic emissions and in their inhibition by the efferent olivocochlear medial system. 144 adults from both genders, between 20 and 31 years of age, smoking and non-smoking individuals were submitted to conventional and high-frequency audiometry, transient stimuli otoacoustic emissions and suppression effect investigation. smokers presented worse auditory thresholds in the frequencies of 12.500Hz in the right ear and 14,000 kHz in both ears. Regarding the otoacoustic emissions, smokers group presented a lower response level in the frequencies of 1,000Hz in both ears and 4,000Hz in the left ear. Among smokers there were more cases of cochlear dysfunction and tinnitus. Our results suggest that cigarette smoking has an adverse effect on the auditory system.

  8. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  9. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  10. Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials.

    Science.gov (United States)

    Verhey, Jesko L; Ernst, Stephan M A; Yasin, Ifat

    2012-03-01

    The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The Harmonic Organization of Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Xiaoqin eWang

    2013-12-01

    Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.

  12. The harmonic organization of auditory cortex

    Science.gov (United States)

    Wang, Xiaoqin

    2013-01-01

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544

  13. Auditory Discrimination Learning: Role of Working Memory.

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    Full Text Available Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM. First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.

  14. Auditory Memory deficit in Elderly People with Hearing Loss.

    Science.gov (United States)

    Shahidipour, Zahra; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Khosravifard, Elham

    2013-06-01

    Hearing loss is one of the most common problems in elderly people. Functional side effects of hearing loss are various. Due to the fact that hearing loss is the common impairment in elderly people; the importance of its possible effects on auditory memory is undeniable. This study aims to focus on the hearing loss effects on auditory memory. Dichotic Auditory Memory Test (DVMT) was performed on 47 elderly people, aged 60 to 80; that were divided in two groups, the first group consisted of elderly people with hearing range of 24 normal and the second one consisted of 23 elderly people with bilateral symmetrical ranged from mild to moderate Sensorineural hearing loss in the high frequency due to aging in both genders. Significant difference was observed in DVMT between elderly people with normal hearing and those with hearing loss (Pauditory verbal memory. This result depicts the importance of auditory intervention to make better communicational skills and therefore auditory memory in this population.

  15. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...... by aligning ultra-dense receptive field maps from the auditory cortex and thalamus of the mouse in vivo with the neural circuitry contained in the auditory thalamocortical slice in vitro. We observed precisely organized tonotopic maps of best frequency (BF) in the middle layers of AI and the anterior auditory...... field as well as in the ventral and medial divisions of the medial geniculate body (MGBv and MGBm, respectively). Tracer injections into distinct zones of the BF map in AI retrogradely labeled topographically organized MGBv projections and weaker, mixed projections from MGBm. Stimulating MGBv along...

  16. Aktiverende Undervisning i auditorier

    DEFF Research Database (Denmark)

    Parus, Judith

    Workshop om erfaringer og brug af aktiverende metoder i undervisning i auditorier og på store hold. Hvilke metoder har fungeret godt og hvilke dårligt ? Hvilke overvejelser skal man gøre sig.......Workshop om erfaringer og brug af aktiverende metoder i undervisning i auditorier og på store hold. Hvilke metoder har fungeret godt og hvilke dårligt ? Hvilke overvejelser skal man gøre sig....

  17. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  18. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  19. Expression of the zinc finger gene fez-like in zebrafish forebrain.

    Science.gov (United States)

    Hashimoto, H; Yabe, T; Hirata, T; Shimizu, T; Bae, Y; Yamanaka, Y; Hirano, T; Hibi, M

    2000-10-01

    Anterior-posterior (A-P) patterning in the neuroectoderm is established during gastrulation in zebrafish and amphibians. We isolated a novel zinc-finger gene fez-like (fezl) from zebrafish, which displays sequence similarities to Xenopus Fez. The fezl transcripts were detected in the anterior edge of neuroectoderm, the prospective dorsal forebrain, from the late gastrula (80% epiboly stage) to the mid-segmentation period. fezl was also expressed in the ventral forebrain overlying the prechordal plate at these stages. The expression of fezl was enhanced in embryos expressing the Wnt inhibitor Dkk1 and reduced in embryos expressing Wnt8b. The expression in the ventral forebrain was eliminated in the one-eyed pinhead mutant and the antivin RNA-injected embryos, which lack the prechordal plate. Radiation hybrid mapping revealed that the fezl gene is localized to linkage group 11.

  20. Auditory responsive naming versus visual confrontation naming in dementia.

    Science.gov (United States)

    Miller, Kimberly M; Finney, Glen R; Meador, Kimford J; Loring, David W

    2010-01-01

    Dysnomia is typically assessed during neuropsychological evaluation through visual confrontation naming. Responsive naming to description, however, has been shown to have a more distributed representation in both fMRI and cortical stimulation studies. While naming deficits are common in dementia, the relative sensitivity of visual confrontation versus auditory responsive naming has not been directly investigated. The current study compared visual confrontation naming and auditory responsive naming in a dementia sample of mixed etiologies to examine patterns of performance across these naming tasks. A total of 50 patients with dementia of various etiologies were administered visual confrontation naming and auditory responsive naming tasks using stimuli that were matched in overall word frequency. Patients performed significantly worse on auditory responsive naming than visual confrontation naming. Additionally, patients with mixed Alzheimer's disease/vascular dementia performed more poorly on auditory responsive naming than did patients with probable Alzheimer's disease, although no group differences were seen on the visual confrontation naming task. Auditory responsive naming correlated with a larger number of neuropsychological tests of executive function than did visual confrontation naming. Auditory responsive naming appears to be more sensitive to effects of increased of lesion burden compared to visual confrontation naming. We believe that this reflects more widespread topographical distribution of auditory naming sites within the temporal lobe, but may also reflect the contributions of working memory and cognitive flexibility to performance.

  1. Auditory hallucinations induced by trazodone

    Science.gov (United States)

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  2. Neuromechanistic Model of Auditory Bistability.

    Directory of Open Access Journals (Sweden)

    James Rankin

    2015-11-01

    Full Text Available Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1. Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept-a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.

  3. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  4. Singing-related activity in anterior forebrain of male zebra finches reflects courtship motivation for target females.

    Directory of Open Access Journals (Sweden)

    Mai Iwasaki

    Full Text Available A critical function of singing by male songbirds is to attract a female mate. Previous studies have suggested that the anterior forebrain system is involved in this courtship behavior. Neural activity in this system, including the striatal Area X, is strikingly dependent on the function of male singing. When males sing to attract a female bird rather than while alone, less variable neural activity results in less variable song spectral features, which may be attractive to the female. These characteristics of neural activity and singing thus may reflect a male's motivation for courtship. Here, we compared the variability of neural activity and song features between courtship singing directed to a female with whom a male had previously formed a pair-bond or to other females. Surprisingly, across all units, there was no clear tendency for a difference in variability of neural activity or song features between courtship of paired females, nonpaired females, or dummy females. However, across the population of recordings, there was a significant relationship between the relative variability of syllable frequency and neural activity: when syllable frequency was less variable to paired than nonpaired females, neural activity was also less variable (and vice-versa. These results show that the lower variability of neural activity and syllable frequency during directed singing is not a binary distinction from undirected singing, but can vary in intensity, possibly related to the relative preference of a male for his singing target.

  5. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus.

    Directory of Open Access Journals (Sweden)

    Paul M Forlano

    Full Text Available In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic

  6. Behavioral estimates of human frequency selectivity at low frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado

    on physical sound measurements. In this PhD thesis a detailed description of frequency selectivity at low frequencies is given. Different experiments have been performed to determine the properties of human auditory filters. Besides, loudness perception of low-frequency sinusoidal signals has been evaluated...

  7. Functional properties of human auditory cortical fields

    Directory of Open Access Journals (Sweden)

    David L Woods

    2010-12-01

    Full Text Available While auditory cortex in non-human primates has been subdivided into multiple functionally-specialized auditory cortical fields (ACFs, the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of fMRI activations on the cortical surface to attended and nonattended tones of different frequency, location, and intensity. The limits of auditory cortex were defined by voxels that showed significant activations to nonattended sounds. Three centrally-located fields with mirror-symmetric tonotopic organization were identified and assigned to the three core fields of the primate model while surrounding activations were assigned to belt fields following procedures similar to those used in macaque fMRI studies. The functional properties of core, medial belt, and lateral belt field groups were then analyzed. Field groups were distinguished by tonotopic organization, frequency selectivity, intensity sensitivity, contralaterality, binaural enhancement, attentional modulation, and hemispheric asymmetry. In general, core fields showed greater sensitivity to sound properties than did belt fields, while belt fields showed greater attentional modulation than core fields. Significant distinctions in intensity sensitivity and contralaterality were seen between adjacent core fields A1 and R, while multiple differences in tuning properties were evident at boundaries between adjacent core and belt fields. The reliable differences in functional properties between fields and field groups suggest that the basic primate pattern of auditory cortex organization is preserved in humans. A comparison of the sizes of functionally-defined ACFs in humans and macaques reveals a significant relative expansion in human lateral belt fields implicated in the processing of speech.

  8. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  9. Continuity of visual and auditory rhythms influences sensorimotor coordination.

    Directory of Open Access Journals (Sweden)

    Manuel Varlet

    Full Text Available People often coordinate their movement with visual and auditory environmental rhythms. Previous research showed better performances when coordinating with auditory compared to visual stimuli, and with bimodal compared to unimodal stimuli. However, these results have been demonstrated with discrete rhythms and it is possible that such effects depend on the continuity of the stimulus rhythms (i.e., whether they are discrete or continuous. The aim of the current study was to investigate the influence of the continuity of visual and auditory rhythms on sensorimotor coordination. We examined the dynamics of synchronized oscillations of a wrist pendulum with auditory and visual rhythms at different frequencies, which were either unimodal or bimodal and discrete or continuous. Specifically, the stimuli used were a light flash, a fading light, a short tone and a frequency-modulated tone. The results demonstrate that the continuity of the stimulus rhythms strongly influences visual and auditory motor coordination. Participants' movement led continuous stimuli and followed discrete stimuli. Asymmetries between the half-cycles of the movement in term of duration and nonlinearity of the trajectory occurred with slower discrete rhythms. Furthermore, the results show that the differences of performance between visual and auditory modalities depend on the continuity of the stimulus rhythms as indicated by movements closer to the instructed coordination for the auditory modality when coordinating with discrete stimuli. The results also indicate that visual and auditory rhythms are integrated together in order to better coordinate irrespective of their continuity, as indicated by less variable coordination closer to the instructed pattern. Generally, the findings have important implications for understanding how we coordinate our movements with visual and auditory environmental rhythms in everyday life.

  10. Functional imaging reveals numerous fields in the monkey auditory cortex.

    Directory of Open Access Journals (Sweden)

    Christopher I Petkov

    2006-07-01

    Full Text Available Anatomical studies propose that the primate auditory cortex contains more fields than have actually been functionally confirmed or described. Spatially resolved functional magnetic resonance imaging (fMRI with carefully designed acoustical stimulation could be ideally suited to extend our understanding of the processing within these fields. However, after numerous experiments in humans, many auditory fields remain poorly characterized. Imaging the macaque monkey is of particular interest as these species have a richer set of anatomical and neurophysiological data to clarify the source of the imaged activity. We functionally mapped the auditory cortex of behaving and of anesthetized macaque monkeys with high resolution fMRI. By optimizing our imaging and stimulation procedures, we obtained robust activity throughout auditory cortex using tonal and band-passed noise sounds. Then, by varying the frequency content of the sounds, spatially specific activity patterns were observed over this region. As a result, the activity patterns could be assigned to many auditory cortical fields, including those whose functional properties were previously undescribed. The results provide an extensive functional tessellation of the macaque auditory cortex and suggest that 11 fields contain neurons tuned for the frequency of sounds. This study provides functional support for a model where three fields in primary auditory cortex are surrounded by eight neighboring "belt" fields in non-primary auditory cortex. The findings can now guide neurophysiological recordings in the monkey to expand our understanding of the processing within these fields. Additionally, this work will improve fMRI investigations of the human auditory cortex.

  11. Temporal coherence sensitivity in auditory cortex.

    Science.gov (United States)

    Barbour, Dennis L; Wang, Xiaoqin

    2002-11-01

    Natural sounds often contain energy over a broad spectral range and consequently overlap in frequency when they occur simultaneously; however, such sounds under normal circumstances can be distinguished perceptually (e.g., the cocktail party effect). Sound components arising from different sources have distinct (i.e., incoherent) modulations, and incoherence appears to be one important cue used by the auditory system to segregate sounds into separately perceived acoustic objects. Here we show that, in the primary auditory cortex of awake marmoset monkeys, many neurons responsive to amplitude- or frequency-modulated tones at a particular carrier frequency [the characteristic frequency (CF)] also demonstrate sensitivity to the relative modulation phase between two otherwise identically modulated tones: one at CF and one at a different carrier frequency. Changes in relative modulation phase reflect alterations in temporal coherence between the two tones, and the most common neuronal response was found to be a maximum of suppression for the coherent condition. Coherence sensitivity was generally found in a narrow frequency range in the inhibitory portions of the frequency response areas (FRA), indicating that only some off-CF neuronal inputs into these cortical neurons interact with on-CF inputs on the same time scales. Over the population of neurons studied, carrier frequencies showing coherence sensitivity were found to coincide with the carrier frequencies of inhibition, implying that inhibitory inputs create the effect. The lack of strong coherence-induced facilitation also supports this interpretation. Coherence sensitivity was found to be greatest for modulation frequencies of 16-128 Hz, which is higher than the phase-locking capability of most cortical neurons, implying that subcortical neurons could play a role in the phenomenon. Collectively, these results reveal that auditory cortical neurons receive some off-CF inputs temporally matched and some temporally

  12. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration

    DEFF Research Database (Denmark)

    Hébert, Sébastien S; Papadopoulou, Aikaterini S; Smith, Pascal

    2010-01-01

    , particularly in the adult brain, remain poorly defined. Here we show that the absence of Dicer in the adult forebrain is accompanied by a mixed neurodegenerative phenotype. Although neuronal loss is observed in the hippocampus, cellular shrinkage is predominant in the cortex. Interestingly, neuronal...

  13. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H

    2010-01-01

    important for cognitive function. However, the neural substrates involved in these effects remain elusive. Here we identify cortically projecting cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain (BF) as important targets for alpha(7) nAChR activation...

  14. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    Science.gov (United States)

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  15. GABAergic terminals are a source of Galanin to modulate cholinergic neuron development in the neonatal forebrain

    NARCIS (Netherlands)

    Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B.; Schnell, Robert; Mulder, Jan; Luiten, Paul G M; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor

    2014-01-01

    The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with ã-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact

  16. GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain.

    Science.gov (United States)

    Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B; Schnell, Robert; Mulder, Jan; Luiten, Paul G M; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor

    2014-12-01

    The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Potenciais evocados auditivos de tronco encefálico por frequência específica e de estado estável na audiologia pediátrica: estudo de caso Frequency-specific and steady-state evoked auditory brainstem responses in pediatric audiology: case study

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2009-01-01

    Full Text Available Preconiza-se o diagnóstico até os três meses de idade em crianças com deficiência auditiva congênita. Após a etapa inicial de confirmação do diagnóstico, é necessário que se obtenha limiares precisos nas diferentes frequências, para que seja possível uma adequada seleção, indicação e regulagem de aparelhos de amplificação sonora. Nesse contexto, inserem-se os Potenciais Evocados Auditivos de Tronco Encefálico por Frequência Específica (PEATE-FE e, mais recentemente, os Potenciais Evocados Auditivos de Estado Estável (PEAEE. O objetivo deste estudo de caso foi apresentar os achados das duas técnicas para estimar os limiares auditivos em uma criança de três meses de idade, com perda auditiva neurossensorial bilateral, diagnosticada utilizando-se como primeiro método de avaliação os Potenciais Evocados Auditivos de Tronco Encefálico com estímulo clique, tanto por via aérea como por via óssea. As duas técnicas mostraram-se eficientes para estimar os limiares auditivos, com uma vantagem dos PEAEE com relação ao tempo de duração de exame.It is recommended that congenital hearing loss is identified as early as three months old. After the initial step of confirming the diagnosis, it is necessary to obtain accurate hearing thresholds, allowing an adequate selection, indication and regulation of hearing aids for these children. It is inserted, in this context, the Frequency-Specific Auditory Brainstem Responses (FSABR and, more recently, the Auditory Steady-State Responses (ASSR. The aim of the present study was to describe the findings of the use of both techniques to estimate the auditory thresholds of a three-month-old infant with bilateral sensorineural hearing loss diagnosed using, as primary evaluation method, the click-evoked Auditory Brainstem Responses, with both air and bone stimuli conduction. Both techniques provided reliable findings for estimating auditory thresholds. The ASSR had an advantage regarding

  18. Neurodynamics, tonality, and the auditory brainstem response.

    Science.gov (United States)

    Large, Edward W; Almonte, Felix V

    2012-04-01

    Tonal relationships are foundational in music, providing the basis upon which musical structures, such as melodies, are constructed and perceived. A recent dynamic theory of musical tonality predicts that networks of auditory neurons resonate nonlinearly to musical stimuli. Nonlinear resonance leads to stability and attraction relationships among neural frequencies, and these neural dynamics give rise to the perception of relationships among tones that we collectively refer to as tonal cognition. Because this model describes the dynamics of neural populations, it makes specific predictions about human auditory neurophysiology. Here, we show how predictions about the auditory brainstem response (ABR) are derived from the model. To illustrate, we derive a prediction about population responses to musical intervals that has been observed in the human brainstem. Our modeled ABR shows qualitative agreement with important features of the human ABR. This provides a source of evidence that fundamental principles of auditory neurodynamics might underlie the perception of tonal relationships, and forces reevaluation of the role of learning and enculturation in tonal cognition. © 2012 New York Academy of Sciences.

  19. Neural Entrainment to Auditory Imagery of Rhythms

    Directory of Open Access Journals (Sweden)

    Haruki Okawa

    2017-10-01

    Full Text Available A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.

  20. Auditory-motor coupling affects phonetic encoding.

    Science.gov (United States)

    Schmidt-Kassow, Maren; Thöne, Katharina; Kaiser, Jochen

    2017-11-27

    Recent studies have shown that moving in synchrony with auditory stimuli boosts attention allocation and verbal learning. Furthermore rhythmic tones are processed more efficiently than temporally random tones ('timing effect'), and this effect is increased when participants actively synchronize their motor performance with the rhythm of the tones, resulting in auditory-motor synchronization. Here, we investigated whether this applies also to sequences of linguistic stimuli (syllables). We compared temporally irregular syllable sequences with two temporally regular conditions where either the interval between syllable onsets (stimulus onset asynchrony, SOA) or the interval between the syllables' vowel onsets was kept constant. Entrainment to the stimulus presentation frequency (1 Hz) and event-related potentials were assessed in 24 adults who were instructed to detect pre-defined deviant syllables while they either pedaled or sat still on a stationary exercise bike. We found larger 1 Hz entrainment and P300 amplitudes for the SOA presentation during motor activity. Furthermore, the magnitude of the P300 component correlated with the motor variability in the SOA condition and 1 Hz entrainment, while in turn 1 Hz entrainment correlated with auditory-motor synchronization performance. These findings demonstrate that acute auditory-motor coupling facilitates phonetic encoding. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Abnormal auditory synchronization in stuttering: A magnetoencephalographic study.

    Science.gov (United States)

    Kikuchi, Yoshikazu; Okamoto, Tsuyoshi; Ogata, Katsuya; Hagiwara, Koichi; Umezaki, Toshiro; Kenjo, Masamutsu; Nakagawa, Takashi; Tobimatsu, Shozo

    2017-02-01

    In a previous magnetoencephalographic study, we showed both functional and structural reorganization of the right auditory cortex and impaired left auditory cortex function in people who stutter (PWS). In the present work, we reevaluated the same dataset to further investigate how the right and left auditory cortices interact to compensate for stuttering. We evaluated bilateral N100m latencies as well as indices of local and inter-hemispheric phase synchronization of the auditory cortices. The left N100m latency was significantly prolonged relative to the right N100m latency in PWS, while healthy control participants did not show any inter-hemispheric differences in latency. A phase-locking factor (PLF) analysis, which indicates the degree of local phase synchronization, demonstrated enhanced alpha-band synchrony in the right auditory area of PWS. A phase-locking value (PLV) analysis of inter-hemispheric synchronization demonstrated significant elevations in the beta band between the right and left auditory cortices in PWS. In addition, right PLF and PLVs were positively correlated with stuttering frequency in PWS. Taken together, our data suggest that increased right hemispheric local phase synchronization and increased inter-hemispheric phase synchronization are electrophysiological correlates of a compensatory mechanism for impaired left auditory processing in PWS. Published by Elsevier B.V.

  2. Incidental auditory category learning.

    Science.gov (United States)

    Gabay, Yafit; Dick, Frederic K; Zevin, Jason D; Holt, Lori L

    2015-08-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in 1 of 4 possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from 1 of 4 distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. (c) 2015 APA, all rights reserved).

  3. Modelling auditory attention.

    Science.gov (United States)

    Kaya, Emine Merve; Elhilali, Mounya

    2017-02-19

    Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information-a phenomenon referred to as the 'cocktail party problem'. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by 'bottom-up' sensory-driven factors, as well as 'top-down' task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  4. Auditory Channel Problems.

    Science.gov (United States)

    Mann, Philip H.; Suiter, Patricia A.

    This teacher's guide contains a list of general auditory problem areas where students have the following problems: (a) inability to find or identify source of sound; (b) difficulty in discriminating sounds of words and letters; (c) difficulty with reproducing pitch, rhythm, and melody; (d) difficulty in selecting important from unimportant sounds;…

  5. Sensitivity and specificity of auditory steady-state response testing

    Directory of Open Access Journals (Sweden)

    Camila Maia Rabelo

    2011-01-01

    Full Text Available INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady-state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady-state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz. The difference between auditory steady-state response-estimated thresholds and behavioral thresholds (audiometric evaluation was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady-state response-estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS lesions has shown that individuals with CANS lesions present a greater difference between ASSR-estimated thresholds and actual behavioral thresholds; ASSR-estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR-estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady

  6. Auditory and cognitive performance in elderly musicians and nonmusicians.

    Directory of Open Access Journals (Sweden)

    Massimo Grassi

    Full Text Available Musicians represent a model for examining brain and behavioral plasticity in terms of cognitive and auditory profile, but few studies have investigated whether elderly musicians have better auditory and cognitive abilities than nonmusicians. The aim of the present study was to examine whether being a professional musician attenuates the normal age-related changes in hearing and cognition. Elderly musicians still active in their profession were compared with nonmusicians on auditory performance (absolute threshold, frequency intensity, duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detection, and on simple (short-term memory and more complex and higher-order (working memory [WM] and visuospatial abilities cognitive tasks. The sample consisted of adults at least 65 years of age. The results showed that older musicians had similar absolute thresholds but better supra-threshold discrimination abilities than nonmusicians in four of the six auditory tasks administered. They also had a better WM performance, and stronger visuospatial abilities than nonmusicians. No differences were found between the two groups' short-term memory. Frequency discrimination and gap detection for the auditory measures, and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved to be very good classifiers of the musicians. These findings suggest that life-long music training may be associated with enhanced auditory and cognitive performance, including complex cognitive skills, in advanced age. However, whether this music training represents a protective factor or not needs further investigation.

  7. Auditory and cognitive performance in elderly musicians and nonmusicians.

    Science.gov (United States)

    Grassi, Massimo; Meneghetti, Chiara; Toffalini, Enrico; Borella, Erika

    2017-01-01

    Musicians represent a model for examining brain and behavioral plasticity in terms of cognitive and auditory profile, but few studies have investigated whether elderly musicians have better auditory and cognitive abilities than nonmusicians. The aim of the present study was to examine whether being a professional musician attenuates the normal age-related changes in hearing and cognition. Elderly musicians still active in their profession were compared with nonmusicians on auditory performance (absolute threshold, frequency intensity, duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detection), and on simple (short-term memory) and more complex and higher-order (working memory [WM] and visuospatial abilities) cognitive tasks. The sample consisted of adults at least 65 years of age. The results showed that older musicians had similar absolute thresholds but better supra-threshold discrimination abilities than nonmusicians in four of the six auditory tasks administered. They also had a better WM performance, and stronger visuospatial abilities than nonmusicians. No differences were found between the two groups' short-term memory. Frequency discrimination and gap detection for the auditory measures, and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved to be very good classifiers of the musicians. These findings suggest that life-long music training may be associated with enhanced auditory and cognitive performance, including complex cognitive skills, in advanced age. However, whether this music training represents a protective factor or not needs further investigation.

  8. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    Directory of Open Access Journals (Sweden)

    Takashi eTateno

    2013-11-01

    Full Text Available To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number.

  9. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  10. Cochlear Responses and Auditory Brainstem Response Functions in Adults with Auditory Neuropathy/ Dys-Synchrony and Individuals with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-06-01

    Full Text Available Background and Aim: Physiologic measures of cochlear and auditory nerve function may be of assis¬tance in distinguishing between hearing disorders due primarily to auditory nerve impairment from those due primarily to cochlear hair cells dysfunction. The goal of present study was to measure of co-chlear responses (otoacoustic emissions and cochlear microphonics and auditory brainstem response in some adults with auditory neuropathy/ dys-synchrony and subjects with normal hearing. Materials and Methods: Patients were 16 adults (32 ears in age range of 14-30 years with auditory neu¬ropathy/ dys-synchrony and 16 individuals in age range of 16-30 years from both sexes. The results of transient otoacoustic emissions, cochlear microphonics and auditory brainstem response measures were compared in both groups and the effects of age, sex, ear and degree of hearing loss were studied. Results: The pure-tone average was 48.1 dB HL in auditory neuropathy/dys-synchrony group and the fre¬quency of low tone loss and flat audiograms were higher among other audiogram's shapes. Transient oto¬acoustic emissions were shown in all auditory neuropathy/dys-synchrony people except two cases and its average was near in both studied groups. The latency and amplitude of the biggest reversed co-chlear microphonics response were higher in auditory neuropathy/dys-synchrony patients than control peo¬ple significantly. The correlation between cochlear microphonics amplitude and degree of hearing loss was not significant, and age had significant effect in some cochlear microphonics measures. Audi-tory brainstem response had no response in auditory neuropathy/dys-synchrony patients even with low stim¬uli rates. Conclusion: In adults with speech understanding worsen than predicted from the degree of hearing loss that suspect to auditory neuropathy/ dys-synchrony, the frequency of low tone loss and flat audiograms are higher. Usually auditory brainstem response is absent in

  11. BALDEY: A database of auditory lexical decisions.

    Science.gov (United States)

    Ernestus, Mirjam; Cutler, Anne

    2015-01-01

    In an auditory lexical decision experiment, 5541 spoken content words and pseudowords were presented to 20 native speakers of Dutch. The words vary in phonological make-up and in number of syllables and stress pattern, and are further representative of the native Dutch vocabulary in that most are morphologically complex, comprising two stems or one stem plus derivational and inflectional suffixes, with inflections representing both regular and irregular paradigms; the pseudowords were matched in these respects to the real words. The BALDEY ("biggest auditory lexical decision experiment yet") data file includes response times and accuracy rates, with for each item morphological information plus phonological and acoustic information derived from automatic phonemic segmentation of the stimuli. Two initial analyses illustrate how this data set can be used. First, we discuss several measures of the point at which a word has no further neighbours and compare the degree to which each measure predicts our lexical decision response outcomes. Second, we investigate how well four different measures of frequency of occurrence (from written corpora, spoken corpora, subtitles, and frequency ratings by 75 participants) predict the same outcomes. These analyses motivate general conclusions about the auditory lexical decision task. The (publicly available) BALDEY database lends itself to many further analyses.

  12. Central auditory masking by an illusory tone.

    Science.gov (United States)

    Plack, Christopher J; Oxenham, Andrew J; Kreft, Heather A; Carlyon, Robert P

    2013-01-01

    Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated) between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  13. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  14. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  15. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.

