WorldWideScience

Sample records for auditory feedback differs

  1. Is sensorimotor BCI performance influenced differently by mono, stereo, or 3-D auditory feedback?

    Science.gov (United States)

    McCreadie, Karl A; Coyle, Damien H; Prasad, Girijesh

    2014-05-01

    Imagination of movement can be used as a control method for a brain-computer interface (BCI) allowing communication for the physically impaired. Visual feedback within such a closed loop system excludes those with visual problems and hence there is a need for alternative sensory feedback pathways. In the context of substituting the visual channel for the auditory channel, this study aims to add to the limited evidence that it is possible to substitute visual feedback for its auditory equivalent and assess the impact this has on BCI performance. Secondly, the study aims to determine for the first time if the type of auditory feedback method influences motor imagery performance significantly. Auditory feedback is presented using a stepped approach of single (mono), double (stereo), and multiple (vector base amplitude panning as an audio game) loudspeaker arrangements. Visual feedback involves a ball-basket paradigm and a spaceship game. Each session consists of either auditory or visual feedback only with runs of each type of feedback presentation method applied in each session. Results from seven subjects across five sessions of each feedback type (visual, auditory) (10 sessions in total) show that auditory feedback is a suitable substitute for the visual equivalent and that there are no statistical differences in the type of auditory feedback presented across five sessions.

  2. Effect of auditory feedback differs according to side of hemiparesis: a comparative pilot study

    Directory of Open Access Journals (Sweden)

    Bensmail Djamel

    2009-12-01

    Full Text Available Abstract Background Following stroke, patients frequently demonstrate loss of motor control and function and altered kinematic parameters of reaching movements. Feedback is an essential component of rehabilitation and auditory feedback of kinematic parameters may be a useful tool for rehabilitation of reaching movements at the impairment level. The aim of this study was to investigate the effect of 2 types of auditory feedback on the kinematics of reaching movements in hemiparetic stroke patients and to compare differences between patients with right (RHD and left hemisphere damage (LHD. Methods 10 healthy controls, 8 stroke patients with LHD and 8 with RHD were included. Patient groups had similar levels of upper limb function. Two types of auditory feedback (spatial and simple were developed and provided online during reaching movements to 9 targets in the workspace. Kinematics of the upper limb were recorded with an electromagnetic system. Kinematics were compared between groups (Mann Whitney test and the effect of auditory feedback on kinematics was tested within each patient group (Friedman test. Results In the patient groups, peak hand velocity was lower, the number of velocity peaks was higher and movements were more curved than in the healthy group. Despite having a similar clinical level, kinematics differed between LHD and RHD groups. Peak velocity was similar but LHD patients had fewer velocity peaks and less curved movements than RHD patients. The addition of auditory feedback improved the curvature index in patients with RHD and deteriorated peak velocity, the number of velocity peaks and curvature index in LHD patients. No difference between types of feedback was found in either patient group. Conclusion In stroke patients, side of lesion should be considered when examining arm reaching kinematics. Further studies are necessary to evaluate differences in responses to auditory feedback between patients with lesions in opposite

  3. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  4. Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats

    Science.gov (United States)

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea. PMID:23638137

  5. The speech naturalness of people who stutter speaking under delayed auditory feedback as perceived by different groups of listeners.

    Science.gov (United States)

    Van Borsel, John; Eeckhout, Hannelore

    2008-09-01

    This study investigated listeners' perception of the speech naturalness of people who stutter (PWS) speaking under delayed auditory feedback (DAF) with particular attention for possible listener differences. Three panels of judges consisting of 14 stuttering individuals, 14 speech language pathologists, and 14 naive listeners rated the naturalness of speech samples of stuttering and non-stuttering individuals using a 9-point interval scale. Results clearly indicate that these three groups evaluate naturalness differently. Naive listeners appear to be more severe in their judgements than speech language pathologists and stuttering listeners, and speech language pathologists are apparently more severe than PWS. The three listener groups showed similar trends with respect to the relationship between speech naturalness and speech rate. Results of all three indicated that for PWS, the slower a speaker's rate was, the less natural speech was judged to sound. The three listener groups also showed similar trends with regard to naturalness of the stuttering versus the non-stuttering individuals. All three panels considered the speech of the non-stuttering participants more natural. The reader will be able to: (1) discuss the speech naturalness of people who stutter speaking under delayed auditory feedback, (2) discuss listener differences about the naturalness of people who stutter speaking under delayed auditory feedback, and (3) discuss the importance of speech rate for the naturalness of speech.

  6. Rhythmic walking interaction with auditory feedback

    DEFF Research Database (Denmark)

    Maculewicz, Justyna; Jylhä, Antti; Serafin, Stefania

    2015-01-01

    We present an interactive auditory display for walking with sinusoidal tones or ecological, physically-based synthetic walking sounds. The feedback is either step-based or rhythmic, with constant or adaptive tempo. In a tempo-following experiment, we investigate different interaction modes...... and auditory feedback, based on the MSE between the target and performed tempo, and the stability of the latter. The results indicate that the MSE with ecological sounds is comparable to that with the sinusoidal tones, yet ecological sounds are considered more natural. Adaptive conditions result in stable...

  7. Tactile feedback improves auditory spatial localization.

    Science.gov (United States)

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  8. Musical training and the role of auditory feedback during performance.

    Science.gov (United States)

    Pfordresher, Peter Q

    2012-04-01

    Recent research has shown that music training enhances music-related sensorimotor associations, such as the relationship between a key press on the keyboard and its associated musical pitch (auditory feedback). Such results suggest that the role of auditory feedback in performance may be based on learned associations that are task specific. Here, results from various studies will be presented that suggest that the real state of affairs is more complex. Several recent studies have shown similar effects of altered auditory feedback during piano performance for pianists and individuals with no piano training. Other recent research suggests dramatic differences between pianists and nonmusicians concerning the influence of auditory feedback on melody switching that suggest greater influence of auditory feedback among nonmusicians than pianists. Taken together, results suggest that musical training refines preexisting sensorimotor associations. © 2012 New York Academy of Sciences.

  9. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Sattler, Lindsey; Larson, Charles R

    2012-10-01

    The present study describes a technique for analysis of vocal responses to auditory feedback pitch perturbations in which individual trials are first sorted according to response direction and then separately averaged in groups of upward or downward responses. In experiment 1, the stimulus direction was predictable (all upward) but magnitude was randomized between +100, +200, or +500 cents (unpredictable). Results showed that pitch-shift stimuli (PSS) of +100 and +200 cents elicited significantly larger opposing (compensatory) responses than +500 cent stimuli, but no such effect was observed for "following" responses. In experiment 2, subjects were tested in three blocks of trials where for the first two, PSS magnitude and direction were predictable (block 1+100 and block 2-100 cents), and in block 3, the magnitude was predictable (±100 cents) but direction was randomized (upward or downward). Results showed there were slightly more opposing than following responses for predictable PSS direction, but randomized directions led to significantly more opposing than following responses. Results suggest that predictability of stimulus direction and magnitude can modulate vocal responses to feedback pitch perturbations. The function and causes of the opposing and following responses are unknown, but there may be two different neural mechanisms involved in their production.

  10. Auditory Feedback and the Online Shopping Experience

    National Research Council Canada - National Science Library

    Ryann Reynolds-McIlnay

    2014-01-01

      The present research proposes that the presence of auditory feedback increases satisfaction with the shopping experience, confidence in the retailer, and the likelihood to return to the retailer...

  11. Altered Sensory Feedbacks in Pianist's Dystonia: the altered auditory feedback paradigm and the glove effect

    Directory of Open Access Journals (Sweden)

    Felicia Pei-Hsin Cheng

    2013-12-01

    Full Text Available Background: This study investigates the effect of altered auditory feedback (AAF in musician's dystonia (MD and discusses whether altered auditory feedback can be considered as a sensory trick in MD. Furthermore, the effect of AAF is compared with altered tactile feedback, which can serve as a sensory trick in several other forms of focal dystonia. Methods: The method is based on scale analysis (Jabusch et al. 2004. Experiment 1 employs synchronization paradigm: 12 MD patients and 25 healthy pianists had to repeatedly play C-major scales in synchrony with a metronome on a MIDI-piano with 3 auditory feedback conditions: 1. normal feedback; 2. no feedback; 3. constant delayed feedback. Experiment 2 employs synchronization-continuation paradigm: 12 MD patients and 12 healthy pianists had to repeatedly play C-major scales in two phases: first in synchrony with a metronome, secondly continue the established tempo without the metronome. There are 4 experimental conditions, among them 3 are the same altered auditory feedback as in Experiment 1 and 1 is related to altered tactile sensory input. The coefficient of variation of inter-onset intervals of the key depressions was calculated to evaluate fine motor control. Results: In both experiments, the healthy controls and the patients behaved very similarly. There is no difference in the regularity of playing between the two groups under any condition, and neither did AAF nor did altered tactile feedback have a beneficial effect on patients’ fine motor control. Conclusions: The results of the two experiments suggest that in the context of our experimental designs, AAF and altered tactile feedback play a minor role in motor coordination in patients with musicians' dystonia. We propose that altered auditory and tactile feedback do not serve as effective sensory tricks and may not temporarily reduce the symptoms of patients suffering from MD in this experimental context.

  12. Feedback delays eliminate auditory-motor learning in speech production.

    Science.gov (United States)

    Max, Ludo; Maffett, Derek G

    2015-03-30

    Neurologically healthy individuals use sensory feedback to alter future movements by updating internal models of the effector system and environment. For example, when visual feedback about limb movements or auditory feedback about speech movements is experimentally perturbed, the planning of subsequent movements is adjusted - i.e., sensorimotor adaptation occurs. A separate line of studies has demonstrated that experimentally delaying the sensory consequences of limb movements causes the sensory input to be attributed to external sources rather than to one's own actions. Yet similar feedback delays have remarkably little effect on visuo-motor adaptation (although the rate of learning varies, the amount of adaptation is only moderately affected with delays of 100-200ms, and adaptation still occurs even with a delay as long as 5000ms). Thus, limb motor learning remains largely intact even in conditions where error assignment favors external factors. Here, we show a fundamentally different result for sensorimotor control of speech articulation: auditory-motor adaptation to formant-shifted feedback is completely eliminated with delays of 100ms or more. Thus, for speech motor learning, real-time auditory feedback is critical. This novel finding informs theoretical models of human motor control in general and speech motor control in particular, and it has direct implications for the application of motor learning principles in the habilitation and rehabilitation of individuals with various sensorimotor speech disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Formant compensation for auditory feedback with English vowels

    DEFF Research Database (Denmark)

    Mitsuya, Takashi; MacDonald, Ewen N; Munhall, Kevin G

    2015-01-01

    Past studies have shown that speakers spontaneously adjust their speech acoustics in response to their auditory feedback perturbed in real time. In the case of formant perturbation, the majority of studies have examined speaker's compensatory production using the English vowel /ɛ/ as in the word...... "head." Consistent behavioral observations have been reported, and there is lively discussion as to how the production system integrates auditory versus somatosensory feedback to control vowel production. However, different vowels have different oral sensation and proprioceptive information due...... if "closed vowels" would show less compensatory production than "open vowels" because closed vowels' strong lingual sensation may richly specify production via somatosensory feedback. Results showed that, indeed, speakers exhibited less compensatory production with the closed vowels. Thus sensorimotor...

  14. Modulation of effective connectivity during vocalization with perturbed auditory feedback

    Science.gov (United States)

    Parkinson, Amy L.; Korzyukov, Oleg; Larson, Charles R.; Litvak, Vladimir; Robin, Donald A.

    2013-01-01

    The integration of auditory feedback with vocal motor output is important for the control of voice fundamental frequency (F0). We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. We presented varying magnitudes of pitch shifted auditory feedback to subjects during vocalization and passive listening and measured event related potentials (ERP’s) to the feedback shifts. Shifts were delivered at +100 and +400 cents (200 ms duration). The ERP data were modeled with Dynamic Causal Modeling (DCM) techniques where the effective connectivity between the superior temporal gyrus (STG), inferior frontal gyrus and premotor areas were tested. We compared three main factors; the effect of intrinsic STG connectivity, STG modulation across hemispheres and the specific effect of hemisphere. A Bayesian model selection procedure was used to make inference about model families. Results suggest that both intrinsic STG and left to right STG connections are important in the identification of self-voice error and sensory motor integration. We identified differences in left to right STG connections between 100 cent and 400 cent shift conditions suggesting that self and non-self voice error are processed differently in the left and right hemisphere. These results also highlight the potential of DCM modeling of ERP responses to characterize specific network properties of forward models of voice control. PMID:23665378

  15. Effect of Training and Level of External Auditory Feedback on the Singing Voice: Volume and Quality.

    Science.gov (United States)

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2016-07-01

    Previous research suggests that classically trained professional singers rely not only on external auditory feedback but also on proprioceptive feedback associated with internal voice sensitivities. The Lombard effect and the relationship between sound pressure level (SPL) and external auditory feedback were evaluated for professional and nonprofessional singers. Additionally, the relationship between voice quality, evaluated in terms of singing power ratio (SPR), and external auditory feedback, level of accompaniment, voice register, and singer gender was analyzed. The subjects were 10 amateur or beginner singers and 10 classically trained professional or semiprofessional singers (10 men and 10 women). Subjects sang an excerpt from the Star-Spangled Banner with three different levels of the accompaniment, 70, 80, and 90 dBA and with three different levels of external auditory feedback. SPL and SPR were analyzed. The Lombard effect was stronger for nonprofessional singers than professional singers. Higher levels of external auditory feedback were associated with a reduction in SPL. As predicted, the mean SPR was higher for professional singers than nonprofessional singers. Better voice quality was detected in the presence of higher levels of external auditory feedback. With an increase in training, the singer's reliance on external auditory feedback decreases. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Effect of training and level of external auditory feedback on the singing voice: volume and quality

    Science.gov (United States)

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.

    2015-01-01

    Background Previous research suggests that classically trained professional singers rely not only on external auditory feedback but also on proprioceptive feedback associated with internal voice sensitivities. Objectives The Lombard Effect in singers and the relationship between Sound Pressure Level (SPL) and external auditory feedback was evaluated for professional and non-professional singers. Additionally, the relationship between voice quality, evaluated in terms of Singing Power Ratio (SPR), and external auditory feedback, level of accompaniment, voice register and singer gender was analyzed. Methods The subjects were 10 amateur or beginner singers, and 10 classically-trained professional or semi-professional singers (10 males and 10 females). Subjects sang an excerpt from the Star-spangled Banner with three different levels of the accompaniment, 70, 80 and 90 dBA, and with three different levels of external auditory feedback. SPL and the SPR were analyzed. Results The Lombard Effect was stronger for non-professional singers than professional singers. Higher levels of external auditory feedback were associated with a reduction in SPL. As predicted, the mean SPR was higher for professional than non-professional singers. Better voice quality was detected in the presence of higher levels of external auditory feedback. Conclusions With an increase in training, the singer’s reliance on external auditory feedback decreases. PMID:26186810

  17. Temporal coordination in joint music performance: effects of endogenous rhythms and auditory feedback.

    Science.gov (United States)

    Zamm, Anna; Pfordresher, Peter Q; Palmer, Caroline

    2015-02-01

    Many behaviors require that individuals coordinate the timing of their actions with others. The current study investigated the role of two factors in temporal coordination of joint music performance: differences in partners' spontaneous (uncued) rate and auditory feedback generated by oneself and one's partner. Pianists performed melodies independently (in a Solo condition), and with a partner (in a duet condition), either at the same time as a partner (Unison), or at a temporal offset (Round), such that pianists heard their partner produce a serially shifted copy of their own sequence. Access to self-produced auditory information during duet performance was manipulated as well: Performers heard either full auditory feedback (Full), or only feedback from their partner (Other). Larger differences in partners' spontaneous rates of Solo performances were associated with larger asynchronies (less effective synchronization) during duet performance. Auditory feedback also influenced temporal coordination of duet performance: Pianists were more coordinated (smaller tone onset asynchronies and more mutual adaptation) during duet performances when self-generated auditory feedback aligned with partner-generated feedback (Unison) than when it did not (Round). Removal of self-feedback disrupted coordination (larger tone onset asynchronies) during Round performances only. Together, findings suggest that differences in partners' spontaneous rates of Solo performances, as well as differences in self- and partner-generated auditory feedback, influence temporal coordination of joint sensorimotor behaviors.

  18. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  19. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  20. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Science.gov (United States)

    2012-01-01

    Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller) with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel) yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video), to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel visuomotor perturbation, whereas

  1. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to

  2. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    Science.gov (United States)

    Mochida, Takemi; Gomi, Hiroaki; Kashino, Makio

    2010-11-08

    There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a

  3. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    Directory of Open Access Journals (Sweden)

    Takemi Mochida

    Full Text Available BACKGROUND: There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. CONCLUSIONS/SIGNIFICANCE: The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context

  4. Multivoxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    DEFF Research Database (Denmark)

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations...... presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple...... within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while...

  5. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    OpenAIRE

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they wer...

  6. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  7. Feedback that confirms reward expectation triggers auditory cortex activity.

    Science.gov (United States)

    Weis, Tina; Brechmann, André; Puschmann, Sebastian; Thiel, Christiane M

    2013-10-01

    Associative learning studies have shown that the anticipation of reward and punishment shapes the representation of sensory stimuli, which is further modulated by dopamine. Less is known about whether and how reward delivery activates sensory cortices and the role of dopamine at that time point of learning. We used an appetitive instrumental learning task in which participants had to learn that a specific class of frequency-modulated tones predicted a monetary reward following fast and correct responses in a succeeding reaction time task. These fMRI data were previously analyzed regarding the effect of reward anticipation, but here we focused on neural activity to the reward outcome relative to the reward expectation and tested whether such activation in the reward reception phase is modulated by L-DOPA. We analyzed neural responses at the time point of reward outcome under three different conditions: 1) when a reward was expected and received, 2) when a reward was expected but not received, and 3) when a reward was not expected and not received. Neural activity in auditory cortex was enhanced during feedback delivery either when an expected reward was received or when the expectation of obtaining no reward was correct. This differential neural activity in auditory cortex was only seen in subjects who learned the reward association and not under dopaminergic modulation. Our data provide evidence that auditory cortices are active at the time point of reward outcome. However, responses are not dependent on the reward itself but on whether the outcome confirmed the subject's expectations.

  8. Task-Irrelevant Auditory Feedback Facilitates Motor Performance in Musicians

    Science.gov (United States)

    Conde, Virginia; Altenmüller, Eckart; Villringer, Arno; Ragert, Patrick

    2012-01-01

    An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT). Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Behaviorally, we found that auditory feedback reinforced SRTT performance of the right hand (referring to absolute response speed) while learning capabilities remained unchanged. This finding highlights a potential important role for task-irrelevant auditory feedback in motor performance in musicians, a finding that might provide further insight into auditory–motor integration independent of the trained musical context. PMID:22623920

  9. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  10. Stuttering Inhibition via Altered Auditory Feedback during Scripted Telephone Conversations

    Science.gov (United States)

    Hudock, Daniel; Kalinowski, Joseph

    2014-01-01

    Background: Overt stuttering is inhibited by approximately 80% when people who stutter read aloud as they hear an altered form of their speech feedback to them. However, levels of stuttering inhibition vary from 60% to 100% depending on speaking situation and signal presentation. For example, binaural presentations of delayed auditory feedback…

  11. Auditory Masking Effects on Speech Fluency in Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback

    Science.gov (United States)

    Jacks, Adam; Haley, Katarina L.

    2015-01-01

    Purpose: To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not…

  12. Investigating the Role of Auditory Feedback in a Multimodal Biking Experience

    DEFF Research Database (Denmark)

    Bruun-Pedersen, Jon Ram; Grani, Francesco; Serafin, Stefania

    2017-01-01

    In this paper, we investigate the role of auditory feedback in affecting perception of effort while biking in a virtual environment. Subjects were biking on a stationary chair bike, while exposed to 3D renditions of a recumbent bike inside a virtual environment (VE). The VE simulated a park...... and was created in the Unity5 engine. While biking, subjects were exposed to 9 kinds of auditory feedback (3 amplitude levels with three different filters) which were continuously triggered corresponding to pedal speed, representing the sound of the wheels and bike/chain mechanics. Subjects were asked to rate...... the perception of exertion using the Borg RPE scale. Results of the experiment showed that most subjects perceived a difference in mechanical resistance from the bike between conditions, but did not consciously notice the variations of the auditory feedback, although these were significantly varied. This points...

  13. Sensorimotor impairment of speech auditory feedback processing in aphasia.

    Science.gov (United States)

    Behroozmand, Roozbeh; Phillip, Lorelei; Johari, Karim; Bonilha, Leonardo; Rorden, Chris; Hickok, Gregory; Fridriksson, Julius

    2018-01-15

    We investigated the brain network involved in speech sensorimotor processing by studying patients with post-stroke aphasia using an altered auditory feedback (AAF) paradigm. We combined lesion-symptom-mapping analysis and behavioral testing to examine the pervasiveness of speech sensorimotor deficits and their relationship with cortical damage. Sixteen participants with aphasia and sixteen neurologically intact individuals completed a speech task under AAF. The task involved producing speech vowel sounds under the real-time pitch-shifted auditory feedback alteration. This task provided an objective measure for each individual's ability to compensate for mismatch (error) in speech auditory feedback. Results indicated that compensatory speech responses to AAF were significantly diminished in participants with aphasia compared with control. We observed that within the aphasic group, subjects with lower scores on the speech repetition task exhibited greater degree of diminished responses. Lesion-symptom-mapping analysis revealed that the onset phase (50-150 ms) of diminished AAF responses were predicted by damage to auditory cortical regions within the superior and middle temporal gyrus, whereas the rising phase (150-250 ms) and the peak (250-350 ms) of diminished AAF responses were predicted with damage to the inferior frontal gyrus and supramarginal gyrus areas, respectively. These findings suggest that damage to the auditory, motor, and auditory-motor integration networks are associated with impaired sensorimotor function for speech error processing. We suggest that a sensorimotor integration network, as revealed by brain regions related to temporal specific components of AAF responses, is related to speech processing and specific aspects of speech impairment, notably repetition deficits, in individuals with aphasia. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    Science.gov (United States)

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Corticothalamic feedback dynamics for neural correlates of auditory selective attention.

    Science.gov (United States)

    Trenado, Carlos; Haab, Lars; Strauss, Daniel J

    2009-02-01

    Auditory evoked cortical potentials (AECPs) have been consolidated as a diagnostic tool in audiology. Further applications of this technique are in experimental neuropsychology, neuroscience, and psychiatry, e.g., for the attention deficit disorder, schizophrenia, or for studying the tinnitus decompensation. In particular, numerous psychophysiological studies have emphasized their dynamic characteristics in relation to exogenous and endogenous attention. However, the effect of corticothalamic feedback dynamics to neural correlates of focal and nonfocal attention and its large-scale effect reflected in AECPs is far from being understood. To address this issue, we model neural correlates of auditory selective attention reflected in AECPs by using corticothalamic feedback dynamics. In our framework, we make use of a well-known multiscale model of evoked potentials, for which we define for the first time a neurofunctional map of relevant corticothalamic loops to the hearing path. Such loops are in turn are coupled to our proposed probabilistic scheme of auditory selective attention. It is concluded that our model represents a promising approach to gain a deeper understanding of the neurodynamics of auditory attention and might be used as an efficient forward model to support hypotheses that are obtained in experimental paradigms involving AECPs.

  16. More feedback is better than less: Learning a novel upper limb joint coordination pattern with augmented auditory feedback

    Directory of Open Access Journals (Sweden)

    Shinya eFujii

    2016-06-01

    Full Text Available Motor learning is a process whereby the acquisition of new skills occurs with practice, and can be influenced by the provision of feedback. An important question is what frequency of feedback facilitates motor learning. The guidance hypothesis assumes that the provision of less augmented feedback is better than more because a learner can use his/her own inherent feedback. However, it is unclear whether this hypothesis holds true for all types of augmented feedback, including for example sonified information about performance. Thus, we aimed to test what frequency of augmented sonified feedback facilitates the motor learning of a novel joint coordination pattern. Twenty healthy volunteers first reached to a target with their arm (baseline phase. We manipulated this baseline kinematic data for each individual to create a novel target joint coordination pattern. Participants then practiced to learn the novel target joint coordination pattern, receiving either feedback on every trial i.e. 100% feedback (n = 10, or every other trial, i.e. 50% feedback (n = 10 (acquisition phase. We created a sonification system to provide the feedback. This feedback was a pure tone that varied in intensity in proportion to the error of the performed joint coordination relative to the target pattern. Thus, the auditory feedback contained information about performance in real-time (i.e. concurrent, knowledge of performance feedback. Participants performed the novel joint coordination pattern with no-feedback immediately after the acquisition phase (immediate retention phase, and on the next day (delayed retention phase. The root-mean squared error (RMSE and variable error (VE of joint coordination were significantly reduced during the acquisition phase in both 100% and 50% feedback groups. There was no significant difference in VE between the groups at immediate and delayed retention phases. However, at both these retention phases, the 100% feedback group showed

  17. Brain responses to altered auditory feedback during musical keyboard production: an fMRI study.

    Science.gov (United States)

    Pfordresher, Peter Q; Mantell, James T; Brown, Steven; Zivadinov, Robert; Cox, Jennifer L

    2014-03-27

    Alterations of auditory feedback during piano performance can be profoundly disruptive. Furthermore, different alterations can yield different types of disruptive effects. Whereas alterations of feedback synchrony disrupt performed timing, alterations of feedback pitch contents can disrupt accuracy. The current research tested whether these behavioral dissociations correlate with differences in brain activity. Twenty pianists performed simple piano keyboard melodies while being scanned in a 3-T magnetic resonance imaging (MRI) scanner. In different conditions they experienced normal auditory feedback, altered auditory feedback (asynchronous delays or altered pitches), or control conditions that excluded movement or sound. Behavioral results replicated past findings. Neuroimaging data suggested that asynchronous delays led to increased activity in Broca's area and its right homologue, whereas disruptive alterations of pitch elevated activations in the cerebellum, area Spt, inferior parietal lobule, and the anterior cingulate cortex. Both disruptive conditions increased activations in the supplementary motor area. These results provide the first evidence of neural responses associated with perception/action mismatch during keyboard production. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition.

    Directory of Open Access Journals (Sweden)

    Jason D Wittenbach

    2015-10-01

    Full Text Available Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences.

  19. Rhythmic walking interactions with auditory feedback

    DEFF Research Database (Denmark)

    Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur

    2012-01-01

    Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds of int...

  20. Auditory feedback blocks memory benefits of cueing during sleep.

    Science.gov (United States)

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-10-28

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep.

  1. Effect of Training and Level of External Auditory Feedback on the Singing Voice: Pitch Inaccuracy.

    Science.gov (United States)

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2017-01-01

    One of the most important aspects of singing is the control of fundamental frequency. The effects on pitch inaccuracy, defined as the distance in cents in equally tempered tuning between the reference note and the sung note, of the following conditions were evaluated: (1) level of external feedback, (2) tempo (slow or fast), (3) articulation (legato or staccato), (4) tessitura (low, medium, or high), and (5) semi-phrase direction (ascending or descending). The subjects were 10 nonprofessional singers and 10 classically trained professional or semi-professional singers (10 men and 10 women). Subjects sang one octave and a fifth arpeggi with three different levels of external auditory feedback, two tempi, and two articulations (legato or staccato). It was observed that inaccuracy was greatest in the descending semi-phrase arpeggi produced at a fast tempo and with a staccato articulation, especially for nonprofessional singers. The magnitude of inaccuracy was also relatively large in the high tessitura relative to the low and the medium tessitura for such singers. Contrary to predictions, when external auditory feedback was strongly attenuated by the hearing protectors, nonprofessional singers showed greater pitch accuracy than in the other external feedback conditions. This finding indicates the importance of internal auditory feedback in pitch control. With an increase in training, the singer's pitch inaccuracy decreases. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Effect of Training and Level of External Auditory Feedback on the Singing Voice: Pitch Inaccuracy

    Science.gov (United States)

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.

    2016-01-01

    Background One of the aspects of major relevance to singing is the control of fundamental frequency. Objectives The effects on pitch inaccuracy, defined as the distance in cents in equally tempered tuning between the reference note and the sung note, of the following conditions were evaluated: (1) level of external feedback, (2) tempo (slow or fast), (3) articulation (legato or staccato), (4) tessitura (low, medium or high) and (5) semi-phrase direction (ascending or descending). Methods The subjects were 10 non-professional singers, and 10 classically-trained professional or semi-professional singers (10 males and 10 females). Subjects sang one octave and a fifth arpeggi with three different levels of external auditory feedback, two tempi and two articulations (legato or staccato). Results It was observed that inaccuracy was greatest in the descending semi-phrase arpeggi produced at a fast tempo and with a staccato articulation, especially for non-professional singers. The magnitude of inaccuracy was also relatively large in the high tessitura relative to the low and medium tessitura for such singers. Counter to predictions, when external auditory feedback was strongly attenuated by the hearing protectors, non-professional singers showed greater pitch accuracy than in the other external feedback conditions. This finding indicates the importance of internal auditory feedback in pitch control. Conclusions With an increase in training, the singer’s pitch inaccuracy decreases. PMID:26948385

  3. Voice responses to changes in pitch of voice or tone auditory feedback.

    Science.gov (United States)

    Sivasankar, Mahalakshmi; Bauer, Jay J; Babu, Tara; Larson, Charles R

    2005-02-01

    The present study was undertaken to examine if a subject's voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present.

  4. A counterbalanced cross-over study of the effects of visual, auditory and no feedback on performance measures in a simulated cardiopulmonary resuscitation.

    Science.gov (United States)

    Cason, Carolyn L; Trowbridge, Cynthia; Baxley, Susan M; Ricard, Mark D

    2011-08-02

    Previous research has demonstrated that trained rescuers have difficulties achieving and maintaining the correct depth and rate of chest compressions during both in and out of hospital cardiopulmonary resuscitation (CPR). Feedback on rate and depth mitigate decline in performance quality but not completely with the residual performance decline attributed to rescuer fatigue. The purpose of this study was to examine the effects of feedback (none, auditory only and visual only) on the quality of CPR and rescuer fatigue. Fifteen female volunteers performed 10 minutes of 30:2 CPR in each of three feedback conditions: none, auditory only, and visual only. Visual feedback was displayed continuously in graphic form. Auditory feedback was error correcting and provided by a voice assisted CPR manikin. CPR quality measures were collected using SkillReporter® software. Blood lactate (mmol/dl) and perceived exertion served as indices of fatigue. One-way and two way repeated measures analyses of variance were used with alpha set a priori at 0.05. Visual feedback yielded a greater percentage of correct compressions (78.1 ± 8.2%) than did auditory (65.4 ± 7.6%) or no feedback (44.5 ± 8.1%). Compression rate with auditory feedback (87.9 ± 0.5 compressions per minute) was less than it was with both visual and no feedback (p < 0.05). CPR performed with no feedback (39.2 ± 0.5 mm) yielded a shallower average depth of compression and a lower percentage (55 ± 8.9%) of compressions within the accepted 38-50 mm range than did auditory or visual feedback (p < 0.05). The duty cycle for auditory feedback (39.4 ± 1.6%) was less than it was with no feedback (p < 0.05). Auditory feedback produced lower lactate concentrations than did visual feedback (p < 0.05) but there were no differences in perceived exertion. In this study feedback mitigated the negative effects of fatigue on CPR performance and visual feedback yielded better CPR performance than did no feedback or auditory feedback

  5. Bioelectrical brain effects of one's own voice identification in pitch of voice auditory feedback.

    Science.gov (United States)

    Korzyukov, Oleg; Bronder, Alexander; Lee, Yunseon; Patel, Sona; Larson, Charles R

    2017-07-01

    Control of voice fundamental frequency (F0) relies in part on comparison of the intended F0 level and auditory feedback. This comparison impacts "sense of agency", or SoA, commonly defined as being the agent of one's own actions and plays a key role for self-awareness and social interactions. SoA is aberrant in several psychiatric disorders. Knowledge about brain activity reflecting SoA can be used in clinical practice for these disorders. It was shown that perception of voice feedback as one's own voice, reflecting the recognition of SoA, alters auditory sensory processing. Using a voice perturbation paradigm we contrasted vocal and bioelectrical brain responses to auditory stimuli that differed in magnitude: 100 and 400 cents. Results suggest the different magnitudes were perceived as a pitch error in self-vocalization (100 cents) or as a pitch shift generated externally (400 cents). Vocalizations and neural responses to changes in pitch of self-vocalization were defined as those made to small magnitude pitch-shifts (100 cents) and which did not show differential neural responses to upward versus downward changes in voice pitch auditory feedback. Vocal responses to large magnitude pitch shifts (400 cents) were smaller than those made to small pitch shifts, and neural responses differed according to upwards versus downward changes in pitch. Our results suggest that the presence of SoA for self-produced sounds may modify bioelectrical brain responses reflecting differences in auditory processing of the direction of a pitch shift. We suggest that this modification of bioelectrical response can be used as a biological index of SoA. Possible neuronal mechanisms of this modification of bioelectrical brain response are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Auditory feedback in error-based learning of motor regularity.

    Science.gov (United States)

    van Vugt, Floris T; Tillmann, Barbara

    2015-05-05

    Music and speech are skills that require high temporal precision of motor output. A key question is how humans achieve this timing precision given the poor temporal resolution of somatosensory feedback, which is classically considered to drive motor learning. We hypothesise that auditory feedback critically contributes to learn timing, and that, similarly to visuo-spatial learning models, learning proceeds by correcting a proportion of perceived timing errors. Thirty-six participants learned to tap a sequence regularly in time. For participants in the synchronous-sound group, a tone was presented simultaneously with every keystroke. For the jittered-sound group, the tone was presented after a random delay of 10-190 ms following the keystroke, thus degrading the temporal information that the sound provided about the movement. For the mute group, no keystroke-triggered sound was presented. In line with the model predictions, participants in the synchronous-sound group were able to improve tapping regularity, whereas the jittered-sound and mute group were not. The improved tapping regularity of the synchronous-sound group also transferred to a novel sequence and was maintained when sound was subsequently removed. The present findings provide evidence that humans engage in auditory feedback error-based learning to improve movement quality (here reduce variability in sequence tapping). We thus elucidate the mechanism by which high temporal precision of movement can be achieved through sound in a way that may not be possible with less temporally precise somatosensory modalities. Furthermore, the finding that sound-supported learning generalises to novel sequences suggests potential rehabilitation applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. ERP Correlates of Language-Specific Processing of Auditory Pitch Feedback during Self-Vocalization

    Science.gov (United States)

    Chen, Zhaocong; Liu, Peng; Wang, Emily Q.; Larson, Charles R.; Huang, Dongfeng; Liu, Hanjun

    2012-01-01

    The present study investigated whether the neural correlates for auditory feedback control of vocal pitch can be shaped by tone language experience. Event-related potentials (P2/N1) were recorded from adult native speakers of Mandarin and Cantonese who heard their voice auditory feedback shifted in pitch by -50, -100, -200, or -500 cents when they…

  8. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Larson, Charles R

    2011-06-06

    The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback. Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli. Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.

  9. A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback.

    Directory of Open Access Journals (Sweden)

    Richard H R Hahnloser

    Full Text Available Motor systems are highly adaptive. Both birds and humans compensate for synthetically induced shifts in the pitch (fundamental frequency of auditory feedback stemming from their vocalizations. Pitch-shift compensation is partial in the sense that large shifts lead to smaller relative compensatory adjustments of vocal pitch than small shifts. Also, compensation is larger in subjects with high motor variability. To formulate a mechanistic description of these findings, we adapt a Bayesian model of error relevance. We assume that vocal-auditory feedback loops in the brain cope optimally with known sensory and motor variability. Based on measurements of motor variability, optimal compensatory responses in our model provide accurate fits to published experimental data. Optimal compensation correctly predicts sensory acuity, which has been estimated in psychophysical experiments as just-noticeable pitch differences. Our model extends the utility of Bayesian approaches to adaptive vocal behaviors.

  10. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control.

    Science.gov (United States)

    Boyer, Eric O; Portron, Arthur; Bevilacqua, Frederic; Lorenceau, Jean

    2017-01-01

    As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM) can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  11. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control

    Directory of Open Access Journals (Sweden)

    Eric O. Boyer

    2017-04-01

    Full Text Available As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  12. A lightweight, headphones-based system for manipulating auditory feedback in songbirds.

    Science.gov (United States)

    Hoffmann, Lukas A; Kelly, Conor W; Nicholson, David A; Sober, Samuel J

    2012-11-26

    Experimental manipulations of sensory feedback during complex behavior have provided valuable insights into the computations underlying motor control and sensorimotor plasticity(1). Consistent sensory perturbations result in compensatory changes in motor output, reflecting changes in feedforward motor control that reduce the experienced feedback error. By quantifying how different sensory feedback errors affect human behavior, prior studies have explored how visual signals are used to recalibrate arm movements(2,3) and auditory feedback is used to modify speech production(4-7). The strength of this approach rests on the ability to mimic naturalistic errors in behavior, allowing the experimenter to observe how experienced errors in production are used to recalibrate motor output. Songbirds provide an excellent animal model for investigating the neural basis of sensorimotor control and plasticity(8,9). The songbird brain provides a well-defined circuit in which the areas necessary for song learning are spatially separated from those required for song production, and neural recording and lesion studies have made significant advances in understanding how different brain areas contribute to vocal behavior(9-12). However, the lack of a naturalistic error-correction paradigm - in which a known acoustic parameter is perturbed by the experimenter and then corrected by the songbird - has made it difficult to understand the computations underlying vocal learning or how different elements of the neural circuit contribute to the correction of vocal errors(13). The technique described here gives the experimenter precise control over auditory feedback errors in singing birds, allowing the introduction of arbitrary sensory errors that can be used to drive vocal learning. Online sound-processing equipment is used to introduce a known perturbation to the acoustics of song, and a miniaturized headphones apparatus is used to replace a songbird's natural auditory feedback with the

  13. Auditory reafferences: The influence of real-time feedback on movement control

    Directory of Open Access Journals (Sweden)

    Christian eKennel

    2015-01-01

    Full Text Available Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with nonartificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  14. Auditory feedback and memory for music performance: sound evidence for an encoding effect.

    Science.gov (United States)

    Finney, Steven A; Palmer, Caroline

    2003-01-01

    Research on the effects of context and task on learning and memory has included approaches that emphasize processes during learning (e.g., Craik & Tulving, 1975) and approaches that emphasize a match of conditions during learning with conditions during a later test of memory (e.g., Morris, Bransford, & Franks, 1977; Proteau, 1992; Tulving & Thomson, 1973). We investigated the effects of auditory context on learning and retrieval in three experiments on memorized music performance (a form of serial recall). Auditory feedback (presence or absence) was manipulated while pianists learned musical pieces from notation and when they later played the pieces from memory. Auditory feedback during learning significantly improved later recall. However, auditory feedback at test did not significantly affect recall, nor was there an interaction between conditions at learning and test. Auditory feedback in music performance appears to be a contextual factor that affects learning but is relatively independent of retrieval conditions.

  15. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2011-12-01

    The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Event-related potentials (ERPs) were recorded in response to+200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    Science.gov (United States)

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  17. Role of auditory feedback in speech produced by cochlear implanted adults and children

    Science.gov (United States)

    Bharadwaj, Sneha V.; Tobey, Emily A.; Assmann, Peter F.; Katz, William F.

    2002-05-01

    A prominent theory of speech production proposes that speech segments are largely controlled by reference to an internal model, with minimal reliance on auditory feedback. This theory also maintains that suprasegmental aspects of speech are directly regulated by auditory feedback. Accordingly, if a talker is briefly deprived of auditory feedback speech segments should not be affected, but suprasegmental properties should show significant change. To test this prediction, comparisons were made between speech samples obtained from cochlear implant users who repeated words under two conditions (1) implant device turned ON, and (2) implant switched OFF immediately before the repetition of each word. To determine whether producing unfamiliar speech requires greater reliance on auditory feedback than producing familiar speech, English and French words were elicited from English-speaking subjects. Subjects were congenitally deaf children (n=4) and adventitiously deafened adults (n=4). Vowel fundamental frequency and formant frequencies, vowel and syllable durations, and fricative spectral moments were analyzed. Preliminary data only partially confirm the predictions, in that both segmental and suprasegmental aspects of speech were significantly modified in the absence of auditory feedback. Modifications were greater for French compared to English words, suggesting greater reliance on auditory feedback for unfamiliar words. [Work supported by NIDCD.

  18. Ring a bell? Adaptive Auditory Game Feedback to Sustain Performance in Stroke Rehabilitation

    DEFF Research Database (Denmark)

    Hald, Kasper; Knoche, Hendrik

    2016-01-01

    This paper investigates the effect of adaptive auditory feed- back on continued player performance for stroke patients in a Whack- a-Mole style tablet game. The feedback consisted of accumulatively in- creasing the pitch of positive feedback sounds on tasks with fast reaction time and resetting...... it after slow reaction times. The analysis was based on data was obtained in a field trial with lesion patients during their regular rehabilitation. The auditory feedback events were categorized by feedback type (positive/negative) and the associated pitch change of ei- ther high or low magnitude. Both...... feedback type and magnitude had a significant effect on players performance. Negative feedback improved re- action time on the subsequent hit by 0.42 second and positive feedback impaired performance by 0.15 seconds....

  19. ERP correlates of pitch error detection in complex tone and voice auditory feedback with missing fundamental.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2012-04-11

    Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0. The absence of the fundamental induced no difference in ERP latencies. However, a right-hemisphere difference was found in the N1 amplitudes with larger responses to complex tones that included the fundamental compared to when it was missing. The P1 and N1 latencies were shorter in the left hemisphere, and the N1 and P2 amplitudes were larger bilaterally for pitch shifts in voice and complex tones compared with pure tones. These findings suggest hemispheric differences in neural encoding of pitch in sounds with missing fundamental. Data from the present study suggest that the right cortical auditory areas, thought to be specialized for spectral processing, may utilize different mechanisms to resolve pitch in sounds with missing fundamental. The left hemisphere seems to perform faster processing to resolve pitch based on the rate of temporal variations in complex sounds compared with pure tones. These effects indicate that the differential neural processing of pitch in the left and right hemispheres may enable the audio-vocal system to detect temporal and spectral variations in the auditory feedback for vocal pitch control. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study.

    Science.gov (United States)

    Gonzalez, Jose; Soma, Hirokazu; Sekine, Masashi; Yu, Wenwei

    2012-06-09

    Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user's mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject's EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. The performance improvements when using auditory cues, along with vision

  1. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study

    Directory of Open Access Journals (Sweden)

    Gonzalez Jose

    2012-06-01

    Full Text Available Abstract Background Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. Methods 10 male subjects (26+/-years old, participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF, Visual Feedback only control (VF, and Audiovisual Feedback control (AVF. For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject’s EEG, ECG, electro-dermal activity (EDA, and respiration rate were measured. Results The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback. Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. Conclusions The performance

  2. Comparisons of Stuttering Frequency during and after Speech Initiation in Unaltered Feedback, Altered Auditory Feedback and Choral Speech Conditions

    Science.gov (United States)

    Saltuklaroglu, Tim; Kalinowski, Joseph; Robbins, Mary; Crawcour, Stephen; Bowers, Andrew

    2009-01-01

    Background: Stuttering is prone to strike during speech initiation more so than at any other point in an utterance. The use of auditory feedback (AAF) has been found to produce robust decreases in the stuttering frequency by creating an electronic rendition of choral speech (i.e., speaking in unison). However, AAF requires users to self-initiate…

  3. Vocal responses to perturbations in voice auditory feedback in individuals with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Hanjun Liu

    Full Text Available BACKGROUND: One of the most common symptoms of speech deficits in individuals with Parkinson's disease (PD is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency. METHODOLOGY/PRINCIPAL FINDINGS: Twelve individuals with Parkinson's disease and 13 age- and sex-matched healthy control subjects sustained a vowel sound (/α/ and received unexpected, brief (200 ms perturbations in voice loudness (±3 or 6 dB or pitch (±100 cents auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD. CONCLUSIONS/SIGNIFICANCE: The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing.

  4. Tap Arduino: An Arduino microcontroller for low-latency auditory feedback in sensorimotor synchronization experiments.

    Science.gov (United States)

    Schultz, Benjamin G; van Vugt, Floris T

    2016-12-01

    Timing abilities are often measured by having participants tap their finger along with a metronome and presenting tap-triggered auditory feedback. These experiments predominantly use electronic percussion pads combined with software (e.g., FTAP or Max/MSP) that records responses and delivers auditory feedback. However, these setups involve unknown latencies between tap onset and auditory feedback and can sometimes miss responses or record multiple, superfluous responses for a single tap. These issues may distort measurements of tapping performance or affect the performance of the individual. We present an alternative setup using an Arduino microcontroller that addresses these issues and delivers low-latency auditory feedback. We validated our setup by having participants (N = 6) tap on a force-sensitive resistor pad connected to the Arduino and on an electronic percussion pad with various levels of force and tempi. The Arduino delivered auditory feedback through a pulse-width modulation (PWM) pin connected to a headphone jack or a wave shield component. The Arduino's PWM (M = 0.6 ms, SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demonstrated significantly lower auditory feedback latencies than the percussion pad (M = 9.1 ms, SD = 2.0), FTAP (M = 14.6 ms, SD = 2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM and wave shield latencies were also significantly less variable than those from FTAP and Max/MSP. The Arduino missed significantly fewer taps, and recorded fewer superfluous responses, than the percussion pad. The Arduino captured all responses, whereas at lower tapping forces, the percussion pad missed more taps. Regardless of tapping force, the Arduino outperformed the percussion pad. Overall, the Arduino is a high-precision, low-latency, portable, and affordable tool for auditory experiments.

