WorldWideScience

Sample records for auditory evoked responses

  1. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  2. Brainstem auditory evoked response: application in neurology

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Guerreiro

    1982-03-01

    Full Text Available The tecnique that we use for eliciting brainstem auditory evoked responses (BAERs is described. BAERs are a non-invasive and reliable clinical test when carefully performed. This test is indicated in the evaluation of disorders which may potentially involve the brainstem such as coma, multiple sclerosis posterior fossa tumors and others. Unsuspected lesions with normal radiologic studies (including CT-scan can be revealed by the BAER.

  3. Evoked response audiometry used in testing auditory organs of miners

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, T.; Klepacki, J.; Wagstyl, R.

    1980-01-01

    The evoked response audiometry method of testing hearing loss is presented and the results of comparative studies using subjective tonal audiometry and evoked response audiometry in tests of 56 healthy men with good hearing are discussed. The men were divided into three groups according to age and place of work: work place without increased noise; work place with noise and vibrations (at drilling machines); work place with noise and shocks (work at excavators in surface coal mines). The ERA-MKII audiometer produced by the Medelec-Amplaid firm was used. Audiometric threshhold curves for the three groups of tested men are given. At frequencies of 500, 1000 and 4000 Hz mean objective auditory threshhold was shifted by 4-9.5 dB in comparison to the subjective auditory threshold. (21 refs.) (In Polish)

  4. Brain stem auditory evoked responses in chronic alcoholics.

    OpenAIRE

    Chan, Y W; McLeod, J G; Tuck, R R; Feary, P A

    1985-01-01

    Brain stem auditory evoked responses (BAERs) were performed on 25 alcoholic patients with Wernicke-Korsakoff syndrome, 56 alcoholic patients without Wernicke-Korsakoff syndrome, 24 of whom had cerebellar ataxia, and 37 control subjects. Abnormal BAERs were found in 48% of patients with Wernicke-Korsakoff syndrome, in 25% of alcoholic patients without Wernicke-Korsakoff syndrome but with cerebellar ataxia, and in 13% of alcoholic patients without Wernicke-Korsakoff syndrome or ataxia. The mean...

  5. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  6. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James;

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory-nerve ...

  7. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements. The mi...

  8. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  9. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  10. Is the auditory evoked P2 response a biomarker of learning?

    Science.gov (United States)

    Tremblay, Kelly L; Ross, Bernhard; Inoue, Kayo; McClannahan, Katrina; Collet, Gregory

    2014-01-01

    Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography (EEG) and magnetoencephalography (MEG) have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP), as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What's more, these effects are retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN) wave 600-900 ms post-stimulus onset, post-training exclusively for the group that learned to identify the pre-voiced contrast.

  11. Amplitude and phase equalization of stimuli for click evoked auditory brainstem responses.

    Science.gov (United States)

    Beutelmann, Rainer; Laumen, Geneviève; Tollin, Daniel; Klump, Georg M

    2015-01-01

    Although auditory brainstem responses (ABRs), the sound-evoked brain activity in response to transient sounds, are routinely measured in humans and animals there are often differences in ABR waveform morphology across studies. One possible reason may be the method of stimulus calibration. To explore this hypothesis, click-evoked ABRs were measured from seven ears in four Mongolian gerbils (Meriones unguiculatus) using three common spectrum calibration strategies: Minimum phase filter, linear phase filter, and no filter. The results show significantly higher ABR amplitude and signal-to-noise ratio, and better waveform resolution with the minimum phase filtered click than with the other strategies.

  12. Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography

    Directory of Open Access Journals (Sweden)

    Inyong eChoi

    2013-04-01

    Full Text Available Selective auditory attention is essential for human listeners to be able to communicate in multi-source environments. Selective attention is known to modulate the neural representation of the auditory scene, boosting the representation of a target sound relative to the background, but the strength of this modulation, and the mechanisms contributing to it, are not well understood. Here, listeners performed a behavioral experiment demanding sustained, focused spatial auditory attention while we measured cortical responses using electroencephalography (EEG. We presented three concurrent melodic streams; listeners were asked to attend and analyze the melodic contour of one of the streams, randomly selected from trial to trial. In a control task, listeners heard the same sound mixtures, but performed the contour judgment task on a series of visual arrows, ignoring all auditory streams. We found that the cortical responses could be fit as weighted sum of event-related potentials evoked by the stimulus onsets in the competing streams. The weighting to a given stream was roughly 10 dB higher when it was attended compared to when another auditory stream was attended; during the visual task, the auditory gains were intermediate. We then used a template-matching classification scheme to classify single-trial EEG results. We found that in all subjects, we could determine which stream the subject was attending significantly better than by chance. By directly quantifying the effect of selective attention on auditory cortical responses, these results reveal that focused auditory attention both suppresses the response to an unattended stream and enhances the response to an attended stream. The single-trial classification results add to the growing body of literature suggesting that auditory attentional modulation is sufficiently robust that it could be used as a control mechanism in brain-computer interfaces.

  13. Brainstem auditory-evoked responses with and without sedation in autism and Down's syndrome.

    Science.gov (United States)

    Sersen, E A; Heaney, G; Clausen, J; Belser, R; Rainbow, S

    1990-04-15

    Brainstem auditory-evoked responses (BAER) were obtained from 46 control, 16 Down's syndrome, and 48 autistic male subjects. Six Down's syndrome and 37 autistic subjects were tested with sedation. Sedated and unsedated Down's syndrome subjects displayed shorter absolute and interpeak latencies for early components of the BAER whereas the sedated autistic group showed longer latencies for the middle and late components. The prolongation of latencies in the sedated autistic group was unrelated to age or intellectual level. Although individuals requiring sedation may have a higher probability of neurological impairment, an effect of sedation on the BAER cannot be ruled out.

  14. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y. (Queen Mary Hospital, Hong Kong (Hong Kong))

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  15. Unilateral and bilateral brainstem auditory-evoked response abnormalities in 900 Dalmatian dogs.

    Science.gov (United States)

    Holliday, T A; Nelson, H J; Williams, D C; Willits, N

    1992-01-01

    In a survey of 900 Dalmatian dogs, brainstem auditory-evoked responses (BAER) and clinical observations were used to determine the incidence and sex distribution of bilateral and unilateral BAER abnormalities and their association with heterochromia iridis (HI). To assess the efficacy of BAER testing in guiding breeding programs, data from 749 dogs (subgroup A), considered to be a sample of the population at large, were compared with data from a subgroup (subgroup B; n = 151) in which selection of breeding stock had been based on BAER testing from the beginning of the 4-year survey. Brainstem auditory-evoked responses were elicited by applying click stimuli unilaterally, while applying a white noise masking sound to the contralateral ear. Under these conditions, BAER were either normal, unilaterally absent, or bilaterally absent. Dogs with bilaterally absent BAER were clinically deaf; dogs with unilaterally absent BAER were not clinically deaf but appeared dependent on their BAER-normal ears for their auditory-cued behavior. Dogs with unilaterally absent BAER often were misidentified as normal by uninformed observers. Among the 900 dogs, 648 (72.0%) were normal, 189 (21.0%) had unilateral absence of BAER, and 63 (7.0%) had bilateral absence of BAER or were clinically deaf and assumed to have bilaterally absent BAER (n = 4). Total incidence in the population sampled was assumed to be higher, because some bilaterally affected dogs that would have been members of subgroup A undoubtedly did not come to our attention. Among females, 24.0% were unilaterally abnormal and 8.2% were bilaterally abnormal whereas, among males, 17.8% were unilaterally abnormal and 5.7% were bilaterally abnormal.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training

    Directory of Open Access Journals (Sweden)

    Okamoto Hidehiko

    2009-12-01

    Full Text Available Abstract Background Due to auditory experience, musicians have better auditory expertise than non-musicians. An increased neocortical activity during auditory oddball stimulation was observed in different studies for musicians and for non-musicians after discrimination training. This suggests a modification of synaptic strength among simultaneously active neurons due to the training. We used amplitude-modulated tones (AM presented in an oddball sequence and manipulated their carrier or modulation frequencies. We investigated non-musicians in order to see if behavioral discrimination training could modify the neocortical activity generated by change detection of AM tone attributes (carrier or modulation frequency. Cortical evoked responses like N1 and mismatch negativity (MMN triggered by sound changes were recorded by a whole head magnetoencephalographic system (MEG. We investigated (i how the auditory cortex reacts to pitch difference (in carrier frequency and changes in temporal features (modulation frequency of AM tones and (ii how discrimination training modulates the neuronal activity reflecting the transient auditory responses generated in the auditory cortex. Results The results showed that, additionally to an improvement of the behavioral discrimination performance, discrimination training of carrier frequency changes significantly modulates the MMN and N1 response amplitudes after the training. This process was accompanied by an attention switch to the deviant stimulus after the training procedure identified by the occurrence of a P3a component. In contrast, the training in discrimination of modulation frequency was not sufficient to improve the behavioral discrimination performance and to alternate the cortical response (MMN to the modulation frequency change. The N1 amplitude, however, showed significant increase after and one week after the training. Similar to the training in carrier frequency discrimination, a long lasting

  17. Rate and adaptation effects on the auditory evoked brainstem response in human newborns and adults.

    Science.gov (United States)

    Lasky, R E

    1997-09-01

    Auditory evoked brainstem response (ABR) latencies increased and amplitudes decreased with increasing stimulus repetition rate for human newborns and adults. The wave V latency increases were larger for newborns than adults. The wave V amplitude decreases were smaller for newborns than adults. These differences could not be explained by developmental differences in frequency responsivity. The transition from the unadapted to the fully adapted response was less rapid in newborns than adults at short (= 10 ms) inter stimulus intervals (ISIs). At longer ISIs (= 20 ms) there were no developmental differences in the transition to the fully adapted response. The newborn transition occurred in a two stage process. The rapid initial stage observed in adults and newborns was complete by about 40 ms. A second slower stage was observed only in newborns although it has been observed in adults in other studies (Weatherby and Hecox, 1982; Lightfoot, 1991; Lasky et al., 1996). These effects were replicated at different stimulus intensities. After the termination of stimulation the return to the wave V unadapted response took nearly 500 ms in newborns. Neither the newborn nor the adult data can be explained by forward masking of one click on the next click. These results indicate human developmental differences in adaptation to repetitive auditory stimulation at the level of the brainstem.

  18. Aberrant lateralization of brainstem auditory evoked responses by individuals with Down syndrome.

    Science.gov (United States)

    Miezejeski, C M; Heaney, G; Belser, R; Sersen, E A

    1994-01-01

    Brainstem auditory evoked response latencies were studied in 80 males (13 with Down syndrome, 23 with developmental disability due to other causes, and 44 with no disability). Latencies for waves P3 and P5 were shorter for the Down syndrome than for the other groups, though at P5, as compared to latencies for the nondisabled group, the difference was not significant. The pattern of left versus right ear responses in the Down syndrome group differed from those of the other groups. This finding was related to research noting decreased lateralization of and decreased ability at receptive and expressive language among people with Down syndrome. Some individuals required sedation. A lateralized effect of sedation was noted.

  19. Habituation of auditory steady state responses evoked by amplitudemodulated acoustic signals in rats

    Directory of Open Access Journals (Sweden)

    Pavel Prado-Gutierrez

    2015-01-01

    Full Text Available Generation of the auditory steady state responses (ASSR is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials.

  20. Longer brainstem auditory evoked response latencies of individuals with fragile X syndrome related to sedation.

    Science.gov (United States)

    Miezejeski, C M; Heaney, G; Belser, R; Brown, W T; Jenkins, E C; Sersen, E A

    1997-04-18

    Brainstem auditory evoked response latencies were studies in 75 males (13 with fragile X syndrome, 18 with mental retardation due to other causes, and 44 with no disability). Latency values were obtained for each ear for the positive deflections of waves I (P1), III (P3), and V (P5). Some individuals with mental retardation required sedation. Contrary to previous report, latencies obtained for individuals with fragile X did not differ from those obtained for persons without mental retardation. Persons receiving sedation, whether or not their retardation was due to fragile X, had longer latencies for wave P5 than persons who did not receive sedation. This effect of sedation may also explain the previously reported increased latencies for persons with fragile X.

  1. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  2. Cognitive processing effects on auditory event-related potentials and the evoked cardiac response.

    Science.gov (United States)

    Lawrence, Carlie A; Barry, Robert J

    2010-11-01

    The phasic evoked cardiac response (ECR) produced by innocuous stimuli requiring cognitive processing may be described as the sum of two independent response components. An initial heart rate (HR) deceleration (ECR1), and a slightly later HR acceleration (ECR2), have been hypothesised to reflect stimulus registration and cognitive processing load, respectively. This study investigated the effects of processing load in the ECR and the event-related potential, in an attempt to find similarities between measures found important in the autonomic orienting reflex context and ERP literature. We examined the effects of cognitive load within-subjects, using a long inter-stimulus interval (ISI) ANS-style paradigm. Subjects (N=40) were presented with 30-35 80dB, 1000Hz tones with a variable long ISI (7-9s), and required to silently count, or allowed to ignore, the tone in two counterbalanced stimulus blocks. The ECR showed a significant effect of counting, allowing separation of the two ECR components by subtracting the NoCount from the Count condition. The auditory ERP showed the expected obligatory processing effects in the N1, and substantial effects of cognitive load in the late positive complex (LPC). These data offer support for ANS-CNS connections worth pursuing further in future work.

  3. Effects of broadband noise on cortical evoked auditory responses at different loudness levels in young adults.

    Science.gov (United States)

    Sharma, Mridula; Purdy, Suzanne C; Munro, Kevin J; Sawaya, Kathleen; Peter, Varghese

    2014-03-26

    Young adults with no history of hearing concerns were tested to investigate their /da/-evoked cortical auditory evoked potentials (P1-N1-P2) recorded from 32 scalp electrodes in the presence and absence of noise at three different loudness levels (soft, comfortable, and loud), at a fixed signal-to-noise ratio (+3 dB). P1 peak latency significantly increased at soft and loud levels, and N1 and P2 latencies increased at all three levels in the presence of noise, compared with the quiet condition. P1 amplitude was significantly larger in quiet than in noise conditions at the loudest level. N1 amplitude was larger in quiet than in noise for the soft level only. P2 amplitude was reduced in the presence of noise to a similar degree at all loudness levels. The differential effects of noise on P1, N1, and P2 suggest differences in auditory processes underlying these peaks. The combination of level and signal-to-noise ratio should be considered when using cortical auditory evoked potentials as an electrophysiological indicator of degraded speech processing.

  4. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  5. Middle latency auditory evoked responses in normal term infants: a longitudinal study.

    Science.gov (United States)

    Rogers, S H; Edwards, D A; Henderson-Smart, D J; Pettigrew, A G

    1989-05-01

    Middle latency auditory evoked responses (MLAERs) were measured in 21 normal term infants, three to five days after birth and then at 6 weeks, 7 months and 1 year of age. A polyphasic waveform was elicited during natural sleep in all infants at each recording session by monaural click stimulation at a rate of 9 per second. A 70 dBHL stimulus was found to be optimal as the MLAER became less well defined when the stimulus intensity approached the threshold hearing level. The first 60 to 70 msec of the waveform was found to be most stable, with decreasing detectability of peaks at longer latencies. There was no change in wave latency or reproducibility of MLAERs recorded during different sleep states. Waves Po and Na showed a significant decrease in latency with increasing stimulus intensity at term and/or 6 weeks of age. This was not evident for the remainder of the waveform. Waves Po, Na, Pa, Nb, Pb and Nc exhibited significant decreases in latency with age, attaining values indistinguishable from adults by 7 months of age.

  6. Auditory steady-state evoked response in diagnosing and evaluating hearing in infants

    Institute of Scientific and Technical Information of China (English)

    Fei Mai; Xiaozhuang Zhang; Qunxin Lai; Yanfei Wu; Nanping Liao; Yi Ye; Zhenghui Zhong

    2006-01-01

    BACKGROUND: Auditory steady-state evoked response (ASSR) is one of the new objective electrophysiological methods to test hearing in infants. It can provide a reliable and complete audiogram with specific frequency to help the hearing diagnosis and rehabilitation of hearing and languaging following auditory screening.OBJECTIVE: To compare the response threshold of ASSR with auditory threshold of visual reinforcement audiometry (VRA) in infants failed in the hearing screening for investigating their hearing loss.DESIGN: A comparative observation.SETTINGS: Maternal and child health care hospitals of Guangdong province, Shunde city, Nanhai city and Huadu district.PARTICIPANTS: Totally 321 infants of 0-3 years undergoing ASSR test were selected from the Hearing Center of Guangdong Maternal and Child Health Care Hospital from January 2002 to December 2004.Informed consents were obtained from their guardians. There were 193 cases (60.2%) of 0-6 months, 31 cases (9.7%) of 7-12 months, 17 cases (5.3%) of 13-18 months, 14 cases (4.4%) of 19-24 months, 33 cases of 25-30 months, and 33 cases (10.2%) of 31-36 months.METHODS: ① The 321 infants failed in the hearing screening were tested under sleeping status, the ranges of response threshold distribution in ASSR of different frequencies were analyzed in each age group. ② The infants above 2 years old were also tested with VRA, and their response thresholds were compared between VRA and ASSR. ③ Evaluative standards: The response threshold was < 30 dB for normal hearing, 31-50 dB for mild hearing loss, 51-70 dB for moderate hearing loss, 71-90 dB for severe hearing loss, and > 91 dB for extremely severe hearing loss.MAIN OUTCOME MEASURES: ① ASSR results of the infants failed in the screening; ② Proportion of cases of each response threshold in each age group; ③ Comparison of ASSR response thresholds and VRA auditory thresholds in the infants of 2-3 years old.RESULTS: ①The response threshold was < 30 dB in 47

  7. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  8. Modeling auditory evoked potentials to complex stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch

    The auditory evoked potential (AEP) is an electrical signal that can be recorded from electrodes attached to the scalp of a human subject when a sound is presented. The signal is considered to reflect neural activity in response to the acoustic stimulation and is a well established clinical...... clinically and in research towards using realistic and complex stimuli, such as speech, to electrophysiologically assess the human hearing. However, to interpret the AEP generation to complex sounds, the potential patterns in response to simple stimuli needs to be understood. Therefore, the model was used...... to simulate auditory brainstem responses (ABRs) evoked by classic stimuli like clicks, tone bursts and chirps. The ABRs to these simple stimuli were compared to literature data and the model was shown to predict the frequency dependence of tone-burst ABR wave-V latency and the level-dependence of ABR wave...

  9. Comparison of the developmental changes of the brainstem auditory evoked response (BAER) in taurine-supplemented and taurine-deficient kittens.

    Science.gov (United States)

    Vallecalle-Sandoval, M H; Heaney, G; Sersen, E; Sturman, J A

    1991-01-01

    A similar development of the brainstem auditory evoked response is present in taurine-supplemented and taurine-deficient kittens between the second postnatal week and the third month of life. Between birth and the second postnatal week kittens from mothers fed the 1% taurine diet showed earlier maturation of the brainstem auditory evoked response as indicated by lower threshold, shorter P1 latency and shorter central conduction time when compared to the kittens from mothers fed the 0.05% taurine diet. These results suggest an important role of taurine in the anatomical and functional development of the auditory system.

  10. Auditory evoked potentials and multiple sclerosis

    OpenAIRE

    Carla Gentile Matas; Sandro Luiz de Andrade Matas; Caroline Rondina Salzano de Oliveira; Isabela Crivellaro Gonçalves

    2010-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease that can affect several areas of the central nervous system. Damage along the auditory pathway can alter its integrity significantly. Therefore, it is important to investigate the auditory pathway, from the brainstem to the cortex, in individuals with MS. OBJECTIVE: The aim of this study was to characterize auditory evoked potentials in adults with MS of the remittent-recurrent type. METHOD: The study comprised 25 individuals w...

  11. Auditory evoked potentials in postconcussive syndrome.

    Science.gov (United States)

    Drake, M E; Weate, S J; Newell, S A

    1996-12-01

    The neuropsychiatric sequelae of minor head trauma have been the source of controversy. Most clinical and imaging studies have shown no alteration after concussion, but neuropsychological and neuropathological abnormalities have been reported. Some changes in neurophysiologic diagnostic tests have been described in postconcussive syndrome. We recorded middle latency auditory evoked potentials (MLR) and slow vertex responses (SVR) in 20 individuals with prolonged cognitive difficulties, behavior changes, dizziness, and headache after concussion. MLR is utilized alternating polarity clicks presented monaurally at 70 dB SL at 4 per second, with 40 dB contralateral masking. Five hundred responses were recorded and replicated from Cz-A1 and Cz-A2, with 50 ms. analysis time and 20-1000 Hz filter band pass. SVRs were recorded with the same montage, but used rarefaction clicks, 0.5 Hz stimulus rate, 500 ms. analysis time, and 1-50 Hz filter band pass. Na and Pa MLR components were reduced in amplitude in postconcussion patients. Pa latency was significantly longer in patients than in controls. SVR amplitudes were longer in concussed individuals, but differences in latency and amplitude were not significant. These changes may reflect posttraumatic disturbance in presumed subcortical MLR generators, or in frontal or temporal cortical structures that modulate them. Middle and long-latency auditory evoked potentials may be helpful in the evaluation of postconcussive neuropsychiatric symptoms.

  12. Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: functional MRI and magnetoencephalography

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; GENG Zuo-jun; ZHANG Quan; LI Wei; ZHANG Jing

    2006-01-01

    hearing loss and the healthy subjects, the most evident audio evoked fields activated by pure tone were N100m,which located precisely on the Heschl's gyms. Compared with the hearing loss subjects, N100m of the healthy subjects was stronger and had longer latencies in fight hemisphere.Conclusions Under proper pure tone stimulus the activation of auditory cortex can be elicited both in the healthy and the sensorineural hearing loss subjects. Either at objective equivalent stimuli or at subjectively perceived equivalent stimuli, the auditory responses were more intensive in healthy subjects than hearing loss subjects. The tone stimuli were processed in a network in human brain and there was an intrinsic relation between the auditory and visual cortex. Blood oxygen level dependent fMRI and magnetoencephalography could reinforce each other.

  13. Effects of glutamate receptor agonists on the P13 auditory evoked potential and startle response in the rat

    Directory of Open Access Journals (Sweden)

    Christen eSimon

    2011-01-01

    Full Text Available The P13 potential is the rodent equivalent of the P50 potential, which is an evoked response recorded at the vertex (Vx 50 msec following an auditory stimulus in humans. Both the P13 and P50 potentials are only present during waking and rapid eye movement (REM sleep, and are considered to be measures of level of arousal. The source of the P13 and P50 potentials appears to be the pedunculopontine nucleus (PPN, a brainstem nucleus with indirect ascending projections to the cortex through the intralaminar thalamus (ILT, mediating arousal, and descending inhibitory projections to the caudal pontine reticular formation (CPRF, which mediates the auditory startle response (SR. We tested the hypothesis that intracranial microinjection (ICM of glutamate (GLU or GLU receptor agonists will increase the activity of PPN neurons, resulting in an increased P13 potential response, and decreased SR due to inhibitory projections from the PPN to the CPRF, in freely moving animals. Cannulae were inserted into the PPN to inject neuroactive agents, screws were inserted into the Vx in order to record the P13 potential, and electrodes inserted into the dorsal nuchal muscle to record electromyograms (EMGs and SR amplitude. Our results showed that ICM of GLU into the PPN dose-dependently increased the amplitude of the P13 potential and decreased the amplitude of the SR. Similarly, ICM of NMDA or KA into the PPN increased the amplitude of the P13 potential. These findings indicate that glutamatergic input to the PPN plays a role in arousal control in vivo, and changes in glutamatergic input, or excitability of PPN neurons, could be implicated in a number of neuropsychiatric disorders with the common symptoms of hyperarousal and REM sleep dysregulation.

  14. Auditory evaluation of the microcephalic children with brain stem evoked response audiometry (BERA).

    Science.gov (United States)

    Das, Piyali; Bandyopadhyay, Manimay; Ghugare, Balaji W; Ghate, Jayshree; Singh, Ramji

    2010-01-01

    Microcephaly implies a reduced occipito-frontal circumference (Audiometry (BERA) to locate the exact site of lesion resulting in the auditory impairment, so that appropriate early rehabilitative measures can be taken. The study revealed that absolute peak latency of wave V, inter peak latencies of III-V and I-V were significantly higher (P- value < 0.05 in each case) in microcephalics than the normal children. Auditory impairment in microcephaly is a common neurodeficit that can be authentically assessed by BERA. The hearing impairment in microcephalics is mostly due to insufficiency of central components of auditory pathway at the level of brainstem, function of peripheral structures being almost within normal limit.

  15. Sensorineural hearing loss with brainstem auditory evoked responses changes in homozygote and heterozygote sickle cell patients in Guadeloupe (France).

    Science.gov (United States)

    Jovanovic-Bateman, L; Hedreville, R

    2006-08-01

    This prospective study involved 79 homozygote and heterozygote sickle cell anaemia patients (16 to 50 years old) and a control group of 40 people.All patients underwent ENT, audiological and brainstem auditory evoked responses (BSER) examinations in order to evaluate the incidence of sensorineural hearing loss (SNHL), to identify the changes at the level of the cochlear nerve and the central pathways, and to determine the most vulnerable group, in order to intervene with early prevention and rehabilitation for this condition.A hearing loss of greater than 20 dB at two or more frequencies was found in 36 (45.57 per cent) sickle cell patients (19 (47.22 per cent) HbSC patients and 17 (43.59 per cent) HbSS patients) and three (7.5 per cent) members of the control group. Homozygote and heterozygote patients, as well as both sexes, were equally affected. Bilateral hearing loss occurred in 19 (52.78 per cent) patients, unilateral right-sided hearing loss in five (13.89 per cent) patients and unilateral left-sided hearing loss in 12 (33.33 per cent) patients. Brainstem auditory evoked potential demonstrated a prolonged I-V (III-V) interpeak latency in 13 (25.35 per cent) sickle cell patients (11 men (eight with HbSS) and two women). The hearing loss in HbSS patients was neural in nature and of earlier onset; the hearing loss in HbSC patients was usually cochlear in nature and of later onset. Despite high medical standards and 100 per cent social security cover, the high incidence of SNHL in our sickle cell affected patients (the majority with the Benin haplotype) was probably due to their specific haematological profile and to the original geographical distribution of the disease in the tropics. Our results highlight the necessity for early and regular hearing assessment of sickle cell patients, including BSER examination, especially in male patients with SNHL.

  16. Dynamic movement of N100m current sources in auditory evoked fields: comparison of ipsilateral versus contralateral responses in human auditory cortex.

    Science.gov (United States)

    Jin, Chun Yu; Ozaki, Isamu; Suzuki, Yasumi; Baba, Masayuki; Hashimoto, Isao

    2008-04-01

    We recorded auditory evoked magnetic fields (AEFs) to monaural 400Hz tone bursts and investigated spatio-temporal features of the N100m current sources in the both hemispheres during the time before the N100m reaches at the peak strength and 5ms after the peak. A hemispheric asymmetry was evaluated as the asymmetry index based on the ratio of N100m peak dipole strength between right and left hemispheres for either ear stimulation. The results of asymmetry indices showed right-hemispheric dominance for left ear stimulation but no hemispheric dominance for right ear stimulation. The current sources for N100m in both hemispheres in response to monaural 400Hz stimulation moved toward anterolateral direction along the long axis of the Heschl gyri during the time before it reaches the peak strength; the ipsilateral N100m sources were located slightly posterior to the contralateral N100m ones. The onset and peak latencies of the right hemispheric N100m in response to right ear stimulation are shorter than those of the left hemispheric N100m to left ear stimulation. The traveling distance of the right hemispheric N100m sources following right ear stimulation was longer than that for the left hemispheric ones following left ear stimulation. These results suggest the right-dominant hemispheric asymmetry in pure tone processing.