  16. An Auditory Model with Hearing Loss

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    An auditory model based on the psychophysics of hearing has been developed and tested. The model simulates the normal ear or an impaired ear with a given hearing loss. Based on reviews of the current literature, the frequency selectivity and loudness growth as functions of threshold and stimulus...... level have been found and implemented in the model. The auditory model was verified against selected results from the literature, and it was confirmed that the normal spread of masking and loudness growth could be simulated in the model. The effects of hearing loss on these parameters was also...... in qualitative agreement with recent findings. The temporal properties of the ear have currently not been included in the model. As an example of a real-world application of the model, loudness spectrograms for a speech utterance were presented. By introducing hearing loss, the speech sounds became less audible...

  17. Binaural processing by the gecko auditory periphery

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Tang, Ye Zhong; Carr, Catherine E

    2011-01-01

    in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (around 1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted...... from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al., 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions......Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion...

  18. Anatomy and Physiology of the Auditory Tracts

    Directory of Open Access Journals (Sweden)

    Mohammad hosein Hekmat Ara

    1999-03-01

    Full Text Available Hearing is one of the excel sense of human being. Sound waves travel through the medium of air and enter the ear canal and then hit the tympanic membrane. Middle ear transfer almost 60-80% of this mechanical energy to the inner ear by means of “impedance matching”. Then, the sound energy changes to traveling wave and is transferred based on its specific frequency and stimulates organ of corti. Receptors in this organ and their synapses transform mechanical waves to the neural waves and transfer them to the brain. The central nervous system tract of conducting the auditory signals in the auditory cortex will be explained here briefly.

  19. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014

  20. Auditory object cognition in dementia

    Science.gov (United States)

    Goll, Johanna C.; Kim, Lois G.; Hailstone, Julia C.; Lehmann, Manja; Buckley, Aisling; Crutch, Sebastian J.; Warren, Jason D.

    2011-01-01

    The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n = 21), progressive nonfluent aphasia (PNFA; n = 5), logopenic progressive aphasia (LPA; n = 7) and aphasia in association with a progranulin gene mutation (GAA; n = 1), and in healthy age-matched controls (n = 20). Based on a cognitive framework treating complex sounds as ‘auditory objects’, we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes. PMID:21689671

  1. The Relationship between Auditory Processing and Restricted, Repetitive Behaviors in Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Kargas, Niko; López, Beatriz; Reddy, Vasudevi; Morris, Paul

    2015-01-01

    Current views suggest that autism spectrum disorders (ASDs) are characterised by enhanced low-level auditory discrimination abilities. Little is known, however, about whether enhanced abilities are universal in ASD and how they relate to symptomatology. We tested auditory discrimination for intensity, frequency and duration in 21 adults with ASD…

  2. Auditory Reserve and the Legacy of Auditory Experience

    OpenAIRE

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence o...

  3. Evaluation of peripheral compression and auditory nerve fiber intensity coding using auditory steady-state responses

    DEFF Research Database (Denmark)

    Encina Llamas, Gerard; M. Harte, James; Epp, Bastian

    2015-01-01

    cause auditory nerve fiber (ANF) deafferentation in predominantly low-spontaneous rate (SR) fibers. In the present study, auditory steadystate response (ASSR) level growth functions were measured to evaluate the applicability of ASSR to assess compression and the ability to code intensity fluctuations...... at high stimulus levels. Level growth functions were measured in normal-hearing adults at stimulus levels ranging from 20 to 90 dB SPL. To evaluate compression, ASSR were measured for multiple carrier frequencies simultaneously. To evaluate intensity coding at high intensities, ASSR were measured using....... The results indicate that the slope of the ASSR level growth function can be used to estimate peripheral compression simultaneously at four frequencies below 60 dB SPL, while the slope above 60 dB SPL may provide information about the integrity of intensity coding of low-SR fibers....

  4. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  5. Basal forebrain administration of the somatostatin-analog octreotide does not affect cortical EEG in urethane anaesthetized rats.

    Science.gov (United States)

    Tóth, Attila; Henter, T; Détári, L

    2012-12-01

    Basal forebrain (BF) plays an important role in the regulation of cortical activation. Somatostatin (SOM) is present both in local neurons as well as in fibers in the BF. In previous studies, SOM axons were found to innervate corticopetal cholinergic cells and SOM was found to presynaptically modulate GABA and glutamate release onto cholinergic neurons in the BF. However, no systematic analysis is available about the EEG effects of SOM or its analog, octreotide (OCTR) injected directly into the BF. In the present experiments, EEG changes were examined following an OCTR injection (0.5 microliter, 500 nmol) into the BF areas containing several choline acetyl transferase-immunoreactive neurons of urethane-anaesthetized rats. Fronto-occipital EEG was recorded on both sides and relative EEG power was calculated in the delta (0-3 Hz), theta (3-9 Hz), alpha (9-16 Hz) and beta (16-48 Hz) frequency bands. OCTR injected to the BF failed to induce significant EEG changes and did not affect tail pinch-evoked cortical activation. Lack of effect may be attributed to the urethane anaesthesia as well as to the possible complex interactions between SOM and BF cholinergic and GABAergic neurons.

  6. Auditory beat stimulation and its effects on cognition and mood states

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-05-01

    Full Text Available Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood-states. Here we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation. We have summarized relevant studies investigating the neurophysiological changes related to auditory beat stimulation and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural beat stimulation, we then discuss the role of monaural and binaural beat frequencies in cognition and mood-states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of auditory beat stimulation.

  7. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain

    Science.gov (United States)

    Zaborszky, L.; Hoemke, L.; Mohlberg, H.; Schleicher, A.; Amunts, K.; Zilles, K.

    2008-01-01

    The basal forebrain contains several interdigitating anatomical structures, including the diagonal band of Broca, the basal nucleus of Meynert, the ventral striatum, and also cell groups underneath the globus pallidus that bridge the centromedial amygdala to the bed nucleus of the stria terminalis. Among the cell populations, the magnocellular, cholinergic corticopetal projection neurons have received particular attention due to their loss in Alzheimer’s disease. In MRI images, the precise delineation of these structures is difficult due to limited spatial resolution and contrast. Here, using microscopic delineations in ten human postmortem brains, we present stereotaxic probabilistic maps of the basal forebrain areas containing the magnocellular cell groups. Cytoarchitectonic mapping was performed in silver stained histological serial sections. The positions and the extent of the magnocellular cell groups within the septum (Ch1-2), the horizontal limb of the diagonal band (Ch3), and in the sublenticular part of the basal forebrain (Ch4) were traced in high-resolution digitized histological sections, 3D reconstructed, and warped to the reference space of the MNI single subject brain. The superposition of the cytoarchitectonic maps in the MNI brain shows the intersubject variability of the various Ch compartments and their stereotaxic position relative to other brain structures. Both the right and left Ch4 regions showed significantly smaller volumes when age was considered as a covariate. Probabilistic maps of compartments of the basal forebrain magnocellular system are now available as an open source reference for correlation with fMRI, PET, and structural MRI data of the living human brain. PMID:18585468

  8. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  9. Computational Perspectives on Forebrain Microcircuits Implicated in Reinforcement Learning, Action Selection, and Cognitive Control

    OpenAIRE

    Bullock, Daniel; Tan, Can Ozan; John, Yohan J.

    2009-01-01

    Abundant new information about signaling pathways in forebrain microcircuits presents many challenges, and opportunities for discovery, to computational neuroscientists who strive to bridge from microcircuits to flexible cognition and action. Accurate treatment of microcircuit pathways is especially critical for creating models that correctly predict the outcomes of candidate neurological therapies. Recent models are trying to specify how cortical circuits that enable planning and voluntary a...

  10. Gluatamic Acid Decarboxylase Activity Decreases in Mouse Neocortex after Lesions of the Basal Forebrain.

    Science.gov (United States)

    1986-12-22

    enzymes in senile dementia of the Alzheimer’s type, Brain Research, 171 (1979) 319-327. 6. Divac, I., Magnocellular nuclei of the basal forebrain...Perry, R.H. and Tomlinson, B.E. Neurotransmitter enzyme abnormalities in senile dementia . Choline acetyltransferase and glutamic acid decarboxylase...Roth, M.. and Iversen, L.L., Postmortem study of the cholinergic and GABA systems in senile dementia , Brain, 105 (1982) 313-330. 25. Rossor, M.N

  11. Control of Vocal and Respiratory Patterns in Birdsong: Dissection of Forebrain and Brainstem Mechanisms Using Temperature

    Science.gov (United States)

    Fee, Michale S.

    2011-01-01

    Learned motor behaviors require descending forebrain control to be coordinated with midbrain and brainstem motor systems. In songbirds, such as the zebra finch, regular breathing is controlled by brainstem centers, but when the adult songbird begins to sing, its breathing becomes tightly coordinated with forebrain-controlled vocalizations. The periods of silence (gaps) between song syllables are typically filled with brief breaths, allowing the bird to sing uninterrupted for many seconds. While substantial progress has been made in identifying the brain areas and pathways involved in vocal and respiratory control, it is not understood how respiratory and vocal control is coordinated by forebrain motor circuits. Here we combine a recently developed technique for localized brain cooling, together with recordings of thoracic air sac pressure, to examine the role of cortical premotor nucleus HVC (proper name) in respiratory-vocal coordination. We found that HVC cooling, in addition to slowing all song timescales as previously reported, also increased the duration of expiratory pulses (EPs) and inspiratory pulses (IPs). Expiratory pulses, like song syllables, were stretched uniformly by HVC cooling, but most inspiratory pulses exhibited non-uniform stretch of pressure waveform such that the majority of stretch occurred late in the IP. Indeed, some IPs appeared to change duration by the earlier or later truncation of an underlying inspiratory event. These findings are consistent with the idea that during singing the temporal structure of EPs is under the direct control of forebrain circuits, whereas that of IPs can be strongly influenced by circuits downstream of HVC, likely in the brainstem. An analysis of the temporal jitter of respiratory and vocal structure suggests that IPs may be initiated by HVC at the end of each syllable and terminated by HVC immediately before the onset of the next syllable. PMID:21980466

  12. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. (Genentech, San Francisco, CA (USA))

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  13. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus & S. coeruloalba

    Directory of Open Access Journals (Sweden)

    Roberta eParolisi

    2015-11-01

    Full Text Available Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e. magnetic resonance imaging, due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus and the striped dolphin (Stenella coeruleoalba, with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/grey matter ratio, and myelination in selected regions at different anterior-posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analysis were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals.

  14. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba)

    Science.gov (United States)

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior–posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155

  15. Neural Encoding of Auditory Features during Music Perception and Imagery.

    Science.gov (United States)

    Martin, Stephanie; Mikutta, Christian; Leonard, Matthew K; Hungate, Dylan; Koelsch, Stefan; Shamma, Shihab; Chang, Edward F; Millán, José Del R; Knight, Robert T; Pasley, Brian N

    2017-10-27

    Despite many behavioral and neuroimaging investigations, it remains unclear how the human cortex represents spectrotemporal sound features during auditory imagery, and how this representation compares to auditory perception. To assess this, we recorded electrocorticographic signals from an epileptic patient with proficient music ability in 2 conditions. First, the participant played 2 piano pieces on an electronic piano with the sound volume of the digital keyboard on. Second, the participant replayed the same piano pieces, but without auditory feedback, and the participant was asked to imagine hearing the music in his mind. In both conditions, the sound output of the keyboard was recorded, thus allowing precise time-locking between the neural activity and the spectrotemporal content of the music imagery. This novel task design provided a unique opportunity to apply receptive field modeling techniques to quantitatively study neural encoding during auditory mental imagery. In both conditions, we built encoding models to predict high gamma neural activity (70-150 Hz) from the spectrogram representation of the recorded sound. We found robust spectrotemporal receptive fields during auditory imagery with substantial, but not complete overlap in frequency tuning and cortical location compared to receptive fields measured during auditory perception. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  17. Contribution of Auditory Learning Style to Students’ Mathematical Connection Ability

    Science.gov (United States)

    Karlimah; Risfiani, F.

    2017-09-01

    This paper presents the results of the research on the relation of mathematical concept with mathematics, other subjects, and with everyday life. This research reveals study result of the students who had auditory learning style and correlates it with their ability of mathematical connection. In this research, the researchers used a combination model or sequential exploratory design method, which is the use of qualitative and quantitative research methods in sequence. The result proves that giving learning facilities which are not suitable for the class whose students have the auditory learning style results in the barely sufficient math connection ability. The average mathematical connection ability of the auditory students was initially in the medium level of qualification. Then, the improvement in the form of the varied learning that suited the auditory learning style still showed the average ability of mathematical connection in medium level of qualification. Nevertheless, there was increase in the frequency of students in the medium level of qualification and decrease in the very low and low level of qualification. This suggests that the learning facilities, which are appropriate for the student’s auditory learning style, contribute well enough to the students’ mathematical connection ability. Therefore, the mathematics learning for students who have an auditory learning style should consist of particular activity that is understanding the concepts of mathematics and their relations.

  18. The impact of educational level on performance on auditory processing tests

    Directory of Open Access Journals (Sweden)

    Cristina F.B. Murphy

    2016-03-01

    Full Text Available Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor years of schooling was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  19. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular

  20. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  1. Visual speech gestures modulate efferent auditory system.

    Science.gov (United States)

    Namasivayam, Aravind Kumar; Wong, Wing Yiu Stephanie; Sharma, Dinaay; van Lieshout, Pascal

    2015-03-01

    Visual and auditory systems interact at both cortical and subcortical levels. Studies suggest a highly context-specific cross-modal modulation of the auditory system by the visual system. The present study builds on this work by sampling data from 17 young healthy adults to test whether visual speech stimuli evoke different responses in the auditory efferent system compared to visual non-speech stimuli. The descending cortical influences on medial olivocochlear (MOC) activity were indirectly assessed by examining the effects of contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) at 1, 2, 3 and 4 kHz under three conditions: (a) in the absence of any contralateral noise (Baseline), (b) contralateral noise + observing facial speech gestures related to productions of vowels /a/ and /u/ and (c) contralateral noise + observing facial non-speech gestures related to smiling and frowning. The results are based on 7 individuals whose data met strict recording criteria and indicated a significant difference in TEOAE suppression between observing speech gestures relative to the non-speech gestures, but only at the 1 kHz frequency. These results suggest that observing a speech gesture compared to a non-speech gesture may trigger a difference in MOC activity, possibly to enhance peripheral neural encoding. If such findings can be reproduced in future research, sensory perception models and theories positing the downstream convergence of unisensory streams of information in the cortex may need to be revised.

  2. Binaural processing by the gecko auditory periphery.

    Science.gov (United States)

    Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine E

    2011-05-01

    Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (∼ 1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al. 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions of direct and indirect sound components at the eardrum. Best ITD and click delays match interaural transmission delays, with a range of 200-500 μs. Inserting a mold in the mouth cavity blocks ITD and ILD sensitivity. Thus the neural response accurately reflects tympanic directionality, and most neurons in the auditory pathway should be directional.

  3. Binaural processing by the gecko auditory periphery

    Science.gov (United States)

    Christensen-Dalsgaard, Jakob; Tang, Yezhong

    2011-01-01

    Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (∼1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al. 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions of direct and indirect sound components at the eardrum. Best ITD and click delays match interaural transmission delays, with a range of 200–500 μs. Inserting a mold in the mouth cavity blocks ITD and ILD sensitivity. Thus the neural response accurately reflects tympanic directionality, and most neurons in the auditory pathway should be directional. PMID:21325679

  4. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Directory of Open Access Journals (Sweden)

    Vincent Isnard

    Full Text Available Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs. This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  5. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Science.gov (United States)

    Isnard, Vincent; Taffou, Marine; Viaud-Delmon, Isabelle; Suied, Clara

    2016-01-01

    Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second) could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs). This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  6. Multi-Regional Adaptation in Human Auditory Association Cortex

    Directory of Open Access Journals (Sweden)

    Urszula Malinowska

    2017-05-01

    Full Text Available In auditory cortex, neural responses decrease with stimulus repetition, known as adaptation. Adaptation is thought to facilitate detection of novel sounds and improve perception in noisy environments. Although it is well established that adaptation occurs in primary auditory cortex, it is not known whether adaptation also occurs in higher auditory areas involved in processing complex sounds, such as speech. Resolving this issue is important for understanding the neural bases of adaptation and to avoid potential post-operative deficits after temporal lobe surgery for treatment of focal epilepsy. Intracranial electrocorticographic recordings were acquired simultaneously from electrodes implanted in primary and association auditory areas of the right (non-dominant temporal lobe in a patient with complex partial seizures originating from the inferior parietal lobe. Simple and complex sounds were presented in a passive oddball paradigm. We measured changes in single-trial high-gamma power (70–150 Hz and in regional and inter-regional network-level activity indexed by cross-frequency coupling. Repetitive tones elicited the greatest adaptation and corresponding increases in cross-frequency coupling in primary auditory cortex. Conversely, auditory association cortex showed stronger adaptation for complex sounds, including speech. This first report of multi-regional adaptation in human auditory cortex highlights the role of the non-dominant temporal lobe in suppressing neural responses to repetitive background sounds (noise. These results underscore the clinical utility of functional mapping to avoid potential post-operative deficits including increased listening difficulties in noisy, real-world environments.

  7. A Comparison of Auditory Perception in Hearing-Impaired and Normal-Hearing Listeners: An Auditory Scene Analysis Study

    Science.gov (United States)

    Bayat, Arash; Farhadi, Mohammad; Pourbakht, Akram; Sadjedi, Hamed; Emamdjomeh, Hesam; Kamali, Mohammad; Mirmomeni, Golshan

    2013-01-01

    Background Auditory scene analysis (ASA) is the process by which the auditory system separates individual sounds in natural-world situations. ASA is a key function of auditory system, and contributes to speech discrimination in noisy backgrounds. It is known that sensorineural hearing loss (SNHL) detrimentally affects auditory function in complex environments, but relatively few studies have focused on the influence of SNHL on higher level processes which are likely involved in auditory perception in different situations. Objectives The purpose of the current study was to compare the auditory system ability of normally hearing and SNHL subjects using the ASA examination. Materials and Methods A total of 40 right-handed adults (age range: 18 - 45 years) participated in this study. The listeners were divided equally into control and mild to moderate SNHL groups. ASA ability was measured using an ABA-ABA sequence. The frequency of the "A" was kept constant at 500, 1000, 2000 or 4000 Hz, while the frequency of the "B" was set at 3 to 80 percent above the" A" tone. For ASA threshold detection, the frequency of the B stimulus was decreased until listeners reported that they could no longer hear two separate sounds. Results The ASA performance was significantly better for controls than the SNHL group; these differences were more obvious at higher frequencies. We found no significant differences between ASA ability as a function of tone durations in both groups. Conclusions The present study indicated that SNHL may cause a reduction in perceptual separation of the incoming acoustic information to form accurate representations of our acoustic world. PMID:24719695

  8. Auditory Spectral Integration in the Perception of Static Vowels

    Science.gov (United States)

    Fox, Robert Allen; Jacewicz, Ewa; Chang, Chiung-Yun

    2011-01-01

    Purpose: To evaluate potential contributions of broadband spectral integration in the perception of static vowels. Specifically, can the auditory system infer formant frequency information from changes in the intensity weighting across harmonics when the formant itself is missing? Does this type of integration produce the same results in the lower…

  9. Neural correlates of auditory scale illusion.

    Science.gov (United States)

    Kuriki, Shinya; Numao, Ryousuke; Nemoto, Iku

    2016-09-01

    The auditory illusory perception "scale illusion" occurs when ascending and descending musical scale tones are delivered in a dichotic manner, such that the higher or lower tone at each instant is presented alternately to the right and left ears. Resulting tone sequences have a zigzag pitch in one ear and the reversed (zagzig) pitch in the other ear. Most listeners hear illusory smooth pitch sequences of up-down and down-up streams in the two ears separated in higher and lower halves of the scale. Although many behavioral studies have been conducted, how and where in the brain the illusory percept is formed have not been elucidated. In this study, we conducted functional magnetic resonance imaging using sequential tones that induced scale illusion (ILL) and those that mimicked the percept of scale illusion (PCP), and we compared the activation responses evoked by those stimuli by region-of-interest analysis. We examined the effects of adaptation, i.e., the attenuation of response that occurs when close-frequency sounds are repeated, which might interfere with the changes in activation by the illusion process. Results of the activation difference of the two stimuli, measured at varied tempi of tone presentation, in the superior temporal auditory cortex were not explained by adaptation. Instead, excess activation of the ILL stimulus from the PCP stimulus at moderate tempi (83 and 126 bpm) was significant in the posterior auditory cortex with rightward superiority, while significant prefrontal activation was dominant at the highest tempo (245 bpm). We suggest that the area of the planum temporale posterior to the primary auditory cortex is mainly involved in the illusion formation, and that the illusion-related process is strongly dependent on the rate of tone presentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  11. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Processing of Natural Sounds: Characterization of Multipeak Spectral Tuning in Human Auditory Cortex

    OpenAIRE

    Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2013-01-01

    We examine the mechanisms by which the human auditory cortex processes the frequency content of natural sounds. Through mathematical modeling of ultra-high field (7 T) functional magnetic resonance imaging responses to natural sounds, we derive frequency-tuning curves of cortical neuronal populations. With a data-driven analysis, we divide the auditory cortex into five spatially distributed clusters, each characterized by a spectral tuning profile. Beyond neuronal populations with simple sing...

  13. Auditory function in Duane's retraction syndrome.

    Science.gov (United States)

    Ro, A; Chernoff, G; MacRae, D; Orton, R B; Cadera, W

    1990-01-15

    We obtained audiograms and auditory brainstem responses from 44 patients with Duane's retraction syndrome to assess the incidence and nature of hearing deficit. Of 44 patients, seven (15.9%) had evidence of hearing impairment. Three (6.8%) subjects had a temporary conductive hearing loss because of middle ear fluid, and another patient had hearing loss from Crouzon's disease. The remaining three (6.8%) patients demonstrated sensorineural hearing deficit. This hearing impairment was attributed to a cochlear lesion and not to a pontine lesion. We believe that the frequency of sensorineural hearing loss in these patients warrants hearing screening programs similar to those used for infants in neonatal intensive care units.

  14. Antidepressant-like Effects of Medial Forebrain Bundle Deep Brain Stimulation in Rats are not Associated With Accumbens Dopamine Release.

    Science.gov (United States)

    Bregman, Tatiana; Reznikov, Roman; Diwan, Mustansir; Raymond, Roger; Butson, Christopher R; Nobrega, José N; Hamani, Clement

    2015-01-01

    Medial forebrain bundle (MFB) deep brain stimulation (DBS) is currently being investigated in patients with treatment-resistant depression. Striking features of this therapy are the large number of patients who respond to treatment and the rapid nature of the antidepressant response. To study antidepressant-like behavioral responses, changes in regional brain activity, and monoamine release in rats receiving MFB DBS. Antidepressant-like effects of MFB stimulation at 100 μA, 90 μs and either 130 Hz or 20 Hz were characterized in the forced swim test (FST). Changes in the expression of the immediate early gene (IEG) zif268 were measured with in situ hybridization and used as an index of regional brain activity. Microdialysis was used to measure DBS-induced dopamine and serotonin release in the nucleus accumbens. Stimulation at parameters that approximated those used in clinical practice, but not at lower frequencies, induced a significant antidepressant-like response in the FST. In animals receiving MFB DBS at high frequency, increases in zif268 expression were observed in the piriform cortex, prelimbic cortex, nucleus accumbens shell, anterior regions of the caudate/putamen and the ventral tegmental area. These structures are involved in the neurocircuitry of reward and are also connected to other brain areas via the MFB. At settings used during behavioral tests, stimulation did not induce either dopamine or serotonin release in the nucleus accumbens. These results suggest that MFB DBS induces an antidepressant-like effect in rats and recruits structures involved in the neurocircuitry of reward without affecting dopamine release in the nucleus accumbens. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Synaptic plasticity in the auditory system: a review.

    Science.gov (United States)

    Friauf, Eckhard; Fischer, Alexander U; Fuhr, Martin F

    2015-07-01

    Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at

  16. The Perception of Auditory Motion

    Science.gov (United States)

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  17. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  18. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  19. Electrodiagnostic evaluation of auditory function in the dog.

    Science.gov (United States)

    Scheifele, Peter M; Clark, John Greer

    2012-11-01

    Given the high incidence of deafness within several breeds of dogs, accurate hearing screening and assessment is essential. In addition to brainstem auditory evoked response (BAER) testing, 2 other electrophysiologic tests are now being examined as audiologic tools for use in veterinary medicine: otoacoustic emissions and the auditory steady state response (ASSR). To improve BAER testing of animals and ensure an accurate interpretation of test findings from one test site to another, the establishment of and adherence to clear protocols is essential. The ASSR holds promise as an objective test for rapid testing of multiple frequencies in both ears simultaneously. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Association Between Smoking and Cholinergic Basal Forebrain Volume in Healthy Aging and Prodromal and Dementia Stages of Alzheimer's Disease.

    Science.gov (United States)

    Teipel, Stefan; Grothe, Michel J

    2016-04-12

    Smoking has been found associated with decreased cerebral volumes in healthy adults and in various neuropsychiatric disorders. We aimed to determine whether chronic nicotine exposure through smoking is associated with reduced volume of cortically projecting cholinergic basal forebrain nuclei in healthy aging, mild cognitive impairment (MCI), and dementia stages of Alzheimer's disease (AD). We retrieved cross-sectional data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database including 179 cognitively normal elderly subjects, 270 subjects with early stage MCI, 136 subjects in later, more advanced, stage of MCI, and 86 subjects in dementia stages of AD. We determined the association between past or current smoking versus lifetime non-smoker status on the volumes of the basal forebrain determined from volumetric MRI scans. Hippocampus volume was used as a control region. Significant effects were controlled for mediating or moderating effects of respiratory and cardiovascular morbidity. In cognitively healthy individuals and early MCI, past or current smoking was significantly associated with smaller basal forebrain volume. This effect was independent from age, sex, or cardiovascular or respiratory morbidity. Hippocampus volume was not associated with smoking. In late MCI and AD dementia, smoking was not associated with basal forebrain or hippocampus volumes. Our findings suggest that chronic nicotine exposure through smoking may lead to atrophy of cholinergic input areas of the basal forebrain. This effect may account for an increased risk of AD dementia onset with smoking by exhausting the cholinergic system reserve capacity.

  1. Musical Experience, Auditory Perception and Reading-Related Skills in Children

    Science.gov (United States)

    Banai, Karen; Ahissar, Merav

    2013-01-01

    Background The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Methodology/Principal Findings Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Conclusions/Significance Participants’ previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less

  2. Musical experience, auditory perception and reading-related skills in children.

    Science.gov (United States)

    Banai, Karen; Ahissar, Merav

    2013-01-01

    The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case.

  3. Musical experience, auditory perception and reading-related skills in children.

    Directory of Open Access Journals (Sweden)

    Karen Banai

    Full Text Available BACKGROUND: The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. METHODOLOGY/PRINCIPAL FINDINGS: Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. CONCLUSIONS/SIGNIFICANCE: Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and

  4. Auditory hallucinations treated by radio headphones.

    Science.gov (United States)

    Feder, R

    1982-09-01

    A young man with chronic auditory hallucinations was treated according to the principle that increasing external auditory stimulation decreases the likelihood of auditory hallucinations. Listening to a radio through stereo headphones in conditions of low auditory stimulation eliminated the patient's hallucinations.

  5. Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex.

    Science.gov (United States)

    Fishman, Yonatan I; Micheyl, Christophe; Steinschneider, Mitchell

    2016-01-01

    Successful speech perception in real-world environments requires that the auditory system segregate competing voices that overlap in frequency and time into separate streams. Vowels are major constituents of speech and are comprised of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). The pitch and identity of a vowel are determined by its F0 and spectral envelope (formant structure), respectively. When two spectrally overlapping vowels differing in F0 are presented concurrently, they can be readily perceived as two separate "auditory objects" with pitches at their respective F0s. A difference in pitch between two simultaneous vowels provides a powerful cue for their segregation, which in turn, facilitates their individual identification. The neural mechanisms underlying the segregation of concurrent vowels based on pitch differences are poorly understood. Here, we examine neural population responses in macaque primary auditory cortex (A1) to single and double concurrent vowels (/a/ and /i/) that differ in F0 such that they are heard as two separate auditory objects with distinct pitches. We find that neural population responses in A1 can resolve, via a rate-place code, lower harmonics of both single and double concurrent vowels. Furthermore, we show that the formant structures, and hence the identities, of single vowels can be reliably recovered from the neural representation of double concurrent vowels. We conclude that A1 contains sufficient spectral information to enable concurrent vowel segregation and identification by downstream cortical areas.