  5. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    Directory of Open Access Journals (Sweden)

    Yan Kun

    2011-01-01

    Full Text Available Abstract Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees.

  6. A case study of mediated learning, delayed auditory feedback, and motor repatterning to reduce stuttering.

    Science.gov (United States)

    Radford, Nola T; Tanguma, Jesus; Gonzalez, Marcia; Nericcio, Mary Anne; Newman, Denis G

    2005-08-01

    A case study of DW, an 11-yr. old monolingual, English-speaking boy who exhibits stuttering, language delay, and ADHD is presented. DW experienced only limited improvement during stuttering therapy received in public schools, according to parents and the public school clinician. The purpose of this case study was to assess whether fluency treatment which incorporated Mediated Learning, Delayed Auditory Feedback, and Speech Motor Repatterning would enhance progress. Therapy was delivered in two treatments, with each treatment being 5 wk. of intense therapy, separated by one year. Treatment 1 of combined Mediated Learning and Delayed Auditory Feedback yielded improvement in fluency, judged by parents and the teacher to be clinically significant. The improved fluency was maintained for one year when DW was pretested for participation in Treatment 2, which combined Mediated Learning, Delayed Auditory Feedback, and Speech Motor Repatterning Exercises. As no conclusions are possible, further study is needed.

  7. Attentional demands influence vocal compensations to pitch errors heard in auditory feedback.

    Science.gov (United States)

    Tumber, Anupreet K; Scheerer, Nichole E; Jones, Jeffery A

    2014-01-01

    Auditory feedback is required to maintain fluent speech. At present, it is unclear how attention modulates auditory feedback processing during ongoing speech. In this event-related potential (ERP) study, participants vocalized/a/, while they heard their vocal pitch suddenly shifted downward a ½ semitone in both single and dual-task conditions. During the single-task condition participants passively viewed a visual stream for cues to start and stop vocalizing. In the dual-task condition, participants vocalized while they identified target stimuli in a visual stream of letters. The presentation rate of the visual stimuli was manipulated in the dual-task condition in order to produce a low, intermediate, and high attentional load. Visual target identification accuracy was lowest in the high attentional load condition, indicating that attentional load was successfully manipulated. Results further showed that participants who were exposed to the single-task condition, prior to the dual-task condition, produced larger vocal compensations during the single-task condition. Thus, when participants' attention was divided, less attention was available for the monitoring of their auditory feedback, resulting in smaller compensatory vocal responses. However, P1-N1-P2 ERP responses were not affected by divided attention, suggesting that the effect of attentional load was not on the auditory processing of pitch altered feedback, but instead it interfered with the integration of auditory and motor information, or motor control itself.

  8. Influence of Altered Auditory Feedback on Oral-Nasal Balance in Speech.

    Science.gov (United States)

    de Boer, Gillian; Bressmann, Tim

    2017-11-09

    This study explored the role of auditory feedback in the regulation of oral-nasal balance in speech. Twenty typical female speakers wore a Nasometer 6450 (KayPentax) headset and headphones while continuously repeating a sentence with oral and nasal sounds. Oral-nasal balance was quantified with nasalance scores. The signals from 2 additional oral and nasal microphones were played back to the participants through the headphones. The relative loudness of the nasal channel in the mix was gradually changed so that the speakers heard themselves as more or less nasal. An additional amplitude control group of 9 female speakers completed the same task while hearing themselves louder or softer in the headphones. A repeated-measures analysis of variance of the mean nasalance scores of the stimulus sentence at baseline, minimum, and maximum nasal feedback conditions demonstrated a significant effect of the nasal feedback condition. Post hoc analyses found that the mean nasalance scores were lowest for the maximum nasal feedback condition. The scores of the minimum nasal feedback condition were significantly higher than 2 of the 3 baseline feedback conditions. The amplitude control group did not show any effects of volume changes on nasalance scores. Increased nasal feedback led to a compensatory adjustment in the opposite direction, confirming that oral-nasal balance is regulated by auditory feedback. However, a lack of nasal feedback did not lead to a consistent compensatory response of similar magnitude.

  9. Investigating the Role of Auditory Feedback in a Multimodal Biking Experience

    DEFF Research Database (Denmark)

    Bruun-Pedersen, Jon Ram; Grani, Francesco; Serafin, Stefania

    2017-01-01

    In this paper, we investigate the role of auditory feedback in affecting perception of effort while biking in a virtual environment. Subjects were biking on a stationary chair bike, while exposed to 3D renditions of a recumbent bike inside a virtual environment (VE). The VE simulated a park and w...

  10. Auditory feedback affects perception of effort when exercising with a Pulley machine

    DEFF Research Database (Denmark)

    Bordegoni, Monica; Ferrise, Francesco; Grani, Francesco

    2013-01-01

    In this paper we describe an experiment that investigates the role of auditory feedback in affecting the perception of effort when using a physical pulley machine. Specifically, we investigated whether variations in the amplitude and frequency content of the pulley sound affect perception of effort....... Results show that variations in frequency content affect the perception of effort....

  11. Auditory Feedback: Effects on Vertical Force Production during Standing Up Following Stroke.

    Science.gov (United States)

    Fowler, V.; Carr, J.

    1996-01-01

    Twelve individuals recovering from stroke were given a three-week period of rehabilitative training with or without auditory feedback. The purpose was to investigate weight distribution on the pattern of vertical force through the affected leg during standing up. Results indicated the training improved subjects' strength and muscle control, though…

  12. Shop 'til you hear it drop - Influence of Interactive Auditory Feedback in a Virtual Reality Supermarket

    DEFF Research Database (Denmark)

    Sikström, Erik; Høeg, Emil Rosenlund; Mangano, Luca

    2016-01-01

    In this paper we describe an experiment aiming to investigate the impact of auditory feedback in a virtual reality supermarket scenario. The participants were asked to read a shopping list and collect items one by one and place them into a shopping cart. Three conditions were presented randomly...

  13. Attentional demands modulate sensorimotor learning induced by persistent exposure to changes in auditory feedback.

    Science.gov (United States)

    Scheerer, Nichole E; Tumber, Anupreet K; Jones, Jeffery A

    2016-02-01

    Hearing one's own voice is important for regulating ongoing speech and for mapping speech sounds onto articulator movements. However, it is currently unknown whether attention mediates changes in the relationship between motor commands and their acoustic output, which are necessary as growth and aging inevitably cause changes to the vocal tract. In this study, participants produced vocalizations while they heard their vocal pitch persistently shifted downward one semitone in both single- and dual-task conditions. During the single-task condition, participants vocalized while passively viewing a visual stream. During the dual-task condition, participants vocalized while also monitoring a visual stream for target letters, forcing participants to divide their attention. Participants' vocal pitch was measured across each vocalization, to index the extent to which their ongoing vocalization was modified as a result of the deviant auditory feedback. Smaller compensatory responses were recorded during the dual-task condition, suggesting that divided attention interfered with the use of auditory feedback for the regulation of ongoing vocalizations. Participants' vocal pitch was also measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback was used to modify subsequent speech motor commands. Smaller changes in vocal pitch at vocalization onset were recorded during the dual-task condition, suggesting that divided attention diminished sensorimotor learning. Together, the results of this study suggest that attention is required for the speech motor control system to make optimal use of auditory feedback for the regulation and planning of speech motor commands. Copyright © 2016 the American Physiological Society.

  14. Effects of different kinds of robot feedback

    DEFF Research Database (Denmark)

    Fischer, Kerstin; Lohan, K. S.; Nehaniv, C.

    2013-01-01

    In this paper, we investigate to what extent tutors' behavior is influenced by different kinds of robot feedback. In particular, we study the effects of online robot feedback in which the robot responds either contingently to the tutor's social behavior or by tracking the objects presented. Also,...... time. Display of learning outcomes, in contrast, only serves as feedback on robot capabilities when it is coupled with online social feedback. © Springer International Publishing 2013....

  15. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    Science.gov (United States)

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  16. Phonetic detail and lateralization of reading-related inner speech and of auditory and somatosensory feedback processing during overt reading.

    Science.gov (United States)

    Kell, Christian A; Darquea, Maritza; Behrens, Marion; Cordani, Lorenzo; Keller, Christian; Fuchs, Susanne

    2017-01-01

    Phonetic detail and lateralization of inner speech during covert sentence reading as well as overt reading in 32 right-handed healthy participants undergoing 3T fMRI were investigated. The number of voiceless and voiced consonants in the processed sentences was systematically varied. Participants listened to sentences, read them covertly, silently mouthed them while reading, and read them overtly. Condition comparisons allowed for the study of effects of externally versus self-generated auditory input and of somatosensory feedback related to or independent of voicing. In every condition, increased voicing modulated bilateral voice-selective regions in the superior temporal sulcus without any lateralization. The enhanced temporal modulation and/or higher spectral frequencies of sentences rich in voiceless consonants induced left-lateralized activation of phonological regions in the posterior temporal lobe, regardless of condition. These results provide evidence that inner speech during reading codes detail as fine as consonant voicing. Our findings suggest that the fronto-temporal internal loops underlying inner speech target different temporal regions. These regions differ in their sensitivity to inner or overt acoustic speech features. More slowly varying acoustic parameters are represented more anteriorly and bilaterally in the temporal lobe while quickly changing acoustic features are processed in more posterior left temporal cortices. Furthermore, processing of external auditory feedback during overt sentence reading was sensitive to consonant voicing only in the left superior temporal cortex. Voicing did not modulate left-lateralized processing of somatosensory feedback during articulation or bilateral motor processing. This suggests voicing is primarily monitored in the auditory rather than in the somatosensory feedback channel. Hum Brain Mapp 38:493-508, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Vocal and Neural Responses to Unexpected Changes in Voice Pitch Auditory Feedback During Register Transitions.

    Science.gov (United States)

    Patel, Sona; Lodhavia, Anjli; Frankford, Saul; Korzyukov, Oleg; Larson, Charles R

    2016-11-01

    It is known that singers are able to control their voice to maintain a relatively constant vocal quality while transitioning between vocal registers; however, the neural mechanisms underlying this effect are not understood. It was hypothesized that greater attention to the acoustical feedback of the voice and increased control of the vocal musculature during register transitions compared with singing within a register would be represented as neurological differences in event-related potentials. Nine singers sang musical notes at the high end of the modal register (the boundary between the modal and the head/falsetto registers) and at the low end (the boundary between the modal and the fry/pulse registers). While singing, the pitch of the voice auditory feedback was unexpectedly shifted either into the adjacent register ("toward" the register boundary) or within the modal register ("away from" the boundary). Singers were instructed to maintain a constant pitch and ignore any changes to their voice feedback. Vocal response latencies and magnitude of the accompanying N1 and P2 event-related potentials were greatest at the lower (modal-to-fry) boundary when the pitch shift carried the subjects' voices into the fry register as opposed to remaining within the modal register. These findings suggest that when a singer lowers the pitch of his or her voice such that it enters the fry register from the modal register, there is increased sensory-motor control of the voice, reflected as increased magnitude of the neural potentials to help minimize qualitative changes in the voice. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions

    Science.gov (United States)

    Patel, Sona; Lodhavia, Anjli; Frankford, Saul; Korzyukov, Oleg; Larson, Charles R.

    2016-01-01

    Objective/Hypothesis It is known that singers are able to control their voice to maintain a relatively constant vocal quality while transitioning between vocal registers; however, the neural mechanisms underlying this effect are not understood. It was hypothesized that greater attention to the acoustical feedback of the voice and increased control of the vocal musculature during register transitions compared to singing within a register would be represented as neurological differences in event-related potentials (ERPs). Study Design/Methods Nine singers sang musical notes at the high end of the modal register (the boundary between the modal and head/falsetto registers) and at the low end (the boundary between the modal and fry/pulse registers). While singing, the pitch of the voice auditory feedback was unexpectedly shifted either into the adjacent register (“toward” the register boundary) or within the modal register (“away from” the boundary). Singers were instructed to maintain a constant pitch and ignore any changes to their voice feedback. Results Vocal response latencies and magnitude of the accompanying N1 and P2 ERPs were greatest at the lower (modal-fry) boundary when the pitch shift carried the subjects’ voices into the fry register as opposed to remaining within the modal register. Conclusions These findings suggest that when a singer lowers the pitch of their voice such that it enters the fry register from the modal register, there is increased sensory-motor control of the voice, reflected as increased magnitude of the neural potentials to help minimize qualitative changes in the voice. PMID:26739860

  19. Compensations to auditory feedback perturbations in congenitally blind and sighted speakers: Acoustic and articulatory data.

    Science.gov (United States)

    Trudeau-Fisette, Pamela; Tiede, Mark; Ménard, Lucie

    2017-01-01

    This study investigated the effects of visual deprivation on the relationship between speech perception and production by examining compensatory responses to real-time perturbations in auditory feedback. Specifically, acoustic and articulatory data were recorded while sighted and congenitally blind French speakers produced several repetitions of the vowel /ø/. At the acoustic level, blind speakers produced larger compensatory responses to altered vowels than their sighted peers. At the articulatory level, blind speakers also produced larger displacements of the upper lip, the tongue tip, and the tongue dorsum in compensatory responses. These findings suggest that blind speakers tolerate less discrepancy between actual and expected auditory feedback than sighted speakers. The study also suggests that sighted speakers have acquired more constrained somatosensory goals through the influence of visual cues perceived in face-to-face conversation, leading them to tolerate less discrepancy between expected and altered articulatory positions compared to blind speakers and thus resulting in smaller observed compensatory responses.

  20. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control

    OpenAIRE

    Boyer, Eric O; Jean Lorenceau; Arthur Portron; Frederic Bevilacqua

    2017-01-01

    International audience; As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM) can be endogenously generated. In particular, we used a visual paradigm which enables to generate...

  1. Modeling neural correlates of auditory attention in evoked potentials using corticothalamic feedback dynamics.

    Science.gov (United States)

    Trenado, Carlos; Haab, Lars; Strauss, Daniel J

    2007-01-01

    Auditory evoked cortical potentials (AECP) are well established as diagnostic tool in audiology and gain more and more impact in experimental neuropsychology, neuro-science, and psychiatry, e.g., for the attention deficit disorder, schizophrenia, or for studying the tinnitus decompensation. The modulation of AECP due to exogenous and endogenous attention plays a major role in many clinical applications and has experimentally been studied in neuropsychology. However the relation of corticothalamic feedback dynamics to focal and non-focal attention and its large-scale effect reflected in AECPs is far from being understood. In this paper, we model neural correlates of auditory attention reflected in AECPs using corticothalamic feedback dynamics. We present a mapping of a recently developed multiscale model of evoked potentials to the hearing path and discuss for the first time its neurofunctionality in terms of corticothalamic feedback loops related to focal and non-focal attention. Our model reinforced recent experimental results related to online attention monitoring using AECPs with application as objective tinnitus decompensation measure. It is concluded that our model presents a promising approach to gain a deeper understanding of the neurodynamics of auditory attention and might be use as an efficient forward model to reinforce hypotheses that are obtained from experimental paradigms involving AECPs.

  2. Atypical delayed auditory feedback effect and Lombard effect on speech production in high-functioning adults with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    I-Fan eLin

    2015-09-01

    Full Text Available Individuals with autism spectrum disorder (ASD show impaired social interaction and communication, which may be related to their difficulties in speech production. To investigate the mechanisms of atypical speech production in this population, we examined feedback control by delaying the auditory feedback of their own speech, which degraded speech fluency. We also examined feedforward control by adding loud pink noise to the auditory feedback, which led to increased vocal effort in producing speech. The results of Japanese speakers show that, compared with neurotypical individuals, high-functioning adults with ASD (including Asperger's disorder, autistic disorder, and pervasive developmental disorder not otherwise specified were more affected by delayed auditory feedback but less affected by external noise. These findings indicate that, in contrast to neurotypical individuals, those with ASD relied more on feedback control than on feedforward control in speech production, which is consistent with the hypothesis that this population exhibits attenuated Bayesian priors.

  3. Hear You Later Alligator: How delayed auditory feedback affects non-musically trained people’s strumming

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Knoche, Hendrik

    2017-01-01

    Many musical instruments exhibit an inherent latency or delayed auditory feedback (DAF) between actuator activation and the occurrence of sound. We investigated how DAF (73ms and 250ms) affects musically trained (MT) and non-musically trained (NMT) people’s ability to synchronize the audible strum...... of an actuated guitar to a metronome at 60bpm and 120bpm. The long DAF matched a subdivision of the overall tempo. We compared their performance using two different input devices with feedback before or on activation. While 250ms DAF hardly affected musically trained participants, non-musically trained...... participants’ performance declined substantially both in mean synchronization error and its spread. Neither tempo nor input devices affected performance....

  4. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a

  5. Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  6. Adaptation to Delayed Speech Feedback Induces Temporal Recalibration between Vocal Sensory and Auditory Modalities

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    2011-10-01

    Full Text Available We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. Participants read some sentences with specific delay times of DAF (0, 30, 75, 120 ms during three minutes to induce ‘Lag Adaptation’. After the adaptation, they then judged the simultaneity between motor sensation and vocal sound given feedback in producing simple voice but not speech. We found that speech production with lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  7. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  8. Functional sex differences in human primary auditory cortex.

    Science.gov (United States)

    Ruytjens, Liesbet; Georgiadis, Janniko R; Holstege, Gert; Wit, Hero P; Albers, Frans W J; Willemsen, Antoon T M

    2007-12-01

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies.

  9. Stochastic aspects of motor behavior and their dependence on auditory feedback in experienced cellists.

    Science.gov (United States)

    Chen, Jessie; Woollacott, Marjorie; Pologe, Steve; Moore, George P

    2013-01-01

    This study aimed to investigate movement accuracy of experienced cellists, the statistical properties of their note sequences during a reciprocal task, and the degree to which these movement characteristics depend on auditory feedback. Nine experienced cellists were asked to shift alternately between two notes using only their index finger to make contact with the string and fingerboard. Shifting sequences continued for two minutes at a rate of one note per second. The task was performed under two conditions: with auditory feedback (provided by the bow) or without auditory feedback (i.e., without the use of bow). When the bow was used, subjects had no difficulty in shifting between target notes with precision and stability. Some variability was present, but notes in these sequences were generally uncorrelated. The contact data and correlations in most bowed trials resembled those expected of a renewal process, a process in which successive values are statistically independent and identically distributed. Without the bow, subjects lost their ability to reach the same target positions accurately; contact locations tended to drift and had a random quality, indicating that without the bow subjects were uncertain of the target location in relation to the spatial location of their fingertips. Within these unbowed sequences, finger positions were highly correlated-within and between note sequences. In some trials without the bow, the statistical correlation patterns of the sequence were consistent with the expectations of a discrete Wiener process. Throughout our study, computer simulations of renewal and Wiener processes enabled us to determine the types of correlations to be expected from these theoretical models. The implications of the statistical results in terms of subject behavior are discussed.

  10. Stochastic aspects of motor behavior and their dependence on auditory feedback in experienced cellists

    Directory of Open Access Journals (Sweden)

    Jessie eChen

    2013-07-01

    Full Text Available This study aimed to investigate movement accuracy of experienced cellists, the statistical properties of their note sequences during a reciprocal task, and the degree to which these movement characteristics depend on auditory feedback. Nine experienced cellists were asked to shift alternately between two notes using only their index finger to make contact with the string and fingerboard. Shifting sequences continued for two minutes at a rate of one note per second. The task was performed under two conditions: with auditory feedback (provided by the bow or without auditory feedback (i.e., without the use of bow. When the bow was used, subjects had no difficulty in shifting between target notes with precision and stability. Some variability was present, but notes in these sequences were generally uncorrelated. The contact data and correlations in most bowed trials resembled those expected of a renewal process, a process in which successive values are statistically independent and identically distributed. Without the bow, subjects lost their ability to reach the same target positions accurately; contact locations tended to drift and had a random quality, indicating that without the bow subjects were uncertain of the target location in relation to the spatial location of their fingertips. Within these unbowed sequences, finger positions were highly correlated-- within and between note sequences. In some trials without the bow, the statistical correlation patterns of the sequence were consistent with the expectations of a discrete Wiener process. Throughout our study, computer simulations of renewal and Wiener processes enabled us to determine the types of correlations to be expected from these theoretical models. The implications of the statistical results in terms of subject behavior are discussed.

  11. Auditory feedback control of vocal pitch during sustained vocalization: a cross-sectional study of adult aging.

    Directory of Open Access Journals (Sweden)

    Peng Liu

    Full Text Available BACKGROUND: Auditory feedback has been demonstrated to play an important role in the control of voice fundamental frequency (F(0, but the mechanisms underlying the processing of auditory feedback remain poorly understood. It has been well documented that young adults can use auditory feedback to stabilize their voice F(0 by making compensatory responses to perturbations they hear in their vocal pitch feedback. However, little is known about the effects of aging on the processing of audio-vocal feedback during vocalization. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we recruited adults who were between 19 and 75 years of age and divided them into five age groups. Using a pitch-shift paradigm, the pitch of their vocal feedback was unexpectedly shifted ±50 or ±100 cents during sustained vocalization of the vowel sound/u/. Compensatory vocal F(0 response magnitudes and latencies to pitch feedback perturbations were examined. A significant effect of age was found such that response magnitudes increased with increasing age until maximal values were reached for adults 51-60 years of age and then decreased for adults 61-75 years of age. Adults 51-60 years of age were also more sensitive to the direction and magnitude of the pitch feedback perturbations compared to younger adults. CONCLUSION: These findings demonstrate that the pitch-shift reflex systematically changes across the adult lifespan. Understanding aging-related changes to the role of auditory feedback is critically important for our theoretical understanding of speech production and the clinical applications of that knowledge.

  12. A counterbalanced cross-over study of the effects of visual, auditory and no feedback on performance measures in a simulated cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Baxley Susan M

    2011-08-01

    Full Text Available Abstract Background Previous research has demonstrated that trained rescuers have difficulties achieving and maintaining the correct depth and rate of chest compressions during both in and out of hospital cardiopulmonary resuscitation (CPR. Feedback on rate and depth mitigate decline in performance quality but not completely with the residual performance decline attributed to rescuer fatigue. The purpose of this study was to examine the effects of feedback (none, auditory only and visual only on the quality of CPR and rescuer fatigue. Methods Fifteen female volunteers performed 10 minutes of 30:2 CPR in each of three feedback conditions: none, auditory only, and visual only. Visual feedback was displayed continuously in graphic form. Auditory feedback was error correcting and provided by a voice assisted CPR manikin. CPR quality measures were collected using SkillReporter® software. Blood lactate (mmol/dl and perceived exertion served as indices of fatigue. One-way and two way repeated measures analyses of variance were used with alpha set a priori at 0.05. Results Visual feedback yielded a greater percentage of correct compressions (78.1 ± 8.2% than did auditory (65.4 ± 7.6% or no feedback (44.5 ± 8.1%. Compression rate with auditory feedback (87.9 ± 0.5 compressions per minute was less than it was with both visual and no feedback (p Conclusions In this study feedback mitigated the negative effects of fatigue on CPR performance and visual feedback yielded better CPR performance than did no feedback or auditory feedback. The perfect confounding of sensory modality and periodicity of feedback (visual feedback provided continuously and auditory feedback provided to correct error leaves unanswered the question of optimal form and timing of feedback.

  13. Perceived success, auditory feedback, and mental imagery: what best predicts improved efficacy and motor performance?

    Science.gov (United States)

    Wright, Bradley J; O'Halloran, Paul D

    2013-06-01

    Performance enhancement techniques can improve self-efficacy (SE) and task performance. The focus of this study was to determine which techniques could best achieve this with three novel tasks. Participants (n = 98) were counterbalanced across tasks and conditions (48 participants assigned to each condition in each task) and completed two trials of putting (imagery vs. no imagery), throwing (easy vs. difficult), and kicking (verbal feedback vs. no feedback) tasks, and SE and performance scores were recorded. The results revealed that the auditory feedback condition had the greatest impact as it significantly explained both SE and performance scores, with a greater effect recorded for SE scores. Use of imagery or allocation to the easy-to-score condition did not improve performance or SE scores more than did the control conditions. These findings were unexpected as successful past performance is often cited as the main determinant of SE change. Further empirical investigation is required to determine if these findings are repeatable and if they generalize to sporting settings.

  14. The Effects of Computerized Auditory Feedback on Electronic Article Surveillance Tag Placement in an Auto-Parts Distribution Center

    Science.gov (United States)

    Goomas, David T.

    2008-01-01

    In this report from the field, computerized auditory feedback was used to inform order selectors and order selector auditors in a distribution center to add an electronic article surveillance (EAS) adhesive tag. This was done by programming handheld computers to emit a loud beep for high-priced items upon scanning the item's bar-coded Universal…

  15. The role of auditory feedback in music-supported stroke rehabilitation: A single-blinded randomised controlled intervention.

    Science.gov (United States)

    van Vugt, F T; Kafczyk, T; Kuhn, W; Rollnik, J D; Tillmann, B; Altenmüller, E

    2016-01-01

    Learning to play musical instruments such as piano was previously shown to benefit post-stroke motor rehabilitation. Previous work hypothesised that the mechanism of this rehabilitation is that patients use auditory feedback to correct their movements and therefore show motor learning. We tested this hypothesis by manipulating the auditory feedback timing in a way that should disrupt such error-based learning. We contrasted a patient group undergoing music-supported therapy on a piano that emits sounds immediately (as in previous studies) with a group whose sounds are presented after a jittered delay. The delay was not noticeable to patients. Thirty-four patients in early stroke rehabilitation with moderate motor impairment and no previous musical background learned to play the piano using simple finger exercises and familiar children's songs. Rehabilitation outcome was not impaired in the jitter group relative to the normal group. Conversely, some clinical tests suggests the jitter group outperformed the normal group. Auditory feedback-based motor learning is not the beneficial mechanism of music-supported therapy. Immediate auditory feedback therapy may be suboptimal. Jittered delay may increase efficacy of the proposed therapy and allow patients to fully benefit from motivational factors of music training. Our study shows a novel way to test hypotheses concerning music training in a single-blinded way, which is an important improvement over existing unblinded tests of music interventions.

  16. Auditory temporal-order thresholds show no gender differences

    NARCIS (Netherlands)

    van Kesteren, Marlieke T. R.; Wierslnca-Post, J. Esther C.

    2007-01-01

    Purpose: Several studies on auditory temporal-order processing showed gender differences. Women needed longer inter-stimulus intervals than men when indicating the temporal order of two clicks presented to the left and right ear. In this study, we examined whether we could reproduce these results in

  17. Age differences in feedback reactions: The roles of employee feedback orientation on social awareness and utility.

    Science.gov (United States)

    Wang, Mo; Burlacu, Gabriela; Truxillo, Donald; James, Keith; Yao, Xiang

    2015-07-01

    Organizations worldwide are currently experiencing shifts in the age composition of their workforces. The workforce is aging and becoming increasingly age-diverse, suggesting that organizational researchers and practitioners need to better understand how age differences may manifest in the workplace and the implications for human resource practice. Integrating socioemotional selectivity theory with the performance feedback literature and using a time-lagged design, the current study examined age differences in moderating the relationships between the characteristics of performance feedback and employee reactions to the feedback event. The results suggest that older workers had higher levels of feedback orientation on social awareness, but lower levels of feedback orientation on utility than younger workers. Furthermore, the positive associations between favorability of feedback and feedback delivery and feedback reactions were stronger for older workers than for younger workers, whereas the positive association between feedback quality and feedback reactions was stronger for younger workers than for older workers. Finally, the current study revealed that age-related differences in employee feedback orientation could explain the different patterns of relationships between feedback characteristics and feedback reactions across older and younger workers. These findings have both theoretical and practical implications for building theory about workplace aging and improving ways that performance feedback is managed across employees from diverse age groups. (c) 2015 APA, all rights reserved).

  18. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control.

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A; Larson, Charles R

    2015-01-01

    The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP), and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ± 100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5-8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced) frontal activation within the delta band (1-4 Hz) that emerged at approximately 1 s after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE), indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control.

  19. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control

    Directory of Open Access Journals (Sweden)

    Roozbeh eBehroozmand

    2015-03-01

    Full Text Available The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM, relative pitch (RP and absolute pitch (AP musicians maintained vocalizations of a vowel sound and received randomized ±100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked fronto-central activation within the theta band (5-8 Hz that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced frontal activation within the delta band (1-4 Hz that emerged at approximately 1 second after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE, indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control.

  20. Gender differences in identifying emotions from auditory and visual stimuli.

    Science.gov (United States)

    Waaramaa, Teija

    2017-12-01

    The present study focused on gender differences in emotion identification from auditory and visual stimuli produced by two male and two female actors. Differences in emotion identification from nonsense samples, language samples and prolonged vowels were investigated. It was also studied whether auditory stimuli can convey the emotional content of speech without visual stimuli, and whether visual stimuli can convey the emotional content of speech without auditory stimuli. The aim was to get a better knowledge of vocal attributes and a more holistic understanding of the nonverbal communication of emotion. Females tended to be more accurate in emotion identification than males. Voice quality parameters played a role in emotion identification in both genders. The emotional content of the samples was best conveyed by nonsense sentences, better than by prolonged vowels or shared native language of the speakers and participants. Thus, vocal non-verbal communication tends to affect the interpretation of emotion even in the absence of language. The emotional stimuli were better recognized from visual stimuli than auditory stimuli by both genders. Visual information about speech may not be connected to the language; instead, it may be based on the human ability to understand the kinetic movements in speech production more readily than the characteristics of the acoustic cues.

  1. Quantifying stimulus-response rehabilitation protocols by auditory feedback in Parkinson's disease gait pattern

    Science.gov (United States)

    Pineda, Gustavo; Atehortúa, Angélica; Iregui, Marcela; García-Arteaga, Juan D.; Romero, Eduardo

    2017-11-01

    External auditory cues stimulate motor related areas of the brain, activating motor ways parallel to the basal ganglia circuits and providing a temporary pattern for gait. In effect, patients may re-learn motor skills mediated by compensatory neuroplasticity mechanisms. However, long term functional gains are dependent on the nature of the pathology, follow-up is usually limited and reinforcement by healthcare professionals is crucial. Aiming to cope with these challenges, several researches and device implementations provide auditory or visual stimulation to improve Parkinsonian gait pattern, inside and outside clinical scenarios. The current work presents a semiautomated strategy for spatio-temporal feature extraction to study the relations between auditory temporal stimulation and spatiotemporal gait response. A protocol for auditory stimulation was built to evaluate the integrability of the strategy in the clinic practice. The method was evaluated in transversal measurement with an exploratory group of people with Parkinson's (n = 12 in stage 1, 2 and 3) and control subjects (n =6). The result showed a strong linear relation between auditory stimulation and cadence response in control subjects (R=0.98 +/-0.008) and PD subject in stage 2 (R=0.95 +/-0.03) and stage 3 (R=0.89 +/-0.05). Normalized step length showed a variable response between low and high gait velocity (0.2> R >0.97). The correlation between normalized mean velocity and stimulus was strong in all PD stage 2 (R>0.96) PD stage 3 (R>0.84) and controls (R>0.91) for all experimental conditions. Among participants, the largest variation from baseline was found in PD subject in stage 3 (53.61 +/-39.2 step/min, 0.12 +/- 0.06 in step length and 0.33 +/- 0.16 in mean velocity). In this group these values were higher than the own baseline. These variations are related with direct effect of metronome frequency on cadence and velocity. The variation of step length involves different regulation strategies and

  2. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.

    Science.gov (United States)

    Metzner, Walter; Zhang, Shuyi; Smotherman, Michael

    2002-06-01

    Among mammals, echolocation in bats illustrates the vital role of proper audio-vocal feedback control particularly well. Bats adjust the temporal, spectral and intensity parameters of their echolocation calls depending on the characteristics of the returning echo signal. The mechanism of audio-vocal integration in both mammals and birds is, however, still largely unknown. Here, we present behavioral evidence suggesting a novel audio-vocal control mechanism in echolocating horseshoe bats (Rhinolophus ferrumequinum). These bats compensate for even subtle frequency shifts in the echo caused by flight-induced Doppler effects by adjusting the frequency of their echolocation calls. Under natural conditions, when approaching background targets, the bats usually encounter only positive Doppler shifts. Hence, we commonly believed that, during this Doppler-shift compensation behavior, horseshoe bats use auditory feedback to compensate only for these increases in echo frequency (=positive shifts) by actively lowering their call frequency below the resting frequency (the call frequency emitted when not flying and not experiencing Doppler shifts). Re-investigation of the Doppler-shift compensation behavior, however, shows that decreasing echo frequencies (=negative shifts) are involved as well: auditory feedback from frequencies below the resting frequency, when presented at similar suprathreshold intensity levels as higher echo frequencies, cause the bat's call frequency to increase above the resting frequency. However, compensation for negative shifts is less complete than for positive shifts (22% versus 95%), probably because of biomechanical restrictions in the larynx of bats. Therefore, Doppler-shift compensation behavior involves a quite different neural substrate and audio-vocal control mechanism from those previously assumed. The behavioral results are no longer consistent with solely inhibitory feedback originating from frequencies above the resting frequency. Instead

  3. Learning expressive percussion performance under different visual feedback conditions

    OpenAIRE

    Brandmeyer, A.; Timmers, R.; Sadakata, M.; Desain, P.

    2010-01-01

    A study was conducted to test the effect of two different forms of real-time visual feedback on expressive percussion performance. Conservatory percussion students performed imitations of recorded teacher performances while receiving either high-level feedback on the expressive style of their performances, low-level feedback on the timing and dynamics of the performed notes, or no feedback. The high-level feedback was based on a Bayesian analysis of the performances, while the low-level feedb...

  4. A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise.

    Science.gov (United States)

    Clark, Nicholas R; Brown, Guy J; Jürgens, Tim; Meddis, Ray

    2012-09-01

    The potential contribution of the peripheral auditory efferent system to our understanding of speech in a background of competing noise was studied using a computer model of the auditory periphery and assessed using an automatic speech recognition system. A previous study had shown that a fixed efferent attenuation applied to all channels of a multi-channel model could improve the recognition of connected digit triplets in noise [G. J. Brown, R. T. Ferry, and R. Meddis, J. Acoust. Soc. Am. 127, 943-954 (2010)]. In the current study an anatomically justified feedback loop was used to automatically regulate separate attenuation values for each auditory channel. This arrangement resulted in a further enhancement of speech recognition over fixed-attenuation conditions. Comparisons between multi-talker babble and pink noise interference conditions suggest that the benefit originates from the model's ability to modify the amount of suppression in each channel separately according to the spectral shape of the interfering sounds.

  5. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

    Directory of Open Access Journals (Sweden)

    Charles R Larson

    2016-02-01

    Full Text Available The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor control. Another use of this technique requires subjects to voluntarily change the pitch of their voice when they hear a pitch shift stimulus. Under these conditions, short latency responses are produced that change voice pitch to match that of the stimulus. The pitch-shift technique has been used with magnetoencephalography (MEG and electroencephalography (EEG recordings, and has shown that at vocal onset there is normally a suppression of neural activity related to vocalization. However, if a pitch-shift is also presented at voice onset, there is a cancellation of this suppression, which has been interpreted to mean that one way in which a person distinguishes self-vocalization from vocalization of others is by a comparison of the intended voice and the actual voice. Studies of the pitch shift reflex in the fMRI environment show that the superior temporal gyrus (STG plays an important role in the process of controlling voice F0 based on auditory feedback. Additional studies using fMRI for effective connectivity modeling show that the left and right STG play critical roles in correcting for an error in voice production. While both the left and right STG are involved in this process, a feedback loop develops between left and right STG during perturbations, in which the left to right connection becomes stronger, and a new negative right to left connection emerges along with the emergence of other feedback loops within the cortical network tested.

  6. The Unresponsive Partner: Roles of Social Status, Auditory Feedback, and Animacy in Coordination of Joint Music Performance

    OpenAIRE

    Demos, Alexander P.; Carter, Daniel J.; Wanderley, Marcelo M.; Palmer, Caroline

    2017-01-01

    We examined temporal synchronization in joint music performance to determine how social status, auditory feedback, and animacy influence interpersonal coordination. A partner’s coordination can be bidirectional (partners adapt to the actions of one another) or unidirectional (one partner adapts). According to the dynamical systems framework, bidirectional coordination should be the optimal (preferred) state during live performance. To test this, 24 skilled pianists each performed with a confe...

  7. The effects of providing visual feedback and auditory stimulation using a robotic device on balance and gait abilities in persons with stroke: a pilot study

    National Research Council Canada - National Science Library

    Jae Ho Park; ; Yijung Chung

    2016-01-01

    Objective: The purpose of this study was to investigate the effects of providing visual feedback and auditory stimulation using a robotic device on balance and gait abilities in stroke patients. Design...

  8. Fast negative feedback enables mammalian auditory nerve fibers to encode a wide dynamic range of sound intensities.

    Directory of Open Access Journals (Sweden)

    Mark Ospeck

    Full Text Available Mammalian auditory nerve fibers (ANF are remarkable for being able to encode a 40 dB, or hundred fold, range of sound pressure levels into their firing rate. Most of the fibers are very sensitive and raise their quiescent spike rate by a small amount for a faint sound at auditory threshold. Then as the sound intensity is increased, they slowly increase their spike rate, with some fibers going up as high as ∼300 Hz. In this way mammals are able to combine sensitivity and wide dynamic range. They are also able to discern sounds embedded within background noise. ANF receive efferent feedback, which suggests that the fibers are readjusted according to the background noise in order to maximize the information content of their auditory spike trains. Inner hair cells activate currents in the unmyelinated distal dendrites of ANF where sound intensity is rate-coded into action potentials. We model this spike generator compartment as an attenuator that employs fast negative feedback. Input current induces rapid and proportional leak currents. This way ANF are able to have a linear frequency to input current (f-I curve that has a wide dynamic range. The ANF spike generator remains very sensitive to threshold currents, but efferent feedback is able to lower its gain in response to noise.

  9. Differences in the Uptake of Peer and Teacher Feedback

    Science.gov (United States)

    Ruegg, Rachael

    2015-01-01

    This study aimed to determine differences in the uptake of peer and teacher feedback after writing students received longitudinal feedback from only one of these sources. It also investigates the types of feedback given by peers and a teacher in order to explain those any differences. Data was collected from 64 Japanese university students in four…

  10. Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback.

    Directory of Open Access Journals (Sweden)

    Oleg Korzyukov

    Full Text Available Accurate vocal production relies on several factors including sensory feedback and the ability to predict future challenges to the control processes. Repetitive patterns of perturbations in sensory feedback by themselves elicit implicit expectations in the vocal control system regarding the timing, quality and direction of perturbations. In the present study, the predictability of voice pitch-shifted auditory feedback was experimentally manipulated. A block of trials where all pitch-shift stimuli were upward, and therefore predictable was contrasted against an unpredictable block of trials in which the stimulus direction was randomized between upward and downward pitch-shifts. It was found that predictable perturbations in voice auditory feedback led to a reduction in the proportion of compensatory vocal responses, which might be indicative of a reduction in vocal control. The predictable perturbations also led to a reduction in the magnitude of the N1 component of cortical Event Related Potentials (ERP that was associated with the reflexive compensations to the perturbations. We hypothesize that formation of expectancy in our study is accompanied by involuntary allocation of attentional resources occurring as a result of habituation or learning, that in turn trigger limited and controlled exploration-related motor variability in the vocal control system.

  11. Self-Generated Auditory Feedback as a Cue to Support Rhythmic Motor Stability

    Directory of Open Access Journals (Sweden)

    Gopher Daniel

    2011-12-01

    Full Text Available A goal of the SKILLS project is to develop Virtual Reality (VR-based training simulators for different application domains, one of which is juggling. Within this context the value of multimodal VR environments for skill acquisition is investigated. In this study, we investigated whether it was necessary to render the sounds of virtual balls hitting virtual hands within the juggling training simulator. First, we recorded sounds at the jugglers’ ears and found the sound of ball hitting hands to be audible. Second, we asked 24 jugglers to juggle under normal conditions (Audible or while listening to pink noise intended to mask the juggling sounds (Inaudible. We found that although the jugglers themselves reported no difference in their juggling across these two conditions, external juggling experts rated rhythmic stability worse in the Inaudible condition than in the Audible condition. This result suggests that auditory information should be rendered in the VR juggling training simulator.

  12. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke

    Directory of Open Access Journals (Sweden)

    Reinkensmeyer David J

    2011-04-01

    Full Text Available Abstract Background Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Methods Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Results Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Conclusions Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for

  13. Interaural intensity and latency difference in the dolphin's auditory system.

    Science.gov (United States)

    Popov, V V; Supin AYa

    1991-12-09

    Binaural hearing mechanisms were measured in dolphins (Inia geoffrensis) by recording the auditory nerve evoked response from the body surface. The azimuthal position of a sound source at 10-15 degrees from the longitudinal axis elicited interaural intensity disparity up to 20 dB and interaural latency difference as large as 250 microseconds. The latter was many times greater than the acoustical interaural time delay. This latency difference seems to be caused by the intensity disparity. The latency difference seems to be an effective way of coding of intensity disparity.

  14. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Sangtian, Stacey; Korzyukov, Oleg; Larson, Charles R

    2016-04-01

    The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Useful but Different: Resident Physician Perceptions of Interprofessional Feedback.

    Science.gov (United States)

    Vesel, Travis P; O'Brien, Bridget C; Henry, Duncan M; van Schaik, Sandrijn M

    2016-01-01

    Phenomenon: Based on recently formulated interprofessional core competencies, physicians are expected to incorporate feedback from other healthcare professionals. Based on social identity theory, physicians likely differentiate between feedback from members of their own profession and others. The current study examined residents' experiences with, and perceptions of, interprofessional feedback. In 2013, Anesthesia, Obstetrics-Gynecology, Pediatrics, and Psychiatry residents completed a survey including questions about frequency of feedback from different professionals and its perceived value (5-point scale). The authors performed an analysis of variance to examine interactions between residency program and profession of feedback provider. They conducted follow-up interviews with a subset of residents to explore reasons for residents' survey ratings. Fifty-two percent (131/254) of residents completed the survey, and 15 participated in interviews. Eighty percent of residents reported receiving written feedback from physicians, 26% from nurses, and less than 10% from other professions. There was a significant interaction between residency program and feedback provider profession, F(21, 847) = 3.82, p feedback provider profession, F(7, 847) = 73.7, p feedback from attending physicians higher than feedback from others, and anesthesia residents rated feedback from other professionals significantly lower than other residents. Ten major themes arose from qualitative data analysis, which revealed an overall positive attitude toward interprofessional feedback and clarified reasons behind residents' perceptions and identified barriers. Insights: Residents in our study reported limited exposure to interprofessional feedback and valued such feedback less than intraprofessional feedback. However, our data suggest opportunities exist for effective utilization of interprofessional feedback.

  16. The Unresponsive Partner: Roles of Social Status, Auditory Feedback, and Animacy in Coordination of Joint Music Performance

    Science.gov (United States)

    Demos, Alexander P.; Carter, Daniel J.; Wanderley, Marcelo M.; Palmer, Caroline

    2017-01-01

    We examined temporal synchronization in joint music performance to determine how social status, auditory feedback, and animacy influence interpersonal coordination. A partner’s coordination can be bidirectional (partners adapt to the actions of one another) or unidirectional (one partner adapts). According to the dynamical systems framework, bidirectional coordination should be the optimal (preferred) state during live performance. To test this, 24 skilled pianists each performed with a confederate while their coordination was measured by the asynchrony in their tone onsets. To promote social balance, half of the participants were told the confederate was a fellow participant – an equal social status. To promote social imbalance, the other half was told the confederate was an experimenter – an unequal social status. In all conditions, the confederate’s arm and finger movements were occluded from the participant’s view to allow manipulation of animacy of the confederate’s performances (live or recorded). Unbeknownst to the participants, half of the confederate’s performances were replaced with pre-recordings, forcing the participant into unidirectional coordination during performance. The other half of the confederate’s performances were live, which permitted bidirectional coordination between performers. In a final manipulation, both performers heard the auditory feedback from one or both of the performers’ parts removed at unpredictable times to disrupt their performance. Consistently larger asynchronies were observed in performances of unidirectional (recorded) than bidirectional (live) performances across all conditions. Participants who were told the confederate was an experimenter reported their synchrony as more successful than when the partner was introduced as a fellow participant. Finally, asynchronies increased as auditory feedback was removed; removal of the confederate’s part hurt coordination more than removal of the participant

  17. The Unresponsive Partner: Roles of Social Status, Auditory Feedback, and Animacy in Coordination of Joint Music Performance.

    Science.gov (United States)

    Demos, Alexander P; Carter, Daniel J; Wanderley, Marcelo M; Palmer, Caroline

    2017-01-01

    We examined temporal synchronization in joint music performance to determine how social status, auditory feedback, and animacy influence interpersonal coordination. A partner's coordination can be bidirectional (partners adapt to the actions of one another) or unidirectional (one partner adapts). According to the dynamical systems framework, bidirectional coordination should be the optimal (preferred) state during live performance. To test this, 24 skilled pianists each performed with a confederate while their coordination was measured by the asynchrony in their tone onsets. To promote social balance, half of the participants were told the confederate was a fellow participant - an equal social status. To promote social imbalance, the other half was told the confederate was an experimenter - an unequal social status. In all conditions, the confederate's arm and finger movements were occluded from the participant's view to allow manipulation of animacy of the confederate's performances (live or recorded). Unbeknownst to the participants, half of the confederate's performances were replaced with pre-recordings, forcing the participant into unidirectional coordination during performance. The other half of the confederate's performances were live, which permitted bidirectional coordination between performers. In a final manipulation, both performers heard the auditory feedback from one or both of the performers' parts removed at unpredictable times to disrupt their performance. Consistently larger asynchronies were observed in performances of unidirectional (recorded) than bidirectional (live) performances across all conditions. Participants who were told the confederate was an experimenter reported their synchrony as more successful than when the partner was introduced as a fellow participant. Finally, asynchronies increased as auditory feedback was removed; removal of the confederate's part hurt coordination more than removal of the participant's part in live

  18. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    National Research Council Canada - National Science Library

    Behroozmand, Roozbeh; Larson, Charles R

    2011-01-01

    .... In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production...