  17. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P;

    2001-01-01

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schiz......A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before...

  18. Long Latency Auditory Evoked Potentials during Meditation.

    Science.gov (United States)

    Telles, Shirley; Deepeshwar, Singh; Naveen, Kalkuni Visweswaraiah; Pailoor, Subramanya

    2015-10-01

    The auditory sensory pathway has been studied in meditators, using midlatency and short latency auditory evoked potentials. The present study evaluated long latency auditory evoked potentials (LLAEPs) during meditation. Sixty male participants, aged between 18 and 31 years (group mean±SD, 20.5±3.8 years), were assessed in 4 mental states based on descriptions in the traditional texts. They were (a) random thinking, (b) nonmeditative focusing, (c) meditative focusing, and (d) meditation. The order of the sessions was randomly assigned. The LLAEP components studied were P1 (40-60 ms), N1 (75-115 ms), P2 (120-180 ms), and N2 (180-280 ms). For each component, the peak amplitude and peak latency were measured from the prestimulus baseline. There was significant decrease in the peak latency of the P2 component during and after meditation (Pmeditation facilitates the processing of information in the auditory association cortex, whereas the number of neurons recruited was smaller in random thinking and non-meditative focused thinking, at the level of the secondary auditory cortex, auditory association cortex and anterior cingulate cortex.

  19. Conventional and cross-correlation brain-stem auditory evoked responses in the white leghorn chick: rate manipulations

    Science.gov (United States)

    Burkard, R.; Jones, S.; Jones, T.

    1994-01-01

    Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    Directory of Open Access Journals (Sweden)

    Bram Van Dun

    2012-01-01

    Full Text Available

    Background: Cortical auditory evoked potentials (CAEPs are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs.

    Design and methods: Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry (VROA. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB SPL, and CAEP recordings were made. An automatic statistical detection paradigm was used for CAEP detection.

    Results: For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72 ± 10, 75 ± 10, and 78 ± 12%. In 79% of the cases, automatic detection p-values became smaller when the sensation level was increased by 10 dB.

    Conclusions: The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP provides confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less.

  1. State-dependent variations in brainstem auditory evoked responses in human subjects.

    Science.gov (United States)

    Sersen, E A; Majkowski, J; Clausen, J; Heaney, G M

    1984-12-01

    BAERs from 16 subjects during 3 sessions varied in the latency or amplitude of some components depending upon level of arousal as indicated by EEG patterns. There was a general tendency for activation to produce the fastest responses with the largest amplitudes and for drowsiness to produce the slowest responses with the smallest amplitudes. The latency of P2 was significantly prolonged during drowsiness, relative to those during relaxation or activation. For right-ear stimulation, P5 latency was longest during drowsiness, and shortest during activation while for left-ear stimulation the shortest latency occurred during relaxation. The amplitudes of Wave II and Wave VII were significantly smaller during drowsiness than during activation. Although the differences were below the level of clinical significance, the data indicate a modification in the characteristics of brainstem transmission as a function of concurrent activity in other brain areas.

  2. Brain-stem auditory evoked responses during microvascular decompression for trigeminal neuralgia: Predicting post-operative hearing loss

    Directory of Open Access Journals (Sweden)

    Ramnarayan Ramachandran

    2006-01-01

    Full Text Available Context: The importance of brainstem auditory evoked potential monitoring in reducing hearing loss during microvascular decompression for trigeminal neuralgia is now accepted. However the extent of the changes in the pattern of these potentials and the safe limits to which these changes are relevant in reducing postoperative hearing loss have not been established. Aims: The aim of this study is to quantify these changes and relate these to the postoperative hearing loss. Settings and Design: This study was done at the Walton Centre for neurology and neurosurgery, Liverpool, United Kingdom. The study was designed to give a measure of the change in the wave pattern following microvascular decompression and relate it to postoperative hearing loss. Materials and Methods: Seventy-five patients undergoing microvascular decompression for trigeminal neuralgia had preoperative and postoperative hearing assessments and intraoperative brainstem auditory evoked potential monitoring. Statistical Analysis Used: Chi-square tests. Results: It was found that the wave V latency was increased by more than 0.9ms in nine patients, eight of whom suffered significant postoperative hearing loss as demonstrated by audiometry. It was also seen that progressive decrease in amplitude of wave V showed progressive hearing loss with 25% loss when amplitude fell by 50 and 100% loss when wave V was lost completely. However most of the patients did not have a clinically manifest hearing loss. Conclusions: A per-operative increase in the latency of wave V greater than 0.9 ms and a fall of amplitude of wave V of more than 50% indicates a risk to hearing.

  3. [Auditory-evoked responses to a monaural or a binaural click, recorded from the vertex, as in two temporal derivations; effect of interaural time differences (author's transl)].

    Science.gov (United States)

    Botte, M C; Chocholle, R

    1976-01-01

    The auditory-evoked responses have been recorded on 5 subject by vertex, right temporal and left temporal electrodes simultaneously. 30 dB sensation level clicks were used as stimuli; one click was presented only to the right ear, or one click only to the left ear, or one click to the right ear and another click to the left ear with a variable interaural time difference in this latter case (0-150 ms). The N-P amplitude variations and the N and P latency variations have been studied and compared to those observed in the perceived lateralizations of the sound source.

  4. Changes of brainstem auditory and somatosensory evoked

    Institute of Scientific and Technical Information of China (English)

    Yang Jian

    2000-01-01

    Objective: to investigate the characteristics and clinical value of evoked potentials in late infantile form of metachromatic leukodystrophy. Methods: Brainstem auditory, and somatosensory evoked potentials were recorded in 6 patients, and compared with the results of CT scan. Results: All of the 6 patients had abnormal results of BAEP and MNSEP. The main abnormal parameters in BAEP were latency prolongation in wave I, inter-peak latency prolongation in Ⅰ-Ⅲ and Ⅰ-Ⅴ. The abnormal features of MNSEP were low amplitude and absence of wave N9, inter-Peak latency prolongation in Ng-N13 and N13-N20, but no significant change of N20 amplitude. The results also revealed that abnormal changes in BAEP and MNSEP were earlier than that in CT. Conclusion: The detection of BAEP and MNSEP in late infantile form of metachromatic leukodystrophy might early reveal the abnormality of conductive function in nervous system and might be a useful method in diagnosis.

  5. Auditory evoked potentials in peripheral vestibular disorder individuals

    Directory of Open Access Journals (Sweden)

    Matas, Carla Gentile

    2011-07-01

    Full Text Available Introduction: The auditory and vestibular systems are located in the same peripheral receptor, however they enter the CNS and go through different ways, thus creating a number of connections and reaching a wide area of the encephalon. Despite going through different ways, some changes can impair both systems. Such tests as Auditory Evoked Potentials can help find a diagnosis when vestibular alterations are seen. Objective: describe the Auditory Evoked Potential results in individuals complaining about dizziness or vertigo with Peripheral Vestibular Disorders and in normal individuals having the same complaint. Methods: Short, middle and long latency Auditory Evoked Potentials were performed as a transversal prospective study. Conclusion: individuals complaining about dizziness or vertigo can show some changes in BAEP (Brainstem Auditory Evoked Potential, MLAEP (Medium Latency Auditory Evoked Potential and P300.

  6. Recording of electrically evoked auditory brainstem responses (E-ABR) with an integrated stimulus generator in Matlab.

    Science.gov (United States)

    Bahmer, Andreas; Peter, Otto; Baumann, Uwe

    2008-08-30

    Electrical auditory brainstem responses (E-ABRs) of subjects with cochlear implants are used for monitoring the physiologic responses of early signal processing of the auditory system. Additionally, E-ABR measurements allow the diagnosis of retro-cochlear diseases. Therefore, E-ABR should be available in every cochlear implant center as a diagnostic tool. In this paper, we introduce a low-cost setup designed to perform an E-ABR as well as a conventional ABR for research purposes. The distributable form was developed with Matlab and the Matlab Compiler (The Mathworks Inc.). For the ABR, only a PC with a soundcard, conventional system headphones, and an EEG pre-amplifier are necessary; for E-ABR, in addition, an interface to the cochlea implant is required. For our purposes, we implemented an interface for the Combi 40+/Pulsar implant (MED-EL, Innsbruck).

  7. Study of the central auditive pathway by encephalic trunk evoked e auditory responses (ear) in children with language retard

    OpenAIRE

    Gallardo, Manuel; Servicio de Otorrinolaringología, Hospital Central de la Fuerza Aérea del Perú; Vera, Carlos; Servicio de Otorrinolaringología, Hospital Central de la Fuerza Aérea del Perú

    2013-01-01

    Objetive: To determine the functional integrity of the brainstem auditory pathway by the auditive brainstem response (ABR) in language-retarded children without pathology in both the middle ear and central nervous system and no neonatal hearing loss risk factors. Design: Retrospective transversal study. Setting: Naval Medical Center and Air Force Central Hospital Otorhinolaryngology Services, Lima. Peru. Material and methods: Analysis of children’s ABR performed in the last ten years included...

  8. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men.

    Science.gov (United States)

    Arnfred, S M; Eder, D N; Hemmingsen, R P; Glenthøj, B Y; Chen, A C

    2001-04-15

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schizophrenia, we might expect the processing deficits to act on multiple modalities. We have examined the gating of median nerve somatosensory EP (SEP) following paired stimulation identical to the AEP P50 gating paradigm using interstimulus intervals (ISI) of 500, 750 and 1000 ms and the correlation of gating to the skin conductance orienting response (SCOR) in 20 healthy men. We measured mid-latency vertex components (SEP: P50, N65, P85 and N100; AEP: P30, N45, P50 and N80). The gating was most pronounced at ISI 500 ms where the SEP P50 and N100 gating were 0.59 and 0.37, respectively, as compared to a gating of 0.61 in P30, 0.33 in P50 and 0.45 in N80 in the AEP. Repetition effects in the two modalities were not correlated. AEP P50 gating was correlated to skin conductance level (SCL). The combination of recording repetition effects on the mid-latency EP in two modalities could provide a method for investigating if deficits of information processing in schizophrenia are cross-modal.

  9. Enhanced auditory evoked potentials in musicians:A review of recent findings

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Auditory evoked potentials serve as an objective mode for assessment to check the functioning of the auditory system and neuroplasticity. Literature has reported enhanced electrophysiological responses in musicians, which shows neuroplasticity in musicians. Various databases including PubMed, Google, Google Scholar and Medline were searched for references related to auditory evoked potentials in musicians from 1994 till date. Different auditory evoked potentials in musicians have been summarized in the present article. The findings of various studies may support as evidences for music-induced neuroplasticity which can be used for the treatment of various clinical disorders. The search results showed enhanced auditory evoked potentials in musicians compared to non-musicians from brainstem to cortical levels. Also, the present review showed enhanced attentive and pre-attentive skills in musicians compared to non-musicians.

  10. Resting Heart Rate and Auditory Evoked Potential

    Directory of Open Access Journals (Sweden)

    Simone Fiuza Regaçone

    2015-01-01

    Full Text Available The objective of this study was to evaluate the association between rest heart rate (HR and the components of the auditory evoked-related potentials (ERPs at rest in women. We investigated 21 healthy female university students between 18 and 24 years old. We performed complete audiological evaluation and measurement of heart rate for 10 minutes at rest (heart rate monitor Polar RS800CX and performed ERPs analysis (discrepancy in frequency and duration. There was a moderate negative correlation of the N1 and P3a with rest HR and a strong positive correlation of the P2 and N2 components with rest HR. Larger components of the ERP are associated with higher rest HR.

  11. Evaluation of auditory brain-stem evoked response in middle: Aged type 2 diabetes mellitus with normal hearing subjects

    Directory of Open Access Journals (Sweden)

    Debadatta Mahallik

    2014-01-01

    Full Text Available Background: Diabetes mellitus (DM is commonly metabolic disorders of carbohydrate in which blood glucose levels are abnormally high due to relative or absolute insulin deficiency. In addition, it is characterized by abnormal metabolism of fat, protein resulting from insulin deficit or insulin action, or both. There are two broad categories of DM are designated as type 1 and type 2. Type 2 diabetes is due to predominantly insulin resistance with relative insulin deficiency noninsulin-dependent DM. Type 2 diabetes is much more common than insulin-dependent DM. Objectives: The aim of this study was to assess, if there is any abnormality in neural conduction in auditory brain-stem pathway in type 2 DM patients having normal hearing sensitivity when compared to age-matched healthy populations. Materials and Methods: This study included middle - aged 25 subjects having normal hearing with diabetes type 2 mellitus. All were submitted to the full audiological history taking, otological examination, basic audiological evaluation and auditory brain-stem response audiometry which was recorded in both ears, followed by calculation of the absolute latencies of wave I, III and V, as well as interpeak latencies I-III, III-V, I-V. Results: Type 2 DM patients showed significant prolonged absolute latencies of I, III (P = 0.001 and interpeak latencies I-III, III-V and I-V in left ear (P = 0.001 and absolute latencies of I, V (P = 0.001, interpeak latencies III-V was statistically significant in right ear. Conclusions: The prolonged absolute latencies and interpeak latencies suggests abnormal neural firing synchronization or in the transmission in the auditory pathways in normal hearing type 2 diabetes mellitus patients.

  12. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  13. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  14. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.

    Science.gov (United States)

    Slugocki, Christopher; Bosnyak, Daniel; Trainor, Laurel J

    2017-03-01

    Recent electrophysiological work has evinced a capacity for plasticity in subcortical auditory nuclei in human listeners. Similar plastic effects have been measured in cortically-generated auditory potentials but it is unclear how the two interact. Here we present Simultaneously-Evoked Auditory Potentials (SEAP), a method designed to concurrently elicit electrophysiological brain potentials from inferior colliculus, thalamus, and primary and secondary auditory cortices. Twenty-six normal-hearing adult subjects (mean 19.26 years, 9 male) were exposed to 2400 monaural (right-ear) presentations of a specially-designed stimulus which consisted of a pure-tone carrier (500 or 600 Hz) that had been amplitude-modulated at the sum of 37 and 81 Hz (depth 100%). Presentation followed an oddball paradigm wherein the pure-tone carrier was set to 500 Hz for 85% of presentations and pseudo-randomly changed to 600 Hz for the remaining 15% of presentations. Single-channel electroencephalographic data were recorded from each subject using a vertical montage referenced to the right earlobe. We show that SEAP elicits a 500 Hz frequency-following response (FFR; generated in inferior colliculus), 80 (subcortical) and 40 (primary auditory cortex) Hz auditory steady-state responses (ASSRs), mismatch negativity (MMN) and P3a (when there is an occasional change in carrier frequency; secondary auditory cortex) in addition to the obligatory N1-P2 complex (secondary auditory cortex). Analyses showed that subcortical and cortical processes are linked as (i) the latency of the FFR predicts the phase delay of the 40 Hz steady-state response, (ii) the phase delays of the 40 and 80 Hz steady-state responses are correlated, and (iii) the fidelity of the FFR predicts the latency of the N1 component. The SEAP method offers a new approach for measuring the dynamic encoding of acoustic features at multiple levels of the auditory pathway. As such, SEAP is a promising tool with which to study how

  15. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    Science.gov (United States)

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  16. Cervical vestibular evoked myogenic potentials and caloric test results in individuals with auditory neuropathy spectrum disorders.

    Science.gov (United States)

    Sujeet, Kumar Sinha; Niraj, Kumar Singh; Animesh, Barman; Rajeshwari, G; Sharanya, R

    2014-01-01

    Auditory neuropathy spectrum disorder is a type of hearing loss where outer hair cell function are normal (as evidenced by the preservation of OAEs and cochlear microphonics), whereas auditory nerve functions are abnormal (as evidenced by abnormal auditory brainstem evoked potentials beginning with wave I of the ABR) and acoustic reflexes to ipsilateral and contralateral tones are absent. It is likely that in cases with auditory neuropathy spectrum disorder not only the cochlear nerve, but also the vestibular nerves might get involved. The present study was conducted with an aim of finding out the inferior and superior vestibular nerve involvement through cervical vestibular evoked myogenic potentials and Caloric test results respectively in individuals with Auditory Neuropathy Spectrum Disorders. Total 26 participants who fulfilled the criteria of auditory neuropathy spectrum disorder participated for the study. Vestibular evoked myogenic potentials results showed absence of responses from most of the subjects also caloric responses showed bilateral hypofunctional responses in most of the participants, which is suggestive of involvement of both the inferior as well as superior vestibular nerve in individuals with auditory neuropathy spectrum disorders. Additionally there was no association between the pattern and degree of hearing loss to caloric test results and vestibular evoked myogenic potentials results findings.

  17. Comparison of threshold estimation in infants with hearing loss or normal hearing using auditory steady-state response evoked by narrow band CE-chirps and auditory brainstem response evoked by tone pips

    DEFF Research Database (Denmark)

    Michel, Franck; Jørgensen, Kristoffer Foldager

    2016-01-01

    OBJECTIVE: The objective of this study is to compare air-conduction thresholds obtained with ASSR evoked by narrow band (NB) CE-chirps and ABR evoked by tone pips (tpABR) in infants with various degrees of hearing loss. DESIGN: Thresholds were measured at 500, 1000, 2000 and 4000 Hz. Data on each...... participant were collected at the same day. STUDY SAMPLE: Sixty-seven infants aged 4 d to 22 months (median age = 96 days), resulting in 57, 52, 87 and 56 ears for 500, 1000, 2000 and 4000 Hz, respectively. RESULTS: Statistical analysis was performed for ears with hearing loss (HL) and showed a very strong.......7). Linear regression analysis indicated that the relationship was not influenced by the degree of hearing loss. CONCLUSION: We propose that dB nHL to dB eHL correction values for ASSR evoked by NB CE-chirps should be 5 dB lower than values used for tpABR....

  18. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    for the chirp-evoked ABRs indicated a relation to SRTs and the ability to process temporal fine structure. Overall, the results demonstrate the importance of low-frequency temporal processing for speech reception which can be affected even if pure-tone sensitivity is close to normal....

  19. Bayesian Modeling of the Dynamics of Phase Modulations and their Application to Auditory Evoked Responses at Different Loudness Scales

    Directory of Open Access Journals (Sweden)

    Zeinab eMortezapouraghdam

    2016-01-01

    Full Text Available We study the effect of long-term habituation signatures of auditory selective attention reflected in the instantaneous phase information of the auditory event-related potentials (ERPs at four distinct stimuli levels of 60dB SPL, 70dB SPL, 80dB SPL and 90dB SPL. The analysis is based on the single-trial level. The effect of habituation can be observed in terms of the changes (jitter in the instantaneous phase information of ERPs. In particular, the absence of habituation is correlated with a consistently high phase synchronization over ERP trials.We estimate the changes in phase concentration over trials using a Bayesian approach, in which the phase is modeled as being drawn from a von Mises distribution with a concentration parameter which varies smoothly over trials. The smoothness assumption reflects the fact that habituation is a gradual process.We differentiate between different stimuli based on the relative changes and absolute values of the estimated concentration parameter using the proposed Bayesian model.

  20. Temporal resolution in the hearing system and auditory evoked potentials

    DEFF Research Database (Denmark)

    Miller, Lee; Beedholm, Kristian

    2008-01-01

    3pAB5. Temporal resolution in the hearing system and auditory evoked potentials. Kristian Beedholm Institute of Biology,University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark, beedholm@mail.dk, Lee A. Miller Institute of Biology,University of Southern Denmark, Campusvej 55, 5230...... Odense M, Denmark, lee@biology.sdu.dkA popular type of investigation with auditory evoked potentials AEP consists of mapping the dependency of the envelope followingresponse to the AM frequency. This results in what is called the modulation rate transfer function MRTF. The physiologicalinterpretation...... of the MRTF is not straight forward, but is often used as a measure of the ability of the auditory system to encodetemporal changes. It is, however, shown here that the MRTF must depend on the waveform of the click-evoked AEP ceAEP, whichdoes not relate directly to temporal resolution. The theoretical...

  1. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  2. Vestibular receptors contribute to cortical auditory evoked potentials.

    Science.gov (United States)

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin.

  3. The frequency modulated auditory evoked response (FMAER, a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    Directory of Open Access Journals (Sweden)

    Duffy Frank H

    2013-01-01

    Full Text Available Abstract Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS, and autism spectrum disorder (ASD and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent

  4. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Directory of Open Access Journals (Sweden)

    Jorge Arrubla

    Full Text Available Simultaneous recording of electroencephalography (EEG and functional magnetic resonance imaging (fMRI has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP. Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  5. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Science.gov (United States)

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  6. A programmable acoustic stimuli and auditory evoked potential measurement system for objective tinnitus diagnosis research.

    Science.gov (United States)

    Ku, Yunseo; Ahn, Joong Woo; Kwon, Chiheon; Suh, Myung-Whan; Lee, Jun Ho; Oh, Seung Ha; Kim, Hee Chan

    2014-01-01

    This paper presents the development of a single platform that records auditory evoked potential synchronized to specific acoustic stimuli of the gap prepulse inhibition method for objective tinnitus diagnosis research. The developed system enables to program various parameters of the generated acoustic stimuli. Moreover, only by simple filter modification, the developed system provides high flexibility to record not only short latency auditory brainstem response but also late latency auditory cortical response. The adaptive weighted averaging algorithm to minimize the time required for the experiment is also introduced. The results show that the proposed algorithm can reduce the number of the averaging repetitions to 70% compared with conventional ensemble averaging method.

  7. Brainstem auditory evoked potentials in children with lead exposure

    Directory of Open Access Journals (Sweden)

    Katia de Freitas Alvarenga

    2015-02-01

    Full Text Available Introduction: Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. Objective: To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Methods: Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months. Results: The mean time-integrated cumulative blood lead index was 12 µg/dL (SD ± 5.7, range:2.433. All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. Conclusion: No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area.

  8. Auditory evoked fields elicited by spectral, temporal, and spectral-temporal changes in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Hidehiko eOkamoto

    2012-05-01

    Full Text Available Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral-temporal sound changes by means of magnetoencephalography (MEG. The auditory evoked responses elicited by the spectral-temporal change were very similar to those elicited by the spectral change, but those elicited by the temporal change were delayed by 30 – 50 ms and differed from the others in morphology. The results suggest that human brain responses corresponding to spectral sound changes precede those corresponding to temporal sound changes, even when the spectral and temporal changes occur simultaneously.

  9. [Effect of sleep deprivation on visual evoked potentials and brain stem auditory evoked potentials in epileptics].

    Science.gov (United States)

    Urumova, L T; Kovalenko, G A; Tsunikov, A I; Sumskiĭ, L I

    1984-01-01

    The article reports on the first study of the evoked activity of the brain in epileptic patients (n = 20) following sleep deprivation. An analysis of the data obtained has revealed a tendency to the shortening of the peak latent intervals of visual evoked potentials in the range of 100-200 mu sec and the V component and the interpeak interval III-V of evoked auditory trunk potentials in patients with temporal epilepsy. The phenomenon may indicate the elimination of stabilizing control involving the specific conductive pathways and, possibly, an accelerated conduction of a specific sensor signal.

  10. Brainstem auditory evoked potential abnormalities in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Sharat Gupta

    2013-01-01

    Full Text Available Background: Diabetes mellitus represents a syndrome complex in which multiple organ systems, including the central nervous system, are affected. Aim: The study was conducted to determine the changes in the brainstem auditory evoked potentials in type 2 diabetes mellitus. Materials and Methods: A cross sectional study was conducted on 126 diabetic males, aged 35-50 years, and 106 age-matched, healthy male volunteers. Brainstem auditory evoked potentials were recorded and the results were analyzed statistically using student′s unpaired t-test. The data consisted of wave latencies I, II, III, IV, V and interpeak latencies I-III, III-V and I-V, separately for both ears. Results: The latency of wave IV was significantly delayed only in the right ear, while the latency of waves III, V and interpeak latencies III-V, I-V showed a significant delay bilaterally in diabetic males. However, no significant difference was found between diabetic and control subjects as regards to the latency of wave IV unilaterally in the left ear and the latencies of waves I, II and interpeak latency I-III bilaterally. Conclusion: Diabetes patients have an early involvement of central auditory pathway, which can be detected with fair accuracy with auditory evoked potential studies.

  11. Auditory Responses of Infants

    Science.gov (United States)

    Watrous, Betty Springer; And Others

    1975-01-01

    Forty infants, 3- to 12-months-old, participated in a study designed to differentiate the auditory response characteristics of normally developing infants in the age ranges 3 - 5 months, 6 - 8 months, and 9 - 12 months. (Author)

  12. Audiological assessment value of click-evoked auditory brainstem response combined with single stimulation of the auditory steady-state evoked response on normal young people%听性脑干诱发电位结合单刺激听觉稳态诱发反应对正常青年人听阈正常值评估的探讨

    Institute of Scientific and Technical Information of China (English)

    李倩庆; 宋江顺; 刘文婷

    2013-01-01

    目的 分析正常青年人多频刺激听觉稳态诱发电位(multiple stimuli auditory steady-state response,m-ASSR)、单频刺激听觉稳态诱发电位(single stimulusauditory steady-state response,s-ASSR)、听性脑干诱发电位(click-evoked auditory brain stem response,CABR)、纯音听力测试(pure tone auditory,PTA)阈值,探讨C-ABR结合0.5、1 kHz s-ASSR在正常青年人中反应阈的正常值.方法 对听力正常青年人(43人,共86耳)分别行PTA、m-ASSR、0.5、1.0 kHz s-ASSR、C-ABR检查.将PTA、m-ASSR、听力测试组合(C-ABR结合0.5、1 kHzs-ASSR反应阈)结果行f检验、线性回归分析等统计学分析.结果 ①0.5、1、2、4 kHz处,听力测试组合反应阈高于PTA;除1 kHz外其他频率均较m-ASSR反应阈接近PTA;②0.5、1、2、4 kHz处,听力测试组合反应阈预测PTA的回归方程分别为:y=0.75x-4.53,y=0.56x-4.46,y=0.62x-7.70和y=0.92x-12.66.结论 正常青年人中ASSR反应阈与PTA、C-ABR V波反应阈有一定的差值;听力测试组合较m-ASSR更接近PTA;听力测试组合可以更准确、更可靠评估正常成年人听阈水平.

  13. Chronic exposure to broadband noise at moderate sound pressure levels spatially shifts tone-evoked responses in the rat auditory midbrain.

    Science.gov (United States)

    Lau, Condon; Pienkowski, Martin; Zhang, Jevin W; McPherson, Bradley; Wu, Ed X

    2015-11-15

    Noise-induced hearing disorders are a significant public health concern. One cause of such disorders is exposure to high sound pressure levels (SPLs) above 85 dBA for eight hours/day. High SPL exposures occur in occupational and recreational settings and affect a substantial proportion of the population. However, an even larger proportion is exposed to more moderate SPLs for longer durations. Therefore, there is significant need to better understand the impact of chronic, moderate SPL exposures on auditory processing, especially in the absence of hearing loss. In this study, we applied functional magnetic resonance imaging (fMRI) with tonal acoustic stimulation on an established broadband rat exposure model (65 dB SPL, 30 kHz low-pass, 60 days). The auditory midbrain response of exposed subjects to 7 kHz stimulation (within exposure bandwidth) shifts dorsolaterally to regions that typically respond to lower stimulation frequencies. This shift is quantified by a region of interest analysis that shows that fMRI signals are higher in the dorsolateral midbrain of exposed subjects and in the ventromedial midbrain of control subjects (pmidbrain regions above the exposure bandwidth spatially expand due to exposure. This expansion shifts lower frequency regions dorsolaterally. Similar observations have previously been made in the rat auditory cortex. Therefore, moderate SPL exposures affect auditory processing at multiple levels, from the auditory cortex to the midbrain.