  6. Thresholding of auditory cortical representation by background noise

    Science.gov (United States)

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  7. Thresholding of auditory cortical representation by background noise.

    Science.gov (United States)

    Liang, Feixue; Bai, Lin; Tao, Huizhong W; Zhang, Li I; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity.

  8. Thresholding of Auditory Cortical Representation by Background Noise

    Directory of Open Access Journals (Sweden)

    Feixue eLiang

    2014-11-01

    Full Text Available It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1, we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency and the overall shape of tonal receptive field, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity.

  9. Evaluation of central auditory discrimination abilities in older adults.

    Directory of Open Access Journals (Sweden)

    Claudia eFreigang

    2011-05-01

    Full Text Available The present study focuses on auditory discrimination abilities in older adults aged 65-89 years. We applied the ‘Leipzig Inventory for Patient Psychoacoustic’ (LIPP, a psychoacoustic test battery specifically designed to identify deficits in central auditory processing. These tests quantify the just noticeable differences (JND for the three basic acoustic parameters (i.e. frequency, intensity, and signal duration. Three different test modes (monaural, dichotic signal/noise [s/n] and interaural were used, stimulus level was 35dB sensation level. The tests are designed as three-alternative forced-choice procedure with a maximum-likelihood procedure estimating p=0,5 correct response value. These procedures have proven to be highly efficient and provide a reliable outcome. The measurements yielded significant age-dependent deteriorations in the ability to discriminate single acoustic features pointing to progressive impairments in central auditory processing. The degree of deterioration was correlated to the different acoustic features and to the test modes. Most prominent, interaural frequency and signal duration discrimination at low test frequencies was elevated which indicates a deterioration of time- and phase-dependent processing at brain stem and cortical levels. LIPP proves to be an effective tool to identify basic pathophysiological mechanisms and the source of a specific impairment in auditory processing of the elderly.

  10. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    Energy Technology Data Exchange (ETDEWEB)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela [Medical University of Vienna, Department of Radiology/Division of Neuro- and Musculoskeletal Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Krampl-Bettelheim, Elisabeth [Department of Obstetrics and Gynecology / Division of Obstetrics and Feto-maternal Medicine, Vienna (Austria)

    2010-06-15

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average {+-}sd: gw 22 {+-} 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  11. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex.

    Science.gov (United States)

    Ahern, Todd H; Krug, Stefanie; Carr, Audrey V; Murray, Elaine K; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J; Forger, Nancy G

    2013-08-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain. Copyright © 2013 Wiley Periodicals, Inc.

  12. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study.

    Science.gov (United States)

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise--GIN) and IQ, attention, memory and age measurements. Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and intelligence tests (RAVEN test of Progressive Matrices) were applied. Significant and positive correlation between the Frequency Pattern test and age variable were found, which was considered good (ptest and the variables tested. Auditory temporal skills seem to be influenced by different factors: while the performance in temporal ordering skill seems to be influenced by maturational processes, the performance in temporal resolution was not influenced by any of the aspects investigated.

  13. Using Facebook to Reach People Who Experience Auditory Hallucinations

    Science.gov (United States)

    Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. Methods We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Results Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience

  14. Using Facebook to Reach People Who Experience Auditory Hallucinations.

    Science.gov (United States)

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-06-14

    Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience auditory hallucinations. Women, people

  15. Auditory Memory deficit in Elderly People with Hearing Loss

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2013-06-01

    Full Text Available Introduction: Hearing loss is one of the most common problems in elderly people. Functional side effects of hearing loss are various. Due to the fact that hearing loss is the common impairment in elderly people; the importance of its possible effects on auditory memory is undeniable. This study aims to focus on the hearing loss effects on auditory memory.   Materials and Methods: Dichotic Auditory Memory Test (DVMT was performed on 47 elderly people, aged 60 to 80; that were divided in two groups, the first group consisted of elderly people with hearing range of 24 normal and the second one consisted of 23 elderly people with bilateral symmetrical ranged from mild to moderate Sensorineural hearing loss in the high frequency due to aging in both genders.   Results: Significant difference was observed in DVMT between elderly people with normal hearing and those with hearing loss (P

  16. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  17. Auditory-olfactory synesthesia coexisting with auditory-visual synesthesia.

    Science.gov (United States)

    Jackson, Thomas E; Sandramouli, Soupramanien

    2012-09-01

    Synesthesia is an unusual condition in which stimulation of one sensory modality causes an experience in another sensory modality or when a sensation in one sensory modality causes another sensation within the same modality. We describe a previously unreported association of auditory-olfactory synesthesia coexisting with auditory-visual synesthesia. Given that many types of synesthesias involve vision, it is important that the clinician provide these patients with the necessary information and support that is available.

  18. The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties

    Directory of Open Access Journals (Sweden)

    Schwellnus Britta

    2008-07-01

    Full Text Available Abstract Background The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat Phyllostomus discolor (family: Phyllostomidae. Results The auditory cortical area of P. discolor is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 μm and a medio-lateral distance of about 7000 μm on the flattened cortical surface. The auditory cortices of ten adult P. discolor were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions. Based on neurophysiological and neuroanatomical criteria, the auditory cortex of P. discolor could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only. Conclusion The auditory cortex of P. discolor resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The

  19. Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain

    Directory of Open Access Journals (Sweden)

    Earls Laurie R

    2010-12-01

    Full Text Available Abstract Background In an effort to identify genes that specify the mammalian forebrain, we used a comparative approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly expressed in embryonic C. elegans GABAergic neurons. Results Bioinformatic analyses identified mouse protein homologs of these selected transcripts and their expression pattern was mapped in the mouse embryonic forebrain by in situ hybridization. A review of human homologs indicates several of these genes are potential candidates in neurodevelopmental disorders. Conclusions Our comparative approach has revealed several novel candidates that may serve as future targets for studies of mammalian forebrain development.

  20. Auditory Processing Training in Learning Disability

    OpenAIRE

    Nívea Franklin Chaves Martins; Hipólito Virgílio Magalhães Jr

    2006-01-01

    The aim of this case report was to promote a reflection about the importance of speech-therapy for stimulation a person with learning disability associated to language and auditory processing disorders. Data analysis considered the auditory abilities deficits identified in the first auditory processing test, held on April 30,2002 compared with the new auditory processing test done on May 13,2003,after one year of therapy directed to acoustic stimulation of auditory abilities disorders,in acco...

  1. Listener orientation and spatial judgments of elevated auditory percepts

    Science.gov (United States)

    Parks, Anthony J.

    How do listener head rotations affect auditory perception of elevation? This investi-. gation addresses this in the hopes that perceptual judgments of elevated auditory. percepts may be more thoroughly understood in terms of dynamic listening cues. engendered by listener head rotations and that this phenomenon can be psychophys-. ically and computationally modeled. Two listening tests were conducted and a. psychophysical model was constructed to this end. The frst listening test prompted. listeners to detect an elevated auditory event produced by a virtual noise source. orbiting the median plane via 24-channel ambisonic spatialization. Head rotations. were tracked using computer vision algorithms facilitated by camera tracking. The. data were used to construct a dichotomous criteria model using factorial binary. logistic regression model. The second auditory test investigated the validity of the. historically supported frequency dependence of auditory elevation perception using. narrow-band noise for continuous and brief stimuli with fxed and free-head rotation. conditions. The data were used to construct a multinomial logistic regression model. to predict categorical judgments of above, below, and behind. Finally, in light. of the psychophysical data found from the above studies, a functional model of. elevation perception for point sources along the cone of confusion was constructed. using physiologically-inspired signal processing methods along with top-down pro-. cessing utilizing principles of memory and orientation. The model is evaluated using. white noise bursts for 42 subjects' head-related transfer functions. The investigation. concludes with study limitations, possible implications, and speculation on future. research trajectories.

  2. Specialization of Binaural Responses in Ventral Auditory Cortices

    Science.gov (United States)

    Higgins, Nathan C.; Storace, Douglas A.; Escabí, Monty A.

    2010-01-01

    Accurate orientation to sound under challenging conditions requires auditory cortex, but it is unclear how spatial attributes of the auditory scene are represented at this level. Current organization schemes follow a functional division whereby dorsal and ventral auditory cortices specialize to encode spatial and object features of sound source, respectively. However, few studies have examined spatial cue sensitivities in ventral cortices to support or reject such schemes. Here Fourier optical imaging was used to quantify best frequency responses and corresponding gradient organization in primary (A1), anterior, posterior, ventral (VAF), and suprarhinal (SRAF) auditory fields of the rat. Spike rate sensitivities to binaural interaural level difference (ILD) and average binaural level cues were probed in A1 and two ventral cortices, VAF and SRAF. Continuous distributions of best ILDs and ILD tuning metrics were observed in all cortices, suggesting this horizontal position cue is well covered. VAF and caudal SRAF in the right cerebral hemisphere responded maximally to midline horizontal position cues, whereas A1 and rostral SRAF responded maximally to ILD cues favoring more eccentric positions in the contralateral sound hemifield. SRAF had the highest incidence of binaural facilitation for ILD cues corresponding to midline positions, supporting current theories that auditory cortices have specialized and hierarchical functional organization. PMID:20980610

  3. MEGALEX: A megastudy of visual and auditory word recognition.

    Science.gov (United States)

    Ferrand, Ludovic; Méot, Alain; Spinelli, Elsa; New, Boris; Pallier, Christophe; Bonin, Patrick; Dufau, Stéphane; Mathôt, Sebastiaan; Grainger, Jonathan

    2017-08-08

    Using the megastudy approach, we report a new database (MEGALEX) of visual and auditory lexical decision times and accuracy rates for tens of thousands of words. We collected visual lexical decision data for 28,466 French words and the same number of pseudowords, and auditory lexical decision data for 17,876 French words and the same number of pseudowords (synthesized tokens were used for the auditory modality). This constitutes the first large-scale database for auditory lexical decision, and the first database to enable a direct comparison of word recognition in different modalities. Different regression analyses were conducted to illustrate potential ways to exploit this megastudy database. First, we compared the proportions of variance accounted for by five word frequency measures. Second, we conducted item-level regression analyses to examine the relative importance of the lexical variables influencing performance in the different modalities (visual and auditory). Finally, we compared the similarities and differences between the two modalities. All data are freely available on our website ( https://sedufau.shinyapps.io/megalex/ ) and are searchable at www.lexique.org , inside the Open Lexique search engine.

  4. Investigation of auditory dysfunction in Leber hereditary optic neuropathy.

    Science.gov (United States)

    Yu-Wai-Man, Patrick; Elliott, Clive; Griffiths, Philip G; Johnson, Ian J; Chinnery, Patrick F

    2008-09-01

    To investigate the possibility of auditory dysfunction in patients with Leber hereditary optic neuropathy (LHON). We prospectively recruited 10 affected patients from the north-east of England harbouring one of the three primary mitochondrial LHON mutations (3460G>A n = 3, 11778G>A n = 5 and 14484T>C n = 2). A detailed auditory history was taken and they were asked to complete a validated hearing questionnaire. Each patient then underwent a comprehensive topographic neuroauditory assessment to evaluate both middle- and inner-ear functions and the integrity of the brainstem auditory pathways. We found no evidence of cochlear nerve dysfunction or abnormalities of the central brainstem auditory pathways in our LHON cohort and five patients had completely normal hearing tests. The remainder had mild conductive hearing loss from childhood ear infections and/or high-frequency sensorineural hearing loss from previous noise injury. Although further studies are required to confirm our findings, auditory dysfunction as a result of a primary LHON mutation is probably uncommon.

  5. The function of BDNF in the adult auditory system.

    Science.gov (United States)

    Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies

    2014-01-01

    The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail

    2015-01-01

    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  7. Upper limits of auditory rotational motion perception.

    Science.gov (United States)

    Féron, François-Xavier; Frissen, Ilja; Boissinot, Julien; Guastavino, Catherine

    2010-12-01

    Three experiments are reported, which investigated the auditory velocity thresholds beyond which listeners are no longer able to perceptually resolve a smooth circular trajectory. These thresholds were measured for band-limited noises, white noise, and harmonic sounds (HS), and in different acoustical environments. Experiments 1 and 2 were conducted in an acoustically dry laboratory. Observed thresholds varied as a function of stimulus type and spectral content. Thresholds for band-limited noises were unaffected by center frequency and equal to that of white noise. For HS, however, thresholds decreased as the fundamental frequency of the stimulus increased. The third experiment was a replication of the second in a reverberant concert hall, which produced qualitatively similar results except that thresholds were significantly higher than in the acoustically dry laboratory.

  8. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  9. Attentional modulation of auditory steady-state responses.

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  10. Attentional Modulation of Auditory Steady-State Responses

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021

  11. The cholinergic basal forebrain system during development and its influence on cognitive processes: important questions and potential answers.

    Science.gov (United States)

    Berger-Sweeney, Joanne

    2003-09-01

    This review seeks to address, though perhaps not answer fully, four important questions about the cholinergic basal forebrain (BF) system in developing mammals. First, what role does the cholinergic basal forebrain system play in the development of cognitive functions? Second, does the cholinergic BF system play a fundamentally similar role in development vs. adulthood? Third, does sexual dimorphism of the developing cholinergic BF system influence cognition differently in the two sexes? Finally, what role does the developing cholinergic BF system play in developmental disorders such as Down syndrome and Rett syndrome? Examples from the literature, primarily studies in mice and rats, are given in an attempt to answer these important questions.

  12. Neurobiology of Female Mate Choice in Frogs: Auditory Filtering and Valuation.

    Science.gov (United States)

    Burmeister, Sabrina S

    2017-10-01

    Mate choice is a decision making process with profound implication for the reproductive success of both the sender and the chooser. Preferences for conspecific over heterospecific males and for some conspecifics over others are typically mediated by a female's response to signals produced by males. And although one can experimentally describe a female's preference function, there is relatively little understood about the neural mechanisms mediating these preferences. In anurans, mating preferences have often been explained in terms of sensory biases. Indeed, in the túngara frog (Physalaemus pustulosus), the auditory system appears to act as a filter for conspecific calls. However, auditory responses are not good predictors of intraspecific mating preferences in túngara frogs. Rather, neural activity in the preoptic area, which can be gated by estradiol, is a better predictor of mating preferences. A similar pattern holds in spadefoot toads (Spea bombifrons): the preoptic area, but not the auditory midbrain, integrates physiological cues in its response to mating calls in a pattern that predicts preferences. Neuroanatomically, the anuran preoptic area is poised to mediate forebrain influences on auditory response of the midbrain and it has descending projections to the medulla and spinal cord that could directly influence motor responses. Indeed, lesions of the preoptic area abolish phonotaxis. A role for the preoptic area in mating preferences is supported by studies in mammals that show the preoptic area is required for the expression of preferences. Further, activity of the preoptic area correlates with mating preference in fish. This leads to a model for the neurobiological mechanisms of mate choice, in which sensory systems filter relevant signals from irrelevant ones, but the preoptic area assigns value to the range of relevant signals. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology

  13. The impact of hippocampal lesions on trace-eyeblink conditioning and forebrain-cerebellar interactions.

    Science.gov (United States)

    Weiss, Craig; Disterhoft, John F

    2015-08-01

    Behavioral Neuroscience published a pivotal paper by Moyer, Deyo, and Disterhoft (1990) 25 years ago that described the impaired acquisition of trace-eyeblink conditioning in rabbits with complete removal of the hippocampus. As part of the Behavioral Neuroscience celebration commemorating the 30th anniversary of the journal, we reflect upon the impact of that study on understanding the role of the hippocampus, forebrain, and forebrain-cerebellar interactions that mediate acquisition and retention of trace-conditioned responses, and of declarative memory more globally. We discuss the expansion of the conditioning paradigm to species other than the rabbit, the heterogeneity of responses among hippocampal neurons during trace conditioning, the responsivity of hippocampal neurons following consolidation of conditioning, the role of awareness in conditioning, how blink conditioning can be used as a translational tool by assaying potential therapeutics for cognitive enhancement, how trace and delay classical conditioning may be used to investigate neurological disorders including Alzheimer's disease and schizophrenia, and how the 2 paradigms may be used to understand the relationship between declarative (explicit) and nondeclarative (implicit) memory systems. (c) 2015 APA, all rights reserved).

  14. The Impact of Hippocampal Lesions on Trace Eyeblink Conditioning and Forebrain-Cerebellar Interactions

    Science.gov (United States)

    Weiss, Craig; Disterhoft, John F.

    2015-01-01

    Twenty-five years ago Behavioral Neuroscience published a pivotal paper by Moyer, Deyo and Disterhoft (1990) that described the impaired acquisition of trace eyeblink conditioning in rabbits with complete removal of the hippocampus. As part of the Behavioral Neuroscience celebration commemorating the 30th anniversary of the Journal, we reflect upon the impact of that study on understanding the role of the hippocampus, forebrain, and forebrain-cerebellar interactions that mediate acquisition and retention of trace conditioned responses, and of declarative memory more globally. We discuss the expansion of the conditioning paradigm to species other than the rabbit, the heterogeneity of responses among hippocampal neurons during trace conditioning, the responsivity of hippocampal neurons following consolidation of conditioning, the role of awareness in conditioning, how blink conditioning can be used as a translational tool by assaying potential therapeutics for cognitive enhancement, how trace and delay classical conditioning may be used to investigate neurological disorders including Alzheimer's Disease and schizophrenia, and how the two paradigms may be used to understand the relationship between declarative and nondeclarative memory systems. PMID:26214216

  15. Forebrain projections to brainstem nuclei involved in the control of mandibular movements in rats.

    Science.gov (United States)

    Mascaro, Marcelo B; Prosdócimi, Fábio C; Bittencourt, Jackson C; Elias, Carol F

    2009-12-01

    Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.

  16. Auditory and Visual Electrophysiology of Deaf Children with Cochlear Implants: Implications for Cross-modal Plasticity

    Science.gov (United States)

    Corina, David P.; Blau, Shane; LaMarr, Todd; Lawyer, Laurel A.; Coffey-Corina, Sharon

    2017-01-01

    Deaf children who receive a cochlear implant early in life and engage in intensive oral/aural therapy often make great strides in spoken language acquisition. However, despite clinicians’ best efforts, there is a great deal of variability in language outcomes. One concern is that cortical regions which normally support auditory processing may become reorganized for visual function, leaving fewer available resources for auditory language acquisition. The conditions under which these changes occur are not well understood, but we may begin investigating this phenomenon by looking for interactions between auditory and visual evoked cortical potentials in deaf children. If children with abnormal auditory responses show increased sensitivity to visual stimuli, this may indicate the presence of maladaptive cortical plasticity. We recorded evoked potentials, using both auditory and visual paradigms, from 25 typical hearing children and 26 deaf children (ages 2–8 years) with cochlear implants. An auditory oddball paradigm was used (85% /ba/ syllables vs. 15% frequency modulated tone sweeps) to elicit an auditory P1 component. Visual evoked potentials (VEPs) were recorded during presentation of an intermittent peripheral radial checkerboard while children watched a silent cartoon, eliciting a P1–N1 response. We observed reduced auditory P1 amplitudes and a lack of latency shift associated with normative aging in our deaf sample. We also observed shorter latencies in N1 VEPs to visual stimulus offset in deaf participants. While these data demonstrate cortical changes associated with auditory deprivation, we did not find evidence for a relationship between cortical auditory evoked potentials and the VEPs. This is consistent with descriptions of intra-modal plasticity within visual systems of deaf children, but do not provide evidence for cross-modal plasticity. In addition, we note that sign language experience had no effect on deaf children’s early auditory and visual

  17. The Influence of Auditory Information on Visual Size Adaptation

    Directory of Open Access Journals (Sweden)

    Alessia Tonelli

    2017-10-01

    Full Text Available Size perception can be influenced by several visual cues, such as spatial (e.g., depth or vergence and temporal contextual cues (e.g., adaptation to steady visual stimulation. Nevertheless, perception is generally multisensory and other sensory modalities, such as auditory, can contribute to the functional estimation of the size of objects. In this study, we investigate whether auditory stimuli at different sound pitches can influence visual size perception after visual adaptation. To this aim, we used an adaptation paradigm (Pooresmaeili et al., 2013 in three experimental conditions: visual-only, visual-sound at 100 Hz and visual-sound at 9,000 Hz. We asked participants to judge the size of a test stimulus in a size discrimination task. First, we obtained a baseline for all conditions. In the visual-sound conditions, the auditory stimulus was concurrent to the test stimulus. Secondly, we repeated the task by presenting an adapter (twice as big as the reference stimulus before the test stimulus. We replicated the size aftereffect in the visual-only condition: the test stimulus was perceived smaller than its physical size. The new finding is that we found the auditory stimuli have an effect on the perceived size of the test stimulus after visual adaptation: low frequency sound decreased the effect of visual adaptation, making the stimulus perceived bigger compared to the visual-only condition, and contrarily, the high frequency sound had the opposite effect, making the test size perceived even smaller.

  18. The effects of speech motor preparation on auditory perception

    Science.gov (United States)

    Myers, John

    Perception and action are coupled via bidirectional relationships between sensory and motor systems. Motor systems influence sensory areas by imparting a feedforward influence on sensory processing termed "motor efference copy" (MEC). MEC is suggested to occur in humans because speech preparation and production modulate neural measures of auditory cortical activity. However, it is not known if MEC can affect auditory perception. We tested the hypothesis that during speech preparation auditory thresholds will increase relative to a control condition, and that the increase would be most evident for frequencies that match the upcoming vocal response. Participants performed trials in a speech condition that contained a visual cue indicating a vocal response to prepare (one of two frequencies), followed by a go signal to speak. To determine threshold shifts, voice-matched or -mismatched pure tones were presented at one of three time points between the cue and target. The control condition was the same except the visual cues did not specify a response and subjects did not speak. For each participant, we measured f0 thresholds in isolation from the task in order to establish baselines. Results indicated that auditory thresholds were highest during speech preparation, relative to baselines and a non-speech control condition, especially at suprathreshold levels. Thresholds for tones that matched the frequency of planned responses gradually increased over time, but sharply declined for the mismatched tones shortly before targets. Findings support the hypothesis that MEC influences auditory perception by modulating thresholds during speech preparation, with some specificity relative to the planned response. The threshold increase in tasks vs. baseline may reflect attentional demands of the tasks.

  19. Auditory white noise reduces postural fluctuations even in the absence of vision.

    Science.gov (United States)

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2015-08-01

    The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory noise should lead to increased feedback about sensory frames of reference used in balance control. In the present experiment, postural sway was analyzed in healthy young adults where they were presented with continuous white noise, in the presence and absence of visual information. Our results show reduced postural sway variability (as indexed by the body's center of pressure) in the presence of auditory noise, even when visual information was not present. Nonlinear time series analysis revealed that auditory noise has an additive effect, independent of vision, on postural stability. Further analysis revealed that auditory noise reduced postural sway variability in both low- and high-frequency regimes (> or noise. Our results support the idea that auditory white noise reduces postural sway, suggesting that auditory noise might be used for therapeutic and rehabilitation purposes in older individuals and those with balance disorders.

  20. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  1. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    Science.gov (United States)

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Psychophysiological reactivity to auditory Binaural Beats stimulation in the alpha and theta EEG brain-wave frequency bands: A randomized, double–blind and placebo–controlled study in human healthy young adult subjects

    OpenAIRE

    Pfaff, Hans Uwe

    2014-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Psicología, Departamento de Psicología Biológica y de la Salud. Fecha de lectura: 25-06-2014 Binaural beats are an acoustical illusion of the perception of a “virtual” third tone, fluctuating (i.e. beating) in its volume evoked by two carrier–sinusoids of same amplitudes, but slightly different frequencies f1 and f2, presented by stereo-headphones. Although this illusion was discovered as early as 1839 ...

  3. Developmental evaluation of atypical auditory sampling in dyslexia: Functional and structural evidence.

    Science.gov (United States)

    Lizarazu, Mikel; Lallier, Marie; Molinaro, Nicola; Bourguignon, Mathieu; Paz-Alonso, Pedro M; Lerma-Usabiaga, Garikoitz; Carreiras, Manuel

    2015-12-01

    Whether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information at either syllabic- or phonemic-rates is still under debate. In addition, whereas neuroanatomical alterations in auditory regions have been documented in dyslexic readers, whether and how these structural anomalies are linked to auditory sampling and reading deficits remains poorly understood. In this study, we measured auditory neural synchronization at different frequencies corresponding to relevant phonological spectral components of speech in children and adults with and without dyslexia, using magnetoencephalography. Furthermore, structural MRI was used to estimate cortical thickness of the auditory cortex of participants. Dyslexics showed atypical brain synchronization at both syllabic (slow) and phonemic (fast) rates. Interestingly, while a left hemispheric asymmetry in cortical thickness was functionally related to a stronger left hemispheric lateralization of neural synchronization to stimuli presented at the phonemic rate in skilled readers, the same anatomical index in dyslexics was related to a stronger right hemispheric dominance for neural synchronization to syllabic-rate auditory stimuli. These data suggest that the acoustic sampling deficit in development dyslexia might be linked to an atypical specialization of the auditory cortex to both low and high frequency amplitude modulations. © 2015 Wiley Periodicals, Inc.

  4. The role of auditory abilities in basic mechanisms of cognition in older adults

    Directory of Open Access Journals (Sweden)

    Massimo eGrassi

    2013-10-01

    Full Text Available The aim of this study was to assess age-related differences between young and older adults in auditory abilities and to investigate the relationship between auditory abilities and basic mechanisms of cognition in older adults. Although there is a certain consensus that the participant’s sensitivity to the absolute intensity of sounds (such as that measured via pure tone audiometry explains his/her cognitive performance, there is not yet much evidence that the participant’s auditory ability (i.e., the whole supra-threshold processing of sounds explains his/her cognitive performance. Twenty-eight young adults (age < 35, 26 young-old adults (65 ≤ age ≤75 and 28 old-old adults (age > 75 were presented with a set of tasks estimating several auditory abilities (i.e., frequency discrimination, intensity discrimination, duration discrimination, timbre discrimination, gap detection, amplitude modulation detection, and the absolute threshold for a 1 kHz pure tone and the participant’s working memory, cognitive inhibition, and processing speed. Results showed an age-related decline in both auditory and cognitive performance. Moreover, regression analyses showed that a subset of the auditory abilities (i.e., the ability to discriminate frequency, duration, timbre, and the ability to detect amplitude modulation explained a significant part of the variance observed in processing speed in older adults. Overall, the present results highlight the relationship between auditory abilities and basic mechanisms of cognition.

  5. DIFFERENTIAL FOS-PROTEIN INDUCTION IN RAT FOREBRAIN REGIONS AFTER ACUTE AND LONG-TERM HALOPERIDOL AND CLOZAPINE TREATMENT

    NARCIS (Netherlands)

    SEBENS, JB; KOCH, T; TERHORST, GJ; KORF, J

    1995-01-01

    Both acute and long-term effects of haloperidol and clozapine on Fos-like immunoreactive nuclei in several rat forebrain areas were quantified. Rats were treated with saline (1 ml/kg.day, control), haloperidol (1 mg/kg.day) and clozapine (20 mg/kg.day) i.p. for 21 days. Two hours before perfusion

  6. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of

  7. The role of the anterior neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis.

    Science.gov (United States)

    Eagleson, Gerald W; Dempewolf, Ryan D

    2002-05-01

    The tissue, cellular and molecular mechanisms that regulate early regional specification of the vertebrate forebrain are largely unknown. We studied the expression patterns of Xbf-1, an anterior (and telencephalon) neural-specific winged helix transcription factor and Fgf-8, an early-secreted factor. This study looked at Xbf-1 and Fgf-8 expression in combination with embryonic grafting experiments and also used beads containing the recombinant Fgf-8 protein to determine these factors' effects upon forebrain patterning events. We provide evidence that additional Fgf-8 displaces Xbf-1 expression posteriorly, suggesting a concentration dependence of Fgf-8 for the early distinct regionalization of the telencephalic primordia. Also, additional stage 15 mid-anterior neural ridge (mANR) transplants inhibited telencephalon development, whereas lateral ANR transplants facilitated increased areas of telencephalon development. In both cases, these transplantations promoted ectopic expression of Xbf-1. These studies suggested that the distinct regionalization of the forebrain primordia involves the inhibitory actions of the mANR towards a telencephalon development and maintaining bilateral telencephali. These telencephalic primordia are initially localized by optimal Fgf-8 expression. The anterior mANR will eventually become the anterior and rostral diencephalic tissue. This in vivo study demonstrated Fgf-8 and the mANR are important in forebrain regionalization.