  19. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  20. Logarithmic temporal axis manipulation and its application for measuring auditory contributions in F0 control using a transformed auditory feedback procedure

    Science.gov (United States)

    Yanaga, Ryuichiro; Kawahara, Hideki

    2003-10-01

    A new parameter extraction procedure based on logarithmic transformation of the temporal axis was applied to investigate auditory effects on voice F0 control to overcome artifacts due to natural fluctuations and nonlinearities in speech production mechanisms. The proposed method may add complementary information to recent findings reported by using frequency shift feedback method [Burnett and Larson, J. Acoust. Soc. Am. 112 (2002)], in terms of dynamic aspects of F0 control. In a series of experiments, dependencies of system parameters in F0 control on subjects, F0 and style (musical expressions and speaking) were tested using six participants. They were three male and three female students specialized in musical education. They were asked to sustain a Japanese vowel /a/ for about 10 s repeatedly up to 2 min in total while hearing F0 modulated feedback speech, that was modulated using an M-sequence. The results replicated qualitatively the previous finding [Kawahara and Williams, Vocal Fold Physiology, (1995)] and provided more accurate estimates. Relations with designing an artificial singer also will be discussed. [Work partly supported by the grant in aids in scientific research (B) 14380165 and Wakayama University.

  1. Learning expressive percussion performance under different visual feedback conditions

    NARCIS (Netherlands)

    Brandmeyer, A.; Timmers, R.; Sadakata, M.; Desain, P.W.M.

    2011-01-01

    A study was conducted to test the effect of two different forms of real-time visual feedback on expressive percussion performance. Conservatory percussion students performed imitations of recorded teacher performances while receiving either high-level feedback on the expressive style of their

  2. Learning expressive percussion performance under different visual feedback conditions.

    Science.gov (United States)

    Brandmeyer, Alex; Timmers, Renee; Sadakata, Makiko; Desain, Peter

    2011-03-01

    A study was conducted to test the effect of two different forms of real-time visual feedback on expressive percussion performance. Conservatory percussion students performed imitations of recorded teacher performances while receiving either high-level feedback on the expressive style of their performances, low-level feedback on the timing and dynamics of the performed notes, or no feedback. The high-level feedback was based on a Bayesian analysis of the performances, while the low-level feedback was based on the raw participant timing and dynamics data. Results indicated that neither form of feedback led to significantly smaller timing and dynamics errors. However, high-level feedback did lead to a higher proficiency in imitating the expressive style of the target performances, as indicated by a probabilistic measure of expressive style. We conclude that, while potentially disruptive to timing processes involved in music performance due to extraneous cognitive load, high-level visual feedback can improve participant imitations of expressive performance features.

  3. Auditory information processing in rat genotypes with different dopaminergic properties.

    NARCIS (Netherlands)

    Bruin, N.M.W.J. de; Luijtelaar, E.L.J.M. van; Cools, A.R.; Ellenbroek, B.A.

    2001-01-01

    RATIONALE: Auditory filtering disturbances, as measured in the sensory gating and prepulse inhibition (PPI) paradigms, have been linked to aberrant auditory information processing and sensory overload in schizophrenic patients. In both paradigms, the response to the second stimulus (S2) is

  4. Auditory information processing in rat genotypes with different dopaminergic properties

    NARCIS (Netherlands)

    Bruin, N.M.W.J. de; Luijtelaar, E.L.J.M. van; Cools, A.R.; Ellenbroek, B.A.

    2001-01-01

    Rationale: Auditory filtering disturbances, as measured in the sensory gating and prepulse inhibition (PPI) paradigms, have been linked to aberrant auditory information processing and sensory overload in schizophrenic patients. In both paradigms, the response to the second stimulus (S2) is

  5. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Science.gov (United States)

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico

  6. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Maria eHerrojo Ruiz

    2014-09-01

    Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN

  7. Behavioral and brain pattern differences between acting and observing in an auditory task

    Directory of Open Access Journals (Sweden)

    Ventouras Errikos M

    2009-01-01

    Full Text Available Abstract Background Recent research has shown that errors seem to influence the patterns of brain activity. Additionally current notions support the idea that similar brain mechanisms are activated during acting and observing. The aim of the present study was to examine the patterns of brain activity of actors and observers elicited upon receiving feedback information of the actor's response. Methods The task used in the present research was an auditory identification task that included both acting and observing settings, ensuring concurrent ERP measurements of both participants. The performance of the participants was investigated in conditions of varying complexity. ERP data were analyzed with regards to the conditions of acting and observing in conjunction to correct and erroneous responses. Results The obtained results showed that the complexity induced by cue dissimilarity between trials was a demodulating factor leading to poorer performance. The electrophysiological results suggest that feedback information results in different intensities of the ERP patterns of observers and actors depending on whether the actor had made an error or not. The LORETA source localization method yielded significantly larger electrical activity in the supplementary motor area (Brodmann area 6, the posterior cingulate gyrus (Brodmann area 31/23 and the parietal lobe (Precuneus/Brodmann area 7/5. Conclusion These findings suggest that feedback information has a different effect on the intensities of the ERP patterns of actors and observers depending on whether the actor committed an error. Certain neural systems, including medial frontal area, posterior cingulate gyrus and precuneus may mediate these modulating effects. Further research is needed to elucidate in more detail the neuroanatomical and neuropsychological substrates of these systems.

  8. Cortical Auditory-Evoked Potential and Behavioral Evidence for Differences in Auditory Processing between Good and Poor Readers.

    Science.gov (United States)

    Barker, Matthew D; Kuruvilla-Mathew, Abin; Purdy, Suzanne C

    2017-06-01

    The relationship between auditory processing (AP) and reading is thought to be significant; however our understanding of this relationship is somewhat limited. Previous studies have investigated the relation between certain electrophysiological and behavioral measures of AP and reading abilities in children. This study attempts to further understand that relation. Differences in AP between good and poor readers were investigated using electrophysiological and behavioral measures. Thirty-two children (15 female) aged 9-11 yr were placed in either a good reader group or poor reader group, based on the scores of a nationally normed reading test in New Zealand. Children were initially tested using an automated behavioral measuring system that runs through a tablet computer known as "Feather Squadron." Following the administration of Feather Squadron, cortical auditory-evoked potentials (CAEPs) were recorded using a speech stimulus (/m/) with the HEARLab(®) Cortical Auditory Evoked Potential Analyzer. The children were evaluated on eight subsections of the Feather Squadron, and CAEP waveform peaks were visually identified and averaged. Separate Kruskal-Wallis analyses were performed for the behavioral and electrophysiological variables, with group (good versus poor readers) serving as the between-group independent variable and scores from the Feather Squadron AP tasks as well as CAEP latencies and amplitudes as dependent variables. After the children's AP status was determined, the entire group was further divided into three groups: typically developing, auditory processing disorder + reading difficulty (APD + RD), and RDs only. Statistical analyses were repeated for these subgroups. Poorer readers showed significantly worse scores than the good readers for the Tonal Pattern 1, Tonal Pattern 2, and Word Double Dichotic Right tasks. CAEP differences observed across groups indicated comorbid effects of RD and AP difficulties. N2 amplitude was significantly smaller for

  9. Similar structural dimensions in bushcricket auditory organs in spite of different foreleg size: consequences for auditory tuning.

    Science.gov (United States)

    Rössler, W; Kalmring, K

    1994-11-01

    The bushcricket species Decticus albifrons, Decticus verrucivorus and Pholidoptera griseoaptera (Tettigoniidae) belong to the same subfamily (Decticinae) but differ significantly in body size. In spite of the great differences in the dimensions of the forelegs, where the auditory organs are located, the most sensitive range of the hearing threshold lies between 6 and 25 kHz in each case. Only in the frequency range from 2 to 5 kHz and above 25 kHz, significant differences are present. The anatomy of the auditory receptor organs was compared quantitatively, using the techniques of semi-thin sectioning and computer-guided morphometry. The overall number of scolopidia and the length of the crista acustica differs in the three species, but the relative distribution of scolopidia along the crista acustica is very similar. Additionally, the scolopidia and their attachment structures (tectorial membrane, dorsal tracheal wall, cap cells) are of equal size at equivalent relative positions along the crista acustica. The results indicate that the constant relations and dimensions of corresponding structures within the cristae acusticae of the three species are responsible for the similarities in the tuning of the auditory thresholds.

  10. Speakers' acceptance of real-time speech exchange indicates that we use auditory feedback to specify the meaning of what we say.

    Science.gov (United States)

    Lind, Andreas; Hall, Lars; Breidegard, Björn; Balkenius, Christian; Johansson, Petter

    2014-06-01

    Speech is usually assumed to start with a clearly defined preverbal message, which provides a benchmark for self-monitoring and a robust sense of agency for one's utterances. However, an alternative hypothesis states that speakers often have no detailed preview of what they are about to say, and that they instead use auditory feedback to infer the meaning of their words. In the experiment reported here, participants performed a Stroop color-naming task while we covertly manipulated their auditory feedback in real time so that they said one thing but heard themselves saying something else. Under ideal timing conditions, two thirds of these semantic exchanges went undetected by the participants, and in 85% of all nondetected exchanges, the inserted words were experienced as self-produced. These findings indicate that the sense of agency for speech has a strong inferential component, and that auditory feedback of one's own voice acts as a pathway for semantic monitoring, potentially overriding other feedback loops. © The Author(s) 2014.

  11. The predictive ability of different customer feedback metrics for retention

    NARCIS (Netherlands)

    de Haan, Evert; Verhoef, Peter C.; Wiesel, Thorsten

    This study systematically compares different customer feedback metrics (CFMs) - namely customer satisfaction, the Net Promoter Score, and the Customer Effort Score - to test their ability to predict retention across a wide range of industries. We classify the CFMs according to a time focus (past,

  12. Perineuronal nets in subcortical auditory nuclei of four rodent species with differing hearing ranges.

    Science.gov (United States)

    Beebe, Nichole L; Schofield, Brett R

    2017-12-26

    Perineuronal nets (PNs) are aggregates of extracellular matrix molecules that surround some neurons in the brain. While PNs occur widely across many cortical areas, subcortical PNs are especially associated with motor and auditory systems. The auditory system has recently been suggested as an ideal model system for studying PNs and their functions. However, descriptions of PNs in subcortical auditory areas vary, and it is unclear whether the variation reflects species differences or differences in staining techniques. Here, we used two staining techniques (one lectin stain and one antibody stain) to examine PN distribution in the subcortical auditory system of four different species: guinea pigs (Cavia porcellus), mice (Mus musculus, CBA/CaJ strain), Long-Evans rats (Rattus norvegicus), and naked mole-rats (Heterocephalus glaber). We found that some auditory nuclei exhibit dramatic differences in PN distribution among species while other nuclei have consistent PN distributions. We also found that PNs exhibit molecular heterogeneity, and can stain with either marker individually or with both. PNs within a given nucleus can be heterogeneous or homogenous in their staining patterns. We compared PN staining across the frequency axes of tonotopically organized nuclei and among species with different hearing ranges. PNs were distributed non-uniformly across some nuclei, but only rarely did this appear related to the tonotopic axis. PNs were prominent in all four species; we found no systematic relationship between the hearing range and the number, staining patterns or distribution of PNs in the auditory nuclei. © 2017 Wiley Periodicals, Inc.

  13. Experience Difference of Effects of both Feedback Frequency and Attentional Focus in Motor Learning

    OpenAIRE

    筒井, 清次郎; 伊藤, 文浩

    2014-01-01

    The purpose of this study was to examine the experience difference of effects of both feedback frequency and attentional focus in motor learning. Participants were 32 experienced and 32 novice students in the university. Task was loop pass in the soccer. Participants were divided into four groups; 33% external focus feedback, 100% external focus feedback, 33% internal focus feedback, and 100% internal focus feedback groups. 10 trials pretest was employed without verbal feedback before the fir...

  14. Self-generated auditory feedback as a cue to support rhythmic motor stability

    DEFF Research Database (Denmark)

    Krupenia, Stas S.; Hoffmann, Pablo F.; Zalmanov, Hagar

    2011-01-01

    A goal of the SKILLS project is to develop Virtual Reality (VR)-based training simulators for different application domains, one of which is juggling. Within this context the value of multimodal VR environments for skill acquisition is investigated. In this study, we investigated whether it was n...

  15. The robustness of speech representations obtained from simulated auditory nerve fibers under different noise conditions.

    Science.gov (United States)

    Jürgens, Tim; Brand, Thomas; Clark, Nicholas R; Meddis, Ray; Brown, Guy J

    2013-09-01

    Different methods of extracting speech features from an auditory model were systematically investigated in terms of their robustness to different noises. The methods either computed the average firing rate within frequency channels (spectral features) or inter-spike-intervals (timing features) from the simulated auditory nerve response. When used as the front-end for an automatic speech recognizer, timing features outperformed spectral features in Gaussian noise. However, this advantage was lost in babble, because timing features extracted the spectro-temporal structure of babble noise, which is similar to the target speaker. This suggests that different feature extraction methods are optimal depending on the background noise.

  16. Visual-auditory differences in duration discrimination of intervals in the subsecond and second range

    Directory of Open Access Journals (Sweden)

    Thomas eRammsayer

    2015-10-01

    Full Text Available A common finding in time psychophysics is that temporal acuity is much better for auditory than for visual stimuli. The present study aimed to examine modality-specific differences in duration discrimination within the conceptual framework of the Distinct Timing Hypothesis. This theoretical account proposes that durations in the lower milliseconds range are processed automatically while longer durations are processed by a cognitive mechanism. A sample of 46 participants performed two auditory and visual duration discrimination tasks with extremely brief (50-ms standard duration and longer (1000-ms standard duration intervals. Better discrimination performance for auditory compared to visual intervals could be established for extremely brief and longer intervals. However, when performance on duration discrimination of longer intervals in the one-second range was controlled for modality-specific input from the sensory-automatic timing mechanism, the visual-auditory difference disappeared completely as indicated by virtually identical Weber fractions for both sensory modalities. These findings support the idea of a sensory-automatic mechanism underlying the observed visual-auditory differences in duration discrimination of extremely brief intervals in the millisecond range and longer intervals in the one-second range. Our data are consistent with the notion of a gradual transition from a purely modality-specific, sensory-automatic to a more cognitive, amodal timing mechanism. Within this transition zone, both mechanisms appear to operate simultaneously but the influence of the sensory-automatic timing mechanism is expected to continuously decrease with increasing interval duration.

  17. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  18. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  19. Age differences in visual-auditory self-motion perception during a simulated driving task

    Directory of Open Access Journals (Sweden)

    Robert eRamkhalawansingh

    2016-04-01

    Full Text Available Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e. optic flow and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e. engine, tire, and wind sounds. Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion.

  20. Auditory feedback of one’s own voice is used for high-level semantic monitoring: the self-comprehension hypothesis

    Directory of Open Access Journals (Sweden)

    Andreas eLind

    2014-03-01

    Full Text Available What would it be like if we said one thing, and heard ourselves saying something else? Would we notice something was wrong? Or would we believe we said the thing we heard? Is feedback of our own speech only used to detect errors, or does it also help to specify the meaning of what we say? Comparator models of self-monitoring favor the first alternative, and hold that our sense of agency is given by the comparison between intentions and outcomes, while inferential models argue that agency is a more fluent construct, dependent on contextual inferences about the most likely cause of an action. In this paper, we present a theory about the use of feedback during speech. Specifically, we discuss inferential models of speech production that question the standard comparator assumption that the meaning of our utterances is fully specified before articulation. We then argue that auditory feedback provides speakers with a channel for high-level, semantic self-comprehension. In support of this we discuss results using a method we recently developed called Real-time Speech Exchange (RSE. In our first study using RSE (Lind et al, submitted participants were fitted with headsets and performed a computerized Stroop task. We surreptitiously recorded words they said, and later in the test we played them back at the exact same time that the participants uttered something else, while blocking the actual feedback of their voice. Thus, participants said one thing, but heard themselves saying something else. The results showed that when timing conditions were ideal, more than two thirds of the manipulations went undetected. Crucially, in a large proportion of the non-detected manipulated trials, the inserted words were experienced as self-produced by the participants. This indicates that our sense of agency for speech has a strong inferential component, and that auditory feedback of our own voice acts as a pathway for semantic monitoring.

  1. Synaptic mechanisms underlying interaural level difference selectivity in rat auditory cortex

    Science.gov (United States)

    Kyweriga, Michael; Stewart, Whitney; Cahill, Carolyn

    2014-01-01

    The interaural level difference (ILD) is a sound localization cue that is extensively processed in the auditory brain stem and midbrain and is also represented in the auditory cortex. Here, we asked whether neurons in the auditory cortex passively inherit their ILD tuning from subcortical sources or whether their spiking preferences were actively shaped by local inhibition. If inherited, the ILD selectivity of spiking output should match that of excitatory synaptic input. If shaped by local inhibition, by contrast, excitation should be more broadly tuned than spiking output with inhibition suppressing spiking for nonpreferred stimuli. To distinguish between these two processing strategies, we compared spiking responses with excitation and inhibition in the same neurons across a range of ILDs and average binaural sound levels. We found that cells preferring contralateral ILDs (often called EI cells) followed the inheritance strategy. In contrast, cells that were unresponsive to monaural sounds but responded predominantly to near-zero ILDs (PB cells) instead showed evidence of the local processing strategy. These PB cells received excitatory inputs that were similar to those received by the EI cells. However, contralateral monaural sounds and ILDs >0 dB elicited strong inhibition, quenching the spiking output. These results suggest that in the rat auditory cortex, EI cells do not utilize inhibition to shape ILD sensitivity, whereas PB cells do. We conclude that an auditory cortical circuit computes sensitivity for near-zero ILDs. PMID:25185807

  2. Gait variability is altered in older adults when listening to auditory stimuli with differing temporal structures.

    Science.gov (United States)

    Kaipust, Jeffrey P; McGrath, Denise; Mukherjee, Mukul; Stergiou, Nicholas

    2013-08-01

    Gait variability in the context of a deterministic dynamical system may be quantified using nonlinear time series analyses that characterize the complexity of the system. Pathological gait exhibits altered gait variability. It can be either too periodic and predictable, or too random and disordered, as is the case with aging. While gait therapies often focus on restoration of linear measures such as gait speed or stride length, we propose that the goal of gait therapy should be to restore optimal gait variability, which exhibits chaotic fluctuations and is the balance between predictability and complexity. In this context, our purpose was to investigate how listening to different auditory stimuli affects gait variability. Twenty-seven young and 27 elderly subjects walked on a treadmill for 5 min while listening to white noise, a chaotic rhythm, a metronome, and with no auditory stimulus. Stride length, step width, and stride intervals were calculated for all conditions. Detrended Fluctuation Analysis was then performed on these time series. A quadratic trend analysis determined that an idealized inverted-U shape described the relationship between gait variability and the structure of the auditory stimuli for the elderly group, but not for the young group. This proof-of-concept study shows that the gait of older adults may be manipulated using auditory stimuli. Future work will investigate which structures of auditory stimuli lead to improvements in functional status in older adults.

  3. The effect of different corrective feedback methods on the outcome and self confidence of young athletes

    National Research Council Canada - National Science Library

    Tzetzis, George; Votsis, Evandros; Kourtessis, Thomas

    2008-01-01

    This experiment investigated the effects of three corrective feedback methods, using different combinations of correction, or error cues and positive feedback for learning two badminton skills with different difficulty...

  4. Exploration of auditory P50 gating in schizophrenia by way of difference waves

    DEFF Research Database (Denmark)

    Arnfred, Sidse M

    2006-01-01

    ABSTRACT : Electroencephalographic measures of information processing encompass both mid-latency evoked potentials like the pre-attentive auditory P50 potential and a host of later more cognitive components like P300 and N400.Difference waves have mostly been employed in studies of later event...

  5. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  6. Gender differences in reward and punishment for monetary and social feedback in children: An ERP study.

    Science.gov (United States)

    Ding, Ying; Wang, Encong; Zou, Yuchen; Song, Yan; Xiao, Xue; Huang, Wanyi; Li, Yanfang

    2017-01-01

    Gender differences in feedback processing have been observed among adolescents and adults through event-related potentials. However, information on whether and how this feedback processing is affected by feedback valence, feedback type, and individual sensitivity in reward/punishment among children remains minimal. In this study, we used a guessing game task coupled with electroencephalography to investigate gender differences in feedback processing, in which feedback to reward and punishment was presented in the context of monetary and social conditions. Results showed that boys were less likely to switch their response after punishment, had generally less feedback-related negativity (FRN) amplitude, and longer FRN latency in monetary and punishment conditions than girls. Moreover, FRN for monetary punishment, which is related to individual difference in reward sensitivity, was observed only in girls. The study provides gender-specific evidence for the neural processing of feedback, which may offer educational guidance for appropriate feedback for girls and boys.

  7. Gender differences in reward and punishment for monetary and social feedback in children: An ERP study.

    Directory of Open Access Journals (Sweden)

    Ying Ding

    Full Text Available Gender differences in feedback processing have been observed among adolescents and adults through event-related potentials. However, information on whether and how this feedback processing is affected by feedback valence, feedback type, and individual sensitivity in reward/punishment among children remains minimal. In this study, we used a guessing game task coupled with electroencephalography to investigate gender differences in feedback processing, in which feedback to reward and punishment was presented in the context of monetary and social conditions. Results showed that boys were less likely to switch their response after punishment, had generally less feedback-related negativity (FRN amplitude, and longer FRN latency in monetary and punishment conditions than girls. Moreover, FRN for monetary punishment, which is related to individual difference in reward sensitivity, was observed only in girls. The study provides gender-specific evidence for the neural processing of feedback, which may offer educational guidance for appropriate feedback for girls and boys.

  8. Acute auditory stimulation with different styles of music influences cardiac autonomic regulation in men.

    Science.gov (United States)

    da Silva, Sheila Ap F; Guida, Heraldo L; Dos Santos Antonio, Ana Marcia; de Abreu, Luiz Carlos; Monteiro, Carlos B M; Ferreira, Celso; Ribeiro, Vivian F; Barnabe, Viviani; Silva, Sidney B; Fonseca, Fernando L A; Adami, Fernando; Petenusso, Marcio; Raimundo, Rodrigo D; Valenti, Vitor E

    2014-09-01

    No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023). In addition, the LF index (ms(2) and nu) was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively). However, the HF index (ms(2)) was reduced only during auditory stimulation with music heavy metal (P = 0.01). The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019). Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart.

  9. Acute Auditory Stimulation with Different Styles of Music Influences Cardiac Autonomic Regulation in Men

    Directory of Open Access Journals (Sweden)

    Sheila Ap. F. da Silva

    2014-09-01

    Full Text Available Background: No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. Objectives: The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV in healthy men. Patients and Methods: In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50 and frequency domain (LF, HF, and LF / HF in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. Results: While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023. In addition, the LF index (ms2 and nu was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively. However, the HF index (ms2 was reduced only during auditory stimulation with music heavy metal (P = 0.01. The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019. Conclusions: Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart.

  10. Examining age-related differences in auditory attention control using a task-switching procedure.

    Science.gov (United States)

    Lawo, Vera; Koch, Iring

    2014-03-01

    Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex. In our task, young (M age = 23.2 years) and older adults (M age = 66.6 years) performed a numerical size categorization on spoken number words. The task-relevant speaker was indicated by a cue prior to auditory stimulus onset. The cuing interval was either short or long and varied randomly trial by trial. We found clear performance costs with instructed attention switches. These auditory attention switch costs decreased with prolonged cue-stimulus interval. Older adults were generally much slower (but not more error prone) than young adults, but switching-related effects did not differ across age groups. These data suggest that the ability to intentionally switch auditory attention in a selective listening task is not compromised in healthy aging. We discuss the role of modality-specific factors in age-related differences.

  11. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  12. Rehabilitation of the Upper Extremity after Stroke: A Case Series Evaluating REO Therapy and an Auditory Sensor Feedback for Trunk Control

    Directory of Open Access Journals (Sweden)

    G. Thielman

    2012-01-01

    Full Text Available Background and Purpose. Training in the virtual environment in post stroke rehab is being established as a new approach for neurorehabilitation, specifically, ReoTherapy (REO a robot-assisted virtual training device. Trunk stabilization strapping has been part of the concept with this device, and literature is lacking to support this for long-term functional changes with individuals after stroke. The purpose of this case series was to measure the feasibility of auditory trunk sensor feedback during REO therapy, in moderate to severely impaired individuals after stroke. Case Description. Using an open label crossover comparison design, 3 chronic stroke subjects were trained for 12 sessions over six weeks on either the REO or the control condition of task related training (TRT; after a washout period of 4 weeks; the alternative therapy was given. Outcomes. With both interventions, clinically relevant improvements were found for measures of body function and structure, as well as for activity, for two participants. Providing auditory feedback during REO training for trunk control was found to be feasible. Discussion. The degree of changes evident varied per protocol and may be due to the appropriateness of the technique chosen, as well as based on patients impaired arm motor control.

  13. Asymmetric excitatory synaptic dynamics underlie interaural time difference processing in the auditory system.

    Directory of Open Access Journals (Sweden)

    Pablo E Jercog

    2010-06-01

    Full Text Available Low-frequency sound localization depends on the neural computation of interaural time differences (ITD and relies on neurons in the auditory brain stem that integrate synaptic inputs delivered by the ipsi- and contralateral auditory pathways that start at the two ears. The first auditory neurons that respond selectively to ITD are found in the medial superior olivary nucleus (MSO. We identified a new mechanism for ITD coding using a brain slice preparation that preserves the binaural inputs to the MSO. There was an internal latency difference for the two excitatory pathways that would, if left uncompensated, position the ITD response function too far outside the physiological range to be useful for estimating ITD. We demonstrate, and support using a biophysically based computational model, that a bilateral asymmetry in excitatory post-synaptic potential (EPSP slopes provides a robust compensatory delay mechanism due to differential activation of low threshold potassium conductance on these inputs and permits MSO neurons to encode physiological ITDs. We suggest, more generally, that the dependence of spike probability on rate of depolarization, as in these auditory neurons, provides a mechanism for temporal order discrimination between EPSPs.

  14. Analysis of gender based differences in auditory evoked potentials among healthy elderly population

    Directory of Open Access Journals (Sweden)

    Sharat Gupta

    2014-01-01

    Full Text Available Background: Influence of gender on auditory evoked potentials is contentious. Although there are quite a few studies documenting the gender as an influencing factor on auditory evoked potentials in younger subjects, but there is a lack of similar studies among elderly population. The present study was conducted to find out the pattern of gender based differences in auditory evoked potentials among healthy elderly subjects. Materials and Methods: A cross-sectional study was conducted on age matched, healthy males (n = 35 and females (n = 34, aged 50-70 years. The measures included latencies of waves I-V and interpeak latencies (IPL I-III, III-V and I-V separately for both ears. Data was analyzed statistically using Students unpaired t-test, using Statistical Package for Social Sciences software v13.0. Results: The values of all the latencies and IPL for both the ears were non-significantly higher (P > 0.05 in males as compared to females. These results may be attributed to the differences in head circumference between both the genders and to the changed hormonal milieu of sex hormones after menopause. Conclusions: Statistical insignificance of latencies among male and female elderly subjects excludes gender as an influencing factor on auditory evoked potentials in this age group.

  15. Differences in context and feedback result in different trajectories and adaptation strategies in reaching.

    Directory of Open Access Journals (Sweden)

    Fritzie Arce

    Full Text Available Computational models of motor control have often explained the straightness of horizontal planar reaching movements as a consequence of optimal control. Departure from rectilinearity is thus regarded as sub-optimal. Here we examine if subjects may instead select to make curved trajectories following adaptation to force fields and visuomotor rotations. Separate subjects adapted to force fields with or without visual feedback of their hand trajectory and were retested after 24 hours. Following adaptation, comparable accuracies were achieved in two ways: with visual feedback, adapted trajectories in force fields were straight whereas without it, they remained curved. The results suggest that trajectory shape is not always straight, but is also influenced by the calibration of available feedback signals for the state estimation required by the task. In a follow-up experiment, where additional subjects learned a visuomotor rotation immediately after force field, the trajectories learned in force fields (straight or curved were transferred when directions of the perturbations were similar but not when directions were opposing. This demonstrates a strong bias by prior experience to keep using a recently acquired control policy that continues to produce successful performance inspite of differences in tasks and feedback conditions. On relearning of force fields on the second day, facilitation by intervening visuomotor rotations occurred only when required motor adjustments and calibration of feedback signals were similar in both tasks. These results suggest that both the available feedback signals and prior history of learning influence the choice and maintenance of control policy during adaptations.

  16. Differences between human auditory event-related potentials (AERPs) measured at 2 and 4 months after birth

    NARCIS (Netherlands)

    van den Heuvel, Marion I.; Otte, Renee A.; Braeken, Marijke A. K. A.; Winkler, Istvan; Kushnerenko, Elena; Van den Bergh, Bea R. H.

    2015-01-01

    Infant auditory event-related potentials (AERPs) show a series of marked changes during the first year of life. These AERP changes indicate important advances in early development. The current study examined AERP differences between 2- and 4-month-old infants. An auditory oddball paradigm was

  17. Can the Effectiveness of Different Forms of Feedback Be Measured? Retention and Student Preference for Written and Verbal Feedback in Level 4 Bioscience Students

    Science.gov (United States)

    Buckley, Phil

    2012-01-01

    Feedback is an important part of the learning process. However, the relative effectiveness of feedback in any given situation is poorly understood. Student retention of different forms of feedback is also largely unexplored. This case study examined the relative student perception and retention of both verbal and written feedback, using 68 level 4…

  18. Overreliance on auditory feedback may lead to sound/syllable repetitions: simulations of stuttering and fluency-inducing conditions with a neural model of speech production

    Science.gov (United States)

    Civier, Oren; Tasko, Stephen M.; Guenther, Frank H.

    2010-01-01

    This paper investigates the hypothesis that stuttering may result in part from impaired readout of feedforward control of speech, which forces persons who stutter (PWS) to produce speech with a motor strategy that is weighted too much toward auditory feedback control. Over-reliance on feedback control leads to production errors which, if they grow large enough, can cause the motor system to “reset” and repeat the current syllable. This hypothesis is investigated using computer simulations of a “neurally impaired” version of the DIVA model, a neural network model of speech acquisition and production. The model’s outputs are compared to published acoustic data from PWS’ fluent speech, and to combined acoustic and articulatory movement data collected from the dysfluent speech of one PWS. The simulations mimic the errors observed in the PWS subject’s speech, as well as the repairs of these errors. Additional simulations were able to account for enhancements of fluency gained by slowed/prolonged speech and masking noise. Together these results support the hypothesis that many dysfluencies in stuttering are due to a bias away from feedforward control and toward feedback control. PMID:20831971

  19. Racial-Ethnic Differences in Word Fluency and Auditory Comprehension Among Persons With Poststroke Aphasia.

    Science.gov (United States)

    Ellis, Charles; Peach, Richard K

    2017-04-01

    To examine aphasia outcomes and to determine whether the observed language profiles vary by race-ethnicity. Retrospective cross-sectional study using a convenience sample of persons of with aphasia (PWA) obtained from AphasiaBank, a database designed for the study of aphasia outcomes. Aphasia research laboratories. PWA (N=381; 339 white and 42 black individuals). Not applicable. Western Aphasia Battery-Revised (WAB-R) total scale score (Aphasia Quotient) and subtest scores were analyzed for racial-ethnic differences. The WAB-R is a comprehensive assessment of communication function designed to evaluate PWA in the areas of spontaneous speech, auditory comprehension, repetition, and naming in addition to reading, writing, apraxia, and constructional, visuospatial, and calculation skills. In univariate comparisons, black PWA exhibited lower word fluency (5.7 vs 7.6; P=.004), auditory word comprehension (49.0 vs 53.0; P=.021), and comprehension of sequential commands (44.2 vs 52.2; P=.012) when compared with white PWA. In multivariate comparisons, adjusted for age and years of education, black PWA exhibited lower word fluency (5.5 vs 7.6; P=.015), auditory word recognition (49.3 vs 53.3; P=.02), and comprehension of sequential commands (43.7 vs 53.2; P=.017) when compared with white PWA. This study identified racial-ethnic differences in word fluency and auditory comprehension ability among PWA. Both skills are critical to effective communication, and racial-ethnic differences in outcomes must be considered in treatment approaches designed to improve overall communication ability. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales.

    Directory of Open Access Journals (Sweden)

    Xiangbin Teng

    2017-11-01

    Full Text Available Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4-7 Hz and gamma band ranges (31-45 Hz but, contrary to expectation, not at the timescale corresponding to alpha (8-12 Hz, which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations.

  1. Principles of auditory processing differ between sensory and premotor structures of the songbird forebrain.

    Science.gov (United States)

    Soyman, Efe; Vicario, David S

    2017-03-01

    Sensory and motor brain structures work in collaboration during perception. To evaluate their respective contributions, the present study recorded neural responses to auditory stimulation at multiple sites simultaneously in both the higher-order auditory area NCM and the premotor area HVC of the songbird brain in awake zebra finches (Taeniopygia guttata). Bird's own song (BOS) and various conspecific songs (CON) were presented in both blocked and shuffled sequences. Neural responses showed plasticity in the form of stimulus-specific adaptation, with markedly different dynamics between the two structures. In NCM, the response decrease with repetition of each stimulus was gradual and long-lasting and did not differ between the stimuli or the stimulus presentation sequences. In contrast, HVC responses to CON stimuli decreased much more rapidly in the blocked than in the shuffled sequence. Furthermore, this decrease was more transient in HVC than in NCM, as shown by differential dynamics in the shuffled sequence. Responses to BOS in HVC decreased more gradually than to CON stimuli. The quality of neural representations, computed as the mutual information between stimuli and neural activity, was higher in NCM than in HVC. Conversely, internal functional correlations, estimated as the coherence between recording sites, were greater in HVC than in NCM. The cross-coherence between the two structures was weak and limited to low frequencies. These findings suggest that auditory communication signals are processed according to very different but complementary principles in NCM and HVC, a contrast that may inform study of the auditory and motor pathways for human speech processing.NEW & NOTEWORTHY Neural responses to auditory stimulation in sensory area NCM and premotor area HVC of the songbird forebrain show plasticity in the form of stimulus-specific adaptation with markedly different dynamics. These two structures also differ in stimulus representations and internal

  2. Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences.

    Science.gov (United States)

    Getzmann, Stephan; Lewald, Jörg; Falkenstein, Michael

    2014-01-01

    Speech understanding in complex and dynamic listening environments requires (a) auditory scene analysis, namely auditory object formation and segregation, and (b) allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called "cocktail-party" problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values) from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments.

  3. Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences

    Directory of Open Access Journals (Sweden)

    Stephan eGetzmann

    2014-12-01

    Full Text Available Speech understanding in complex and dynamic listening environments requires (a auditory scene analysis, namely auditory object formation and segregation, and (b allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called cocktail-party problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments.

  4. Intraspecific and intergenerational differences in plant-soil feedbacks

    NARCIS (Netherlands)

    Wagg, Cameron; Boller, Beat; Schneider, Salome; Widmer, Franco; van der Heijden, Marcel G A

    2015-01-01

    Interactions between plant and soil communities are known to play an integral role in shaping ecosystems. Plants influence the composition of soil communities and soil communities in turn influence plant performance. Such a plant-soil feedback may incur selection pressure on plants and the

  5. The Effects of Musical Auditory Stimulation of Different Intensities on Geometric Indices of Heart Rate Variability.

    Science.gov (United States)

    do Amaral, Joice Anaize Tonon; Guida, Heraldo Lorena; Vanderlei, Franciele Marques; Garner, David Matthew; de Abreu, Luiz Carlos; Valenti, Vitor Engracia

    2015-01-01

    Music has been proven to promote changes in cardiac autonomic modulation. However, it is not clear whether the effects of the auditory stimulation on heart rate variability (HRV) are dependent on its intensity. The study intended to investigate the acute effects on the geometric HRV indices of auditory stimulation with heavy metal and baroque music using different intensities of auditory stimulation. The study was a nonrandomized, clinical trial. The study was conducted at the facility of the Faculty of Sciences of the São Paulo State University, on the campus in Marilia, Brazil. Participants were 24 healthy women aged between 18 and 27 y. HRV was recorded for each participant for 10 min at rest. Subsequently, participants were exposed to baroque or heavy metal music through an earphone. They were exposed to 3 equivalent sound levels-60-70 decibels (dB), 70-80 dB, and 80-90 dB-for 5 min in each intensity range. After the first session of baroque or heavy metal music, participants rested for an additional 5 min. Then they were exposed to the other musical style. The first style played for each musical period was randomly selected for all individuals and then the other style would be played automatically for the second session. The HRV analysis was performed using the following geometrical methods: (1) the triangular index (RRtri), (2) the triangular interpolation of the RR interval histogram (TINN), and (3) the Poincaré plot, using SD1-the standard deviation of the instantaneous variability of the beat-to beat heart rate (HR), SD2-the standard deviation of the long-term, continuous, RR interval variability, and the SD1/SD2 ratio-the ratio between the short- and long-term variations among the RR intervals. The classic baroque music by Johann Pachelbel, "Canon in D Major," did not induce significant changes in the geometric indices of HRV at 60-70 dB, 70-80 dB, or 80-90 dB. However, auditory stimulation with heavy metal music, using "Heavy Metal Universe" by Gamma

  6. Increased Response to Altered Auditory Feedback in Dyslexia: A Weaker Sensorimotor Magnet Implied in the Phonological Deficit

    Science.gov (United States)

    van den Bunt, Mark R.; Groen, Margriet A.; Ito, Takayuki; Francisco, Ana A.; Gracco, Vincent L.; Pugh, Ken R.; Verhoeven, Ludo

    2017-01-01

    Purpose: The purpose of this study was to examine whether developmental dyslexia (DD) is characterized by deficiencies in speech sensory and motor feedforward and feedback mechanisms, which are involved in the modulation of phonological representations. Method: A total of 42 adult native speakers of Dutch (22 adults with DD; 20 participants who…

  7. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  8. Auditory same/different concept learning and generalization in black-capped chickadees (Poecile atricapillus.

    Directory of Open Access Journals (Sweden)

    Marisa Hoeschele

    Full Text Available Abstract concept learning was thought to be uniquely human, but has since been observed in many other species. Discriminating same from different is one abstract relation that has been studied frequently. In the current experiment, using operant conditioning, we tested whether black-capped chickadees (Poecile atricapillus could discriminate sets of auditory stimuli based on whether all the sounds within a sequence were the same or different from one another. The chickadees were successful at solving this same/different relational task, and transferred their learning to same/different sequences involving novel combinations of training notes and novel notes within the range of pitches experienced during training. The chickadees showed limited transfer to pitches that was not used in training, suggesting that the processing of absolute pitch may constrain their relational performance. Our results indicate, for the first time, that black-capped chickadees readily form relational auditory same and different categories, adding to the list of perceptual, behavioural, and cognitive abilities that make this species an important comparative model for human language and cognition.

  9. Exploration of auditory P50 gating in schizophrenia by way of difference waves

    Directory of Open Access Journals (Sweden)

    Arnfred Sidse M

    2006-01-01

    Full Text Available Abstract Electroencephalographic measures of information processing encompass both mid-latency evoked potentials like the pre-attentive auditory P50 potential and a host of later more cognitive components like P300 and N400. Difference waves have mostly been employed in studies of later event related potentials but here this method along with low frequency filtering is applied exploratory on auditory P50 gating data, previously analyzed in the standard format (reported in Am J Psychiatry 2003, 160:2236-8. The exploration was motivated by the observation during visual peak detection that the AEP waveform was different in the patient group, although this was not reflected by the peak measures. The sample included un-medicated schizophrenia spectrum patients (n = 17 and healthy controls (n = 24. The patients had an attenuated difference P50. This attenuation was primarily seen in the sub-sample of patients with severe negative symptoms. The difference attenuation was due to low amplitude at the first stimulus. This suggests an abnormality in readiness more than an abnormality in gating in the patient group.

  10. Effects of auditory stimulation with music of different intensities on heart period

    Directory of Open Access Journals (Sweden)

    Joice A.T. do Amaral

    2016-01-01

    Full Text Available Various studies have indicated that music therapy with relaxant music improves cardiac function of patients treated with cardiotoxic medication and heavy-metal music acutely reduces heart rate variability (HRV. There is also evidence that white noise auditory stimulation above 50 dB causes cardiac autonomic responses. In this study, we aimed to evaluate the acute effects of musical auditory stimulation with different intensities on cardiac autonomic regulation. This study was performed on 24 healthy women between 18 and 25 years of age. We analyzed HRV in the time [standard deviation of normal-to-normal RR intervals (SDNN, percentage of adjacent RR intervals with a difference of duration >50 ms (pNN50, and root-mean square of differences between adjacent normal RR intervals in a time interval (RMSSD] and frequency [low frequency (LF, high frequency (HF, and LF/HF ratio] domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to baroque or heavy-metal music for 5 minutes through an earphone. The volunteers were exposed to three equivalent sound levels (60–70, 70–80, and 80–90 dB. After the first baroque or heavy-metal music, they remained at rest for 5 minutes and then they were exposed to the other music. The sequence of songs was randomized for each individual. Heavy-metal musical auditory stimulation at 80–90 dB reduced the SDNN index compared with control (44.39 ± 14.40 ms vs. 34.88 ± 8.69 ms, and stimulation at 60–70 dB decreased the LF (ms2 index compared with control (668.83 ± 648.74 ms2 vs. 392.5 ± 179.94 ms2. Baroque music at 60–70 dB reduced the LF (ms2 index (587.75 ± 318.44 ms2 vs. 376.21 ± 178.85 ms2. In conclusion, heavy-metal and baroque musical auditory stimulation at lower intensities acutely reduced global modulation of the heart and only heavy-metal music reduced HRV at higher intensities.

  11. Effect of Different References on Auditory-Evoked Potentials in Children with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Maojin Liang

    2017-12-01

    Full Text Available Background: Nose reference (NR, mastoid reference (MR, and montage average reference (MAR are usually used in auditory event-related potential (AEP studies with a recently developed reference electrode standardization technique (REST, which may reduce the reference effect. For children with cochlear implants (CIs, auditory deprivation may hinder normal development of the auditory cortex, and the reference effect may be different between CIs and a normal developing group.Methods: Thirteen right-side-CI children were recruited, comprising 7 males and 6 females, ages 2–5 years, with CI usage of ~1 year. Eleven sex- and age-matched healthy children were recruited for normal controls; 1,000 Hz pure tone evoked AEPs were recorded, and the data were re-referenced to NR, left mastoid reference (LMR, which is the opposite side of the implanted cochlear, MAR, and REST. CI artifact and P1–N1 complex (latency, amplitudes at Fz were analyzed.Results: Confirmed P1–N1 complex could be found in Fz using NR, LMR, MAR, and REST with a 128-electrode scalp. P1 amplitude was larger using LMR than MAR and NR, while no statistically significant difference was found between NR and MAR in the CI group; REST had no significant difference with the three other references. In the control group, no statistically significant difference was found with different references. Group difference of P1 amplitude could be found when using MR, MAR, and REST. For P1 latency, no significant difference among the four references was shown, whether in the CI or control group. Group difference in P1 latency could be found in MR and MAR. N1 amplitude in LMR was significantly lower than NR and MAR in the control group. LMR, MAR, and REST could distinguish the difference in the N1 amplitude between the CI and control group. Contralateral MR or MAR was found to be better in differentiating CI children versus controls. No group difference was found for the artifact component

  12. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  13. Effects of Varied Enhancement Strategies (Chunking, Feedback, Gaming) in Complementing Animated Instruction in Facilitating Different Types of Learning Objectives

    Science.gov (United States)

    Munyofu, Mine

    2008-01-01

    The purpose of this study was to examine the instructional effectiveness of different levels of chunking (simple visual/text and complex visual/text), different forms of feedback (item-by-item feedback, end-of-test feedback and no feedback), and use of instructional gaming (game and no game) in complementing animated programmed instruction on a…

  14. Age Differences in Voice Evaluation: From Auditory-Perceptual Evaluation to Social Interactions.

    Science.gov (United States)

    Lortie, Catherine L; Deschamps, Isabelle; Guitton, Matthieu J; Tremblay, Pascale

    2018-02-15

    The factors that influence the evaluation of voice in adulthood, as well as the consequences of such evaluation on social interactions, are not well understood. Here, we examined the effect of listeners' age and the effect of talker age, sex, and smoking status on the auditory-perceptual evaluation of voice, voice-related psychosocial attributions, and perceived speech tempo. We also examined the voice dimensions affecting the propensity to engage in social interactions. Twenty-five younger (age 19-37 years) and 25 older (age 51-74 years) healthy adults participated in this cross-sectional study. Their task was to evaluate the voice of 80 talkers. Statistical analyses revealed limited effects of the age of the listener on voice evaluation. Specifically, older listeners provided relatively more favorable voice ratings than younger listeners, mainly in terms of roughness. In contrast, the age of the talker had a broader impact on voice evaluation, affecting auditory-perceptual evaluations, psychosocial attributions, and perceived speech tempo. Some of these talker differences were dependent upon the sex of the talker and his or her smoking status. Finally, the results also show that voice-related psychosocial attribution was more strongly associated with the propensity of the listener to engage in social interactions with a person than auditory-perceptual dimensions and perceived speech tempo, especially for the younger adults. These results suggest that age has a broad influence on voice evaluation, with a stronger impact for talker age compared with listener age. While voice-related psychosocial attributions may be an important determinant of social interactions, perceived voice quality and speech tempo appear to be less influential. https://doi.org/10.23641/asha.5844102.