  14. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathway

    Science.gov (United States)

    Darrow, Keith N.; Slama, Michaël C. C.; Owoc, Maryanna; Kozin, Elliott; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M. Christian; Lee, Daniel J.

    2016-01-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway, and it measured the evoked response to optical stimulation. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL acoustic click stimulus. This broad pattern of activity was consistent with histological confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics will be necessary to convey information in rates typical of many auditory signals. PMID:25481416

  15. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.

    Science.gov (United States)

    Darrow, Keith N; Slama, Michaël C C; Kozin, Elliott D; Owoc, Maryanna; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M Christian; Lee, Daniel J

    2015-03-02

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway and whether it elicited an evoked response. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of the central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50dB SPL acoustic click. This broad pattern of activity was consistent with histological confirmation of green fluorescent protein (GFP) label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics may be necessary to convey information at rates typical of many auditory signals.

  16. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    Science.gov (United States)

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons.

  17. 年龄对言语诱发 ABR 的频率跟随反应影响%The Effects of Aging on Frequency Following Response in Speech Evoked Auditory Brainstem Response

    Institute of Scientific and Technical Information of China (English)

    郝文洋; 商莹莹; 倪道凤; 姜鸿; 徐春晓; 高志强; 王素菊; 李奉蓉; 赵翠霞

    2016-01-01

    Objective This study was to record the speech evoked auditory brainstem response (s-ABR) of normal hearing young and aged people ,then compared the frequency following responses (FFR) of s-ABR between the two groups ,in order to explore the contribution of FFR on revealing possible aging mechanisms of central audi‐tory system .Methods Twelve normal hearing young adults and aged people respectively (24 ears) were enrolled and s-ABRs (syllable/da/) were recorded using a SmartEP auditory evoked potential system .Results The comparison of waveforms between the two groups showed that the wave latencies of transient responses in the aged group was longer than that of young group ,while the wave latencies of the sustained response ,FFR ,were of no significant differences .The amplitudes of FFR waves in the aged group were lower than those of in the young group .The FFR spectrum analysis showed that the relative energy of each formant for the aged group was lower than that of in the young group and for some formants .Moreover ,for the aged group ,formant frequency differences between FFR and stimulus signal were greater than the young group .Conclusion Compared with young people ,the FFR of aged peo‐ple showed lower amplitudes and less accuracy ,meaning that aging can lead to the weakness of the brainstem neurons'spectral encoding ability .It may be one of the mechanisms causing the reduction of speech recognition in presbycusis patients .%目的:分析听力正常青年人与老年人之间言语诱发听性脑干反应(speech evoked auditory brainstem response ,s-ABR)的频率跟随反应(frequency following response ,FFR)差异,探讨其在揭示听觉系统老化机制中的作用。方法应用SmartEP听觉诱发电位系统对听力正常青年人(18~25岁)与老年人(60~70岁)各12例(24耳)进行言语声信号/da/诱发的s-ABR检测,比较两组s -ABR波形图及频谱图、FFR各波潜伏期及共振峰等。结

  18. Brainstem auditory-evoked potentials in two meditative mental states

    Directory of Open Access Journals (Sweden)

    Kumar Sanjay

    2010-01-01

    Full Text Available Context: Practicing mental repetition of "OM" has been shown to cause significant changes in the middle latency auditory-evoked potentials, which suggests that it facilitates the neural activity at the mesencephalic or diencephalic levels. Aims: The aim of the study was to study the brainstem auditory-evoked potentials (BAEP in two meditation states based on consciousness, viz. dharana, and dhyana. Materials and Methods: Thirty subjects were selected, with ages ranging from 20 to 55 years (M=29.1; ±SD=6.5 years who had a minimum of 6 months experience in meditating "OM". Each subject was assessed in four sessions, i.e. two meditation and two control sessions. The two control sessions were: (i ekagrata, i.e. single-topic lecture on meditation and (ii cancalata, i.e. non-targeted thinking. The two meditation sessions were: (i dharana, i.e. focusing on the symbol "OM" and (ii dhyana, i.e. effortless single-thought state "OM". All four sessions were recorded on four different days and consisted of three states, i.e. pre, during and post. Results: The present results showed that the wave V peak latency significantly increased in cancalata, ekagrata and dharana, but no change occurred during the dhyana session. Conclusions: These results suggested that information transmission along the auditory pathway is delayed during cancalata, ekagrata and dharana, but there is no change during dhyana. It may be said that auditory information transmission was delayed at the inferior collicular level as the wave V corresponds to the tectum.

  19. Auditory sustained field responses to periodic noise

    Directory of Open Access Journals (Sweden)

    Keceli Sumru

    2012-01-01

    Full Text Available Abstract Background Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. Results Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. Conclusions The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.

  20. Characteristics of brain stem auditory evoked potentials in children with hearing impairment due to infectious diseases.

    Science.gov (United States)

    Ječmenica, Jovana Radovan; Opančina, Aleksandra Aleksandar Bajec

    2015-05-01

    Among objective audiologic tests, the most important were tests of brain stem auditory evoked potentials. The objective of the study was to test the configuration, degree of hearing loss, and response characteristics of auditory brain stem evoked potentials in children with hearing loss occurred due to infectious disease. A case control study design was used. The study group consisted of 54 patients referred for a hearing test because of infectious diseases caused by other agents or that occurred as congenital infection. Infectious agents have led to the emergence of various forms of sensorineural hearing loss. We have found deviations from the normal values of absolute and interwave latencies in some children in our group. We found that in the group of children who had the diseases such as purulent meningitis, or were born with rubella virus and cytomegalovirus infection, a retrocochlear damage was present in children with and without cochlear damage.

  1. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    OpenAIRE

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J.; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M.; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p

  2. Speaking modifies voice-evoked activity in the human auditory cortex.

    Science.gov (United States)

    Curio, G; Neuloh, G; Numminen, J; Jousmäki, V; Hari, R

    2000-04-01

    The voice we most often hear is our own, and proper interaction between speaking and hearing is essential for both acquisition and performance of spoken language. Disturbed audiovocal interactions have been implicated in aphasia, stuttering, and schizophrenic voice hallucinations, but paradigms for a noninvasive assessment of auditory self-monitoring of speaking and its possible dysfunctions are rare. Using magnetoencephalograpy we show here that self-uttered syllables transiently activate the speaker's auditory cortex around 100 ms after voice onset. These phasic responses were delayed by 11 ms in the speech-dominant left hemisphere relative to the right, whereas during listening to a replay of the same utterances the response latencies were symmetric. Moreover, the auditory cortices did not react to rare vowel changes interspersed randomly within a series of repetitively spoken vowels, in contrast to regular change-related responses evoked 100-200 ms after replayed rare vowels. Thus, speaking primes the human auditory cortex at a millisecond time scale, dampening and delaying reactions to self-produced "expected" sounds, more prominently in the speech-dominant hemisphere. Such motor-to-sensory priming of early auditory cortex responses during voicing constitutes one element of speech self-monitoring that could be compromised in central speech disorders.

  3. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  4. Auditory evoked fields to vocalization during passive listening and active generation in adults who stutter.

    Science.gov (United States)

    Beal, Deryk S; Cheyne, Douglas O; Gracco, Vincent L; Quraan, Maher A; Taylor, Margot J; De Nil, Luc F

    2010-10-01

    We used magnetoencephalography to investigate auditory evoked responses to speech vocalizations and non-speech tones in adults who do and do not stutter. Neuromagnetic field patterns were recorded as participants listened to a 1 kHz tone, playback of their own productions of the vowel /i/ and vowel-initial words, and actively generated the vowel /i/ and vowel-initial words. Activation of the auditory cortex at approximately 50 and 100 ms was observed during all tasks. A reduction in the peak amplitudes of the M50 and M100 components was observed during the active generation versus passive listening tasks dependent on the stimuli. Adults who stutter did not differ in the amount of speech-induced auditory suppression relative to fluent speakers. Adults who stutter had shorter M100 latencies for the actively generated speaking tasks in the right hemisphere relative to the left hemisphere but the fluent speakers showed similar latencies across hemispheres. During passive listening tasks, adults who stutter had longer M50 and M100 latencies than fluent speakers. The results suggest that there are timing, rather than amplitude, differences in auditory processing during speech in adults who stutter and are discussed in relation to hypotheses of auditory-motor integration breakdown in stuttering.

  5. Influence of the power-spectrum of the pre-stimulus EEG on the consecutive Auditory Evoked Potential in rats.

    NARCIS (Netherlands)

    Jongsma, M.L.A.; Quian Quiroga, R.; Rijn, C.M. van; Schaijk, W.J. van; Dirksen, R.; Coenen, A.M.L.

    2000-01-01

    Evoked Potentials (EPs) are responses that appear in the EEG due to external stimulation. Findings indicate that changes in EPs can be related to changes in frequencies of the pre-stimulus EEG. Auditory EPs of rats (n=8) were measured in reaction to tone-pip stimuli (90 dB, 10.2 kHz, ISI 2s, n=1500)

  6. Evaluation of New Methods for Artifacts Rejection in Evoked Auditory Steady-State Potentials

    Directory of Open Access Journals (Sweden)

    Cyndi González Alfonso

    2014-11-01

    Full Text Available This paper presents two alternative methods to the traditional method of artifact rejectionequipment currently used in evoked potential recording steady state (ASSR in order to improveefficiency based on the use of a larger number of individual records. The first method proposedis to replace the traditional use of rejection threshold amplitude, while the second version is afaster implementation of the weighted averaging used today, which is applicable also in thetransient Auditory Brainstem Response (ABR. These changes have been made in order toimplement these methods in a real time microprocessor.

  7. Assessment of an ICA-based noise reduction method for multi-channel auditory evoked potentials

    Science.gov (United States)

    Mirahmadizoghi, Siavash; Bell, Steven; Simpson, David

    2015-03-01

    In this work a new independent component analysis (ICA) based method for noise reduction in evoked potentials is evaluated on for auditory late responses (ALR) captured with a 63-channel electroencephalogram (EEG) from 10 normal-hearing subjects. The performance of the new method is compared with a single channel alternative in terms of signal to noise ratio (SNR), the number of channels with an SNR above an empirically derived statistical critical value and an estimate of hearing threshold. The results show that the multichannel signal processing method can significantly enhance the quality of the signal and also detected hearing thresholds significantly lower than with the single channel alternative.

  8. [Brainstem auditory evoked potentials and somatosensory evoked potentials in Chiari malformation].

    Science.gov (United States)

    Moncho, Dulce; Poca, María A; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan

    2013-06-16

    Introduccion. La malformacion de Chiari (MC) incluye una serie de anomalias congenitas que tienen como comun denominador la ectopia de las amigdalas del cerebelo por debajo del foramen magno, lo que puede condicionar fenomenos compresivos del troncoencefalo, la medula espinal alta y los nervios craneales, alterando las respuestas de los potenciales evocados auditivos del tronco cerebral (PEATC) y de los potenciales evocados somatosensoriales (PESS). Sin embargo, las indicaciones de ambas exploraciones en las MC han sido motivo de estudio en un numero limitado de publicaciones, centradas en series cortas y heterogeneas de pacientes. Objetivo. Revisar los hallazgos de los PEATC y los PESS en los estudios publicados en pacientes con MC tipo 1 (MC-1) o tipo 2 (MC-2), y su indicacion en el diagnostico, tratamiento y seguimiento, especialmente en la MC-1. Desarrollo. Es un estudio de revision realizado mediante analisis de los estudios publicados en Medline desde 1966, localizados mediante PubMed, utilizando combinaciones de las palabras clave 'Chiari malformation', 'Arnold-Chiari malformation', 'Chiari type 1 malformation', 'Arnold-Chiari type 1 malformation', 'evoked potentials', 'brainstem auditory evoked potentials' y 'somatosensory evoked potentials', asi como informacion de pacientes con MC-1 valorados en los servicios de neurocirugia y neurofisiologia clinica del Hospital Universitari Vall d'Hebron. Conclusiones. Los hallazgos mas comunes de los PESS son la reduccion en la amplitud cortical para el nervio tibial posterior, la reduccion o ausencia del potencial cervical del nervio mediano y el aumento del intervalo N13-N20. En el caso de los PEATC, los hallazgos mas frecuentes descritos son el aumento del intervalo I-V y la alteracion periferica o coclear.

  9. [Long-latency auditory evoked potentials in cochlear implants].

    Science.gov (United States)

    Mata, J J; Jiménez, J M; Pérez, J; Postigo, A; Roldán, B

    1999-01-01

    Cortical evoked potentials were evaluated in patients with cochlear implants. In a group of 8 adults of different ages, the lingual state before implantation and during rehabilitation were evaluated. Using cortical evoked potentials, the results of the P300 wave in response to two tones, one frequent (1,000 Hz) and the other infrequent (2,000 Hz), presented at 70 and 80 dB HL were studied. Results were analyzed and compared in relation to locutive state, rehabilitation stage, and intensity of stimulus. Absolute latencies did not differ significantly. However, latency values in relation to reaction time were significantly longer in prelingual than in postlingual patients (p test). The results confirmed the normality of central cognitive processes in patients with cochlear implants in objective assessment of P300 latency. The results suggest differences between prelingual and postlingual patients in relation to central signal processing.

  10. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    Science.gov (United States)

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P evoked potentials were strongly correlated (range, 0.79-0.94; all P 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  11. An evoked auditory response fMRI study of the effects of rTMS on putative AVH pathways in healthy volunteers.

    LENUS (Irish Health Repository)

    Tracy, D K

    2010-01-01

    Auditory verbal hallucinations (AVH) are the most prevalent symptom in schizophrenia. They are associated with increased activation within the temporoparietal cortices and are refractory to pharmacological and psychological treatment in approximately 25% of patients. Low frequency repetitive transcranial magnetic stimulation (rTMS) over the temporoparietal cortex has been demonstrated to be effective in reducing AVH in some patients, although results have varied. The cortical mechanism by which rTMS exerts its effects remain unknown, although data from the motor system is suggestive of a local cortical inhibitory effect. We explored neuroimaging differences in healthy volunteers between application of a clinically utilized rTMS protocol and a sham rTMS equivalent when undertaking a prosodic auditory task.

  12. Influence of a preceding auditory stimulus on evoked potential of the succeeding stimulus

    Institute of Scientific and Technical Information of China (English)

    WANG Mingshi; LIU Zhongguo; ZHU Qiang; LIU Jin; WANG Liqun; LIU Haiying

    2004-01-01

    In the present study, we investigated the influence of the preceding auditory stimulus on the auditory-evoked potential (AEP) of the succeeding stimuli, when the human subjects were presented with a pair of auditory stimuli. We found that the evoked potential of the succeeding stimulus was inhibited completely by the preceding stimulus, as the inter-stimulus interval (ISI) was shorter than 150 ms. This influence was dependent on the ISI of two stimuli, the shorter the ISI the stronger the influence would be. The inhibitory influence of the preceding stimulus might be caused by the neural refractory effect.

  13. Long Latency Auditory Evoked Potential in Term and Premature Infants

    Directory of Open Access Journals (Sweden)

    Didoné, Dayane Domeneghini

    2014-01-01

    Full Text Available Introduction The research in long latency auditory evokes potentials (LLAEP in newborns is recent because of the cortical structure maturation, but studies note that these potentials may be evidenced at this age and could be considered as indicators of cognitive development. Purpose To research the exogenous potentials in term and premature infants during their first month of life. Materials and Methods The sample consisted of 25 newborns, 15 term and 10 premature infants. The infants with gestational age under 37 weeks were considered premature. To evaluate the cortical potentials, the infants remained in natural sleep. The LLAEPs were researched binaurally, through insertion earphones, with frequent /ba/ and rare /ga/ speech stimuli in the intensity of 80 dB HL (decibel hearing level. The frequent stimuli presented a total of 80% of the presentations, and the rare, 20%. The data were statistically analyzed. Results The average gestational age of the term infants was 38.9 weeks (± 1.3 and for the premature group, 33.9 weeks (± 1.6. It was possible to observe only the potentials P1 and N1 in both groups, but there was no statistically significant difference for the latencies of the components P1 and N1 (p > 0.05 between the groups. Conclusion It was possible to observe the exogenous components P1 and N1 of the cortical potentials in both term and preterm newborns of no more than 1 month of age. However, there was no difference between the groups.

  14. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  15. Cerebral information processing in personality disorders: I. Intensity dependence of auditory evoked potentials.

    Science.gov (United States)

    Wang, Wei; Wang, Yehan; Fu, Xianming; Liu, Jianhui; He, Chengsen; Dong, Yi; Livesley, W John; Jang, Kerry L

    2006-02-28

    Patients with personality disorders such as the histrionic type exaggerate their responses when receiving external social or environmental stimuli. We speculated that they might also show an augmenting pattern of the auditory evoked potential N1-P2 component in response to stimuli with increasing levels of intensity, a response pattern that is thought to be inversely correlated with cerebral serotonin (5-HT) activity. To test this hypothesis, we collected auditory evoked potentials in 191 patients with personality disorders (19 patients with the paranoid type, 12 schizoid, 14 schizotypal, 18 antisocial, 15 borderline, 13 histrionic, 17 narcissistic, 25 avoidant, 30 dependent and 28 obsessive-compulsive) and 26 healthy volunteers. Their personality traits were measured using the Dimensional Assessment of Personality Pathology-Basic Questionnaire (DAPP-BQ). Compared with healthy subjects and other patient groups, the histrionic group scored higher on the basic traits Affective Instability, Stimulus Seeking, Rejection and Narcissism, and on the higher traits Emotional Dysregulation and Dissocial, than the other groups, and the schizoid group scored lower on most of the DAPP-BQ basic and higher traits. In addition, the histrionic group showed steeper amplitude/stimulus intensity function (ASF) slopes at three midline scalp electrodes than the healthy controls or the other patient groups. The ASF slopes were not correlated with any DAPP-BQ traits in the total sample of 217 subjects. However, the DAPP-BQ basic trait Rejection was positively correlated with the ASF slopes at all three electrode sites in the histrionic group. The increased intensity dependence of the auditory N1-P2 component might indicate that cerebral 5-HT neuronal activity is, on average, weak in the histrionic patients.

  16. Prediction of Long-Term Treatment Response to Selective Serotonin Reuptake Inhibitors (SSRIs Using Scalp and Source Loudness Dependence of Auditory Evoked Potentials (LDAEP Analysis in Patients with Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Bun-Hee Lee

    2015-03-01

    Full Text Available Background: Animal and clinical studies have demonstrated that the loudness dependence of auditory evoked potentials (LDAEP is inversely related to central serotonergic activity, with a high LDAEP reflecting weak serotonergic neurotransmission and vice versa, though the findings in humans have been less consistent. In addition, a high pretreatment LDAEP appears to predict a favorable response to antidepressant treatments that augment the actions of serotonin. The aim of this study was to test whether the baseline LDAEP is correlated with response to long-term maintenance treatment in patients with major depressive disorder (MDD. Methods: Scalp N1, P2 and N1/P2 LDAEP and standardized low resolution brain electromagnetic tomography-localized N1, P2, and N1/P2 LDAEP were evaluated in 41 MDD patients before and after they received antidepressant treatment (escitalopram (n = 32, 10.0 ± 4.0 mg/day, sertraline (n = 7, 78.6 ± 26.7 mg/day, and paroxetine controlled-release formulation (n = 2, 18.8 ± 8.8 mg/day for more than 12 weeks. A treatment response was defined as a reduction in the Beck Depression Inventory (BDI score of >50% between baseline and follow-up. Results: The responders had higher baseline scalp P2 and N1/P2 LDAEP than nonresponders (p = 0.017; p = 0.036. In addition, changes in total BDI score between baseline and follow-up were larger in subjects with a high baseline N1/P2 LDAEP than those with a low baseline N1/P2 LDAEP (p = 0.009. There were significantly more responders in the high-LDAEP group than in the low-LDAEP group (p = 0.041. Conclusions: The findings of this study reveal that a high baseline LDAEP is associated with a clinical response to long-term antidepressant treatment.

  17. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  18. Monitoring sedation for bronchoscopy in mechanically ventilated patients by using the Ramsay sedation scale versus auditory-evoked potentials

    OpenAIRE

    2014-01-01

    Background Appropriate sedation benefits patients by reducing the stress response, but it requires an appropriate method of assessment to adjust the dosage of sedatives. The aim of this study was to compare the difference in the sedation of mechanically ventilated patients undergoing flexible bronchoscopy (FB) monitored by auditory-evoked potentials (AEPs) or the Ramsay sedation scale (RSS). Methods In a prospective, randomized, controlled study, all patients who underwent FB with propofol se...

  19. A preliminary study on the correlation of electrically evoked auditory brainstem response and electrically evoked compound action potential with the inserting depth of cochlear electrode%EABR与人工耳蜗电极植入深度关系的初步研究

    Institute of Scientific and Technical Information of China (English)

    陈静; 谢景华; 丁秀勇; 李悦; 高志强

    2015-01-01

    目的 初步探讨人工耳蜗电极植入深度和术后电诱发听性脑干反应(EABR,Electrically evoked auditory brainstem responses)及电诱发听神经复合动作电位(electrically evoked compound actionpotentials,ECAP)的相关性. 方法 选取耳蜗形态正常植入奥地利标准电极患者24例,术后头颅侧位片检查判断电极全植入. 根据电极耳蜗内位置分为E9-E12耳蜗底区、E5-E8耳蜗中区、E1-E4耳蜗顶区三部分,分别记录各区域EABR阈值及波形特点和对应区域的ECAP阈值,分析其间相关性. 结果蜗顶部、蜗中部、蜗底部EABR引出率分别为87.50%,83.33%,79.16%;ECAP引出率分别为91.67%,79.17%,75%;EABR波V阈值为分别为(20.13±5.91)qu,(22.98±4.82)qu,(26.71±6.25)qu;ECAP阈值分别为 (21.61±4.18)qu,(23.28±3.70)qu,(29.18±3.74)qu.结论 蜗顶部和蜗中部EABR及ECAP引出率高于蜗底部,自蜗顶区至蜗底区EABR和EACP阈值依次增高,相同植入深度电极的EABR阈值低于ECAP阈值.%Objective To explore the correlation of electrically evoked auditory brain stem response (EABR) and electrically evoked compound action potential (ECAP) with the inserting depth of cochlear electrode. Methods EABR and ECAP recordings were carried out among 24 subjects with MED-EL standard cochlear electrode array implanted. With the electrode insertion depth assayed by lateral cranial X-ray photography, these evoked potential recordings were then analyzed, based on the definition of electrode placed locations in the regions of apical (E1-E4), middle (E5-E8) and basal (E9-E12) to determine if the threshold and latency differ depending on the region stimulated. Results At the locations of apical, middle and basal region, the positive recording rate was 87.50%, 83.33% and 79.16% for EABR, and that was 91.67%, 79.17%, 75% fro ECAP, with the thresholds of EABR at eV were (20.13±5.91)qu, (22.98±4.82)qu and (26.71±6.25)qu and those of ECAP were (21.61±4.18)qu, (23.28±3.70)qu, (29.18±3

  20. The Auditory-Evoked N2 and P3 Components in the Stop-Signal Task: Indices of Inhibition, Response-Conflict or Error-Detection?

    Science.gov (United States)

    Dimoska, Aneta; Johnstone, Stuart J.; Barry, Robert J.

    2006-01-01

    The N2 and P3 components have been separately associated with response inhibition in the stop-signal task, and more recently, the N2 has been implicated in the detection of response-conflict. To isolate response inhibition activity from early sensory processing, the present study compared processing of the stop-signal with that of a…

  1. Auditory cortex basal activity modulates cochlear responses in chinchillas.

    Directory of Open Access Journals (Sweden)

    Alex León

    Full Text Available BACKGROUND: The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. METHODOLOGY/PRINCIPAL FINDINGS: Cochlear microphonics (CM, auditory-nerve compound action potentials (CAP and auditory cortex evoked potentials (ACEP were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments and a permanent reduction in five chinchillas (lesion experiments. We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. CONCLUSIONS/SIGNIFICANCE: These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the

  2. Evoked potential correlates of selective attention with multi-channel auditory inputs

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  3. Assessing auditory evoked potentials of wild harbor porpoises (Phocoena phocoena).

    Science.gov (United States)

    Ruser, Andreas; Dähne, Michael; van Neer, Abbo; Lucke, Klaus; Sundermeyer, Janne; Siebert, Ursula; Houser, Dorian S; Finneran, James J; Everaarts, Eligius; Meerbeek, Jolanda; Dietz, Rune; Sveegaard, Signe; Teilmann, Jonas

    2016-07-01

    Testing the hearing abilities of marine mammals under water is a challenging task. Sample sizes are usually low, thus limiting the ability to generalize findings of susceptibility towards noise influences. A method to measure harbor porpoise hearing thresholds in situ in outdoor conditions using auditory steady state responses of the brainstem was developed and tested. The method was used on 15 live-stranded animals from the North Sea during rehabilitation, shortly before release into the wild, and on 12 wild animals incidentally caught in pound nets in Denmark (inner Danish waters). Results indicated that although the variability between individuals is wide, the shape of the hearing curve is generally similar to previously published results from behavioral trials. Using 10-kHz frequency intervals between 10 and 160 kHz, best hearing was found between 120 and 130 kHz. Additional testing using one-third octave frequency intervals (from 16 to 160 kHz) allowed for a much faster hearing assessment, but eliminated the fine scale threshold characteristics. For further investigations, the method will be used to better understand the factors influencing sensitivity differences across individuals and to establish population-level parameters describing hearing abilities of harbor porpoises.

  4. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Science.gov (United States)

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  5. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P

    2001-01-01

    to the skin conductance orienting response (SCOR) in 20 healthy men. We measured mid-latency vertex components (SEP: P50, N65, P85 and N100; AEP: P30, N45, P50 and N80). The gating was most pronounced at ISI 500 ms where the SEP P50 and N100 gating were 0.59 and 0.37, respectively, as compared to a gating...... of 0.61 in P30, 0.33 in P50 and 0.45 in N80 in the AEP. Repetition effects in the two modalities were not correlated. AEP P50 gating was correlated to skin conductance level (SCL). The combination of recording repetition effects on the mid-latency EP in two modalities could provide a method...

  6. Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study

    DEFF Research Database (Denmark)

    Haumann, Niels Trusbak; Parkkonen, Lauri; Kliuchko, Marina;

    2016-01-01

    We here compared results achieved by applying popular methods for reducing artifacts in magnetoencephalography (MEG) and electroencephalography (EEG) recordings of the auditory evoked Mismatch Negativity (MMN) responses in healthy adult subjects. We compared the Signal Space Separation (SSS) and ...

  7. The Analysis and Treatment of Problem Behavior Evoked by Auditory Stimulation

    Science.gov (United States)

    Devlin, Sarah; Healy, Olive; Leader, Geraldine; Reed, Phil

    2008-01-01

    The current study aimed to identify specific stimuli associated with music that served as an establishing operation (EO) for the problem behavior of a 6-year-old child with a diagnosis of autism. Specific EOs for problem behavior evoked by auditory stimulation could be identified. A differential negative reinforcement procedure was implemented for…

  8. Auditory Stimulation Dishabituates Olfactory Responses via Noradrenergic Cortical Modulation

    Directory of Open Access Journals (Sweden)

    Jonathan J. Smith

    2009-01-01

    Full Text Available Dishabituation is a return of a habituated response if context or contingency changes. In the mammalian olfactory system, metabotropic glutamate receptor mediated synaptic depression of cortical afferents underlies short-term habituation to odors. It was hypothesized that a known antagonistic interaction between these receptors and norepinephrine ß-receptors provides a mechanism for dishabituation. The results demonstrate that a 108 dB siren induces a two-fold increase in norepinephrine content in the piriform cortex. The same auditory stimulus induces dishabituation of odor-evoked heart rate orienting bradycardia responses in awake rats. Finally, blockade of piriform cortical norepinephrine ß-receptors with bilateral intracortical infusions of propranolol (100 μM disrupts auditory-induced dishabituation of odor-evoked bradycardia responses. These results provide a cortical mechanism for a return of habituated sensory responses following a cross-modal alerting stimulus.