  8. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  9. Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats

    Science.gov (United States)

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea. PMID:23638137

  10. Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry

    Science.gov (United States)

    Christiansen, A.M.; Herman, J.P.; Ulrich-Lai, Y.M.

    2011-01-01

    Palatable food intake reduces stress responses, suggesting that individuals may consume such “comfort” food as self-medication for stress relief. The mechanism by which palatable foods provide stress relief is not known, but likely lies at the intersection of forebrain reward and stress regulatory circuits. Forebrain opioidergic and gamma-aminobutyric acid (GABA)ergic signaling is critical for both reward and stress regulation suggesting that these systems are prime candidates for mediating stress relief by palatable foods. Thus, the current study aimed to determine 1) how palatable “comfort” food alters stress induced changes in the mRNA expression of inhibitory neurotransmitters in reward and stress neurocircuitry, and 2) identify candidate brain regions that may underlie comfort food-mediated stress reduction. We used a model of palatable “snacking” in combination with a model of chronic variable stress followed by in situ hybridization to determine forebrain levels of pro-opioid and glutamic acid decarboxylase (GAD) mRNA. The data identify regions within the extended amygdala, striatum, and hypothalamus as potential regions for mediating hypothalamic-pituitary-adrenal axis (HPA)-buffering following palatable snacking. Specifically, palatable snacking alone decreased enkephalin mRNA expression in the anterior bed nucleus of the stria terminalis and the nucleus accumbens, as well as decreasing GAD65 mRNA in the posterior bed nucleus of the stria terminalis. Chronic stress alone increased enkephalin mRNA in the hypothalamus, nucleus accumbens, amygdala, and hippocampus; increased dynorphin mRNA in the nucleus accumbens; increased GAD65 mRNA in the anterior hypothalamus and bed nucleus of the stria terminalis; and decreased GAD65 mRNA in the dorsal hypothalamus. Importantly, palatable food intake prevented stress-induced gene expression changes in subregions of the hypothalamus, bed nucleus of the stria terminalis, and nucleus accumbens. Overall, these

  11. Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors

    Directory of Open Access Journals (Sweden)

    Nahla Zaghloul

    2017-12-01

    Full Text Available Sepsis, a complex disorder characterized by immune, metabolic, and neurological dysregulation, is the number one killer in the intensive care unit. Mortality remains alarmingly high even in among sepsis survivors discharged from the hospital. There is no clear strategy for managing this lethal chronic sepsis illness, which is associated with severe functional disabilities and cognitive deterioration. Providing insight into the underlying pathophysiology is desperately needed to direct new therapeutic approaches. Previous studies have shown that brain cholinergic signaling importantly regulates cognition and inflammation. Here, we studied the relationship between peripheral immunometabolic alterations and brain cholinergic and inflammatory states in mouse survivors of cecal ligation and puncture (CLP-induced sepsis. Within 6 days, CLP resulted in 50% mortality vs. 100% survival in sham-operated controls. As compared to sham controls, sepsis survivors had significantly lower body weight, higher serum TNF, interleukin (IL-1β, IL-6, CXCL1, IL-10, and HMGB1 levels, a lower TNF response to LPS challenge, and lower serum insulin, leptin, and plasminogen activator inhibitor-1 levels on day 14. In the basal forebrain of mouse sepsis survivors, the number of cholinergic [choline acetyltransferase (ChAT-positive] neurons was significantly reduced. In the hippocampus and the cortex of mouse sepsis survivors, the activity of acetylcholinesterase (AChE, the enzyme that degrades acetylcholine, as well as the expression of its encoding gene were significantly increased. In addition, the expression of the gene encoding the M1 muscarinic acetylcholine receptor was decreased in the hippocampus. In parallel with these forebrain cholinergic alterations, microglial activation (in the cortex and increased Il1b and Il6 gene expression (in the cortex, and Il1b gene expression (in the hippocampus were observed in mouse sepsis survivors. Furthermore, microglial

  12. Auditory temporal processing deficits and language disorders in patients with neurofibromatosis type 1.

    Science.gov (United States)

    Batista, Pollyanna Barros; Lemos, Stela Maris Aguiar; Rodrigues, Luiz Oswaldo Carneiro; de Rezende, Nilton Alves

    2014-01-01

    Previous findings from a case report led to the argument of whether other patients with neurofibromatosis type 1 (NF1) may have abnormal central auditory function, particularly auditory temporal processing. We hypothesized that it is associated with language and learning disabilities in this population. The aim of this study was to measure central auditory temporal function in NF1 patients and correlate it with the results of language evaluation tests. A descriptive/comparative study including 25 NF1 individuals and 22 healthy controls compared their performances on audiometric evaluation and auditory behavioral testing (Sequential Verbal Memory, Sequential Non-Verbal Memory, Frequency Pattern, Duration Pattern, and Gaps in Noise Tests). To assess language performance, two tests (phonological and syntactic awareness) were also conducted. The study showed that all participants had normal peripheral acoustic hearing. Differences were found between the NF1 and control groups in the temporal auditory processing tests [Sequential Verbal Memory (P=0.009), Sequential Non-Verbal Memory (P=0.028), Frequency Patterns (P=0.001), Duration Patterns (P=0.000), and Gaps in Noise (P=0.000)] and in language tests. The results of Pearson correlation analysis demonstrated the presence of positive correlations between the phonological awareness test and Frequency Patterns humming (r=0.560, P=0.001), Frequency Patterns labeling (r=0.415, P=0.022) and Duration Pattern humming (r=0.569, P=0.001). These results suggest that the neurofibromin deficiency found in NF1 patients is associated with auditory temporal processing deficits, which may contribute to the cognitive impairment, learning disabilities, and attention deficits that are common in this disorder. The reader will be able to: (1) describe the auditory temporal processing in patients with neurofibromatosis type 1; and (2) describe the impact of the auditory temporal deficits in language in this population. Copyright © 2014

  13. The relationship of phonological ability, speech perception, and auditory perception in adults with dyslexia

    OpenAIRE

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquiere, Pol; Wouters, Jan

    2014-01-01

    This study investigated whether auditory, speech perception, and phonological skills are tightly interrelated or independently contributing to reading. We assessed each of these three skills in 36 adults with a past diagnosis of dyslexia and 54 matched normal reading adults. Phonological skills were tested by the typical threefold tasks, i.e., rapid automatic naming, verbal short-term memory and phonological awareness. Dynamic auditory processing skills were assessed by means of a frequency m...

  14. The relationship of phonological ability, speech perception and auditory perception in adults with dyslexia.

    OpenAIRE

    Jeremy eLaw; Maaike eVandermosten; Pol eGhesquiere; Jan eWouters

    2014-01-01

    This study investigated whether auditory, speech perception and phonological skills are tightly interrelated or independently contributing to reading. We assessed each of these three skills in 36 adults with a past diagnosis of dyslexia and 54 matched normal reading adults. Phonological skills were tested by the typical threefold tasks, i.e. rapid automatic naming, verbal short term memory and phonological awareness. Dynamic auditory processing skills were assessed by means of a frequency mod...

  15. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2014-01-01

    In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  16. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available In humans, theta phase (4–8 Hz synchronization observed on electroencephalography (EEG plays an important role in the manipulation of mental representations during working memory (WM tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  17. Comorbid auditory processing disorder in developmental dyslexia.

    Science.gov (United States)

    King, Wayne M; Lombardino, Linda J; Crandell, Carl C; Leonard, Christiana M

    2003-10-01

    The primary objective of this study was to investigate the extent of comorbid auditory processing disorder (APD) in a group of adults with developmental dyslexia. An additional objective was to compare performance on auditory tasks to results from standardized tests of reading in an attempt to generate a clinically useful profile of developmental dyslexics with comorbid APD. A group of eleven persons with developmental dyslexia and 14 age- and intelligence-matched controls participated in the study. Behavioral audiograms, 226-Hz tympanograms, and word recognition scores were obtained binaurally from all subjects. Both groups were administered the frequency-pattern test (FPT) and duration-pattern test (DPT) monaurally (30 items per ear) in both the left and right ear. Gap detection results were obtained in both groups (binaural presentation) using narrowband noise centered at 1 kHz in an adaptive two-alternative forced-choice (2-AFC) paradigm. The FPT, DPT, and gap detection results were analyzed for interaural (where applicable), intergroup, and intragroup differences. Correlations between performance on the auditory tasks and the standardized tests of reading were examined. Additive logistic regression models were fit to the data to determine which auditory tests proved to be the best predictors of group membership. The persons with developmental dyslexia as a group performed significantly poorer than controls on both the FPT and DPT. Furthermore, the group differences were significant in both monaural conditions. On the FPT and DPT, five of the eleven participants with dyslexia performed below the widely used clinical criterion for APD of 70% correct in either ear. All five of these participants performed below criterion on the FPT, whereas four of the five additionally performed below 70% on the DPT. The data also were analyzed by fitting a series of stepwise logistic regression models, which indicated that gap detection did not significantly predict group

  18. Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate.

    Science.gov (United States)

    Foran, Lindsey; Blackburn, Kaitlyn; Kulesza, Randy J

    2017-03-06

    Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and is stored and released by both neurons and astrocytes. Despite the important role of glutamate as a neurotransmitter, elevated extracellular glutamate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is a naturally occurring sodium salt of glutamic acid that is used as a flavor enhancer in many processed foods. Previous studies have shown that MSG administration during the early postnatal period results in neurodegenerative changes in several forebrain regions, characterized by neuronal loss and neuroendocrine abnormalities. Systemic delivery of MSG during the neonatal period and induction of glutamate neurotoxicity in the cochlea have both been shown to result in fewer neurons in the spiral ganglion. We hypothesized that an MSG-induced loss of neurons in the spiral ganglion would have a significant impact on the number of neurons in the cochlear nuclei and superior olivary complex (SOC). Indeed, we found that exposure to MSG from postnatal days 4 through 10 resulted in significantly fewer neurons in the cochlear nuclei and SOC and significant dysmorphology in surviving neurons. Moreover, we found that neonatal MSG exposure resulted in a significant decrease in the expression of both calretinin and calbindin. These results suggest that neonatal exposure to MSG interferes with early development of the auditory brainstem and impacts expression of calcium binding proteins, both of which may lead to diminished auditory function. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Reformation of Organized Connections in the Auditory System after Regeneration of the Eighth Nerve

    Science.gov (United States)

    Zakon, Harold; Capranica, Robert R.

    1981-07-01

    Binaural cells in the superior olive normally have identical frequency sensitivities when acoustically stimulated via either ear. The precision with which central connections are reformed after auditory nerve regeneration can be determined by comparing the frequency sensitivities of the two binaural inputs to these cells. Three months after cutting the nerve and subsequent regeneration in the leopard frog, binaural cells once again have well-matched frequency sensitivities. Thus, the specificity of central connectivity that characterizes the auditory system in normal animals is restored after regeneration.

  20. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons.

    Science.gov (United States)

    Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T

    2016-05-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  1. Scavenging superoxide selectively in mouse forebrain is associated with improved cardiac function and survival following myocardial infarction.

    Science.gov (United States)

    Lindley, Timothy E; Infanger, David W; Rishniw, Mark; Zhou, Yi; Doobay, Marc F; Sharma, Ram V; Davisson, Robin L

    2009-01-01

    Dysregulation in central nervous system (CNS) signaling that results in chronic sympathetic hyperactivity is now recognized to play a critical role in the pathogenesis of heart failure (HF) following myocardial infarction (MI). We recently demonstrated that adenovirus-mediated gene transfer of cytoplasmic superoxide dismutase (Ad-Cu/ZnSOD) to forebrain circumventricular organs, unique sensory structures that lack a blood-brain barrier and link peripheral blood-borne signals to central nervous system cardiovascular circuits, inhibits both the MI-induced activation of these central signaling pathways and the accompanying sympathoexcitation. Here, we tested the hypothesis that this forebrain-targeted reduction in oxidative stress translates into amelioration of the post-MI decline in myocardial function and increase in mortality. Adult C57BL/6 mice underwent left coronary artery ligation or sham surgery along with forebrain-targeted gene transfer of Ad-Cu/ZnSOD or a control vector. The results demonstrate marked MI-induced increases in superoxide radical formation in one of these forebrain regions, the subfornical organ (SFO). Ad-Cu/ZnSOD targeted to this region abolished the increased superoxide levels and led to significantly improved myocardial function compared with control vector-treated mice. This was accompanied by diminished levels of cardiomyocyte apoptosis in the Ad-Cu/ZnSOD but not the control vector-treated group. These effects of superoxide scavenging with Ad-Cu/ZnSOD in the forebrain paralleled increased post-MI survival rates compared with controls. This suggests that oxidative stress in the SFO plays a critical role in the deterioration of cardiac function following MI and underscores the promise of CNS-targeted antioxidant therapy for the treatment of MI-induced HF.

  2. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin

    Science.gov (United States)

    do Carmo, Jussara M.; da Silva, Alexandre A.; Sessums, Price O.; Ebaady, Sabira H.; Pace, Benjamin R.; Rushing, John S.; Davis, Mark T.; Hall, John E.

    2014-01-01

    Objective We examined whether deficiency of Shp2 signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Design Forebrain Shp2-/- mice were generated by crossing Shp2flox/flox mice with CamKIIα-cre mice. At 22 to 24 weeks of age, mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Results Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic, and hyperphagic compared to Shp2flox/flox control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15°C and 30°C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2flox/flox mice (112±2 vs 113±1 mmHg and 595±34 vs 650±40 bpm), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. Conclusion These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation, and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin. PMID:24030516

  3. The Role of Fundamental Frequency in Phonetic Accommodation

    Science.gov (United States)

    Babel, Molly; Bulatov, Dasha

    2012-01-01

    Previous research has argued that fundamental frequency is a critical component of phonetic accommodation. We tested this hypothesis in an auditory naming task with two conditions. Participants in an Unfiltered Condition completed an auditory naming task with a single male model talker. A second group of participants was assigned to a Filtered…

  4. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses.

    Science.gov (United States)

    Kaminska, A; Delattre, V; Laschet, J; Dubois, J; Labidurie, M; Duval, A; Manresa, A; Magny, J-F; Hovhannisyan, S; Mokhtari, M; Ouss, L; Boissel, A; Hertz-Pannier, L; Sintsov, M; Minlebaev, M; Khazipov, R; Chiron, C

    2017-08-11

    Characteristic preterm EEG patterns of "Delta-brushes" (DBs) have been reported in the temporal cortex following auditory stimuli, but their spatio-temporal dynamics remains elusive. Using 32-electrode EEG recordings and co-registration of electrodes' position to 3D-MRI of age-matched neonates, we explored the cortical auditory-evoked responses (AERs) after 'click' stimuli in 30 healthy neonates aged 30-38 post-menstrual weeks (PMW). (1) We visually identified auditory-evoked DBs within AERs in all the babies between 30 and 33 PMW and a decreasing response rate afterwards. (2) The AERs showed an increase in EEG power from delta to gamma frequency bands over the middle and posterior temporal regions with higher values in quiet sleep and on the right. (3) Time-frequency and averaging analyses showed that the delta component of DBs, which negatively peaked around 550 and 750 ms over the middle and posterior temporal regions, respectively, was superimposed with fast (alpha-gamma) oscillations and corresponded to the late part of the cortical auditory-evoked potential (CAEP), a feature missed when using classical CAEP processing. As evoked DBs rate and AERs delta to alpha frequency power decreased until full term, auditory-evoked DBs are thus associated with the prenatal development of auditory processing and may suggest an early emerging hemispheric specialization. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Devices and Procedures for Auditory Learning.

    Science.gov (United States)

    Ling, Daniel

    1986-01-01

    The article summarizes information on assistive devices (hearing aids, cochlear implants, tactile aids, visual aids) and rehabilitation procedures (auditory training, speechreading, cued speech, and speech production) to aid the auditory learning of the hearing impaired.(DB)

  6. Local tissue interactions across the dorsal midline of the forebrain establish CNS laterality.

    Science.gov (United States)

    Concha, Miguel L; Russell, Claire; Regan, Jennifer C; Tawk, Marcel; Sidi, Samuel; Gilmour, Darren T; Kapsimali, Marika; Sumoy, Lauro; Goldstone, Kim; Amaya, Enrique; Kimelman, David; Nicolson, Teresa; Gründer, Stefan; Gomperts, Miranda; Clarke, Jonathan D W; Wilson, Stephen W

    2003-07-31

    The mechanisms that establish behavioral, cognitive, and neuroanatomical asymmetries are poorly understood. In this study, we analyze the events that regulate development of asymmetric nuclei in the dorsal forebrain. The unilateral parapineal organ has a bilateral origin, and some parapineal precursors migrate across the midline to form this left-sided nucleus. The parapineal subsequently innervates the left habenula, which derives from ventral epithalamic cells adjacent to the parapineal precursors. Ablation of cells in the left ventral epithalamus can reverse laterality in wild-type embryos and impose the direction of CNS asymmetry in embryos in which laterality is usually randomized. Unilateral modulation of Nodal activity by Lefty1 can also impose the direction of CNS laterality in embryos with bilateral expression of Nodal pathway genes. From these data, we propose that laterality is determined by a competitive interaction between the left and right epithalamus and that Nodal signaling biases the outcome of this competition.

  7. Somatostatin Neurons in the Basal Forebrain Promote High-Calorie Food Intake

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-07-01

    Full Text Available Obesity has become a global issue, and the overconsumption of food is thought to be a major contributor. However, the regulatory neural circuits that regulate palatable food consumption remain unclear. Here, we report that somatostatin (SOM neurons and GABAergic (VGAT neurons in the basal forebrain (BF play specific roles in regulating feeding. Optogenetic stimulation of BF SOM neurons increased fat and sucrose intake within minutes and promoted anxiety-like behaviors. Furthermore, optogenetic stimulation of projections from BF SOM neurons to the lateral hypothalamic area (LHA selectively resulted in fat intake. In addition, activation of BF VGAT neurons rapidly induced general food intake and gnawing behaviors. Whole-brain mapping of inputs and outputs showed that BF SOM neurons form bidirectional connections with several brain areas important in feeding and regulation of emotion. Collectively, these results suggest that BF SOM neurons play a selective role in hedonic feeding.

  8. Auditory learning: a developmental method.

    Science.gov (United States)

    Zhang, Yilu; Weng, Juyang; Hwang, Wey-Shiuan

    2005-05-01

    Motivated by the human autonomous development process from infancy to adulthood, we have built a robot that develops its cognitive and behavioral skills through real-time interactions with the environment. We call such a robot a developmental robot. In this paper, we present the theory and the architecture to implement a developmental robot and discuss the related techniques that address an array of challenging technical issues. As an application, experimental results on a real robot, self-organizing, autonomous, incremental learner (SAIL), are presented with emphasis on its audition perception and audition-related action generation. In particular, the SAIL robot conducts the auditory learning from unsegmented and unlabeled speech streams without any prior knowledge about the auditory signals, such as the designated language or the phoneme models. Neither available before learning starts are the actions that the robot is expected to perform. SAIL learns the auditory commands and the desired actions from physical contacts with the environment including the trainers.

  9. Auditory presentation of experimental data

    Science.gov (United States)

    Lunney, David; Morrison, Robert C.

    1990-08-01

    Our research group has been working for several years on the development of auditory alternatives to visual graphs, primarily in order to give blind science students and scientists access to instrumental measurements. In the course of this work we have tried several modes for auditory presentation of data: synthetic speech, tones of varying pitch, complex waveforms, electronic music, and various non-musical sounds. Our most successful translation of data into sound has been presentation of infrared spectra as musical patterns. We have found that if the stick spectra of two compounds are visibly different, their musical patterns will be audibly different. Other possibilities for auditory presentation of data are also described, among them listening to Fourier transforms of spectra, and encoding data in complex waveforms (including synthetic speech).

  10. Did auditory sensitivity and vocalization evolve independently in otophysan fishes?

    Science.gov (United States)

    Ladich, F

    1999-01-01

    Otophysine fishes have a series of bones, the Weberian ossicles, which acoustically couple the swimbladder to the inner ear. These fishes have evolved a diversity of sound-generating organs and acoustic signals, although some species, such as the goldfish, are not known to be vocal. Utilizing a recently developed auditory brainstem response (ABR)-recording technique, the auditory sensitivities of representatives of seven families from all four otophysine orders were investigated and compared to the spectral content of their vocalizations. All species examined detect tone bursts from 100 Hz to 5 kHz, but ABR-audiograms revealed major differences in auditory sensitivities, especially at higher frequencies (>1 kHz) where thresholds differed by up to 50 dB. These differences showed no apparent correspondence to the ability to produce sounds (vocal versus non-vocal species) or to the spectral content of species-specific sounds. All fishes have maximum sensitivity between 400 Hz and 1,500 Hz, whereas the major portion of the energy of acoustic signals was in the frequency range of 100-400 Hz (swimbladder drumming sounds) and of 1-3 kHz (stridulatory sounds). Species producing stridulatory sounds exhibited better high-frequency hearing sensitivity (pimelodids, doradids), except for callichthyids, which had poorest hearing ability in this range. Furthermore, fishes emitting both low- and high-frequency sounds, such as pimelodid and doradid catfishes, did not possess two corresponding auditory sensitivity maxima. Based on these results it is concluded that selective pressures involved in the evolution of the Weberian apparatus and the design of vocal signals in otophysines were others (primarily predator or prey detection in quiet freshwater habitats) than those serving to optimize acoustical communication.

  11. Transcranial Random Noise Stimulation (tRNS Shapes the Processing of Rapidly Changing Auditory Information

    Directory of Open Access Journals (Sweden)

    Katharina S. Rufener

    2017-06-01

    Full Text Available Neural oscillations in the gamma range are the dominant rhythmic activation pattern in the human auditory cortex. These gamma oscillations are functionally relevant for the processing of rapidly changing acoustic information in both speech and non-speech sounds. Accordingly, there is a tight link between the temporal resolution ability of the auditory system and inherent neural gamma oscillations. Transcranial random noise stimulation (tRNS has been demonstrated to specifically increase gamma oscillation in the human auditory cortex. However, neither the physiological mechanisms of tRNS nor the behavioral consequences of this intervention are completely understood. In the present study we stimulated the human auditory cortex bilaterally with tRNS while EEG was continuously measured. Modulations in the participants’ temporal and spectral resolution ability were investigated by means of a gap detection task and a pitch discrimination task. Compared to sham, auditory tRNS increased the detection rate for near-threshold stimuli in the temporal domain only, while no such effect was present for the discrimination of spectral features. Behavioral findings were paralleled by reduced peak latencies of the P50 and N1 component of the auditory event-related potentials (ERP indicating an impact on early sensory processing. The facilitating effect of tRNS was limited to the processing of near-threshold stimuli while stimuli clearly below and above the individual perception threshold were not affected by tRNS. This non-linear relationship between the signal-to-noise level of the presented stimuli and the effect of stimulation further qualifies stochastic resonance (SR as the underlying mechanism of tRNS on auditory processing. Our results demonstrate a tRNS related improvement in acoustic perception of time critical auditory information and, thus, provide further indices that auditory tRNS can amplify the resonance frequency of the auditory system.

  12. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    Science.gov (United States)

    Mochida, Takemi; Gomi, Hiroaki; Kashino, Makio

    2010-11-08

    There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a

  13. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    Directory of Open Access Journals (Sweden)

    Takemi Mochida

    Full Text Available BACKGROUND: There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. CONCLUSIONS/SIGNIFICANCE: The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context

  14. Multiple Mechanisms for Processing Reward Uncertainty in the Primate Basal Forebrain.

    Science.gov (United States)

    Ledbetter, Noah M; Chen, Charles D; Monosov, Ilya E

    2016-07-27

    The ability to use information about the uncertainty of future outcomes is critical for adaptive behavior in an uncertain world. We show that the basal forebrain (BF) contains at least two distinct neural-coding strategies to support this capacity. The dorsal-lateral BF, including the ventral pallidum (VP), contains reward-sensitive neurons, some of which are selectively suppressed by uncertain-reward predictions (U(-)). In contrast, the medial BF (mBF) contains reward-sensitive neurons, some of which are selectively enhanced (U(+)) by uncertain-reward predictions. In a two-alternative choice-task, U(-) neurons were selectively suppressed while monkeys chose uncertain options over certain options. During the same choice-epoch, U(+) neurons signaled the subjective reward value of the choice options. Additionally, after the choice was reported, U(+) neurons signaled reward uncertainty until the choice outcome. We suggest that uncertainty-related suppression of VP may participate in the mediation of uncertainty-seeking actions, whereas uncertainty-related enhancement of the mBF may direct cognitive resources to monitor and learn from uncertain-outcomes. To survive in an uncertain world, we must approach uncertainty and learn from it. Here we provide evidence for two mostly distinct mechanisms for processing uncertainty about rewards within different subregions of the primate basal forebrain (BF). We found that uncertainty suppressed the representation of certain (or safe) reward values by some neurons in the dorsal-lateral BF, in regions occupied by the ventral pallidum. This uncertainty-related suppression was evident as monkeys made risky choices. We also found that uncertainty-enhanced the activity of many medial BF neurons, most prominently after the monkeys' choices were completed (as they awaited uncertain outcomes). Based on these findings, we propose that different subregions of the BF could support action and learning under uncertainty in distinct but

  15. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    Directory of Open Access Journals (Sweden)

    H Scott Swartzwelder

    Full Text Available The long-term effects of intermittent ethanol exposure during adolescence (AIE are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30 received exposure to AIE (5g/kg, i.g. or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  16. Learning-related changes in Fos-like immunoreactivity in the chick forebrain after imprinting.

    Science.gov (United States)

    McCabe, B J; Horn, G

    1994-01-01

    The intermediate and medial part of the hyperstriatum ventrale (IMHV) is a part of the chick forebrain that is critical for the learning process of imprinting and may be a site of information storage. Chicks were either trained on an imprinting stimulus or dark-reared. Trained chicks were classified as good or poor learners by their preference score (a measure of the strength of imprinting). A monoclonal antibody against the immediate early gene product Fos was applied to sections through IMHV and other forebrain regions. In the IMHV, significantly more immunopositive nuclei were counted in good learners than in poor learners or dark-reared chicks. There was a positive correlation between counts of labeled nuclei and preference score that was not attributable to sensory activity per se, locomotor activity during training, or a predisposition to learn well; rather, the results indicated that the change in Fos immunoreactivity in the IMHV was related to learning. In the hyperstriatum accessorium, significantly fewer immunopositive nuclei were counted in good learners than in poor learners or in dark-reared chicks. In the dorsolateral hippocampal region, more immunopositive nuclei were counted in trained than in dark-reared chicks. No significant effects of training were found in the anterior hyperstriatum ventrale, lobus parolfactorius, neostriatum, medial hippocampal region, or ventrolateral hippocampal region, but counts in this last region were positively correlated with training approach. The results for IMHV implicate Fos or Fos-related proteins in memory processes and pave the way for the identification of the cell types that show the learning-related increase in gene expression. Images PMID:7972076

  17. A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons

    Science.gov (United States)

    Chung, Paul Chu Sin; Keyworth, Helen L.; Martin-Garcia, Elena; Charbogne, Pauline; Darcq, Emmanuel; Bailey, Alexis; Filliol, Dominique; Matifas, Audrey; Ouagazzal, Abdel-Mouttalib; Gaveriaux-Ruff, Claire; Befort, Katia; Maldonado, Rafael; Kitchen, Ian; Kieffer, Brigitte L.