  15. Response stability and variability induced in humans by different feedback contingenies

    NARCIS (Netherlands)

    Maes, J.H.R.

    2003-01-01

    In two experiments, the behavioral effects of different response-feedback contingencies were examined with a task requiring human subjects to repeatedly type three-key sequences on a computer keyboard. In Experiment 1, the subjects first received positive feedback for response variability, followed

  16. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  17. Muscle involvement during intermittent contraction patterns with different target force feedback modes

    DEFF Research Database (Denmark)

    Sjøgaard, G; Jørgensen, L V; Ekner, D

    2000-01-01

    feedback) or a weight to be held in position (proprioceptive feedback) both corresponding to 30% maximal voluntary contraction. Contraction and relaxation timing of 6 and 4 s, respectively, was shown on a VDU screen as colour code identical in both conditions. RESULTS: Test contractions performed before......OBJECTIVE: Assess the effect of different feedback modes during intermittent contractions on primary and assessory muscle activity. BACKGROUND: Intermittent contractions and physiological responses have been studied in laboratory settings. However, the feedback given to the subjects regarding...... timing and force level is generally not specified. DESIGN: Repeated measure design in which six subjects in randomized order performed two experimental conditions only differing in feedback mode. METHODS: Intermittent static elbow flexion was performed against either a fixed-force transducer (visual...

  18. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    OpenAIRE

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2014-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it...

  19. Auditory Evoked Potentials with Different Speech Stimuli: a Comparison and Standardization of Values

    Directory of Open Access Journals (Sweden)

    Didoné, Dayane Domeneghini

    2016-02-01

    Full Text Available Introduction Long Latency Auditory Evoked Potentials (LLAEP with speech sounds has been the subject of research, as these stimuli would be ideal to check individualś detection and discrimination. Objective The objective of this study is to compare and describe the values of latency and amplitude of cortical potentials for speech stimuli in adults with normal hearing. Methods The sample population included 30 normal hearing individuals aged between 18 and 32 years old with ontological disease and auditory processing. All participants underwent LLAEP search using pairs of speech stimuli (/ba/ x /ga/, /ba/ x /da/, and /ba/ x /di/. The authors studied the LLAEP using binaural stimuli at an intensity of 75dBNPS. In total, they used 300 stimuli were used (∼60 rare and 240 frequent to obtain the LLAEP. Individuals received guidance to count the rare stimuli. The authors analyzed latencies of potential P1, N1, P2, N2, and P300, as well as the ampleness of P300. Results The mean age of the group was approximately 23 years. The averages of cortical potentials vary according to different speech stimuli. The N2 latency was greater for /ba/ x /di/ and P300 latency was greater for /ba/ x /ga/. Considering the overall average amplitude, it ranged from 5.35 and 7.35uV for different speech stimuli. Conclusion It was possible to obtain the values of latency and amplitude for different speech stimuli. Furthermore, the N2 component showed higher latency with the / ba / x / di / stimulus and P300 for /ba/ x / ga /.

  20. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials

    DEFF Research Database (Denmark)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L.

    2013-01-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound...... in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners...

  1. Predicting the perceived reverberation in different room acoustic environments using a binaural auditory model.

    Science.gov (United States)

    Osses Vecchi, Alejandro; Kohlrausch, Armin; Lachenmayr, Winfried; Mommertz, Eckard

    2017-04-01

    In this paper a binaural auditory model was used to compute reverberance estimates in four simulated halls. For three of the halls different absorption conditions were evaluated. The model estimates (pRev) were obtained using music excerpts of an orchestra consisting of 23 instrument sections and then compared with the room acoustic parameters of reverberation time (T30) and early decay time (EDT) at mid frequencies. Although the results showed that pRev has a higher correlation with EDT rather than with T30, this relationship depends on the properties of the instruments. The simulations show that pRev depends on the presentation level and that for instruments with similar critical-band spectrum, pRev follows a similar trend across acoustic conditions. A computational framework and sound stimuli are provided to encourage the search of experimental evidence of the aspects addressed in this study.

  2. Electrophysiological correlates of the retention of tones differing in timbre in auditory short-term memory.

    Science.gov (United States)

    Nolden, Sophie; Bermudez, Patrick; Alunni-Menichini, Kristelle; Lefebvre, Christine; Grimault, Stephan; Jolicoeur, Pierre

    2013-11-01

    We examined the electrophysiological correlates of retention in auditory short-term memory (ASTM) for sequences of one, two, or three tones differing in timbre but having the same pitch. We focused on event-related potentials (ERPs) during the retention interval and revealed a sustained fronto-central ERP component (most likely a sustained anterior negativity; SAN) that became more negative as memory load increased. Our results are consistent with recent ERP studies on the retention of pitch and suggest that the SAN reflects brain activity mediating the low-level retention of basic acoustic features in ASTM. The present work shows that the retention of timbre shares common features with the retention of pitch, hence supporting the notion that the retention of basic sensory features is an active process that recruits modality-specific brain areas. © 2013 Elsevier Ltd. All rights reserved.

  3. Time course of auditory streaming: Do CI users differ from normal-hearing listeners?

    Directory of Open Access Journals (Sweden)

    Martin eBöckmann-Barthel

    2014-07-01

    Full Text Available In a complex acoustical environment with multiple sound sources the auditory system uses streaming as a tool to organize the incoming sounds in one or more streams depending on the stimulus parameters. Streaming is commonly studied by alternating sequences of signals. These are often tones with different frequencies. The present study investigates stream segregation in cochlear implant (CI users, where hearing is restored by electrical stimulation of the auditory nerve. CI users listened to 30-s long sequences of alternating A and B harmonic complexes at four different fundamental frequency separations, ranging from 2 to 14 semitones. They had to indicate as promptly as possible after sequence onset, if they perceived one stream or two streams and, in addition, any changes of the percept throughout the rest of the sequence. The conventional view is that the initial percept is always that of a single stream which may after some time change to a percept of two streams. This general build-up hypothesis has recently been challenged on the basis of a new analysis of data of normal-hearing listeners which showed a build-up response only for an intermediate frequency separation. Using the same experimental paradigm and analysis, the present study found that the results of CI users agree with those of the normal-hearing listeners: (i the probability of the first decision to be a one-stream percept decreased and that of a two-stream percept increased as Δf increased, and (ii a build-up was only found for 6 semitones. Only the time elapsed before the listeners made their first decision of the percept was prolonged as compared to normal-hearing listeners. The similarity in the data of the CI user and the normal-hearing listeners indicates that the quality of stream formation is similar in these groups of listeners.

  4. A heel-strike real-time auditory feedback device to promote motor learning in children who have cerebral palsy: a pilot study to test device accuracy and feasibility to use a music and dance-based learning paradigm.

    Science.gov (United States)

    Pitale, Jaswandi Tushar; Bolte, John H

    2018-01-01

    Cerebral palsy (CP) is a developmental disorder of movement and posture that occurs due to damage to the developing nervous system. As part of therapy, wearable sensors that trigger interactive feedback may provide multi-sensory guidance and motivation. A prototype of a heel-strike real-time feedback system has been developed which records the number of heel strikes during gait and indicates successful heel contact through real-time auditory feedback. The first aim of this feasibility study was to test the prototype accuracy.Since the end user for this device is a child, the device should be esthetically appealing and sufficiently motivating for children to perform repetitive challenging therapeutic movements. The second aim of this study was to collect feedback from the subjects with regard to the device usability and understand if the bell sound used as feedback used was motivating enough for children to continue using the prototype. This would help us in developing the next generation of the device. The prototype was tested with typically developing children and children who have CP. The accuracy in detecting heel strikes was calculated. As part of the study, the subjects were also asked questions to test the device compliance and acceptability of the musical beats with the pediatric population. The device accuracy in identifying heel strikes is 97.44% (95% CI 96.31, 98.88%). The subjects did not show any hesitation to put on the device and the sound feedback motivated them to move. Based on this pilot study, a minimum age limit of 5 years is appropriate and the intervention study should be conducted for no more than 30 min per week. The pilot study showed that a main study can be conducted to test auditory feedback as an intervention to promote motor learning in children who have cerebral palsy. No adverse event or safety issues were reported in the feasibility study.

  5. Comparison of binaural auditory brainstem responses and the binaural difference potential evoked by chirps and clicks.

    Science.gov (United States)

    Riedel, Helmut; Kollmeier, Birger

    2002-07-01

    Rising chirps that compensate for the dispersion of the travelling wave on the basilar membrane evoke larger monaural brainstem responses than clicks. In order to test if a similar effect applies for the early processing stages of binaural information, monaurally and binaurally evoked auditory brainstem responses were recorded for clicks and chirps for levels from 10 to 60 dB nHL in steps of 10 dB. Ten thousand sweeps were collected for every stimulus condition from 10 normal hearing subjects. Wave V amplitudes are significantly larger for chirps than for clicks for all conditions. The amplitude of the binaural difference potential, DP1-DN1, is significantly larger for chirps at the levels 30 and 40 dB nHL. Both the binaurally evoked potential and the binaural difference potential exhibit steeper growth functions for chirps than for clicks for levels up to 40 dB nHL. For higher stimulation levels the chirp responses saturate approaching the click evoked amplitude. For both stimuli the latency of DP1 is shorter than the latency of the binaural wave V, which in turn is shorter than the latency of DN1. The amplitude ratio of the binaural difference potential to the binaural response is independent of stimulus level for clicks and chirps. A possible interpretation is that with click stimulation predominantly binaural interaction from high frequency regions is seen which is compatible with a processing by contralateral inhibitory and ipsilateral excitatory (IE) cells. Contributions from low frequencies are negligible since the responses from low frequencies are not synchronized for clicks. The improved synchronization at lower frequencies using chirp stimuli yields contributions from both low and high frequency neurons enlarging the amplitudes of the binaural responses as well as the binaural difference potential. Since the constant amplitude ratio of the binaural difference potential to the binaural response makes contralateral and ipsilateral excitatory interaction

  6. Do thoughts have sound? Differences between thoughts and auditory hallucinations in schizophrenia.

    Science.gov (United States)

    Cuevas-Yust, Carlos

    2014-01-01

    Cognitive theories about auditory hallucinations maintain that inner speech is erroneously interpreted as coming from an external source. Few first-hand accounts of patients' experiences have been made, so there is limited knowledge of the process through which patients distinguish their auditory verbal hallucinations (AVHs) from ordinary thoughts. 89 individuals diagnosed with schizophrenia, some experiencing acute hallucinatory symptomatology (Sz-AVHs) and some who were not (Sz-noAVHs), were assessed along with 48 individuals from the general population using the Auditory Hallucinations Assessment Questionnaire (AHAQ; Cuevas-Yust, Rodríguez Martín, Ductor Recuerda, Salas Azcona, & León Gómez, 2006). The Schz-AVHs group reported hearing ordinary thoughts at the same volume as their auditory hallucinations (p = .53) and spoken words (p = .89). In contrast, the Sz-noAVHs and general population samples reported hearing spoken words louder than their own thoughts (p = .002; p = .04). In comparison to these last two groups, the Sz-AVHs group described the sound of their thoughts as louder. These findings are consistent with the cognitive hypothesis of auditory verbal hallucinations. Confusion identifying the source of auditory hallucinations could be due, in part, to "hearing" one's thoughts at the same volume as auditory hallucinations and spoken words.

  7. Individual Differences in Auditory Sentence Comprehension in Children: An Exploratory Event-Related Functional Magnetic Resonance Imaging Investigation

    Science.gov (United States)

    Yeatman, Jason D.; Ben-Shachar, Michal; Glover, Gary H.; Feldman, Heidi M.

    2010-01-01

    The purpose of this study was to explore changes in activation of the cortical network that serves auditory sentence comprehension in children in response to increasing demands of complex sentences. A further goal is to study how individual differences in children's receptive language abilities are associated with such changes in cortical…

  8. The Impact of Different Degrees of Feedback on Physical Activity Levels: A 4-Week Intervention Study

    Directory of Open Access Journals (Sweden)

    Karen Van Hoye

    2015-06-01

    Full Text Available Assessing levels of physical activity (PA and providing feedback about these levels might have an effect on participant’s PA behavior. This study discusses the effect of different levels of feedback—from minimal to use of a feedback display and coach—on PA over a 4-week intervention period. PA was measured at baseline, during and immediately after the intervention. Participants (n = 227 were randomly assigned to a Minimal Intervention Group (MIG-no feedback, Pedometer Group (PG-feedback on steps taken, Display Group (DG-feedback on steps, minutes of moderate to vigorous physical activity and energy expenditure or Coaching Group (CoachG-same as DG with need-supportive coaching. Two-way ANCOVA showed no significant Group × Time interaction effect for the different PA variables between the MIG and PG. Also no differences emerged between PG and DG. As hypothesized, CoachG had higher PA values throughout the intervention compared with DG. Self-monitoring using a pedometer resulted in more steps compared with a no-feedback condition at the start of the intervention. However, adding individualized coaching seems necessary to increase the PA level until the end of the intervention.

  9. Cardiac autonomic regulation during exposure to auditory stimulation with classical baroque or heavy metal music of different intensities.

    Science.gov (United States)

    Amaral, Joice A T; Nogueira, Marcela L; Roque, Adriano L; Guida, Heraldo L; De Abreu, Luiz Carlos; Raimundo, Rodrigo Daminello; Vanderlei, Luiz Carlos M; Ribeiro, Vivian L; Ferreira, Celso; Valenti, Vitor E

    2014-03-01

    The effects of chronic music auditory stimulation on the cardiovascular system have been investigated in the literature. However, data regarding the acute effects of different styles of music on cardiac autonomic regulation are lacking. The literature has indicated that auditory stimulation with white noise above 50 dB induces cardiac responses. We aimed to evaluate the acute effects of classical baroque and heavy metal music of different intensities on cardiac autonomic regulation. The study was performed in 16 healthy men aged 18-25 years. All procedures were performed in the same soundproof room. We analyzed heart rate variability (HRV) in time (standard deviation of normal-to-normal R-R intervals [SDNN], root-mean square of differences [RMSSD] and percentage of adjacent NN intervals with a difference of duration greater than 50 ms [pNN50]) and frequency (low frequency [LF], high frequency [HF] and LF/HF ratio) domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to one of the two musical styles (classical baroque or heavy metal music) for five minutes through an earphone, followed by a five-minute period of rest, and then they were exposed to the other style for another five minutes. The subjects were exposed to three equivalent sound levels (60-70dB, 70-80dB and 80-90dB). The sequence of songs was randomized for each individual. Auditory stimulation with heavy metal music did not influence HRV indices in the time and frequency domains in the three equivalent sound level ranges. The same was observed with classical baroque musical auditory stimulation with the three equivalent sound level ranges. Musical auditory stimulation of different intensities did not influence cardiac autonomic regulation in men.

  10. ERP Indications for Sustained and Transient Auditory Spatial Attention with Different Lateralization Cues

    Science.gov (United States)

    Widmann, Andreas; Schröger, Erich

    The presented study was designed to investigate ERP effects of auditory spatial attention in sustained attention condition (where the to-be-attended location is defined in a blockwise manner) and in a transient attention condition (where the to-be-attended location is defined in a trial-by-trial manner). Lateralization in the azimuth plane was manipulated (a) via monaural presentation of l- and right-ear sounds, (b) via interaural intensity differences, (c) via interaural time differences, (d) via an artificial-head recording, and (e) via free-field stimulation. Ten participants were delivered with frequent Nogo- and infrequent Go-Stimuli. In one half of the experiment participants were instructed to press a button if they detected a Go-stimulus at a predefined side (sustained attention), in the other half they were required to detect Go-stimuli following an arrow-cue at the cued side (transient attention). Results revealed negative differences (Nd) between ERPs elicited by to-be-attended and to-be-ignored sounds in all conditions. These Nd-effects were larger for the sustained than for the transient attention condition indicating that attentional selection according to spatial criteria is improved when subjects can focus to one and the same location for a series of stimuli.

  11. Partial synchronization of different chaotic oscillators using robust PID feedback

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco, 02200 Mexico, D.F. (Mexico)]. E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)]. E-mail: rguerra@ctrl.cinvestav.mx

    2007-07-15

    This work deals with the partial synchronization problem of two different chaotic oscillators considering model uncertainties in the slave system via control approach. The slave system is forced to follow the master signal via a linearizing controller based on model uncertainty reconstructor which leads to proportional-integral-derivative (PID) control structure. This reconstructor is related with a proportional-derivative (PD) reduced-order observer, it would be considered as a sub-slave system for the original slave of the synchronization procedure. The asymptotic performance of the synchronization methodology is proven via the dynamic of the synchronization error. Numerical experiment illustrates the closed-loop behavior of the proposed methodology.

  12. Independent or integrated processing of interaural time and level differences in human auditory cortex?

    Science.gov (United States)

    Altmann, Christian F; Terada, Satoshi; Kashino, Makio; Goto, Kazuhiro; Mima, Tatsuya; Fukuyama, Hidenao; Furukawa, Shigeto

    2014-06-01

    Sound localization in the horizontal plane is mainly determined by interaural time differences (ITD) and interaural level differences (ILD). Both cues result in an estimate of sound source location and in many real-life situations these two cues are roughly congruent. When stimulating listeners with headphones it is possible to counterbalance the two cues, so called ITD/ILD trading. This phenomenon speaks for integrated ITD/ILD processing at the behavioral level. However, it is unclear at what stages of the auditory processing stream ITD and ILD cues are integrated to provide a unified percept of sound lateralization. Therefore, we set out to test with human electroencephalography for integrated versus independent ITD/ILD processing at the level of preattentive cortical processing by measuring the mismatch negativity (MMN) to changes in sound lateralization. We presented a series of diotic standards (perceived at a midline position) that were interrupted by deviants that entailed either a change in a) ITD only, b) ILD only, c) congruent ITD and ILD, or d) counterbalanced ITD/ILD (ITD/ILD trading). The sound stimuli were either i) pure tones with a frequency of 500 Hz, or ii) amplitude modulated tones with a carrier frequency of 4000 Hz and a modulation frequency of 125 Hz. We observed significant MMN for the ITD/ILD traded deviants in case of the 500 Hz pure tones, and for the 4000 Hz amplitude-modulated tone. This speaks for independent processing of ITD and ILD at the level of the MMN within auditory cortex. However, the combined ITD/ILD cues elicited smaller MMN than the sum of the MMN induced in response to ITD and ILD cues presented in isolation for 500 Hz, but not 4000 Hz, suggesting independent processing for the higher frequency only. Thus, the two markers for independent processing - additivity and cue-conflict - resulted in contradicting conclusions with a dissociation between the lower (500 Hz) and higher frequency (4000 Hz) bands. Copyright © 2014

  13. Cognitive Strategy Use as an Index of Developmental Differences in Neural Responses to Feedback

    DEFF Research Database (Denmark)

    Andersen, Lau M.; Visser, Ingmar; Crone, Eveline A.

    2014-01-01

    Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie....... by the application of latent mixture models (McLachlan & Peel, 2000). We found four categorically different strategies, which were divided across age groups. Both adults and adolescents were distributed among all strategy groups except for the worst performing one, whereas children were distributed among all....... Keywords: feedback learning, functional brain activation, development, latent mixture models, strategy use...

  14. The neural substrate for binaural masking level differences in the auditory cortex.

    Science.gov (United States)

    Gilbert, Heather J; Shackleton, Trevor M; Krumbholz, Katrin; Palmer, Alan R

    2015-01-07

    The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12-15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population. Copyright © 2015 Gilbert et al.

  15. Gender Differences in Attending Physicians' Feedback to Residents: A Qualitative Analysis.

    Science.gov (United States)

    Mueller, Anna S; Jenkins, Tania M; Osborne, Melissa; Dayal, Arjun; O'Connor, Daniel M; Arora, Vineet M

    2017-10-01

    Prior research has shown a gender gap in the evaluations of emergency medicine (EM) residents' competency on the Accreditation Council for Graduate Medical Education (ACGME) milestones, yet the practical implications of this are not fully understood. To better understand the gender gap in evaluations, we examined qualitative differences in the feedback that male and female residents received from attending physicians. This study used a longitudinal qualitative content analysis of narrative comments by attending physicians during real-time direct observation milestone evaluations of residents. Comments were collected over 2 years from 1 ACGME-accredited EM training program. In total, 1317 direct observation evaluations with comments from 67 faculty members were collected for 47 postgraduate year 3 EM residents. Analysis of the comments revealed that the ideal EM resident possesses many stereotypically masculine traits. Additionally, examination of a subset of the residents (those with 15 or more comments, n = 35) showed that when male residents struggled, they received consistent feedback from different attending physicians regarding aspects of their performance that needed work. In contrast, when female residents struggled, they received discordant feedback from different attending physicians, particularly regarding issues of autonomy and assertiveness. Our study revealed qualitative differences in the kind of feedback that male and female EM residents received from attending physicians. The findings suggest that attending physicians should endeavor to provide male and female residents with consistent feedback and guard against gender bias in their perceptions of residents' capabilities.

  16. The developmental trajectory of children's auditory and visual statistical learning abilities: modality-based differences in the effect of age.

    Science.gov (United States)

    Raviv, Limor; Arnon, Inbal

    2017-09-12

    Infants, children and adults are capable of extracting recurring patterns from their environment through statistical learning (SL), an implicit learning mechanism that is considered to have an important role in language acquisition. Research over the past 20 years has shown that SL is present from very early infancy and found in a variety of tasks and across modalities (e.g., auditory, visual), raising questions on the domain generality of SL. However, while SL is well established for infants and adults, only little is known about its developmental trajectory during childhood, leaving two important questions unanswered: (1) Is SL an early-maturing capacity that is fully developed in infancy, or does it improve with age like other cognitive capacities (e.g., memory)? and (2) Will SL have similar developmental trajectories across modalities? Only few studies have looked at SL across development, with conflicting results: some find age-related improvements while others do not. Importantly, no study to date has examined auditory SL across childhood, nor compared it to visual SL to see if there are modality-based differences in the developmental trajectory of SL abilities. We addressed these issues by conducting a large-scale study of children's performance on matching auditory and visual SL tasks across a wide age range (5-12y). Results show modality-based differences in the development of SL abilities: while children's learning in the visual domain improved with age, learning in the auditory domain did not change in the tested age range. We examine these findings in light of previous studies and discuss their implications for modality-based differences in SL and for the role of auditory SL in language acquisition. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=3kg35hoF0pw. © 2017 John Wiley & Sons Ltd.

  17. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  18. Effect of Different Types of Computer-Assisted Feedback Strategies on Achievement and Response Confidence.

    Science.gov (United States)

    Clark, Kevin; Dwyer, Francis M.

    1998-01-01

    This study examined the effects of different types of computer-assisted feedback strategies (knowledge of correct response, knowledge of response, and elaborative) and different types of information (facts, concepts, and principles) on student achievement and response confidence. Findings indicated a positive correlation between achievement and…

  19. Dynamic Evaluation of LCL-type Grid-Connected Inverters with Different Current Feedback Control Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Li, Zipeng; Guerrero, Josep M.

    2015-01-01

    typical current feedback control schemes in LCL grid-connected system are analyzed and compared systematically. Analysis in s-domain take the effect of the digital computation and modulation delay into account. The stability analysis is presented by root locus in the discrete domain, the optimal values...... of the controller and filter with different feedback configurations are provided. The impacts of digital delay, PR parameters and LCL parameters on different control strategies are also investigated. Finally, the theoretical analysis are validated by simulation results....

  20. Neural basis of the time window for subjective motor-auditory integration

    Directory of Open Access Journals (Sweden)

    Koichi eToida

    2016-01-01

    Full Text Available Temporal contiguity between an action and corresponding auditory feedback is crucial to the perception of self-generated sound. However, the neural mechanisms underlying motor–auditory temporal integration are unclear. Here, we conducted four experiments with an oddball paradigm to examine the specific event-related potentials (ERPs elicited by delayed auditory feedback for a self-generated action. The first experiment confirmed that a pitch-deviant auditory stimulus elicits mismatch negativity (MMN and P300, both when it is generated passively and by the participant’s action. In our second and third experiments, we investigated the ERP components elicited by delayed auditory feedback of for a self-generated action. We found that delayed auditory feedback elicited an enhancement of P2 (enhanced-P2 and a N300 component, which were apparently different from the MMN and P300 components observed in the first experiment. We further investigated the sensitivity of the enhanced-P2 and N300 to delay length in our fourth experiment. Strikingly, the amplitude of the N300 increased as a function of the delay length. Additionally, the N300 amplitude was significantly correlated with the conscious detection of the delay (the 50% detection point was around 200 ms, and hence reduction in the feeling of authorship of the sound (the sense of agency. In contrast, the enhanced-P2 was most prominent in short-delay (≤ 200 ms conditions and diminished in long-delay conditions. Our results suggest that different neural mechanisms are employed for the processing of temporally-deviant and pitch-deviant auditory feedback. Additionally, the temporal window for subjective motor–auditory integration is likely about 200 ms, as indicated by these auditory ERP components.

  1. Spatial selective auditory attention in the presence of reverberant energy: individual differences in normal-hearing listeners.

    Science.gov (United States)

    Ruggles, Dorea; Shinn-Cunningham, Barbara

    2011-06-01

    Listeners can selectively attend to a desired target by directing attention to known target source features, such as location or pitch. Reverberation, however, reduces the reliability of the cues that allow a target source to be segregated and selected from a sound mixture. Given this, it is likely that reverberant energy interferes with selective auditory attention. Anecdotal reports suggest that the ability to focus spatial auditory attention degrades even with early aging, yet there is little evidence that middle-aged listeners have behavioral deficits on tasks requiring selective auditory attention. The current study was designed to look for individual differences in selective attention ability and to see if any such differences correlate with age. Normal-hearing adults, ranging in age from 18 to 55 years, were asked to report a stream of digits located directly ahead in a simulated rectangular room. Simultaneous, competing masker digit streams were simulated at locations 15° left and right of center. The level of reverberation was varied to alter task difficulty by interfering with localization cues (increasing localization blur). Overall, performance was best in the anechoic condition and worst in the high-reverberation condition. Listeners nearly always reported a digit from one of the three competing streams, showing that reverberation did not render the digits unintelligible. Importantly, inter-subject differences were extremely large. These differences, however, were not significantly correlated with age, memory span, or hearing status. These results show that listeners with audiometrically normal pure tone thresholds differ in their ability to selectively attend to a desired source, a task important in everyday communication. Further work is necessary to determine if these differences arise from differences in peripheral auditory function or in more central function.

  2. Reading ability reflects individual differences in auditory brainstem function, even into adulthood.

    Science.gov (United States)

    Skoe, Erika; Brody, Lisa; Theodore, Rachel M

    2017-01-01

    Research with developmental populations suggests that the maturational state of auditory brainstem encoding is linked to reading ability. Specifically, children with poor reading skills resemble biologically younger children with respect to their auditory brainstem responses (ABRs) to speech stimulation. Because ABR development continues into adolescence, it is possible that the link between ABRs and reading ability changes or resolves as the brainstem matures. To examine these possibilities, ABRs were recorded at varying presentation rates in adults with diverse, yet unimpaired reading levels. We found that reading ability in adulthood related to ABR Wave V latency, with more juvenile response morphology linked to less proficient reading ability, as has been observed for children. These data add to the evidence indicating that auditory brainstem responses serve as an index of the sound-based skills that underlie reading, even into adulthood. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Feedback-based error monitoring processes during musical performance: an ERP study.

    Science.gov (United States)

    Katahira, Kentaro; Abla, Dilshat; Masuda, Sayaka; Okanoya, Kazuo

    2008-05-01

    Auditory feedback is important in detecting and correcting errors during sound production when a current performance is compared to an intended performance. In the context of vocal production, a forward model, in which a prediction of action consequence (corollary discharge) is created, has been proposed to explain the dampened activity of the auditory cortex while producing self-generated vocal sounds. However, it is unclear how auditory feedback is processed and what neural mechanism underlies the process during other sound production behavior, such as musical performances. We investigated the neural correlates of human auditory feedback-based error detection using event-related potentials (ERPs) recorded during musical performances. Keyboard players of two different skill levels played simple melodies using a musical score. During the performance, the auditory feedback was occasionally altered. Subjects with early and extensive piano training produced a negative ERP component N210, which was absent in non-trained players. When subjects listened to music that deviated from a corresponding score without playing the piece, N210 did not emerge but the imaginary mismatch negativity (iMMN) did. Therefore, N210 may reflect a process of mismatch between the intended auditory image evoked by motor activity, and actual auditory feedback.

  4. Exploring cultural differences in feedback processes and perceived instructiveness during clerkships: replicating a Dutch study in Indonesia.

    Science.gov (United States)

    Suhoyo, Yoyo; van Hell, Elisabeth A; Prihatiningsih, Titi S; Kuks, Jan B M; Cohen-Schotanus, Janke

    2014-03-01

    Cultural differences between countries may entail differences in feedback processes. By replicating a Dutch study in Indonesia, we analysed whether differences in processes influenced the perceived instructiveness of feedback. Over a two-week period, Indonesian students (n = 215) recorded feedback moments during clerkships, noting who provided the feedback, whether the feedback was based on observations, who initiated the feedback, and its perceived instructiveness. Data were compared with the earlier Dutch study and analysed with χ(2) tests, t-tests and multilevel techniques. Cultural differences were explored using Hofstede's Model, with Indonesia and the Netherlands differing on "power distance" and "individualism." Perceived instructiveness of feedback did not differ significantly between both countries. However, significant differences were found in feedback provider, observation and initiative. Indonesian students perceived feedback as more instructive if provided by specialists and initiated jointly by the supervisor and student (βresidents = -0.201, p culture. Further research is necessary to unravel other possible influences of culture in implementing feedback procedures in different countries.

  5. The Build-up of Auditory Stream Segregation: A Different Perspective.

    Science.gov (United States)

    Deike, Susann; Heil, Peter; Böckmann-Barthel, Martin; Brechmann, André

    2012-01-01

    The build-up of auditory stream segregation refers to the notion that sequences of alternating A and B sounds initially tend to be heard as a single stream, but with time appear to split into separate streams. The central assumption in the analysis of this phenomenon is that streaming sequences are perceived as one stream at the beginning by default. In the present study, we test the validity of this assumption and document its impact on the apparent build-up phenomenon. Human listeners were presented with ABAB sequences, where A and B were harmonic tone complexes of seven different fundamental frequency separations (Δf) ranging from 2 to 14 semitones. Subjects had to indicate, as promptly as possible, their initial percept of the sequences, as either "one stream" or "two streams," and any changes thereof during the sequences. We found that subjects did not generally indicate a one-stream percept at the beginning of streaming sequences. Instead, the first perceptual decision depended on Δf, with the probability of a one-stream percept decreasing, and that of a two-stream percept increasing, with increasing Δf. Furthermore, subjects required some time to make and report a decision on their perceptual organization. Taking this time into account, the resulting time courses of two-stream probabilities differ markedly from those suggested by the conventional analysis. A build-up-like increase in two-stream probability was found only for the Δf of six semitones. At the other Δf conditions no or only minor increases in two-stream probability occurred. These results shed new light on the build-up of stream segregation and its possible neural correlates.

  6. The build-up of auditory stream segregation: a different perspective.

    Directory of Open Access Journals (Sweden)

    Susann eDeike

    2012-10-01

    Full Text Available The build-up of auditory stream segregation refers to the notion that sequences of alternating A and B sounds initially tend to be heard as a single stream, but with time appear to split into separate streams. The central assumption in the analysis of this phenomenon is that streaming sequences are perceived as one stream at the beginning by default. In the present study, we test the validity of this assumption and document its impact on the apparent build-up phenomenon. Human listeners were presented with ABAB sequences, where A and B were harmonic tone complexes of seven different fundamental frequency separations (∆f ranging from 2 to 14 semitones. Subjects had to indicate, as promptly as possible, their initial percept of the sequences, as either one stream or two streams, and any changes thereof during the sequences. We found that subjects did not generally indicate a one-stream percept at the beginning of streaming sequences. Instead, the first perceptual decision depended on ∆f, with the probability of a one-stream percept decreasing, and that of a two-stream percept increasing, with increasing ∆f. Furthermore, subjects required some time to make and report a decision on their perceptual organization. Taking this time into account, the resulting time courses of two-stream probabilities differ markedly from those suggested by the conventional analysis. A build-up-like increase in two-stream probability was found only for the ∆f of 6 semitones. At the other ∆f conditions no or only minor increases in two-stream probability occurred. These results shed new light on the build-up of stream segregation and its possible neural correlates.

  7. Temporal sequence of visuo-auditory interaction in multiple areas of the guinea pig visual cortex.

    Directory of Open Access Journals (Sweden)

    Masataka Nishimura

    Full Text Available Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1. Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction.

  8. Schizophrenia and borderline personality disorder: similarities and differences in the experience of auditory hallucinations, paranoia, and childhood trauma.

    Science.gov (United States)

    Kingdon, David G; Ashcroft, Katie; Bhandari, Bharathi; Gleeson, Stefan; Warikoo, Nishchint; Symons, Matthew; Taylor, Lisa; Lucas, Eleanor; Mahendra, Ravi; Ghosh, Soumya; Mason, Anthony; Badrakalimuthu, Raja; Hepworth, Claire; Read, John; Mehta, Raj

    2010-06-01

    This study investigated similarities and differences in the experience of auditory hallucinations, paranoia, and childhood trauma in schizophrenia and borderline personality disorder (BPD). Patients with clinical diagnoses of schizophrenia or BPD were interviewed using the Structured Clinical Interviews for DSM-IV. Axes 1 and 2 and auditory hallucinations, paranoia, and childhood trauma were assessed. A total of 111 patients participated; 59 met criteria for schizophrenia, 33 for BPD, and 19 for both. The groups were similar in their experiences of voices, including the perceived location of them, but they differed in frequency of paranoid delusions. Those with a diagnosis of BPD, including those with schizophrenia comorbidity, reported more childhood trauma, especially emotional abuse. BPD and schizophrenia frequently coexist, and this comorbidity has implications for diagnostic classification and treatment. Levels of reported childhood trauma are especially high in those with a BPD diagnosis, whether they have schizophrenia or not, and this requires assessment and appropriate management.

  9. Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex.

    Science.gov (United States)

    Stecker, G Christopher; McLaughlin, Susan A; Higgins, Nathan C

    2015-10-15

    Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55-85 dB SPL, binaural 55-85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values. Copyright © 2015. Published by Elsevier Inc.

  10. The Effect of Auditory Integration Training on the Working Memory of Adults with Different Learning Preferences

    Science.gov (United States)

    Ryan, Tamara E.

    2014-01-01

    The purpose of this study was to determine the effects of auditory integration training (AIT) on a component of the executive function of working memory; specifically, to determine if learning preferences might have an interaction with AIT to increase the outcome for some learners. The question asked by this quantitative pretest posttest design is…

  11. The response properties of neurons in different fields of the auditory cortex in the rat

    Czech Academy of Sciences Publication Activity Database

    Profant, Oliver; Burianová, Jana; Syka, Josef

    2013-01-01

    Roč. 296, February (2013), s. 51-59 ISSN 0378-5955 R&D Projects: GA ČR(CZ) GAP303/12/1347; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : auditory cortex * fequency representation * axon terminals Subject RIV: FH - Neurology Impact factor: 2.848, year: 2013

  12. THE EFFECT OF DIFFERENT CORRECTIVE FEEDBACK METHODS ON THE OUTCOME AND SELF CONFIDENCE OF YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    George Tzetzis

    2008-09-01

    Full Text Available This experiment investigated the effects of three corrective feedback methods, using different combinations of correction, or error cues and positive feedback for learning two badminton skills with different difficulty (forehand clear - low difficulty, backhand clear - high difficulty. Outcome and self-confidence scores were used as dependent variables. The 48 participants were randomly assigned into four groups. Group A received correction cues and positive feedback. Group B received cues on errors of execution. Group C received positive feedback, correction cues and error cues. Group D was the control group. A pre, post and a retention test was conducted. A three way analysis of variance ANOVA (4 groups X 2 task difficulty X 3 measures with repeated measures on the last factor revealed significant interactions for each depended variable. All the corrective feedback methods groups, increased their outcome scores over time for the easy skill, but only groups A and C for the difficult skill. Groups A and B had significantly better outcome scores than group C and the control group for the easy skill on the retention test. However, for the difficult skill, group C was better than groups A, B and D. The self confidence scores of groups A and C improved over time for the easy skill but not for group B and D. Again, for the difficult skill, only group C improved over time. Finally a regression analysis depicted that the improvement in performance predicted a proportion of the improvement in self confidence for both the easy and the difficult skill. It was concluded that when young athletes are taught skills of different difficulty, different type of instruction, might be more appropriate in order to improve outcome and self confidence. A more integrated approach on teaching will assist coaches or physical education teachers to be more efficient and effective

  13. Age-related differences in auditory evoked potentials as a function of task modulation during speech-nonspeech processing.

    Science.gov (United States)

    Rufener, Katharina Simone; Liem, Franziskus; Meyer, Martin

    2014-01-01

    Healthy aging is typically associated with impairment in various cognitive abilities such as memory, selective attention or executive functions. Less well observed is the fact that also language functions in general and speech processing in particular seems to be affected by age. This impairment is partly caused by pathologies of the peripheral auditory nervous system and central auditory decline and in some part also by a cognitive decay. This cross-sectional electroencephalography (EEG) study investigates temporally early electrophysiological correlates of auditory related selective attention in young (20-32 years) and older (60-74 years) healthy adults. In two independent tasks, we systematically modulate the subjects' focus of attention by presenting words and pseudowords as targets and white noise stimuli as distractors. Behavioral data showed no difference in task accuracy between the two age samples irrespective of the modulation of attention. However, our work is the first to show that the N1-and the P2 component evoked by speech and nonspeech stimuli are specifically modulated in older adults and young adults depending on the subjects' focus of attention. This finding is particularly interesting in that the age-related differences in AEPs may be reflecting levels of processing that are not mirrored by the behavioral measurements.

  14. Influence of different envelope maskers on signal recognition and neuronal representation in the auditory system of a grasshopper.

    Directory of Open Access Journals (Sweden)

    Daniela Neuhofer

    Full Text Available BACKGROUND: Animals that communicate by sound face the problem that the signals arriving at the receiver often are degraded and masked by noise. Frequency filters in the receiver's auditory system may improve the signal-to-noise ratio (SNR by excluding parts of the spectrum which are not occupied by the species-specific signals. This solution, however, is hardly amenable to species that produce broad band signals or have ears with broad frequency tuning. In mammals auditory filters exist that work in the temporal domain of amplitude modulations (AM. Do insects also use this type of filtering? PRINCIPAL FINDINGS: Combining behavioural and neurophysiological experiments we investigated whether AM filters may improve the recognition of masked communication signals in grasshoppers. The AM pattern of the sound, its envelope, is crucial for signal recognition in these animals. We degraded the species-specific song by adding random fluctuations to its envelope. Six noise bands were used that differed in their overlap with the spectral content of the song envelope. If AM filters contribute to reduced masking, signal recognition should depend on the degree of overlap between the song envelope spectrum and the noise spectra. Contrary to this prediction, the resistance against signal degradation was the same for five of six masker bands. Most remarkably, the band with the strongest frequency overlap to the natural song envelope (0-100 Hz impaired acceptance of degraded signals the least. To assess the noise filter capacities of single auditory neurons, the changes of spike trains as a function of the masking level were assessed. Increasing levels of signal degradation in different frequency bands led to similar changes in the spike trains in most neurones. CONCLUSIONS: There is no indication that auditory neurones of grasshoppers are specialized to improve the SNR with respect to the pattern of amplitude modulations.

  15. Exploring cultural differences in feedback processes and perceived instructiveness during clerkships : Replicating a Dutch study in Indonesia

    NARCIS (Netherlands)

    Suhoyo, Yoyo; van Hell, Elisabeth A.; Prihatiningsih, Titi S.; Kuks, Jan B. M.; Cohen-Schotanus, Janke

    Context: Cultural differences between countries may entail differences in feedback processes. Aims: By replicating a Dutch study in Indonesia, we analysed whether differences in processes influenced the perceived instructiveness of feedback. Methods: Over a two-week period, Indonesian students (n =

  16. Differences between human auditory event-related potentials (AERPs) measured at 2 and 4 months after birth.

    Science.gov (United States)

    van den Heuvel, Marion I; Otte, Renée A; Braeken, Marijke A K A; Winkler, István; Kushnerenko, Elena; Van den Bergh, Bea R H

    2015-07-01

    Infant auditory event-related potentials (AERPs) show a series of marked changes during the first year of life. These AERP changes indicate important advances in early development. The current study examined AERP differences between 2- and 4-month-old infants. An auditory oddball paradigm was delivered to infants with a frequent repetitive tone and three rare auditory events. The three rare events included a shorter than the regular inter-stimulus interval (ISI-deviant), white noise segments, and environmental sounds. The results suggest that the N250 infantile AERP component emerges during this period in response to white noise but not to environmental sounds, possibly indicating a developmental step towards separating acoustic deviance from contextual novelty. The scalp distribution of the AERP response to both the white noise and the environmental sounds shifted towards frontal areas and AERP peak latencies were overall lower in infants at 4 than at 2 months of age. These observations indicate improvements in the speed of sound processing and maturation of the frontal attentional network in infants during this period. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Two Collaborative Feedback Models in EFL Writing Instruction: Do They Make a Difference?

    Directory of Open Access Journals (Sweden)

    Mitra Rabiee

    2008-11-01

    Full Text Available Research in L1 writing has found numerous benefits of employing collaborative learning in the classroom. The research findings on group work provide clear evidence that engaging learners in group activities increases opportunities for students to engage in the negotiation of meaning, which further leads to better acquisition. The present study, implementing two different collaborative feedback models, based on various sources and modes of feedback, examines the effect of each on the students’ writing quality. Sixty Iranian students, majoring in English Translation, were assigned into three homogeneous groups based on their obtained scores on Oxford Placement Test (OPT and sample paragraph writing. They covered five topics in a sequence of ten written texts − before and after receiving feedback − over a 15-week semester. The results revealed that students incorporated both the teacher’s and peers’ oral/written comments in the process of draft editing, and that they benefited from the two collaborative feedback models almost equally. The interview results also confirmed co-operative learning as an effective teaching strategy that could be used to enhance achievement and socialization among students and to improve attitudes towards learning and working in groups, especially in EFL settings.

  18. [Gender-dependent differences in auditory verbal learning and memory skills in children?].

    Science.gov (United States)

    Ptok, M

    2010-01-01

    Girls tend to acquire language skills faster than boys do. Furthermore, specific language impairment and dyslexia are diagnosed more often in males than in females. We investigated whether auditory verbal learning skills in boys are inferior to those of girls as a possible cause for gender dependency in language acquisition. In a retrospective study, data from 386 children (245 male, 141 female) age 6 years to 9 years 11 months were investigated. The Auditory Verbal Learning Test (Verbaler Lern- und Merkfähigkeitstest) was administered. After gender, age, and IQ matching, girls showed a small advantage in long-term memory and recognition. Our results are in contrast to findings that suggest superior verbal memory and learning in adult females compared with males.

  19. The effects of two different auditory stimuli on functional arm movement in persons with Parkinson's disease: a dual-task paradigm.

    Science.gov (United States)

    Ma, Hui-Ing; Hwang, Wen-Juh; Lin, Keh-Chung

    2009-03-01

    To examine, in a dual-task paradigm, the effect of auditory stimuli on people with Parkinson's disease. A counterbalanced repeated-measures design. A motor control laboratory in a university setting. Twenty individuals with Parkinson's disease. EXPERIMENTAL CONDITIONS: Each participant did two experiments (marching music experiment and weather forecast experiment). In each experiment, the participant performed an upper extremity functional task as the primary task and listened to an auditory stimulus (marching music or weather forecast) as the concurrent task. Each experiment had three conditions: listening to the auditory stimulus, ignoring the auditory stimulus and no auditory stimulus. Kinematic variables of arm movement, including movement time, peak velocity, deceleration time and number of movement units. We found that performances of the participants were similar across the three conditions for the marching music experiment, but were significantly different for the weather forecast experiment. The comparison of condition effects between the two experiments indicated that the effect of weather forecast was (marginally) significantly greater than that of marching music. The results suggest that the type of auditory stimulus is important to the degree of interference with upper extremity performance in people with Parkinson's disease. Auditory stimuli that require semantic processing (e.g. weather forecast) may distract attention from the primary task, and thus cause a decline in performance.

  20. The Sign and Strength of Plant-Soil Feedback for the Invasive Shrub, Lonicera maackii, Varies in Different Soils

    Directory of Open Access Journals (Sweden)

    Don Cipollini

    2012-10-01

    Full Text Available Plants alter soil characteristics causing changes in their subsequent growth resulting in positive or negative feedback on both their own fitness and that of other plants. In a greenhouse study, we investigated whether the sign and strength of feedback changed across two distinct soil types, and whether effects were due to shifts in biotic or abiotic soil traits. Using soils from two different locations, we examined growth of the exotic invasive shrub, Lonicera maackii and the related native shrub, Diervilla lonicera, in unconditioned soils and in soils conditioned by previous growth of L. maackii, D. lonicera, and Fraxinus pennsylvanica. In a sandy acidic soil, L. maackii showed positive feedback in unsterilized soils, but its growth decreased and positive feedback became negative with sterilization in this soil. In a loamy circumneutral soil, L. maackii displayed neutral to negative feedback in unsterilized soils, but sterilization significantly increased growth in all conditioning treatments and caused feedback to become strongly negative. Native D. lonicera displayed negative feedback in unsterilized soil of both the sandy and loamy types, but sterilization either eliminated or reversed feedback relationships. Soil conditioning by L. maackii and F. pennsylvanica had very similar feedbacks on L. maackii and D. lonicera. While some abiotic soil traits varied across soil types and were affected by conditioning, soil biota sensitive to sterilization were apparently important mediators of both positive and negative feedback effects.