  9. Potenciais Evocados Auditivos de Estado Estável no diagnóstico audiológico infantil: uma comparação com os Potenciais Evocados Auditivos de Tronco Encefálico Steady-state auditory evoked responses in audiological diagnosis in children: a comparison with brainstem evoked auditory responses

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2010-02-01

    Full Text Available Os Potenciais Evocados Auditivos de Estado Estável (PEAEE têm sido apontados como uma técnica promissora na avaliação audiológica infantil. OBJETIVO: Investigar o nível de concordância entre os resultados dos PEAEE e dos Potenciais Evocados Auditivos de Tronco Encefálico (PEATE-clique em um grupo de crianças com perda auditiva sensorioneural, averiguando assim a aplicabilidade clínica desta técnica na avaliação audiológica infantil. FORMA DE ESTUDO: Clínico prospectivo de coorte transversal. MATERIAL E MÉTODO: 15 crianças com idade entre dois e 36 meses e diagnóstico de perda auditiva sensorioneural. A concordância entre as respostas dos dois testes foi avaliada por meio do coeficiente de correlação intraclasse e o teste de McNemar comparou os dois testes quanto à probabilidade de ocorrência de resposta. RESULTADOS: Os coeficientes de correlação encontrados foram 0,70; 0,64; 0,49; 0,69; 0,63 e 0,68 respectivamente para as frequências de 1, 2, 4, 1-2, 2-4 e 1-2-4kHz. No teste de McNemar foi obtido p=0.000, indicando que a probabilidade de se obter resposta presente nos dois testes não é igual, sendo maior nos PEAEE. CONCLUSÃO: A boa concordância observada entre as técnicas sugere que um exame pode ser complementar ao outro. Os PEAEE, entretanto, promoveram informações adicionais nos casos de perdas severas e profundas, acrescentando dados importantes para a reabilitação destas crianças e proporcionando maior precisão no diagnóstico audiológico.Auditory Steady-State Responses (ASSR are being recognized as a promising technique in the assessment of hearing in children. AIM: To investigate the agreement level between results obtained from ASSR and click-ABR in a group of children with sensorineural hearing loss, in order to study the clinical applicability of this technique to evaluate the hearing status in young children. STUDY DESIGN: clinical prospective with a cross-sectional cohort. MATERIALS AND METHODS

  10. Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia-Gating of auditory-evoked potentials and prepulse inhibition

    DEFF Research Database (Denmark)

    Broberg, Brian Villumsen; Oranje, Bob; Yding, Birte;

    2010-01-01

    The use of translational approaches to validate animal models is needed for the development of treatments that can effectively alleviate cognitive impairments associated with schizophrenia, which are unsuccessfully treated by the current available therapies. Deficits in pre-attentive stages...... of sensory information processing seen in schizophrenia patients, can be assessed by highly homologues methods in both humans and rodents, evident by the prepulse inhibition (PPI) of the auditory startle response and the P50 (termed P1 here) suppression paradigms. Treatment with the NMDA receptor antagonist......, in the P1 suppression paradigm in the EEG. The results indicate that early postnatal PCP treatment to rats leads to a reduction in PPI of the acoustic startle response. Furthermore, treated animals were assessed in the P1 suppression paradigm and produced significant changes in auditory-evoked potentials...

  11. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.

    Science.gov (United States)

    Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R

    2015-12-01

    Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery.

  12. EFFECTS OF NOISE EXPOSURE ON CLICK- AND TONE BURST-EVOKED AUDITORY BRAINSTEM RESPONSE IN RATS%噪声暴露对大鼠短纯音与短声听觉脑干反应的影响

    Institute of Scientific and Technical Information of China (English)

    佘晓俊; 崔博; 吴铭权; 马强; 刘洪涛

    2011-01-01

    目的 研究噪声暴露对大鼠听觉脑干反应(ABR)的影响,及大鼠短声ABR(C-ABR)和短纯音ABR(Tb-ABR)的特点,以探讨Tb-ABR在听力评估中的价值.方法 将成年SD大鼠随机分为噪声组和正常组,每组7只(14耳).噪声组暴露于100 dB(SPL)白噪声,6 h/d,连续12周.噪声停止后24 h分别测定C-ABR和Tb-ABR(刺激声2、4、8、16、32 kHz).对2组的ABR结果进行统计分析.结果 随着刺激声从32 kHz到2 kHz,正常大鼠Tb-ABR各波的潜伏期延长;与C-ABR比较,Tb-ABR各频率波Ⅰ、Ⅱ、Ⅳ的潜伏期都延迟,差异有显著性(P<0.01).大鼠听力在16 kHz比较敏感,阈值较低.噪声组大鼠在8 kHz听力损失最重,升高11 dB;各种短纯音刺激时,Tb-ABR各波潜伏期及峰间潜伏期无明显变化.结论 正常大鼠在各个频率的听力闽值、敏感性不同,噪声对各频率听力影响也不同;Tb-ABR较C-ABR更能反映听力损失的频率特性.%Objective To study the effects of noise exposure on click-evoked auditory brainstem responses( CABR) and tone burst-evoked ABR(Tb-ABR) in rats, so as to provide the reference for application of Tb-ABR to hearing evaluation.Methods Fourteen SD rats were divided into two groups, named the control group and the noise exposure group with seven rats per group(fourteen ears).The noise exposure group were exposed to the white noise[100 dB(SPL),6 h/day,12 weeks].C-ABR and Tb-ABR(2,4,8, 16,32 kHz) were measured 24 hours after noise exposure.Results The peak latency in normal rats was prolonged when the stimulate tone changed from 32 kHz to 2 kHz; the peak latency of TbABR with any frequency was significantly longer than that of C-ABR ( P < 0.01 ); the hearing threshold at 16 kHz of TbABR was the lowest, and the hearing was the best.The hearing loss in noise exposure group was most severe at 8 kHz ( 11 dB more than the control).The thresholds of C-ABR and Tb-ABR of noise exposure group were higher than those of control group.The peak latency of

  13. A template-free approach for determining the latency of single events of auditory evoked M100

    Energy Technology Data Exchange (ETDEWEB)

    Burghoff, M [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Link, A [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Salajegheh, A [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Elster, C [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Poeppel, D [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Trahms, L [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany)

    2005-02-07

    The phase of the complex output of a narrow band Gaussian filter is taken to define the latency of the auditory evoked response M100 recorded by magnetoencephalography. It is demonstrated that this definition is consistent with the conventional peak latency. Moreover, it provides a tool for reducing the number of averages needed for a reliable estimation of the latency. Single-event latencies obtained by this procedure can be used to improve the signal quality of the conventional average by latency adjusted averaging. (note)

  14. Latency of auditory evoked potential monitoring the effects of general anesthetics on nerve fibers and synapses

    OpenAIRE

    Bowan Huang; Feixue Liang; Lei Zhong; Minlin Lin; Juan Yang; Linqing Yan; Jinfan Xiao; Zhongju Xiao

    2015-01-01

    Auditory evoked potential (AEP) is an effective index for the effects of general anesthetics. However, it’s unknown if AEP can differentiate the effects of general anesthetics on nerve fibers and synapses. Presently, we investigated AEP latency and amplitude changes to different acoustic intensities during pentobarbital anesthesia. Latency more regularly changed than amplitude during anesthesia. AEP Latency monotonically decreased with acoustic intensity increase (i.e., latency-intensity curv...

  15. Neurotoxic effects of rubber factory environment. An auditory evoked potential study.

    Science.gov (United States)

    Kumar, V; Tandon, O P

    1997-01-01

    The effects of rubber factory environment on functional integrity of auditory pathway have been studied in forty rubber factory workers using Brainstem Auditory Evoked Potentials (BAEPs) technique to detect early subclinical impairments. Results indicate that 47 percent of the workers showed abnormalities in prolongations of either peak latencies or interpeak latencies when compared with age and sex matched control subjects not exposed to rubber factory environment. The percent distribution of abnormalities (ears affected) were in the order of extrusion and calendering (75%) > vulcanising (41.66%) > mixing (28.57%) > loading and dispatch (23.07%) > tubing (18.75%) sections of the factory. This incidence of abnormalities may be attributed to solvents being used in these units of rubber factory. These findings suggest that rubber factory environment does affect auditory pathway in the brainstem.

  16. Diminished N1 auditory evoked potentials to oddball stimuli in misophonia patients

    Directory of Open Access Journals (Sweden)

    Arjan eSchröder

    2014-04-01

    Full Text Available Misophonia (hatred of sound is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study we investigated if a dysfunction in the brain’s early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs during an oddball task.Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 Hz and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1 and P2 components locked to the onset of the tones.For misophonia patients, the N1 peak evoked by the oddball tones had a smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones.The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients.

  17. Visual, auditory, and somatosensorial evoked potentials in early and late treated adolescents with phenylketonuria.

    Science.gov (United States)

    Leuzzi, V; Cardona, F; Antonozzi, I; Loizzo, A

    1994-11-01

    Pattern reversal visual, auditory, and somatosensorial evoked potentials were recorded in two groups of phenylketonuric (PKU) adolescents after protracted exposition to high concentrations of phenylalanine following diet discontinuation. The first group consisted of 11 early treated (before age 3 months) PKU patients (ET-PKU); the second group consisted of 11 late detected (after age 8 months), symptomatic, PKU subjects (LT-PKU). Despite the relevant lag between the two groups in mental development and neurological status, no clear-cut difference in evoked potentials could be detected. Only the wave I latency of the brainstem auditory evoked potentials (BAEPs) was significantly shorter in ET- versus LT-PKU children. The P100 latency, I-V interpeak latency (IPL), and I-III IPL seem to discriminate the less severe form of PKU (ET-PKU type 3) from the most severe forms, ET-PKU type 1 plus 2 and LT-PKU. No correlations were found between clinical, biochemical, and neurophysiological parameters. The present data suggest that evoked potentials technique is of limited sensitivity in detecting central nervous system (CNS) alterations in PKU adolescents after diet discontinuation.

  18. Alcohol Effects on the P2 component of Auditory Evoked Potentials

    Directory of Open Access Journals (Sweden)

    OSCAR H. HERNÁNDEZ

    2014-03-01

    Full Text Available This is a second part of a research aimed to study the effects of alcohol on the electrophysiological processes in student volunteers. The first part showed that alcohol slowed the Omitted Stimulus Potential (OSP. This work studied the ethanol effects on the parameters (i.e. rate of rise, amplitude and peak latency of the P2 component of the evoked potentials (EPs yielded by trains of auditory stimuli. It is hypothesized here that if P2 and OSP waves share some common neural processes then alcohol should also affect these specific parameters. A dose of 0.8 g/kg of alcohol or a placebo (0 g/kg was administered to two groups of 15 young men who were tested before and again after treatment. The pre-post treatment change in each of the measurements was used to assess the treatment effects. The results showed that compared to placebo, alcohol slowed the P2 rise rate and reduced its amplitude, with no effects on peak latency. The rise rate is more sensitive to alcohol but more resistant to the adaptation process. Alcohol resembles the response inhibition model acting against the adaptation. The rise rate of the P2 and the OSP waves are affected by alcohol in a similar fashion, suggesting similar neural generative mechanisms.

  19. Characteristics of brainstem auditory evoked potentials of students studying folk dance

    Institute of Scientific and Technical Information of China (English)

    Yunxiang Li; Yuzhen Zhu

    2008-01-01

    BACKGROUND:Previous experiments have demonstrated that brainstem auditory evoked potential is affected by exercise,exercise duration,and frequency. OBJECTIVE:Comparing the brainstem auditory evoked potential of students studying folk dance to students studying other subjects.DESIGN:Observational contrast study. SETTING:Physical Education College,Shandong Normal University PARTICIPANTS:Fifty-five female students were enrolled at Shandong Normal University between September and December in 2005,including 21 students that studied folk dance and 34 students that studied other subjects.The age of the folk dance students averaged(19±1)years and dance training length was(6.0 ±1.5)years.The students that studied other subjects had never taken part in dance training or other physical training,and their age averaged(22±1)years,body height averaged(162±5)cm,body mass averaged(51 ±6)kg.All subjects had no prior ear disease or history of other neurological disorders.All students provided informed consent for the experimental project. METHODS:The neural electricity tester,NDI-200(Shanghai Poseidon Medical Electronic Instrument Factory)was used to examine and record Brainstem Auditory Evoked Potential values of the subjects during silence,as well as to transversally analyze the Brainstem Auditory Evoked Potential values.The electrode positions were cleaned and degreased with soapy water,followed by ethanol.The selected bipolar electrodes were situated on the head:recording electrodes were placed at the Baihui acupoint,and the reference electrode was placed at the mastoid of the measured ear,with grounding electrodes in the center of the forehead.Brainstem Auditory Evoked Potential values were elicited by monaural stimulation of a "click" though an earphone; the other ear was sheltered by the white noise.The click intensity was 102 db,the stimulation frequency was 30 Hz,the bandpass filters were 1 000-3 000 Hz,the sensitivity was 5 μV,and a total of 2 000 sweeps were

  20. Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials.

    Science.gov (United States)

    Verhey, Jesko L; Ernst, Stephan M A; Yasin, Ifat

    2012-03-01

    The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making.

  1. Brain stem evoked response audiometry A Review

    OpenAIRE

    Balasubramanian Thiagarajan

    2015-01-01

    Brain stem evoked response audiometry (BERA) is a useful objective assessement of hearing. Major advantage of this procedure is its ability to test even infants in whom conventional audiometry may not be useful. This investigation can be used as a screening test for deafness in high risk infants. Early diagnosis and rehabilitation will reduce disability in these children. This article attempts to review the published literature on this subject. Methadology: Internet search using goog...

  2. Effect of auditory training on the middle latency response in children with (central) auditory processing disorder.

    Science.gov (United States)

    Schochat, E; Musiek, F E; Alonso, R; Ogata, J

    2010-08-01

    The purpose of this study was to determine the middle latency response (MLR) characteristics (latency and amplitude) in children with (central) auditory processing disorder [(C)APD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (C)APD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (C)APD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (C)APD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 microV (mean), 0.39 (SD--standard deviation) for the (C)APD group and 1.18 microV (mean), 0.65 (SD) for the control group; C3-A2, 0.69 microV (mean), 0.31 (SD) for the (C)APD group and 1.00 microV (mean), 0.46 (SD) for the control group]. After training, the MLR C3-A1 [1.59 microV (mean), 0.82 (SD)] and C3-A2 [1.24 microV (mean), 0.73 (SD)] wave amplitudes of the (C)APD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (C)APD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (C)APD.

  3. Effect of auditory training on the middle latency response in children with (central auditory processing disorder

    Directory of Open Access Journals (Sweden)

    E. Schochat

    2010-08-01

    Full Text Available The purpose of this study was to determine the middle latency response (MLR characteristics (latency and amplitude in children with (central auditory processing disorder [(CAPD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (CAPD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (CAPD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (CAPD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 µV (mean, 0.39 (SD - standard deviation for the (CAPD group and 1.18 µV (mean, 0.65 (SD for the control group; C3-A2, 0.69 µV (mean, 0.31 (SD for the (CAPD group and 1.00 µV (mean, 0.46 (SD for the control group]. After training, the MLR C3-A1 [1.59 µV (mean, 0.82 (SD] and C3-A2 [1.24 µV (mean, 0.73 (SD] wave amplitudes of the (CAPD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (CAPD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (CAPD.

  4. Auditory evoked potential: a proposal for further evaluation in children with learning disabilities.

    Science.gov (United States)

    Frizzo, Ana C F

    2015-01-01

    The information presented in this paper demonstrates the author's experience in previews cross-sectional studies conducted in Brazil, in comparison with the current literature. Over the last 10 years, auditory evoked potential (AEP) has been used in children with learning disabilities. This method is critical to analyze the quality of the processing in time and indicates the specific neural demands and circuits of the sensorial and cognitive process in this clinical population. Some studies with children with dyslexia and learning disabilities were shown here to illustrate the use of AEP in this population.

  5. Effect of Acupuncture on the Auditory Evoked Brain Stem Potential in Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 何崇; 刘跃光; 朱莉莉

    2002-01-01

    @@ Under the auditory evoked brain stem potential (ABP) examination, the latent period of V wave and the intermittent periods of III-V peak and I-V peak were significantly shortened in Parkinson's disease patients of the treatment group (N=29) after acupuncture treatment. The difference of cumulative scores in Webster's scale was also decreased in correlation analysis. The increase of dopamine in the brain and the excitability of the dopamine neurons may contribute to the therapeutic effects, in TCM terms, of subduing the pathogenic wind and tranquilizing the mind.

  6. Effect of acupuncture on the auditory evoked brain stem potential in Parkinson's disease.

    Science.gov (United States)

    Wang, Lingling; He, Chong; Liu, Yueguang; Zhu, Lili

    2002-03-01

    Under the auditory evoked brain stem potential (ABP) examination, the latent period of V wave and the intermittent periods of III-V peak and I-V peak were significantly shortened in Parkinson's disease patients of the treatment group (N = 29) after acupuncture treatment. The difference of cumulative scores in Webster's scale was also decreased in correlation analysis. The increase of dopamine in the brain and the excitability of the dopamine neurons may contribute to the therapeutic effects, in TCM terms, of subduing the pathogenic wind and tranquilizing the mind.

  7. Comparison Acoustically Evoked Short Latency Negative Response with Vestibular Evoked Myogenic Potential in Adults with Profound Hearing Loss

    Directory of Open Access Journals (Sweden)

    Maryam Ramezani

    2012-03-01

    Full Text Available Background and Aim: A negative deflection with a 3-4 ms latency period has been reported to exist within the auditory brainstem response of some patients with profound hearing loss following a strong acoustic stimulus. This deflection, namingly the n3 or the acoustically evoked short latency negative response is assumed to be a vestibular-evoked potential, especially of saccular origin. Since the myogenic potential is also saccular in origin, the purpose of the present study was to investigate the relationship between these two tests in adults with profound hearing loss.Methods: The present cross sectional study was performed on 20 profoundly deaf volunteers(39 ears who aged between 18-40 years old, randomly selected from available deaf adults in Tehran. The auditory brainstem response of all subjects was recorded following a 1000 Hz tone burst in 70-100dB nHL. Subjects were also tested for vestibular evoked myogenic potential.Results: Only 34 of 39 ears recorded myogenic potential that negative response was recorded in 27 of 34 ears with normal p13 and n23. In seven ears with normal p13 and n23, the negative response was absent. In 3 ears with no p13 and n23, the negative response was observed, and two none.Conclusion: In view of the high prevalance of the negative response in profoundly deaf ears with normal p13 and n23, it could be concluded that the negative response can be used when for any reason, it is not possible to record myogenic potential and be considered as a new test in vestibular test battery.

  8. Effects of continuous conditioning noise and light on the auditory- and visual-evoked potentials of the guinea pig.

    Science.gov (United States)

    Goksoy, Cuneyt; Demirtas, Serdar; Ates, Kahraman

    2005-11-01

    Neurophysiological studies aiming to explore how the brain integrates information from different brain regions are increasing in the literature. The aim of the present study is to explore intramodal (binaural, binocular) and intermodal (audio-visual) interactions in the guinea pig brain through the observation of changes in evoked potentials by generalized continuous background activity. Seven chronically prepared animals were used in the study and the recordings were made as they were awake. Epidural electrodes were implanted to the skulls by using stereotaxic methods. Continuous light for retinal or continuous white noise for cochlear receptors were used as continuous conditioning stimuli for generalized stimulation. To evoke auditory or visual potentials, click or flash were used as transient imperative stimuli. The study data suggest that (a) white noise applied to one ear modifies the response to click in the contralateral ear which is a binaural interaction; (b) continuous light applied to one eye modifies the response to flash applied to the contralateral eye which is interpreted as a binocular interaction; (c) regardless of the application side, white noise similarly modified the response to flash applied to the either eye connoting a nonspecific effect of white noise on vision, independent from spatial hearing mechanisms; (d) on the other hand, continuous light, in either eye, did not affect the response to click applied to any ear, reminding a 'one-way' interaction that continuous aural stimulation affects visual response.

  9. [Anesthesia with flunitrazepam/fentanyl and isoflurane/fentanyl. Unconscious perception and mid-latency auditory evoked potentials].

    Science.gov (United States)

    Schwender, D; Kaiser, A; Klasing, S; Faber-Züllig, E; Golling, W; Pöppel, E; Peter, K

    1994-05-01

    There is a high incidence of intraoperative awareness during cardiac surgery. Mid-latency auditory evoked potentials (MLAEP) reflect the primary cortical processing of auditory stimuli. In the present study, we investigated MLAEP and explicit and implicit memory for information presented during cardiac anaesthesia. PATIENTS AND METHODS. Institutional approval and informed consent was obtained in 30 patients scheduled for elective cardiac surgery. Anaesthesia was induced in group I (n = 10) with flunitrazepam/fentanyl (0.01 mg/kg) and maintained with flunitrazepam/fentanyl (1.2 mg/h). The patients in group II (n = 10) received etomidate (0.25 mg/kg) and fentanyl (0.005 mg/kg) for induction and isoflurane (0.6-1.2 vol%)/fentanyl (1.2 mg/h) for maintenance of general anaesthesia. Group III (n = 10) served as a control and patients were anaesthetized as in I or II. After sternotomy an audiotape that included an implicit memory task was presented to the patients in groups I and II. The story of Robinson Crusoe was told, and it was suggested to the patients that they remember Robinson Crusoe when asked what they associated with the word Friday 3-5 days postoperatively. Auditory evoked potentials were recorded awake and during general anaesthesia before and after the audiotape presentation on vertex (positive) and mastoids on both sides (negative). Auditory clicks were presented binaurally at 70 dBnHL at a rate of 9.3 Hz. Using the electrodiagnostic system Pathfinder I (Nicolet), 1000 successive stimulus responses were averaged over a 100 ms poststimulus interval and analyzed off-line. Latencies of the peak V, Na, Pa were measured. V belongs to the brainstem-generated potentials, which demonstrates that auditory stimuli were correctly transduced. Na, Pa are generated in the primary auditory cortex of the temporal lobe and are the electrophysiological correlate of the primary cortical processing of the auditory stimuli. RESULTS. None of the patients had an explicit memory

  10. Potenciais evocados auditivos de tronco encefálico por frequência específica e de estado estável na audiologia pediátrica: estudo de caso Frequency-specific and steady-state evoked auditory brainstem responses in pediatric audiology: case study

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2009-01-01

    Full Text Available Preconiza-se o diagnóstico até os três meses de idade em crianças com deficiência auditiva congênita. Após a etapa inicial de confirmação do diagnóstico, é necessário que se obtenha limiares precisos nas diferentes frequências, para que seja possível uma adequada seleção, indicação e regulagem de aparelhos de amplificação sonora. Nesse contexto, inserem-se os Potenciais Evocados Auditivos de Tronco Encefálico por Frequência Específica (PEATE-FE e, mais recentemente, os Potenciais Evocados Auditivos de Estado Estável (PEAEE. O objetivo deste estudo de caso foi apresentar os achados das duas técnicas para estimar os limiares auditivos em uma criança de três meses de idade, com perda auditiva neurossensorial bilateral, diagnosticada utilizando-se como primeiro método de avaliação os Potenciais Evocados Auditivos de Tronco Encefálico com estímulo clique, tanto por via aérea como por via óssea. As duas técnicas mostraram-se eficientes para estimar os limiares auditivos, com uma vantagem dos PEAEE com relação ao tempo de duração de exame.It is recommended that congenital hearing loss is identified as early as three months old. After the initial step of confirming the diagnosis, it is necessary to obtain accurate hearing thresholds, allowing an adequate selection, indication and regulation of hearing aids for these children. It is inserted, in this context, the Frequency-Specific Auditory Brainstem Responses (FSABR and, more recently, the Auditory Steady-State Responses (ASSR. The aim of the present study was to describe the findings of the use of both techniques to estimate the auditory thresholds of a three-month-old infant with bilateral sensorineural hearing loss diagnosed using, as primary evaluation method, the click-evoked Auditory Brainstem Responses, with both air and bone stimuli conduction. Both techniques provided reliable findings for estimating auditory thresholds. The ASSR had an advantage regarding

  11. Somatosensory evoked response: application in neurology

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Guerreiro

    1982-03-01

    Full Text Available One technique used for short-latency somatosensory evoked response (SER is described. SER following nerve stimulation is a unique non-invasive, clinical test used to evaluate the somatosensory pathways. It tests the physiological function of the median nerve, the brachial plexus, the C6-7 cervical roots, cervical spinal cord, the cuneate nuclei, the medial lemniscus, the thalamus, and the contralateral sensory cortex. It has been shown to be a reliable and useful clinical test partiicularly in multiple sclerosis and comatose patients. The promising technique of SER following peroneal nerve stimulation is mentioned.

  12. Hearing outcomes after loss of brainstem auditory evoked potentials during microvascular decompression.

    Science.gov (United States)

    Thirumala, Parthasarathy D; Krishnaiah, Balaji; Habeych, Miguel E; Balzer, Jeffrey R; Crammond, Donald J

    2015-04-01

    The primary aim of this paper is to study the pre-operative characteristics, intra-operative changes and post-operative hearing outcomes in patients after complete loss of wave V of the brainstem auditory evoked potential. We retrospectively analyzed the brainstem auditory evoked potential data of 94 patients who underwent microvascular decompression for hemifacial spasm at our institute. Patients were divided into two groups - those with and those without loss of wave V. The differences between the two groups and outcomes were assessed using t-test and chi-squared tests. In our study 23 (24%) patients out of 94 had a complete loss of wave V, with 11 (48%) patients experiencing transient loss and 12 (52%) patients experiencing permanent loss. The incidence of hearing loss in patients with no loss of wave V was 5.7% and 26% in patients who did experience wave V loss. The incidence of hearing change in patients with no loss of wave V was 12.6% and 30.43% in patients who did experience wave V loss. Loss of wave V during the procedure or at the end of procedure significantly increases the odds of hearing loss. Hearing change is a significant under-reported clinical condition after microvascular decompression in patients who have loss of wave V.

  13. Effects of stimulation intensity, gender and handedness upon auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Susana Camposano

    1992-03-01

    Full Text Available Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities. Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2 at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.

  14. Analysis of brain-stem auditory evoked potential and visual evoked potential in patients with Parkinson disease

    Institute of Scientific and Technical Information of China (English)

    Qiaorong Deng; Jianzhong Deng; Yanmin Zhao; Xiaohai Yan; Pin Chen

    2006-01-01

    BACKGROUND: With the development of neuroelectrophysiology, it had been identified that all kinds of evoked potentials might reflect the functional status of corresponding pathway. Evoked potentials recruited in the re search of PD, it can be known whether other functional pathway of nervous system is impaired. OBJECTIVE: To observe whether brainstem auditory and visual passageway are impaired in patients with Parkinson disease (PD), and compare with non-PD patients concurrently. DESIGN: A non-randomized concurrent controlled observation. SETTINGS: Henan Provincial Tumor Hospital; Anyang District Hospital. PARTICIPANTS: Thirty-two cases of PD outpatients and inpatients, who registered in the Department of Neurology, Anyang District Hospital from October 1997 to February 2006, were enrolled as the PD group, including 20 males and 12 females, aged 50-72 years old. Inclusive criteria: In accordance with the diagnostic criteria of PD recommended by the dyskinesia and PD group of neurology branch of Chinese Medical Association. Patients with diseases that could cause Parkinson syndrome were excluded by CT scanning or MRI examination. Meanwhile, 30 cases with non-neurological disease were selected from the Department of Internal Medicine of our hospital as the control group, including 19 males and 11 females, aged 45-70 years old. Including criteria: Without history of neurological disease or psychiatric disease; showing normal image on CT. And PD, Parkinson syndrome and Parkinsonism-plus were excluded by professional neurologist. All the patients were informed and agreed with the examination and clinical observation. METHODS: The electrophysiological examination and clinical observation of the PD patients and controls were conducted. The Reporter type 4-channel evoked potential machine (Italy) was used to check brain-stem auditory evoked potential (BAEP) and visual evoked potential (VEP). Why to be examined was explained to test taker. BAEP recording electrode was plac

  15. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons.