    2014-01-01

    Background The delta opioid receptor (DOR) is broadly expressed throughout the nervous system and regulates chronic pain, emotional responses, motivation and memory. Neural circuits underlying DOR activities have been poorly explored by genetic approaches. Here we used conditional mouse mutagenesis to elucidate receptor function in GABAergic neurons of the forebrain. Methods We characterized DOR distribution in the brain of Dlx5/6-CreXOprd1fl/fl (Dlx-DOR) mice, and tested main central DOR functions through behavioral testing. Results DORs proteins were strongly deleted in olfactory bulb and striatum, and remained intact in cortex and basolateral amygdala. Olfactory perception, circadian activity and despair-like behaviors were unchanged. In contrast, locomotor stimulant effects of SNC80 (DOR agonist) and SKF81297 (D1 agonist) were abolished and increased, respectively. Furthermore, Dlx-DOR mice showed lower levels of anxiety in the elevated plus-maze, opposing the known high anxiety in constitutive DOR knockout animals. Also Dlx-DOR mice reached the food more rapidly in a novelty suppressed feeding (NSF) task, despite their lower motivation for food reward observed in an operant paradigm. Finally, c-fos staining after NSF was strongly reduced in amygdala, concordant with the low anxiety phenotype of Dlx-DOR mice. Conclusion Here we demonstrate that DORs expressed in the forebrain mediate the described locomotor effect of SNC80 and inhibit D1-stimulated hyperactivity. Our data also reveal an unanticipated anxiogenic role for this particular DOR subpopulation, with a potential novel adaptive role. DORs therefore exert dual anxiolytic/anxiogenic roles in emotional responses, which may both have implications in the area of anxiety disorders. PMID:25444168

  18. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    Science.gov (United States)

    Swartzwelder, H Scott; Acheson, Shawn K; Miller, Kelsey M; Sexton, Hannah G; Liu, Wen; Crews, Fulton T; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  19. Postischemic hypothermia inhibits the generation of hydroxyl radical following transient forebrain ischemia in rats.

    Science.gov (United States)

    Horiguchi, Takashi; Shimizu, Katsuyoshi; Ogino, Masahiro; Suga, Sadao; Inamasu, Joji; Kawase, Takeshi

    2003-05-01

    A small reduction of body temperature during reperfusion following cerebral ischemia has been known to ameliorate neuronal injury. However, the mechanisms underlying postischemic hypothermia-induced neuroprotection are poorly understood. The burst of reactive oxygen species (ROS) formation that occurs during reperfusion has been documented to be involved in ischemic neuronal degeneration. In this study, we investigated the effect of postischemic hypothermia on ROS production following transient forebrain ischemia using an in vivo microdialysis technique. Forebrain ischemia was induced by bilateral carotid artery occlusion combined with hemorrhagic hypotension for 20 min in male Wistar rats. The body temperature was kept at 37 degrees C during ischemia and controlled at either 32 degrees C or 37 degrees C after reperfusion. The amount of hydroxyl radical produced in striatum was evaluated by measurement of 2,3- and 2,5-dihydroxybenzoic acid (DHBA), which is generated by salicylate hydroxylation. We also measured the extracellular concentration of xanthine, while determining striatal blood flow by the hydrogen clearance technique. In animals whose postischemic body temperature was maintained at 37 degrees C, the levels of 2,3- and 2,5-DHBA significantly increased after reperfusion. The peak levels of 2,3- and 2,5- DHBA were 2.9-fold and 2.7-fold increased above the corresponding baseline values, respectively. Postischemic hypothermia completely inhibited the hydroxyl radical formation. Likewise, xanthine formation was also inhibited by postischemic hypothermia. In contrast, striatal cerebral blood flow was not altered by temperature modulation during reperfusion. These results suggest that inhibition of ROS production accompanied with suppression of xanthine formation is implicated in the neuroprotection of postischemic hypothermia.

  20. New perspective on the regionalization of the anterior forebrain in Osteichthyes.

    Science.gov (United States)

    Yamamoto, Kei; Bloch, Solal; Vernier, Philippe

    2017-05-01

    In the current model, the most anterior part of the forebrain (secondary prosencephalon) is subdivided into the telencephalon dorsally and the hypothalamus ventrally. Our recent study identified a new morphogenetic unit named the optic recess region (ORR) between the telencephalon and the hypothalamus. This modification of the forebrain regionalization based on the ventricular organization resolved some previously unexplained inconsistency about regional identification in different vertebrate groups. The ventricular-based comparison also revealed a large diversity within the subregions (notably in the hypothalamus and telencephalon) among different vertebrate groups. In tetrapods there is only one hypothalamic recess, while in teleosts there are two recesses. Most notably, the mammalian and teleost hypothalami are two extreme cases: the former has lost the cerebrospinal fluid-contacting (CSF-c) neurons, while the latter has increased them. Thus, one to one homology of hypothalamic subregions in mammals and teleosts requires careful verification. In the telencephalon, different developmental processes between Sarcopterygii (lobe-finned fish) and Actinopterygii (ray-finned fish) have already been described: the evagination and the eversion. Although pallial homology has been long discussed based on the assumption that the medial-lateral organization of the pallium in Actinopterygii is inverted from that in Sarcopterygii, recent developmental data contradict this assumption. Current models of the brain organization are largely based on a mammalian-centric point of view, but our comparative analyses shed new light on the brain organization of Osteichthyes. © 2017 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  1. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention

    NARCIS (Netherlands)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten; Martens, Sander

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were

  2. Auditory feedback affects perception of effort when exercising with a Pulley machine

    DEFF Research Database (Denmark)

    Bordegoni, Monica; Ferrise, Francesco; Grani, Francesco

    2013-01-01

    In this paper we describe an experiment that investigates the role of auditory feedback in affecting the perception of effort when using a physical pulley machine. Specifically, we investigated whether variations in the amplitude and frequency content of the pulley sound affect perception of effort....... Results show that variations in frequency content affect the perception of effort....

  3. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    Science.gov (United States)

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  4. Resting Heart Rate and Auditory Evoked Potential

    Directory of Open Access Journals (Sweden)

    Simone Fiuza Regaçone

    2015-01-01

    Full Text Available The objective of this study was to evaluate the association between rest heart rate (HR and the components of the auditory evoked-related potentials (ERPs at rest in women. We investigated 21 healthy female university students between 18 and 24 years old. We performed complete audiological evaluation and measurement of heart rate for 10 minutes at rest (heart rate monitor Polar RS800CX and performed ERPs analysis (discrepancy in frequency and duration. There was a moderate negative correlation of the N1 and P3a with rest HR and a strong positive correlation of the P2 and N2 components with rest HR. Larger components of the ERP are associated with higher rest HR.

  5. Screening for auditory processing performance in primary school children.

    Science.gov (United States)

    Mourad, Mona; Hassan, Mona; El-Banna, Manal; Asal, Samir; Hamza, Yasmeen

    2015-04-01

    A deficit in the processing of auditory information may underlie problems in understanding speech in the presence of background noise, degraded speech, and in following spoken instructions. Children with auditory processing disorders are challenged in the classroom because of ambient noise levels and maybe at risk for learning disabilities. 1) Set up and execute screening protocol for auditory processing performance (APP) in primary school children. 2) Construct database for APP in the classroom. 3) Set critical limits for deviant performance. Our hypothesis is that screening for APP in the classroom identifies pupils at risk for auditory processing disorders. Study consisted of two phases. Phase 1: 2,015 pupils were selected from fourth-, fifth-, and sixth-graders using stratified random sampling with the proportional allocation method. Male and female students were equally represented. Otoscopic examination, screening audiometery, and screening tests for auditory processing (AP) abilities (Pitch Pattern Sequence Test [PPST], speech perception in noise [SPIN] right, SPIN left, and Dichotic Digit Test) were conducted. A questionnaire emphasizing auditory listening behaviors (ALB) was answered by classroom teacher. Phase 2 included 69 pupils who were randomly selected based on percentile scores of phase 1. Students were examined for the corresponding full version AP tests in addition to Auditory Fusion Test-Revised and masking level difference. Intelligence quotient and learning disabilities were evaluated. Phase 1: Results are displayed in frequency polygons for10th, 25th, 50th, 75th, and 90th percentiles score for each AP test. Fourth-graders scored significantly lower than fifth- and sixth-graders on all tests. Males scored lower than females on PPST. A composite score was calculated to represent a summed score performance for PPST, SPIN right ear, SPIN left ear, and Dichotic Digit Test. Scores Auditory Fusion Test-Revised mean thresholds were statistically

  6. Utility of auditory steady-state and brainstem responses in age-related hearing loss in rats.

    Science.gov (United States)

    Sanz-Fernández, Ricardo; Sánchez-Rodriguez, Carolina; Granizo, José Juan; Durio-Calero, Enrique; Martín-Sanz, Eduardo

    2015-01-01

    The results support the idea that auditory steady-state response (ASSR) is a more accurate test for studying age-related hearing loss (ARHL) in Sprague-Dawley rats. Differences in the rat middle ear may explain the variations of the click properties, with a displacement of the energy toward the 8 and 10 kHz frequencies compared with humans. The purpose of this study was to evaluate ARHL in older and younger Sprague-Dawley rats using auditory clicks and tone burst with auditory brainstem response (ABR), in addition to ASSR. This was a prospective cohort study with 50 animals divided into 5 groups based on their age in months. A total of 100 registers were elicited from each one of the 3 auditory measurements systems in an electrically shielded, double-walled, sound-treated cabin. Nine frequencies, from 0.5 to 16 kHz were analyzed with the auditory steady-state response and compared with the results elicited by the clicks and tone-burst ABR. Comparisons between the different frequencies showed lower thresholds in those frequencies below 2 kHz, independently of their age in months. The ARHL was detected by each one of the three auditory measurement systems, but with lower thresholds with the ASSR test. Finally, auditory clicks showed better correlations with 8 and 10 kHz elicited by ASSR, which was different to what was expected, based on human studies.

  7. Binaural interactions in primary auditory cortex of the awake macaque.

    Science.gov (United States)

    Reser, D H; Fishman, Y I; Arezzo, J C; Steinschneider, M

    2000-06-01

    The functional organization of primary auditory cortex in non-primates is generally modeled as a tonotopic gradient with an orthogonal representation of independently mapped binaural interaction columns along the isofrequency contours. Little information is available regarding the validity of this model in the primate brain, despite the importance of binaural cues for sound localization and auditory scene analysis. Binaural and monaural responses of A1 to pure tone stimulation were studied using auditory evoked potentials, current source density and multiunit activity. Key findings include: (i) differential distribution of binaural responses with respect to best frequency, such that 74% of the sites exhibiting binaural summation had best frequencies below 2000 Hz; (ii) the pattern of binaural responses was variable with respect to cortical depth, with binaural summation often observed in the supragranular laminae of sites showing binaural suppression in thalamorecipient laminae; and (iii) dissociation of binaural responses between the initial and sustained action potential firing of neuronal ensembles in A1. These data support earlier findings regarding the temporal and spatial complexity of responses in A1 in the awake state, and are inconsistent with a simple orthogonal arrangement of binaural interaction columns and best frequency in A1 of the awake primate.

  8. Practical Gammatone-Like Filters for Auditory Processing

    Directory of Open Access Journals (Sweden)

    R. F. Lyon

    2007-12-01

    Full Text Available This paper deals with continuous-time filter transfer functions that resemble tuning curves at particular set of places on the basilar membrane of the biological cochlea and that are suitable for practical VLSI implementations. The resulting filters can be used in a filterbank architecture to realize cochlea implants or auditory processors of increased biorealism. To put the reader into context, the paper starts with a short review on the gammatone filter and then exposes two of its variants, namely, the differentiated all-pole gammatone filter (DAPGF and one-zero gammatone filter (OZGF, filter responses that provide a robust foundation for modeling cochlea transfer functions. The DAPGF and OZGF responses are attractive because they exhibit certain characteristics suitable for modeling a variety of auditory data: level-dependent gain, linear tail for frequencies well below the center frequency, asymmetry, and so forth. In addition, their form suggests their implementation by means of cascades of N identical two-pole systems which render them as excellent candidates for efficient analog or digital VLSI realizations. We provide results that shed light on their characteristics and attributes and which can also serve as “design curves” for fitting these responses to frequency-domain physiological data. The DAPGF and OZGF responses are essentially a “missing link” between physiological, electrical, and mechanical models for auditory filtering.

  9. Tuned with a tune: Talker normalization via general auditory processes

    Directory of Open Access Journals (Sweden)

    Erika J C Laing

    2012-06-01

    Full Text Available Voices have unique acoustic signatures, contributing to the acoustic variability listeners must contend with in perceiving speech, and it has long been proposed that listeners normalize speech perception to information extracted from a talker’s speech. Initial attempts to explain talker normalization relied on extraction of articulatory referents, but recent studies of context-dependent auditory perception suggest that general auditory referents such as the long-term average spectrum (LTAS of a talker’s speech similarly affect speech perception. The present study aimed to differentiate the contributions of articulatory/linguistic versus auditory referents for context-driven talker normalization effects and, more specifically, to identify the specific constraints under which such contexts impact speech perception. Synthesized sentences manipulated to sound like different talkers influenced categorization of a subsequent speech target only when differences in the sentences’ LTAS were in the frequency range of the acoustic cues relevant for the target phonemic contrast. This effect was true both for speech targets preceded by spoken sentence contexts and for targets preceded by nonspeech tone sequences that were LTAS-matched to the spoken sentence contexts. Specific LTAS characteristics, rather than perceived talker, predicted the results suggesting that general auditory mechanisms play an important role in effects considered to be instances of perceptual talker normalization.

  10. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2009-01-03

    Previous studies have shown that the functional development of auditory system is substantially influenced by the structure of environmental acoustic inputs in early life. In our present study, we investigated the effects of early auditory enrichment with music on rat auditory discrimination learning. We found that early auditory enrichment with music from postnatal day (PND) 14 enhanced learning ability in auditory signal-detection task and in sound duration-discrimination task. In parallel, a significant increase was noted in NMDA receptor subunit NR2B protein expression in the auditory cortex. Furthermore, we found that auditory enrichment with music starting from PND 28 or 56 did not influence NR2B expression in the auditory cortex. No difference was found in the NR2B expression in the inferior colliculus (IC) between music-exposed and normal rats, regardless of when the auditory enrichment with music was initiated. Our findings suggest that early auditory enrichment with music influences NMDA-mediated neural plasticity, which results in enhanced auditory discrimination learning.

  11. A review on auditory space adaptations to altered head-related cues

    Directory of Open Access Journals (Sweden)

    Catarina eMendonça

    2014-07-01

    Full Text Available In this article we present a review of current literature on adaptations to altered head-related auditory localization cues. Localization cues can be altered through ear blocks, ear molds, electronic hearing devices and altered head-related transfer functions. Three main methods have been used to induce auditory space adaptation: sound exposure, training with feedback, and explicit training. Adaptations induced by training, rather than exposure, are consistently faster. Studies on localization with altered head-related cues have reported poor initial localization, but improved accuracy and discriminability with training. Also, studies that displaced the auditory space by altering cue values reported adaptations in perceived source position to compensate for such displacements. Auditory space adaptations can last for a few months even without further contact with the learned cues. In most studies, localization with the subject’s own unaltered cues remained intact despite the adaptation to a second set of cues. Generalization is observed from trained to untrained sound source positions, but there is mixed evidence regarding cross-frequency generalization. Multiple brain areas might be involved in auditory space adaptation processes, but the auditory cortex may play a critical role. Auditory space plasticity may involve context-dependent cue reweighting.

  12. Statistical learning and auditory processing in children with music training: An ERP study.

    Science.gov (United States)

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne

    2017-07-01

    The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Interactions between "what" and "when" in the auditory system: temporal predictability enhances repetition suppression.

    Science.gov (United States)

    Costa-Faidella, Jordi; Baldeweg, Torsten; Grimm, Sabine; Escera, Carles

    2011-12-14

    Neural activity in the auditory system decreases with repeated stimulation, matching stimulus probability in multiple timescales. This phenomenon, known as stimulus-specific adaptation, is interpreted as a neural mechanism of regularity encoding aiding auditory object formation. However, despite the overwhelming literature covering recordings from single-cell to scalp auditory-evoked potential (AEP), stimulation timing has received little interest. Here we investigated whether timing predictability enhances the experience-dependent modulation of neural activity associated with stimulus probability encoding. We used human electrophysiological recordings in healthy participants who were exposed to passive listening of sound sequences. Pure tones of different frequencies were delivered in successive trains of a variable number of repetitions, enabling the study of sequential repetition effects in the AEP. In the predictable timing condition, tones were delivered with isochronous interstimulus intervals; in the unpredictable timing condition, interstimulus intervals varied randomly. Our results show that unpredictable stimulus timing abolishes the early part of the repetition positivity, an AEP indexing auditory sensory memory trace formation, while leaving the later part (≈ >200 ms) unaffected. This suggests that timing predictability aids the propagation of repetition effects upstream the auditory pathway, most likely from association auditory cortex (including the planum temporale) toward primary auditory cortex (Heschl's gyrus) and beyond, as judged by the timing of AEP latencies. This outcome calls for attention to stimulation timing in future experiments regarding sensory memory trace formation in AEP measures and stimulus probability encoding in animal models.

  14. Auditory Hallucinations Nomenclature and Classification

    NARCIS (Netherlands)

    Blom, Jan Dirk; Sommer, Iris E. C.

    Introduction: The literature on the possible neurobiologic correlates of auditory hallucinations is expanding rapidly. For an adequate understanding and linking of this emerging knowledge, a clear and uniform nomenclature is a prerequisite. The primary purpose of the present article is to provide an

  15. Auditory Risk of Air Rifles

    Science.gov (United States)

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  16. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Nigel: A Severe Auditory Dyslexic

    Science.gov (United States)

    Cotterell, Gill

    1976-01-01

    Reported is the case study of a boy with severe auditory dyslexia who received remedial treatment from the age of four and progressed through courses at a technical college and a 3-year apprenticeship course in mechanics by the age of eighteen. (IM)

  18. Auditory Processing Disorder in Children

    Science.gov (United States)

    ... Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick Statistics About Voice, Speech, Language Speech and Language Developmental Milestones What Is Voice? What Is Speech? What Is Language? ... communication provides better outcomes for children with cochlear implants University of Texas at Dallas ...

  19. Positioning of earphones and variations in auditory thresholds,

    Directory of Open Access Journals (Sweden)

    Bettina Poggi Almeida

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: One of the problems observed in pure-tone audiometry tonal has been the variation in test results of a same individual, particularly at frequencies of 4 kHz, 6 kHz and/or 8 kHz. Improper placement of headphones is one of the factors that can cause alterations in results. OBJECTIVE: To compare differences in auditory thresholds using earphones positioned by the examiner and by the worker. METHODS: Clinical and experimental study conducted in 2009, with 324 workers aged between 19 and 61 years, with a mean of 33.29 years and mean exposure time of 7.67 years. All subjects were familiar with audiometry procedures. Auditory thresholds were obtained at frequencies of 0.25-8 kHz, with earphones positioned by the examiners, and at frequencies of 4, 6 and 8 kHz, with earphones placed by workers in a comfortable position, following the examiner's instructions. The thresholds obtained in these two situations were compared. RESULTS: The three frequencies exhibited better responses with earphones placed by the workers themselves (p < 0.001. At a frequency of 8 kHz a greater difference was found (p < 0.001, with a mean of 13.89 dB and standard deviation of 6.07 dB. CONCLUSION: Earphone placement by the workers themselves under supervision of the examiner results in improved mean auditory thresholds at frequencies of 4, 6 and 8 kHz, the last one significantly higher than the other two.

  20. Phencyclidine Disrupts the Auditory Steady State Response in Rats.

    Directory of Open Access Journals (Sweden)

    Emma Leishman

    Full Text Available The Auditory Steady-State Response (ASSR in the electroencephalogram (EEG is usually reduced in schizophrenia (SZ, particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP, produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP and Phase Locking Factor (PLF. In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg, following two weeks of subchronic, continuous administration (5 mg/kg/day, and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.

  1. Phencyclidine Disrupts the Auditory Steady State Response in Rats.

    Science.gov (United States)

    Leishman, Emma; O'Donnell, Brian F; Millward, James B; Vohs, Jenifer L; Rass, Olga; Krishnan, Giri P; Bolbecker, Amanda R; Morzorati, Sandra L

    2015-01-01

    The Auditory Steady-State Response (ASSR) in the electroencephalogram (EEG) is usually reduced in schizophrenia (SZ), particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR) hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP), produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP) and Phase Locking Factor (PLF). In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg) on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg), following two weeks of subchronic, continuous administration (5 mg/kg/day), and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz) ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.

  2. Positioning of earphones and variations in auditory thresholds.

    Science.gov (United States)

    Almeida, Bettina Poggi; Menezes, Pedro de Lemos; Andrade, Kelly Cristina Lira de; Teixeira, Cleide Fernandes

    2015-01-01

    One of the problems observed in pure-tone audiometry tonal has been the variation in test results of a same individual, particularly at frequencies of 4kHz, 6kHz and/or 8kHz. Improper placement of headphones is one of the factors that can cause alterations in results. To compare differences in auditory thresholds using earphones positioned by the examiner and by the worker. Clinical and experimental study conducted in 2009, with 324 workers aged between 19 and 61 years, with a mean of 33.29 years and mean exposure time of 7.67 years. All subjects were familiar with audiometry procedures. Auditory thresholds were obtained at frequencies of 0.25-8kHz, with earphones positioned by the examiners, and at frequencies of 4, 6 and 8kHz, with earphones placed by workers in a comfortable position, following the examiner's instructions. The thresholds obtained in these two situations were compared. The three frequencies exhibited better responses with earphones placed by the workers themselves (p<0.001). At a frequency of 8kHz a greater difference was found (p<0.001), with a mean of 13.89dB and standard deviation of 6.07dB. Earphone placement by the workers themselves under supervision of the examiner results in improved mean auditory thresholds at frequencies of 4, 6 and 8kHz, the last one significantly higher than the other two. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  3. Influence of oxygen tension on dopaminergic differentiation of human fetal stem cells of midbrain and forebrain origin.

    Directory of Open Access Journals (Sweden)

    Christina Krabbe

    Full Text Available Neural stem cells (NSCs constitute a promising source of cells for transplantation in Parkinson's disease (PD, but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3% versus high, atmospheric (20% oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir cells in both types of cultures (midbrain: 9.1 ± 0.5 and 17.1 ± 0.4 (P<0.001; forebrain: 1.9 ± 0.4 and 3.9 ± 0.6 (P<0.01 percent of total cells. Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect

  4. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis

    Directory of Open Access Journals (Sweden)

    Colin N. Young

    2015-04-01

    Conclusions: These data identify a novel interaction between angiotensin-II and leptin in the control of BAT thermogenesis and body weight, and highlight a previously unrecognized role for the forebrain SFO in metabolic regulation.

  5. Role of auditory feedback in speech produced by cochlear implanted adults and children

    Science.gov (United States)

    Bharadwaj, Sneha V.; Tobey, Emily A.; Assmann, Peter F.; Katz, William F.

    2002-05-01

    A prominent theory of speech production proposes that speech segments are largely controlled by reference to an internal model, with minimal reliance on auditory feedback. This theory also maintains that suprasegmental aspects of speech are directly regulated by auditory feedback. Accordingly, if a talker is briefly deprived of auditory feedback speech segments should not be affected, but suprasegmental properties should show significant change. To test this prediction, comparisons were made between speech samples obtained from cochlear implant users who repeated words under two conditions (1) implant device turned ON, and (2) implant switched OFF immediately before the repetition of each word. To determine whether producing unfamiliar speech requires greater reliance on auditory feedback than producing familiar speech, English and French words were elicited from English-speaking subjects. Subjects were congenitally deaf children (n=4) and adventitiously deafened adults (n=4). Vowel fundamental frequency and formant frequencies, vowel and syllable durations, and fricative spectral moments were analyzed. Preliminary data only partially confirm the predictions, in that both segmental and suprasegmental aspects of speech were significantly modified in the absence of auditory feedback. Modifications were greater for French compared to English words, suggesting greater reliance on auditory feedback for unfamiliar words. [Work supported by NIDCD.

  6. Sensory gating revisited: relation between brain oscillations and auditory evoked potentials in schizophrenia.

    Science.gov (United States)

    Brockhaus-Dumke, Anke; Mueller, Ralf; Faigle, Ulrich; Klosterkoetter, Joachim

    2008-02-01

    Disturbances of auditory information processing have repeatedly been shown in schizophrenia. To contribute to a better understanding of the neurophysiological underpinnings of habituation in auditory processing and its disturbance in schizophrenia we used three different approaches to analyze auditory evoked responses, namely phase-locking (PL) analyses, single trial amplitudes, and averaged event-related potentials (P50 and N100). Given that brain oscillations reflect the neuronal correlates of information processing we hypothesized that PL and amplitudes reflect even more essential parts of auditory processing than the averaged ERP responses. In 32 schizophrenia patients and 32 matched controls EEG was continuously recorded using an auditory paired click paradigm. PL of the lower frequency bands (alpha and theta) was significantly reduced in patients whereas no significant differences were present in higher frequencies (gamma and beta). Alpha and theta PL and amplitudes showed a marked increase after the first click and to a minor degree after the second one. This habituation was more prominent in controls whereas in schizophrenia patients the response to both clicks differed only slightly. N100 suppression was significantly reduced in schizophrenia patients whereas no group differences were present with respect to the P50. This corresponded to the finding that gamma mostly contributed to the prediction of the P50 response and theta mostly to the N100 response. Our data showed that analyzing phase and amplitude in single trials provides more information on auditory information processing and reflects differences between schizophrenia patients and controls better than analyzing the averaged ERP responses.

  7. Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations

    Directory of Open Access Journals (Sweden)

    Gabriella Musacchia

    2017-08-01

    Full Text Available Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx, over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx or maturation alone (Naïve Control, NC. Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD elicited greater Theta-band (4–6 Hz activity in Right Auditory Cortex (RAC, as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV elicited larger responses in Left Auditory Cortex (LAC. PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33–37 Hz activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.

  8. Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss.

    Science.gov (United States)

    Wolak, Tomasz; Cieśla, Katarzyna; Lorens, Artur; Kochanek, Krzysztof; Lewandowska, Monika; Rusiniak, Mateusz; Pluta, Agnieszka; Wójcik, Joanna; Skarżyński, Henryk

    2017-11-01

    Although the tonotopic organisation of the human primary auditory cortex (PAC) has already been studied, the question how its responses are affected in sensorineural hearing loss remains open. Twenty six patients (aged 38.1 ± 9.1 years; 12 men) with symmetrical sloping sensorineural hearing loss (SNHL) and 32 age- and gender-matched controls (NH) participated in an fMRI study using a sparse protocol. The stimuli were binaural 8s complex tones with central frequencies of 400 HzCF, 800 HzCF, 1600 HzCF, 3200 HzCF, or 6400 HzCF, presented at 80 dB(C). In NH responses to all frequency ranges were found in bilateral auditory cortices. The outcomes of a winnermap approach, showing a relative arrangement of active frequency-specific areas, was in line with the existing literature and revealed a V-shape high-frequency gradient surrounding areas that responded to low frequencies in the auditory cortex. In SNHL frequency-specific auditory cortex responses were observed only for sounds from 400 HzCF to 1600 HzCF, due to the severe or profound hearing loss in higher frequency ranges. Using a stringent statistical threshold (p < 0.05; FWE) significant differences between NH and SNHL were only revealed for mid and high-frequency sounds. At a more lenient statistical threshold (p < 0.001, FDRc), however, the size of activation induced by 400 HzCF in PAC was found statistically larger in patients with a prelingual, as compared to a postlingual onset of hearing loss. In addition, this low-frequency range was more extensively represented in the auditory cortex when outcomes obtained in all patients were contrasted with those revealed in normal hearing individuals (although statistically significant only for the secondary auditory cortex). The outcomes of the study suggest preserved patterns of large-scale tonotopic organisation in SNHL which can be further refined following auditory experience, especially when the hearing loss occurs prelingually. SNHL can induce both

  9. The encoding of auditory objects in auditory cortex: insights from magnetoencephalography.

    Science.gov (United States)

    Simon, Jonathan Z

    2015-02-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [The influence of external factors on the auditory function in the students residing in a megapolis].

    Science.gov (United States)

    Levina, Iu V; Kudeeva, Ia Iu; Ibragimov, Sh I

    2013-01-01

    The objective of the present study was to estimate the auditory function in the students aged from 20 to 30 years and the noise load associated with the use of mobile phones, listening to music through headphones, attending concerts and youth clubs. The secondary objective was to assess the influence of these factors on the auditory function depending on their type, intensity, and duration. It is shown that the auditory threshold in the frequency range between 125 and 8000 Hz in 97% of the examined students do not exceed 25 dB varying from 5 to 15 dB The main factor influencing the auditory function is the use of players and headphones followed by mobile phones and deafening music in youth clubs.