  1. Same or different: The overlap between children with auditory processing disorders and children with other developmental disorders: A systematic review

    NARCIS (Netherlands)

    Wit, E. de; Dijk, P. van; Hanekamp, S.; Visser-Bochane, M.I.; Steenbergen, B.; Schans, C.P. van der; Luinge, M.R.

    2018-01-01

    Objectives: Children diagnosed with auditory processing disorders (APD) experience difficulties in auditory functioning and with memory, attention, language, and reading tasks. However, it is not clear whether the behavioral characteristics of these children are distinctive from the behavioral

  2. Distinct patterns of corticogeniculate feedback to different layers of the lateral geniculate nucleus

    Directory of Open Access Journals (Sweden)

    Ichida JM

    2014-09-01

    Full Text Available Jennifer M Ichida,1 Julia A Mavity-Hudson,2 Vivien A Casagrande1–3 1Department of Psychology, 2Department of Cell and Developmental Biology, 3Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, USA Abstract: In primates, feedforward visual pathways from retina to lateral geniculate nucleus (LGN are segregated to different layers. These layers also receive strong reciprocal feedback pathways from cortex. The degree to which feedforward streams in primates are segregated from feedback streams remains unclear. Here, we asked whether corticogeniculate cells that innervate the magnocellular (M, parvocellular (P, and koniocellular (K layers of the LGN in the prosimian primate bush baby (Otolemur garnettii can be distinguished based on either the laminar distribution or morphological characteristics of their axons and synaptic contacts in LGN, or on their cell body position, size, and dendritic distribution in cortex. Corticogeniculate axons and synapses were labeled anterogradely with biotinylated dextran injections in layer 6 of cortex. Corticogeniculate cell bodies were first labeled with fluorescent dextran injections limited to individual M, P, or K LGN layers and then filled with biotinylated Lucifer yellow. Results showed that feedback to the M or P LGN layers arises from cells with dendrites primarily confined to cortical layer 6 and axons restricted to either M or P LGN layers, but not both. Feedback to K LGN layers arises from cells: 1 whose dendrites distribute rather evenly across cortical layers 5 and 6; 2 whose dendrites always extend into layer 4; and 3 whose axons are never confined to K layers but always overlap with either P or M layers. Corticogeniculate axons also showed distributions that were retinotopically precise based on known receptive field sizes of layer 6 cells, and these axons mainly made synapses with glutamatergic projection neurons in the LGN in all layers. Taken together with prior

  3. Novel UEP LT Coding Scheme with Feedback Based on Different Degree Distributions

    Directory of Open Access Journals (Sweden)

    Li Ya-Fang

    2016-01-01

    Full Text Available Traditional unequal error protection (UEP schemes have some limitations and problems, such as the poor UEP performance of high priority data and the seriously sacrifice of low priority data in decoding property. Based on the reasonable applications of different degree distributions in LT codes, this paper puts forward a novel UEP LT coding scheme with a simple feedback to compile these data packets separately. Simulation results show that the proposed scheme can effectively protect high priority data, and improve the transmission efficiency of low priority data from 2.9% to 22.3%. Furthermore, it is fairly suitable to apply this novel scheme to multicast and broadcast environments since only a simple feedback introduced.

  4. Auditory event-related responses to diphthongs in different attention conditions

    DEFF Research Database (Denmark)

    Morris, David Jackson; Steinmetzger, Kurt; Tøndering, John

    2016-01-01

    The modulation of auditory event-related potentials (ERP) by attention generally results in larger amplitudes when stimuli are attended. We measured the P1-N1-P2 acoustic change complex elicited with synthetic overt (second formant, F2 = 1000 Hz) and subtle (F2 = 100 Hz) diphthongs, while subjects....... Multivariate analysis of ERP components from the rising F2 changes showed main effects of attention on P2 amplitude and latency, and N1-P2 amplitude. P2 amplitude decreased by 40% between the attend and ignore conditions, and by 60% between the attend and divert conditions. The effect of diphthong magnitude...

  5. Teacher's Attitude into Different Approach to Providing Feedback to Students in Higher Education

    Science.gov (United States)

    Chaqmaqchee, Zina Adil

    2015-01-01

    Feedback within higher education has an effective role in teaching staffs mode. The treatise on teachers' methods of feedback is represented to demonstrate how the novel feedback can help the academic staffs to provide an effective feedback for students in their assignments and written draft. The study investigates the academic staff's methods of…

  6. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    Directory of Open Access Journals (Sweden)

    Jeremy D W Greenlee

    Full Text Available The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents pitch perturbations in their voice auditory feedback (speaking task. ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP and event-related band power (ERBP responses, primarily in the high gamma (70-150 Hz range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG. The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.

  7. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice

    Directory of Open Access Journals (Sweden)

    Pascal Jorratt

    2017-11-01

    Full Text Available The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  8. Visual phonology: the effects of orthographic consistency on different auditory word recognition tasks.

    Science.gov (United States)

    Ziegler, Johannes C; Ferrand, Ludovic; Montant, Marie

    2004-07-01

    In this study, we investigated orthographic influences on spoken word recognition. The degree of spelling inconsistency was manipulated while rime phonology was held constant. Inconsistent words with subdominant spellings were processed more slowly than inconsistent words with dominant spellings. This graded consistency effect was obtained in three experiments. However, the effect was strongest in lexical decision, intermediate in rime detection, and weakest in auditory naming. We conclude that (1) orthographic consistency effects are not artifacts of phonological, phonetic, or phonotactic properties of the stimulus material; (2) orthographic effects can be found even when the error rate is extremely low, which rules out the possibility that they result from strategies used to reduce task difficulty; and (3) orthographic effects are not restricted to lexical decision. However, they are stronger in lexical decision than in other tasks. Overall, the study shows that learning about orthography alters the way we process spoken language.

  9. Dynamics of vocalization-induced modulation of auditory cortical activity at mid-utterance.

    Directory of Open Access Journals (Sweden)

    Zhaocong Chen

    Full Text Available BACKGROUND: Recent research has addressed the suppression of cortical sensory responses to altered auditory feedback that occurs at utterance onset regarding speech. However, there is reason to assume that the mechanisms underlying sensorimotor processing at mid-utterance are different than those involved in sensorimotor control at utterance onset. The present study attempted to examine the dynamics of event-related potentials (ERPs to different acoustic versions of auditory feedback at mid-utterance. METHODOLOGY/PRINCIPAL FINDINGS: Subjects produced a vowel sound while hearing their pitch-shifted voice (100 cents, a sum of their vocalization and pure tones, or a sum of their vocalization and white noise at mid-utterance via headphones. Subjects also passively listened to playback of what they heard during active vocalization. Cortical ERPs were recorded in response to different acoustic versions of feedback changes during both active vocalization and passive listening. The results showed that, relative to passive listening, active vocalization yielded enhanced P2 responses to the 100 cents pitch shifts, whereas suppression effects of P2 responses were observed when voice auditory feedback was distorted by pure tones or white noise. CONCLUSION/SIGNIFICANCE: The present findings, for the first time, demonstrate a dynamic modulation of cortical activity as a function of the quality of acoustic feedback at mid-utterance, suggesting that auditory cortical responses can be enhanced or suppressed to distinguish self-produced speech from externally-produced sounds.

  10. Qualitative Feedback From a Text Messaging Intervention for Depression: Benefits, Drawbacks, and Cultural Differences

    Science.gov (United States)

    Berridge, Clara

    2014-01-01

    Background Mobile health interventions are often standardized and assumed to work the same for all users; however, we may be missing cultural differences in the experiences of interventions that may impact how and if an intervention is effective. Objective The objective of the study was to assess qualitative feedback from participants to determine if there were differences between Spanish speakers and English speakers. Daily text messages were sent to patients as an adjunct to group Cognitive Behavioral Therapy (CBT) for depression. Methods Messages inquired about mood and about specific themes (thoughts, activities, social interactions) of a manualized group CBT intervention. There were thirty-nine patients who participated in the text messaging pilot study. The average age of the participants was 53 years (SD 10.4; range of 23-72). Results Qualitative feedback from Spanish speakers highlighted feelings of social support, whereas English speakers noted increased introspection and self-awareness of their mood state. Conclusions These cultural differences should be explored further, as they may impact the effect of supportive mobile health interventions. Trial Registration Trial Registration: Clinicaltrials.gov NCT01083628; http://clinicaltrials.gov/ct2/show/study/NCT01083628 (Archived by WebCite at http://www.webcitation.org/6StpbdHuq). PMID:25373390

  11. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  12. Corrective Feedback in Classrooms at Different Proficiency Levels: A Case Study of Chinese as a Foreign Language

    Directory of Open Access Journals (Sweden)

    Liu Li

    2014-08-01

    Full Text Available This paper presents a study investigating the relationship between corrective feedback, students’ language proficiency and classroom communication orientation in classrooms of Chinese as a Foreign Language (CFL at a US university. Inspired by Lyster and Mori (2006, this comparative analysis of teacher-student interaction investigates the immediate effects of prompt, recast, and explicit correction on learner uptake and repair across three different Chinese proficiency levels. By use of two measurement tools—Error Treatment Model and COLT coding scheme, the study attempts to seek the distribution pattern of feedbacks and the sequent uptakes, as well as the impact of learners’ proficiency levels on the pattern of feedback and uptakes in CFL classrooms. Results show that recasts still remain the most common feedback type across the classes in this study. The uptake of feedback is influenced both by classroom communication orientation and the students’ language proficiency.

  13. Decomposing developmental differences in probabilistic feedback learning: A combined performance and heart-rate analysis

    NARCIS (Netherlands)

    van Duijvenvoorde, A.C.K.; Jansen, B.R.J.; Griffioen, E.S.; van der Molen, M.W.; Huizenga, H.M.

    2013-01-01

    Learning on the basis of outcome feedback shows pronounced developmental changes, however, much is still unknown about its underlying processes. In the current study, we aimed at decomposing how value updating, feedback monitoring and executing behavioral control contribute to children's

  14. Learning English vowels with different first-language vowel systems II: Auditory training for native Spanish and German speakers.

    Science.gov (United States)

    Iverson, Paul; Evans, Bronwen G

    2009-08-01

    This study investigated whether individuals with small and large native-language (L1) vowel inventories learn second-language (L2) vowel systems differently, in order to better understand how L1 categories interfere with new vowel learning. Listener groups whose L1 was Spanish (5 vowels) or German (18 vowels) were given five sessions of high-variability auditory training for English vowels, after having been matched to assess their pre-test English vowel identification accuracy. Listeners were tested before and after training in terms of their identification accuracy for English vowels, the assimilation of these vowels into their L1 vowel categories, and their best exemplars for English (i.e., perceptual vowel space map). The results demonstrated that Germans improved more than Spanish speakers, despite the Germans' more crowded L1 vowel space. A subsequent experiment demonstrated that Spanish listeners were able to improve as much as the German group after an additional ten sessions of training, and that both groups were able to retain this learning. The findings suggest that a larger vowel category inventory may facilitate new learning, and support a hypothesis that auditory training improves identification by making the application of existing categories to L2 phonemes more automatic and efficient.

  15. Bayesian Modeling of the Dynamics of Phase Modulations and their Application to Auditory Evoked Responses at Different Loudness Scales

    Directory of Open Access Journals (Sweden)

    Zeinab eMortezapouraghdam

    2016-01-01

    Full Text Available We study the effect of long-term habituation signatures of auditory selective attention reflected in the instantaneous phase information of the auditory event-related potentials (ERPs at four distinct stimuli levels of 60dB SPL, 70dB SPL, 80dB SPL and 90dB SPL. The analysis is based on the single-trial level. The effect of habituation can be observed in terms of the changes (jitter in the instantaneous phase information of ERPs. In particular, the absence of habituation is correlated with a consistently high phase synchronization over ERP trials.We estimate the changes in phase concentration over trials using a Bayesian approach, in which the phase is modeled as being drawn from a von Mises distribution with a concentration parameter which varies smoothly over trials. The smoothness assumption reflects the fact that habituation is a gradual process.We differentiate between different stimuli based on the relative changes and absolute values of the estimated concentration parameter using the proposed Bayesian model.

  16. Incidental auditory category learning.

    Science.gov (United States)

    Gabay, Yafit; Dick, Frederic K; Zevin, Jason D; Holt, Lori L

    2015-08-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in 1 of 4 possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from 1 of 4 distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. (c) 2015 APA, all rights reserved).

  17. Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks.

    Science.gov (United States)

    Dai, Lengshi; Shinn-Cunningham, Barbara G

    2016-01-01

    Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics

  18. Contributions of sensory coding and attentional control to individual differences in performance in spatial auditory selective attention tasks

    Directory of Open Access Journals (Sweden)

    Lengshi Dai

    2016-10-01

    Full Text Available Listeners with normal hearing thresholds differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding, onset event-related potentials from the scalp (ERPs, reflecting cortical responses to sound, and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones; however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance, inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with normal hearing thresholds can arise due to both subcortical coding differences and differences in attentional control, depending on

  19. Evaluating the effectiveness of an educational and feedback intervention aimed at improving consideration of sex differences in guideline development

    NARCIS (Netherlands)

    Keuken, D. G.; Haafkens, J. A.; Mohrs, J.; Klazinga, N. S.; Bindels, P. J. E.

    2010-01-01

    Objectives To investigate the effect of an educational and feedback intervention to enhance consideration of sex differences in clinical guideline development. Design Preintervention and postintervention questionnaires in intervention and control groups. Content analysis of intervention guidelines

  20. Gender Differences in Students’ and Teachers’ Perceptions of the Role of Grammar Instruction and Corrective Feedback

    Directory of Open Access Journals (Sweden)

    Sasan Baleghizadeh

    2009-05-01

    Full Text Available This paper explores male and female students' and teachers' perceptions of the role of grammar instruction and corrective feedback. A questionnaire, administered to 60 male and female intermediate EFL students (30 males and 30 females and 40 teachers (20 males and 20 females, elicited student and teacher perceptions concerning the role of explicit grammar instruction and corrective feedback in learning English as a foreign language. Data comparisons revealed high agreement between students as a group and teachers as a group across genders on the majority of questions. A number of discrepancies were evident between students and teachers’ beliefs within each gender. There were also some comparisons of sample groups based on gender differences which examined the effect of formal grammar instruction in foreign language teaching. Although the differences between students' and teachers’ belief system can be a threat to learning, it is essential to mention that teachers’ consideration of students’ perceptions of those factors will improve the process of new language learning, and an effort to consider the potential mismatch between students’ beliefs and teachers’ instructions will enhance learning.

  1. Observed Soil Moisture-Precipitation Feedback in Illinois: A Systematic Analysis over Different Scales

    Science.gov (United States)

    Van De Giesen, N.; Duerinck, H. M.; van der Ent, R.

    2016-12-01

    The lack of understanding on the soil moisture-precipitation feedback mechanisms remains a large source of uncertainty for land-atmosphere coupled models. Previous observation-based studies on the soil moisture-precipitation feedback in Illinois have shown contradictory results. This paper extends earlier research by providing a more holistic analysis considering different scales based on an 11-yr (2003-13) hourly soil moisture dataset, which makes it possible to revisit the disputed hypothesis on the correlation between warm-season soil moisture and subsequent precipitation. This study finds a strong positive correlation between late spring/early summer state-average soil moisture at the root-zone depths and subsequent state-average summer precipitation. On the daily to weekly time scale, however, no relation is found. Moreover, regional analysis suggests that precipitation variability over central Illinois can be best explained by the soil moisture variability in northwest Illinois. Using a back-trajectory method [Water Accounting Model-2 layers (WAM-2layers)] from May to July, the evaporative sources of precipitation in Illinois are identified. The pattern of the source regions shows little interannual variability, while the strength of the sources changes significantly and the Gulf of Mexico contributes more during wet years. However, strong influences (teleconnections) of sea surface temperatures on the subsequent precipitation variability in Illinois are not found on a seasonal scale. The long time scale of the soil moisture-precipitation correlation and the weak influences of SSTs and climate indices may suggest that precipitation variability in spring/summer in Illinois is mostly related to continental-scale soil moisture-precipitation feedback.

  2. Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles: Effects of Terminal Visual Feedback.

    Directory of Open Access Journals (Sweden)

    Miya K Rand

    Full Text Available This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task under the use of terminal visual feedback. Young adults made reaching movements to targets on a digitizer while looking at targets on a monitor where the rotated feedback (a cursor of hand movements appeared after each movement. Three rotation angles (30°, 75° and 150° were examined in three groups in order to vary the task difficulty. The results showed that the 30° group gradually reduced direction errors of reaching with practice and adapted well to the visuomotor rotation. The 75° group made large direction errors of reaching, and the 150° group applied a 180° reversal shift from early practice. The 75°and 150° groups, however, overcompensated the respective rotations at the end of practice. Despite these group differences in adaptive changes of reaching, all groups gradually adapted gaze directions prior to reaching from the target area to the areas related to the final positions of reaching during the course of practice. The adaptive changes of both hand and eye movements in all groups mainly reflected adjustments of movement directions based on explicit knowledge of the applied rotation acquired through practice. Only the 30° group showed small implicit adaptation in both effectors. The results suggest that by adapting gaze directions from the target to the final position of reaching based on explicit knowledge of the visuomotor rotation, the oculomotor system supports the limb-motor system to make precise preplanned adjustments of reaching directions during learning of visuomotor rotation under terminal visual feedback.

  3. Modulation of Auditory Responses to Speech vs. Nonspeech Stimuli during Speech Movement Planning.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2016-01-01

    Previously, we showed that the N100 amplitude in long latency auditory evoked potentials (LLAEPs) elicited by pure tone probe stimuli is modulated when the stimuli are delivered during speech movement planning as compared with no-speaking control conditions. Given that we probed the auditory system only with pure tones, it remained unknown whether the nature and magnitude of this pre-speech auditory modulation depends on the type of auditory stimulus. Thus, here, we asked whether the effect of speech movement planning on auditory processing varies depending on the type of auditory stimulus. In an experiment with nine adult subjects, we recorded LLAEPs that were elicited by either pure tones or speech syllables when these stimuli were presented prior to speech onset in a delayed-response speaking condition vs. a silent reading control condition. Results showed no statistically significant difference in pre-speech modulation of the N100 amplitude (early stages of auditory processing) for the speech stimuli as compared with the nonspeech stimuli. However, the amplitude of the P200 component (later stages of auditory processing) showed a statistically significant pre-speech modulation that was specific to the speech stimuli only. Hence, the overall results from this study indicate that, immediately prior to speech onset, modulation of the auditory system has a general effect on early processing stages but a speech-specific effect on later processing stages. This finding is consistent with the hypothesis that pre-speech auditory modulation may play a role in priming the auditory system for its role in monitoring auditory feedback during speech production.

  4. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  5. Hearing performance with 2 different high-power sound processors for osseointegrated auditory implants.

    Science.gov (United States)

    Kurz, Anja; Caversaccio, Marco; Kompis, Martin

    2013-06-01

    To compare speech understanding of the BAHA BP110 and BAHA Intenso sound processors. Prospective experimental study. Tertiary referral center. Twenty experienced user of osseointegrated auditory implants with conductive or mixed hearing loss. In a first session, half of the participants were fitted with an Intenso, the other half with a BP110. After 1 month of use, aided speech understanding in quiet and in noise was measured, and the other test processor was fitted. One month later, speech understanding with the second sound processor was assessed. Speech understanding in quiet and in noise, with noise arriving either from the front, the rear, or the side of the user with the osseointegrated bone conductor. Significant improvements were found for both processors for speech understanding in quiet (+9.6 to +34.8 percent points; p = 0.02 to 0.001) and in noise (+6.2 to +13.8 dB, p processors in quiet. In noise, speech understanding is significantly better with the BP110 when compared to the Intenso for noise from the rear.

  6. Responses of Neurons in the Marmoset Primary Auditory Cortex to Interaural Level Differences: Comparison of Pure Tones and Vocalizations.

    Directory of Open Access Journals (Sweden)

    Leo L Lui

    2015-04-01

    Full Text Available Interaural level differences (ILDs are the dominant cue for localizing the sources of high frequency sounds that differ in azimuth. Neurons in the primary auditory cortex (A1 respond differentially to ILDs of simple stimuli such as tones and noise bands, but the extent to which this applies to complex natural sounds, such as vocalizations, is not known. In sufentanil/N2O anaesthetized marmosets, we compared the responses of 76 A1 neurons to three vocalizations (Ock, Tsik and Twitter and pure tones at cells’ characteristic frequency. Each stimulus was presented with ILDs ranging from 20dB favouring the contralateral ear to 20dB favouring the ipsilateral ear to cover most of the frontal azimuthal space. The response to each stimulus was tested at three average binaural levels (ABLs. Most neurons were sensitive to ILDs of vocalizations and pure tones. For all stimuli, the majority of cells had monotonic ILD sensitivity functions favouring the contralateral ear, but we also observed ILD sensitivity functions that peaked near the midline and functions favouring the ipsilateral ear. Representation of ILD in A1 was better for pure tones and the Ock vocalization in comparison to the Tsik and Twitter calls; this was reflected by higher discrimination indices and greater modulation ranges. ILD sensitivity was heavily dependent on ABL: changes in ABL by ±20 dB SPL from the optimal level for ILD sensitivity led to significant decreases in ILD sensitivity for all stimuli, although ILD sensitivity to pure tones and Ock calls was most robust to such ABL changes. Our results demonstrate differences in ILD coding for pure tones and vocalizations, showing that ILD sensitivity in A1 to complex sounds cannot be simply extrapolated from that to pure tones. They also show A1 neurons do not show level-invariant representation of ILD, suggesting that such a representation of auditory space is likely to require population coding, and further processing at subsequent

  7. Experience dependence of neural responses to different classes of male songs in the primary auditory forebrain of female songbirds.

    Science.gov (United States)

    Hauber, Mark E; Woolley, Sarah M N; Cassey, Phillip; Theunissen, Frédéric E

    2013-04-15

    There is both extensive species-specificity and critical experience-dependence in the recognition of own species songs in many songbird species. For example, female zebra finches Taeniopygia guttata raised by their parents show behavioral preferences for the songs of the father over unfamiliar conspecific males and for unfamiliar songs of conspecifics over heterospecifics. Behavioral discrimination between different species' songs is also displayed by females raised without exposure to any male songs but it is diminished in females raised by heterospecific foster parents. We tested whether neural responses in the female auditory forebrain paralleled each of these known behavioral patterns in song-class discrimination. We analyzed spike rates, above background levels, recorded from single units in the L2a subregion of the field L complex of female zebra finches. In subjects raised by genetic parents, spike rates were similar to songs of fathers and unfamiliar male zebra finches, and higher to unfamiliar conspecific over unfamiliar heterospecific songs. In females raised in isolation from male songs, we also found higher spike rates to unfamiliar conspecific over heterospecific songs. In females raised by heterospecific foster parents, spike rates were similar in response to songs of the foster father and unfamiliar males of the foster species, similar between unfamiliar songs of conspecifics and the heterospecific foster species, and higher to unfamiliar songs of the foster species over a third finch species. Thus, in parallel to the experience-dependence of females' behaviors in response to different male song classes, differences in social experiences can also alter neural response patterns to male song classes in the auditory forebrain of female zebra finches. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders

    Science.gov (United States)

    Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li

    2016-11-01

    Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.

  9. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed.

    Science.gov (United States)

    Raveh, Eitan; Portnoy, Sigal; Friedman, Jason

    2018-01-17

    We investigated whether adding vibrotactile feedback to a myoelectric-controlled hand, when visual feedback is disturbed, can improve performance during a functional test. For this purpose, able-bodied subjects, activating a myoelectric-controlled hand attached to their right hand performed the modified Box & Blocks test, grasping and manipulating wooden blocks over a partition. This was performed in 3 conditions, using a repeated-measures design: in full light, in a dark room where visual feedback was disturbed and no auditory feedback - one time with the addition of tactile feedback provided during object grasping and manipulation, and one time without any tactile feedback. The average time needed to transfer one block was measured, and an infrared camera was used to give information on the number of grasping errors during performance of the test. Our results show that when vibrotactile feedback was provided, performance time was reduced significantly, compared with when no vibrotactile feedback was available. Furthermore, the accuracy of grasping and manipulation was improved, reflected by significantly fewer errors during test performance. In conclusion, adding vibrotactile feedback to a myoelectric-controlled hand has positive effects on functional performance when visual feedback is disturbed. This may have applications to current myoelectric-controlled hands, as adding tactile feedback may help prosthesis users to improve their functional ability during daily life activities in different environments, particularly when limited visual feedback is available or desirable. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy

    Directory of Open Access Journals (Sweden)

    Françoise eLecaignard

    2015-09-01

    Full Text Available Deviant stimuli, violating regularities in a sensory environment, elicit the Mismatch Negativity (MMN, largely described in the Event-Related Potential literature. While it is widely accepted that the MMN reflects more than basic change detection, a comprehensive description of mental processes modulating this response is still lacking. Within the framework of predictive coding, deviance processing is part of an inference process where prediction errors (the mismatch between incoming sensations and predictions established through experience are minimized. In this view, the MMN is a measure of prediction error, which yields specific expectations regarding its modulations by various experimental factors. In particular, it predicts that the MMN should decrease as the occurrence of a deviance becomes more predictable. We conducted a passive oddball EEG study and manipulated the predictability of sound sequences by means of different temporal structures. Importantly, our design allows comparing mismatch responses elicited by predictable and unpredictable violations of a simple repetition rule and therefore departs from previous studies that investigate violations of different time-scale regularities. We observed a decrease of the MMN with predictability and interestingly, a similar effect at earlier latencies, within 70 ms after deviance onset. Following these pre-attentive responses, a reduced P3a was measured in the case of predictable deviants. We conclude that early and late deviance responses reflect prediction errors, triggering belief updating within the auditory hierarchy. Beside, in this passive study, such perceptual inference appears to be modulated by higher-level implicit learning of sequence statistical structures. Our findings argue for a hierarchical model of auditory processing where predictive coding enables implicit extraction of environmental regularities.

  11. A Bayesian computational basis for auditory selective attention using head rotation and the interaural time-difference cue.

    Directory of Open Access Journals (Sweden)

    Dillon A Hambrook

    Full Text Available The process of resolving mixtures of several sounds into their separate individual streams is known as auditory scene analysis and it remains a challenging task for computational systems. It is well-known that animals use binaural differences in arrival time and intensity at the two ears to find the arrival angle of sounds in the azimuthal plane, and this localization function has sometimes been considered sufficient to enable the un-mixing of complex scenes. However, the ability of such systems to resolve distinct sound sources in both space and frequency remains limited. The neural computations for detecting interaural time difference (ITD have been well studied and have served as the inspiration for computational auditory scene analysis systems, however a crucial limitation of ITD models is that they produce ambiguous or "phantom" images in the scene. This has been thought to limit their usefulness at frequencies above about 1khz in humans. We present a simple Bayesian model and an implementation on a robot that uses ITD information recursively. The model makes use of head rotations to show that ITD information is sufficient to unambiguously resolve sound sources in both space and frequency. Contrary to commonly held assumptions about sound localization, we show that the ITD cue used with high-frequency sound can provide accurate and unambiguous localization and resolution of competing sounds. Our findings suggest that an "active hearing" approach could be useful in robotic systems that operate in natural, noisy settings. We also suggest that neurophysiological models of sound localization in animals could benefit from revision to include the influence of top-down memory and sensorimotor integration across head rotations.

  12. The Impact of Feedback on the Different Time Courses of Multisensory Temporal Recalibration

    Directory of Open Access Journals (Sweden)

    Matthew A. De Niear

    2017-01-01

    Full Text Available The capacity to rapidly adjust perceptual representations confers a fundamental advantage when confronted with a constantly changing world. Unexplored is how feedback regarding sensory judgments (top-down factors interacts with sensory statistics (bottom-up factors to drive long- and short-term recalibration of multisensory perceptual representations. Here, we examined the time course of both cumulative and rapid temporal perceptual recalibration for individuals completing an audiovisual simultaneity judgment task in which they were provided with varying degrees of feedback. We find that in the presence of feedback (as opposed to simple sensory exposure temporal recalibration is more robust. Additionally, differential time courses are seen for cumulative and rapid recalibration dependent upon the nature of the feedback provided. Whereas cumulative recalibration effects relied more heavily on feedback that informs (i.e., negative feedback rather than confirms (i.e., positive feedback the judgment, rapid recalibration shows the opposite tendency. Furthermore, differential effects on rapid and cumulative recalibration were seen when the reliability of feedback was altered. Collectively, our findings illustrate that feedback signals promote and sustain audiovisual recalibration over the course of cumulative learning and enhance rapid trial-to-trial learning. Furthermore, given the differential effects seen for cumulative and rapid recalibration, these processes may function via distinct mechanisms.

  13. Sex-related differences in auditory processing in adolescents with fetal alcohol spectrum disorder: A magnetoencephalographic study

    Directory of Open Access Journals (Sweden)

    Claudia D. Tesche

    2015-01-01

    Full Text Available Children exposed to substantial amounts of alcohol in utero display a broad range of morphological and behavioral outcomes, which are collectively referred to as fetal alcohol spectrum disorders (FASDs. Common to all children on the spectrum are cognitive and behavioral problems that reflect central nervous system dysfunction. Little is known, however, about the potential effects of variables such as sex on alcohol-induced brain damage. The goal of the current research was to utilize magnetoencephalography (MEG to examine the effect of sex on brain dynamics in adolescents and young adults with FASD during the performance of an auditory oddball task. The stimuli were short trains of 1 kHz “standard” tone bursts (80% randomly interleaved with 1.5 kHz “target” tone bursts (10% and “novel” digital sounds (10%. Participants made motor responses to the target tones. Results are reported for 44 individuals (18 males and 26 females ages 12 through 22 years. Nine males and 13 females had a diagnosis of FASD and the remainder were typically-developing age- and sex-matched controls. The main finding was widespread sex-specific differential activation of the frontal, medial and temporal cortex in adolescents with FASD compared to typically developing controls. Significant differences in evoked-response and time–frequency measures of brain dynamics were observed for all stimulus types in the auditory cortex, inferior frontal sulcus and hippocampus. These results underscore the importance of considering the influence of sex when analyzing neurophysiological data in children with FASD.

  14. Auditory speech recognition and visual text recognition in younger and older adults: similarities and differences between modalities and the effects of presentation rate.

    Science.gov (United States)

    Humes, Larry E; Burk, Matthew H; Coughlin, Maureen P; Busey, Thomas A; Strauser, Lauren E

    2007-04-01

    To examine age-related differences in auditory speech recognition and visual text recognition performance for parallel sets of stimulus materials in the auditory and visual modalities. In addition, the effects of variation in rate of presentation of stimuli in each modality were investigated in each age group. A mixed-model design was used in which 3 independent groups (13 young adults with normal hearing, 10 elderly adults with normal hearing, and 16 elderly hearing-impaired adults) listened to auditory speech tests (a sentence-in-noise task, time-compressed monosyllables, and a speeded-spelling task) and viewed visual text-based analogs of the auditory tests. All auditory speech materials were presented so that the amplitude of the speech signal was at least 15 dB above threshold through 4000 Hz. Analyses of the group data revealed that when baseline levels of performance were used as covariates in the group analyses the only significant group difference was that both elderly groups performed worse than the young group on the auditory speeded-speech tasks. Analysis of individual data, using correlations, factor analysis, and linear regression, was generally consistent with the group data and revealed significant, moderate correlations of performance for similar tasks across modalities, but stronger correlations across tasks within a modality. This suggests that performance on these tasks was mediated both by a common underlying factor, such as cognitive processing, as well as modality-specific processing. Performance on measures of auditory processing of speech examined here was closely associated with performance on parallel measures of the visual processing of text obtained from the same participants. Young and older adults demonstrated comparable abilities in the use of contextual information in each modality, but older adults, regardless of hearing status, had more difficulty with fast presentation of auditory speech stimuli than young adults. There were no

  15. Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5*

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Mark D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Klein, Stephen A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Taylor, Karl E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Andrews, Timothy [Met Office Hadley Center, Exeter (United Kingdom); Webb, Mark J. [Met Office Hadley Center, Exeter (United Kingdom); Gregory, Jonathan M. [Univ. of Reading, Exeter (United Kingdom). National Center for Atmospheric Science; Forster, Piers M. [Univ. of Leeds (United Kingdom)

    2013-07-01

    When using five climate model simulations of the response to an abrupt quadrupling of CO2, the authors perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. After CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud-top pressure, and optical depth, with each contributing equally to a 1.1 W m-2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in midlevel clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to intermodel spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models. Furthermore, the authors show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W m-2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W m-2 K-1, whereas accounting for rapid adjustments reduces by 0.14 W m-2 K-1 the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.

  16. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.

  17. Exergaming for elderly: effects of different types of game feedback on performance of a balance task.

    Science.gov (United States)

    Lamoth, Claudine J C; Alingh, Rolinde; Caljouw, Simone R

    2012-01-01

    Balance training to improve postural control in elderly can contribute to the prevention of falls. Video games that require body movements have the potential to improve balance. However, research about the effects of type of visual feedback (i.e. the exergame) on the quality of movement and experienced workout intensity is scarce. In this study twelve healthy older and younger subjects performed anterior-posterior or mediolateral oscillations on a wobble board, in three conditions: no feedback, real-time visual feedback, and real-time visual feedback with a competitive game element. The Elderly moved slower, less accurately and more irregularly than younger people. Both feedback conditions ensured a more controlled movement technique on the wobble-board and increased experienced workout intensity. The participants enjoyed the attention demanding competitive game element, but this game did not improve balance performance more than interacting with a game that incorporated visual feedback. These results show the potential of exergames with visual feedback to enhance postural control.

  18. Compensatory density feedback of Oncomelania hupensis populations in two different environmental settings in China

    Directory of Open Access Journals (Sweden)

    Qiu Dong-Chuan

    2011-07-01

    Full Text Available Abstract Background The most recent strategy for schistosomiasis control in the People's Republic of China aims to reduce the likelihood of environmental contamination of schistosome eggs. Despite considerable progress, it is believed that achievements would be further consolidated with additional intermediate host snail control measures. We provide an empirical framework for discerning the relative contribution of intrinsic effects (density feedback from other extrinsic drivers of snail population dynamics. Methods We set up experiments in two study locations to collect reproduction data of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. We applied a set of four population dynamic models that have been widely used to study phenomenological time-series data to examine the properties of demographic density feedback patterns from abundance data. We also contrasted the obtained results with the component feedback of density on survival rate to determine whether adult survival was the principal driver of the demographic feedback observed. Results Demographic density feedback models (Ricker- and Gompertz-logistic accounted for > 99% of Akaike's information criterion model weight, with the Gompertz ranking highest in all O. hupensis population groups. We found some evidence for stronger compensatory feedback in the O. hupensis population from Sichuan compared to a Jiangsu population. Survival rates revealed strong component feedback, but the log-linear relationships (i.e. Gompertz had less support in the demographic feedback analysis. Conclusions Our findings indicate that integrated schistosomiasis control measures must continue to reduce parasite abundance further because intermediate host snail populations tend to grow exponentially at low densities, especially O. hupensis populations in mountainous regions. We conclude that density feedback in adult survival is the principal component contribution to the demographic

  19. Just-in-Time or Plenty-of-Time Teaching? Different Electronic Feedback Devices and Their Effect on Student Engagement

    Science.gov (United States)

    Sun, Jerry Chih-Yuan; Martinez, Brandon; Seli, Helena

    2014-01-01

    This study examines how incorporating different electronic feedback devices (i.e., clickers versus web-based polling) may affect specific types of student engagement (i.e., behavioral, emotional, and cognitive engagement), whether students' self-efficacy for learning and performance may differ between courses that have integrated clickers and…

  20. Understanding the differing governance of EU emissions trading and renewable: feedback mechanisms and policy entrepreneurs

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, Elin Lerum; Wettestad, Joergen

    2010-04-15

    This paper presents a comparative study of two central EU climate policies: the revised Emissions Trading System (ETS), and the revised Renewable Energy Directive (RES). Both were originally developed in the early 2000s and revised policies were adopted in December 2008. While the ETS from 2013 on will have a quite centralized and market-streamlined design, the revised RES stands forward as a more decentralized and technology-focused policy. Differing institutional feed-back mechanisms and related roles of policy entrepreneurs can shed considerable light on these policy differences. Due to member states' cautiousness and contrary to the preferences of the Commission, the initial ETS was designed as a rather decentralized and 'politicized' market system, creating a malfunctioning institutional dynamic. In the revision process, the Commission skillfully highlighted this ineffective dynamic to win support for a much more centralized and market-streamlined approach. In the case of RES, national technology-specific support schemes and the strong links between the renewable industry and member states promoted the converse outcome: decentralization and technology development. Members of the European Parliament utilized these mechanisms through policy networking, while the Commission successfully used developments within the global climate regime to induce some degree of centralization. (Author)

  1. Individual Differences in the Habitual Use of Cognitive Reappraisal Predict the Reward-related Feedback Negativity

    Directory of Open Access Journals (Sweden)

    Liyang eSai

    2015-09-01

    Full Text Available Recent studies have shown that instructed cognitive reappraisal can regulate the neural processing of reward. However, it is still unclear whether the habitual use of cognitive reappraisal in everyday life can influence brain activity associated with reward processing. In the present study, participant’s neural responses to reward were measured using electroencephalography (EEG recorded during a gambling task, while their tendency to use cognitive reappraisal was assessed using the Emotion Regulation Questionnaire (ERQ. Event-related potential (ERP results indicated that losses on the gambling task elicited greater negative reward-related feedback negativity (FN than gains. The differential FN between losses and gains was significantly correlated with cognitive reappraisal scores across participants, such that individuals with a higher tendency to use cognitive reappraisal showed stronger reward processing (i.e. amplified FN difference between losses and gains. This correlation remained significant after controlling for expressive suppression scores. However, expressive suppression per se was not correlated with FN differences. Taken together, these results suggest that the habitual use of cognitive reappraisal influences the neural processing of reward.

  2. Emotional feedback for mobile devices

    CERN Document Server

    Seebode, Julia

    2015-01-01

    This book investigates the functional adequacy as well as the affective impression made by feedback messages on mobile devices. It presents an easily adoptable experimental setup to examine context effects on various feedback messages, and applies it to auditory, tactile and auditory-tactile feedback messages. This approach provides insights into the relationship between the affective impression and functional applicability of these messages as well as an understanding of the influence of unimodal components on the perception of multimodal feedback messages. The developed paradigm can also be extended to investigate other aspects of context and used to investigate feedback messages in modalities other than those presented. The book uses questionnaires implemented on a Smartphone, which can easily be adopted for field studies to broaden the scope even wider. Finally, the book offers guidelines for the design of system feedback.

  3. The interplay between feedback-related negativity and individual differences in altruistic punishment: An EEG study.

    Science.gov (United States)

    Mothes, Hendrik; Enge, Sören; Strobel, Alexander

    2016-04-01

    To date, the interplay betwexen neurophysiological and individual difference factors in altruistic punishment has been little understood. To examine this issue, 45 individuals participated in a Dictator Game with punishment option while the feedback-related negativity (FRN) was derived from the electroencephalogram (EEG). Unlike previous EEG studies on the Dictator Game, we introduced a third party condition to study the effect of fairness norm violations in addition to employing a first person perspective. For the first time, we also examined the role of individual differences, specifically fairness concerns, positive/negative affectivity, and altruism/empathy as well as recipients' financial situation during altruistic punishment. The main results show that FRN amplitudes were more pronounced for unfair than for fair assignments in both the first person and third party perspectives. These findings suggest that FRN amplitudes are sensitive to fairness norm violations and play a crucial role in the recipients' evaluation of dictator assignments. With respect to individual difference factors, recipients' current financial situation affected the FRN fairness effect in the first person perspective, indicating that when being directly affected by the assignments, more affluent participants experienced stronger violations of expectations in altruistic punishment decisions. Regarding individual differences in trait empathy, in the third party condition FRN amplitudes were more pronounced for those who scored lower in empathy. This may suggest empathy as another motive in third party punishment. Independent of the perspective taken, higher positive affect was associated with more punishment behavior, suggesting that positive emotions may play an important role in restoring violated fairness norms.

  4. Sex-specific differences in agonistic behaviour, sound production and auditory sensitivity in the callichthyid armoured catfish Megalechis thoracata.

    Directory of Open Access Journals (Sweden)

    Oliwia Hadjiaghai

    Full Text Available BACKGROUND: Data on sex-specific differences in sound production, acoustic behaviour and hearing abilities in fishes are rare. Representatives of numerous catfish families are known to produce sounds in agonistic contexts (intraspecific aggression and interspecific disturbance situations using their pectoral fins. The present study investigates differences in agonistic behaviour, sound production and hearing abilities in males and females of a callichthyid catfish. METHODOLOGY/PRINCIPAL FINDINGS: Eight males and nine females of the armoured catfish Megalechis thoracata were investigated. Agonistic behaviour displayed during male-male and female-female dyadic contests and sounds emitted were recorded, sound characteristics analysed and hearing thresholds measured using the auditory evoked potential (AEP recording technique. Male pectoral spines were on average 1.7-fold longer than those of same-sized females. Visual and acoustic threat displays differed between sexes. Males produced low-frequency harmonic barks at longer distances and thumps at close distances, whereas females emitted broad-band pulsed crackles when close to each other. Female aggressive sounds were significantly shorter than those of males (167 ms versus 219 to 240 ms and of higher dominant frequency (562 Hz versus 132 to 403 Hz. Sound duration and sound level were positively correlated with body and pectoral spine length, but dominant frequency was inversely correlated only to spine length. Both sexes showed a similar U-shaped hearing curve with lowest thresholds between 0.2 and 1 kHz and a drop in sensitivity above 1 kHz. The main energies of sounds were located at the most sensitive frequencies. CONCLUSIONS/SIGNIFICANCE: Current data demonstrate that both male and female M. thoracata produce aggressive sounds, but the behavioural contexts and sound characteristics differ between sexes. Sexes do not differ in hearing, but it remains to be clarified if this is a general pattern

  5. Auditory object cognition in dementia

    Science.gov (United States)

    Goll, Johanna C.; Kim, Lois G.; Hailstone, Julia C.; Lehmann, Manja; Buckley, Aisling; Crutch, Sebastian J.; Warren, Jason D.

    2011-01-01

    The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n = 21), progressive nonfluent aphasia (PNFA; n = 5), logopenic progressive aphasia (LPA; n = 7) and aphasia in association with a progranulin gene mutation (GAA; n = 1), and in healthy age-matched controls (n = 20). Based on a cognitive framework treating complex sounds as ‘auditory objects’, we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes. PMID:21689671

  6. Training-induced plasticity of auditory localization in adult mammals.

    Directory of Open Access Journals (Sweden)

    Oliver Kacelnik

    2006-04-01

    Full Text Available Accurate auditory localization relies on neural computations based on spatial cues present in the sound waves at each ear. The values of these cues depend on the size, shape, and separation of the two ears and can therefore vary from one individual to another. As with other perceptual skills, the neural circuits involved in spatial hearing are shaped by experience during development and retain some capacity for plasticity in later life. However, the factors that enable and promote plasticity of auditory localization in the adult brain are unknown. Here we show that mature ferrets can rapidly relearn to localize sounds after having their spatial cues altered by reversibly occluding one ear, but only if they are trained to use these cues in a behaviorally relevant task, with greater and more rapid improvement occurring with more frequent training. We also found that auditory adaptation is possible in the absence of vision or error feedback. Finally, we show that this process involves a shift in sensitivity away from the abnormal auditory spatial cues to other cues that are less affected by the earplug. The mature auditory system is therefore capable of adapting to abnormal spatial information by reweighting different localization cues. These results suggest that training should facilitate acclimatization to hearing aids in the hearing impaired.

  7. The Effects of Multimodal Feedback and Gender on Task Performance of Stylus Pen Users

    Directory of Open Access Journals (Sweden)

    Eunil Park

    2012-05-01

    Full Text Available As various interactive input devices for computers have become available, the role of multimodal feedbacks generated by the devices has gained an increasing emphasis in recent years, with debates surrounding the relative efficiency of different feedback types of input devices. To address this and related issues, the present study conducted a 4 (types of feedback: visual vs. tactile vs. auditory vs. combined feedback x 2 (gender: male vs. female within-subject experiment to examine the effects of the type of feedbacks and gender on the efficiency and accuracy of a multimodal stylus pen. Results from the experiment showed that, regardless of the feedback type, males clicked the stylus faster than females while making more errors. A similar pattern was discovered when used the pen for dragging; males completed the dragging task faster than females while producing more errors. Interactions between the feedback type and gender as well as implications and limitations of the present study are discussed.

  8. Spiking Neurons Learning Phase Delays: How Mammals May Develop Auditory Time-Difference Sensitivity

    Science.gov (United States)

    Leibold, Christian; van Hemmen, J. Leo

    2005-04-01

    Time differences between the two ears are an important cue for animals to azimuthally locate a sound source. The first binaural brainstem nucleus, in mammals the medial superior olive, is generally believed to perform the necessary computations. Its cells are sensitive to variations of interaural time differences of about 10 μs. The classical explanation of such a neuronal time-difference tuning is based on the physical concept of delay lines. Recent data, however, are inconsistent with a temporal delay and rather favor a phase delay. By means of a biophysical model we show how spike-timing-dependent synaptic learning explains precise interplay of excitation and inhibition and, hence, accounts for a physical realization of a phase delay.