    Science.gov (United States)

    Engineer, Navzer D; Percaccio, Cherie R; Pandya, Pritesh K; Moucha, Raluca; Rathbun, Daniel L; Kilgard, Michael P

    2004-07-01

    Over the last 50 yr, environmental enrichment has been shown to generate more than a dozen changes in brain anatomy. The consequences of these physical changes on information processing have not been well studied. In this study, rats were housed in enriched or standard conditions either prior to or after reaching sexual maturity. Evoked potentials from awake rats and extracellular recordings from anesthetized rats were used to document responses of auditory cortex neurons. This report details several significant, new findings about the influence of housing conditions on the responses of rat auditory cortex neurons. First, enrichment dramatically increases the strength of auditory cortex responses. Tone-evoked potentials of enriched rats, for example, were more than twice the amplitude of rats raised in standard laboratory conditions. Second, cortical responses of both young and adult animals benefit from exposure to an enriched environment and are degraded by exposure to an impoverished environment. Third, housing condition resulted in rapid remodeling of cortical responses in <2 wk. Fourth, recordings made under anesthesia indicate that enrichment increases the number of neurons activated by any sound. This finding shows that the evoked potential plasticity documented in awake rats was not due to differences in behavioral state. Finally, enrichment made primary auditory cortex (A1) neurons more sensitive to quiet sounds, more selective for tone frequency, and altered their response latencies. These experiments provide the first evidence of physiologic changes in auditory cortex processing resulting from generalized environmental enrichment.

  16. Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats

    Science.gov (United States)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2011-03-01

    Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.

  17. Effects of threat of electric shock and diazepam on the N1/P2 auditory-evoked potential elicited by low-intensity auditory stimuli.

    Science.gov (United States)

    Al-Abduljawad, K A; Baqui, F; Langley, R W; Bradshaw, C M; Szabadi, E

    2008-11-01

    The acoustic startle response includes rapid muscular contractions elicited by loud sounds; it may be measured in humans as the electromyographic response of the orbicularis oculi muscle. Enhancement of this response during exposure to threat of electric shock (fear- potentiated startle) is a widely used model of human anxiety. A problem with the use of the startle reflex in studies of human anxiety is the aversiveness of startle-eliciting sounds, which may, in some subjects, exceed the aversiveness of the electric shock itself. We have recently found that the long-latency N1/P2 auditory-evoked potential elicited by loud sounds is subject to fear potentiation. However, it is not known whether N1/P2 potentials elicited by low-intensity sounds, which do not elicit the startle response, are also subject to fear potentiation. This study examined the susceptibility of the N1/P2 potential elicited by low-intensity sounds to fear potentiation, and the effect of the anxiolytic diazepam on the N1/P2 potential in the absence and presence of threat of electric shock. Fifteen male volunteers (18-43 years) participated in three sessions in which they received placebo, diazepam 5 mg and diazepam 10 mg according to a double-blind protocol. Sixty minutes after treatment, auditory-evoked potentials were elicited by 40 ms 1 kHz tones 5, 10, 15, 20 and 25 dB[A] above a background of 70 dB[A]. Recording sessions consisted of eight alternating 2 min THREAT and SAFE blocks; unpredictable shocks (1.8 mA, 50 ms) were delivered to the subject's wrist in THREAT blocks (1-4 shocks per block). The amplitude of the N1/P2 potential increased monotonically as a function of stimulus intensity. The responses were significantly greater during THREAT blocks than during SAFE blocks (fear potentiation). Diazepam attenuated the responses in both the SAFE and THREAT conditions. Fear potentiation of the N1/P2 potential was significantly reduced by diazepam. Diazepam reduced subjective alertness and

  18. Bayesian analysis of MEG visual evoked responses

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.M.; George, J.S.; Wood, C.C.

    1999-04-01

    The authors developed a method for analyzing neural electromagnetic data that allows probabilistic inferences to be drawn about regions of activation. The method involves the generation of a large number of possible solutions which both fir the data and prior expectations about the nature of probable solutions made explicit by a Bayesian formalism. In addition, they have introduced a model for the current distributions that produce MEG and (EEG) data that allows extended regions of activity, and can easily incorporate prior information such as anatomical constraints from MRI. To evaluate the feasibility and utility of the Bayesian approach with actual data, they analyzed MEG data from a visual evoked response experiment. They compared Bayesian analyses of MEG responses to visual stimuli in the left and right visual fields, in order to examine the sensitivity of the method to detect known features of human visual cortex organization. They also examined the changing pattern of cortical activation as a function of time.

  19. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex.

    Science.gov (United States)

    Schaefer, Markus K; Hechavarría, Julio C; Kössl, Manfred

    2015-01-01

    Current source density (CSD) analysis assesses spatiotemporal synaptic activations at somatic and/or dendritic levels in the form of depolarizing current sinks. Whereas many studies have focused on the short (primary auditory cortex of Mongolian gerbils. By applying an algorithm for contour calculation, three distinct mid and four late evoked sinks were identified in layers I, III, Va, VIa, and VIb. Our results further showed that the patterns of intracortical information-flow remained qualitatively similar for low and for high sound pressure level stimuli at the characteristic frequency (CF) as well as for stimuli ± 1 octave from CF. There were, however, differences associated with the strength, vertical extent, onset latency, and duration of the sinks for the four stimulation paradigms used. Stimuli one octave above the most sensitive frequency evoked a new, and quite reliable, sink in layer Va whereas low level stimulation led to the disappearance of the layer VIb sink. These data indicate the presence of input sources specifically activated in response to level and/or frequency parameters. Furthermore, spectral integration above vs. below the CF of neurons is asymmetric as illustrated by CSD profiles. These results are important because synaptic feedback associated with mid and late sinks-beginning at 50 ms post stimulus latency-is likely crucial for response modulation resulting from higher order processes like memory, learning or cognitive control.

  20. Can bispectral index or auditory evoked potential index predict implicit memory during propofol-induced sedation?

    Institute of Scientific and Technical Information of China (English)

    WANG Yun; YUE Yun; SUN Yong-hai; WU An-shi

    2006-01-01

    Background Some patients still suffer from implicit memory of intraoperative events under adequate depth of anaesthesia. The elimination of implicit memory should be a necessary aim of clinical general anaesthesia.However, implicit memory cannot be tested during anaesthesia yet. We propose bispectral index (BIS) and auditory evoked potential index (AEPI), as predictors of implicit memory during anaesthesia.Methods Thirty-six patients were equally divided into 3 groups according to the Observer's Assessment of Alertness/Sedation Score: A, level 3; B, level 2 ;and C, level 1. Every patient was given the first auditory stimulus before sedation. Then every patient received the second auditory stimulus after the target level of sedation had been reached. BIS and AEPI were monitored before and after the second auditory stimulus presentation. Four hours later, the inclusion test and exclusion test were performed on the ward using process dissociation procedure and the scores of implicit memory estimated.Results In groups A and B but not C, implicit memory estimates were statistically greater than zero (P<0.05).The implicit memory scores in group A did not differ significantly from those in group B (P>0.05). Implicit memory scores correlated with BIS and AEPI (P<0.01). The area under ROC curve is BIS> AEPI. The 95% cutoff points of BIS and AEPI for predicting implicit memory are 47 and 28, respectively.Conclusions Implicit memory does not disappear until the depth of sedation increases to level 1 of OAA/S score. Implicit memory scores correlate well with BIS and AEPI during sedation. BIS is a better index for predicting implicit memory than AEPI during propofol induced sedation.

  1. Auditory evoked potentials in young patients with Down syndrome. Event-related potentials (P3) and histaminergic system.

    Science.gov (United States)

    Seidl, R; Hauser, E; Bernert, G; Marx, M; Freilinger, M; Lubec, G

    1997-06-01

    Subjects with Down syndrome exhibit various types of cognitive impairment. Besides abnormalities in a number of neurotransmitter systems (e.g. cholinergic), histaminergic deficits have recently been identified. Brainstem auditory evoked potentials (BAEPs) and auditory event-related potentials (ERPs), were recorded from 10 children (aged 11-20 years) with Down syndrome and from 10 age- and sex-matched healthy control subjects. In Down subjects, BAEPs revealed shortened latencies for peaks III and V with shortened interpeak latencies I-III and I-V. ERPs showed a delay of components N1, P2, N2 and P3. In addition, subjects with Down syndrome failed to show P3 amplitude reduction during repeated stimulation. To evaluate the cognitive effects of histaminergic dysfunction, ERPs were recorded from 12 healthy adults (aged 20-28 years) before and after antihistaminergic intervention (pheniramine) compared to placebo. Whereas components N1, P2, N2 remained unchanged after H1-receptor antagonism, P3 latency increased and P3 amplitude showed no habituation in response to repeated stimulation. The results suggest that the characteristic neurofunctional abnormalities present in children with Down syndrome must be the consequence of a combination of structural and neurochemical aberrations. The second finding was that antihistaminergic treatment affects information processing tested by ERPs similar to that seen with anticholinergic treatment.

  2. The stability of source localization in a whole-head magnetoencephalography system demonstrated by auditory evoked field measurements

    Science.gov (United States)

    Chen, Kuen-Lin; Yang, Hong-Chang; Tsai, Sung-Ying; Liu, Yu-Wei; Liao, Shu-Hsien; Horng, Herng-Er; Lee, Yong-Ho; Kwon, Hyukchan

    2011-10-01

    Superconducting quantum interference device (SQUID), which is a very sensitive magnetic sensor, has been widely used to detect the ultra-small magnetic signals in many different territories, especially in the biomagnetic measurement. In this study, a 128-channel SQUID first-order axial gradiometer system for whole-head magnetoencephalography (MEG) measurements was setup to characterize the auditory evoked magnetic fields (AEFs). A 500 Hz monaural pure tone persisting 425 ms with the sound pressure level of 80 dB was randomly applied to the left ear of subject with the inter-stimulus interval of 1.5 ˜ 2.8 s to prevent fatigue of nerves. We demonstrated the characteristic waveforms of AEFs can be accurately recorded and analyzed. Using source localization processes, the origins of AEFs were successfully calculated to be at the auditory cortices which are brain areas known for responsive to sound stimulus. A phantom experiment also proved the good localization accuracy of the established MEG system and measurement procedures. The validated performance of the SQUID system suggests that this technique can also be employed in other brain research.

  3. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials

    DEFF Research Database (Denmark)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L.

    2013-01-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound...

  4. Comparison of bispectral index and composite auditory evoked potential index for monitoring depth of hypnosis in children

    NARCIS (Netherlands)

    H.J.B. van Oud-Alblas; J.W.B. Peters (Jeroen); T.G. de Leeuw (Tom); D. Tibboel (Dick); J. Klein (Jan); F. Weber (Frank)

    2008-01-01

    textabstractBACKGROUND: In pediatric patients, the Bispectral Index (BIS), derived from the electroencephalogram, and the composite A-Line autoregressive index (cAAI), derived from auditory evoked potentials and the electroencephalogram, have been used as measurements of depth of hypnosis during ane

  5. FOLLOW-UP STUDY ON AUDITORY EVOKED POTENTIAL P50 IN FIRST-EPISODE SCHIZOPHRENIA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate the variation of auditory evoked potential P50 in first-episode schizo-phrenia. Methods P50 was recorded from 66 schizophrenics and 92 normal controls with American Brova instrument, and assessing their psychotic symptoms with PANSS. Results Compared with NC, schizophrenics showed sensory gating deficit, reflecting by increased S2/S1 ratio ( NC: 42 ± 21%, Sch :81 ± 40%, P < 0. 01 ). No significant correlation was found between PANSS score and the three markers for assessing the sensory gating, such as the S2/S1 ratio, S2-S1, and 100 (1-S2/S1) ( P >0. 05). Schizophrenics showed no differences with P50 markers between the 5 weeks and 12 weeks of treatment. Conclusion P50 might be biological trait marker of schizophrenia.

  6. Effect of noise pollution on hearing in auto-rickshaw drivers: A brainstem auditory-evoked potentials study

    Directory of Open Access Journals (Sweden)

    Bhupendra Marotrao Gathe

    2016-01-01

    Full Text Available Context: Auditory brainstem response is the most important tool in differential diagnosis and degree of hearing impairment. Many studies have been carried out to ascertain the effects of noise on human beings but very less on the transportation workers; hence, considering the need of time and use of brainstem auditory-evoked potentials (BAEP, this study was conducted to analyze the effect of noise pollution on auto-rickshaw drivers (ARDs. Aim: The aim of this study was to evaluate I, II, III, IV, and V wave latencies in ARDs and comparing it with control subjects in Central India. Settings and Design: This was a case-control study done on ARDs as participants and compared it with normal healthy individual BAEP pattern. Materials and Methods: We recorded BAEP from fifty healthy control subjects and fifty ARDs from the community of same sex and geographical setup. The absolute latencies were measured and compared. Recording was done using RMS EMG EP MARK II machine manufactured by RMS recorders and Medicare system, Chandigarh. Statistical Analysis Used: All the data related with subjects were filled in Excel sheet and analyzed with the help of EPI 6.0 info software with Student′s t-test. Results: There were prolongations of all absolute wave latencies of II, III, IV, and V in the ARDs as compared to control subjects. Conclusions: The prolongation of all absolute latencies of II, III, IV, and V suggests abnormality in brainstem auditory pathway mainly affecting the retrocochlear pathways in group of ARDs (noise exposure >10 years than other group who had exposed for <10 years and is more significant on the right ear than left.

  7. A comparison of commercial auditory evoked potential units: the midpriced and luxury units.

    Science.gov (United States)

    Ferraro, J A; Ruth, R R

    1990-05-01

    This report represents the second of two providing a consumer-oriented comparison of commercially available auditory evoked potential units. The units compared here were those whose basic price was between $10,000-$30,000 ("midpriced"), and greater than $30,000 ("luxury"). The midpriced group included the Amplaid MK15, Bio-Logic Navigator and Traveler LT, Cadwell 5200A and Quantum 84, GSI-50, Nicolet CA-2000 and Compact Auditory, Nihon-Kohden Neuropak IV Mini, Madsen ERA2250, Siegen (Dantec) Neuroscope, and Tracor Nomad. The luxury units comprised the Bio-Logic Brain Atlas, Cadwell Spectrum 32 and Nicolet Pathfinder. Descriptive information and the names and addresses of users were solicited from the manufacturers for each of the above units. Questionnaires were sent to the users asking them for information on how their unit was used and to rate some of its features. The midpriced and luxury units offer more flexibility and options than less expensive (i.e., "economy") units. However, the basis for a given unit's price versus another's was not always apparent by a comparison of features or options. In general, users of the midpriced and luxury units rated the majority of their instruments' features highly. The lowest ratings were received for some aspect of the printer or print-out, and portability.

  8. Long-latency auditory evoked potentials with verbal and nonverbal stimuli,

    Directory of Open Access Journals (Sweden)

    Sheila Jacques Oppitz

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. OBJECTIVE: To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. METHODS: A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000 Hz - frequent and 4000 Hz - rare; and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare. RESULTS: Considering the component N2 for tone burst, the lowest latency found was 217.45 ms for the BA/DI stimulus; the highest latency found was 256.5 ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340 ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. CONCLUSION: There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude.

  9. Nicotinic modulation of auditory evoked potential electroencephalography in a rodent neurodevelopmental model of schizophrenia.

    Science.gov (United States)

    Kohlhaas, Kathy L; Robb, Holly M; Roderwald, Victoria A; Rueter, Lynne E

    2015-10-15

    Schizophrenia is a chronic disease that has been hypothesized to be linked to neurodevelopmental abnormalities. Schizophrenia patients exhibit impairments in basic sensory processing including sensory gating deficits in P50 and mismatch negativity (MMN). Neuronal nicotinic acetylcholine receptor (nAChR) agonists have been reported to attenuate these deficits. Gestational exposure of rats to methylazoxymethanol acetate (MAM) at embryonic day 17 leads to developmental disruption of the limbic-cortical system. MAM exposed offspring show neuropathological and behavioral changes that have similarities with those seen in schizophrenia. In this study, we aimed to assess whether N40 auditory sensory gating (the rodent form of P50 gating) and MMN deficits as measures of auditory evoked potential (AEP) electroencephalography (EEG) are present in MAM rats and whether nAChR agonists could attend the deficit. E17 male MAM and sham rats were implanted with cortical electrodes at 2 months of age. EEG recordings evaluating N40 gating and MMN paradigms were done comparing effects of vehicle (saline), nicotine and the α7 agonist ABT-107. Deficits were seen for MAM rats compared to sham animals in both N40 auditory sensory gating and MMN AEP recordings. There was a strong trend for N40 deficits to be attenuated by both nicotine (0.16mg/kg i.p. base) and ABT-107 (1.0mg/kg i.p. base). MMN deficits were significantly attenuated by ABT-107 but not by nicotine. These data support the MAM model as a useful tool for translating pharmacodynamic effects in clinical medicine studies of novel therapeutic treatments for schizophrenia.

  10. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease

    Science.gov (United States)

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399

  11. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  12. Auditory responses and stimulus-specific adaptation in rat auditory cortex are preserved across NREM and REM sleep.

    Science.gov (United States)

    Nir, Yuval; Vyazovskiy, Vladyslav V; Cirelli, Chiara; Banks, Matthew I; Tononi, Giulio

    2015-05-01

    Sleep entails a disconnection from the external environment. By and large, sensory stimuli do not trigger behavioral responses and are not consciously perceived as they usually are in wakefulness. Traditionally, sleep disconnection was ascribed to a thalamic "gate," which would prevent signal propagation along ascending sensory pathways to primary cortical areas. Here, we compared single-unit and LFP responses in core auditory cortex as freely moving rats spontaneously switched between wakefulness and sleep states. Despite robust differences in baseline neuronal activity, both the selectivity and the magnitude of auditory-evoked responses were comparable across wakefulness, Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep (pairwise differences sleep and wakefulness using an oddball paradigm. Robust stimulus-specific adaptation (SSA) was observed following the onset of repetitive tones, and the strength of SSA effects (13-20%) was comparable across vigilance states. Thus, responses in core auditory cortex are preserved across sleep states, suggesting that evoked activity in primary sensory cortices is driven by external physical stimuli with little modulation by vigilance state. We suggest that sensory disconnection during sleep occurs at a stage later than primary sensory areas.

  13. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  14. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-01-01

    Full Text Available O Potencial Evocado Auditivo de Média Latência é um teste objetivo promissor na audiologia na pesquisa neuro-diagnóstica das disfunções do sistema auditivo. Tem como vantagens a precisão e objetividade na avaliação e por isso é útil em crianças. O presente estudo teve como objetivo analisar os potenciais evocados auditivos de média latência em dois pacientes com distúrbio de processamento auditivo e relacionar as medidas objetivas e comportamentais. Para tanto foi realizado estudo de caso de dois pacientes (P1= feminino, 12 anos; P2= masculino, 17 anos, ambos com ausência de alterações sensoriais, distúrbios neurológicos, neuropsiquiátricos. Ambos foram submetidos à anamnese, inspeção do meato acústico externo, avaliação audiológica e avaliação do exame de potencial evocado auditivo de média latência. Houve associação significante entre os resultados dos exames comportamentais e objetivos. Na anamnese, houve queixas referentes à dificuldade de escuta em ambiente ruidoso, localização sonora, desatenção, além de trocas fonológicas na escrita e na fala. Foram observadas alterações no processo de decodificação auditiva à direita em ambos os casos na avaliação comportamental do processamento auditivo e no exame de potencial evocado auditivo de média latência a resposta da via contralateral direita foi deficitária, confirmando as dificuldades dos pacientes estudados na atribuição de significado às informações acústicas em condição de competição sonora à direita nos dois casos. Para os casos estudados comprovou-se à associação entre os resultados, porém há necessidade de novos estudos com maior amostra para confirmação dos dados.The Auditory Evoked Middle Latency Response is one of the most promising objective tests in audiology and in revealing brain dysfunction and neuro-audiologic findings. The main advantages of its clinical use are precision and objectivity in evaluating children

  15. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-04-01

    Full Text Available O Potencial Evocado Auditivo de Média Latência é um teste objetivo promissor na audiologia na pesquisa neuro-diagnóstica das disfunções do sistema auditivo. Tem como vantagens a precisão e objetividade na avaliação e por isso é útil em crianças. O presente estudo teve como objetivo analisar os potenciais evocados auditivos de média latência em dois pacientes com distúrbio de processamento auditivo e relacionar as medidas objetivas e comportamentais. Para tanto foi realizado estudo de caso de dois pacientes (P1= feminino, 12 anos; P2= masculino, 17 anos, ambos com ausência de alterações sensoriais, distúrbios neurológicos, neuropsiquiátricos. Ambos foram submetidos à anamnese, inspeção do meato acústico externo, avaliação audiológica e avaliação do exame de potencial evocado auditivo de média latência. Houve associação significante entre os resultados dos exames comportamentais e objetivos. Na anamnese, houve queixas referentes à dificuldade de escuta em ambiente ruidoso, localização sonora, desatenção, além de trocas fonológicas na escrita e na fala. Foram observadas alterações no processo de decodificação auditiva à direita em ambos os casos na avaliação comportamental do processamento auditivo e no exame de potencial evocado auditivo de média latência a resposta da via contralateral direita foi deficitária, confirmando as dificuldades dos pacientes estudados na atribuição de significado às informações acústicas em condição de competição sonora à direita nos dois casos. Para os casos estudados comprovou-se à associação entre os resultados, porém há necessidade de novos estudos com maior amostra para confirmação dos dados.The Auditory Evoked Middle Latency Response is one of the most promising objective tests in audiology and in revealing brain dysfunction and neuro-audiologic findings. The main advantages of its clinical use are precision and objectivity in evaluating children

  16. Abnormalities in Brainstem Auditory Evoked Potentials in Sheep with Transmissible Spongiform Encephalopathies and Lack of a Clear Pathological Relationship

    Directory of Open Access Journals (Sweden)

    Timm Konold

    2016-08-01

    Full Text Available Scrapie is a transmissible spongiform encephalopathy (TSE, which causes neurological signs in sheep but confirmatory diagnosis is usually made postmortem on examination of the brain for TSE-associated markers like vacuolar changes and disease-associated prion protein (PrPSc. The objective of this study was to evaluate whether testing of brainstem auditory evoked potentials (BAEPs at two different sound levels could aid in the clinical diagnosis of TSEs in sheep naturally or experimentally infected with different TSE strains [classical and atypical scrapie and bovine spongiform encephalopathy (BSE] and whether any BAEP abnormalities were associated with TSE-associated markers in the auditory pathways.BAEPs were recorded from 141 clinically healthy sheep of different breeds and ages that tested negative for TSEs on postmortem tests to establish a reference range and to allow comparison with 30 sheep clinically affected or exposed to classical scrapie without disease confirmation (test group 1 and 182 clinically affected sheep with disease confirmation (test group 2. Abnormal BAEPs were found in seven sheep (23% of group 1 and 42 sheep (23% of group 2. The proportion of sheep with abnormalities did not appear to be influenced by TSE strain or prion protein gene polymorphisms. When the magnitude of TSE-associated markers in the auditory pathways was compared between a subset of 12 sheep with and 12 sheep without BAEP abnormalities in group 2, no significant differences in the total PrPSc or vacuolation scores in the auditory pathways could be found. However, the data suggested that there was a difference in the PrPSc scores depending on the TSE strain because PrPSc scores were significantly higher in sheep with BAEP abnormalities infected with classical and L-type BSE but not with classical scrapie.The results indicated that BAEPs may be abnormal in sheep infected with TSEs but the test is not specific for TSEs, and that neither vacuolation nor Pr

  17. Abnormalities in Brainstem Auditory Evoked Potentials in Sheep with Transmissible Spongiform Encephalopathies and Lack of a Clear Pathological Relationship

    Science.gov (United States)

    Konold, Timm; Phelan, Laura J.; Cawthraw, Saira; Simmons, Marion M.; Chaplin, Melanie J.; González, Lorenzo

    2016-01-01

    Scrapie is transmissible spongiform encephalopathy (TSE), which causes neurological signs in sheep, but confirmatory diagnosis is usually made postmortem on examination of the brain for TSE-associated markers like vacuolar changes and disease-associated prion protein (PrPSc). The objective of this study was to evaluate whether testing of brainstem auditory evoked potentials (BAEPs) at two different sound levels could aid in the clinical diagnosis of TSEs in sheep naturally or experimentally infected with different TSE strains [classical and atypical scrapie and bovine spongiform encephalopathy (BSE)] and whether any BAEP abnormalities were associated with TSE-associated markers in the auditory pathways. BAEPs were recorded from 141 clinically healthy sheep of different breeds and ages that tested negative for TSEs on postmortem tests to establish a reference range and to allow comparison with 30 sheep clinically affected or exposed to classical scrapie (CS) without disease confirmation (test group 1) and 182 clinically affected sheep with disease confirmation (test group 2). Abnormal BAEPs were found in 7 sheep (23%) of group 1 and 42 sheep (23%) of group 2. The proportion of sheep with abnormalities did not appear to be influenced by TSE strain or PrPSc gene polymorphisms. When the magnitude of TSE-associated markers in the auditory pathways was compared between a subset of 12 sheep with and 12 sheep without BAEP abnormalities in group 2, no significant differences in the total PrPSc or vacuolation scores in the auditory pathways could be found. However, the data suggested that there was a difference in the PrPSc scores depending on the TSE strain because PrPSc scores were significantly higher in sheep with BAEP abnormalities infected with classical and L-type BSE, but not with CS. The results indicated that BAEPs may be abnormal in sheep infected with TSEs but the test is not specific for TSEs and that neither vacuolation nor PrPSc accumulation appears to be

  18. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  19. Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields.

    Science.gov (United States)

    Todorovic, Ana; de Lange, Floris P

    2012-09-26

    Repetition of a stimulus, as well as valid expectation that a stimulus will occur, both attenuate the neural response to it. These effects, repetition suppression and expectation suppression, are typically confounded in paradigms in which the nonrepeated stimulus is also relatively rare (e.g., in oddball blocks of mismatch negativity paradigms, or in repetition suppression paradigms with multiple repetitions before an alternation). However, recent hierarchical models of sensory processing inspire the hypothesis that the two might be separable in time, with repetition suppression occurring earlier, as a consequence of local transition probabilities, and suppression by expectation occurring later, as a consequence of learnt statistical regularities. Here we test this hypothesis in an auditory experiment by orthogonally manipulating stimulus repetition and stimulus expectation and, using magnetoencephalography, measuring the neural response over time in human subjects. We found that stimulus repetition (but not stimulus expectation) attenuates the early auditory response (40-60 ms), while stimulus expectation (but not stimulus repetition) attenuates the subsequent, intermediate stage of auditory processing (100-200 ms). These findings are well in line with hierarchical predictive coding models, which posit sequential stages of prediction error resolution, contingent on the level at which the hypothesis is generated.