  11. Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications

    Science.gov (United States)

    Vassilakis, Pantelis N.; Kendall, Roger A.

    2010-02-01

    The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.

  12. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway.

    Science.gov (United States)

    Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid

    2017-03-01

    Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Comparison of auditory deficits associated with neglect and auditory cortex lesions.

    Science.gov (United States)

    Gutschalk, Alexander; Brandt, Tobias; Bartsch, Andreas; Jansen, Claudia

    2012-04-01

    In contrast to lesions of the visual and somatosensory cortex, lesions of the auditory cortex are not associated with self-evident contralesional deficits. Only when two or more stimuli are presented simultaneously to the left and right, contralesional extinction has been observed after unilateral lesions of the auditory cortex. Because auditory extinction is also considered a sign of neglect, clinical separation of auditory neglect from deficits caused by lesions of the auditory cortex is challenging. Here, we directly compared a number of tests previously used for either auditory-cortex lesions or neglect in 29 controls and 27 patients suffering from unilateral auditory-cortex lesions, neglect, or both. The results showed that a dichotic-speech test revealed similar amounts of extinction for both auditory cortex lesions and neglect. Similar results were obtained for words lateralized by inter-aural time differences. Consistent extinction after auditory cortex lesions was also observed in a dichotic detection task. Neglect patients showed more general problems with target detection but no consistent extinction in the dichotic detection task. In contrast, auditory lateralization perception was biased toward the right in neglect but showed considerably less disruption by auditory cortex lesions. Lateralization of auditory-evoked magnetic fields in auditory cortex was highly correlated with extinction in the dichotic target-detection task. Moreover, activity in the right primary auditory cortex was somewhat reduced in neglect patients. The results confirm that auditory extinction is observed with lesions of the auditory cortex and auditory neglect. A distinction can nevertheless be made with dichotic target-detection tasks, auditory-lateralization perception, and magnetoencephalography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Spatial organization of tettigoniid auditory receptors: insights from neuronal tracing.

    Science.gov (United States)

    Strauß, Johannes; Lehmann, Gerlind U C; Lehmann, Arne W; Lakes-Harlan, Reinhard

    2012-11-01

    The auditory sense organ of Tettigoniidae (Insecta, Orthoptera) is located in the foreleg tibia and consists of scolopidial sensilla which form a row termed crista acustica. The crista acustica is associated with the tympana and the auditory trachea. This ear is a highly ordered, tonotopic sensory system. As the neuroanatomy of the crista acustica has been documented for several species, the most distal somata and dendrites of receptor neurons have occasionally been described as forming an alternating or double row. We investigate the spatial arrangement of receptor cell bodies and dendrites by retrograde tracing with cobalt chloride solution. In six tettigoniid species studied, distal receptor neurons are consistently arranged in double-rows of somata rather than a linear sequence. This arrangement of neurons is shown to affect 30-50% of the overall auditory receptors. No strict correlation of somata positions between the anterio-posterior and dorso-ventral axis was evident within the distal crista acustica. Dendrites of distal receptors occasionally also occur in a double row or are even massed without clear order. Thus, a substantial part of auditory receptors can deviate from a strictly straight organization into a more complex morphology. The linear organization of dendrites is not a morphological criterion that allows hearing organs to be distinguished from nonhearing sense organs serially homologous to ears in all species. Both the crowded arrangement of receptor somata and dendrites may result from functional constraints relating to frequency discrimination, or from developmental constraints of auditory morphogenesis in postembryonic development. Copyright © 2012 Wiley Periodicals, Inc.

  15. Cloning and expression of a novel zinc finger gene, Fez, transcribed in the forebrain of Xenopus and mouse embryos.

    Science.gov (United States)

    Matsuo-Takasaki, M; Lim, J H; Beanan, M J; Sato, S M; Sargent, T D

    2000-05-01

    We have identified and cloned a novel zinc finger gene, Fez (forebrain embryonic zinc-finger), as a potential downstream determinant of anterior neural plate formation in Xenopus. Fez was isolated as one of several neural-specific genes that was induced by the neuralizing factor, noggin (Smith and Harland, 1992. Cell 70, 829-840), in uncommitted ectoderm. Fez has an open reading frame comprising 466 amino acids, and contains six C(2)H(2) type zinc finger domains, which are highly conserved among Drosophila, zebrafish, mouse, and human. In Xenopus, the expression of Fez begins at stage 12 in the rostral end of the neural plate, and by stage 45, it is localized to several telencephalic regions, including the olfactory bulbs, nervus terminalis, and ventricular zone. The mouse homologue of Fez is similarly expressed in the mouse forebrain by embryonic day 11.

  16. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons.

    Science.gov (United States)

    Oettinghaus, B; Schulz, J M; Restelli, L M; Licci, M; Savoia, C; Schmidt, A; Schmitt, K; Grimm, A; Morè, L; Hench, J; Tolnay, M; Eckert, A; D'Adamo, P; Franken, P; Ishihara, N; Mihara, K; Bischofberger, J; Scorrano, L; Frank, S

    2016-01-01

    Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration.

  17. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  18. A novel hybrid auditory BCI paradigm combining ASSR and P300.

    Science.gov (United States)

    Kaongoen, Netiwit; Jo, Sungho

    2017-03-01

    Brain-computer interface (BCI) is a technology that provides an alternative way of communication by translating brain activities into digital commands. Due to the incapability of using the vision-dependent BCI for patients who have visual impairment, auditory stimuli have been used to substitute the conventional visual stimuli. This paper introduces a hybrid auditory BCI that utilizes and combines auditory steady state response (ASSR) and spatial-auditory P300 BCI to improve the performance for the auditory BCI system. The system works by simultaneously presenting auditory stimuli with different pitches and amplitude modulation (AM) frequencies to the user with beep sounds occurring randomly between all sound sources. Attention to different auditory stimuli yields different ASSR and beep sounds trigger the P300 response when they occur in the target channel, thus the system can utilize both features for classification. The proposed ASSR/P300-hybrid auditory BCI system achieves 85.33% accuracy with 9.11 bits/min information transfer rate (ITR) in binary classification problem. The proposed system outperformed the P300 BCI system (74.58% accuracy with 4.18 bits/min ITR) and the ASSR BCI system (66.68% accuracy with 2.01 bits/min ITR) in binary-class problem. The system is completely vision-independent. This work demonstrates that combining ASSR and P300 BCI into a hybrid system could result in a better performance and could help in the development of the future auditory BCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Auditory event files: integrating auditory perception and action planning.

    Science.gov (United States)

    Zmigrod, Sharon; Hommel, Bernhard

    2009-02-01

    The features of perceived objects are processed in distinct neural pathways, which call for mechanisms that integrate the distributed information into coherent representations (the binding problem). Recent studies of sequential effects have demonstrated feature binding not only in perception, but also across (visual) perception and action planning. We investigated whether comparable effects can be obtained in and across auditory perception and action. The results from two experiments revealed effects indicative of spontaneous integration of auditory features (pitch and loudness, pitch and location), as well as evidence for audio-manual stimulus-response integration. Even though integration takes place spontaneously, features related to task-relevant stimulus or response dimensions are more likely to be integrated. Moreover, integration seems to follow a temporal overlap principle, with features coded close in time being more likely to be bound together. Taken altogether, the findings are consistent with the idea of episodic event files integrating perception and action plans.

  20. Biomimetic Sonar for Electrical Activation of the Auditory Pathway

    Directory of Open Access Journals (Sweden)

    D. Menniti

    2017-01-01

    Full Text Available Relying on the mechanism of bat’s echolocation system, a bioinspired electronic device has been developed to investigate the cortical activity of mammals in response to auditory sensorial stimuli. By means of implanted electrodes, acoustical information about the external environment generated by a biomimetic system and converted in electrical signals was delivered to anatomically selected structures of the auditory pathway. Electrocorticographic recordings showed that cerebral activity response is highly dependent on the information carried out by ultrasounds and is frequency-locked with the signal repetition rate. Frequency analysis reveals that delta and beta rhythm content increases, suggesting that sensorial information is successfully transferred and integrated. In addition, principal component analysis highlights how all the stimuli generate patterns of neural activity which can be clearly classified. The results show that brain response is modulated by echo signal features suggesting that spatial information sent by biomimetic sonar is efficiently interpreted and encoded by the auditory system. Consequently, these results give new perspective in artificial environmental perception, which could be used for developing new techniques useful in treating pathological conditions or influencing our perception of the surroundings.

  1. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E; Olsen, Glenn H.; Therrien, Ronald E; Yannuzzi, Sally E; Ketten, Darlene R

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  2. Reversible induction of phantom auditory sensations through simulated unilateral hearing loss.

    Directory of Open Access Journals (Sweden)

    Roland Schaette

    Full Text Available Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from 30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug.

  3. Reversible Induction of Phantom Auditory Sensations through Simulated Unilateral Hearing Loss

    Science.gov (United States)

    Schaette, Roland; Turtle, Charlotte; Munro, Kevin J.

    2012-01-01

    Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from 30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug. PMID:22675466

  4. Processing of natural sounds: characterization of multipeak spectral tuning in human auditory cortex.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2013-07-17

    We examine the mechanisms by which the human auditory cortex processes the frequency content of natural sounds. Through mathematical modeling of ultra-high field (7 T) functional magnetic resonance imaging responses to natural sounds, we derive frequency-tuning curves of cortical neuronal populations. With a data-driven analysis, we divide the auditory cortex into five spatially distributed clusters, each characterized by a spectral tuning profile. Beyond neuronal populations with simple single-peaked spectral tuning (grouped into two clusters), we observe that ∼60% of auditory populations are sensitive to multiple frequency bands. Specifically, we observe sensitivity to multiple frequency bands (1) at exactly one octave distance from each other, (2) at multiple harmonically related frequency intervals, and (3) with no apparent relationship to each other. We propose that beyond the well known cortical tonotopic organization, multipeaked spectral tuning amplifies selected combinations of frequency bands. Such selective amplification might serve to detect behaviorally relevant and complex sound features, aid in segregating auditory scenes, and explain prominent perceptual phenomena such as octave invariance.

  5. A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach.

    Science.gov (United States)

    Jimenez-Fernandez, Angel; Cerezuela-Escudero, Elena; Miro-Amarante, Lourdes; Dominguez-Moralse, Manuel Jesus; de Asis Gomez-Rodriguez, Francisco; Linares-Barranco, Alejandro; Jimenez-Moreno, Gabriel

    2017-04-01

    This paper presents a new architecture, design flow, and field-programmable gate array (FPGA) implementation analysis of a neuromorphic binaural auditory sensor, designed completely in the spike domain. Unlike digital cochleae that decompose audio signals using classical digital signal processing techniques, the model presented in this paper processes information directly encoded as spikes using pulse frequency modulation and provides a set of frequency-decomposed audio information using an address-event representation interface. In this case, a systematic approach to design led to a generic process for building, tuning, and implementing audio frequency decomposers with different features, facilitating synthesis with custom features. This allows researchers to implement their own parameterized neuromorphic auditory systems in a low-cost FPGA in order to study the audio processing and learning activity that takes place in the brain. In this paper, we present a 64-channel binaural neuromorphic auditory system implemented in a Virtex-5 FPGA using a commercial development board. The system was excited with a diverse set of audio signals in order to analyze its response and characterize its features. The neuromorphic auditory system response times and frequencies are reported. The experimental results of the proposed system implementation with 64-channel stereo are: a frequency range between 9.6 Hz and 14.6 kHz (adjustable), a maximum output event rate of 2.19 Mevents/s, a power consumption of 29.7 mW, the slices requirements of 11141, and a system clock frequency of 27 MHz.

  6. Neonatal and adult forebrain norepinephrine depletion and the behavioral and cortical thickening effects of enriched/impoverished environment.

    Science.gov (United States)

    Murtha, S; Pappas, B A; Raman, S

    1990-08-20

    Two experiments examined the effects of neonatal or adult intracerebral injections of 6-hydroxydopamine (6-OHDA) on the effects of enriched (ENR) vs. impoverished (IMP) housing conditions. In Expt. 1, neonatal rats received intraventricular injections of 6-OHDA after pretreatment with buproprion to destroy norepinephrine (NE) terminals while lessening damage to dopamine (DA) terminals. The rats were subsequently raised in either enriched or impoverished environments and then tested for their spatial problem-solving ability in an automated Hebb-Williams maze. Littermates did not undergo this testing but were instead assessed for cortical thickness. Despite the substantial depletion of NE in the forebrains of the 6-OHDA-treated rats, they responded to enriched rearing as did the control rats, i.e., they solved the Hebb-Williams problems more efficiently than their impoverished reared counterparts and they showed thicker cortices. In Expt. 2, adult rats received 6-OHDA lesions of the dorsal noradrenergic bundle and were then relegated to enriched or impoverished housing for 42 days. Subsequently, the enriched-housed rats solved the Hebb-Williams mazes more efficiently than their impoverished-housed counterparts and this effect of housing was not altered by the dorsal bundle lesion which severely depleted forebrain NE. These two experiments do not support a role for forebrain NE in the alteration of the rat cortex and behavior by environmental enrichment. It was concluded that the cognitive effects of enriched rearing do not require intact forebrain NE but that they may be influenced by the peripheral sympathectomy that is one consequence of neonatal systemic 6-OHDA injections.

  7. Excitatory Hindbrain-Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss.

    Science.gov (United States)

    Alhadeff, Amber L; Holland, Ruby A; Zheng, Huiyuan; Rinaman, Linda; Grill, Harvey J; De Jonghe, Bart C

    2017-01-11

    Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain-forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data

  8. The auditory brainstem is a barometer of rapid auditory learning.

    Science.gov (United States)

    Skoe, E; Krizman, J; Spitzer, E; Kraus, N

    2013-07-23

    To capture patterns in the environment, neurons in the auditory brainstem rapidly alter their firing based on the statistical properties of the soundscape. How this neural sensitivity relates to behavior is unclear. We tackled this question by combining neural and behavioral measures of statistical learning, a general-purpose learning mechanism governing many complex behaviors including language acquisition. We recorded complex auditory brainstem responses (cABRs) while human adults implicitly learned to segment patterns embedded in an uninterrupted sound sequence based on their statistical characteristics. The brainstem's sensitivity to statistical structure was measured as the change in the cABR between a patterned and a pseudo-randomized sequence composed from the same set of sounds but differing in their sound-to-sound probabilities. Using this methodology, we provide the first demonstration that behavioral-indices of rapid learning relate to individual differences in brainstem physiology. We found that neural sensitivity to statistical structure manifested along a continuum, from adaptation to enhancement, where cABR enhancement (patterned>pseudo-random) tracked with greater rapid statistical learning than adaptation. Short- and long-term auditory experiences (days to years) are known to promote brainstem plasticity and here we provide a conceptual advance by showing that the brainstem is also integral to rapid learning occurring over minutes. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  11. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome.

    Science.gov (United States)

    Goodliffe, Joseph W; Olmos-Serrano, Jose Luis; Aziz, Nadine M; Pennings, Jeroen L A; Guedj, Faycal; Bianchi, Diana W; Haydar, Tarik F

    2016-03-09

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. Copyright © 2016 the authors 0270-6474/16/362926-19$15.00/0.

  12. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis

    Science.gov (United States)

    2011-01-01

    Background Postnatal olfactory bulb (OB) neurogenesis involves the generation of granule and periglomerular cells by neural stem cells (NSCs) located in the walls of the lateral ventricle (LV). Recent studies show that NSCs located in different regions of the LV give rise to different types of OB neurons. However, the molecular mechanisms governing neuronal specification remain largely unknown and new methods to approach these questions are needed. Results In this study, we refine electroporation of the postnatal forebrain as a technique to perform precise and accurate delivery of transgenes to NSCs located in distinct walls of the LV in the mouse. Using this method, we confirm and expand previous studies showing that NSCs in distinct walls of the LV produce neurons that invade different layers of the OB. Fate mapping of the progeny of radial glial cells located in these distinct LV walls reveals their specification into defined subtypes of granule and periglomerular neurons. Conclusions Our results provide a baseline with which future studies aiming at investigating the role of factors in postnatal forebrain neuronal specification can be compared. Targeted electroporation of defined LV NSC populations will prove valuable to study the genetic factors involved in forebrain neuronal specification. PMID:21466691

  13. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  14. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  15. Binaural processing in the synthesis of auditory spatial receptive fields.

    Science.gov (United States)

    Peña, José Luis

    2003-11-01

    The owl's auditory system computes interaural time (ITD) and interaural level (ILD) differences to create a two-dimensional map of auditory space. Space-specific neurons are selective for combinations of ITD and ILD, which define, respectively, the horizontal and vertical dimensions of their receptive fields. ITD curves for postsynaptic potentials indicate that ICx neurons integrate the results of binaural cross correlation in different frequency bands. However, the difference between the main and side peaks is slight. ICx neurons further enhance this difference in the process of converting membrane potentials to impulse rates. Comparison of subthreshold postsynaptic potentials (PSPs) and spike output for the same neurons showed that receptive fields measured in PSPs were much larger than those measured in spikes in both ITD and ILD dimensions. A multiplication of separate postsynaptic potentials tuned to ITD and ILD can account for the combination sensitivity of these neurons to ITD-ILD pairs.

  16. Evoked response audiometry used in testing auditory organs of miners

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, T.; Klepacki, J.; Wagstyl, R.

    1980-01-01

    The evoked response audiometry method of testing hearing loss is presented and the results of comparative studies using subjective tonal audiometry and evoked response audiometry in tests of 56 healthy men with good hearing are discussed. The men were divided into three groups according to age and place of work: work place without increased noise; work place with noise and vibrations (at drilling machines); work place with noise and shocks (work at excavators in surface coal mines). The ERA-MKII audiometer produced by the Medelec-Amplaid firm was used. Audiometric threshhold curves for the three groups of tested men are given. At frequencies of 500, 1000 and 4000 Hz mean objective auditory threshhold was shifted by 4-9.5 dB in comparison to the subjective auditory threshold. (21 refs.) (In Polish)

  17. Processing temporal modulations in binaural and monaural auditory stimuli by neurons in the inferior colliculus and auditory cortex.

    Science.gov (United States)

    Fitzpatrick, Douglas C; Roberts, Jason M; Kuwada, Shigeyuki; Kim, Duck O; Filipovic, Blagoje

    2009-12-01

    Processing dynamic changes in the stimulus stream is a major task for sensory systems. In the auditory system, an increase in the temporal integration window between the inferior colliculus (IC) and auditory cortex is well known for monaural signals such as amplitude modulation, but a similar increase with binaural signals has not been demonstrated. To examine the limits of binaural temporal processing at these brain levels, we used the binaural beat stimulus, which causes a fluctuating interaural phase difference, while recording from neurons in the unanesthetized rabbit. We found that the cutoff frequency for neural synchronization to the binaural beat frequency (BBF) decreased between the IC and auditory cortex, and that this decrease was associated with an increase in the group delay. These features indicate that there is an increased temporal integration window in the cortex compared to the IC, complementing that seen with monaural signals. Comparable measurements of responses to amplitude modulation showed that the monaural and binaural temporal integration windows at the cortical level were quantitatively as well as qualitatively similar, suggesting that intrinsic membrane properties and afferent synapses to the cortical neurons govern the dynamic processing. The upper limits of synchronization to the BBF and the band-pass tuning characteristics of cortical neurons are a close match to human psychophysics.

  18. Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve.

    Science.gov (United States)

    Chung, Yoojin; Delgutte, Bertrand; Colburn, H Steven

    2015-02-01

    Bilateral cochlear implants (CIs) provide improvements in sound localization and speech perception in noise over unilateral CIs. However, the benefits arise mainly from the perception of interaural level differences, while bilateral CI listeners' sensitivity to interaural time difference (ITD) is poorer than normal. To help understand this limitation, a set of ITD-sensitive neural models was developed to study binaural responses to electric stimulation. Our working hypothesis was that central auditory processing is normal with bilateral CIs so that the abnormality in the response to electric stimulation at the level of the auditory nerve fibers (ANFs) is the source of the limited ITD sensitivity. A descriptive model of ANF response to both acoustic and electric stimulation was implemented and used to drive a simplified biophysical model of neurons in the medial superior olive (MSO). The model's ITD sensitivity was found to depend strongly on the specific configurations of membrane and synaptic parameters for different stimulation rates. Specifically, stronger excitatory synaptic inputs and faster membrane responses were required for the model neurons to be ITD-sensitive at high stimulation rates, whereas weaker excitatory synaptic input and slower membrane responses were necessary at low stimulation rates, for both electric and acoustic stimulation. This finding raises the possibility of frequency-dependent differences in neural mechanisms of binaural processing; limitations in ITD sensitivity with bilateral CIs may be due to a mismatch between stimulation rate and cell parameters in ITD-sensitive neurons.

  19. A Detection-Theoretic Analysis of Auditory Streaming and Its Relation to Auditory Masking

    Directory of Open Access Journals (Sweden)

    An-Chieh Chang

    2016-09-01

    Full Text Available Research on hearing has long been challenged with understanding our exceptional ability to hear out individual sounds in a mixture (the so-called cocktail party problem. Two general approaches to the problem have been taken using sequences of tones as stimuli. The first has focused on our tendency to hear sequences, sufficiently separated in frequency, split into separate cohesive streams (auditory streaming. The second has focused on our ability to detect a change in one sequence, ignoring all others (auditory masking. The two phenomena are clearly related, but that relation has never been evaluated analytically. This article offers a detection-theoretic analysis of the relation between multitone streaming and masking that underscores the expected similarities and differences between these phenomena and the predicted outcome of experiments in each case. The key to establishing this relation is the function linking performance to the information divergence of the tone sequences, DKL (a measure of the statistical separation of their parameters. A strong prediction is that streaming and masking of tones will be a common function of DKL provided that the statistical properties of sequences are symmetric. Results of experiments are reported supporting this prediction.

  20. Auditory input shapes tonotopic differentiation of Kv1.1 expression in avian cochlear nucleus during late development.

    Science.gov (United States)

    Akter, Nargis; Adachi, Ryota; Kato, Akitoshi; Fukaya, Ryota; Kuba, Hiroshi

    2018-02-08

    Tonotopic differentiation is fundamental for signal processing in the auditory system. However, when and how this differentiation arises remains elusive. We addressed this issue using electrophysiology and immunohistochemistry in nucleus magnocellularis (NM) of chickens of both sexes, which is known to differ in the expression of Kv1.1 channels depending on characteristic frequency (CF). Just after hearing onset (embryonic day 12-14), Kv1 current gradually increased to a slightly larger extent in neurons with higher CF, causing a tonotopic difference of Kv1 current before hatch. However, after hatch, a much larger increase of Kv1 current occurred, particularly in higher-CF neurons, due to an augmentation of Kv1.1 expression at the plasma membrane. This later change in expression led to the large tonotopic difference of Kv1 current characteristic of mature animals. Attenuation of auditory input by inducing conductive or sensorineural hearing loss around hatch suppressed the differentiation in a level-dependent manner. Moreover, elevation of auditory input during embryonic periods could not reproduce the differentiation, suggesting that the capacity of neurons to drive Kv1.1 expression via auditory input develops in a cell-specific manner, thus underlying the frequency-specific expression of the channel within the nucleus. The results indicated that the tonotopic differentiation of Kv1.1 in NM is partially determined before hatch, but largely driven by afferent input after hatch. Our results highlight the importance of neuronal capacity for sound to drive ion channel expression as well as the level of auditory experience in the frequency tuning of brainstem auditory circuits. SIGNIFICANCE STATEMENT Tuning-frequency-specific expression of ion channels is a prerequisite for auditory system function, but its underlying mechanisms remain unclear. Here, we revealed in avian cochlear nucleus that the expression of Kv1.1 became more dependent on auditory input at a late

  1. Sparse time-frequency representations.

    Science.gov (United States)

    Gardner, Timothy J; Magnasco, Marcelo O

    2006-04-18

    Auditory neurons preserve exquisite temporal information about sound features, but we do not know how the brain uses this information to process the rapidly changing sounds of the natural world. Simple arguments for effective use of temporal information led us to consider the reassignment class of time-frequency representations as a model of auditory processing. Reassigned time-frequency representations can track isolated simple signals with accuracy unlimited by the time-frequency uncertainty principle, but lack of a general theory has hampered their application to complex sounds. We describe the reassigned representations for white noise and show that even spectrally dense signals produce sparse reassignments: the representation collapses onto a thin set of lines arranged in a froth-like pattern. Preserving phase information allows reconstruction of the original signal. We define a notion of "consensus," based on stability of reassignment to time-scale changes, which produces sharp spectral estimates for a wide class of complex mixed signals. As the only currently known class of time-frequency representations that is always "in focus" this methodology has general utility in signal analysis. It may also help explain the remarkable acuity of auditory perception. Many details of complex sounds that are virtually undetectable in standard sonograms are readily perceptible and visible in reassignment.

  2. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  3. Perception of Complex Auditory Patterns.

    Science.gov (United States)

    1987-11-02

    and Piercy, M. (1973). Defects of non - verbal auditory perception in children with developmental aphasia . Nature (London), 241, 468-469. Watson, C.S...LII, zS 4p ETV I Hearing and Communication Laboratory Department of Speech and Hearing Sciences 7 Indiana University Bloomington, Indiana 47405 Final...Technical Report Air Force Office of Scientific Research AFOSR-84-0337 September 1, 1984 to August 31, 1987 Hearing and Communication Laboratory

  4. Auditory and Non-Auditory Effects of Exposure to Low-Frequency Noise.

    Science.gov (United States)

    1981-09-15

    adaptation syndrome (Selye, 1976). Such increases are mediated primarily by the sympathetic nervous system through catecholamine secretion and by...measurements, and (4) freedom from observable vasovagal reactions to venipuncture. METHODS A group of 18 were exposed to 84 dBA of octave band noise centered

  5. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Directory of Open Access Journals (Sweden)

    Rongfeng Hu

    2016-10-01

    Full Text Available The basal forebrain cholinergic system (BFCS robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum (LS, central amygdala (CeA, paraventricular nucleus of hypothalamus (PVH, dorsal raphe (DRN and parabrachial nucleus (PBN. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal-hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function.

  6. Large-Scale Network Organisation in the Avian Forebrain: A Connectivity Matrix and Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Murray eShanahan

    2013-07-01

    Full Text Available Many species of birds, including pigeons, possess demonstrable cognitive capacities, and some are capable of cognitive feats matching those of apes. Since mammalian cortex is laminar while the avian telencephalon is nucleated, it is natural to ask whether the brains of these two cognitively capable taxa, despite their apparent anatomical dissimilarities, might exhibit common principles of organisation on some level. Complementing recent investigations of macro-scale brain connectivity in mammals, including humans and macaques, we here present the first large-scale wiring diagram for the forebrain of a bird. Using graph theory, we show that the pigeon telencephalon is organised along similar lines to that of a mammal. Both are modular, small-world networks with a connective core of hub nodes that includes prefrontal-like and hippocampal structures. These hub nodes are, topologically speaking, the most central regions of the pigeon's brain, as well as being the most richly connected, implying a crucial role in information flow. Overall, our analysis suggests that indeed, despite the absence of cortical layers and close to 300 million years of separate evolution, the connectivity of the avian brain conforms to the same organisational principles as the mammalian brain.

  7. Social change affects the survival of new neurons in the forebrain of adult songbirds.

    Science.gov (United States)

    Lipkind, D; Nottebohm, F; Rado, R; Barnea, A

    2002-06-15

    Many new neurons are added to the adult avian brain. Most of them die 3-5 weeks after they are born (Nature (Lond.) 335 (1988) 353; J. Comp. Neurol 411 (1999) 487). Those that survive replace, numerically, older ones that have died (Neuron 25 (2000) 481). It has been suggested that the new neurons enhance the brain's ability to acquire new long-term memories (review in Sci. Am. 260 (1989) 74). If so, perhaps an increase in social complexity affects the survival of new neurons in a social species. To test this hypothesis, we treated adult zebra finches (Taeniopygia guttata) with [3H]-thymidine immediately before introducing them into one of three different social environments that differed in complexity and killed them 40 days later. There was a significant difference between experimental groups in the number of [3H]-labeled neurons in neostriatum caudale (NC), high vocal center (HVC) and Area X, three forebrain regions that are involved in vocal communication. In these regions, birds placed in a large heterosexual group had more new neurons than birds kept singly or as male-female pairs. Regulation of new neuron survival by extent of circuit use may be a general mechanism for ensuring that neuronal replacement is closely attuned to environmental change.