  9. Adaptive Sex Differences in Auditory Motion Perception: Looming Sounds Are Special

    Science.gov (United States)

    Neuhoff, John G.; Planisek, Rianna; Seifritz, Erich

    2009-01-01

    In 4 experiments, the authors examined sex differences in audiospatial perception of sounds that moved toward and away from the listener. Experiment 1 showed that both men and women underestimated the time-to-arrival of full-cue looming sounds. However, this perceptual bias was significantly stronger among women than among men. In Experiment 2,…

  10. Individual Differences in Pseudohomophony Effect Relates to Auditory Categorical Perception Skills

    Science.gov (United States)

    Luque, David; Luque, Juan L.; Lopez-Zamora, Miguel

    2011-01-01

    The study examined whether individual differences in the quality of phonological representations, measured by a categorical perception task (CP), are related with the use of phonological information in a lexical decision pseudohomophone task. In addition, the lexical frequency of the stimuli was manipulated. The sample consisted of…

  11. Direct Written Corrective Feedback, Learner Differences, and the Acquisition of Second Language Article Use for Generic and Specific Plural Reference

    Science.gov (United States)

    Stefanou, Charis; Revesz, Andrea

    2015-01-01

    This article reports on a classroom-based study that investigated the effectiveness of direct written corrective feedback in relation to learner differences in grammatical sensitivity and knowledge of metalanguage. The study employed a pretest-posttest-delayed posttest design with two treatment sessions. Eighty-nine Greek English as a foreign…

  12. Differential modulation of auditory responses to attended and unattended speech in different listening conditions.

    Science.gov (United States)

    Kong, Ying-Yee; Mullangi, Ala; Ding, Nai

    2014-10-01

    This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared to the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Effect of Six Different Corrective Feedback Strategies on Iranian English Language Learners’ IELTS Writing Task 2

    Directory of Open Access Journals (Sweden)

    Reza Vahdani Sanavi

    2014-06-01

    Full Text Available Scholars have long studied the effect of corrective feedback strategies on the writing ability of language learners, but few have formed designs in which more than three feedback strategies have been used. In this research, the ultimate goal was to discover how International English Language Testing System (IELTS- candidates could be helped to perform better in the writing component of the test with the feedback they get. To this end, 186 learners attending IELTS preparation classes in three different English language institutes participated in this quasi-experimental study. A one-way ANOVA was run to discover the significant difference among the six groups. The findings proposed that Iranian English as a Foreign Language (EFL students’ writing ability improved as a result of the employment of writing feedback strategies but that reformulation strategy was the most effective one. Teachers can, thus, benefit from the finding of this research by studying the way they should tackle the learners’ inaccurate productions as far as different writing score band descriptors are concerned.

  14. Auditory and Cognitive Factors Underlying Individual Differences in Aided Speech-Understanding among Older Adults

    Directory of Open Access Journals (Sweden)

    Larry E. Humes

    2013-10-01

    Full Text Available This study was designed to address individual differences in aided speech understanding among a relatively large group of older adults. The group of older adults consisted of 98 adults (50 female and 48 male ranging in age from 60 to 86 (mean = 69.2. Hearing loss was typical for this age group and about 90% had not worn hearing aids. All subjects completed a battery of tests, including cognitive (6 measures, psychophysical (17 measures, and speech-understanding (9 measures, as well as the Speech, Spatial and Qualities of Hearing (SSQ self-report scale. Most of the speech-understanding measures made use of competing speech and the non-speech psychophysical measures were designed to tap phenomena thought to be relevant for the perception of speech in competing speech (e.g., stream segregation, modulation-detection interference. All measures of speech understanding were administered with spectral shaping applied to the speech stimuli to fully restore audibility through at least 4000 Hz. The measures used were demonstrated to be reliable in older adults and, when compared to a reference group of 28 young normal-hearing adults, age-group differences were observed on many of the measures. Principal-components factor analysis was applied successfully to reduce the number of independent and dependent (speech understanding measures for a multiple-regression analysis. Doing so yielded one global cognitive-processing factor and five non-speech psychoacoustic factors (hearing loss, dichotic signal detection, multi-burst masking, stream segregation, and modulation detection as potential predictors. To this set of six potential predictor variables were added subject age, Environmental Sound Identification (ESI, and performance on the text-recognition-threshold (TRT task (a visual analog of interrupted speech recognition. These variables were used to successfully predict one global aided speech-understanding factor, accounting for about 60% of the variance.

  15. Auditory and cognitive factors underlying individual differences in aided speech-understanding among older adults.

    Science.gov (United States)

    Humes, Larry E; Kidd, Gary R; Lentz, Jennifer J

    2013-01-01

    This study was designed to address individual differences in aided speech understanding among a relatively large group of older adults. The group of older adults consisted of 98 adults (50 female and 48 male) ranging in age from 60 to 86 (mean = 69.2). Hearing loss was typical for this age group and about 90% had not worn hearing aids. All subjects completed a battery of tests, including cognitive (6 measures), psychophysical (17 measures), and speech-understanding (9 measures), as well as the Speech, Spatial, and Qualities of Hearing (SSQ) self-report scale. Most of the speech-understanding measures made use of competing speech and the non-speech psychophysical measures were designed to tap phenomena thought to be relevant for the perception of speech in competing speech (e.g., stream segregation, modulation-detection interference). All measures of speech understanding were administered with spectral shaping applied to the speech stimuli to fully restore audibility through at least 4000 Hz. The measures used were demonstrated to be reliable in older adults and, when compared to a reference group of 28 young normal-hearing adults, age-group differences were observed on many of the measures. Principal-components factor analysis was applied successfully to reduce the number of independent and dependent (speech understanding) measures for a multiple-regression analysis. Doing so yielded one global cognitive-processing factor and five non-speech psychoacoustic factors (hearing loss, dichotic signal detection, multi-burst masking, stream segregation, and modulation detection) as potential predictors. To this set of six potential predictor variables were added subject age, Environmental Sound Identification (ESI), and performance on the text-recognition-threshold (TRT) task (a visual analog of interrupted speech recognition). These variables were used to successfully predict one global aided speech-understanding factor, accounting for about 60% of the variance.

  16. The role of feedback and differences between good and poor decoders in a repeated word reading paradigm in first grade.

    Science.gov (United States)

    van Gorp, Karly; Segers, Eliane; Verhoeven, Ludo

    2017-04-01

    The direct, retention, and transfer effects of repeated word and pseudoword reading were studied in a pretest, training, posttest, retention design. First graders (48 good readers, 47 poor readers) read 25 CVC words and 25 CVC pseudowords in ten repeated word reading sessions, preceded and followed by a transfer task with a different set of items. Two weeks after training, trained items were assessed again in a retention test. Participants either received phonics feedback, in which each word was spelled out and repeated; word feedback, in which each word was repeated; or no feedback. During the training, both good and poor readers improved in accuracy and speed. The increase in speed was stronger for poor readers than for good readers. The good readers demonstrated a stronger increase for pseudowords than for words. This increase in speed was most prominent in the first four sessions. Two weeks after training, the levels of accuracy and speed were retained. Furthermore, transfer effects on speed were found for pseudowords in both groups of readers. Good readers performed most accurately during the training when they received no feedback while poor readers performed most accurately during the training with the help of phonics feedback. However, feedback did not differentiate for reading speed or for effects after the training. The effects of repeated word reading were found to be stronger for poor readers than for good readers. Moreover, these effects were found to be stronger for pseudowords than for words. This indicates that repeated word reading can be seen as an important trigger for the improvement of decoding skills.

  17. Differences in brain circuitry for appetitive and reactive aggression as revealed by realistic auditory scripts

    Directory of Open Access Journals (Sweden)

    James Kenneth Moran

    2014-12-01

    Full Text Available Aggressive behavior is thought to divide into two motivational elements: The first being a self-defensively motivated aggression against threat and a second, hedonically motivated ‘appetitive’ aggression. Appetitive aggression is the less understood of the two, often only researched within abnormal psychology. Our approach is to understand it as a universal and adaptive response, and examine the functional neural activity of ordinary men (N=50 presented with an imaginative listening task involving a murderer describing a kill. We manipulated motivational context in a between-subjects design to evoke appetitive or reactive aggression, against a neutral control, measuring activity with Magnetoencephalography (MEG. Results show differences in left frontal regions in delta (2-5 Hz and alpha band (8-12 Hz for aggressive conditions and right parietal delta activity differentiating appetitive and reactive aggression. These results validate the distinction of reward-driven appetitive aggression from reactive aggression in ordinary populations at the level of functional neural brain circuitry.

  18. Music-syntactic processing and auditory memory: similarities and differences between ERAN and MMN.

    Science.gov (United States)

    Koelsch, Stefan

    2009-01-01

    The early right anterior negativity (ERAN) is an event-related potential (ERP) reflecting processing of music-syntactic information, that is, of acoustic information structured according to abstract and complex regularities. The ERAN is usually maximal between 150 and 250 ms, has anterior scalp distribution (and often right-hemispheric weighting), can be modified by short- and long-term musical experience, can be elicited under ignore conditions, and emerges in early childhood. Main generators of the ERAN appear to be located in inferior fronto-lateral cortex. The ERAN resembles both the physical MMN and the abstract feature MMN in a number of properties, but the cognitive mechanisms underlying ERAN and MMN partly differ: Whereas the generation of the MMN is based on representations of regularities of intersound relationships that are extracted online from the acoustic environment, the generation of the ERAN relies on representations of music-syntactic regularities that already exist in a long-term memory format. Other processes, such as predicting subsequent acoustic events and comparing new acoustic information with the predicted sound, presumably overlap strongly for MMN and ERAN.

  19. Cultural competency in medical education: demographic differences associated with medical student communication styles and clinical clerkship feedback.

    Science.gov (United States)

    Lee, Katherine B; Vaishnavi, Sanjeev N; Lau, Steven K M; Andriole, Dorothy A; Jeffe, Donna B

    2009-02-01

    We tested the significance of associations among students' demographics, communication styles, and feedback received during clerkships. US medical students who completed at least one required clinical clerkship were invited between April and July 2006 to complete an anonymous, online survey inquiring about demographics, communication styles (assertiveness and reticence), feedback (positive and negative), and clerkship grades. The effects of self-identified race/ethnicity, gender, and generation (immigrant, first- or second-generation American) and their 2-way interactions on assertiveness, reticence, total positive and total negative feedback comments were tested using factorial analysis of covariance, controlling for age, clerkship grades, and mother's and father's education; pairwise comparisons used simple contrasts. Two-sided P values women; 57% white). Men reported more assertiveness than women (P = .001). Reticence (P differed by race/ethnicity; in pairwise contrasts, black, East Asian, and Native American/ Alaskan students reported greater reticence than white students (P differences in students' communication styles and feedback they received highlight a need for cultural competency training to improve medical student-teacher interactions, analogous to training currently advocated to improve physician-patient interactions.

  20. Exergaming for elderly: : effects of different types of game feedback on performance of a balance task.

    NARCIS (Netherlands)

    Lamoth, Claude; Alingh, Rolinde; Caljouw, Simone; Wiederhold, B.K.; Riva, G.

    Balance training to improve postural control in elderly can contribute to the prevention of falls. Video games that require body movements have the potential to improve balance. However, research about the effects of type of visual feedback (i.e. the exergame) on the quality of movement and

  1. Differences in Feedback- and Inhibition-Related Neural Activity in Adult ADHD

    Science.gov (United States)

    Dibbets, Pauline; Evers, Lisbeth; Hurks, Petra; Marchetta, Natalie; Jolles, Jelle

    2009-01-01

    The objective of this study was to examine response inhibition- and feedback-related neural activity in adults with attention deficit hyperactivity disorder (ADHD) using event-related functional MRI. Sixteen male adults with ADHD and 13 healthy/normal controls participated in this study and performed a modified Go/NoGo task. Behaviourally,…

  2. Goal orientations and the seeking of different types of feedback information

    NARCIS (Netherlands)

    Janssen, Onne; Prins, Jelle

    Based on the goal orientation model of feedback-seeking behaviour, goal orientations are proposed to influence employees in the type of information they seek from knowledgeable others in the work environment. As hypothesized, a survey conducted among 170 medical residents of a Dutch university

  3. Individual Differences in Phonological Feedback Effects: Evidence for the Orthographic Recoding Hypothesis of Orthographic Learning

    Science.gov (United States)

    Harris, Lindsay N.; Perfetti, Charles A.

    2017-01-01

    Share (1995) proposed "phonological recoding" (the translation of letters into sounds) as a self-teaching mechanism through which readers establish complete lexical representations. More recently, McKague et al. (2008) proposed a similar role for "orthographic recoding", that is, feedback from sounds to letters, in building and…

  4. Self-Explanation and Explanatory Feedback in Games: Individual Differences, Gameplay, and Learning

    Science.gov (United States)

    Killingsworth, Stephen S.; Clark, Douglas B.; Adams, Deanne M.

    2015-01-01

    Previous research has demonstrated the efficacy of two explanation-based approaches for increasing learning in educational games. The first involves asking students to explain their answers (self-explanation) and the second involves providing correct explanations (explanatory feedback). This study (1) compared self-explanation and explanatory…

  5. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  6. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  7. The encoding of auditory objects in auditory cortex: insights from magnetoencephalography.

    Science.gov (United States)

    Simon, Jonathan Z

    2015-02-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Haptic Feedback for Enhancing Realism of Walking Simulations

    DEFF Research Database (Denmark)

    Turchet, Luca; Burelli, Paolo; Serafin, Stefania

    2013-01-01

    system. While during the use of the interactive system subjects physically walked, during the use of the non-interactive system the locomotion was simulated while subjects were sitting on a chair. In both the configurations subjects were exposed to auditory and audio-visual stimuli presented...... appreciated the added feedback. However, some subjects found the added feedback disturbing and annoying. This might be due on one hand to the limits of the haptic simulation and on the other hand to the different individual desire to be involved in the simulations. Our findings can be applied to the context...

  9. Auditory N1 reveals planning and monitoring processes during music performance.

    Science.gov (United States)

    Mathias, Brian; Gehring, William J; Palmer, Caroline

    2017-02-01

    The current study investigated the relationship between planning processes and feedback monitoring during music performance, a complex task in which performers prepare upcoming events while monitoring their sensory outcomes. Theories of action planning in auditory-motor production tasks propose that the planning of future events co-occurs with the perception of auditory feedback. This study investigated the neural correlates of planning and feedback monitoring by manipulating the contents of auditory feedback during music performance. Pianists memorized and performed melodies at a cued tempo in a synchronization-continuation task while the EEG was recorded. During performance, auditory feedback associated with single melody tones was occasionally substituted with tones corresponding to future (next), present (current), or past (previous) melody tones. Only future-oriented altered feedback disrupted behavior: Future-oriented feedback caused pianists to slow down on the subsequent tone more than past-oriented feedback, and amplitudes of the auditory N1 potential elicited by the tone immediately following the altered feedback were larger for future-oriented than for past-oriented or noncontextual (unrelated) altered feedback; larger N1 amplitudes were associated with greater slowing following altered feedback in the future condition only. Feedback-related negativities were elicited in all altered feedback conditions. In sum, behavioral and neural evidence suggests that future-oriented feedback disrupts performance more than past-oriented feedback, consistent with planning theories that posit similarity-based interference between feedback and planning contents. Neural sensory processing of auditory feedback, reflected in the N1 ERP, may serve as a marker for temporal disruption caused by altered auditory feedback in auditory-motor production tasks. © 2016 Society for Psychophysiological Research.

  10. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: evidence from magnetoencephalography.

    Science.gov (United States)

    Grimault, Stephan; Nolden, Sophie; Lefebvre, Christine; Vachon, François; Hyde, Krista; Peretz, Isabelle; Zatorre, Robert; Robitaille, Nicolas; Jolicoeur, Pierre

    2014-07-01

    We used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.e., pure tones that varied in pitch) that minimized activation from non-ASTM related systems. MEG revealed neural activity in frontal, temporal, and parietal cortices that increased with a greater number of items effectively held in memory by the participants during the maintenance of pitch representations in ASTM. The present results reinforce the functional role of frontal and temporal cortices in the retention of pitch information in ASTM. This is the first MEG study to provide both fine spatial localization and temporal resolution on the neural mechanisms of non-verbal ASTM for pitch in relation to individual differences in the capacity of ASTM. This research contributes to a comprehensive understanding of the mechanisms mediating the representation and maintenance of basic non-verbal auditory features in the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  12. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Directory of Open Access Journals (Sweden)

    Martin eSpüler

    2015-03-01

    Full Text Available When a person recognizes an error during a task, an error-related potential (ErrP can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback.With this study, we wanted to answer three different questions: (i Can ErrPs be measured in electroencephalography (EEG recordings during a task with continuous cursor control? (ii Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action. We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible.Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG.

  13. THE EFFECT OF THE DIFFERENT TYPES OF FEEDBACK ON THE VOLLEYBALL TRAINEES’ INTERNAL IMPULSION.

    Directory of Open Access Journals (Sweden)

    Karolina Barzouka

    2009-06-01

    Full Text Available In physical education there is a two-way relation between acquiring moving skills and the mechanisms ofimpulsion. The goal of the present text was to confirm the effect of this kind of model observation on theinternal impulsion of the participants. Fifty three high school girls of 12-15 years old, separated randomly intolevels, in three teams and practiced in one common intervention programme consisted of 12 practice sessions forthe volleyball skill acquisition (the serve skill – ball reception. The participants of the 1st and the 2ndexperimental teams were receiving as feedback a model observation, while all the three teams were receivingverbal instructions during the intervention programme. At the beginning and the end of the intervention the trainees fulfilled the questionary (Ryan 1982 for the internal impulsion. For the statistic process of the internal impulsion data, the method of fluctuation analysis with 2 factors (3X2 was used. The level of importance wasdefined as p<0.5. The outcome demonstrated that no type of feedback influenced essentially the internal impulsion. There were only tendencies in favor of the second group.

  14. Comparison of auditory deficits associated with neglect and auditory cortex lesions.

    Science.gov (United States)

    Gutschalk, Alexander; Brandt, Tobias; Bartsch, Andreas; Jansen, Claudia

    2012-04-01

    In contrast to lesions of the visual and somatosensory cortex, lesions of the auditory cortex are not associated with self-evident contralesional deficits. Only when two or more stimuli are presented simultaneously to the left and right, contralesional extinction has been observed after unilateral lesions of the auditory cortex. Because auditory extinction is also considered a sign of neglect, clinical separation of auditory neglect from deficits caused by lesions of the auditory cortex is challenging. Here, we directly compared a number of tests previously used for either auditory-cortex lesions or neglect in 29 controls and 27 patients suffering from unilateral auditory-cortex lesions, neglect, or both. The results showed that a dichotic-speech test revealed similar amounts of extinction for both auditory cortex lesions and neglect. Similar results were obtained for words lateralized by inter-aural time differences. Consistent extinction after auditory cortex lesions was also observed in a dichotic detection task. Neglect patients showed more general problems with target detection but no consistent extinction in the dichotic detection task. In contrast, auditory lateralization perception was biased toward the right in neglect but showed considerably less disruption by auditory cortex lesions. Lateralization of auditory-evoked magnetic fields in auditory cortex was highly correlated with extinction in the dichotic target-detection task. Moreover, activity in the right primary auditory cortex was somewhat reduced in neglect patients. The results confirm that auditory extinction is observed with lesions of the auditory cortex and auditory neglect. A distinction can nevertheless be made with dichotic target-detection tasks, auditory-lateralization perception, and magnetoencephalography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Effect of Three Different Kinds of Feedback: Hint, Correct Answer, and Right/Wrong. IDD&E Working Paper No. 11.

    Science.gov (United States)

    Feng, Betty; Reigeluth, Charles M.

    Self-instructional booklets simulating computer-assisted instruction (CAI) were used to teach four basic concepts in science to first graders in three treatment groups which received different types of feedback--hints, correct answers, and right or wrong. A control group received neither instruction nor feedback. A multiple-choice test was…

  16. How Do Young Students with Different Profiles of Reading Skill Mastery, Perceived Ability, and Goal Orientation Respond to Holistic Diagnostic Feedback?

    Science.gov (United States)

    Jang, Eunice Eunhee; Dunlop, Maggie; Park, Gina; van der Boom, Edith H.

    2015-01-01

    One critical issue with cognitive diagnostic assessment (CDA) lies in its lack of research evidence that shows how diagnostic feedback from CDA is interpreted and used by young students. This mixed methods research examined how holistic diagnostic feedback (HDF) is processed by young learners with different profiles of reading skills, goal…

  17. Spatio-temporal source cluster analysis reveals fronto-temporal auditory change processing differences within a shared autistic and schizotypal trait phenotype

    Directory of Open Access Journals (Sweden)

    Talitha C. Ford

    2017-01-01

    These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning.

  18. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. From ear to hand: the role of the auditory-motor loop in pointing to an auditory source

    Directory of Open Access Journals (Sweden)

    Eric Olivier Boyer

    2013-04-01

    Full Text Available Studies of the nature of the neural mechanisms involved in goal-directed movements tend to concentrate on the role of vision. We present here an attempt to address the mechanisms whereby an auditory input is transformed into a motor command. The spatial and temporal organization of hand movements were studied in normal human subjects as they pointed towards unseen auditory targets located in a horizontal plane in front of them. Positions and movements of the hand were measured by a six infrared camera tracking system. In one condition, we assessed the role of auditory information about target position in correcting the trajectory of the hand. To accomplish this, the duration of the target presentation was varied. In another condition, subjects received continuous auditory feedback of their hand movement while pointing to the auditory targets. Online auditory control of the direction of pointing movements was assessed by evaluating how subjects reacted to shifts in heard hand position. Localization errors were exacerbated by short duration of target presentation but not modified by auditory feedback of hand position. Long duration of target presentation gave rise to a higher level of accuracy and was accompanied by early automatic head orienting movements consistently related to target direction. These results highlight the efficiency of auditory feedback processing in online motor control and suggest that the auditory system takes advantages of dynamic changes of the acoustic cues due to changes in head orientation in order to process online motor control. How to design an informative acoustic feedback needs to be carefully studied to demonstrate that auditory feedback of the hand could assist the monitoring of movements directed at objects in auditory space.

  20. Two distinct auditory-motor circuits for monitoring speech production as revealed by content-specific suppression of auditory cortex.

    Science.gov (United States)

    Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet

    2015-06-01

    Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Noise exposure of immature rats can induce different age-dependent extra-auditory alterations that can be partially restored by rearing animals in an enriched environment.

    Science.gov (United States)

    Molina, S J; Capani, F; Guelman, L R

    2016-04-01

    It has been previously shown that different extra-auditory alterations can be induced in animals exposed to noise at 15 days. However, data regarding exposure of younger animals, that do not have a functional auditory system, have not been obtained yet. Besides, the possibility to find a helpful strategy to restore these changes has not been explored so far. Therefore, the aims of the present work were to test age-related differences in diverse hippocampal-dependent behavioral measurements that might be affected in noise-exposed rats, as well as to evaluate the effectiveness of a potential neuroprotective strategy, the enriched environment (EE), on noise-induced behavioral alterations. Male Wistar rats of 7 and 15 days were exposed to moderate levels of noise for two hours. At weaning, animals were separated and reared either in standard or in EE cages for one week. At 28 days of age, different hippocampal-dependent behavioral assessments were performed. Results show that rats exposed to noise at 7 and 15 days were differentially affected. Moreover, EE was effective in restoring all altered variables when animals were exposed at 7 days, while a few were restored in rats exposed at 15 days. The present findings suggest that noise exposure was capable to trigger significant hippocampal-related behavioral alterations that were differentially affected, depending on the age of exposure. In addition, it could be proposed that hearing structures did not seem to be necessarily involved in the generation of noise-induced hippocampal-related behaviors, as they were observed even in animals with an immature auditory pathway. Finally, it could be hypothesized that the differential restoration achieved by EE rearing might also depend on the degree of maturation at the time of exposure and the variable evaluated, being younger animals more susceptible to environmental manipulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Speech-induced suppression of evoked auditory fields in children who stutter.

    Science.gov (United States)

    Beal, Deryk S; Quraan, Maher A; Cheyne, Douglas O; Taylor, Margot J; Gracco, Vincent L; De Nil, Luc F

    2011-02-14

    Auditory responses to speech sounds that are self-initiated are suppressed compared to responses to the same speech sounds during passive listening. This phenomenon is referred to as speech-induced suppression, a potentially important feedback-mediated speech-motor control process. In an earlier study, we found that both adults who do and do not stutter demonstrated a reduced amplitude of the auditory M50 and M100 responses to speech during active production relative to passive listening. It is unknown if auditory responses to self-initiated speech-motor acts are suppressed in children or if the phenomenon differs between children who do and do not stutter. As stuttering is a developmental speech disorder, examining speech-induced suppression in children may identify possible neural differences underlying stuttering close to its time of onset. We used magnetoencephalography to determine the presence of speech-induced suppression in children and to characterize the properties of speech-induced suppression in children who stutter. We examined the auditory M50 as this was the earliest robust response reproducible across our child participants and the most likely to reflect a motor-to-auditory relation. Both children who do and do not stutter demonstrated speech-induced suppression of the auditory M50. However, children who stutter had a delayed auditory M50 peak latency to vowel sounds compared to children who do not stutter indicating a possible deficiency in their ability to efficiently integrate auditory speech information for the purpose of establishing neural representations of speech sounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Auditory-perceptual learning improves speech motor adaptation in children.

    Science.gov (United States)

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  4. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    Science.gov (United States)

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  5. Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response.

    Science.gov (United States)

    Zhang, Fawen; Boettcher, Flint A

    2008-01-01

    The auditory steady-state evoked response (ASSR) is a scalp-recorded potential elicited by modulated sounds or repetitive transient sounds presented at a high rate. The binaural interaction component (BIC) of the ASSR equals the difference between the response to binaural stimuli and the sum of the responses to a monaural stimulus presented to the left ear and the right ear. This study examined the effect of the interaural time (ITD) and level (ILD) difference on the BIC of the 80 Hz ASSR. Sixteen human participants with normal hearing were tested. The ITD and ILD were varied from -1.6 to +1.6 msec and from 0 to +12 dB, respectively. The ITD function of the BIC showed a "V" shape, with a 0 value of BIC at ITD 0 msec and a positive BIC at ITD +0.8 to +1.6 msec. For ILD conditions, the BIC displayed negative values, and its amplitude became more negative as the ILD was increased. The results indicate that the ITD and ILD may be processed by different groups of binaural neurons in different pathways. It is suggested that the 80 Hz ASSR provides an objective means for evaluating binaural functions in patients such as those with central auditory processing disorders.

  6. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2009-01-03

    Previous studies have shown that the functional development of auditory system is substantially influenced by the structure of environmental acoustic inputs in early life. In our present study, we investigated the effects of early auditory enrichment with music on rat auditory discrimination learning. We found that early auditory enrichment with music from postnatal day (PND) 14 enhanced learning ability in auditory signal-detection task and in sound duration-discrimination task. In parallel, a significant increase was noted in NMDA receptor subunit NR2B protein expression in the auditory cortex. Furthermore, we found that auditory enrichment with music starting from PND 28 or 56 did not influence NR2B expression in the auditory cortex. No difference was found in the NR2B expression in the inferior colliculus (IC) between music-exposed and normal rats, regardless of when the auditory enrichment with music was initiated. Our findings suggest that early auditory enrichment with music influences NMDA-mediated neural plasticity, which results in enhanced auditory discrimination learning.

  7. Different origin of auditory and phonological processing problems in children with language impairment: evidence from a twin study.

    Science.gov (United States)

    Bishop, D V; Bishop, S J; Bright, P; James, C; Delaney, T; Tallal, P

    1999-02-01

    This study investigated the heritability of auditory processing impairment, as assessed by Tallal's Auditory Repetition Test (ART). The sample consisted of 37 same-sex twin pairs who had previously been selected because one or both twins met criteria for language impairment (LI) and 104 same-sex twin pairs in the same age range (7 to 13 years) from the general population. These samples yielded 55 children who met criteria for LI, who were compared with 76 children whose language was normal for their age (LN group). We replicated earlier work showing that group LI is impaired relative to group LN on ART. However, there was no evidence of a heritable influence on ART scores: Correlations between twins and their co-twins were reasonably high for both MZ and DZ twins, suggesting that performance is more influenced by shared environment than genetic factors. Analyses of extreme scores gave a similar picture of nonsignificant group heritability. In contrast, a test of phonological short-term memory, the Children's Nonword Repetition Test (CNRep), gave high estimates of group heritability. In general, CNRep was a better predictor of low language test scores than ART, but ART did make a significant independent contribution in accounting for variance in a test of grammatical understanding.

  8. AUDITORY REACTION TIME IN BASKETBALL PLAYERS AND HEALTHY CONTROLS

    OpenAIRE

    Ghuntla Tejas P.; Mehta Hemant B.; Gokhale Pradnya A.; Shah Chinmay J.

    2013-01-01

    Reaction is purposeful voluntary response to different stimuli as visual or auditory stimuli. Auditory reaction time is time required to response to auditory stimuli. Quickness of response is very important in games like basketball. This study was conducted to compare auditory reaction time of basketball players and healthy controls. The auditory reaction time was measured by the reaction time instrument in healthy controls and basketball players. Simple reaction time and choice reaction time...

  9. How Do Batters Use Visual, Auditory, and Tactile Information about the Success of a Baseball Swing?

    Science.gov (United States)

    Gray, Rob

    2009-01-01

    Bat/ball contact produces visual (the ball leaving the bat), auditory (the "crack" of the bat), and tactile (bat vibration) feedback about the success of the swing. We used a batting simulation to investigate how college baseball players use visual, tactile, and auditory feedback. In Experiment 1, swing accuracy (i.e., the lateral separation…

  10. Auditory Hallucination

    Directory of Open Access Journals (Sweden)

    MohammadReza Rajabi

    2003-09-01

    Full Text Available Auditory Hallucination or Paracusia is a form of hallucination that involves perceiving sounds without auditory stimulus. A common is hearing one or more talking voices which is associated with psychotic disorders such as schizophrenia or mania. Hallucination, itself, is the most common feature of perceiving the wrong stimulus or to the better word perception of the absence stimulus. Here we will discuss four definitions of hallucinations:1.Perceiving of a stimulus without the presence of any subject; 2. hallucination proper which are the wrong perceptions that are not the falsification of real perception, Although manifest as a new subject and happen along with and synchronously with a real perception;3. hallucination is an out-of-body perception which has no accordance with a real subjectIn a stricter sense, hallucinations are defined as perceptions in a conscious and awake state in the absence of external stimuli which have qualities of real perception, in that they are vivid, substantial, and located in external objective space. We are going to discuss it in details here.

  11. A comparison of different methods for reducing the unintended positional drift accompanying walking-in-place locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    types of feedback informing the user that a certain amount of drift had occurred and a control condition devoid of feedback. The feedback differed in terms of sensory modality (auditory, visual or audiovisual), onset mode (gradual or sudden) and presentation mode (either the feedback constituted...... a warning or a deprivation of the stimuli used to represent the virtual world). Finally, a condition providing passive haptic feedback (a circular carpet) was included. The types of feedback were assessed in terms of how effectively they reduced UPD as well as how helpful and intrusive they were perceived...

  12. Noise Trauma Induced Neural Plasticity Throughout the Auditory System of Mongolian Gerbils: Differences between Tinnitus Developing and Non-Developing Animals

    Science.gov (United States)

    Tziridis, Konstantin; Ahlf, Sönke; Jeschke, Marcus; Happel, Max F. K.; Ohl, Frank W.; Schulze, Holger

    2015-01-01

    In this study, we describe differences between neural plasticity in auditory cortex (AC) of animals that developed subjective tinnitus (group T) after noise-induced hearing loss (NIHL) compared to those that did not [group non-tinnitus (NT)]. To this end, our analysis focuses on the input activity of cortical neurons based on the temporal and spectral analysis of local field potential (LFP) recordings and an in-depth analysis of auditory brainstem responses (ABR) in the same animals. In response to NIHL in NT animals we find a significant general reduction in overall cortical activity and spectral power as well as changes in all ABR wave amplitudes as a function of loudness. In contrast, T-animals show no significant change in overall cortical activity as assessed by root mean square analysis of LFP amplitudes, but a specific increase in LFP spectral power and in the amplitude of ABR wave V reflecting activity in the inferior colliculus (IC). Based on these results, we put forward a refined model of tinnitus prevention after NIHL that acts via a top-down global (i.e., frequency-unspecific) inhibition reducing overall neuronal activity in AC and IC, thereby counteracting NIHL-induced bottom-up frequency-specific neuroplasticity suggested in current models of tinnitus development. PMID:25713557

  13. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  14. The role of auditory temporal cues in the fluency of stuttering adults

    Directory of Open Access Journals (Sweden)

    Juliana Furini

    Full Text Available ABSTRACT Purpose: to compare the frequency of disfluencies and speech rate in spontaneous speech and reading in adults with and without stuttering in non-altered and delayed auditory feedback (NAF, DAF. Methods: participants were 30 adults: 15 with Stuttering (Research Group - RG, and 15 without stuttering (Control Group - CG. The procedures were: audiological assessment and speech fluency evaluation in two listening conditions, normal and delayed auditory feedback (100 milliseconds delayed by Fono Tools software. Results: the DAF caused a significant improvement in the fluency of spontaneous speech in RG when compared to speech under NAF. The effect of DAF was different in CG, because it increased the common disfluencies and the total of disfluencies in spontaneous speech and reading, besides showing an increase in the frequency of stuttering-like disfluencies in reading. The intergroup analysis showed significant differences in the two speech tasks for the two listening conditions in the frequency of stuttering-like disfluencies and in the total of disfluencies, and in the flows of syllable and word-per-minute in the NAF. Conclusion: the results demonstrated that delayed auditory feedback promoted fluency in spontaneous speech of adults who stutter, without interfering in the speech rate. In non-stuttering adults an increase occurred in the number of common disfluencies and total of disfluencies as well as reduction of speech rate in spontaneous speech and reading.

  15. The Role of Age and Executive Function in Auditory Category Learning

    Science.gov (United States)

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  16. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils.

    Directory of Open Access Journals (Sweden)

    Markus K Schaefer

    Full Text Available In mammals, acoustic communication plays an important role during social behaviors. Despite their ethological relevance, the mechanisms by which the auditory cortex represents different communication call properties remain elusive. Recent studies have pointed out that communication-sound encoding could be based on discharge patterns of neuronal populations. Following this idea, we investigated whether the activity of local neuronal networks, such as those occurring within individual cortical columns, is sufficient for distinguishing between sounds that differed in their spectro-temporal properties. To accomplish this aim, we analyzed simple pure-tone and complex communication call elicited multi-unit activity (MUA as well as local field potentials (LFP, and current source density (CSD waveforms at the single-layer and columnar level from the primary auditory cortex of anesthetized Mongolian gerbils. Multi-dimensional scaling analysis was used to evaluate the degree of "call-specificity" in the evoked activity. The results showed that whole laminar profiles segregated 1.8-2.6 times better across calls than single-layer activity. Also, laminar LFP and CSD profiles segregated better than MUA profiles. Significant differences between CSD profiles evoked by different sounds were more pronounced at mid and late latencies in the granular and infragranular layers and these differences were based on the absence and/or presence of current sinks and on sink timing. The stimulus-specific activity patterns observed within cortical columns suggests that the joint activity of local cortical populations (as local as single columns could indeed be important for encoding sounds that differ in their acoustic attributes.

  17. The parietal opercular auditory-sensorimotor network in musicians: A resting-state fMRI study.

    Science.gov (United States)

    Tanaka, Shoji; Kirino, Eiji

    2018-02-01

    Auditory-sensorimotor coupling is critical for musical performance, during which auditory and somatosensory feedback signals are used to ensure desired outputs. Previous studies reported opercular activation in subjects performing or listening to music. A functional connectivity analysis suggested the parietal operculum (PO) as a connector hub that links auditory, somatosensory, and motor cortical areas. We therefore examined whether this PO network differs between musicians and non-musicians. We analyzed resting-state PO functional connectivity with Heschl's gyrus (HG), the planum temporale (PT), the precentral gyrus (preCG), and the postcentral gyrus (postCG) in 35 musicians and 35 non-musicians. In musicians, the left PO exhibited increased functional connectivity with the ipsilateral HG, PT, preCG, and postCG, whereas the right PO exhibited enhanced functional connectivity with the contralateral HG, preCG, and postCG and the ipsilateral postCG. Direct functional connectivity between an auditory area (the HG or PT) and a sensorimotor area (the preCG or postCG) did not significantly differ between the groups. The PO's functional connectivity with auditory and sensorimotor areas is enhanced in musicians relative to non-musicians. We propose that the PO network facilitates musical performance by mediating multimodal integration for modulating auditory-sensorimotor control. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Feedback and efficient behavior.

    Science.gov (United States)

    Casal, Sandro; DellaValle, Nives; Mittone, Luigi; Soraperra, Ivan

    2017-01-01

    Feedback is an effective tool for promoting efficient behavior: it enhances individuals' awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers' behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers.

  19. Functional dissociation of transient and sustained fMRI BOLD components in human auditory cortex revealed with a streaming paradigm based on interaural time differences.

    Science.gov (United States)

    Schadwinkel, Stefan; Gutschalk, Alexander

    2010-12-01

    A number of physiological studies suggest that feature-selective adaptation is relevant to the pre-processing for auditory streaming, the perceptual separation of overlapping sound sources. Most of these studies are focused on spectral differences between streams, which are considered most important for streaming. However, spatial cues also support streaming, alone or in combination with spectral cues, but physiological studies of spatial cues for streaming remain scarce. Here, we investigate whether the tuning of selective adaptation for interaural time differences (ITD) coincides with the range where streaming perception is observed. FMRI activation that has been shown to adapt depending on the repetition rate was studied with a streaming paradigm where two tones were differently lateralized by ITD. Listeners were presented with five different ΔITD conditions (62.5, 125, 187.5, 343.75, or 687.5 μs) out of an active baseline with no ΔITD during fMRI. The results showed reduced adaptation for conditions with ΔITD ≥ 125 μs, reflected by enhanced sustained BOLD activity. The percentage of streaming perception for these stimuli increased from approximately 20% for ΔITD = 62.5 μs to > 60% for ΔITD = 125 μs. No further sustained BOLD enhancement was observed when the ΔITD was increased beyond ΔITD = 125 μs, whereas the streaming probability continued to increase up to 90% for ΔITD = 687.5 μs. Conversely, the transient BOLD response, at the transition from baseline to ΔITD blocks, increased most prominently as ΔITD was increased from 187.5 to 343.75 μs. These results demonstrate a clear dissociation of transient and sustained components of the BOLD activity in auditory cortex. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Effects of noise exposure on neonatal auditory brainstem response thresholds in pregnant guinea pigs at different gestational periods.

    Science.gov (United States)

    Morimoto, Chihiro; Nario, Kazuhiko; Nishimura, Tadashi; Shimokura, Ryota; Hosoi, Hiroshi; Kitahara, Tadashi

    2017-01-01

    Noise exposure during pregnancy has been reported to cause fetal hearing impairment. However, little is known about the effects of noise exposure during various gestational stages on postnatal hearing. In the present study, we investigated the effects of noise exposure on auditory brainstem response (ABR) at the early, mid-, and late gestational periods in newborn guinea pigs. Pregnant guinea pigs were exposed to 4-kHz pure tone at a 120-dB sound pressure level for 4 h. We divided the animals into four groups as follows: the control, early gestational exposure, mid-gestational exposure, and late gestational exposure groups. ABR thresholds and latencies in newborns were recorded using 1-, 2-, and 4-kHz tone burst on postnatal days 1, 7, 14, and 28. Changes in ABR thresholds and latencies were measured between the 4 × 4 and 4 × 3 factorial groups mentioned above (gestational periods × postnatal days, gestational periods × frequencies). The thresholds were low in the order of control group exposure group exposure group and late gestational exposure group. Noise exposure during pregnancy influenced ABR thresholds in neonatal guinea pigs. This is the first study to show that noise exposure during the early, mid-, and late gestational periods significantly elevated ABR thresholds in neonatal guinea pigs. © 2016 Japan Society of Obstetrics and Gynecology.

  1. Differences in Performance of ADHD Children on a Visual and Auditory Continuous Performance Test according to IQ.

    Science.gov (United States)

    Park, Min-Hyeon; Kweon, Yong Sil; Lee, Soo Jung; Park, E-Jin; Lee, Chul; Lee, Chang-Uk

    2011-09-01

    Continuous performance tests (CPTs) are frequently used in clinical practice to assess the attentiveness of ADHD children. Although most CPTs do not categorize T scores by intelligence, there is great diversity of opinion regarding the interrelation between intelligence and CPT performance. This study aimed to determine if ADHD children with superior IQs would perform better than ADHD children with average IQs. Additionally, we aimed to examine the need for CPTs' to categorize according to IQ. Participants were 326 outpatients, aged 5-15 years, diagnosed with ADHD. All participants completed the Wechsler Intelligence Scale for Children-Revised and a CPT. After excluding those who meet exclusion criteria, we had 266 patients for our analysis. The "Highly Intelligent Group" (HIG), patients with IQs 120 and above, performed superiorly to the "Normally Intelligent Group" (NIG) patients, with IQs between 70 and 120, with regard to omission and commission errors on the visual-auditory CPT, even after controlling for age and gender. The HIG had higher ratios of subjects with T scores based on IQ, as well as on age and gender. Moreover, clinicians need to pay attention to the effect of IQ in interpreting CPT scores; that is, a "normal" score does not rule out a diagnosis of ADHD.

  2. Congestion phenomenon analysis and delayed-feedback control in a modified coupled map traffic flow model containing the velocity difference

    Science.gov (United States)

    Fang, Ya-Ling; Shi, Zhong-Ke; Cao, Jin-Liang

    2015-06-01

    Based on the coupled map car-following model which was presented by Konishi et al. (1999), a modified coupled map car-following model is proposed. Specifically, the velocity difference between two successive vehicles is included in the model. The stability condition is given for the change of the speed of the preceding vehicle on the base of the control theory. We derive a condition under which the traffic jam never occurs in our model. Furthermore, in order to suppress traffic jams, we use static and dynamic version of decentralized delayed-feedback control for each vehicle, respectively, and provide a systematic procedure for designing the controller. In addition, the controller of each vehicle does not include any other vehicle information in real traffic flows.

  3. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear When Exposed to 65 dB of Auditory Noise.

    Science.gov (United States)

    Söderlund, Göran B W; Jobs, Elisabeth Nilsson

    2016-01-01

    The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6-9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman's speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  4. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear when Exposed to 65 dB of Auditory Noise

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-01-01

    Full Text Available The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD, affecting approximately 6-9 % of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB. Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children (TDC and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  5. Do transformational CEOs always make the difference? The role of TMT feedback seeking behavior

    NARCIS (Netherlands)

    Stoker, Janka I.; Grutterink, Hanneke; Kolk, Nanja J.

    In the present paper, we raise the question whether CEO transformational leadership invariably makes a difference for team performance and change effectiveness. Since in general, CEOs are surrounded by a team of highly influential top managers, we argue that the effectiveness of CEO transformational

  6. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    Science.gov (United States)

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  7. Audio-haptic physically-based simulation of walking on different grounds

    DEFF Research Database (Denmark)

    Turchet, Luca; Nordahl, Rolf; Serafin, Stefania

    2010-01-01

    We describe a system which simulates in realtime the auditory and haptic sensations of walking on different surfaces. The system is based on a pair of sandals enhanced with pressure sensors and actuators. The pressure sensors detect the interaction force during walking, and control several...... physically based synthesis algorithms, which drive both the auditory and haptic feedback. The different hardware and software components of the system are described, together with possible uses and possibilities for improvements in future design iterations....

  8. Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition.

    Science.gov (United States)

    Füllgrabe, Christian; Moore, Brian C J; Stone, Michael A

    2014-01-01

    Hearing loss with increasing age adversely affects the ability to understand speech, an effect that results partly from reduced audibility. The aims of this study were to establish whether aging reduces speech intelligibility for listeners with normal audiograms, and, if so, to assess the relative contributions of auditory temporal and cognitive processing. Twenty-one older normal-hearing (ONH; 60-79 years) participants with bilateral audiometric thresholds ≤ 20 dB HL at 0.125-6 kHz were matched to nine young (YNH; 18-27 years) participants in terms of mean audiograms, years of education, and performance IQ. Measures included: (1) identification of consonants in quiet and in noise that was unmodulated or modulated at 5 or 80 Hz; (2) identification of sentences in quiet and in co-located or spatially separated two-talker babble; (3) detection of modulation of the temporal envelope (TE) at frequencies 5-180 Hz; (4) monaural and binaural sensitivity to temporal fine structure (TFS); (5) various cognitive tests. Speech identification was worse for ONH than YNH participants in all types of background. This deficit was not reflected in self-ratings of hearing ability. Modulation masking release (the improvement in speech identification obtained by amplitude modulating a noise background) and spatial masking release (the benefit obtained from spatially separating masker and target speech) were not affected by age. Sensitivity to TE and TFS was lower for ONH than YNH participants, and was correlated positively with speech-in-noise (SiN) identification. Many cognitive abilities were lower for ONH than YNH participants, and generally were correlated positively with SiN identification scores. The best predictors of the intelligibility of SiN were composite measures of cognition and TFS sensitivity. These results suggest that declines in speech perception in older persons are partly caused by cognitive and perceptual changes separate from age-related changes in audiometric

  9. Source reliability in auditory health persuasion : Its antecedents and consequences

    NARCIS (Netherlands)

    Elbert, Sarah P.; Dijkstra, Arie

    2015-01-01

    Persuasive health messages can be presented through an auditory channel, thereby enhancing the salience of the source, making it fundamentally different from written or pictorial information. We focused on the determinants of perceived source reliability in auditory health persuasion by

  10. The effect of background music in auditory health persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2013-01-01

    In auditory health persuasion, threatening information regarding health is communicated by voice only. One relevant context of auditory persuasion is the addition of background music. There are different mechanisms through which background music might influence persuasion, for example through mood

  11. Experience and information loss in auditory and visual memory.

    Science.gov (United States)

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  12. Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning.