  20. The study on the targets of the optical evoked auditory brainstem response on the cochlea of guinea pig stimulating by infrared laser%红外线激光刺激豚鼠耳蜗诱发听性脑干反应作用靶点的实验研究

    Institute of Scientific and Technical Information of China (English)

    谢冰斌; 李华伟; 戴春富

    2016-01-01

    Objective To identify the targets of the infrared laser stimulating on the cochlea of guinea pig which evoked auditory brainstem response (oABR),and explore the mechanisms of the infrared neurostimulation.Methods A polished optical fiber with 200 μm diameter (NA =0.22) was planted into the scala tympani of guinea pigs to stimulate the cochlea of both the normal hearing and acute deafened guinea pigs.The direction of the fiber distal was changed to radiate different regions of the scala tympani,recording the oABR respectively.Differences of energy thresholds and amplitudes of oABR between normal hearing and acute deafened animals was concerned,and different responses were recorded as the optical path of laser fiber being changed to investigate the targets of the infrared laser stimulation.Immunofluorescence was used to detect the changes of inner and outer hair cells,and spiral ganglion neurons 7 days postdeafening,to looking for the probable association with the oABR changes at the same stimulus.SPSS 18.0 software was used to analyze the data.Results Inner and outer hair cells were damaged in basal and middle turn,butresidual hair cells were observed in apical turn.Only when the optical fiber pointed to Rosenthal's canal stimulated the spiral ganglion region directly could the oABR be evoked.No response was recorded while the fiber pointed to other directions.Conclusion Infrared laser stimulates cochlea evoked oABR generats from the response of spiral ganglion directly,the spiral ganglion neurons are the target of infrared stimulation.%目的 研究红外线激光刺激豚鼠耳蜗诱发听性脑干反应(optical evoled auditory brainstem response,oABR)的作用靶点,探讨激光刺激的作用机制.方法 对正常听力豚鼠及急性耳蜗损伤豚鼠耳蜗植入直径200μm的光纤(NA =0.22),光纤末端对准鼓阶不同部位进行激光刺激,记录并比较不同刺激角度下oABR的反应情况及正常听力与急性耳蜗损伤豚鼠oABR阈值和

  1. Estudo das latências e amplitudes dos potenciais evocados auditivos de média latência em indivíduos audiologicamente normais Middle latency response study of auditory evoked potentials’ amplitudes and lantencies audiologically normal individuals

    Directory of Open Access Journals (Sweden)

    Ivone Ferreira Neves

    2007-02-01

    Full Text Available Estudo de coorte contemporânea com corte transversal. O Potencial Evocado Auditivo de Média Latência (PEAML é gerado entre 10 e 80ms e possui múltiplos geradores, com maior contribuição da região tálamo-cortical. O estabelecimento de critérios de normalidade para os valores de latência e amplitude é necessário para uso clínico. OBJETIVOS: Analisar a latência e amplitude do PEAML em indivíduos sem alterações audiológicas, e verificar a confiabilidade da amplitude Pa-Nb. MATERIAL E MÉTODO: Foram coletados os PEAML de 25 indivíduos durante o ano de 2005 e analisados os componentes Na, Pa, Nb para cada orelha testada (A1 e A2, e posicionamento de eletrodo (C3 e C4. RESULTADOS: Observou-se diferença estatisticamente significante entre os valores médios de latência para C3A1 e C4A1 com relação aos componentes Na e Pa, não sendo encontrada esta diferença para o componente Nb e valores médios das amplitudes Na-Pa e Pa-Nb. CONCLUSÃO: Foram estabelecidos os valores das médias e desvios padrão para os parâmetros latência e amplitude dos componentes Na, Pa, Nb, e Na-Pa e Pa-Nb, nas condições C3A1, C4A1, C3A2, C4A2, proporcionando os parâmetros para a análise e interpretação deste potencial.Contemporary cohort cross-sectional study. Introduction: The auditory middle latency response (AMLR is generated between 10 and 80 ms and has multiple generators, with a greater contribution from the thalamus-cortical pathways. The establishment of normality criteria for latency and amplitude values is necessary for clinical use. AIM: to analyze the latency and amplitude of the AMLR in individuals without audiological disorders, and verify the reliability of Pa-Nb amplitude. MATERIALS AND METHODS: The AMLR of 25 individuals was collected during 2005 and the Na, Pa, Nb components were analyzed for each tested ear (A1 and A2, and electrode positioning (C3 and C4. RESULTS: A statistically significant difference was noticed among middle

  2. Neurodynamics, tonality, and the auditory brainstem response.

    Science.gov (United States)

    Large, Edward W; Almonte, Felix V

    2012-04-01

    Tonal relationships are foundational in music, providing the basis upon which musical structures, such as melodies, are constructed and perceived. A recent dynamic theory of musical tonality predicts that networks of auditory neurons resonate nonlinearly to musical stimuli. Nonlinear resonance leads to stability and attraction relationships among neural frequencies, and these neural dynamics give rise to the perception of relationships among tones that we collectively refer to as tonal cognition. Because this model describes the dynamics of neural populations, it makes specific predictions about human auditory neurophysiology. Here, we show how predictions about the auditory brainstem response (ABR) are derived from the model. To illustrate, we derive a prediction about population responses to musical intervals that has been observed in the human brainstem. Our modeled ABR shows qualitative agreement with important features of the human ABR. This provides a source of evidence that fundamental principles of auditory neurodynamics might underlie the perception of tonal relationships, and forces reevaluation of the role of learning and enculturation in tonal cognition.

  3. Electroencephalogram and brainstem auditory evoked potential in 539 patients with central coordination disorder

    Institute of Scientific and Technical Information of China (English)

    Huijia Zhang; Hua Yan; Paoqiu Wang; Jihong Hu; Hongtao Zhou; Rong Qin

    2008-01-01

    BACKGROUND: Electroencephalogram (EEG) and brainstem auditory evoked potential (BAEP) are objective non-invasive means of measuring brain electrophysiology.OBJECTIVE: To analyze the value of EEG and BAEP in early diagnosis, treatment and prognostic evaluation of central coordination disorder.DESIGN, TIME AND SETTING: This case analysis study was performed at the Rehabilitation Center of Hunan Children's Hospital from January 2002 to January 2006.PARTICIPANTS: A total of 593 patients with severe central coordination disorder, comprising 455 boys and 138 girls, aged 1--6 months were enrolled for this study.METHODS: EEG was monitored using electroencephalography. BAEP was recorded using a Keypoint electromyogram device. Intelligence was tested by professionals using the Gesell scale.MAIN OUTCOME MEASURES: (1) The rate of abnormal EEG and BAEP, (2) correlation of abnormalities of EEG and BAEP with associated injuries, (3) correlation of abnormalities of EEG and BAEP with high risk factors.RESULTS: The rate of abnormal EEG was 68.6% (407/593 patients), and was increased in patients who also had mental retardation (P < 0.05). The rate of abnormal BAEP was 21.4% (127/593 patients). These 127 patients included 67 patients (52.8%) with peripheral auditory damage and 60 patients (47.2%) with central and mixed auditory damage. The rate of abnormal BAEP was significantly increased in patients who also had mental retardation (P < 0.01). Logistic regression analysis showed that asphyxia (P < 0.05), jaundice,preterm delivery, low birth weight and the umbilical cord around the neck were closely correlated with abnormal EEG in patients with central coordination disorder. Intracranial hemorrhage, jaundice (P < 0.05),low birth weight and intrauterine infection (P < 0.05) were closely correlated with abnormal BAEP in patients with central coordination disorder.CONCLUSION: Central coordination disorder is often associated with abnormal EEG and BAEP. The rate of EEG or BAEP abnormality

  4. Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials

    Science.gov (United States)

    Hechavarría, Julio C.; Beetz, M. Jerome; Macias, Silvio; Kössl, Manfred

    2016-12-01

    The mechanisms by which the mammalian brain copes with information from natural vocalization streams remain poorly understood. This article shows that in highly vocal animals, such as the bat species Carollia perspicillata, the spike activity of auditory cortex neurons does not track the temporal information flow enclosed in fast time-varying vocalization streams emitted by conspecifics. For example, leading syllables of so-called distress sequences (produced by bats subjected to duress) suppress cortical spiking to lagging syllables. Local fields potentials (LFPs) recorded simultaneously to cortical spiking evoked by distress sequences carry multiplexed information, with response suppression occurring in low frequency LFPs (i.e. 2–15 Hz) and steady-state LFPs occurring at frequencies that match the rate of energy fluctuations in the incoming sound streams (i.e. >50 Hz). Such steady-state LFPs could reflect underlying synaptic activity that does not necessarily lead to cortical spiking in response to natural fast time-varying vocal sequences.

  5. Response recovery in the locust auditory pathway.

    Science.gov (United States)

    Wirtssohn, Sarah; Ronacher, Bernhard

    2016-01-01

    Temporal resolution and the time courses of recovery from acute adaptation of neurons in the auditory pathway of the grasshopper Locusta migratoria were investigated with a response recovery paradigm. We stimulated with a series of single click and click pair stimuli while performing intracellular recordings from neurons at three processing stages: receptors and first and second order interneurons. The response to the second click was expressed relative to the single click response. This allowed the uncovering of the basic temporal resolution in these neurons. The effect of adaptation increased with processing layer. While neurons in the auditory periphery displayed a steady response recovery after a short initial adaptation, many interneurons showed nonlinear effects: most prominent a long-lasting suppression of the response to the second click in a pair, as well as a gain in response if a click was preceded by a click a few milliseconds before. Our results reveal a distributed temporal filtering of input at an early auditory processing stage. This set of specified filters is very likely homologous across grasshopper species and thus forms the neurophysiological basis for extracting relevant information from a variety of different temporal signals. Interestingly, in terms of spike timing precision neurons at all three processing layers recovered very fast, within 20 ms. Spike waveform analysis of several neuron types did not sufficiently explain the response recovery profiles implemented in these neurons, indicating that temporal resolution in neurons located at several processing layers of the auditory pathway is not necessarily limited by the spike duration and refractory period.

  6. Otoacoustic Emissions, Auditory Evoked Potentials and Self-Reported Gender in People Affected by Disorders of Sex Development (DSD)

    OpenAIRE

    Wisniewski, Amy B.; Espinoza-Varas, Blas; Christopher E Aston; Edmundson, Shelagh; Champlin, Craig A.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) – (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46, XY DSD including prenatal androgen exposure who developed a male gender de...

  7. Relationships between sensory "gating out" and sensory "gating in" of auditory evoked potentials in schizophrenia: a pilot study.

    Science.gov (United States)

    Gjini, Klevest; Arfken, Cynthia; Boutros, Nash N

    2010-08-01

    The interrelationship between the ability to inhibit incoming redundant input (gating out) and the ability of the brain to respond when the stimulus changes (gating in), has not been extensively examined. We administered a battery of auditory evoked potential tests to a group of chronic, medicated schizophrenia patients (N=12) and a group of healthy subjects (N=12) in order to examine relationships between "gating out" measures (suppression with repetition of the P50, N100, and P200 evoked responses), and the mismatch negativity (MMN) and the P300 event related potentials as measures of "gating in". Gating ratios for N100 and P200 in a visual attention paired-click task differed significantly between groups. Mismatch negativity and P300 potential amplitudes were also significantly reduced in the patient group. When including all subjects (N=24) a negative correlation was found between the P50 gating and the amplitude of the MMN. In healthy subjects this correlation was significantly stronger compared to schizophrenia patients. While no significant correlation was noted between the amplitudes of the P300 and any gating measures when all 24 subjects were included, a significant negative correlation was seen between the P200 gating and the P300 amplitudes in schizophrenia patients; an opposite trend was noted in healthy subjects. Finally, a positive correlation was seen between the P300 and MMN (to abstract deviance) amplitudes in healthy subjects, but the opposite was found in patients. These results suggest that further study of these interrelationships could inform the understanding of information processing abnormalities in schizophrenia.

  8. Correlation of middle latency auditory evoked potentials and cerebral blood flow changes

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Seiichiro; Sugimoto, Akiko; Ohi, Takekazu; Matsukura, Shigeru; Watanabe, Katushi [Miyazaki Medical Coll., Kiyotake (Japan); Hoshi, Hiroaki

    1997-12-01

    The purpose of this study is to find the correlation between middle latency auditory evoked potentials (MLAEP) and sound activated single photon emission computed tomography (SPECT) studies. This study was performed on six normal right-handed volunteers with a mean age of 35.2{+-}7.6 years, using the split-dose technique. First, a SPECT study was performed on subjects in blinded, awake and silent states. After bilateral ears were stimulated with a click sound, MLAEP and a second SPECT study were performed. Subtraction of the first SPECT from the second SPECT revealed a statistically significant increase of cerebral blood flow (CBF) in the bilateral superior temporal region. Bilateral Na amplitudes of MLAEP had a statistically significant and good correlation with the percentages of CBF changes in the bilateral superior temporal region. The superior temporal cerebral blood flow activation can be expressed by electrophysiological activation. Moreover, correlation during the left Na components and left frontal and occipital lobe are discussed. (author)

  9. Relative reliability of the auditory evoked potential and Bispectral Index for monitoring sedation level in surgical intensive care patients.

    Science.gov (United States)

    Lu, C-H; Ou-Yang, H-Y; Man, K-M; Hsiao, P-C; Ho, S-T; Wong, C-S; Liaw, W-J

    2008-07-01

    Sedation is an important adjunct therapy for patients in the intensive care unit. The objective of the present study was to observe correlation between an established subjective measure, the Ramsay Sedation Scale, and two objective tools for monitoring critically ill patients: the Bispectral Index (BIS) and auditory evoked potential. Ninety patients undergoing major surgery scheduled for postoperative mechanical ventilation and continuous sedation with propofol and fentanyl were selected. Electrodes for determining BIS and auditory evoked potential were placed on the foreheads of all patients according to manufacturer's specifications at least six hours after patients' arrival at the intensive care unit. Ramsay Sedation Scale, BIS, signal quality index, composite A-line autoregressive index (AAI) and electromyographic activities were recorded every five minutes for 30 minutes. BIS and AAI showed good correlation amongst readings (r(s)=0.697, P Ramsay Sedation Scale (BIS, tau=-0.689; AAI, tau=-0.621; P Ramsay Sedation Scale. However, the BIS and auditory evoked potential monitors do not perform adequately as a substitute in the assessment of sedated intensive care unit patients. These monitors could be used as part of an integrated approach for the evaluation of those patients especially when the subjective scales do not work well in the setting of neuromuscular blockade or may not be sufficiently sensitive to evaluate very deep sedation.

  10. Type-2 diabetes mellitus and auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Sheelu S Siddiqi

    2013-01-01

    Full Text Available Objective: Diabetes mellitus (DM causes pathophysiological changes at multiple organ system. With evoked potential techniques, the brain stem auditory response represents a simple procedure to detect both acoustic nerve and central nervous system pathway damage. The objective was to find the evidence of central neuropathy in diabetes patients by analyzing brainstem audiometry electric response obtained by auditory evoked potentials, quantify the characteristic of auditory brain response in long standing diabetes and to study the utility of auditory evoked potential in detecting the type, site, and nature of lesions. Design: A total of 25 Type-2 DM [13 (52% males and 12 (48% females] with duration of diabetes over 5 years and aged over 30 years. The brainstem evoked response audiometry (BERA was performed by universal smart box manual version 2.0 at 70, 80, and 90 dB. The wave latency pattern and interpeak latencies were estimated. This was compared with 25 healthy controls (17 [68%] males and 8 [32%] females. Result: In Type-2 DM, BERA study revealed that wave-III representing superior olivary complex at 80 dB had wave latency of (3.99 ± 0.24 ms P < 0.001, at 90 dB (3.92 ± 0.28 ms P < 0.001 compared with control. The latency of wave III was delayed by 0.39, 0.42, and 0.42 ms at 70, 80, and 90 dB, respectively. The absolute latency of wave V representing inferior colliculus at 70 dB (6.05 ± 0.27 ms P < 0.001, at 80 dB (5.98 ± 0.27 P < 0.001, and at 90 dB (6.02 ± 0.30 ms P < 0.002 compared with control. The latency of wave-V was delayed by 0.48, 0.47, and 0.50 ms at 70, 80, and 90 dB, respectively. Interlatencies I-III at 70 dB (2.33 ± 0.22 ms P < 0.001, at 80 dB (2.39 ± 0.26 ms P < 0.001, while at 90 dB (2.47 ± 0.25 ms P < 0.001 when compared with control. Interlatencies I-V at 70 dB (4.45 ± 0.29 ms P < 0.001 at 80 dB (4.39 ± 0.34 ms P < 0.001, and at 90 dB (4.57 ± 0.31 ms P < 0.001 compared with control. Out of 25 Type-2 DM, 13 (52

  11. Construction of Hindi Speech Stimuli for Eliciting Auditory Brainstem Responses.

    Science.gov (United States)

    Ansari, Mohammad Shamim; Rangasayee, R

    2016-12-01

    Speech-evoked auditory brainstem responses (spABRs) provide considerable information of clinical relevance to describe auditory processing of complex stimuli at the sub cortical level. The substantial research data have suggested faithful representation of temporal and spectral characteristics of speech sounds. However, the spABR are known to be affected by acoustic properties of speech, language experiences and training. Hence, there exists indecisive literature with regards to brainstem speech processing. This warrants establishment of language specific speech stimulus to describe the brainstem processing in specific oral language user. The objective of current study is to develop Hindi speech stimuli for recording auditory brainstem responses. The Hindi stop speech of 40 ms containing five formants was constructed. Brainstem evoked responses to speech sound |da| were gained from 25 normal hearing (NH) adults having mean age of 20.9 years (SD = 2.7) in the age range of 18-25 years and ten subjects (HI) with mild SNHL of mean 21.3 years (SD = 3.2) in the age range of 18-25 years. The statistically significant differences in the mean identification scores of synthesized for speech stimuli |da| and |ga| between NH and HI were obtained. The mean, median, standard deviation, minimum, maximum and 95 % confidence interval for the discrete peaks and V-A complex values of electrophysiological responses to speech stimulus were measured and compared between NH and HI population. This paper delineates a comprehensive methodological approach for development of Hindi speech stimuli and recording of ABR to speech. The acoustic characteristic of stimulus |da| was faithfully represented at brainstem level in normal hearing adults. There was statistically significance difference between NH and HI individuals. This suggests that spABR offers an opportunity to segregate normal speech encoding from abnormal speech processing at sub cortical level, which implies that

  12. AUDITORY BRAINSTEM RESPONSES IN SENILE PRESBYCUSIS PATIENTS OVER 90 YEARS

    Institute of Scientific and Technical Information of China (English)

    CHEN Aiting; LIANG Sichao; ZHANG Ruining; GUO Weiwei; ZHOU Qiyou; JI Fei

    2014-01-01

    Objective To analyze the characteristics of auditory brainstem response (ABR) in presbycusis patients el-der than 90 years. Methods Fourteen presbycusis patients elder than 90 years (presbycusis group, 91.1.4 ± 1.3 years, 26 ears) and 9 normal-hearing young adults (control group, 22.7 ± 1.2 years, 18 ears) participated in the study. Alternative click-evoked ABRs were recorded in both groups. The peak latency (PL) of peak I,Ⅲ, and V, and the inter-peak latency (IPI) of I-Ⅲ,Ⅲ-V, and I-V were compared between groups. Results In elder presbycusis patients, the occurrence rate of peak I andⅢwere both 76.9%, and that of peak V was 84.6%. In presbycusis group, the peak latencies of I, Ⅲ, V were significantly longer than that of control group (P<0.001). There was no significant difference between groups in the IPI of peak I-IⅢ (P=0.298, peakⅢ-V (P=0.254) and peak I-V (P=0.364). Conclusions Auditory brainstem responses in presbycusis pa-tients elder than 90 years showed worse wave differentiation.

  13. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials.

    Science.gov (United States)

    Piniak, Wendy E D; Mann, David A; Harms, Craig A; Jones, T Todd; Eckert, Scott A

    2016-01-01

    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.

  14. Age-related hearing loss in dogs : Diagnosis with Brainstem-Evoked Response Audiometry and Treatment with Vibrant Soundbridge Middle Ear Implant.

    OpenAIRE

    ter Haar, G.

    2009-01-01

    Age-related hearing loss (ARHL) is the most common cause of acquired hearing impairment in dogs. Diagnosis requires objective electrophysiological tests (brainstem evoked response audiometry [BERA]) evaluating the entire audible frequency range in dogs. In our laboratory a method was developed to deliver tone bursts ranging in frequency from 1 - 32 kHz for frequency-specific assessment of the cochlea in dogs. Brainstem auditory evoked responses to a click (CS) and to 1, 2, 4, 8, 12, 16, 24, a...

  15. The effect of lead on brainstem auditory evoked potentials in children

    Institute of Scientific and Technical Information of China (English)

    邹朝春; 赵正言; 唐兰芳; 陈志敏; 杜立中

    2003-01-01

    Objective To determine whether lead affects brainstem auditory evoked potentials (BAEPs) in low-to-moderate lead exposed children. Methods BAEPs were recorded from 114 asymptomatic children aged 1-6 years. Average values were calculated for peak latency (PL) and amplitude (Amp). Whole blood lead (PbB) levels were assessed by graphite furnace atomic absorption spectroscopy. Based on their PbB levels, subjects were divided into low lead (PbB<100 μg/L) and high lead subgroups (PbB ≥100 μg/L). Results The PbB levels of the 114 subjects ranged from 32.0 to 380.0 μg/L in a positively skewed distribution. The median of PbB levels was 90.0 μg/L while the arithmetic average was 88.0 μg/L. Of the subjects, 43.0% (49/114) had levels equal to or greater than 100 μg/L. Bilateral PLs Ⅰ, Ⅴ, and Ⅲ of the left ear in the high lead subgroup were significantly longer than those in the low lead subgroup (P<0.05). A positive correlation was found between PbB levels and bilateral PLs Ⅰ, Ⅴ and Ⅲ of the left ear (P<0.05), after controlling for age and gender as confounding factors. A significant and positive correlation between PbB levels and PL Ⅰ of the left ear, even when PbB levels were lower than 100 μg/L, in the low subgroup (r=0.295, P=0.019) was also found.Conclusions Lead poisoning in children younger than 6 years old is a very serious problem to which close attention should be paid. The indications that lead prolongs partial PLs may imply that lead, even at PbB levels lower than 100 μg/L, impairs both the peripheral and the central portions of the auditory system. BAEPs may be a sensitive detector of subclinical lead exposure effects on the nervous system in children.

  16. Determining auditory-evoked activities from multiple cells in layer 1 of the dorsal cortex of the inferior colliculus of mice by in vivo calcium imaging.

    Science.gov (United States)

    Ito, Tetsufumi; Hirose, Junichi; Murase, Kazuyuki; Ikeda, Hiroshi

    2014-11-24

    Layer 1 of the dorsal cortex of the inferior colliculus (DCIC) is distinguished from other layers by its cytoarchitecture and fiber connections. However, the information of the sound types represented in layer 1 of the DCIC remains unclear because placing electrodes on such thin structures is challenging. In this study, we utilized in vivo calcium imaging to assess auditory-evoked activities in multiple cells in layer 1 of DCIC and to characterize sound stimuli producing strong activity. Most cells examined showed strong responses to broad-band noise and low-frequency tone bursts of high sound intensity. In some cases, we successfully obtained frequency response areas, which are receptive fields to tone frequencies and intensities, and ~30% of these showed V-shape tunings. This is the first systematic study to record auditory responses of cells in layer 1 of DCIC. These results indicate that cells in this area are selective to tones with low frequency, implying the importance of such auditory information in the neural circuitry of layer 1 of DCIC.

  17. Evaluation of brain stem auditory evoked potentials in stable patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gupta Prem

    2008-01-01

    Full Text Available Though there are few studies addressing brainstem auditory evoked potentials (BAEP in patients with chronic obstructive pulmonary disease (COPD, subclinical BAEP abnormalities in stable COPD patients have not been studied. The present study aimed to evaluate the BAEP abnormalities in this study group. Materials and Methods : In the present study, 80 male subjects were included: COPD group comprised 40 smokers with stable COPD with no clinical neuropathy; 40 age-matched healthy volunteers served as the control group. Latencies of BAEP waves I, II, III, IV, and V, together with interpeak latencies (IPLs of I-III, I-V, and III-V, and amplitudes of waves I-Ia and V-Va were studied in both the groups to compare the BAEP abnormalities in COPD group; the latter were correlated with patient characteristics and Mini-Mental Status Examination Questionnaire (MMSEQ scores to seek any significant correlation. Results: Twenty-six (65% of the 40 COPD patients had BAEP abnormalities. We observed significantly prolonged latencies of waves I, III, V over left ear and waves III, IV, V over right ear; increased IPLs of I-V, III-V over left ear and of I-III, I-V, III-V over right side. Amplitudes of waves I-Ia and V-Va were decreased bilaterally. Over left ear, the latencies of wave I and III were significantly correlated with FEV 1 ; and amplitude of wave I-Ia, with smoking pack years. A weak positive correlation between amplitude of wave I-Ia and duration of illness; and a weak negative correlation between amplitude of wave V-Va and MMSEQ scores were seen over right side. Conclusions : We observed significant subclinical BAEP abnormalities on electrophysiological evaluation in studied stable COPD male patients having mild-to-moderate airflow obstruction.

  18. Gap prepulse inhibition and auditory brainstem evoked potentials as objective measures for tinnitus in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Susanne eDehmel

    2012-05-01

    Full Text Available Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept.

  19. Characteristics of brainstem auditory evoked potential of neonates with mild or moderate hyperbilirubinemia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Brainstem auditory evoked potential (BAEP) has been widely used to evaluate the functional integrity and development of injured auditory system and brain, especially to objectively evaluate the function of auditory system and brain stem of very young babies, such as neonates and sick babies.OBJECTIVE: To observe the changes of BAEP of neonates with hyperbilirubinemia, and to investigate the relationship of bilirubin concentration and BAEP.DESIGN: An observation experiment.SETTING: Department of Pediatrics, the 309 Clinical Division, General Hospital of Chinese PLA.PARTICIPANTS: Fifty-eight neonates with mild or moderate hyperbilirubinemia exhibiting jaundice within 24 hours after born, who received the treatment in the Department of Pediatrics, the 309 Clinical Division, General Hospital of Chinese PLA between January 2004 and May 2007, were recruited in this study. The involved neonates, 31 boys and 27 girls, had gestational age of 37 to 46 weeks. They had no history of birth asphyxia, and were scored 8 to 10 points when born. Written informed consents of examination and treatment were obtained from the guardians of the neonates. This study was approved by the Hospital Ethics Committee. According to serum total bilirubin value, the neonates were assigned into 3 groups: low-concentration bilirubin group (n =16), moderate-concentration bilirubin group (n =27) and high-concentration bilirubin group (n =15). According to mean daily bilirubin increase, the subjects were sub-assigned into bilirubin rapid increase group (n =39) and bilirubin slow increase group (n =19).METHODS: After admission, all the neonates received drug treatment. Meanwhile, their 116 ears were examined with a myoelectricity evoked potential equipment (KEYPOINT) in latency, wave duration,amplitude and wave shape differentiation of each wave of BAEP. BAEP abnormal type was observed and abnormal rate of BAEP was calculated.MAIN OUTCOME MEASURES: ① Abnormal rate and abnormal type of BAEP

  20. Prepulse inhibition of auditory change-related cortical responses

    Directory of Open Access Journals (Sweden)

    Inui Koji

    2012-10-01

    Full Text Available Abstract Background Prepulse inhibition (PPI of the startle response is an important tool to investigate the biology of schizophrenia. PPI is usually observed by use of a startle reflex such as blinking following an intense sound. A similar phenomenon has not been reported for cortical responses. Results In 12 healthy subjects, change-related cortical activity in response to an abrupt increase of sound pressure by 5 dB above the background of 65 dB SPL (test stimulus was measured using magnetoencephalography. The test stimulus evoked a clear cortical response peaking at around 130 ms (Change-N1m. In Experiment 1, effects of the intensity of a prepulse (0.5 ~ 5 dB on the test response were examined using a paired stimulation paradigm. In Experiment 2, effects of the interval between the prepulse and test stimulus were examined using interstimulus intervals (ISIs of 50 ~ 350 ms. When the test stimulus was preceded by the prepulse, the Change-N1m was more strongly inhibited by a stronger prepulse (Experiment 1 and a shorter ISI prepulse (Experiment 2. In addition, the amplitude of the test Change-N1m correlated positively with both the amplitude of the prepulse-evoked response and the degree of inhibition, suggesting that subjects who are more sensitive to the auditory change are more strongly inhibited by the prepulse. Conclusions Since Change-N1m is easy to measure and control, it would be a valuable tool to investigate mechanisms of sensory gating or the biology of certain mental diseases such as schizophrenia.