  8. Propagated but Topologically Distributed Forebrain Neurons Expressing Alpha-Synuclein in Aged Macaques.

    Directory of Open Access Journals (Sweden)

    Katsuo Kimura

    Full Text Available In neurodegenerative disorders, such as Parkinson's disease (PD, alpha-synuclein (α-syn accumulates to induce cell death and/or form a cytoplasmic inclusion called Lewy body (LB. This α-syn-related pathology is termed synucleinopathy. It remains unclear how α-syn accumulation expands during the progress of synucleinopathy in the human brain. In our study, we investigated the patterns of distribution and propagation of forebrain neurons expressing α-syn in aged macaques. It was found that the occurrence of α-syn-positive neurons proceeded topologically based on the midbrain dopamine pathways arising from the substantia nigra and the ventral tegmental area where they were primarily observed. In the nigrostriatal or mesolimbic dopamine pathway, the age-dependent increase in α-syn-positive neurons was evident in the striatum or the nucleus accumbens, respectively. Concerning the nigrostriatal pathway, a mediolateral or rostrocaudal gradient was seen in the substantia nigra or the striatum, respectively, and a compensatory increase in dopamine transporter occurred in the striatum regardless of the decreased dopamine level. In the mesocortical dopamine pathway, α-syn-positive neurons appeared in the prefrontal and then motor areas of the frontal lobe. Given that neither LB formation nor clinical phenotype manifestation was detected in any of the monkeys examined in the present study, aged macaques may be useful as a potential presymptomatic model for PD and LB-related neuropsychiatric disorders.

  9. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.

    Science.gov (United States)

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-08-06

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.

  10. N-methyl-D-aspartate/phencyclidine receptor complex of rat forebrain: Purification and biochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ikin, A.F.; Kloog, Y.; Sokolovsky, M. (Tel Aviv Univ. (Israel))

    1990-03-06

    The N-methyl-D-aspartate NMDA/phencyclidine (PCP) receptor from rat forebrain was solubilized with sodium cholate and purified by affinity chromatography on amino-PCP-agarose. A 3,700-fold purification was achieved. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol revealed four major bands of M{sub r} 67,000, 57,000, 46,000, and 33,000. ({sup 3}H)Azido-PCP was irreversibly incorporated into each of these bands after UV irradiation. The dissociation constant (K{sub d}) of (1-(2-thienyl)cyclohexyl)piperidine (({sup 3}H)TCP) binding to the purified NMDA/PCP receptor was 120 nM. The maximum specific binding (B{sub max}) for ({sup 3}H)TCP binding was 3.3 nmol/mg of protein. The pharmacological profile of the purified receptor complex was similar to that of the membranal and soluble receptors. The binding of ({sup 3}H)TCP to the purified receptor was modulated by the NMDA receptor ligands glutamate, glycine, and NMDA.

  11. Olfactory tubercle stimulation alters odor preference behavior and recruits forebrain reward and motivational centers

    Directory of Open Access Journals (Sweden)

    Brynn J FitzGerald

    2014-03-01

    Full Text Available Rodents show robust behavioral responses to odors, including strong preferences or aversions for certain odors. The neural mechanisms underlying the effects of odors on these behaviors in animals are not well understood. Here, we provide an initial proof-of-concept study into the role of the olfactory tubercle (OT, a structure with known anatomical connectivity with both brain reward and olfactory structures, in regulating odor-motivated behaviors. We implanted c57bl/6 male mice with an ipsilateral bipolar electrode into the OT to administer electric current and thereby yield gross activation of the OT. We confirmed that electrical stimulation of the OT was rewarding, with mice frequently self-administering stimulation on a fixed ratio schedule. In a separate experiment, mice were presented with either fox urine or peanut odors in a three-chamber preference test. In absence of OT stimulation, significant preference for the peanut odor chamber was observed which was abolished in the presence of OT stimulation. Perhaps providing a foundation for this modulation in behavior, we found that OT stimulation significantly increased the number of c-Fos positive neurons in not only the OT, but also in forebrain structures essential to motivated behaviors, including the nucleus accumbens and lateral septum. The present results support the notion that the OT is integral to the display of motivated behavior and possesses the capacity to modulate odor hedonics either by directly altering odor processing or perhaps by indirect actions on brain reward and motivation structures.

  12. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Basal forebrain motivational salience signal enhances cortical processing and decision speed

    Directory of Open Access Journals (Sweden)

    Sylvina M Raver

    2015-10-01

    Full Text Available The basal forebrain (BF contains major projections to the cerebral cortex, and plays a well-documented role in arousal, attention, decision-making, and in modulating cortical activity. BF neuronal degeneration is an early event in Alzheimer’s disease and dementias, and occurs in normal cognitive aging. While the BF is best known for its population of cortically projecting cholinergic neurons, the region is anatomically and neurochemically diverse, and also contains prominent populations of non-cholinergic projection neurons. In recent years, increasing attention has been dedicated to these non-cholinergic BF neurons in order to better understand how non-cholinergic BF circuits control cortical processing and behavioral performance. In this review, we focus on a unique population of putative non-cholinergic BF neurons that encodes the motivational salience of stimuli with a robust ensemble bursting response. We review recent studies that describe the specific physiological and functional characteristics of these BF salience-encoding neurons in behaving animals. These studies support the unifying hypothesis whereby BF salience-encoding neurons act as a gain modulation mechanism of the decision-making process to enhance cortical processing of behaviorally relevant stimuli, and thereby facilitate faster and more precise behavioral responses. This function of BF salience-encoding neurons represents a critical component in determining which incoming stimuli warrant an animal’s attention, and is therefore a fundamental and early requirement of behavioral flexibility.

  14. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  15. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Science.gov (United States)

    Wu, Dongmei; Qiu, Yifu; Gao, Xiang; Yuan, Xiao-Bing; Zhai, Qiwei

    2011-01-01

    SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  16. NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain

    Directory of Open Access Journals (Sweden)

    Murray Kerren

    2011-02-01

    Full Text Available Abstract From an early postnatal period and throughout life there is a continuous production of olfactory bulb (OB interneurons originating from neuronal precursors in the subventricular zone. To reach the OB circuits, immature neuroblasts migrate along the rostral migratory stream (RMS. In the present study, we employed cultured postnatal mouse forebrain slices and used lentiviral vectors to label neuronal precursors with GFP and to manipulate the expression levels of the Na-K-2Cl cotransporter NKCC1. We investigated the role of this Cl- transporter in different stages of postnatal neurogenesis, including neuroblast migration and integration in the OB networks once they have reached the granule cell layer (GCL. We report that NKCC1 activity is necessary for maintaining normal migratory speed. Both pharmacological and genetic manipulations revealed that NKCC1 maintains high [Cl-]i and regulates the resting membrane potential of migratory neuroblasts whilst its functional expression is strongly reduced at the time cells reach the GCL. As in other developing systems, NKCC1 shapes GABAA-dependent signaling in the RMS neuroblasts. Also, we show that NKCC1 controls the migration of neuroblasts in the RMS. The present study indeed indicates that the latter effect results from a novel action of NKCC1 on the resting membrane potential, which is independent of GABAA-dependent signaling. All in all, our findings show that early stages of the postnatal recruitment of OB interneurons rely on precise, orchestrated mechanisms that depend on multiple actions of NKCC1.

  17. Auditory based neuropsychology in neurosurgery.

    Science.gov (United States)

    Wester, Knut

    2008-04-01

    In this article, an account is given on the author's experience with auditory based neuropsychology in a clinical, neurosurgical setting. The patients that were included in the studies are patients with traumatic or vascular brain lesions, patients undergoing brain surgery to alleviate symptoms of Parkinson's disease, or patients harbouring an intracranial arachnoid cyst affecting the temporal or the frontal lobe. The aims of these investigations were to collect information about the location of cognitive processes in the human brain, or to disclose dyscognition in patients with an arachnoid cyst. All the patients were tested with the DL technique. In addition, the cyst patients were subjected to a number of non-auditory, standard neuropsychological tests, such as Benton Visual Retention Test, Street Gestalt Test, Stroop Test and Trails Test A and B. The neuropsychological tests revealed that arachnoid cysts in general cause dyscognition that also includes auditory processes, and more importantly, that these cognition deficits normalise after surgical removal of the cyst. These observations constitute strong evidence in favour of surgical decompression.

  18. Auditory brainstem implant program development.

    Science.gov (United States)

    Schwartz, Marc S; Wilkinson, Eric P

    2017-08-01

    Auditory brainstem implants (ABIs), which have previously been used to restore auditory perception to deaf patients with neurofibromatosis type 2 (NF2), are now being utilized in other situations, including treatment of congenitally deaf children with cochlear malformations or cochlear nerve deficiencies. Concurrent with this expansion of indications, the number of centers placing and expressing interest in placing ABIs has proliferated. Because ABI placement involves posterior fossa craniotomy in order to access the site of implantation on the cochlear nucleus complex of the brainstem and is not without significant risk, we aim to highlight issues important in developing and maintaining successful ABI programs that would be in the best interests of patients. Especially with pediatric patients, the ultimate benefits of implantation will be known only after years of growth and development. These benefits have yet to be fully elucidated and continue to be an area of controversy. The limited number of publications in this area were reviewed. Review of the current literature was performed. Disease processes, risk/benefit analyses, degrees of evidence, and U.S. Food and Drug Administration approvals differ among various categories of patients in whom auditory brainstem implantation could be considered for use. We suggest sets of criteria necessary for the development of successful and sustaining ABI programs, including programs for NF2 patients, postlingually deafened adult nonneurofibromatosis type 2 patients, and congenitally deaf pediatric patients. Laryngoscope, 127:1909-1915, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Tcf7l2 plays crucial roles in forebrain development through regulation of thalamic and habenular neuron identity and connectivity.

    Science.gov (United States)

    Lee, Myungsin; Yoon, Jiyeon; Song, Hobeom; Lee, Bumwhee; Lam, Duc Tri; Yoon, Jaeseung; Baek, Kwanghee; Clevers, Hans; Jeong, Yongsu

    2017-04-01

    The thalamus acts as a central integrator for processing and relaying sensory and motor information to and from the cerebral cortex, and the habenula plays pivotal roles in emotive decision making by modulating dopaminergic and serotonergic circuits. These neural compartments are derived from a common developmental progenitor domain, called prosomere 2, in the caudal forebrain. Thalamic and habenular neurons exhibit distinct molecular profile, neurochemical identity, and axonal circuitry. However, the mechanisms of how their progenitors in prosomere 2 give rise to these two populations of neurons and contribute to the forebrain circuitry remains unclear. In this study, we discovered a previously unrecognized role for Tcf7l2, a transcription factor known as the canonical Wnt nuclear effector and diabetes risk-conferring gene, in establishing neuronal identity and circuits of the caudal forebrain. Using genetic and chemical axon tracers, we showed that efferent axons of the thalamus, known as the thalamocortical axons (TCAs), failed to elongate normally and strayed from their normal course to inappropriate locations in the absence of Tcf7l2. Further experiments with thalamic explants revealed that the pathfinding defects of Tcf7l2-deficient TCAs were associated at least in part with downregulation of guidance receptors Robo1 and Robo2 expression. Moreover, the fasciculus retroflexus, the main habenular output tract, was missing in embryos lacking Tcf7l2. These axonal defects may result from dysregulation of Nrp2 guidance receptor. Strikingly, loss of Tcf7l2 caused a post-mitotic identity switch between thalamic and habenular neurons. Despite normal acquisition of progenitor identity in prosomere 2, Tcf7l2-deficient thalamic neurons adopted a molecular profile of a neighboring forebrain derivative, the habenula. Conversely, habenular neurons failed to maintain their normal post-mitotic neuronal identity and acquired a subset of thalamic neuronal features in the

  20. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity.

    Science.gov (United States)

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Goto, Tetsu; Sanefuji, Wakako; Yamamoto, Tomoka; Sakai, Saeko; Uchida, Hiroyuki; Hirata, Masayuki; Mohri, Ikuko; Yorifuji, Shiro; Taniike, Masako

    2012-01-25

    The aim of this study was to investigate the differential responses of the primary auditory cortex to auditory stimuli in autistic spectrum disorder with or without auditory hypersensitivity. Auditory-evoked field values were obtained from 18 boys (nine with and nine without auditory hypersensitivity) with autistic spectrum disorder and 12 age-matched controls. Autistic disorder with hypersensitivity showed significantly more delayed M50/M100 peak latencies than autistic disorder without hypersensitivity or the control. M50 dipole moments in the hypersensitivity group were larger than those in the other two groups [corrected]. M50/M100 peak latencies were correlated with the severity of auditory hypersensitivity; furthermore, severe hypersensitivity induced more behavioral problems. This study indicates auditory hypersensitivity in autistic spectrum disorder as a characteristic response of the primary auditory cortex, possibly resulting from neurological immaturity or functional abnormalities in it. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  1. Development of glutamatergic synaptic transmission in binaural auditory neurons.

    Science.gov (United States)

    Sanchez, Jason Tait; Wang, Yuan; Rubel, Edwin W; Barria, Andres

    2010-09-01

    Glutamatergic synaptic transmission is essential for binaural auditory processing in birds and mammals. Using whole cell voltage clamp recordings, we characterized the development of synaptic ionotropic glutamate receptor (iGluR) function from auditory neurons in the chick nucleus laminaris (NL), the first nucleus responsible for binaural processing. We show that synaptic transmission is mediated by AMPA- and N-methyl-d-aspartate (NMDA)-type glutamate receptors (AMPA-R and NMDA-R, respectively) when hearing is first emerging and dendritic morphology is being established across different sound frequency regions. Puff application of glutamate agonists at embryonic day 9 (E9) revealed that both iGluRs are functionally present prior to synapse formation (E10). Between E11 and E19, the amplitude of isolated AMPA-R currents from high-frequency (HF) neurons increased 14-fold. A significant increase in the frequency of spontaneous events is also observed. Additionally, AMPA-R currents become faster and more rectifying, suggesting developmental changes in subunit composition. These developmental changes were similar in all tonotopic regions examined. However, mid- and low-frequency neurons exhibit fewer spontaneous events and evoked AMPA-R currents are smaller, slower, and less rectifying than currents from age-matched HF neurons. The amplitude of isolated NMDA-R currents from HF neurons also increased, reaching a peak at E17 and declining sharply by E19, a trend consistent across tonotopic regions. With age, NMDA-R kinetics become significantly faster, indicating a developmental switch in receptor subunit composition. Dramatic increases in the amplitude and speed of glutamatergic synaptic transmission occurs in NL during embryonic development. These changes are first seen in HF neurons suggesting regulation by peripheral inputs and may be necessary to enhance coincidence detection of binaural auditory information.

  2. Auditory neuropathy/Auditory dyssynchrony - An underdiagnosed condition: A case report with review of literature

    OpenAIRE

    Vinish Agarwal; Saurabh Varshney; Sampan Singh Bist; Sanjiv Bhagat; Sarita Mishra; Vivek Jha

    2012-01-01

    Auditory neuropathy (AN)/auditory dyssynchrony (AD) is a very often missed diagnosis, hence an underdiagnosed condition in clinical practice. Auditory neuropathy is a condition in which patients, on audiologic evaluation, are found to have normal outer hair cell function and abnormal neural function at the level of the eighth nerve. These patients, on clinical testing, are found to have normal otoacoustic emissions, whereas auditory brainstem response audiometry reveals the absence of neural ...

  3. Across-ear stimulus-specific adaptation in the auditory cortex

    Science.gov (United States)

    Xu, Xinxiu; Yu, Xiongjie; He, Jufang; Nelken, Israel

    2014-01-01

    The ability to detect unexpected or deviant events in natural scenes is critical for survival. In the auditory system, neurons from the midbrain to cortex adapt quickly to repeated stimuli but this adaptation does not fully generalize to other rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). Most studies of SSA were conducted with pure tones of different frequencies, and it is by now well-established that SSA to tone frequency is strong and robust in auditory cortex. Here we tested SSA in the auditory cortex to the ear of stimulation using broadband noise. We show that cortical neurons adapt specifically to the ear of stimulation, and that the contrast between the responses to stimulation of the same ear when rare and when common depends on the binaural interaction class of the neurons. PMID:25126058

  4. Across-ear stimulus-specific adaptation in the auditory cortex

    Directory of Open Access Journals (Sweden)

    Xinxiu eXu

    2014-07-01

    Full Text Available The ability to detect unexpected or deviant events in natural scenes is critical for survival. In the auditory system, neurons from the midbrain to cortex adapt quickly to repeated stimuli but this adaptation does not fully generalize to other, rare stimuli, a phenomenon called stimulus-specific adaptation (SSA. Most studies of SSA were conducted with pure tones of different frequencies, and it is by now well-established that SSA to tone frequency is strong and robust in auditory cortex. Here we tested SSA in the auditory cortex to the ear of stimulation using broadband noise. We show that cortical neurons adapt specifically to the ear of stimulation, and that the contrast between the responses to stimulation of the same ear when rare and when common depends on the binaural interaction class of the neurons.

  5. Estimating individual listeners’ auditory-filter bandwidth in simultaneous and non-simultaneous masking

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Caminade, Sabine; Strelcyk, Olaf

    2010-01-01

    and assuming a rounded-exponential filter shape. If a forward masking paradigm is used instead of simultaneous masking, filter estimates typically show significantly sharper tuning. This difference in frequency selectivity has commonly been related to spectral suppression mechanisms observed in the cochlea......Frequency selectivity in the human auditory system is often measured using simultaneous masking of tones presented in notched noise. Based on such masking data, the equivalent rectangular bandwidth (ERB) of the auditory filters can be derived by applying the power spectrum model of masking...... the reliability of the individual estimates, a statistical resampling method is applied. It is demonstrated that a rather large set of experimental data is required to reliably estimate auditory filter bandwidth, particularly in the case of simultaneous masking. The poor overall reliability of the filter...

  6. The Identification and Remediation of Auditory Problems

    Science.gov (United States)

    Kottler, Sylvia B.

    1972-01-01

    Procedures and sample activities are provided for both identifying and training children with auditory perception problems related to sound localization, sound discrimination, and sound sequencing. (KW)

  7. Human Factors Military Lexicon: Auditory Displays

    National Research Council Canada - National Science Library

    Letowski, Tomasz

    2001-01-01

    .... In addition to definitions specific to auditory displays, speech communication, and audio technology, the lexicon includes several terms unique to military operational environments and human factors...

  8. Developing Auditory Measures of General Speediness

    Directory of Open Access Journals (Sweden)

    Ian T. Zajac

    2011-10-01

    Full Text Available This study examined whether the broad ability general speediness (Gs could be measured via the auditory modality. Existing and purpose-developed auditory tasks that maintained the cognitive requirements of established visually presented Gs markers were completed by 96 university undergraduates. Exploratory and confirmatory factor analyses showed that the auditory tasks combined with established visual measures to define latent Gs and reaction time factors. These findings provide preliminary evidence that suggests that if auditory tasks are developed that maintain the same cognitive requirements as existing visual measures, then they are likely to index similar cognitive processes.

  9. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  11. Auditory Processing Disorders (APD): a distinct clinical disorder or not?

    NARCIS (Netherlands)

    Ellen de Wit

    2015-01-01

    Presentatie CPLOL congres Florence In this systematic review, six electronic databases were searched for peer-reviewed studies using the key words auditory processing, auditory diseases, central [Mesh], and auditory perceptual. Two reviewers independently assessed relevant studies by inclusion

  12. Computational Auditory Scene Analysis Based Perceptual and Neural Principles

    National Research Council Canada - National Science Library

    Wang, DeLiang

    2004-01-01

    .... This fundamental process of auditory perception is called auditory scene analysis. of particular importance in auditory scene analysis is the separation of speech from interfering sounds, or speech segregation...

  13. Neurological associations in auditory neuropathy spectrum disorder: Results from a tertiary hospital in South India

    Directory of Open Access Journals (Sweden)

    Anjali Lepcha

    2015-01-01

    Full Text Available Aims: To find out the prevalence and types of neurological abnormalities associated in auditory neuropathy spectrum disorder in a large tertiary referral center. Settings and Design: A prospective clinical study was conducted on all patients diagnosed with auditory neuropathy spectrum disorder in the ear, nose, and throat (ENT and neurology departments during a 17-month period. Patients with neurological abnormalities on history and examination were further assessed by a neurologist to determine the type of disorder present. Results: The frequency of auditory neuropathy spectrum disorder was 1.12%. Sixty percent were found to have neurological involvement. This included cerebral palsy in children, peripheral neuropathy (PN, spinocerebellar ataxia, hereditary motor-sensory neuropathy, spastic paresis, and ponto-bulbar palsy. Neurological lesions did not present simultaneously with hearing loss in most patients. Sixty-six percent of patients with auditory neuropathy spectrum disorder were born of consanguineous marriages. Conclusions: There is a high prevalence of neurological lesions in auditory neuropathy spectrum disorder which has to be kept in mind while evaluating such patients. Follow-up and counselling regarding the appearance of neuropathies is therefore important in such patients. A hereditary etiology is indicated in a majority of cases of auditory neuropathy spectrum disorder.

  14. The Experience of Patients with Schizophrenia Treated with Repetitive Transcranial Magnetic Stimulation for Auditory Hallucinations

    Directory of Open Access Journals (Sweden)

    Priya Subramanian

    2013-01-01

    Full Text Available Introduction. Auditory hallucinations are a common symptom experience of individuals with psychotic disorders and are often experienced as persistent, distressing, and disruptive. This case series examined the lived experiences of four individuals treated (successfully or unsuccessfully with low-frequency (1 Hz rTMS for auditory hallucinations. Methods. A phenomenological approach was used and modified to involve some predetermined data structuring to accommodate for expected cognitive impairments of participants and the impact of rTMS on auditory hallucinations. Data on thoughts and feelings in relation to the helpful, unhelpful, and other effects of rTMS on auditory hallucinations, on well-being, functioning, and the immediate environment were collected using semistructured interviews. Results. All four participants noted some improvements in their well-being following treatment and none reported a worsening of their symptoms. Only two participants noted an improvement in the auditory hallucinations and only one of them reported an improvement that was sustained after treatment completion. Conclusion. We suggest that there are useful findings in the study worth further exploration, specifically in relation to the role of an individual’s acceptance and ownership of the illness process in relation to this biomedical intervention. More mixed methods research is required to examine rTMS for auditory hallucinations.

  15. Applicability of the Rey auditory-verbal learning test to an adult sample in Brazil.

    Science.gov (United States)

    Salgado, João Vinícius; Malloy-Diniz, Leandro Fernandes; Abrantes, Suzana Silva Costa; Moreira, Lafaiete; Schlottfeldt, Carlos Guilherme; Guimarães, Wanderlane; Freitas, Djeane Marcely Ugoline; Oliveira, Juliana; Fuentes, Daniel

    2011-09-01

    The Rey Auditory-Verbal Learning Test, which is used to evaluate learning and memory, is a widely recognized tool in the general literature on neuropsychology. This paper aims at presenting the performance of Brazilian adult subjects on the Rey Auditory-Verbal Learning Test, and was written after we published a previous study on the performance of Brazilian elderly subjects on this same test. A version of the test, featuring a list of high-frequency one-syllable and two-syllable concrete Portuguese substantives, was developed. Two hundred and forty-three (243) subjects from both genders were allocated to 6 different age groups (20-24; 25-29; 30-34; 35-44; 45-54 and 55-60 years old). They were then tested using the Rey Auditory-Verbal Learning Test. Performance on the Rey Auditory-Verbal Learning Test showed a positive correlation with educational level and a negative correlation with age. Women performed significantly better than men. When applied across similar age ranges, our results were similar to those recorded for the English version of the Rey Auditory-Verbal Learning Test. Our results suggest that the adaptation of the Rey Auditory-Verbal Learning Test to Brazilian Portuguese is appropriate and that it is applicable to Brazilian subjects for memory capacity evaluation purposes and across similar age groups and educational levels.

  16. Auditory hallucinations in schizophrenic and affective disorder Nigerian patients: phenomenological comparison.

    Science.gov (United States)

    Okulate, G T; Jones, O B E

    2003-12-01

    Although auditory hallucinations are universal phenomena, they show cultural and ethnic variation. We set out to study some differences between auditory hallucinations in Nigerian patients and their foreign counterparts. We also investigated the usefulness of auditory hallucinations in distinguishing between schizophrenia and affective disorders. A semi-structured interview was used to obtain information from 89 patients with auditory hallucinations who met ICD-10 criteria for either schizophrenia or affective psychoses and 10 others with organic mental disorders. Responses were compared with respect to the frequency, form and content of the hallucinatory voices as well as the languages spoken. In this sample, voices speaking exclusively in a foreign language were uncommon. Voices commanding and those discussing patients in the third person were the commonest in schizophrenic patients but not as frequent as in a similar group of patients in the UK studied by other authors. In patients with schizophrenia, voices were more likely to discuss the patient, whereas in affective disorders, voices were more likely to evoke fear, and patients were more likely to carry out commands. In conclusion, only three features of auditory hallucinations distinguished between schizophrenic and affective psychoses patients. Auditory hallucinations may be less harassing in Nigerian schizophrenic patients than in their UK counterparts. These hallucinations are most often perceived in the individual's mother tongue, with or without additional use of English, even when the patients have been 'westernized' through education and religion.

  17. Perineuronal nets in subcortical auditory nuclei of four rodent species with differing hearing ranges.

    Science.gov (United States)

    Beebe, Nichole L; Schofield, Brett R

    2017-12-26

    Perineuronal nets (PNs) are aggregates of extracellular matrix molecules that surround some neurons in the brain. While PNs occur widely across many cortical areas, subcortical PNs are especially associated with motor and auditory systems. The auditory system has recently been suggested as an ideal model system for studying PNs and their functions. However, descriptions of PNs in subcortical auditory areas vary, and it is unclear whether the variation reflects species differences or differences in staining techniques. Here, we used two staining techniques (one lectin stain and one antibody stain) to examine PN distribution in the subcortical auditory system of four different species: guinea pigs (Cavia porcellus), mice (Mus musculus, CBA/CaJ strain), Long-Evans rats (Rattus norvegicus), and naked mole-rats (Heterocephalus glaber). We found that some auditory nuclei exhibit dramatic differences in PN distribution among species while other nuclei have consistent PN distributions. We also found that PNs exhibit molecular heterogeneity, and can stain with either marker individually or with both. PNs within a given nucleus can be heterogeneous or homogenous in their staining patterns. We compared PN staining across the frequency axes of tonotopically organized nuclei and among species with different hearing ranges. PNs were distributed non-uniformly across some nuclei, but only rarely did this appear related to the tonotopic axis. PNs were prominent in all four species; we found no systematic relationship between the hearing range and the number, staining patterns or distribution of PNs in the auditory nuclei. © 2017 Wiley Periodicals, Inc.