    Science.gov (United States)

    Kobza, Stefan; Bellebaum, Christian

    2015-01-01

    Learning of stimulus-response-outcome associations is driven by outcome prediction errors (PEs). Previous studies have shown larger PE-dependent activity in the striatum for learning from own as compared to observed actions and the following outcomes despite comparable learning rates. We hypothesised that this finding relates primarily to a stronger integration of action and outcome information in active learners. Using functional magnetic resonance imaging, we investigated brain activations related to action-dependent PEs, reflecting the deviation between action values and obtained outcomes, and action-independent PEs, reflecting the deviation between subjective values of response-preceding cues and obtained outcomes. To this end, 16 active and 15 observational learners engaged in a probabilistic learning card-guessing paradigm. On each trial, active learners saw one out of five cues and pressed either a left or right response button to receive feedback (monetary win or loss). Each observational learner observed exactly those cues, responses and outcomes of one active learner. Learning performance was assessed in active test trials without feedback and did not differ between groups. For both types of PEs, activations were found in the globus pallidus, putamen, cerebellum, and insula in active learners. However, only for action-dependent PEs, activations in these structures and the anterior cingulate were increased in active relative to observational learners. Thus, PE-related activity in the reward system is not generally enhanced in active relative to observational learning but only for action-dependent PEs. For the cerebellum, additional activations were found across groups for cue-related uncertainty, thereby emphasising the cerebellum's role in stimulus-outcome learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    use two pay schemes, a piece rate and a tournament. We find that overall feedback does not improve performance. In contrast to the piece-rate pay scheme there is some evidence of positive peer effects in tournaments since the underdogs almost never quit the competition even when lagging significantly......This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. We...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....

  14. Prolonged Walking with a Wearable System Providing Intelligent Auditory Input in People with Parkinson's Disease.

    Science.gov (United States)

    Ginis, Pieter; Heremans, Elke; Ferrari, Alberto; Dockx, Kim; Canning, Colleen G; Nieuwboer, Alice

    2017-01-01

    Rhythmic auditory cueing is a well-accepted tool for gait rehabilitation in Parkinson's disease (PD), which can now be applied in a performance-adapted fashion due to technological advance. This study investigated the immediate differences on gait during a prolonged, 30 min, walk with performance-adapted (intelligent) auditory cueing and verbal feedback provided by a wearable sensor-based system as alternatives for traditional cueing. Additionally, potential effects on self-perceived fatigue were assessed. Twenty-eight people with PD and 13 age-matched healthy elderly (HE) performed four 30 min walks with a wearable cue and feedback system. In randomized order, participants received: (1) continuous auditory cueing; (2) intelligent cueing (10 metronome beats triggered by a deviating walking rhythm); (3) intelligent feedback (verbal instructions triggered by a deviating walking rhythm); and (4) no external input. Fatigue was self-scored at rest and after walking during each session. The results showed that while HE were able to maintain cadence for 30 min during all conditions, cadence in PD significantly declined without input. With continuous cueing and intelligent feedback people with PD were able to maintain cadence (p = 0.04), although they were more physically fatigued than HE. Furthermore, cadence deviated significantly more in people with PD than in HE without input and particularly with intelligent feedback (both: p = 0.04). In PD, continuous and intelligent cueing induced significantly less deviations of cadence (p = 0.006). Altogether, this suggests that intelligent cueing is a suitable alternative for the continuous mode during prolonged walking in PD, as it induced similar effects on gait without generating levels of fatigue beyond that of HE.

  15. Auditory presentation of experimental data

    Science.gov (United States)

    Lunney, David; Morrison, Robert C.

    1990-08-01

    Our research group has been working for several years on the development of auditory alternatives to visual graphs, primarily in order to give blind science students and scientists access to instrumental measurements. In the course of this work we have tried several modes for auditory presentation of data: synthetic speech, tones of varying pitch, complex waveforms, electronic music, and various non-musical sounds. Our most successful translation of data into sound has been presentation of infrared spectra as musical patterns. We have found that if the stick spectra of two compounds are visibly different, their musical patterns will be audibly different. Other possibilities for auditory presentation of data are also described, among them listening to Fourier transforms of spectra, and encoding data in complex waveforms (including synthetic speech).

  16. Context effects on auditory distraction

    Science.gov (United States)

    Chen, Sufen; Sussman, Elyse S.

    2014-01-01

    The purpose of the study was to test the hypothesis that sound context modulates the magnitude of auditory distraction, indexed by behavioral and electrophysiological measures. Participants were asked to identify tone duration, while irrelevant changes occurred in tone frequency, tone intensity, and harmonic structure. Frequency deviants were randomly intermixed with standards (Uni-Condition), with intensity deviants (Bi-Condition), and with both intensity and complex deviants (Tri-Condition). Only in the Tri-Condition did the auditory distraction effect reflect the magnitude difference among the frequency and intensity deviants. The mixture of the different types of deviants in the Tri-Condition modulated the perceived level of distraction, demonstrating that the sound context can modulate the effect of deviance level on processing irrelevant acoustic changes in the environment. These findings thus indicate that perceptual contrast plays a role in change detection processes that leads to auditory distraction. PMID:23886958

  17. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  18. Neural cryptography with feedback

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  19. Non-auditory Effect of Noise Pollution and Its Risk on Human Brain Activity in Different Audio Frequency Using Electroencephalogram Complexity.

    Science.gov (United States)

    Allahverdy, Armin; Jafari, Amir Homayoun

    2016-10-01

    Noise pollution is one of the most harmful ambiance disturbances. It may cause many deficits in ability and activity of persons in the urban and industrial areas. It also may cause many kinds of psychopathies. Therefore, it is very important to measure the risk of this pollution in different area. This study was conducted in the Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences from June to September of 2015, in which, different frequencies of noise pollution were played for volunteers. 16-channel EEG signal was recorded synchronously, then by using fractal dimension and relative power of Beta sub-band of EEG, the complexity of EEG signals was measured. As the results, it is observed that the average complexity of brain activity is increased in the middle of audio frequency range and the complexity map of brain activity changes in different frequencies, which can show the effects of frequency changes on human brain activity. The complexity of EEG is a good measure for ranking the annoyance and non-auditory risk of noise pollution on human brain activity.

  20. Neural mechanisms of auditory categorization: from across brain areas to within local microcircuits

    Directory of Open Access Journals (Sweden)

    Joji eTsunada

    2014-06-01

    Full Text Available Categorization enables listeners to efficiently encode and respond to auditory stimuli. Behavioral evidence for auditory categorization has been well documented across a broad range of human and non-human animal species. Moreover, neural correlates of auditory categorization have been documented in a variety of different brain regions in the ventral auditory pathway, which is thought to underlie auditory-object processing and auditory perception. Here, we review and discuss how neural representations of auditory categories are transformed across different scales of neural organization in the ventral auditory pathway: from across different brain areas to within local microcircuits. We propose different neural transformations across different scales of neural organization in auditory categorization. Along the ascending auditory system in the ventral pathway, there is a progression in the encoding of categories from simple acoustic categories to categories for abstract information. On the other hand, in local microcircuits, different classes of neurons differentially compute categorical information.

  1. Precise feedback control underlies sensorimotor learning in speech.

    Science.gov (United States)

    Vaughn, Chris; Nasir, Sazzad M

    2015-02-01

    Acquiring the skill of speaking in another language, or for that matter a child's learning to talk, does not follow a single recipe. People learn by variable amounts. A major component of speech learnability seems to be sensing precise feedback errors to correct subsequent utterances that help maintain speech goals. We have tested this idea in a speech motor learning paradigm under altered auditory feedback, in which subjects repeated a word while their auditory feedback was changed online. Subjects learned the task to variable degrees, with some simply failing to learn. We assessed feedback contribution by computing one-lag covariance between formant trajectories of the current feedback and the following utterance that was found to be a significant predictor of learning. Our findings rely on a novel use of information-rich formant trajectories in evaluating speech motor learning and argue for their relevance in auditory speech goals of vowel sounds. Copyright © 2015 the American Physiological Society.

  2. Targeting treatment-resistant auditory verbal hallucinations in schizophrenia with fMRI-based neurofeedback – exploring different cases of schizophrenia

    Directory of Open Access Journals (Sweden)

    Miriam S. Dyck

    2016-03-01

    Full Text Available Auditory verbal hallucinations (AVHs are a hallmark of schizophrenia and can significantly impair patients’ emotional, social, and occupational functioning. Despite progress in psychopharmacology, over 25% of schizophrenia patients suffer from treatment-resistant hallucinations. In the search for alternative treatment methods, neurofeedback (NF emerges as a promising therapy tool. NF based on real-time functional magnetic resonance imaging (rt-fMRI allows voluntarily change of the activity in a selected brain region – even in patients with schizophrenia. This study explored effects of NF on ongoing AVHs. The selected participants were trained in the self-regulation of activity in the anterior cingulate cortex (ACC, a key monitoring region involved in generation and intensity modulation of AVHs. Using rt-fMRI, three right-handed patients, suffering from schizophrenia and ongoing, treatment-resistant AVHs, learned control over ACC activity on three separate days. The effect of NF training on hallucinations’ severity was assessed with the Auditory Vocal Hallucination Rating Scale (AVHRS and on the affective state – with the Positive and Negative Affect Schedule (PANAS.All patients yielded significant up-regulation of the ACC and reported subjective improvement in some aspects of AVHs (AVHRS such as disturbance and suffering from the voices. In general, mood (PANAS improved during NF training, though two patients reported worse mood after NF on the third day. ACC and reward system activity during NF learning and specific effects on mood and symptoms varied across the participants. None of them profited from the last training set in the prolonged 3-session training. Moreover, individual differences emerged in brain networks activated with NF and in symptom changes, which were related to the patients’ symptomatology and disease history.NF based on rt-fMRI seems a promising tool in therapy of AVHs. The patients, who suffered from continuous

  3. Feel what you say: an auditory effect on somatosensory perception.

    Science.gov (United States)

    Champoux, François; Shiller, Douglas M; Zatorre, Robert J

    2011-01-01

    In the present study, we demonstrate an audiotactile effect in which amplitude modulation of auditory feedback during voiced speech induces a throbbing sensation over the lip and laryngeal regions. Control tasks coupled with the examination of speech acoustic parameters allow us to rule out the possibility that the effect may have been due to cognitive factors or motor compensatory effects. We interpret the effect as reflecting the tight interplay between auditory and tactile modalities during vocal production.

  4. Feel what you say: an auditory effect on somatosensory perception.

    Directory of Open Access Journals (Sweden)

    François Champoux

    Full Text Available In the present study, we demonstrate an audiotactile effect in which amplitude modulation of auditory feedback during voiced speech induces a throbbing sensation over the lip and laryngeal regions. Control tasks coupled with the examination of speech acoustic parameters allow us to rule out the possibility that the effect may have been due to cognitive factors or motor compensatory effects. We interpret the effect as reflecting the tight interplay between auditory and tactile modalities during vocal production.

  5. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O

    2018-01-11

    The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

  6. Feedback in surgical education.

    Science.gov (United States)

    El Boghdady, Michael; Alijani, Afshin

    2017-04-01

    The positive effect of feedback has long been recognized in surgical education. Surgical educators convey feedback to improve the performance of the surgical trainees. We aimed to review the scientific classification and application of feedback in surgical education, and to propose possible future directions for research. A literature search was performed using Pubmed, OVID, CINAHL, Web of science, EMBASE, ERIC database and Google Scholar. The following search terms were used: 'feedback', 'feedback in medical education', 'feedback in medical training' and 'feedback in surgery'. The search was limited to articles in English. From 1157 citations, 12 books and 43 articles met the inclusion criteria and were selected for this review. Feedback comes in a variety of types and is an essential tool for learning and developing performance in surgical education. Different methods of feedback application are evolving and future work needs to concentrate on the value of each method as well as the role of new technologies in surgical education. Copyright © 2016 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  7. Auditory-Visual Speech Integration by Adults with and without Language-Learning Disabilities

    Science.gov (United States)

    Norrix, Linda W.; Plante, Elena; Vance, Rebecca

    2006-01-01

    Auditory and auditory-visual (AV) speech perception skills were examined in adults with and without language-learning disabilities (LLD). The AV stimuli consisted of congruent consonant-vowel syllables (auditory and visual syllables matched in terms of syllable being produced) and incongruent McGurk syllables (auditory syllable differed from…

  8. Effects of different real-time feedback types on human performance in high-demanding work conditions

    NARCIS (Netherlands)

    Cohen, I.; Brinkman, W.P.; Neerincx, M.A.

    2016-01-01

    Experiencing stress during training is a way to prepare professionals for real-life crises. With the help of feedback tools, professionals can train to recognize and overcome negative effects of stress on task performances. This paper reports two studies that empirically examined the effect of such

  9. Auditory memory function in expert chess players.

    Science.gov (United States)

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  10. Auditory white noise reduces postural fluctuations even in the absence of vision

    OpenAIRE

    Ross, JM; Balasubramaniam, R.

    2015-01-01

    © 2015, Springer-Verlag Berlin Heidelberg. The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory...

  11. Feedback from uncertainties propagation research projects conducted in different hydraulic fields: outcomes for engineering projects and nuclear safety assessment.

    Science.gov (United States)

    Bacchi, Vito; Duluc, Claire-Marie; Bertrand, Nathalie; Bardet, Lise

    2017-04-01

    different contexts, as river flooding on the Rhône River (Nguyen et al., 2015) and on the Garonne River, for the studying of local rainfall (Abily et al., 2016) or for tsunami generation, in the framework of the ANR-research project TANDEM. The feedback issued from these previous studies is analyzed (technical problems, limitations, interesting results, etc…) and the perspectives and a discussion on how a probabilistic approach of uncertainties should improve the actual deterministic methodology for risk assessment (also for other engineering applications) will be finally given.

  12. Formativ Feedback

    DEFF Research Database (Denmark)

    Hyldahl, Kirsten Kofod

    Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...

  13. Auditory hallucinations in dissociative identity disorder and schizophrenia with and without a childhood trauma history: similarities and differences.

    Science.gov (United States)

    Dorahy, Martin J; Shannon, Ciarán; Seagar, Lenaire; Corr, Mary; Stewart, Kellie; Hanna, Donncha; Mulholland, Ciaran; Middleton, Warwick

    2009-12-01

    Little is known about similarities and differences in voice hearing in schizophrenia and dissociative identity disorder (DID) and the role of child maltreatment and dissociation. This study examined various aspects of voice hearing, along with childhood maltreatment and pathological dissociation in 3 samples: schizophrenia without child maltreatment (n = 18), schizophrenia with child maltreatment (n = 16), and DID (n = 29). Compared with the schizophrenia groups, the DID sample was more likely to have voices starting before 18, hear more than 2 voices, have both child and adult voices and experience tactile and visual hallucinations. The 3 groups were similar in that voice content was incongruent with mood and the location was more likely internal than external. Pathological dissociation predicted several aspects of voice hearing and appears an important variable in voice hearing, at least where maltreatment is present.

  14. Some Aspects of Speech Production under Controlled Conditions of Oral Anaesthesia and Auditory Masking

    Science.gov (United States)

    Hardcastle, W. J.

    1975-01-01

    Reports on the effects of oral anaesthesia and auditory masking on various aspects of speech articulation as objectively quantified by electropalatography and sound spectrography. The results show changes in speech production caused by altered tactile and auditory feedback. (Author/TL)

  15. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.

    Science.gov (United States)

    Altmann, Christian F; Ueda, Ryuhei; Bucher, Benoit; Furukawa, Shigeto; Ono, Kentaro; Kashino, Makio; Mima, Tatsuya; Fukuyama, Hidenao

    2017-10-01

    Interaural time (ITD) and level differences (ILD) constitute the two main cues for sound localization in the horizontal plane. Despite extensive research in animal models and humans, the mechanism of how these two cues are integrated into a unified percept is still far from clear. In this study, our aim was to test with human electroencephalography (EEG) whether integration of dynamic ITD and ILD cues is reflected in the so-called motion-onset response (MOR), an evoked potential elicited by moving sound sources. To this end, ITD and ILD trajectories were determined individually by cue trading psychophysics. We then measured EEG while subjects were presented with either static click-trains or click-trains that contained a dynamic portion at the end. The dynamic part was created by combining ITD with ILD either congruently to elicit the percept of a right/leftward moving sound, or incongruently to elicit the percept of a static sound. In two experiments that differed in the method to derive individual dynamic cue trading stimuli, we observed an MOR with at least a change-N1 (cN1) component for both the congruent and incongruent conditions at about 160-190 ms after motion-onset. A significant change-P2 (cP2) component for both the congruent and incongruent ITD/ILD combination was found only in the second experiment peaking at about 250 ms after motion onset. In sum, this study shows that a sound which - by a combination of counter-balanced ITD and ILD cues - induces a static percept can still elicit a motion-onset response, indicative of independent ITD and ILD processing at the level of the MOR - a component that has been proposed to be, at least partly, generated in non-primary auditory cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cocaine-dependent individuals and gamblers present different associative learning anomalies in feedback-driven decision-making: A behavioral and ERP study

    Directory of Open Access Journals (Sweden)

    Ana eTorres

    2013-03-01

    Full Text Available Several recent studies have demonstrated that addicts behave less flexibly than healthy controls in the probabilistic reversal-learning task (PRLT, in which participants must gradually learn to choose between a probably-rewarded option and an improbably-rewarded one, on the basis of corrective feedback, and in which preferences must adjust to abrupt reward contingency changes (reversals.In the present study, pathological gamblers (PG and cocaine-dependent individuals (CDI showed different learning curves in the PRLT. PG also showed a reduced electroencephalographic response to feedback (Feedback-Related Negativity, FRN when compared to controls. CDI’s FRN was not significantly different either from PG or HC’s. Additionally, according to sLORETA analysis, cortical activity in regions of interest (previously selected by virtue of their involvement in FRN generation in controls strongly differed between CDI and PG.However, the nature of such anomalies varied within-groups across individuals. Cocaine use severity had a strong deleterious impact on the learning asymptote, whereas gambling intensity significantly increased reversal cost. These two effects have remained confounded in most previous studies, which can be hiding important associative learning differences between different populations of addicts.

  17. Auditory short-term memory activation during score reading.

    Science.gov (United States)

    Simoens, Veerle L; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.

  18. Auditory short-term memory activation during score reading.

    Directory of Open Access Journals (Sweden)

    Veerle L Simoens

    Full Text Available Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.

  19. Auditory Short-Term Memory Activation during Score Reading

    Science.gov (United States)

    Simoens, Veerle L.; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback. PMID:23326487

  20. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  1. Restoring natural sensory feedback in real-time bidirectional hand prostheses

    DEFF Research Database (Denmark)

    Raspopovic, Stanisa; Capogrosso, Marco; Petrini, Francesco Maria

    2014-01-01

    Hand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prostheses...... feedback. We show that by stimulating the median and ulnar nerve fascicles using transversal multichannel intrafascicular electrodes, according to the information provided by the artificial sensors from a hand prosthesis, physiologically appropriate (near-natural) sensory information can be provided...... to an amputee during the real-time decoding of different grasping tasks to control a dexterous hand prosthesis. This feedback enabled the participant to effectively modulate the grasping force of the prosthesis with no visual or auditory feedback. Three different force levels were distinguished and consistently...

  2. BAER - brainstem auditory evoked response

    Science.gov (United States)

    ... auditory potentials; Brainstem auditory evoked potentials; Evoked response audiometry; Auditory brainstem response; ABR; BAEP ... Normal results vary. Results will depend on the person and the instruments used to perform the test.

  3. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  4. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. Differences between Dyslexic and Non-Dyslexic Children in the Performance of Phonological Visual-Auditory Recognition Tasks: An Eye-Tracking Study.

    Directory of Open Access Journals (Sweden)

    Aimé Tiadi

    Full Text Available The object of this study was to explore further phonological visual-auditory recognition tasks in a group of fifty-six healthy children (mean age: 9.9 ± 0.3 and to compare these data to those recorded in twenty-six age-matched dyslexic children (mean age: 9.8 ± 0.2. Eye movements from both eyes were recorded using an infrared video-oculography system (MobileEBT® e(ye BRAIN. The recognition task was performed under four conditions in which the target object was displayed either with phonologically unrelated objects (baseline condition, or with cohort or rhyme objects (cohort and rhyme conditions, respectively, or both together (rhyme + cohort condition. The percentage of the total time spent on the targets and the latency of the first saccade on the target were measured. Results in healthy children showed that the percentage of the total time spent in the baseline condition was significantly longer than in the other conditions, and that the latency of the first saccade in the cohort condition was significantly longer than in the other conditions; interestingly, the latency decreased significantly with the increasing age of the children. The developmental trend of phonological awareness was also observed in healthy children only. In contrast, we observed that for dyslexic children the total time spent on the target was similar in all four conditions tested, and also that they had similar latency values in both cohort and rhyme conditions. These findings suggest a different sensitivity to the phonological competitors between dyslexic and non-dyslexic children. Also, the eye-tracking technique provides online information about phonological awareness capabilities in children.

  6. Feedback and efficient behavior.

    Directory of Open Access Journals (Sweden)

    Sandro Casal

    Full Text Available Feedback is an effective tool for promoting efficient behavior: it enhances individuals' awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers' behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers.

  7. Investigating the role of auditory and tactile modalities in violin quality evaluation.

    Science.gov (United States)

    Wollman, Indiana; Fritz, Claudia; Poitevineau, Jacques; McAdams, Stephen

    2014-01-01

    The role of auditory and tactile modalities involved in violin playing and evaluation was investigated in an experiment employing a blind violin evaluation task under different conditions: i) normal playing conditions, ii) playing with auditory masking, and iii) playing with vibrotactile masking. Under each condition, 20 violinists evaluated five violins according to criteria related to violin playing and sound characteristics and rated their overall quality and relative preference. Results show that both auditory and vibrotactile feedback are important in the violinists' evaluations but that their relative importance depends on the violinist, the violin and the type of evaluation (different criteria ratings or preference). In this way, the overall quality ratings were found to be accurately predicted by the rating criteria, which also proved to be perceptually relevant to violinists, but were poorly correlated with the preference ratings; this suggests that the two types of ratings (overall quality vs preference) may stem from different decision-making strategies. Furthermore, the experimental design confirmed that violinists agree more on the importance of criteria in their overall evaluation than on their actual ratings for different violins. In particular, greater agreement was found on the importance of criteria related to the sound of the violin. Nevertheless, this study reveals that there are fundamental differences in the way players interpret and evaluate each criterion, which may explain why correlating physical properties with perceptual properties has been challenging so far in the field of musical acoustics.

  8. Investigating the role of auditory and tactile modalities in violin quality evaluation.

    Directory of Open Access Journals (Sweden)

    Indiana Wollman

    Full Text Available The role of auditory and tactile modalities involved in violin playing and evaluation was investigated in an experiment employing a blind violin evaluation task under different conditions: i normal playing conditions, ii playing with auditory masking, and iii playing with vibrotactile masking. Under each condition, 20 violinists evaluated five violins according to criteria related to violin playing and sound characteristics and rated their overall quality and relative preference. Results show that both auditory and vibrotactile feedback are important in the violinists' evaluations but that their relative importance depends on the violinist, the violin and the type of evaluation (different criteria ratings or preference. In this way, the overall quality ratings were found to be accurately predicted by the rating criteria, which also proved to be perceptually relevant to violinists, but were poorly correlated with the preference ratings; this suggests that the two types of ratings (overall quality vs preference may stem from different decision-making strategies. Furthermore, the experimental design confirmed that violinists agree more on the importance of criteria in their overall evaluation than on their actual ratings for different violins. In particular, greater agreement was found on the importance of criteria related to the sound of the violin. Nevertheless, this study reveals that there are fundamental differences in the way players interpret and evaluate each criterion, which may explain why correlating physical properties with perceptual properties has been challenging so far in the field of musical acoustics.

  9. The impact of positive, negative and topical relevance feedback

    NARCIS (Netherlands)

    Kaptein, Rianne; Kamps, Jaap; Hiemstra, Djoerd

    2008-01-01

    This document contains a description of experiments for the 2008 Relevance Feedback track. We experiment with different amounts of feedback, including negative relevance feedback. Feedback is implemented using massive weighted query expansion. Parsimonious query expansion using only relevant

  10. Experiments with positive, negative and topical relevance feedback

    NARCIS (Netherlands)

    Kaptein, R.; Kamps, J.; Li, R.; Hiemstra, D.

    2008-01-01

    This document contains a description of experiments for the 2008 Relevance Feedback track. We experiment with different amounts of feedback, including negative relevance feedback. Feedback is implemented using massive weighted query expansion. Parsimonious query expansion using Dirichlet smoothing

  11. The impact of positive, negative and topical relevance feedback

    NARCIS (Netherlands)

    Kaptein, R.; Kamps, J.; Hiemstra, D.; Voorhees, E.M.; Buckland, L.P.

    2009-01-01

    This document contains a description of experiments for the 2008 Relevance Feedback track. We experiment with different amounts of feedback, including negative relevance feedback. Feedback is implemented using massive weighted query expansion. Parsimonious query expansion using only relevant

  12. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...

  13. Feedback and Incentives:

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedba...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work.......This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedback....... The pay schemes are a piece rate payment scheme and a winner-takes-all tournament. We find that, regardless of the pay scheme used, feedback does not improve performance. There are no significant peer effects in the piece-rate pay scheme. In contrast, in the tournament scheme we find some evidence...

  14. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  15. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  16. The ironies of vehicle feedback in car design.

    Science.gov (United States)

    Walker, Guy H; Stanton, Neville A; Young, Mark S

    2006-02-10

    Car drivers show an acute sensitivity towards vehicle feedback, with most normal drivers able to detect 'the difference in vehicle feel of a medium-size saloon car with and without a fairly heavy passenger in the rear seat' (Joy and Hartley 1953-54). The irony is that this level of sensitivity stands in contrast to the significant changes in vehicle 'feel' accompanying modern trends in automotive design, such as drive-by-wire and increased automation. The aim of this paper is to move the debate from the anecdotal to the scientific level. This is achieved by using the Brunel University driving simulator to replicate some of these trends and changes by presenting (or removing) different forms of non-visual vehicle feedback, and measuring resultant driver situational awareness (SA) using a probe-recall method. The findings confirm that vehicle feedback plays a key role in coupling the driver to the dynamics of their environment (Moray 2004), with the role of auditory feedback particularly prominent. As a contrast, drivers in the study also rated their self-perceived levels of SA and a concerning dissociation occurred between the two sets of results. Despite the large changes in vehicle feedback presented in the simulator, and the measured changes in SA, drivers appeared to have little self-awareness of these changes. Most worryingly, drivers demonstrated little awareness of diminished SA. The issues surrounding vehicle feedback are therefore similar to the classic problems and ironies studied in aviation and automation, and highlight the role that ergonomics can also play within the domain of contemporary vehicle design.

  17. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels

    Directory of Open Access Journals (Sweden)

    Fabian Steinberg

    2016-01-01

    Full Text Available Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals’ skill level, a factor that might be considered in mirror therapy research.

  19. Feedback som tredjeordensiagttagelse

    Directory of Open Access Journals (Sweden)

    Ane Qvortrup

    2013-09-01

    Full Text Available Feedback tilskrives stor betydning for læring, men trods intensiv forskning på området synes det svært at fange, hvori feedbacks særlige potentiale består. I forsøgene på at gøre dette knyttes an til en række faktorer eller parametre, der fremhæves som centrale. En af disse faktorer er tid, hvor der kredses om forskellen mellem umiddelbar og forsinket feedback samt om fordele og ulemper ved hver af de to. I denne artikel knyttes der an til en forståelse af feedback som tredjeordensiagttagelse, og der sættes herfra fokus på, hvordan man i en praktisk undervisningssituation kan imødekomme tidsfaktoren knyttet til feedback. Med udgangspunkt i et undervisningsforløb på bachelorniveau, hvor der er arbejdet systematisk med feedback understøttet af Wikis, belyses det, hvordan et sådant arbejde synes at have potentiale for understøttelse af såvel læring som undervisning. En sådan teoretisk reflekteret belysning kan udgøre et refleksionsprogram for fremtidig planlægning af og løbende refleksion over undervisning.     The article investigates the effect of feedback on learning. Feedback has been shown to be one of the most powerful influences on achievement in education. But, in spite of much research on the matter, there is no agreement on how the special potential of feedback can be described, and consequently no agreement on what is good and bad feedback. This article sets out to rectify this omission by seeking a new theoretical framework that is sensitive to the complexity of the impact of feedback. The author propose a system theoretical frame and through its use identifies significant didactical issues. Although feedback is described as an internal, system-relative construction, when seen through a system theoretical lens different teaching environments create diverse conditions for feedback constructions. The final section of the paper explores this idea in relation to wikis.

  20. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  1. Capture, transfer, and feedback of patient-centered outcomes data in palliative care populations: does it make a difference? A systematic review.

    Science.gov (United States)

    Etkind, Simon Noah; Daveson, Barbara A; Kwok, Wingfai; Witt, Jana; Bausewein, Claudia; Higginson, Irene J; Murtagh, Fliss E M

    2015-03-01

    Patient-centered outcome measures (PCOMs) are an important way of promoting patient-professional communication. However, evidence regarding their implementation in palliative care is limited, as is evidence of the impact on care quality and outcomes. The aim was to systematically review evidence on capture and feedback of PCOMs in palliative care populations and determine the effects on processes and outcomes of care. We searched Medline, Embase, CINAHL, BNI, PsycINFO, and gray literature from 1985 to October 2013 for peer-reviewed articles focusing on collection, transfer, and feedback of PCOMs in palliative care populations. Two researchers independently reviewed all included articles. Review articles, feasibility studies, and those not measuring PCOMs in clinical practice were excluded. We quality assessed articles using modified Edwards criteria and undertook narrative synthesis. One hundred eighty-four articles used 122 different PCOMs in 70,466 patients. Of these, 16 articles corresponding to 13 studies met the full inclusion criteria. Most evidence was from outpatient oncology. There was strong evidence for an impact of PCOMs feedback on processes of care including better symptom recognition, more discussion of quality of life, and increased referrals based on PCOMs reporting. There was evidence of improved emotional and psychological patient outcomes but no effect on overall quality of life or symptom burden. In palliative care populations, PCOMs feedback improves awareness of unmet need and allows professionals to act to address patients' needs. It consequently benefits patients' emotional and psychological quality of life. However, more high-quality evidence is needed in noncancer populations and across a wider range of settings. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  2. The auditory brainstem is a barometer of rapid auditory learning.

    Science.gov (United States)

    Skoe, E; Krizman, J; Spitzer, E; Kraus, N

    2013-07-23

    To capture patterns in the environment, neurons in the auditory brainstem rapidly alter their firing based on the statistical properties of the soundscape. How this neural sensitivity relates to behavior is unclear. We tackled this question by combining neural and behavioral measures of statistical learning, a general-purpose learning mechanism governing many complex behaviors including language acquisition. We recorded complex auditory brainstem responses (cABRs) while human adults implicitly learned to segment patterns embedded in an uninterrupted sound sequence based on their statistical characteristics. The brainstem's sensitivity to statistical structure was measured as the change in the cABR between a patterned and a pseudo-randomized sequence composed from the same set of sounds but differing in their sound-to-sound probabilities. Using this methodology, we provide the first demonstration that behavioral-indices of rapid learning relate to individual differences in brainstem physiology. We found that neural sensitivity to statistical structure manifested along a continuum, from adaptation to enhancement, where cABR enhancement (patterned>pseudo-random) tracked with greater rapid statistical learning than adaptation. Short- and long-term auditory experiences (days to years) are known to promote brainstem plasticity and here we provide a conceptual advance by showing that the brainstem is also integral to rapid learning occurring over minutes. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Subdivisions of the auditory midbrain (n. mesencephalicus lateralis, pars dorsalis in zebra finches using calcium-binding protein immunocytochemistry.

    Directory of Open Access Journals (Sweden)

    Priscilla Logerot

    Full Text Available The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I and outer (MLd.O. MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches.

  5. The plastic ear and perceptual relearning in auditory spatial perception.

    Directory of Open Access Journals (Sweden)

    Simon eCarlile

    2014-08-01

    Full Text Available The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear moulds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localisation, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear moulds or through virtual auditory space stimulation using non-individualised spectral cues. The work with ear moulds demonstrates that a relatively short period of training involving sensory-motor feedback (5 – 10 days significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide a spatial code but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  6. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  7. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  8. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  9. A different outlook on time: visual and auditory month names elicit different mental vantage points for a time-space synaesthete.

    Science.gov (United States)

    Jarick, Michelle; Dixon, Mike J; Stewart, Mark T; Maxwell, Emily C; Smilek, Daniel

    2009-01-01

    Synaesthesia is a fascinating condition whereby individuals report extraordinary experiences when presented with ordinary stimuli. Here we examined an individual (L) who experiences time units (i.e., months of the year and hours of the day) as occupying specific spatial locations (January is 30 degrees to the left of midline). This form of time-space synaesthesia has been recently investigated by Smilek et al. (2007) who demonstrated that synaesthetic time-space associations are highly consistent, occur regardless of intention, and can direct spatial attention. We extended this work by showing that for the synaesthete L, her time-space vantage point changes depending on whether the time units are seen or heard. For example, when L sees the word JANUARY, she reports experiencing January on her left side, however when she hears the word "January" she experiences the month on her right side. L's subjective reports were validated using a spatial cueing paradigm. The names of months were centrally presented followed by targets on the left or right. L was faster at detecting targets in validly cued locations relative to invalidly cued locations both for visually presented cues (January orients attention to the left) and for aurally presented cues (January orients attention to the right). We replicated this difference in visual and aural cueing effects using hour of the day. Our findings support previous research showing that time-space synaesthesia can bias visual spatial attention, and further suggest that for this synaesthete, time-space associations differ depending on whether they are visually or aurally induced.

  10. Duration reproduction with sensory feedback delay: Differential involvement of perception and action time

    Directory of Open Access Journals (Sweden)

    Stephanie eGanzenmüller

    2012-10-01

    Full Text Available Previous research has shown that voluntary action can attract subsequent, delayed feedback events towards the action, and adaptation to the sensorimotor delay can even reverse motor-sensory temporal-order judgments. However, whether and how sensorimotor delay affects duration reproduction is still unclear. To investigate this, we injected an onset- or offset-delay to the sensory feedback signal from a duration reproduction task. We compared duration reproductions within (visual, auditory modality and across audiovisual modalities with feedback signal onset- and offset-delay manipulations. We found that the reproduced duration was lengthened in both visual and auditory feedback signal onset-delay conditions. The lengthening effect was evident immediately, on the first trial with the onset delay. However, when the onset of the feedback signal was prior to the action, the lengthening effect was diminished. In contrast, a shortening effect was found with feedback signal offset-delay, though the effect was weaker and manifested only in the auditory offset-delay condition. These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction. Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration was independent of the delay manipulation.

  11. Serotonin transporter gene polymorphisms and auditory hallucinations in psychosis.

    Science.gov (United States)

    Rivero, Olga; Sanjuan, Julio; Aguilar, Eduardo Jesús; Gonzalez, José Carlos; Molto, María Dolores; de Frutos, Rosa; Najera, Carmen

    2010-03-16

    To study the role of the serotonin transporter gene (SLC6A4) in the emotional processing of auditory hallucinations can be particularly important to better understand the pathophysiology of auditory hallucinations. Moreover, a poly-morphism located in this gene (5-HTTLPR) has been previously associated with different disorders related to altered emotional responses. The aim of this study was to evaluate the relationship between different polymorphisms of the SLC6A4 gene and different aspects of auditory hallucinations in schizophrenic patients, with a special consideration toward the emotional response to auditory hallucinations. Two samples of 224 patients with auditory hallucinations and 346 healthy subjects were studied. AH were assessed in patients through the PSYRATS scale for auditory hallucinations. Several polymorphisms located within the SLC6A4 gene were analysed through case-control comparisons as well as association analyses with different parameters of auditory hallucinations. No differences were found between patients and controls for any of the analysed polymorphisms (p > 0.05). However, the evaluation of auditory hallucinations parameters showed that the low expressing alleles of the 5-HTTLPR polymorphism were associated with higher levels of intensity of the distress caused by auditory hallucinations (p = 0.049 corrected for the item 'intensity of distress'). There was also a trend with the parameter disruption (p = 0.06 corrected). These two items of the PSYRATS scale are directly related to the emotional dimension of auditory hallucinations. In contrast, we did not observe any association with items related to other dimensions of auditory hallucinations. Our results support a possible role of the serotonin transporter in the emotional response to auditory hallucinations.

  12. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    Science.gov (United States)

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  13. Attention modulates cortical processing of pitch feedback errors in voice control.

    Science.gov (United States)

    Hu, Huijing; Liu, Ying; Guo, Zhiqiang; Li, Weifeng; Liu, Peng; Chen, Shaozhen; Liu, Hanjun

    2015-01-15

    Considerable evidence has shown that unexpected alterations in auditory feedback elicit fast compensatory adjustments in vocal production. Although generally thought to be involuntary in nature, whether these adjustments can be influenced by attention remains unknown. The present event-related potential (ERP) study aimed to examine whether neurobehavioral processing of auditory-vocal integration can be affected by attention. While sustaining a vowel phonation and hearing pitch-shifted feedback, participants were required to either ignore the pitch perturbations, or attend to them with low (counting the number of perturbations) or high attentional load (counting the type of perturbations). Behavioral results revealed no systematic change of vocal response to pitch perturbations irrespective of whether they were attended or not. At the level of cortex, there was an enhancement of P2 response to attended pitch perturbations in the low-load condition as compared to when they were ignored. In the high-load condition, however, P2 response did not differ from that in the ignored condition. These findings provide the first neurophysiological evidence that auditory-motor integration in voice control can be modulated as a function of attention at the level of cortex. Furthermore, this modulatory effect does not lead to a general enhancement but is subject to attentional load.

  14. Positive feedback promotes oscillations in negative feedback loops.

    Science.gov (United States)

    Ananthasubramaniam, Bharath; Herzel, Hanspeter

    2014-01-01

    A simple three-component negative feedback loop is a recurring motif in biochemical oscillators. This motif oscillates as it has the three necessary ingredients for oscillations: a three-step delay, negative feedback, and nonlinearity in the loop. However, to oscillate, this motif under the common Goodwin formulation requires a high degree of cooperativity (a measure of nonlinearity) in the feedback that is biologically "unlikely." Moreover, this recurring negative feedback motif is commonly observed augmented by positive feedback interactions. Here we show that these positive feedback interactions promote oscillation at lower degrees of cooperativity, and we can thus unify several common kinetic mechanisms that facilitate oscillations, such as self-activation and Michaelis-Menten degradation. The positive feedback loops are most beneficial when acting on the shortest lived component, where they function by balancing the lifetimes of the different components. The benefits of multiple positive feedback interactions are cumulative for a majority of situations considered, when benefits are measured by the reduction in the cooperativity required to oscillate. These positive feedback motifs also allow oscillations with longer periods than that determined by the lifetimes of the components alone. We can therefore conjecture that these positive feedback loops have evolved to facilitate oscillations at lower, kinetically achievable, degrees of cooperativity. Finally, we discuss the implications of our conclusions on the mammalian molecular clock, a system modeled extensively based on the three-component negative feedback loop.

  15. Inter-comparison of two land-surface models applied at different scales and their feedbacks while coupled with a regional climate model

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2012-03-01

    Full Text Available Downstream models are often used in order to study regional impacts of climate and climate change on the land surface. For this purpose, they are usually driven offline (i.e., 1-way with results from regional climate models (RCMs. However, the offline approach does not allow for feedbacks between these models. Thereby, the land surface of the downstream model is usually completely different to the land surface which is used within the RCM. Thus, this study aims at investigating the inconsistencies that arise when driving a downstream model offline instead of interactively coupled with the RCM, due to different feedbacks from the use of different land surface models (LSM. Therefore, two physically based LSMs which developed from different disciplinary backgrounds are compared in our study: while the NOAH-LSM was developed for the use within RCMs, PROMET was originally developed to answer hydrological questions on the local to regional scale. Thereby, the models use different physical formulations on different spatial scales and different parameterizations of the same land surface processes that lead to inconsistencies when driving PROMET offline with RCM output. Processes that contribute to these inconsistencies are, as described in this study, net radiation due to land use related albedo and emissivity differences, the redistribution of this net radiation over sensible and latent heat, for example, due to different assumptions about land use impermeability or soil hydraulic reasons caused by different plant and soil parameterizations. As a result, simulated evapotranspiration, e.g., shows considerable differences of max. 280 mm yr−1. For a full interactive coupling (i.e., 2-way between PROMET and the atmospheric part of the RCM, PROMET returns the land surface energy fluxes to the RCM and, thus, provides the lower boundary conditions for the RCM subsequently. Accordingly, the RCM responses to the replacement of the LSM with overall

  16. Haptic force-feedback devices for the office computer: performance and musculoskeletal loading issues.

    Science.gov (United States)

    Dennerlein, J T; Yang, M C

    2001-01-01

    Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.

  17. Aktiverende Undervisning i auditorier

    DEFF Research Database (Denmark)

    Parus, Judith

    Workshop om erfaringer og brug af aktiverende metoder i undervisning i auditorier og på store hold. Hvilke metoder har fungeret godt og hvilke dårligt ? Hvilke overvejelser skal man gøre sig.......Workshop om erfaringer og brug af aktiverende metoder i undervisning i auditorier og på store hold. Hvilke metoder har fungeret godt og hvilke dårligt ? Hvilke overvejelser skal man gøre sig....

  18. Auditory comprehension: from the voice up to the single word level

    OpenAIRE

    Jones, Anna Barbara

    2016-01-01

    Auditory comprehension, the ability to understand spoken language, consists of a number of different auditory processing skills. In the five studies presented in this thesis I investigated both intact and impaired auditory comprehension at different levels: voice versus phoneme perception, as well as single word auditory comprehension in terms of phonemic and semantic content. In the first study, using sounds from different continua of ‘male’-/pæ/ to ‘female’-/tæ/ and ‘male’...

  19. Postural effects of the scaled display of visual foot center of pressure feedback under different somatosensory conditions at the foot and the ankle.

    Science.gov (United States)

    Vuillerme, Nicolas; Bertrand, Romain; Pinsault, Nicolas

    2008-10-01

    To assess the effects of the scaled display of visual foot center of pressure (COP) feedback on upright postural control under different somatosensory conditions at the foot and the ankle. Before and after intervention trials. University medical bioengineering laboratory. Young healthy adults (N=8; mean age, 23+/-2.5 y; mean body weight, 76.8+/-11.2 kg; mean height, 179.8+/-6.8 cm). Participants were asked to stand upright, as immobile as possible, in 3 visual conditions: a stationary cross feedback (SC-FB) condition and 2 different foot COP feedback (COP-FB) conditions involving increasing scale displays of 2:1 (COP-FB2) and of 10:1 (COP-FB10). These latter conditions correspond to the ratio between the COP displacement on the screen and the actual COP displacement measured by the force platform. This postural task was executed on 2 (firm, foam) support surface conditions. In the foam condition, a 2-cm thick foam support surface was placed under the participants' feet to alter the quality and/or quantity of somatosensory information at the foot and the ankle. COP displacements were recorded using a force platform. In the firm support surface condition, no significant difference was observed between the COP-FB2 and the SC-FB conditions, whereas the COP-FB10 condition yielded decreased COP displacements relative to the SC-FB condition. In the foam support surface condition, both the COP-FB2 and the COP-FB10 conditions yielded decreased COP displacements relative to the SC-FB condition, with a greater stabilizing effect in the COP-FB10 than COP-FB2 condition. The postural effects of the scale display of visual COP feedback differed depending on the somatosensory conditions at the foot and the ankle. These findings suggest that increased reliance on augmented sensory information for controlling upright posture in conditions of altered somatosensory input from the foot and ankle could have implications in clinical and rehabilitative areas.

  20. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  1. Auditory recognition memory is inferior to visual recognition memory.

    Science.gov (United States)

    Cohen, Michael A; Horowitz, Todd S; Wolfe, Jeremy M

    2009-04-07

    Visual memory for scenes is surprisingly robust. We wished to examine whether an analogous ability exists in the auditory domain. Participants listened to a variety of sound clips and were tested on their ability to distinguish old from new clips. Stimuli ranged from complex auditory scenes (e.g., talking in a pool hall) to isolated auditory objects (e.g., a dog barking) to music. In some conditions, additional information was provided to help participants with encoding. In every situation, however, auditory memory proved to be systematically inferior to visual memory. This suggests that there exists either a fundamental difference between auditory and visual stimuli, or, more plausibly, an asymmetry between auditory and visual processing.