  1. Click evoked auditory brainstem response in congenital heart diseases in children%先天性心脏病患儿短声诱发听性脑干反应的探讨

    Institute of Scientific and Technical Information of China (English)

    周苏萍; 纪宏志; 李宏向; 张纪芸; 段晓辉; 张广福; 杨文东

    2001-01-01

    Objective: To evaluate the influence of congenital heart disease (CHD) on the development of brainstem in children .Method: The auditory brainstem response(ABR) was studied and compared with normal control. Results: In the study group aged under 12 months, latent period(LP) of wave I in cyanotic congenital heart disease(CCHD) was normal, and interpeak latency(IPL) from waves I to V was prolonged, while they were all prolonged in non- cyanotic congenital heart disease (NCCHD ). In the group aged 4 to 6 years, LP of wave I and IPL of waves Ⅰ~ V in NCCHD patients and CCHD patients without repeated hypoxia were normal while IPL of waves Ⅰ~ V in CCHD patients with repeated hypoxia was evidently prolonged. The abnormality rate was 2.3 %. Conclusion: C-HD do not delay the development of brainstem, but ischemia attacks may harm brainstem function, so early intervention is needed for ischemia attack patients.%探讨先天性心脏病(先心病)对患儿脑干发育的影响。方法:探讨先心病患儿听性脑干反应 (ABR),并以正常儿为对照组。结果:年龄<12月,青紫型先心病(CCHD)患儿Ⅰ波潜伏期(LP)正常,Ⅰ~V 波峰间潜伏期(IPL)较正常儿显著延长,非青紫型先心病(NCCHD)患儿Ⅰ波LP、Ⅰ~V波IPL均显著延长;4 ~6岁者NCCHD和CCHD无反复缺氧发作者LP和Ⅰ~V波IPL与正常儿无差异,CCHD反复缺氧发作者Ⅰ ~V波IPL较正常儿显著延长,异常率2.3%。结论:先心病不延迟婴儿期脑干发育,缺氧发作可损害脑干功 能,对缺氧发作者应尽早进行干预。

  2. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli.

    Science.gov (United States)

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-07-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli.

  3. Auditory event-related response in visual cortex modulates subsequent visual responses in humans.

    Science.gov (United States)

    Naue, Nicole; Rach, Stefan; Strüber, Daniel; Huster, Rene J; Zaehle, Tino; Körner, Ursula; Herrmann, Christoph S

    2011-05-25

    Growing evidence from electrophysiological data in animal and human studies suggests that multisensory interaction is not exclusively a higher-order process, but also takes place in primary sensory cortices. Such early multisensory interaction is thought to be mediated by means of phase resetting. The presentation of a stimulus to one sensory modality resets the phase of ongoing oscillations in another modality such that processing in the latter modality is modulated. In humans, evidence for such a mechanism is still sparse. In the current study, the influence of an auditory stimulus on visual processing was investigated by measuring the electroencephalogram (EEG) and behavioral responses of humans to visual, auditory, and audiovisual stimulation with varying stimulus-onset asynchrony (SOA). We observed three distinct oscillatory EEG responses in our data. An initial gamma-band response around 50 Hz was followed by a beta-band response around 25 Hz, and a theta response around 6 Hz. The latter was enhanced in response to cross-modal stimuli as compared to either unimodal stimuli. Interestingly, the beta response to unimodal auditory stimuli was dominant in electrodes over visual areas. The SOA between auditory and visual stimuli--albeit not consciously perceived--had a modulatory impact on the multisensory evoked beta-band responses; i.e., the amplitude depended on SOA in a sinusoidal fashion, suggesting a phase reset. These findings further support the notion that parameters of brain oscillations such as amplitude and phase are essential predictors of subsequent brain responses and might be one of the mechanisms underlying multisensory integration.

  4. Development of electrically evoked auditory brainstem response modules of REZ-Ⅰ domestic cochlear implant device%REZ-Ⅰ型国产人工耳蜗电诱发听性脑干反应模块的初步研究

    Institute of Scientific and Technical Information of China (English)

    丁秀勇; 张汝祥; 许长建; 樊伟; 张道行

    2014-01-01

    Objective To develop electrically evoked auditory brainstem response(EABR) modules of REZ-Ⅰ domestic cochlear implant device,and testify the reliability and validity of the modules.Methods Postoperative EABR were recorded in guinea pigs by using the self-designed EABR module.Results EABR waves were recorded in all 15 ears of 9 guinea pigs with normal hearing.The threshold was (159.00 ±50.21) current level (CL) and e Ⅲ wave latency was (2.36 ± 0.46)ms of 100 μs pulse width stimulation; for 150 μs pulse width stimulation,the threshold was (131.44 ± 49.25)CL and e Ⅲ wave latency was (2.59 ± 0.46) ms ; for 200 μs pulse width stimulation,the threshold was (119.63 ± 52.56) CL and e Ⅲ wave latency was (2.62 ± 0.44) ms.Conclusion According the preliminary results of the study,the reliability and stability of the EABR modules of domestic cochlear implant device can meet the demands of EABR recording.%目的 建立REZ-Ⅰ型国产人工耳蜗电诱发听性脑干反应(electrically evoked auditory brainstem response,EABR)模块,并测试其稳定性及可靠性.方法 使用自行设计构建的REZ-Ⅰ型国产人工耳蜗EABR测试模块记录听力正常豚鼠人工耳蜗植入后的EABR,并探索相关技术参数.结果 9只豚鼠(15耳)EABR波形引出率为100%.100μs刺激脉宽的阈值平均(均数±标准差,下同)为(159.00±50.21)电流级(current level,CL),波Ⅲ潜伏期为(2.36 ±0.46) ms;150μs刺激脉宽的阈值为(131.44 ±49.25)CL,波Ⅲ潜伏期为(2.59±0.46)ms;200 μs刺激脉宽的阈值为(119.63 ±52.56)CL,波Ⅲ潜伏期为(2.62±0.44) ms.结论 REZ-Ⅰ型人工耳蜗EABR模块动物实验的引出率达到100%,其稳定性和可靠性能够满足EABR的测试要求.

  5. Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders.

    Science.gov (United States)

    Edgar, J Christopher; Khan, Sarah Y; Blaskey, Lisa; Chow, Vivian Y; Rey, Michael; Gaetz, William; Cannon, Katelyn M; Monroe, Justin F; Cornew, Lauren; Qasmieh, Saba; Liu, Song; Welsh, John P; Levy, Susan E; Roberts, Timothy P L

    2015-02-01

    Previous studies have observed evoked response latency as well as gamma band superior temporal gyrus (STG) auditory abnormalities in individuals with autism spectrum disorders (ASD). A limitation of these studies is that associations between these two abnormalities, as well as the full extent of oscillatory phenomena in ASD in terms of frequency and time, have not been examined. Subjects were presented pure tones at 200, 300, 500, and 1,000 Hz while magnetoencephalography assessed activity in STG auditory areas in a sample of 105 children with ASD and 36 typically developing controls (TD). Findings revealed a profile such that auditory STG processes in ASD were characterized by pre-stimulus abnormalities across multiple frequencies, then early high-frequency abnormalities followed by low-frequency abnormalities. Increased pre-stimulus activity was a 'core' abnormality, with pre-stimulus activity predicting post-stimulus neural abnormalities, group membership, and clinical symptoms (CELF-4 Core Language Index). Deficits in synaptic integration in the auditory cortex are associated with oscillatory abnormalities in ASD as well as patient symptoms. Increased pre-stimulus activity in ASD likely demonstrates a fundamental signal-to-noise deficit in individuals with ASD, with elevations in oscillatory activity suggesting an inability to maintain an appropriate 'neural tone' and an inability to rapidly return to a resting state prior to the next stimulus.

  6. Multimodality evoked responses in the neurological assessment of the newborn.

    Science.gov (United States)

    Mercuri, E; von Siebenthal, K; Daniëls, H; Guzzetta, F; Casaer, P

    1994-09-01

    In recent years increased attention has been devoted to evoked potentials (EP) in newborns. This paper reviews the literature and data from our research group in an attempt to assess the diagnostic and prognostic value of evoked responses in the first weeks of life and their use in different age-specific clinical conditions. The results show that EP are a very sensitive measure of the integrity of the sensory pathways. They make it possible to follow normal physiological maturation and the abnormalities of development resulting from neurological lesions. Repeated measurements of visual evoked potentials and somatosensorial evoked potential are prognostically useful in term infants, but seem much more limited in preterm newborns in predicting neurodevelopmental outcome.

  7. Brainstem auditory evoked potentials in a case of 'Manto syndrome', or spasmodic torticollis with thoracic outlet syndrome.

    Science.gov (United States)

    Disertori, B; Ducati, A; Piazza, M; Pavani, M

    1982-12-01

    A case of spasmodic torticollis with thoracic outlet syndrome observed for over 18 months is presented and discussed. Maximal head rotation (determining backward gaze) was associated with compression of the brachial plexus between the scaleni muscles and motor, sensory and trophic troubles in the hand. This new syndrome is called after the diviner Manto, quoted by Dante Alighieri in his 'Divina Commedia' (Inferno, XX, 52-56). The etiology was ascribed to subacute toxic effects of methylparathion. Brainstem Auditory Evoked Potentials (BAEPs) demonstrated severe brainstem involvement, maximal in the mesencephalic structures. Clinical and neurophysiological data improved on treatment with L-5-hydroxytryptophan. Finally, BAEPs returned to normal.

  8. Identification of causal relations between haemodynamic variables, auditory evoked potentials and isoflurane by means of fuzzy logic

    DEFF Research Database (Denmark)

    Jensen, E W; Nebot, A; Caminal, P;

    1999-01-01

    The aim of this study was to identify a possible relationship between haemodynamic variables, auditory evoked potentials (AEP) and inspired fraction of isoflurane (ISOFl). Two different models (isoflurane and mean arterial pressure) were identified using the fuzzy inductive reasoning (FIR......) methodology. A fuzzy model is able to identify non-linear and linear components of a causal relationship by means of optimization of information content of available data. Nine young female patients undergoing hysterectomy under general anaesthesia were included. Mean arterial pressure (MAP), heart rate (HR...

  9. Test-retest reliability of the 40 Hz EEG auditory steady-state response.

    Directory of Open Access Journals (Sweden)

    Kristina L McFadden

    Full Text Available Auditory evoked steady-state responses are increasingly being used as a marker of brain function and dysfunction in various neuropsychiatric disorders, but research investigating the test-retest reliability of this response is lacking. The purpose of this study was to assess the consistency of the auditory steady-state response (ASSR across sessions. Furthermore, the current study aimed to investigate how the reliability of the ASSR is impacted by stimulus parameters and analysis method employed. The consistency of this response across two sessions spaced approximately 1 week apart was measured in nineteen healthy adults using electroencephalography (EEG. The ASSR was entrained by both 40 Hz amplitude-modulated white noise and click train stimuli. Correlations between sessions were assessed with two separate analytical techniques: a channel-level analysis across the whole-head array and b signal-space projection from auditory dipoles. Overall, the ASSR was significantly correlated between sessions 1 and 2 (p<0.05, multiple comparison corrected, suggesting adequate test-retest reliability of this response. The current study also suggests that measures of inter-trial phase coherence may be more reliable between sessions than measures of evoked power. Results were similar between the two analysis methods, but reliability varied depending on the presented stimulus, with click train stimuli producing more consistent responses than white noise stimuli.

  10. Clinical Study on Effect of Electro-acupuncture Combined with Different Anesthetics on Auditory-evoked Potential Index

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To observe the effect of electro-acupuncture (EA) on auto regressive with exogenous input model (ARX-model) auditory evoked index (AAI) in patients anesthetized with different anesthetics. Methods: Forty-eight adult patients undergoing scheduled surgical operation were enrolled and divided into two groups (24 in each group) according to the anesthetics applied, Group A was anesthetized with propofol sedation and Group B with Isoflurane-epidural anesthesia. Group A was subdivided into three groups of low, middle and high concentration of target effect-site of 1.0 μg/ml, 1.5 μg/ml and 2.0 μg/ml through target controlled infusion (TCI) and Group B into 3 subgroups of minimum alveolar effective concentration of isoflurane (0.4 MAC, 0.6 MAC and 0.8 MAC for B1, B2 and B3 subgroups) respectively, with 8 patients in every subgroup. EA on acupoints of Hegu (LI4) and Neiguan (P6) was applied on all the patients during anesthesia, and the change of AAI at various time points was recorded. Results: In the three subgroups of Group A, levels of AAI were significantly elevated in the first few minutes after EA, and significantly lowered 20 min after EA in subgroup A2. While in the subgroups of Group B, except the elevating in Group B1 1 -2 min after EA, levels of AAI remained unchanged at other time points. Conclusion: Pain response could be reflected by AAI during EA. EA could enhance the sedative effect of propofol in middle concentration, but its effect on isoflurane epidural anesthesia is insignificant.

  11. Mismatch responses in the awake rat: evidence from epidural recordings of auditory cortical fields.

    Directory of Open Access Journals (Sweden)

    Fabienne Jung

    Full Text Available Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN, a component of auditory evoked potentials (AEPs, reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing valid animal models that allow for detailed investigation of its neurophysiological mechanisms is important. Rodent studies, so far almost exclusively under anesthesia, have not provided decisive evidence whether an MMN analogue exists in rats. This may be due to several factors, including the effect of anesthesia. We therefore used epidural recordings in awake black hooded rats, from two auditory cortical areas in both hemispheres, and with bandpass filtered noise stimuli that were optimized in frequency and duration for eliciting MMN in rats. Using a classical oddball paradigm with frequency deviants, we detected mismatch responses at all four electrodes in primary and secondary auditory cortex, with morphological and functional properties similar to those known in humans, i.e., large amplitude biphasic differences that increased in amplitude with decreasing deviant probability. These mismatch responses significantly diminished in a control condition that removed the predictive context while controlling for presentation rate of the deviants. While our present study does not allow for disambiguating precisely the relative contribution of adaptation and prediction error processing to the observed mismatch responses, it demonstrates that MMN-like potentials can be obtained in awake and unrestrained rats.

  12. Acute stress alters auditory selective attention in humans independent of HPA: a study of evoked potentials.

    Directory of Open Access Journals (Sweden)

    Ludger Elling

    Full Text Available BACKGROUND: Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM. However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such "paracorticoidal" stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. METHODOLOGY/PRINCIPAL FINDINGS: The stressor consisted of a single cold pressor test. Auditory negative difference (Nd and mismatch negativity (MMN were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occurring 4-7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8-11 minutes after onset when no further modulations in the event-related potentials (ERP occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. CONCLUSIONS/SIGNIFICANCE: Prior studies have deliberately tracked the adrenocortical influence

  13. Cortical Variability in the Sensory-Evoked Response in Autism

    Science.gov (United States)

    Haigh, Sarah M.; Heeger, David J.; Dinstein, Ilan; Minshew, Nancy; Behrmann, Marlene

    2015-01-01

    Previous findings have shown that individuals with autism spectrum disorder (ASD) evince greater intra-individual variability (IIV) in their sensory-evoked fMRI responses compared to typical control participants. We explore the robustness of this finding with a new sample of high-functioning adults with autism. Participants were presented with…

  14. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    OpenAIRE

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2011-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, an...

  15. Comparison of auditory evoked potentials and the A-line ARX Index for monitoring the hypnotic level during sevoflurane and propofol induction

    DEFF Research Database (Denmark)

    Litvan, H; Jensen, E W; Revuelta, M

    2002-01-01

    Extraction of the middle latency auditory evoked potentials (AEP) by an auto regressive model with exogenous input (ARX) enables extraction of the AEP within 1.7 s. In this way, the depth of hypnosis can be monitored at almost real-time. However, the identification and the interpretation of the a......Extraction of the middle latency auditory evoked potentials (AEP) by an auto regressive model with exogenous input (ARX) enables extraction of the AEP within 1.7 s. In this way, the depth of hypnosis can be monitored at almost real-time. However, the identification and the interpretation...

  16. Comparison of conventional averaged and rapid averaged, autoregressive-based extracted auditory evoked potentials for monitoring the hypnotic level during propofol induction

    DEFF Research Database (Denmark)

    Litvan, Héctor; Jensen, Erik W; Galan, Josefina;

    2002-01-01

    The extraction of the middle latency auditory evoked potentials (MLAEP) is usually done by moving time averaging (MTA) over many sweeps (often 250-1,000), which could produce a delay of more than 1 min. This problem was addressed by applying an autoregressive model with exogenous input (ARX......) that enables extraction of the auditory evoked potentials (AEP) within 15 sweeps. The objective of this study was to show that an AEP could be extracted faster by ARX than by MTA and with the same reliability....

  17. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Fobe, Lisete Pessoa de Oliveira [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina]. E-mail: lispessoa@yahoo.com

    1999-12-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  18. Discrimination of timbre in early auditory responses of the human brain.

    Directory of Open Access Journals (Sweden)

    Jaeho Seol

    Full Text Available BACKGROUND: The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG. METHODOLOGY/PRINCIPAL FINDINGS: Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1-testing (S2 paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2 for both same and different conditions in the both hemispheres. CONCLUSIONS/SIGNIFICANCES: Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre.

  19. 听力筛查转诊婴幼儿不同滤波条件短纯音诱发听性脑干反应的比较%Comparison of tone burst evoked auditory brainstem responses with different filter settings for referral infants after hearing screening

    Institute of Scientific and Technical Information of China (English)

    刁文雯; 倪道凤; 李奉荣; 商莹莹

    2011-01-01

    Objective Auditory brainstem responses (ABR) evoked by tone burst is an important method of hearing assessment in referral infants after hearing screening. The present study was to compare the thresholds of tone burst ABR with filter settings of 30 - 1500 Hz and 30 - 3000 Hz at each frequency,figure out the characteristics of ABR thresholds with the two filter settings and the effect of the waveform judgement, so as to select a more optimal frequency specific ABR test parameter. Methods Thresholds with filter settings of 30 - 1500 Hz and 30 -3000 Hz in children aged 2 -33 months were recorded by click,tone burst ABR. A total of 18 patients ( 8 male / 10 female), 22 ears were included. Results The thresholds of tone burst ABR with filter settings of 30 - 3000 Hz were higher than that with filter settings of 30 - 1500 Hz. Significant difference was detected for that at 0. 5 kHz and 2.0 kHz ( t values were 2.238 and 2. 217, P < 0. 05 ), no significant difference between the two filter settings was detected at the rest frequencies tone evoked ABR thresholds. The waveform of ABR with filter settings of 30 - 1500 Hz was smoother than that with filter settings of 30 - 3000 Hz at the same stimulus intensity. Response curve of the latter appeared jagged small interfering wave. Conclusions The filter setting of 30 - 1500 Hz may be a more optimal parameter of frequency specific ABR to improve the accuracy of frequency specificity ABR for infants' hearing assessment.%目的 短纯音诱发听性脑干反应(ABR)是听力筛查转诊婴幼儿听力评估的重要方法,本研究比较滤波分别为30~1500 Hz与30~3000 Hz时不同频率短纯音ABR阈值之间的差异,总结两种滤波条件下ABR波形特点及对阈值判断的影响,以选择更优化的频率特异性ABR测试参数.方法 应用美国IHS公司SmartEP听觉诱发电位仪记录18例(22耳)2~33月龄婴幼儿短声、滤波为30~1500 Hz与30~3000 Hz短纯音ABR各频率反应阈.结果 0.5 k

  20. Visual field asymmetries in visual evoked responses.

    Science.gov (United States)

    Hagler, Donald J

    2014-12-19

    Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP.

  1. Visual evoked responses during standing and walking

    Directory of Open Access Journals (Sweden)

    Klaus Gramann

    2010-10-01

    Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.

  2. Localizing evoked and induced responses to faces using magnetoencephalography.

    Science.gov (United States)

    Perry, Gavin; Singh, Krish D

    2014-05-01

    A rich pattern of responses in frequency, time and space are known to be generated in the visual cortex in response to faces. Recently, a number of studies have used magnetoencephalography (MEG) to try to record these responses non-invasively - in many cases using source analysis techniques based on the beamforming method. Here we sought both to characterize best practice for measuring face-specific responses using MEG beamforming, and to determine whether the results produced by the beamformer match evidence from other modalities. We measured activity to visual presentation of face stimuli and phase-scrambled control stimuli, and performed source analyses of both induced and evoked responses using Synthetic Aperture Magnetometry. We localized the gamma-band response to bilateral lateral occipital cortex, and both the gamma-band response and the M170-evoked response to the right fusiform gyrus. Differences in the gamma-band response between faces and scrambled stimuli were confined to the frequency range 50-90 Hz; gamma-band activity at higher frequencies did not differ between the two stimulus categories. We additionally identified a component of the M220-evoked response - localized to the parieto-occipital sulcus - which was enhanced for scrambled vs. unscrambled faces. These findings help to establish that MEG beamforming can localize face-specific responses in time, frequency and space with good accuracy (when validated against established findings from functional magnetic resonance imaging and intracranial recordings), as well as contributing to the establishment of best methodological practice for the use of the beamformer method to measure face-specific responses.

  3. Spatiotemporal properties of the BOLD response in the songbirds' auditory circuit during a variety of listening tasks.

    Science.gov (United States)

    Van Meir, Vincent; Boumans, Tiny; De Groof, Geert; Van Audekerke, Johan; Smolders, Alain; Scheunders, Paul; Sijbers, Jan; Verhoye, Marleen; Balthazart, Jacques; Van der Linden, Annemie

    2005-05-01

    Auditory fMRI in humans has recently received increasing attention from cognitive neuroscientists as a tool to understand mental processing of learned acoustic sequences and analyzing speech recognition and development of musical skills. The present study introduces this tool in a well-documented animal model for vocal learning, the songbird, and provides fundamental insight in the main technical issues associated with auditory fMRI in these songbirds. Stimulation protocols with various listening tasks lead to appropriate activation of successive relays in the songbirds' auditory pathway. The elicited BOLD response is also region and stimulus specific, and its temporal aspects provide accurate measures of the changes in brain physiology induced by the acoustic stimuli. Extensive repetition of an identical stimulus does not lead to habituation of the response in the primary or secondary telencephalic auditory regions of anesthetized subjects. The BOLD signal intensity changes during a stimulation and subsequent rest period have a very specific time course which shows a remarkable resemblance to auditory evoked BOLD responses commonly observed in human subjects. This observation indicates that auditory fMRI in the songbird may establish a link between auditory related neuro-imaging studies done in humans and the large body of neuro-ethological research on song learning and neuro-plasticity performed in songbirds.

  4. Representation of spectro-temporal features of spoken words within the P1-N1-P2 and T-complex of the auditory evoked potentials (AEP).

    Science.gov (United States)

    Wagner, Monica; Roychoudhury, Arindam; Campanelli, Luca; Shafer, Valerie L; Martin, Brett; Steinschneider, Mitchell

    2016-02-12

    The purpose of the study was to determine whether P1-N1-P2 and T-complex morphology reflect spectro-temporal features within spoken words that approximate the natural variation of a speaker and whether waveform morphology is reliable at group and individual levels, necessary for probing auditory deficits. The P1-N1-P2 and T-complex to the syllables /pət/ and /sət/ within 70 natural word productions each were examined. EEG was recorded while participants heard nonsense word pairs and performed a syllable identification task to the second word in the pairs. Single trial auditory evoked potentials (AEP) to the first words were analyzed. Results found P1-N1-P2 and T-complex to reflect spectral and temporal feature processing. Also, results identified preliminary benchmarks for single trial response variability for individual subjects for sensory processing between 50 and 600ms. P1-N1-P2 and T-complex, at least at group level, may serve as phenotypic signatures to identify deficits in spectro-temporal feature recognition and to determine area of deficit, the superior temporal plane or lateral superior temporal gyrus.

  5. Comparison of conventional averaged and rapid averaged, autoregressive-based extracted auditory evoked potentials for monitoring the hypnotic level during propofol induction

    DEFF Research Database (Denmark)

    Litvan, Héctor; Jensen, Erik W; Galan, Josefina;

    2002-01-01

    The extraction of the middle latency auditory evoked potentials (MLAEP) is usually done by moving time averaging (MTA) over many sweeps (often 250-1,000), which could produce a delay of more than 1 min. This problem was addressed by applying an autoregressive model with exogenous input (ARX) that...

  6. The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Omer Bar-Yosef

    2007-11-01

    Full Text Available Animal vocalizations in natural settings are invariably accompanied by an acoustic background with a complex statistical structure. We have previously demonstrated that neuronal responses in primary auditory cortex of halothane-anesthetized cats depend strongly on the natural background. Here, we study in detail the neuronal responses to the background sounds and their relationships to the responses to the foreground sounds. Natural bird chirps as well as modifications of these chirps were used. The chirps were decomposed into three components: the clean chirps, their echoes, and the background noise. The last two were weaker than the clean chirp by 13 and 29 dB on average respectively. The test stimuli consisted of the full natural stimulus, the three basic components, and their three pairwise combinations. When the level of the background components (echoes and background noise presented alone was sufficiently loud to evoke neuronal activity, these background components had an unexpectedly strong effect on the responses of the neurons to the main bird chirp. In particular, the responses to the original chirps were more similar on average to the responses evoked by the two background components than to the responses evoked by the clean chirp, both in terms of the evoked spike count and in terms of the temporal pattern of the responses. These results suggest that some of the neurons responded specifically to the acoustic background even when presented together with the substantially louder main chirp, and may imply that neurons in A1 already participate in auditory source segregation.

  7. Identification of causal relations between haemodynamic variables, auditory evoked potentials and isoflurane by means of fuzzy logic

    DEFF Research Database (Denmark)

    Jensen, E W; Nebot, A; Caminal, P;

    1999-01-01

    ) methodology. A fuzzy model is able to identify non-linear and linear components of a causal relationship by means of optimization of information content of available data. Nine young female patients undergoing hysterectomy under general anaesthesia were included. Mean arterial pressure (MAP), heart rate (HR......The aim of this study was to identify a possible relationship between haemodynamic variables, auditory evoked potentials (AEP) and inspired fraction of isoflurane (ISOFl). Two different models (isoflurane and mean arterial pressure) were identified using the fuzzy inductive reasoning (FIR...... the depth of anaesthesia index (DAI) normalized to 100 when the patient was awake and descending to an average of 25 during loss of consciousness. The FIR methodology identified those variables among the input variables (MAP, HR, CO2ET, DAI or ISOFl) that had the highest causal relation with the output...

  8. Diminished n1 auditory evoked potentials to oddball stimuli in misophonia patients

    NARCIS (Netherlands)

    Schröder, Arjan; van Diepen, Rosanne; Mazaheri, Ali; Petropoulos-Petalas, Diamantis; Soto de Amesti, Vicente; Vulink, Nienke; Denys, D.

    2014-01-01

    Misophonia (hatred of sound) is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study, we investigated if a dysfunction in the brain's early auditory processing system could be present in misophonia. We

  9. Pattern shift visual evoked response: application in neurology

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Guerreiro

    1982-03-01

    Full Text Available The technique that we use for pattern shift visual evoked response (PSVER is described. PSVER is a non-invasive, practical and reliable clinical test in detecting anterior visual pathways lesions even when asymptomatic. The ability to find unsuspected lesions in multiple sclerosis, making possible an early diagnosis, is underscored. We also discuss some pathophysiologic aspects and the findings of the PSVER in some neurologic disorders with visual system involvement.