  18. Analysis of spatiotemporal pattern correction using a computational model of the auditory periphery.

    Science.gov (United States)

    Zeyl, Timothy J; Bruce, Ian C

    2014-01-01

    The purpose of this study was to determine the cause of poor experimental performance of a spatiotemporal pattern correction (SPC) scheme that has been proposed as a hearing aid algorithm and to determine contexts in which it may provide benefit. The SPC scheme is intended to compensate for altered phase response and group delay differences in the auditory nerve spiking patterns in impaired ears. Based on theoretical models of loudness and the hypothesized importance of temporal fine structure for intelligibility, the compensations of the SPC scheme are expected to provide benefit; however, preliminary experiments revealed that listeners preferred unprocessed or minimally processed speech as opposed to complete SPC processed speech. An improved version of the SPC scheme was evaluated with a computational auditory model in response to a synthesized vowel at multiple SPLs. The impaired model auditory nerve response to SPC-aided stimuli was compared to the unaided stimuli for spectrotemporal response similarity to the healthy auditory model. This comparison included analysis of synchronized rate across auditory nerve characteristic frequencies and a measure of relative phase response of auditory nerve fibers to complex stimuli derived from cross-correlations. Analysis indicates that SPC can improve a metric of relative phase response at low SPLs, but may do so at the cost of decreased spectrotemporal response similarity to the healthy auditory model and degraded synchrony to vowel formants. In-depth analysis identifies several technical and conceptual problems associated with SPC that need to be addressed. These include the following: (1) a nonflat frequency response through the analysis-synthesis filterbank that results from time-varying changes in the relative temporal alignment of filterbank channels, (2) group delay corrections that are based on incorrect frequencies because of spread of synchrony in auditory nerve responses, and (3) frequency modulations in the

  19. The acute effects of alcohol on auditory thresholds.

    Science.gov (United States)

    Upile, Tahwinder; Sipaul, Fabian; Jerjes, Waseem; Singh, Sandeep; Nouraei, Seyed Ahmad Reza; El Maaytah, Mohammed; Andrews, Peter; Graham, John; Hopper, Colin; Wright, Anthony

    2007-09-18

    There is very little knowledge about alcohol-induced hearing loss. Alcohol consumption and tolerance to loud noise is a well observed phenomenon as seen in the Western world where parties get noisier by the hour as the evening matures. This leads to increase in the referrals to the "hearing aid clinic" and the diagnosis of "cocktail party deafness" which may not necessarily be only due to presbyacusis or noise-induced hearing loss. 30 healthy volunteers were recruited for this trial which took place in a controlled acoustic environment. Each of the individuals was required to consume a pre-set amount of alcohol and the hearing was tested (using full pure tone audiogram) pre- and post- alcohol consumption over a broad range of 6 frequencies. Volunteers who achieve a minimum breath alcohol threshold level of 30 u/l had to have second audiogram testing. All the volunteers underwent timed psychometric and visuo-spatial skills tests to detect the effect of alcohol on the decision-making and psychomotor co-ordination. Our results showed that there was a positive association between increasing breath alcohol concentration and the magnitude of the increase in hearing threshold for most hearing frequencies. This was calculated by using the Pearson Regression Coefficient Ratio which was up to 0.6 for hearing at 1000 Hz. Over 90% of subjects had raised auditory thresholds in three or more frequencies; this was more marked in the lower frequencies. Alcohol specifically blunts lower frequencies affecting the mostly 1000 Hz, which is the most crucial frequency for speech discrimination. In conclusion alcohol does appear to affect auditory thresholds with some frequencies being more affected than others.

  20. The acute effects of alcohol on auditory thresholds

    Directory of Open Access Journals (Sweden)

    El Maaytah Mohammed

    2007-09-01

    Full Text Available Abstract Background There is very little knowledge about alcohol-induced hearing loss. Alcohol consumption and tolerance to loud noise is a well observed phenomenon as seen in the Western world where parties get noisier by the hour as the evening matures. This leads to increase in the referrals to the "hearing aid clinic" and the diagnosis of "cocktail party deafness" which may not necessarily be only due to presbyacusis or noise-induced hearing loss. Methods 30 healthy volunteers were recruited for this trial which took place in a controlled acoustic environment. Each of the individuals was required to consume a pre-set amount of alcohol and the hearing was tested (using full pure tone audiogram pre- and post- alcohol consumption over a broad range of 6 frequencies. Volunteers who achieve a minimum breath alcohol threshold level of 30 u/l had to have second audiogram testing. All the volunteers underwent timed psychometric and visuo-spatial skills tests to detect the effect of alcohol on the decision-making and psychomotor co-ordination. Results Our results showed that there was a positive association between increasing breath alcohol concentration and the magnitude of the increase in hearing threshold for most hearing frequencies. This was calculated by using the Pearson Regression Coefficient Ratio which was up to 0.6 for hearing at 1000 Hz. Over 90% of subjects had raised auditory thresholds in three or more frequencies; this was more marked in the lower frequencies. Conclusion Alcohol specifically blunts lower frequencies affecting the mostly 1000 Hz, which is the most crucial frequency for speech discrimination. In conclusion alcohol does appear to affect auditory thresholds with some frequencies being more affected than others.

  1. Auditory Neural Prostheses – A Window to the Future

    Directory of Open Access Journals (Sweden)

    Mohan Kameshwaran

    2015-06-01

    Full Text Available Hearing loss is one of the commonest congenital anomalies to affect children world-over. The incidence of congenital hearing loss is more pronounced in developing countries like the Indian sub-continent, especially with the problems of consanguinity. Hearing loss is a double tragedy, as it leads to not only deafness but also language deprivation. However, hearing loss is the only truly remediable handicap, due to remarkable advances in biomedical engineering and surgical techniques. Auditory neural prostheses help to augment or restore hearing by integration of an external circuitry with the peripheral hearing apparatus and the central circuitry of the brain. A cochlear implant (CI is a surgically implantable device that helps restore hearing in patients with severe-profound hearing loss, unresponsive to amplification by conventional hearing aids. CIs are electronic devices designed to detect mechanical sound energy and convert it into electrical signals that can be delivered to the coch­lear nerve, bypassing the damaged hair cells of the coch­lea. The only true prerequisite is an intact auditory nerve. The emphasis is on implantation as early as possible to maximize speech understanding and perception. Bilateral CI has significant benefits which include improved speech perception in noisy environments and improved sound localization. Presently, the indications for CI have widened and these expanded indications for implantation are related to age, additional handicaps, residual hearing, and special etiologies of deafness. Combined electric and acoustic stimulation (EAS / hybrid device is designed for individuals with binaural low-frequency hearing and severe-to-profound high-frequency hearing loss. Auditory brainstem implantation (ABI is a safe and effective means of hearing rehabilitation in patients with retrocochlear disorders, such as neurofibromatosis type 2 (NF2 or congenital cochlear nerve aplasia, wherein the cochlear nerve is damaged

  2. Feedback that confirms reward expectation triggers auditory cortex activity.

    Science.gov (United States)

    Weis, Tina; Brechmann, André; Puschmann, Sebastian; Thiel, Christiane M

    2013-10-01

    Associative learning studies have shown that the anticipation of reward and punishment shapes the representation of sensory stimuli, which is further modulated by dopamine. Less is known about whether and how reward delivery activates sensory cortices and the role of dopamine at that time point of learning. We used an appetitive instrumental learning task in which participants had to learn that a specific class of frequency-modulated tones predicted a monetary reward following fast and correct responses in a succeeding reaction time task. These fMRI data were previously analyzed regarding the effect of reward anticipation, but here we focused on neural activity to the reward outcome relative to the reward expectation and tested whether such activation in the reward reception phase is modulated by L-DOPA. We analyzed neural responses at the time point of reward outcome under three different conditions: 1) when a reward was expected and received, 2) when a reward was expected but not received, and 3) when a reward was not expected and not received. Neural activity in auditory cortex was enhanced during feedback delivery either when an expected reward was received or when the expectation of obtaining no reward was correct. This differential neural activity in auditory cortex was only seen in subjects who learned the reward association and not under dopaminergic modulation. Our data provide evidence that auditory cortices are active at the time point of reward outcome. However, responses are not dependent on the reward itself but on whether the outcome confirmed the subject's expectations.

  3. Temporal Integration of Auditory Stimulation and Binocular Disparity Signals

    Directory of Open Access Journals (Sweden)

    Marina Zannoli

    2011-10-01

    Full Text Available Several studies using visual objects defined by luminance have reported that the auditory event must be presented 30 to 40 ms after the visual stimulus to perceive audiovisual synchrony. In the present study, we used visual objects defined only by their binocular disparity. We measured the optimal latency between visual and auditory stimuli for the perception of synchrony using a method introduced by Moutoussis & Zeki (1997. Visual stimuli were defined either by luminance and disparity or by disparity only. They moved either back and forth between 6 and 12 arcmin or from left to right at a constant disparity of 9 arcmin. This visual modulation was presented together with an amplitude-modulated 500 Hz tone. Both modulations were sinusoidal (frequency: 0.7 Hz. We found no difference between 2D and 3D motion for luminance stimuli: a 40 ms auditory lag was necessary for perceived synchrony. Surprisingly, even though stereopsis is often thought to be slow, we found a similar optimal latency in the disparity 3D motion condition (55 ms. However, when participants had to judge simultaneity for disparity 2D motion stimuli, it led to larger latencies (170 ms, suggesting that stereo motion detectors are poorly suited to track 2D motion.

  4. Modulation of effective connectivity during vocalization with perturbed auditory feedback

    Science.gov (United States)

    Parkinson, Amy L.; Korzyukov, Oleg; Larson, Charles R.; Litvak, Vladimir; Robin, Donald A.

    2013-01-01

    The integration of auditory feedback with vocal motor output is important for the control of voice fundamental frequency (F0). We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. We presented varying magnitudes of pitch shifted auditory feedback to subjects during vocalization and passive listening and measured event related potentials (ERP’s) to the feedback shifts. Shifts were delivered at +100 and +400 cents (200 ms duration). The ERP data were modeled with Dynamic Causal Modeling (DCM) techniques where the effective connectivity between the superior temporal gyrus (STG), inferior frontal gyrus and premotor areas were tested. We compared three main factors; the effect of intrinsic STG connectivity, STG modulation across hemispheres and the specific effect of hemisphere. A Bayesian model selection procedure was used to make inference about model families. Results suggest that both intrinsic STG and left to right STG connections are important in the identification of self-voice error and sensory motor integration. We identified differences in left to right STG connections between 100 cent and 400 cent shift conditions suggesting that self and non-self voice error are processed differently in the left and right hemisphere. These results also highlight the potential of DCM modeling of ERP responses to characterize specific network properties of forward models of voice control. PMID:23665378

  5. Auditory changes in mobile users: is evidence forthcoming?

    Science.gov (United States)

    Panda, Naresh K; Modi, Rahul; Munjal, Sanjay; Virk, Ramandeep S

    2011-04-01

    Genuine concerns are being raised as to the potential health risks posed by electromagnetic frequency exposure secondary to mobile phone usage. This study was undertaken to assess and compare potential changes in hearing function at the level of the inner ear and central auditory pathway due to chronic exposure to electromagnetic waves from both global system for mobile communications (GSM) and code division multiple access (CDMA) mobile phone usage. Cohort study. Tertiary referral center. One hundred twenty-five subjects who were long-term mobile phone users (more than 1 year; 63 GSM and 62 CDMA) and 58 controls who had never used mobile phones underwent audiological investigations including pure tone audiometry (250-12 kHz), tympanometry, distortion product otoacoustic emissions (DPOAE), auditory brain responses (ABR), and middle latency responses (MLRs). The changes in various parameters were studied in mobile-using and non-mobile-using ears of both GSM and CDMA subjects and corresponding ears of the controls to ascertain the effects of electromagnetic exposure. GSM and CDMA users were found to be at a significantly higher risk of having DPOAE absent as compared with controls (P mobile phone usage emerged as a risk factor (P CDMA. Long-term and intensive GSM and CDMA mobile phone use may cause damage to cochlea as well as the auditory cortex.

  6. Neural responses to complex auditory rhythms: the role of attending

    Directory of Open Access Journals (Sweden)

    Heather L Chapin

    2010-12-01

    Full Text Available The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus.

  7. Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex.

    Science.gov (United States)

    Basta, Dietmar; Tzschentke, Barbara; Ernst, Arne

    Noise-induced effects within the inner ear have been well investigated for several years. However, this peripheral damage cannot fully explain the audiological symptoms in noise-induced hearing loss (NIHL), e.g. tinnitus, recruitment, reduced speech intelligibility, hyperacusis. There are few reports on central noise effects. Noise can induce an apoptosis of neuronal tissue within the lower auditory pathway. Higher auditory structures (e.g. medial geniculate body, auditory cortex) are characterized by metabolic changes after noise exposure. However, little is known about the microstructural changes of the higher auditory pathway after noise exposure. The present paper was therefore aimed at investigating the cell density in the medial geniculate body (MGB) and the primary auditory cortex (AI) after noise exposure. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun, 10:1). After 1 week, auditory brainstem response recordings (ABR) were performed in noise exposed and normal hearing animals. After fixation, the brain was microdissected and stained (Kluever-Barrera). The cell density in the MGB subdivisions and the AI were determined by counting the cells within a grid. Noise-exposed animals showed a significant ABR threshold shift over the whole frequency range. Cell density was significantly reduced in all subdivisions of the MGB and in layers IV-VI of AI. The present findings demonstrate a significant noise-induced change of the neuronal cytoarchitecture in central key areas of auditory processing. These changes could contribute to the complex psychoacoustic symptoms after NIHL.

  8. A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm.

    Science.gov (United States)

    Hu, Diane; Marcucio, Ralph S

    2009-01-01

    Interactions among the forebrain, neural crest and facial ectoderm regulate development of the upper jaw. To examine these interactions, we activated the Sonic hedgehog (SHH) pathway in the brain. Beginning 72 hours after activation of the SHH pathway, growth within the avian frontonasal process (FNP) was exaggerated in lateral regions and impaired in medial regions. This growth pattern is similar to that in mice and superimposed a mammalian-like morphology on the upper jaw. Jaw growth is controlled by signals from the frontonasal ectodermal zone (FEZ), and the divergent morphologies that characterize birds and mammals are accompanied by changes in the FEZ. In chicks there is a single FEZ spanning the FNP, but in mice both median nasal processes have a FEZ. In treated chicks, the FEZ was split into right and left domains that resembled the pattern present in mice. Additionally, we observed that, in the brain, fibroblast growth factor 8 (Fgf8) was downregulated, and signals in or near the nasal pit were altered. Raldh2 expression was expanded, whereas Fgf8, Wnt4, Wnt6 and Zfhx1b were downregulated. However, Wnt9b, and activation of the canonical WNT pathway, were unaltered in treated embryos. At later time points the upper beak was shortened owing to hypoplasia of the skeleton, and this phenotype was reproduced when we blocked the FGF pathway. Thus, the brain establishes multiple signaling centers within the developing upper jaw. Changes in organization of the brain that occur during evolution or as a result of disease can alter these centers and thereby generate morphological variation.

  9. Reduced Cholinergic Basal Forebrain Integrity Links Neonatal Complications and Adult Cognitive Deficits After Premature Birth.

    Science.gov (United States)

    Grothe, Michel J; Scheef, Lukas; Bäuml, Josef; Meng, Chun; Daamen, Marcel; Baumann, Nicole; Zimmer, Claus; Teipel, Stefan; Bartmann, Peter; Boecker, Henning; Wolke, Dieter; Wohlschläger, Afra; Sorg, Christian

    2017-07-15

    Prematurely born individuals have an increased risk for long-term neurocognitive impairments. In animal models, development of the cholinergic basal forebrain (cBF) is selectively vulnerable to adverse effects of perinatal stressors, and impaired cBF integrity results in lasting cognitive deficits. We hypothesized that cBF integrity is impaired in prematurely born individuals and mediates adult cognitive impairments associated with prematurity. We used magnetic resonance imaging-based volumetric assessments of a cytoarchitectonically defined cBF region of interest to determine differences in cBF integrity between 99 adults who were born very preterm and/or with very low birth weight and 106 term-born control subjects from the same birth cohort. Magnetic resonance imaging-derived cBF volumes were studied in relation to neonatal clinical complications after delivery and intelligence measures (IQ) in adulthood. In adults who were born very preterm and/or with very low birth weight, cBF volumes were significantly reduced compared with term-born adults (-4.5% [F1,202 = 11.82, p = .001]). Lower cBF volume in adults who were born very preterm and/or with very low birth weight was specifically associated with both neonatal complications (rpart,92 = -.35, p premature birth and links neonatal complications with long-term cognitive outcome. Data suggest that cholinergic system abnormalities may play a relevant role for long-term neurocognitive impairments associated with premature delivery. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Cell Proliferation in the Forebrain and Midbrain of the Adult Bullfrog, Rana catesbeiana

    Science.gov (United States)

    Simmons, Andrea Megela; Horowitz, Seth S.; Brown, Rebecca A.

    2012-01-01

    The distribution of proliferating cells in the midbrain, thalamus, and telencephalon of adult bullfrogs (Rana catesbeiana) was examined using immunohistochemistry for the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and DNA dot-blotting. At all time points examined (2 to 28 days post-injection), BrdU-labeled cells were located in ventricular zones at all levels of the neuraxis, but with relatively more label around the telencephalic ventricles. Labeled cells, some showing profiles indicative of dividing and migrating cells, were present in brain parenchyma from 7 to 28 days post-injection. These labeled cells were particularly numerous in the dorsal and ventral hypothalamus, preoptic area, optic tectum, and laminar and principal nuclei of the torus semicircularis, with label also present, but at qualitatively reduced levels, in thalamic and telencephalic nuclei. Double-label immunohistochemistry using glial and early neural markers indicated that gliogenesis and neurogenesis both occurred, with new neurons observed particularly in the hypothalamus, optic tectum, and torus semicircularis. In all brain areas, many cells not labeled with BrdU were nonetheless labeled with the early neural marker TOAD-64, indicating that these cells were postmitotic. Incorporation of DNA measured by dot-blotting confirms the presence of DNA synthesis in the forebrain and brainstem at all time points measured. The pattern of BrdU label confirms previous experiments based on labeling with 3H-thymidine and proliferating cell nuclear antigen showing cell proliferation in the adult ranid brain, particularly in hypothalamic nuclei. The consistent appearance of new cells in the hypothalamus of adult frogs suggests that proliferative activity may be important in mediating reproductive behaviors in these animals. PMID:17878717

  11. Evidence for the involvement of two areas of the zebra finch forebrain in sexual imprinting.

    Science.gov (United States)

    Rollenhagen, A; Bischof, H J

    2000-03-01

    Sexual imprinting in male zebra finches is a two-step process, including an acquisition period early in life and a stabilization process normally occuring during the first courtship attempts of the male. During the acquisition period, a young male learns about its social environment. During stabilization, which can be delayed experimentally until day 100, it develops a preference for the appropriate object for courtship behavior on the basis of its previous and acute experience. Thereafter, this preference cannot be altered again. Exploring the physiological basis for imprinting, we have previously shown that the neurons of two forebrain areas (ANC and HAD) increase their spine density in the course of the stabilization process, while in two other areas (MNH and LNH) a decrease of spine density can be observed. With the present experiments, we tested the idea that the spine density decrease in MNH and LNH is the anatomical manifestation of the imprinting process. Previous behavioral experiments have shown that exposure to a nestbox after 100 days of age stabilizes the sexual preference of a zebra finch male as well as does exposure to a female. The present study shows that nestbox exposure also reduces the spine density in MNH and LNH, but has no effect on ANC and HAD. It has also been shown previously that treating males with an antiandrogen between days 40 and 100 affects the final preference of a male. The present experiment indicates that the same treatment affects spine growth during development in MNH and LNH and prevents the increase of spine density within HAD and ANC normally induced by exposure to a female. The results are interpreted as strong evidence for the involvement of MNH and LNH in sexual imprinting. Copyright 2000 Academic Press.

  12. ZENK expression in a restricted forebrain area correlates negatively with preference for an imprinted stimulus.

    Science.gov (United States)

    Huchzermeyer, Christine; Husemann, Pamela; Lieshoff, Carsten; Bischof, Hans-Joachim

    2006-07-15

    Sexual imprinting is an early learning process by which young birds acquire the characteristics of a potential sexual partner. The physiological basis of this learning process is an irreversible reduction of dendritic spines in two forebrain areas, the LNM (lateral nido-mesopallium) and the MNM (medial nido-mesopallium). The aim of the present study was to investigate whether these two brain areas are activated if the imprinted stimulus is presented to the adult bird after the end of the sensitive period. One group of zebra finch males was reared by their own parents. These birds, as adults, showed an exclusive preference for their own species in choice tests between a zebra finch and a Bengalese finch female. If exposed as adults to a zebra finch female, LNM and MNM showed lower activation, as measured by ZENK expression, compared to males exposed to a Bengalese finch female. A second group was reared by Bengalese finches and was exposed at day 100 to a zebra finch female for 1 week. As shown earlier, this regime leads to mixed choices, the birds are courting Bengalese and zebra finch females with a fixed ratio (preference score). If these birds were exposed to a zebra finch female as adults, the ZENK expression within LNM was much higher compared to group 1, and it showed a strong tendency to correlate negatively with the preference score: Birds with higher zebra finch preference showed lower activation compared to those with a low zebra finch and a high Bengalese finch preference. We propose that higher ZENK activation in group 2 is due to the rearing by a foster species which may result in a more complex neuronal network. The negative relation between activation and preference score may be explained by special properties of the LNM and MNM networks.

  13. Nicotine administration in the wake-promoting basal forebrain attenuates sleep-promoting effects of alcohol.

    Science.gov (United States)

    Sharma, Rishi; Lodhi, Shafi; Sahota, Pradeep; Thakkar, Mahesh M

    2015-10-01

    Nicotine and alcohol co-abuse is highly prevalent, although the underlying causes are unclear. It has been suggested that nicotine enhances pleasurable effects of alcohol while reducing aversive effects. Recently, we reported that nicotine acts via the basal forebrain (BF) to activate nucleus accumbens and increase alcohol consumption. Does nicotine suppress alcohol-induced aversive effects via the BF? We hypothesized that nicotine may act via the BF to suppress sleep-promoting effects of alcohol. To test this hypothesis, adult male Sprague-Dawley rats were implanted with sleep-recording electrodes and bilateral guides targeted toward the BF. Nicotine (75 pmol/500 nL/side) or artificial cerebrospinal fluid (ACSF; 500 nL/side) was microinjected into the BF followed by intragastric alcohol (ACSF + EtOH and NiC + EtOH groups; 3 g/kg) or water (NiC + W and ACSF + W groups; 10 mL/kg) administration. On completion, rats were killed and processed to localize injection sites in the BF. The statistical analysis revealed a significant effect of treatment on sleep-wakefulness. While rats exposed to alcohol (ACSF + EtOH) displayed strong sleep promotion, nicotine pre-treatment in the BF (NiC + EtOH) attenuated alcohol-induced sleep and normalized sleep-wakefulness. These results suggest that nicotine acts via the BF to suppress the aversive, sleep-promoting effects of alcohol, further supporting the role of BF in alcohol-nicotine co-use. © 2015 International Society for Neurochemistry.

  14. Arginine Vasotocin Preprohormone Is Expressed in Surprising Regions of the Teleost Forebrain

    Directory of Open Access Journals (Sweden)

    Mariana Rodriguez-Santiago

    2017-08-01

    Full Text Available Nonapeptides play a fundamental role in the regulation of social behavior, among numerous other functions. In particular, arginine vasopressin and its non-mammalian homolog, arginine vasotocin (AVT, have been implicated in regulating affiliative, reproductive, and aggressive behavior in many vertebrate species. Where these nonapeptides are synthesized in the brain has been studied extensively in most vertebrate lineages. While several hypothalamic and forebrain populations of vasopressinergic neurons have been described in amniotes, the consensus suggests that the expression of AVT in the brain of teleost fish is limited to the hypothalamus, specifically the preoptic area (POA and the anterior tuberal nucleus (putative homolog of the mammalian ventromedial hypothalamus. However, as most studies in teleosts have focused on the POA, there may be an ascertainment bias. Here, we revisit the distribution of AVT preprohormone mRNA across the dorsal and ventral telencephalon of a highly social African cichlid fish. We first use in situ hybridization to map the distribution of AVT preprohormone mRNA across the telencephalon. We then use quantitative real-time polymerase chain reaction to assay AVT expression in the dorsomedial telencephalon, the putative homolog of the mammalian basolateral amygdala. We find evidence for AVT preprohormone mRNA in regions previously not associated with the expression of this nonapeptide, including the putative homologs of the mammalian extended amygdala, hippocampus, striatum, and septum. In addition, AVT preprohormone mRNA expression within the basolateral amygdala homolog differs across social contexts, suggesting a possible role in behavioral regulation. We conclude that the surprising presence of AVT preprohormone mRNA within dorsal and medial telencephalic regions warrants a closer examination of possible AVT synthesis locations in teleost fish, and that these may be more similar to what is observed in mammals and

  15. The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder.

    Science.gov (United States)

    Coenen, Volker A; Schlaepfer, Thomas E; Goll, Peter; Reinacher, Peter C; Voderholzer, Ulrich; Tebartz van Elst, Ludger; Urbach, Horst; Freyer, Tobias

    2017-06-01

    Deep brain stimulation (DBS) is a promising putative modality for the treatment of refractory psychiatric disorders such as major depression and obsessive-compulsive disorder (OCD). Several targets have been posited; however, a clear consensus on differential efficacy and possible modes of action remain unclear. DBS to the supero-lateral branch of the medial forebrain bundle (slMFB) has recently been introduced for major depression (MD). Due to our experience with slMFB stimulation for MD, and because OCD might be related to similar dysfunctions of the reward system, treatment with slMFB DBS seams meaningful. Here we describe our first 2 cases together with a hypothetical mode of action. We describe diffusion tensor imaging (DTI) fiber tractographically (FT)-assisted implantation of the bilateral DBS systems in 2 male patients. In a selected literature overview, we discuss the possible mode of action. Both patients were successfully implanted and stimulated. The follow-up time was 12 months. One patient showed a significant response (Yale-Brown Obsessive-Compulsive Scale [YBOCS] reduction by 35%); the other patient reached remission criteria 3 months after surgery (YBOCSOCD just above the remission criterion at 12 months follow-up. While the hypermetabolism theory for OCD involves the cortico-striato-thalamo-cortical (CSTC) network, we think that there is clinical evidence that the reward system plays a crucial role. Our findings suggest an important role of this network in mechanisms of disease development and recovery. In this uncontrolled case series, continuous bilateral DBS to the slMFB led to clinically significant improvements of ratings of OCD severity. Ongoing research focuses on the role of the reward system in OCD, and its yet-underestimated role in this underlying neurobiology of the disease.

  16. Arginine Vasotocin Preprohormone Is Expressed in Surprising Regions of the Teleost Forebrain.

    Science.gov (United States)

    Rodriguez-Santiago, Mariana; Nguyen, Jessica; Winton, Lin S; Weitekamp, Chelsea A; Hofmann, Hans A

    2017-01-01

    Nonapeptides play a fundamental role in the regulation of social behavior, among numerous other functions. In particular, arginine vasopressin and its non-mammalian homolog, arginine vasotocin (AVT), have been implicated in regulating affiliative, reproductive, and aggressive behavior in many vertebrate species. Where these nonapeptides are synthesized in the brain has been studied extensively in most vertebrate lineages. While several hypothalamic and forebrain populations of vasopressinergic neurons have been described in amniotes, the consensus suggests that the expression of AVT in the brain of teleost fish is limited to the hypothalamus, specifically the preoptic area (POA) and the anterior tuberal nucleus (putative homolog of the mammalian ventromedial hypothalamus). However, as most studies in teleosts have focused on the POA, there may be an ascertainment bias. Here, we revisit the distribution of AVT preprohormone mRNA across the dorsal and ventral telencephalon of a highly social African cichlid fish. We first use in situ hybridization to map the distribution of AVT preprohormone mRNA across the telencephalon. We then use quantitative real-time polymerase chain reaction to assay AVT expression in the dorsomedial telencephalon, the putative homolog of the mammalian basolateral amygdala. We find evidence for AVT preprohormone mRNA in regions previously not associated with the expression of this nonapeptide, including the putative homologs of the mammalian extended amygdala, hippocampus, striatum, and septum. In addition, AVT preprohormone mRNA expression within the basolateral amygdala homolog differs across social contexts, suggesting a possible role in behavioral regulation. We conclude that the surprising presence of AVT preprohormone mRNA within dorsal and medial telencephalic regions warrants a closer examination of possible AVT synthesis locations in teleost fish, and that these may be more similar to what is observed in mammals and birds.

  17. Reversible long-term changes in auditory processing in mature auditory cortex in the absence of hearing loss induced by passive, moderate-level sound exposure.

    Science.gov (United States)

    Pienkowski, Martin; Eggermont, Jos J

    2012-01-01

    It has become increasingly clear that even occasional exposure to loud sounds in occupational or recreational settings can cause irreversible damage to the hair cells of the cochlea and the auditory nerve fibers, even if the resulting partial loss of hearing sensitivity, usually accompanied by tinnitus, disappears within hours or days of the exposure. Such exposure may explain at least some cases of poor speech intelligibility in noise in the face of a normal or near-normal audiogram. Recent findings from our laboratory suggest that long-term changes to auditory brain function-potentially leading to p