  2. Auditory and visual memory in musicians and nonmusicians.

    Science.gov (United States)

    Cohen, Michael A; Evans, Karla K; Horowitz, Todd S; Wolfe, Jeremy M

    2011-06-01

    Numerous studies have shown that musicians outperform nonmusicians on a variety of tasks. Here we provide the first evidence that musicians have superior auditory recognition memory for both musical and nonmusical stimuli, compared to nonmusicians. However, this advantage did not generalize to the visual domain. Previously, we showed that auditory recognition memory is inferior to visual recognition memory. Would this be true even for trained musicians? We compared auditory and visual memory in musicians and nonmusicians using familiar music, spoken English, and visual objects. For both groups, memory for the auditory stimuli was inferior to memory for the visual objects. Thus, although considerable musical training is associated with better musical and nonmusical auditory memory, it does not increase the ability to remember sounds to the levels found with visual stimuli. This suggests a fundamental capacity difference between auditory and visual recognition memory, with a persistent advantage for the visual domain.

  3. Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells.

    Science.gov (United States)

    Soares, Heloisa P; Ni, Yang; Kisfalvi, Krisztina; Sinnett-Smith, James; Rozengurt, Enrique

    2013-01-01

    The mTOR pathway is aberrantly stimulated in many cancer cells, including pancreatic ductal adenocarcinoma (PDAC), and thus it is a potential target for therapy. However, the mTORC1/S6K axis also mediates negative feedback loops that attenuate signaling via insulin/IGF receptor and other tyrosine kinase receptors. Suppression of these feed-back loops unleashes over-activation of upstream pathways that potentially counterbalance the antiproliferative effects of mTOR inhibitors. Here, we demonstrate that treatment of PANC-1 or MiaPaCa-2 pancreatic cancer cells with either rapamycin or active-site mTOR inhibitors suppressed S6K and S6 phosphorylation induced by insulin and the GPCR agonist neurotensin. Rapamycin caused a striking increase in Akt phosphorylation at Ser(473) while the active-site inhibitors of mTOR (KU63794 and PP242) completely abrogated Akt phosphorylation at this site. Conversely, active-site inhibitors of mTOR cause a marked increase in ERK activation whereas rapamycin did not have any stimulatory effect on ERK activation. The results imply that first and second generation of mTOR inhibitors promote over-activation of different pro-oncogenic pathways in PDAC cells, suggesting that suppression of feed-back loops should be a major consideration in the use of these inhibitors for PDAC therapy. In contrast, metformin abolished mTORC1 activation without over-stimulating Akt phosphorylation on Ser(473) and prevented mitogen-stimulated ERK activation in PDAC cells. Metformin induced a more pronounced inhibition of proliferation than either KU63794 or rapamycin while, the active-site mTOR inhibitor was more effective than rapamycin. Thus, the effects of metformin on Akt and ERK activation are strikingly different from allosteric or active-site mTOR inhibitors in PDAC cells, though all these agents potently inhibited the mTORC1/S6K axis.

  4. Effects of tailoring ingredients in auditory persuasive health messages on fruit and vegetable intake.

    Science.gov (United States)

    Elbert, Sarah P; Dijkstra, Arie; Rozema, Andrea D

    2017-07-01

    Health messages can be tailored by applying different tailoring ingredients, among which personalisation, feedback and adaptation. This experiment investigated the separate effects of these tailoring ingredients on behaviour in auditory health persuasion. Furthermore, the moderating effect of self-efficacy was assessed. The between-participants design consisted of four conditions. A generic health message served as a control condition; personalisation was applied using the recipient's first name, feedback was given on the personal state, or the message was adapted to the recipient's value. The study consisted of a pre-test questionnaire (measuring fruit and vegetable intake and perceived difficulty of performing these behaviours, indicating self-efficacy), exposure to the auditory message and a follow-up questionnaire measuring fruit and vegetable intake two weeks after message exposure (n = 112). ANCOVAs showed no main effect of condition on either fruit or vegetable intake, but a moderation was found on vegetable intake: When self-efficacy was low, vegetable intake was higher after listening to the personalisation message. No significant differences between the conditions were found when self-efficacy was high. Individuals with low self-efficacy seemed to benefit from incorporating personalisation, but only regarding vegetable consumption. This finding warrants further investigation in tailoring research.

  5. Instrument specific brain activation in sensorimotor and auditory representation in musicians.

    Science.gov (United States)

    Gebel, B; Braun, Ch; Kaza, E; Altenmüller, E; Lotze, M

    2013-07-01

    Musicians show a remarkable ability to interconnect motor patterns and sensory processing in the somatosensory and auditory domains. Many of these processes are specific for the instrument used. We were interested in the cerebral and cerebellar representations of these instrument-specific changes and therefore applied functional magnetic resonance imaging (fMRI) in two groups of instrumentalists with different instrumental training for comparable periods (approximately 15 years). The first group (trumpet players) uses tight finger and lip interaction; the second (pianists as control group) uses only the extremities for performance. fMRI tasks were balanced for instructions (piano and trumpet notes), sensory feedback (keypad and trumpet), and hand-lip interaction on the trumpet. During fMRI, both groups switched between different devices (trumpet or keypad) and performance was combined with or without auditory feedback. Playing the trumpet without any tone emission or using the mouthpiece showed an instrument training-specific activation increase in trumpet players. This was evident for the posterior-superior cerebellar hemisphere, the dominant primary sensorimotor cortex, and the left Heschl's gyrus. Additionally, trumpet players showed increased activity in the bilateral Heschl's gyrus during actual trumpet playing, although they showed significantly decreased loudness while playing with the mouthpiece in the scanner compared to pianists. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Auditory brainstem implant program development.

    Science.gov (United States)

    Schwartz, Marc S; Wilkinson, Eric P

    2017-08-01

    Auditory brainstem implants (ABIs), which have previously been used to restore auditory perception to deaf patients with neurofibromatosis type 2 (NF2), are now being utilized in other situations, including treatment of congenitally deaf children with cochlear malformations or cochlear nerve deficiencies. Concurrent with this expansion of indications, the number of centers placing and expressing interest in placing ABIs has proliferated. Because ABI placement involves posterior fossa craniotomy in order to access the site of implantation on the cochlear nucleus complex of the brainstem and is not without significant risk, we aim to highlight issues important in developing and maintaining successful ABI programs that would be in the best interests of patients. Especially with pediatric patients, the ultimate benefits of implantation will be known only after years of growth and development. These benefits have yet to be fully elucidated and continue to be an area of controversy. The limited number of publications in this area were reviewed. Review of the current literature was performed. Disease processes, risk/benefit analyses, degrees of evidence, and U.S. Food and Drug Administration approvals differ among various categories of patients in whom auditory brainstem implantation could be considered for use. We suggest sets of criteria necessary for the development of successful and sustaining ABI programs, including programs for NF2 patients, postlingually deafened adult nonneurofibromatosis type 2 patients, and congenitally deaf pediatric patients. Laryngoscope, 127:1909-1915, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  7. The effect of force feedback on student reasoning about gravity, mass, force and motion

    Science.gov (United States)

    Bussell, Linda

    The purpose of this study was to examine whether force feedback within a computer simulation had an effect on reasoning by fifth grade students about gravity, mass, force, and motion, concepts which can be difficult for learners to grasp. Few studies have been done on cognitive learning and haptic feedback, particularly with young learners, but there is an extensive base of literature on children's conceptions of science and a number of studies focus specifically on children's conceptions of force and motion. This case study used a computer-based paddleball simulation with guided inquiry as the primary stimulus. Within the simulation, the learner could adjust the mass of the ball and the gravitational force. The experimental group used the simulation with visual and force feedback; the control group used the simulation with visual feedback but without force feedback. The proposition was that there would be differences in reasoning between the experimental and control groups, with force feedback being helpful with concepts that are more obvious when felt. Participants were 34 fifth-grade students from three schools. Students completed a modal (visual, auditory, and haptic) learning preference assessment and a pretest. The sessions, including participant experimentation and interviews, were audio recorded and observed. The interviews were followed by a written posttest. These data were analyzed to determine whether there were differences based on treatment, learning style, demographics, prior gaming experience, force feedback experience, or prior knowledge. Work with the simulation, regardless of group, was found to increase students' understanding of key concepts. The experimental group appeared to benefit from the supplementary help that force feedback provided. Those in the experimental group scored higher on the posttest than those in the control group. The greatest difference between mean group scores was on a question concerning the effects of increased

  8. The Effect of Performance Feedback on Student Help-Seeking and Learning Strategy Use: Do Clickers Make a Difference?

    Directory of Open Access Journals (Sweden)

    Tom Haffie

    2010-06-01

    Full Text Available Two studies were performed to investigate the impact of students’ clicker performance feedback on their help-seeking behaviour and use of other learning strategies. In study 1, we investigated the relationship between students’ clicker performance, self-efficacy, help-seeking behavior, and academic achievement. We found that there was a significant positive correlation between their clicker performance and their course grades, and help-seeking behavior was negatively and significantly related to clicker and course performance but only for participants with high self-efficacy. In study 2, we expanded our focus to determine if participants modified a number of learning strategies as a result of receiving clicker performance feedback as well as attempting to replicate the clicker-course performance relationship found in study 1. Although participants reported an increase in their use of various learning strategies as a result of using the clickers, changes in learning strategy use was not significantly related to clicker or term test performance. The relationship between clicker and course performance was replicated. The results suggest that clicker-based feedback alone may not be sufficient to lead to a successful change in learning strategy use and that students may need more specific instruction on self-regulation and effective learning strategy use in order to improve their learning.Deux études ont évalué l’impact de la rétroaction sur la performance des étudiants indiquée par télévoteur sur leur comportement de recherche d’aide et sur les autres stratégies d’apprentissage utilisées. Dans la première étude, les chercheurs se sont penchés sur la relation entre la performance indiquée par télévoteur, le sentiment d’auto-efficacité, la recherche d’aide et la réussite scolaire. Nous avons trouvé une corrélation positive significative entre la performance indiquée par télévoteur et les notes de cours. De plus

  9. Auditory hallucinations induced by trazodone

    Science.gov (United States)

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  10. Analysis of different categories of feedback in two organizational ways in gymnastics Análisis de diferentes categorías del feedback en dos formas organizativas del medio gimnástico.

    Directory of Open Access Journals (Sweden)

    J. López Bedoya

    2010-09-01

    Full Text Available

    The objetive of this study is to evaluate the relation of two organizational methods of learning and performance of one gymnastic skill and their influence in some categories of feedback. 35 subjets of both sexes, 10 and 12 years old, were tested. The results showed the importance of a continuous and circular organizational method based on mini-circuits, since it promotes both individual and prescriptive feedback, important ingredients for an efficient training.
    KEY WORDS: gymnastics, learning, feedback.

    El objetivo de este trabajo es estudiar la posible relación de dos formas organizativas diferentes en el aprendizaje y rendimiento de una habilidad gimnástica y su influencia en diversas categorías del feedback. 35 sujetos de ambos sexos, de 10 a 12 años fueron testeados. Los resultados mostraron la importancia de una forma organizativa continua y circular basada en los mini-circuitos, ya que potencia los tipos de feedbacks individuales y prescriptivos, ingredientes claves para una enseñanza eficaz.

    PALABRAS CLAVE: gimnasia, aprendizaje, feedback.

  11. Efficacy of auditory training in elderly subjects

    Directory of Open Access Journals (Sweden)

    Aline Albuquerque Morais

    2015-05-01

    Full Text Available Auditory training (AT  has been used for auditory rehabilitation in elderly individuals and is an effective tool for optimizing speech processing in this population. However, it is necessary to distinguish training-related improvements from placebo and test-retest effects. Thus, we investigated the efficacy of short-term auditory training (acoustically controlled auditory training - ACAT in elderly subjects through behavioral measures and P300. Sixteen elderly individuals with APD received an initial evaluation (evaluation 1 - E1 consisting of behavioral and electrophysiological tests (P300 evoked by tone burst and speech sounds to evaluate their auditory processing. The individuals were divided into two groups. The Active Control Group [ACG (n=8] underwent placebo training. The Passive Control Group [PCG (n=8] did not receive any intervention. After 12 weeks, the subjects were  revaluated (evaluation 2 - E2. Then, all of the subjects underwent ACAT. Following another 12 weeks (8 training sessions, they underwent the final evaluation (evaluation 3 – E3. There was no significant difference between E1 and E2 in the behavioral test [F(9.6=0,.6 p=0.92, λ de Wilks=0.65] or P300 [F(8.7=2.11, p=0.17, λ de Wilks=0.29] (discarding the presence of placebo effects and test-retest. A significant improvement was observed between the pre- and post-ACAT conditions (E2 and E3 for all auditory skills according to the behavioral methods [F(4.27=0.18, p=0.94, λ de Wilks=0.97]. However, the same result was not observed for P300 in any condition. There was no significant difference between P300 stimuli. The ACAT improved the behavioral performance of the elderly for all auditory skills and was an effective method for hearing rehabilitation.

  12. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Neural Encoding of Auditory Features during Music Perception and Imagery.

    Science.gov (United States)

    Martin, Stephanie; Mikutta, Christian; Leonard, Matthew K; Hungate, Dylan; Koelsch, Stefan; Shamma, Shihab; Chang, Edward F; Millán, José Del R; Knight, Robert T; Pasley, Brian N

    2017-10-27

    Despite many behavioral and neuroimaging investigations, it remains unclear how the human cortex represents spectrotemporal sound features during auditory imagery, and how this representation compares to auditory perception. To assess this, we recorded electrocorticographic signals from an epileptic patient with proficient music ability in 2 conditions. First, the participant played 2 piano pieces on an electronic piano with the sound volume of the digital keyboard on. Second, the participant replayed the same piano pieces, but without auditory feedback, and the participant was asked to imagine hearing the music in his mind. In both conditions, the sound output of the keyboard was recorded, thus allowing precise time-locking between the neural activity and the spectrotemporal content of the music imagery. This novel task design provided a unique opportunity to apply receptive field modeling techniques to quantitatively study neural encoding during auditory mental imagery. In both conditions, we built encoding models to predict high gamma neural activity (70-150 Hz) from the spectrogram representation of the recorded sound. We found robust spectrotemporal receptive fields during auditory imagery with substantial, but not complete overlap in frequency tuning and cortical location compared to receptive fields measured during auditory perception. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Auditory white noise reduces postural fluctuations even in the absence of vision.

    Science.gov (United States)

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2015-08-01

    The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory noise should lead to increased feedback about sensory frames of reference used in balance control. In the present experiment, postural sway was analyzed in healthy young adults where they were presented with continuous white noise, in the presence and absence of visual information. Our results show reduced postural sway variability (as indexed by the body's center of pressure) in the presence of auditory noise, even when visual information was not present. Nonlinear time series analysis revealed that auditory noise has an additive effect, independent of vision, on postural stability. Further analysis revealed that auditory noise reduced postural sway variability in both low- and high-frequency regimes (> or noise. Our results support the idea that auditory white noise reduces postural sway, suggesting that auditory noise might be used for therapeutic and rehabilitation purposes in older individuals and those with balance disorders.

  15. The Sense of Agency Is More Sensitive to Manipulations of Outcome than Movement-Related Feedback Irrespective of Sensory Modality.

    Directory of Open Access Journals (Sweden)

    Nicole David

    Full Text Available The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement's outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants' finger movements and (i the movement of the virtual hand or (ii the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action.

  16. Octave effect in auditory attention

    National Research Council Canada - National Science Library

    Tobias Borra; Huib Versnel; Chantal Kemner; A. John van Opstal; Raymond van Ee

    2013-01-01

    ... tones. Current auditory models explain this phenomenon by a simple bandpass attention filter. Here, we demonstrate that auditory attention involves multiple pass-bands around octave-related frequencies above and below the cued tone...

  17. Auditory sustained field responses to periodic noise

    Directory of Open Access Journals (Sweden)

    Keceli Sumru

    2012-01-01

    Full Text Available Abstract Background Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. Results Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. Conclusions The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.

  18. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  19. Feedback strategies for wireless communication

    CERN Document Server

    Ozbek, Berna

    2014-01-01

    This book explores the different strategies regarding the feedback information for wireless communication systems. The text analyzes the impact of quantization and correlation of channel state information (CSI) on the system performance. The authors show the effect of the reduced and limited feedback information and gives an overview about the feedback strategies in the standards. This volume presents theoretical analysis as well as practical algorithms for the required feedback information at the base stations to perform adaptive resource allocation efficiently and mitigate interference coming from other cells.

  20. The influence of auditory and visual information on the perception of crispy food

    NARCIS (Netherlands)

    Pocztaruk, R.D.; Abbink, J.H.; Wijk, de R.A.; Frasca, L.C.D.; Gaviao, M.B.D.; Bilt, van de A.

    2011-01-01

    The influence of auditory and/or visual information on the perception of crispy food and on the physiology of chewing was investigated. Participants chewed biscuits of three different levels of crispness under four experimental conditions: no masking, auditory masking, visual masking, and auditory

  1. Predictors of auditory performance in hearing-aid users: The role of cognitive function and auditory lifestyle (A)

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2006-01-01

    of hearing, cognitive skills, and auditory lifestyle in 25 new hearing-aid users. The purpose was to assess the predictive power of the nonauditory measures while looking at the relationships between measures from various auditory-performance domains. The results showed that only moderate correlation exists...... between objective and subjective hearing-aid outcome. Different self-report outcome measures showed a different amount of correlation with objective auditory performance. Cognitive skills were found to play a role in explaining speech performance and spectral and temporal abilities, and auditory lifestyle...... no objective benefit can be measured. It has been suggested that lack of agreement between various hearing-aid outcome components can be explained by individual differences in cognitive function and auditory lifestyle. We measured speech identification, self-report outcome, spectral and temporal resolution...

  2. Anatomical Pathways for Auditory Memory in Primates

    Directory of Open Access Journals (Sweden)

    Monica Munoz-Lopez

    2010-10-01

    Full Text Available Episodic memory or the ability to store context-rich information about everyday events depends on the hippocampal formation (entorhinal cortex, subiculum, presubiculum, parasubiculum, hippocampus proper, and dentate gyrus. A substantial amount of behavioral-lesion and anatomical studies have contributed to our understanding of the organization of how visual stimuli are retained in episodic memory. However, whether auditory memory is organized similarly is still unclear. One hypothesis is that, like the ‘visual ventral stream’ for which the connections of the inferior temporal gyrus with the perirhinal cortex are necessary for visual recognition in monkeys, direct connections between the auditory association areas of the superior temporal gyrus and the hippocampal formation and with the parahippocampal region (temporal pole, perhirinal, and posterior parahippocampal cortices might also underlie recognition memory for sounds. Alternatively, the anatomical organization of memory could be different in audition. This alternative ‘indirect stream’ hypothesis posits that, unlike the visual association cortex, the majority of auditory association cortex makes one or more synapses in intermediate, polymodal areas, where they may integrate information from other sensory modalities, before reaching the medial temporal memory system. This review considers anatomical studies that can support either one or both hypotheses – focusing on anatomical studies on the primate brain that have reported not only direct auditory association connections with medial temporal areas, but, importantly, also possible indirect pathways for auditory information to reach the medial temporal lobe memory system.

  3. Facilitated auditory detection for speech sounds

    Directory of Open Access Journals (Sweden)

    Carine eSignoret

    2011-07-01

    Full Text Available If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo words and complex non phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2 that was followed by a two alternative forced choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo words were better detected than non phonological stimuli (complex sounds, presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non speech processing could not be attributed to energetic differences in the stimuli.

  4. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  5. The Role of Feedback and Differences between Good and Poor Decoders in a Repeated Word Reading Paradigm in First Grade

    Science.gov (United States)

    van Gorp, Karly; Segers, Eliane; Verhoeven, Ludo

    2017-01-01

    The direct, retention, and transfer effects of repeated word and pseudoword reading were studied in a pretest, training, posttest, retention design. First graders (48 good readers, 47 poor readers) read 25 CVC words and 25 CVC pseudowords in ten repeated word reading sessions, preceded and followed by a transfer task with a different set of items.…

  6. fMRI of the auditory system: understanding the neural basis of auditory gestalt.

    Science.gov (United States)

    Di Salle, Francesco; Esposito, Fabrizio; Scarabino, Tommaso; Formisano, Elia; Marciano, Elio; Saulino, Claudio; Cirillo, Sossio; Elefante, Raffaele; Scheffler, Klaus; Seifritz, Erich

    2003-12-01

    Functional magnetic resonance imaging (fMRI) has rapidly become the most widely used imaging method for studying brain functions in humans. This is a result of its extreme flexibility of use and of the astonishingly detailed spatial and temporal information it provides. Nevertheless, until very recently, the study of the auditory system has progressed at a considerably slower pace compared to other functional systems. Several factors have limited fMRI research in the auditory field, including some intrinsic features of auditory functional anatomy and some peculiar interactions between fMRI technique and audition. A well known difficulty arises from the high intensity acoustic noise produced by gradient switching in echo-planar imaging (EPI), as well as in other fMRI sequences more similar to conventional MR sequences. The acoustic noise interacts in an unpredictable way with the experimental stimuli both from a perceptual point of view and in the evoked hemodynamics. To overcome this problem, different approaches have been proposed recently that generally require careful tailoring of the experimental design and the fMRI methodology to the specific requirements posed by the auditory research. The novel methodological approaches can make the fMRI exploration of auditory processing much easier and more reliable, and thus may permit filling the gap with other fields of neuroscience research. As a result, some fundamental neural underpinnings of audition are being clarified, and the way sound stimuli are integrated in the auditory gestalt are beginning to be understood.

  7. Effects of multitasking on operator performance using computational and auditory tasks.

    Science.gov (United States)

    Fasanya, Bankole K

    2016-09-01

    This study investigated the effects of multiple cognitive tasks on human performance. Twenty-four students at North Carolina A&T State University participated in the study. The primary task was auditory signal change perception and the secondary task was a computational task. Results showed that participants' performance in a single task was statistically significantly different from their performance in combined tasks: (a) algebra problems (algebra problem primary and auditory perception secondary); (b) auditory perception tasks (auditory perception primary and algebra problems secondary); and (c) mean false-alarm score in auditory perception (auditory detection primary and algebra problems secondary). Using signal detection theory (SDT), participants' performance measured in terms of sensitivity was calculated as -0.54 for combined tasks (algebra problems the primary task) and -0.53 auditory perceptions the primary task. During auditory perception tasks alone, SDT was found to be 2.51. Performance was 83% in a single task compared to 17% when combined tasks.

  8. Seasonal contributions to climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Colman, R. [Bureau of Meteorology Research Centre, GPO Box 1289K, Melbourne, VIC (Australia)

    2003-05-01

    Heading Abstract. This study addresses the question: how do the contributions to feedbacks in a climate model vary over the seasonal cycle? To answer this the feedbacks are evaluated from an equilibrium doubled CO{sub 2} experiment performed using the Bureau of Meteorology Research Centre (BMRC) General Circulation Model. Monthly means of the top-of-atmosphere radiative perturbations (which together comprise the annual climate feedbacks) are extracted to produce a mean annual cycle. It is found that the radiative contributions to the total longwave (LW) feedback are fairly constant throughout the year. Those to the total shortwave (SW) feedback, on the other hand, vary by a factor of three, from a maximum in July to a minimum in November. Of the LW feedbacks, contributions to the lapse rate shows greatest seasonal variation, while those to water vapour and cloud feedbacks vary by relatively small amounts throughout the year. Contributions to the lapse rate feedback as a function of surface type and latitude reveal conflicting positive and negative radiative perturbations, which vary most strongly at high latitudes. Of the SW feedbacks, contributions to both albedo and cloud show large seasonal variations. Radiative perturbations contributing to albedo feedback vary in strength with snow and sea-ice retreat which occurs at different latitudes and in different months. They are shown to be highly sensitive to the amount of incident solar radiation in a given month. SW radiative perturbations due to cloud changes vary in sign between opposite seasons. Contributions to the seasonal variations of the cloud component feedbacks, which make up the total cloud feedback, are also examined. In the LW, the feedback is dominated by the total cloud water term. Radiative perturbations due to this component show relatively little variation throughout the year. In the SW, the main source of seasonal variation occurs for contributions to the cloud amount feedback: radiative

  9. Modelling auditory attention.

    Science.gov (United States)

    Kaya, Emine Merve; Elhilali, Mounya

    2017-02-19

    Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information-a phenomenon referred to as the 'cocktail party problem'. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by 'bottom-up' sensory-driven factors, as well as 'top-down' task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  10. Auditory Channel Problems.

    Science.gov (United States)

    Mann, Philip H.; Suiter, Patricia A.

    This teacher's guide contains a list of general auditory problem areas where students have the following problems: (a) inability to find or identify source of sound; (b) difficulty in discriminating sounds of words and letters; (c) difficulty with reproducing pitch, rhythm, and melody; (d) difficulty in selecting important from unimportant sounds;…

  11. Reduced auditory segmentation potentials in first-episode schizophrenia.

    Science.gov (United States)

    Coffman, Brian A; Haigh, Sarah M; Murphy, Timothy K; Leiter-Mcbeth, Justin; Salisbury, Dean F

    2017-10-22

    Auditory scene analysis (ASA) dysfunction is likely an important component of the symptomatology of schizophrenia. Auditory object segmentation, the grouping of sequential acoustic elements into temporally-distinct auditory objects, can be assessed with electroencephalography through measurement of the auditory segmentation potential (ASP). Further, N2 responses to the initial and final elements of auditory objects are enhanced relative to medial elements, which may indicate auditory object edge detection (initiation and termination). Both ASP and N2 modulation are impaired in long-term schizophrenia. To determine whether these deficits are present early in disease course, we compared ASP and N2 modulation between individuals at their first episode of psychosis within the schizophrenia spectrum (FE, N=20) and matched healthy controls (N=24). The ASP was reduced by >40% in FE; however, N2 modulation was not statistically different from HC. This suggests that auditory segmentation (ASP) deficits exist at this early stage of schizophrenia, but auditory edge detection (N2 modulation) is relatively intact. In a subset of subjects for whom structural MRIs were available (N=14 per group), ASP sources were localized to midcingulate cortex (MCC) and temporal auditory cortex. Neurophysiological activity in FE was reduced in MCC, an area linked to aberrant perceptual organization, negative symptoms, and cognitive dysfunction in schizophrenia, but not temporal auditory cortex. This study supports the validity of the ASP for measurement of auditory object segmentation and suggests that the ASP may be useful as an early index of schizophrenia-related MCC dysfunction. Further, ASP deficits may serve as a viable biomarker of disease presence. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The many facets of auditory display

    Science.gov (United States)

    Blattner, Meera M.

    1995-01-01

    In this presentation we will examine some of the ways sound can be used in a virtual world. We make the case that many different types of audio experience are available to us. A full range of audio experiences include: music, speech, real-world sounds, auditory displays, and auditory cues or messages. The technology of recreating real-world sounds through physical modeling has advanced in the past few years allowing better simulation of virtual worlds. Three-dimensional audio has further enriched our sensory experiences.

  13. Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom); Laboratoire des Sciences du Climat et de l' Environment, CEA/CNRS/UVSQ, Saclay (France); Harrison, S.P. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom); Macquarie University, School of Biological Sciences, North Ryde, NSW (Australia)

    2012-09-15

    The response of monsoon circulation in the northern and southern hemisphere to 6 ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean-atmosphere general circulation models. The atmospheric response to increased summer insolation at 6 ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6 ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean-atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean-atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the

  14. Enhanced neural responses to self-triggered voice pitch feedback perturbations.

    Science.gov (United States)

    Liu, Hanjun; Behroozmand, Roozbeh; Larson, Charles R

    2010-05-12

    This study investigated the effect of self-triggered voice fundamental frequency (F0) feedback perturbation on auditory event-related potentials (ERPs) during vocalization and listening. Auditory ERPs were examined in response to self-triggered and computer-triggered -200 cents pitch-shift stimuli while participants vocalized or listened to the playback of their self-vocalizations. The stimuli were either presented with a delay of 500-1000 ms after the participants pressed a button or delivered by a computer with an interstimulus interval of 500-1000 ms. Results showed that self-triggered stimuli elicited larger ERPs compared with computer-triggered stimuli during both vocalization and listening conditions. These findings suggest that self-triggered perturbation of self-vocalization auditory feedback may enhance auditory responses to voice feedback pitch perturbation during vocalization and listening.

  15. Auditory-motor learning during speech production in 9-11-year-old children.

    Directory of Open Access Journals (Sweden)

    Douglas M Shiller

    Full Text Available BACKGROUND: Hearing ability is essential for normal speech development, however the precise mechanisms linking auditory input and the improvement of speaking ability remain poorly understood. Auditory feedback during speech production is believed to play a critical role by providing the nervous system with information about speech outcomes that is used to learn and subsequently fine-tune speech motor output. Surprisingly, few studies have directly investigated such auditory-motor learning in the speech production of typically developing children. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we manipulated auditory feedback during speech production in a group of 9-11-year old children, as well as in adults. Following a period of speech practice under conditions of altered auditory feedback, compensatory changes in speech production and perception were examined. Consistent with prior studies, the adults exhibited compensatory changes in both their speech motor output and their perceptual representations of speech sound categories. The children exhibited compensatory changes in the motor domain, with a change in speech output that was similar in magnitude to that of the adults, however the children showed no reliable compensatory effect on their perceptual representations. CONCLUSIONS: The results indicate that 9-11-year-old children, whose speech motor and perceptual abilities are still not fully developed, are nonetheless capable of auditory-feedback-based sensorimotor adaptation, supporting a role for such learning processes in speech motor development. Auditory feedback may play a more limited role, however, in the fine-tuning of children's perceptual representations of speech sound categories.

  16. Multi-bunch Feedback Systems

    CERN Document Server

    Lonza, M.

    2014-12-19

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main co...

  17. Responses to Intensity-Shifted Auditory Feedback during Running Speech

    Science.gov (United States)

    Patel, Rupal; Reilly, Kevin J.; Archibald, Erin; Cai, Shanqing; Guenther, Frank H.

    2015-01-01

    Purpose: Responses to intensity perturbation during running speech were measured to understand whether prosodic features are controlled in an independent or integrated manner. Method: Nineteen English-speaking healthy adults (age range = 21-41 years) produced 480 sentences in which emphatic stress was placed on either the 1st or 2nd word. One…

  18. Auditory Memory deficit in Elderly People with Hearing Loss.

    Science.gov (United States)

    Shahidipour, Zahra; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Khosravifard, Elham

    2013-06-01

    Hearing loss is one of the most common problems in elderly people. Functional side effects of hearing loss are various. Due to the fact that hearing loss is the common impairment in elderly people; the importance of its possible effects on auditory memory is undeniable. This study aims to focus on the hearing loss effects on auditory memory. Dichotic Auditory Memory Test (DVMT) was performed on 47 elderly people, aged 60 to 80; that were divided in two groups, the first group consisted of elderly people with hearing range of 24 normal and the second one consisted of 23 elderly people with bilateral symmetrical ranged from mild to moderate Sensorineural hearing loss in the high frequency due to aging in both genders. Significant difference was observed in DVMT between elderly people with normal hearing and those with hearing loss (Pauditory verbal memory. This result depicts the importance of auditory intervention to make better communicational skills and therefore auditory memory in this population.

  19. Use of auditory learning to manage listening problems in children.

    Science.gov (United States)

    Moore, David R; Halliday, Lorna F; Amitay, Sygal

    2009-02-12

    This paper reviews recent studies that have used adaptive auditory training to address communication problems experienced by some children in their everyday life. It considers the auditory contribution to developmental listening and language problems and the underlying principles of auditory learning that may drive further refinement of auditory learning applications. Following strong claims that language and listening skills in children could be improved by auditory learning, researchers have debated what aspect of training contributed to the improvement and even whether the claimed improvements reflect primarily a retest effect on the skill measures. Key to understanding this research have been more circumscribed studies of the transfer of learning and the use of multiple control groups to examine auditory and non-auditory contributions to the learning. Significant auditory learning can occur during relatively brief periods of training. As children mature, their ability to train improves, but the relation between the duration of training, amount of learning and benefit remains unclear. Individual differences in initial performance and amount of subsequent learning advocate tailoring training to individual learners. The mechanisms of learning remain obscure, especially in children, but it appears that the development of cognitive skills is of at least equal importance to the refinement of sensory processing. Promotion of retention and transfer of learning are major goals for further research.

  20. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  1. Auditory responsive naming versus visual confrontation naming in dementia.

    Science.gov (United States)

    Miller, Kimberly M; Finney, Glen R; Meador, Kimford J; Loring, David W

    2010-01-01

    Dysnomia is typically assessed during neuropsychological evaluation through visual confrontation naming. Responsive naming to description, however, has been shown to have a more distributed representation in both fMRI and cortical stimulation studies. While naming deficits are common in dementia, the relative sensitivity of visual confrontation versus auditory responsive naming has not been directly investigated. The current study compared visual confrontation naming and auditory responsive naming in a dementia sample of mixed etiologies to examine patterns of performance across these naming tasks. A total of 50 patients with dementia of various etiologies were administered visual confrontation naming and auditory responsive naming tasks using stimuli that were matched in overall word frequency. Patients performed significantly worse on auditory responsive naming than visual confrontation naming. Additionally, patients with mixed Alzheimer's disease/vascular dementia performed more poorly on auditory responsive naming than did patients with probable Alzheimer's disease, although no group differences were seen on the visual confrontation naming task. Auditory responsive naming correlated with a larger number of neuropsychological tests of executive function than did visual confrontation naming. Auditory responsive naming appears to be more sensitive to effects of increased of lesion burden compared to visual confrontation naming. We believe that this reflects more widespread topographical distribution of auditory naming sites within the temporal lobe, but may also reflect the contributions of working memory and cognitive flexibility to performance.

  2. Strategy choice mediates the link between auditory processing and spelling.

    Directory of Open Access Journals (Sweden)

    Tru E Kwong

    Full Text Available Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes. Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  3. Strategy choice mediates the link between auditory processing and spelling.

    Science.gov (United States)

    Kwong, Tru E; Brachman, Kyle J

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  4. Feedback: Breakfast of Champions.

    Science.gov (United States)

    Justman, Jeffrey J.

    Feedback is an important skill that people need to learn in life. Feedback is crucial in a public speaking class to improve speaking skills. Providing and receiving feedback is what champions feed on to be successful, thus feedback is called the "Breakfast of Champions." Feedback builds speakers' confidence. Providing in-depth feedback…

  5. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Auditory Reserve and the Legacy of Auditory Experience

    OpenAIRE

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence o...

  7. Feedback, Incentives and Peer Effects

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    . The pay schemes are a piece rate payment scheme and a winner takes-all tournament. We find that the principal should not provide any information on relative  performance, regardless of the pay scheme used, since feedback does not improve performance. Indeed, we do not find evidence of positive peer...... effects in the piece-rate pay scheme. In both pay schemes, interim feedback generates negative quality peer effects on the less able performers. We find however evidence of positive peer effects in the tournament scheme since the underdogs almost never quit the competition even when lagging significantly......This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback, feedback given halfway through the production period, and continuously updated feedback about relative performance...

  8. Functional MRI of auditory responses in the zebra finch forebrain reveals a hierarchical organisation based on signal strength but not selectivity.

    Directory of Open Access Journals (Sweden)

    Tiny Boumans

    Full Text Available BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM, show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory

  9. Force control tasks with pure haptic feedback promote short-term focused attention.

    Science.gov (United States)

    Wang, Dangxiao; Zhang, Yuru; Yang, Xiaoxiao; Yang, Gaofeng; Yang, Yi

    2014-01-01

    Focused attention has great impact on our quality of life. Our learning, social skills and even happiness are closely intertwined with our capacity for focused attention. Attention promotion is replete with examples of training-induced increases in attention capability, most of which rely on visual and auditory stimulation. Pure haptic stimulation to increase attention capability is rarely found. We show that accurate force control tasks with pure haptic feedback enhance short-term focused attention. Participants were trained by a force control task in which information from visual and auditory channels was blocked, and only haptic feedback was provided. The trainees were asked to exert a target force within a pre-defined force tolerance for a specific duration. The tolerance was adaptively modified to different levels of difficulty to elicit full participant engagement. Three attention tests showed significant changes in different aspects of focused attention in participants who had been trained as compared with those who had not, thereby illustrating the role of haptic-based sensory-motor tasks in the promotion of short-term focused attention. The findings highlight the potential value of haptic stimuli in brain plasticity and serve as a new tool to extend existing computer games for cognitive enhancement.

  10. Early hominin auditory capacities.

    Science.gov (United States)

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats.

  11. Early hominin auditory capacities

    Science.gov (United States)

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

    2015-01-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  12. Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps.

    Science.gov (United States)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-10-01

    Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species (Larix decidua, Picea abies, Pinus cembra, and Pinus mugo) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall (L. decidua) and current year's spring (L. decidua, P. abies). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies, P. cembra, and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time

  13. Stochastic undersampling steepens auditory threshold/duration functions: Implications for understanding auditory deafferentation and aging

    Directory of Open Access Journals (Sweden)

    Frederic eMarmel

    2015-05-01

    Full Text Available It has long been known that some listeners experience hearing difficulties out of proportion with their audiometric losses. Notably, some older adults as well as auditory neuropathy patients have temporal-processing and speech-in-noise intelligibility deficits not accountable for by elevated audiometric thresholds. The study of these hearing deficits has been revitalized by recent studies that show that auditory deafferentation comes with aging and can occur even in the absence of an audiometric loss. The present study builds on the stochastic undersampling principle proposed by Lopez-Poveda and Barrios (2013 to account for the perceptual effects of auditory deafferentation. Auditory threshold/duration functions were measured for broadband noises that were stochastically undersampled to various different degrees. Stimuli with and without undersampling were equated for overall energy in order to focus on the changes that undersampling elicited on the stimulus waveforms, and not on its effects on the overall stimulus energy. Stochastic undersampling impaired the detection of short sounds ( 50 ms did not change or improved, depending on the degree of undersampling. The results for short sounds show that stochastic undersampling, and hence presumably deafferentation, can account for the steeper threshold/duration functions observed in auditory neuropathy patients and older adults with (near normal audiometry. This suggests that deafferentation might be diagnosed using pure-tone audiometry with short tones. It further suggests that that the auditory system of audiometrically normal older listeners might not be ‘slower than normal’, as is commonly thought, but simply less well afferented. Finally, the results for both short and long sounds support the probabilistic theories of detectability that challenge the idea that auditory threshold occurs by integration of sound energy over time.

  14. Self-recognition Deficits in Schizophrenia Patients With Auditory Hallucinations : A Meta-analysis of the Literature

    NARCIS (Netherlands)

    Waters, Flavie; Woodward, Todd; Allen, Paul; Aleman, Andre; Sommers, Iris

    Theories about auditory hallucinations in schizophrenia suggest that these experiences occur because patients fail to recognize thoughts and mental events as self-generated. Different theoretical models have been proposed about the cognitive mechanisms underlying auditory hallucinations. Regardless

  15. Dual γ rhythm generators control interlaminar synchrony in auditory cortex

    National Research Council Canada - National Science Library

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O; Roopun, Anita K; Traub, Roger D; Kopell, Nancy J; Whittington, Miles A

    2011-01-01

    .... Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex...

  16. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  17. Functional properties of human auditory cortical fields

    Directory of Open Access Journals (Sweden)

    David L Woods

    2010-12-01

    Full Text Available While auditory cortex in non-human primates has been subdivided into multiple functionally-specialized auditory cortical fields (ACFs, the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of fMRI activations on the cortical surface to attended and nonattended tones of different frequency, location, and intensity. The limits of auditory cortex were defined by voxels that showed significant activations to nonattended sounds. Three centrally-located fields with mirror-symmetric tonotopic organization were identified and assigned to the three core fields of the primate model while surrounding activations were assigned to belt fields following procedures similar to those used in macaque fMRI studies. The functional properties of core, medial belt, and lateral belt field groups were then analyzed. Field groups were distinguished by tonotopic organization, frequency selectivity, intensity sensitivity, contralaterality, binaural enhancement, attentional modulation, and hemispheric asymmetry. In general, core fields showed greater sensitivity to sound properties than did belt fields, while belt fields showed greater attentional modulation than core fields. Significant distinctions in intensity sensitivity and contralaterality were seen between adjacent core fields A1 and R, while multiple differences in tuning properties were evident at boundaries between adjacent core and belt fields. The reliable differences in functional properties between fields and field groups suggest that the basic primate pattern of auditory cortex organization is preserved in humans. A comparison of the sizes of functionally-defined ACFs in humans and macaques reveals a significant relative expansion in human lateral belt fields implicated in the processing of speech.

  18. The human brain maintains contradictory and redundant auditory sensory predictions.

    Directory of Open Access Journals (Sweden)

    Marika Pieszek

    Full Text Available Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants' task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound as well as violations of the visual-auditory prediction (i.e., an incongruent sound elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]. Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events.

  19. Dopaminergic medication alters auditory distractor processing in Parkinson's disease.

    Science.gov (United States)

    Georgiev, Dejan; Jahanshahi, Marjan; Dreo, Jurij; Čuš, Anja; Pirtošek, Zvezdan; Repovš, Grega

    2015-03-01

    Parkinson's disease (PD) patients show signs of cognitive impairment, such as executive dysfunction, working memory problems and attentional disturbances, even in the early stages of the disease. Though motor symptoms of the disease are often successfully addressed by dopaminergic medication, it still remains unclear, how dopaminergic therapy affects cognitive function. The main objective of this study was to assess the effect of dopaminergic medication on visual and auditory attentional processing. 14 PD patients and 13 matched healthy controls performed a three-stimulus auditory and visual oddball task while their EEG was recorded. The patients performed the task twice, once on- and once off-medication. While the results showed no significant differences between PD patients and controls, they did reveal a significant increase in P3 amplitude on- vs. off-medication specific to processing of auditory distractors and no other stimuli. These results indicate significant effect of dopaminergic therapy on processing of distracting auditory stimuli. With a lack of between group differences the effect could reflect either 1) improved recruitment of attentional resources to auditory distractors; 2) reduced ability for cognitive inhibition of auditory distractors; 3) increased response to distractor stimuli resulting in impaired cognitive performance; or 4) hindered ability to discriminate between auditory distractors and targets. Further studies are needed to differentiate between these possibilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Understanding balance differences in individuals with multiple sclerosis with mild disability: An investigation of differences in sensory feedback on postural and dynamic balance control

    Science.gov (United States)

    Denomme, Luke T.

    Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS) and causes a broad range of neurological symptoms. One of the most common symptoms experienced by individuals with MS is poor balance control during standing and walking. The main mechanism underlying impaired balance control in MS appears to result from slowed somatosensory conduction and impaired central integration. The current thesis assessed postural and dynamic control of balance of 'individuals with MS with mild disability' (IwMS). IwMS were compared to 'healthy age-matched individuals' (HAMI) and community-dwelling 'older adults' (OA). The purpose of this thesis was to quantify differences in postural and dynamic control of balance in IwMS to the two populations who display balance control differences across the lifespan and represent two extreme ends of the balance control continuum due to natural aging. IwMS (n = 12, x¯age: 44 +/- 9.4 years), HAMI (n = 12, x¯age: 45 +/- 9.9 years) and community-dwelling OA (n = 12, x¯ age: 68.1 +/- 4.5 years) postural and dynamic balance control were evaluated during a Romberg task as well as a dynamic steering task. The Romberg task required participants to stand with their feet together and hands by their sides for 45 seconds with either their eyes open or closed. The dynamic steering task required participants to walk and change direction along the M-L plane towards a visual goal. Results from these two tasks reveal that IwMS display differences in postural control when compared to HAMI when vision was removed as well as differences in dynamic stability margin during steering situations. During the postural control task IwMS displayed faster A-P and M-L COP velocities when vision was removed and their COP position was closer to their self-selected maximum stability limits compared to HAMI. Assessment of dynamic stability during the steering task revealed that IwMS displayed reduced walking speed and cadence during the

  1. Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI - A pilot study

    Directory of Open Access Journals (Sweden)

    Kirsten Emmert

    2017-01-01

    Overall, these results show that continuous feedback is suitable for long-term neurofeedback experiments while intermittent feedback presentation promises good results for single session experiments when using the auditory cortex as a target region. In particular, the down-regulation effect is more pronounced in the secondary auditory cortex, which might be more susceptible to voluntary modulation in comparison to a primary sensory region.

  2. Feedback as real-time constructions

    DEFF Research Database (Denmark)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very...... instant it takes place. This article argues for a clear distinction between the timing of communicative events, such as responses that are provided as help for feedback constructions, and the feedback construction itself as an event in a psychic system. Although feedback is described as an internal......, system-relative construction, different teaching environments offer diverse conditions for feedback constructions. The final section of this article explores this idea with the help of examples from both synchronous oral interaction and asynchronous text-based interaction mediated by digital media....

  3. Feedback as real-time constructions

    DEFF Research Database (Denmark)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    The article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very...... instant it takes place. This article argues for a clear distinction between the timing of communicative events, such as responses that are provided as help for feedback constructions, and the feedback construction itself as an event in a psychic system. Although feedback is described as an internal......, system-relative construction, different teaching environments offer diverse conditions for feedback constructions. The final section of this article explores this idea with the help of examples from both synchronous, oral interaction and asynchronous, text-based interaction mediated by digital media....

  4. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-01-01

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top–down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  5. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    Science.gov (United States)

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  6. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular

  7. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  8. Sensitivity and specificity of auditory steady-state response testing

    Directory of Open Access Journals (Sweden)

    Camila Maia Rabelo

    2011-01-01

    Full Text Available INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady-state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady-state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz. The difference between auditory steady-state response-estimated thresholds and behavioral thresholds (audiometric evaluation was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady-state response-estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS lesions has shown that individuals with CANS lesions present a greater difference between ASSR-estimated thresholds and actual behavioral thresholds; ASSR-estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR-estimated thresholds and the behavioral thresholds is impaired