  10. Evoked potentials in multiple sclerosis.

    Science.gov (United States)

    Kraft, George H

    2013-11-01

    Before the development of magnetic resonance imaging (MRI), evoked potentials (EPs)-visual evoked potentials, somatosensory evoked potentials, and brain stem auditory evoked responses-were commonly used to determine a second site of disease in patients being evaluated for possible multiple sclerosis (MS). The identification of an area of the central nervous system showing abnormal conduction was used to supplement the abnormal signs identified on the physical examination-thus identifying the "multiple" in MS. This article is a brief overview of additional ways in which central nervous system (CNS) physiology-as measured by EPs-can still contribute value in the management of MS in the era of MRIs.

  11. Cochlear Responses and Auditory Brainstem Response Functions in Adults with Auditory Neuropathy/ Dys-Synchrony and Individuals with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-06-01

    Full Text Available Background and Aim: Physiologic measures of cochlear and auditory nerve function may be of assis¬tance in distinguishing between hearing disorders due primarily to auditory nerve impairment from those due primarily to cochlear hair cells dysfunction. The goal of present study was to measure of co-chlear responses (otoacoustic emissions and cochlear microphonics and auditory brainstem response in some adults with auditory neuropathy/ dys-synchrony and subjects with normal hearing. Materials and Methods: Patients were 16 adults (32 ears in age range of 14-30 years with auditory neu¬ropathy/ dys-synchrony and 16 individuals in age range of 16-30 years from both sexes. The results of transient otoacoustic emissions, cochlear microphonics and auditory brainstem response measures were compared in both groups and the effects of age, sex, ear and degree of hearing loss were studied. Results: The pure-tone average was 48.1 dB HL in auditory neuropathy/dys-synchrony group and the fre¬quency of low tone loss and flat audiograms were higher among other audiogram's shapes. Transient oto¬acoustic emissions were shown in all auditory neuropathy/dys-synchrony people except two cases and its average was near in both studied groups. The latency and amplitude of the biggest reversed co-chlear microphonics response were higher in auditory neuropathy/dys-synchrony patients than control peo¬ple significantly. The correlation between cochlear microphonics amplitude and degree of hearing loss was not significant, and age had significant effect in some cochlear microphonics measures. Audi-tory brainstem response had no response in auditory neuropathy/dys-synchrony patients even with low stim¬uli rates. Conclusion: In adults with speech understanding worsen than predicted from the degree of hearing loss that suspect to auditory neuropathy/ dys-synchrony, the frequency of low tone loss and flat audiograms are higher. Usually auditory brainstem response is absent in

  12. DEVELOPING ‘STANDARD NOVEL ‘VAD’ TECHNIQUE’ AND ‘NOISE FREE SIGNALS’ FOR SPEECH AUDITORY BRAINSTEM RESPONSES FOR HUMAN SUBJECTS

    OpenAIRE

    Ranganadh Narayanam*

    2016-01-01

    In this research as a first step we have concentrated on collecting non-intra cortical EEG data of Brainstem Speech Evoked Potentials from human subjects in an Audiology Lab in University of Ottawa. The problems we have considered are the most advanced and most essential problems of interest in Auditory Neural Signal Processing area in the world: The first problem is the Voice Activity Detection (VAD) in Speech Auditory Brainstem Responses (ABR); The second problem is to identify the best De-...

  13. Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study.

    Directory of Open Access Journals (Sweden)

    Lei Han

    Full Text Available Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC. In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.

  14. Conditioning effect of transcranial magnetic stimulation evoking motor-evoked potential on V-wave response.

    Science.gov (United States)

    Grosprêtre, Sidney; Martin, Alain

    2014-12-01

    The aim of this study was to examine the collision responsible for the volitional V-wave evoked by supramaximal electrical stimulation of the motor nerve during voluntary contraction. V-wave was conditioned by transcranial magnetic stimulation (TMS) over the motor cortex at several inter-stimuli intervals (ISI) during weak voluntary plantar flexions (n = 10) and at rest for flexor carpi radialis muscle (FCR; n = 6). Conditioning stimulations were induced by TMS with intensity eliciting maximal motor-evoked potential (MEPmax). ISIs used were ranging from -20 to +20 msec depending on muscles tested. The results showed that, for triceps surae muscles, conditioning TMS increased the V-wave amplitude (~ +250%) and the associated mechanical response (~ +30%) during weak voluntary plantar flexion (10% of the maximal voluntary contraction -MVC) for ISIs ranging from +6 to +18 msec. Similar effect was observed at rest for the FCR with ISI ranging from +6 to +12 msec. When the level of force was increased from 10 to 50% MVC or the conditioning TMS intensity was reduced to elicit responses of 50% of MEPmax, a significant decrease in the conditioned V-wave amplitude was observed for the triceps surae muscles, linearly correlated to the changes in MEP amplitude. The slope of this correlation, as well as the electro-mechanical efficiency, was closed to the identity line, indicating that V-wave impact at muscle level seems to be similar to the impact of cortical stimulation. All these results suggest that change in V-wave amplitude is a great index to reflect changes in cortical neural drive addressed to spinal motoneurons.

  15. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.

    Science.gov (United States)

    Miller, Charles A; Hu, Ning; Zhang, Fawen; Robinson, Barbara K; Abbas, Paul J

    2008-03-01

    Most auditory prostheses use modulated electric pulse trains to excite the auditory nerve. There are, however, scant data regarding the effects of pulse trains on auditory nerve fiber (ANF) responses across the duration of such stimuli. We examined how temporal ANF properties changed with level and pulse rate across 300-ms pulse trains. Four measures were examined: (1) first-spike latency, (2) interspike interval (ISI), (3) vector strength (VS), and (4) Fano factor (FF, an index of the temporal variability of responsiveness). Data were obtained using 250-, 1,000-, and 5,000-pulse/s stimuli. First-spike latency decreased with increasing spike rate, with relatively small decrements observed for 5,000-pulse/s trains, presumably reflecting integration. ISIs to low-rate (250 pulse/s) trains were strongly locked to the stimuli, whereas ISIs evoked with 5,000-pulse/s trains were dominated by refractory and adaptation effects. Across time, VS decreased for low-rate trains but not for 5,000-pulse/s stimuli. At relatively high spike rates (>200 spike/s), VS values for 5,000-pulse/s trains were lower than those obtained with 250-pulse/s stimuli (even after accounting for the smaller periods of the 5,000-pulse/s stimuli), indicating a desynchronizing effect of high-rate stimuli. FF measures also indicated a desynchronizing effect of high-rate trains. Across a wide range of response rates, FF underwent relatively fast increases (i.e., within 100 ms) for 5,000-pulse/s stimuli. With a few exceptions, ISI, VS, and FF measures approached asymptotic values within the 300-ms duration of the low- and high-rate trains. These findings may have implications for designs of cochlear implant stimulus protocols, understanding electrically evoked compound action potentials, and interpretation of neural measures obtained at central nuclei, which depend on understanding the output of the auditory nerve.

  16. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    Science.gov (United States)

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  17. Persistent responsiveness of long-latency auditory cortical activities in response to repeated stimuli of musical timbre and vowel sounds.

    Science.gov (United States)

    Kuriki, Shinya; Ohta, Keisuke; Koyama, Sachiko

    2007-11-01

    Long-latency auditory-evoked magnetic field and potential show strong attenuation of N1m/N1 responses when an identical stimulus is presented repeatedly due to adaptation of auditory cortical neurons. This adaptation is weak in subsequently occurring P2m/P2 responses, being weaker for piano chords than single piano notes. The adaptation of P2m is more suppressed in musicians having long-term musical training than in nonmusicians, whereas the amplitude of P2 is enhanced preferentially in musicians as the spectral complexity of musical tones increases. To address the key issues of whether such high responsiveness of P2m/P2 responses to complex sounds is intrinsic and common to nonmusical sounds, we conducted a magnetoencephalographic study on participants who had no experience of musical training, using consecutive trains of piano and vowel sounds. The dipole moment of the P2m sources located in the auditory cortex indicated significantly suppressed adaptation in the right hemisphere both to piano and vowel sounds. Thus, the persistent responsiveness of the P2m activity may be inherent, not induced by intensive training, and common to spectrally complex sounds. The right hemisphere dominance of the responsiveness to musical and speech sounds suggests analysis of acoustic features of object sounds to be a significant function of P2m activity.

  18. Auditory brainstem responses to clicks and tone bursts in C57 BL/6J mice.

    Science.gov (United States)

    Scimemi, P; Santarelli, R; Selmo, A; Mammano, F

    2014-08-01

    In auditory research, hearing function of mouse mutants is assessed in vivo by evoked potential recording. Evaluation of the response parameters should be performed with reference to the evoked responses recorded from wild-type mice. This study reports normative data calculated on auditory brainstem responses (ABRs) obtained from 20 wild-type C57 BL/6J mice at a postnatal age between 21 and 45 days. Acoustic stimuli consisted tone bursts at 8, 14, 20, 26, 32 kHz, and clicks. Each stimulus was delivered in free field at stimulation intensity starting from a maximum of 100 dB peak equivalent SPL (dB peSPL) at decreasing steps of 10 dB with a repetition rate of 13/sec. Evoked responses were recorded by needle electrodes inserted subcutaneously. At high intensity stimulation, five response waveforms, each consisting of a positive peak and a subsequent negative valley, were identified within 7 msec, and were labelled with sequential capital Roman numerals from I to V. Peak IV was the most robust and stable at low intensities for both tone burst and click stimuli, and was therefore utilized to estimate hearing thresholds. Both latencies and amplitudes of ABR peaks showed good reproducibility with acceptable standard deviations. Mean wave IV thresholds measured across all animals ranged from a maximum of 23 dB peSPL for clicks to a minimum of 7 dB peSPL for 20 kHz-tone burst stimuli. Statistical analysis of the distribution of latencies and amplitudes of peaks from I to V performed for each stimulus type yielded a normative data set which was utilised to obtain the most consistent fitting-curve model. This could serve as a reference for further studies on murine models of hearing loss.

  19. Notched-noise embedded frequency specific chirps for objective audiometry using auditory brainstem responses

    Directory of Open Access Journals (Sweden)

    Farah I. Corona-Strauss

    2012-02-01

    Full Text Available It has been shown recently that chirp-evoked auditory brainstem responses (ABRs show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs.

  20. Auditory response properties of neurons in the putamen and globus pallidus of awake cats.

    Science.gov (United States)

    Zhong, Renjia; Qin, Ling; Sato, Yu

    2014-05-01

    Several decades of research have provided evidence that the basal ganglia are closely involved in motor processes. Recent clinical, electrophysiological, behavioral data have revealed that the basal ganglia also receive afferent input from the auditory system, but the detailed auditory response characteristics have not yet reported. The present study aimed to reveal the acoustic response properties of neurons in parts of the basal ganglia. We recorded single-unit activities from the putamen (PU) and globus pallidus (GP) of awake cats passively listening to pure tones, click trains, and natural sounds. Our major findings were: 1) responses in both PU and GP neurons were elicited by pure-tone stimuli, whereas PU neurons had lower intensity thresholds, shorter response latencies, shorter excitatory duration, and larger response magnitudes than GP neurons. 2) Some GP neurons showed a suppressive response lasting throughout the stimulus period. 3) Both PU and GP did not follow periodically repeated click stimuli well, and most neurons only showed a phasic response at the stimulus onset and offset. 4) In response to natural sounds, PU also showed a stronger magnitude and shorter duration of excitatory response than GP. The selectivity for natural sounds was low in both nuclei. 5) Nonbiological environmental sounds more efficiently evoked responses in PU and GP than the vocalizations of conspecifics and other species. Our results provide insights into how acoustic signals are processed in the basal ganglia and revealed the distinction of PU and GP in sensory representation.

  1. Recording of electrical-evoked responses from a remote field in the vestibular part of the eighth nerve. A preliminary technical report.

    Science.gov (United States)

    Latkowski, B; Puzio, J

    1989-01-01

    The paper discusses the results of the author's own studies concerning the recording of electrical responses evoked from a remote field in the vestibular part of the eighth nerve. The studies are of experimental nature and they were carried out repetitively in guinea pigs. Particular attention is paid to an apparatus specially designed and constructed, permitting to obtain stimulation of adequate quality of vestibular organs, and to receive and average short (up to 10 ms) evoked vestibular potentials. Different variants of elimination of bioelectrical muscular disturbances and of the auditory pathway are proposed.

  2. Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?

    Directory of Open Access Journals (Sweden)

    Eugen eDiesch

    2012-05-01

    Full Text Available Objectives: The amplitude of the auditory steady-state response (ASSR is enhanced in tinnitus. As ASSR ampli¬tude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As attention effects on the N1 are signi¬fi¬cantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory evoked response. Methods: MEG recordings of auditory evoked responses which were previously examined for the ASSR (Diesch et al. 2010 were analysed with respect to the N1m component. Like the ASSR previously, the N1m was analysed in the source domain (source space projection. Stimuli were amplitude-modulated tones with one of three carrier fre¬quen¬cies matching the tinnitus frequency or a surrogate frequency 1½ octaves above the audio¬metric edge frequency in con¬trols, the audiometric edge frequency, and a frequency below the audio¬metric edgeResults: In the earlier ASSR study (Diesch et al., 2010, the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate tinnitus condition than in the edge condition. In the present study, both tinnitus patients and healthy controls show an N1m-amplitude profile identical to the one of ASSR amplitudes in healthy controls. N1m amplitudes elicited by tonal frequencies located at the audiometric edge and at the (surrogate tinnitus frequency are smaller than N1m amplitudes elicited by sub-edge tones and do not differ among each other.Conclusions: There is no N1-amplitude enhancement effect in tinnitus. The enhancement effect of tinnitus on ASSR amplitude cannot be accounted for in terms of attention induced by tinnitus.

  3. AN ANALYSIS AND COMPARISON OF BRAINSTEM AUDITORY EVOKED POTENTIALS AMONG SOUTH INDIAN MIDDLE-AGED AND ELDERLY SUBJECTS AND PATIENTS WITH TYPE II DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Ch. Venkatasubbaiah

    2016-08-01

    Full Text Available BACKGROUND Despite the evidence that the incidence of hearing impairment is higher in type 2 diabetes subjects, very little is known about the nature and characteristics of this disability and the specific mechanisms leading to the hearing problems in diabetic adults. MATERIALS AND METHODS 40 patients with Type 2 Diabetes Mellitus were included in the study and grouped as patients aged 35 to 58 years (A and aged above 58 years (B; 40 patients were taken as control group with similar age grouping; 35 to 58 years (C above 58 years (D. Pure Tone Audiometry (PTA test was conducted according to the ASHA guidelines. Objective hearing evaluation was done by BERA (Brainstem Evoked Response Audiometry. RESULTS Higher degree of Hearing Loss (HL was observed in DM patients in all frequencies from 500 HZ to 10 KHZ in comparison to nonDM patients and it was statistically significant. Slower rate peaks occurred at I, III and V waves in elderly DM patients when compared to the elderly control group. (Peak I and V (p <0.001. Similarly, in the middle-aged group peaks I, III and V occurred at a significantly slower rate in the DM group when compared to the non-DM group (p <0.001. Interpeak latencies at 21.1 rate for peak III-V and peak I-V were consistently longer among the diabetics groups of two age groups when compared to the control group (p <0.001. Similar results were obtained at 63.3 rates in the elderly and middle-aged group. CONCLUSION In the earlier course of Type 2 Diabetes, though the person may be asymptomatic degenerative changes may begin to appear in the central auditory pathway and result in significant HL, which could be detected with early investigation to elicit of Brain Stem evoked potentials.

  4. Relationships between sensory “gating out” and sensory “gating in” of auditory evoked potentials in schizophrenia: a pilot study

    Science.gov (United States)

    Gjini, Klevest; Arfken, Cynthia; Boutros, Nash N.

    2010-01-01

    The interrelationship between the ability to inhibit incoming redundant input (gating out) and the ability of the brain to respond when the stimulus changes (gating in), has not been extensively examined. We administered a battery of auditory evoked potential tests to a group of chronic, medicated schizophrenia patients (N=12) and a group of healthy subjects (N=12) in order to examine relationships between “gating out” measures (suppression with repetition of the P50, N100, and P200 evoked responses), and the mismatch negativity (MMN) and the P300 event related potentials as measures of “gating in”. Gating ratios for N100 and P200 in a visual attention paired-click task differed significantly between groups. Mismatch negativity and P300 potential amplitudes were also significantly reduced in the patient group. When including all subjects (N=24) a negative correlation was found between the P50 gating and the amplitude of the MMN. In healthy subjects this correlation was significantly stronger compared to schizophrenia patients. While no significant correlation was noted between the amplitudes of the P300 and any gating measures when all 24 subjects were included, a significant negative correlation was seen between the P200 gating and the P300 amplitudes in schizophrenia patients; an opposite trend was noted in healthy subjects. Finally, a positive correlation was seen between the P300 and MMN (to abstract deviance) amplitudes in healthy subjects, but the opposite was found in patients. These results suggest that further study of these interrelationships could inform the understanding of information processing abnormalities in schizophrenia. PMID:20537865

  5. The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats.

    Directory of Open Access Journals (Sweden)

    Lukas Rüttiger

    Full Text Available Tinnitus is proposed to be caused by decreased central input from the cochlea, followed by increased spontaneous and evoked subcortical activity that is interpreted as compensation for increased responsiveness of central auditory circuits. We compared equally noise exposed rats separated into groups with and without tinnitus for differences in brain responsiveness relative to the degree of deafferentation in the periphery. We analyzed (1 the number of CtBP2/RIBEYE-positive particles in ribbon synapses of the inner hair cell (IHC as a measure for deafferentation; (2 the fine structure of the amplitudes of auditory brainstem responses (ABR reflecting differences in sound responses following decreased auditory nerve activity and (3 the expression of the activity-regulated gene Arc in the auditory cortex (AC to identify long-lasting central activity following sensory deprivation. Following moderate trauma, 30% of animals exhibited tinnitus, similar to the tinnitus prevalence among hearing impaired humans. Although both tinnitus and no-tinnitus animals exhibited a reduced ABR wave I amplitude (generated by primary auditory nerve fibers, IHCs ribbon loss and high-frequency hearing impairment was more severe in tinnitus animals, associated with significantly reduced amplitudes of the more centrally generated wave IV and V and less intense staining of Arc mRNA and protein in the AC. The observed severe IHCs ribbon loss, the minimal restoration of ABR wave size, and reduced cortical Arc expression suggest that tinnitus is linked to a failure to adapt central circuits to reduced cochlear input.

  6. Otoacoustic emissions, auditory evoked potentials and self-reported gender in people affected by disorders of sex development (DSD).

    Science.gov (United States)

    Wisniewski, Amy B; Espinoza-Varas, Blas; Aston, Christopher E; Edmundson, Shelagh; Champlin, Craig A; Pasanen, Edward G; McFadden, Dennis

    2014-08-01

    Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) - (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46,XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) - the male-typical pattern - than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD.

  7. The auditory startle response in post-traumatic stress disorder

    NARCIS (Netherlands)

    Siegelaar, S. E.; Olff, M.; Bour, L. J.; Veelo, D.; Zwinderman, A. H.; van Bruggen, G.; de Vries, G. J.; Raabe, S.; Cupido, C.; Koelman, J. H. T. M.; Tijssen, M. A. J.

    2006-01-01

    Post-traumatic stress disorder (PTSD) patients are considered to have excessive EMG responses in the orbicularis oculi (OO) muscle and excessive autonomic responses to startling stimuli. The aim of the present study was to gain more insight into the pattern of the generalized auditory startle reflex

  8. 窒息新生儿脑干诱发电位的检测价值%The Value of Brainstem Auditory Evoked Potential in Asphyxia Neonatorum

    Institute of Scientific and Technical Information of China (English)

    李秋玲

    2011-01-01

    围生期窒息后可引起听神经通路细胞的缺血/再灌注损伤,从而影响听觉功能.脑干听觉诱发电位可反映脑神经和脑听觉通路不同部位所引起的生物电活动,因其客观、准确、重复性好、无损伤性、受干扰因素少而受到儿科工作者重视.对可能累及到中枢神经系统功能失调及听力障碍的儿科疾病具有早期诊断和判断预后的临床参考价值.%The ischemic reperfusion of injury of nerve cell in auditory pathway can be caued by perinatal asphyxia. And the injury can affect hearing. Brainstem auditory evoked potential can reflect the bioelectric activity of cranial nerves and cerebral auditory pathway. Because it have not only good objectivity, precision and reproducibility , but also it have no damage and few interference factors, brainstem auditory evoked potential was thought highly by pediatrician. It has the clinical reference value of early diagnosis and the judgment of prognosis in pediatrie disease of central dysautonomia and dysacusis.

  9. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs.

    Science.gov (United States)

    Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E

    2012-01-01

    Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not

  10. Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation.

    Directory of Open Access Journals (Sweden)

    Shanqing Cai

    Full Text Available Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking functions abnormally in the speech motor systems of persons who stutter (PWS. Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (∼150 ms, but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05. Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.

  11. Auditory and visual event-related potentials and flash visual evoked potentials in Alzheimer's disease: correlations with Mini-Mental State Examination and Raven's Coloured Progressive Matrices.

    Science.gov (United States)

    Tanaka, F; Kachi, T; Yamada, T; Sobue, G

    1998-01-01

    We investigated possible correlations among neurophysiological examinations [auditory and visual event-related potentials (A-ERPs, V-ERPs), and flash visual evoked potentials (F-VEPs)] and neuropsychological tests [Mini-Mental State Examination (MMSE) and Raven's Coloured Progressive Matrices (RCPM)] in 15 subjects with probable or possible Alzheimer's disease (AD) according to the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria. The P300 latency of A-ERPs was correlated with the scores of MMSE but not with those of RCPM. The P300 latency of V-ERPs was more significantly correlated with the scores of RCPM than with those of MMSE. The P2 latency of F-VEPs was more significantly correlated with the scores of RCPM than with those of MMSE. The P2 latency of F-VEPs was not correlated with the P300 latency of A-ERPs but was correlated with the P300 latency of V-ERPs. The close relationship among V-ERPs, F-VEPs and RCPM suggests that these examinations at least partly reflect the functions of visual association areas in AD. Furthermore, discrepancy between P300 latency by A-ERPs and V-ERPs suggests that the mechanism responsible for P300 generation is not identical between these two stimulus modalities.

  12. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail

    2015-01-01

    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  13. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants.

    Science.gov (United States)

    Venail, Frederic; Mura, Thibault; Akkari, Mohamed; Mathiolon, Caroline; Menjot de Champfleur, Sophie; Piron, Jean Pierre; Sicard, Marielle; Sterkers-Artieres, Françoise; Mondain, Michel; Uziel, Alain

    2015-01-01

    The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement), electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device). The electrical response, measured using auto-NRT (neural responses telemetry) algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = -0.11 ± 0.02, P < 0.01), the scalar placement of the electrodes (β = -8.50 ± 1.97, P < 0.01), and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF). Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  14. Postural threat influences vestibular-evoked muscular responses.

    Science.gov (United States)

    Lim, Shannon B; Cleworth, Taylor W; Horslen, Brian C; Blouin, Jean-Sébastien; Inglis, J Timothy; Carpenter, Mark G

    2017-02-01

    Standing balance is significantly influenced by postural threat. While this effect has been well established, the underlying mechanisms of the effect are less understood. The involvement of the vestibular system is under current debate, and recent studies that investigated the effects of height-induced postural threat on vestibular-evoked responses provide conflicting results based on kinetic (Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG. J Physiol 592: 3671-3685, 2014) and kinematic (Osler CJ, Tersteeg MC, Reynolds RF, Loram ID. Eur J Neurosci 38: 3239-3247, 2013) data. We examined the effect of threat of perturbation, a different form of postural threat, on coupling (cross-correlation, coherence, and gain) of the vestibulo-muscular relationship in 25 participants who maintained standing balance. In the "No-Threat" conditions, participants stood quietly on a stable surface. In the "Threat" condition, participants' balance was threatened with unpredictable mediolateral support surface tilts. Quiet standing immediately before the surface tilts was compared to an equivalent time from the No-Threat conditions. Surface EMG was recorded from bilateral trunk, hip, and leg muscles. Hip and leg muscles exhibited significant increases in peak cross-correlation amplitudes, coherence, and gain (1.23-2.66×) in the Threat condition compared with No-Threat conditions, and significant correlations were observed between threat-related changes in physiological arousal and medium-latency peak cross-correlation amplitude in medial gastrocnemius (r = 0.408) muscles. These findings show a clear threat effect on vestibular-evoked responses in muscles in the lower body, with less robust effects of threat on trunk muscles. Combined with previous work, the present results can provide insight into observed changes during balance control in threatening situations.

  15. Prestimulation phase predicts the TMS-evoked response.

    Science.gov (United States)

    Kundu, Bornali; Johnson, Jeffrey S; Postle, Bradley R

    2014-10-15

    Prestimulation oscillatory phase and power in particular frequency bands predict perception of at-threshold visual stimuli and of transcranial magnetic stimulation (TMS)-induced phosphenes. These effects may be due to changes in cortical excitability, such that certain ranges of power and/or phase values result in a state in which a particular brain area is more receptive to input, thereby biasing behavior. However, the effects of trial-by-trial fluctuations in phase and power of ongoing oscillations on the brain's electrical response to TMS itself have thus far not been addressed. The present study adopts a combined TMS and electroencepalography (EEG) approach to determine whether the TMS-evoked response is sensitive to momentary fluctuations in prestimulation phase and/or power in different frequency bands. Specifically, TMS was applied to superior parietal lobule while subjects performed a short-term memory task. Results showed that the prestimulation phase, particularly within the beta (15-25 Hz) band, predicted pulse-by-pulse variations in the global mean field amplitude. No such relationship was observed between prestimulation power and the global mean field amplitude. Furthermore, TMS-evoked power in the beta band fluctuated with prestimulation phase in the beta band in a manner that differed from spontaneous brain activity. These effects were observed in areas at and distal to the stimulation site. Together, these results confirm the idea that fluctuating phase of ongoing neuronal oscillations create "windows of excitability" in the brain, and they give insight into how TMS interacts with ongoing brain activity on a pulse-by-pulse basis.

  16. Os efeitos da polaridade do estímulo nos Potenciais Evocados Auditivos de Tronco Encefálico Polarity stimulation effects on brainstem auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Janaina Patricio de Lima

    2008-10-01

    Full Text Available Os Potenciais Evocados Auditivos de Tronco Encefálico (PEATE são considerados potenciais exógenos, ou seja, as respostas obtidas são altamente dependentes da característica do estímulo utilizado para evocá-los. OBJETIVO: Averiguar a influência da polaridade do estímulo clique na pesquisa dos PEATE em diferentes intensidades, utilizando-se fone de inserção. FORMA DE ESTUDO: Clínico. MATERIAL E MÉTODO: 33 indivíduos, idade entre 18 e 28 anos, sem alteração auditiva foram submetidos à pesquisa dos PEATE, com estímulo clique nas polaridades de rarefação, condensação e alternada, em diferentes intensidades. RESULTADOS: As latências absolutas da onda V mostraram-se menores na polaridade de rarefação quando comparadas às demais e na intensidade de 80 dBnHL houve diferença significante entre a rarefação e as demais polaridades para as latências interpicos III-V e I-V. Houve alta correlação entre as polaridades de condensação e alternada para as latências absolutas e interpicos na intensidade de 80 dBnHL. CONCLUSÃO: A polaridade do estímulo clique influência significativamente nos PEATE. Na rotina em que se utiliza o fone TDH 39, com apresentação de polaridade alternada, sugere-se que o uso da polaridade de condensação seja mais adequado para efeitos de comparação padronizada, devido à maior semelhança das latências encontradas nesse estudo com fone de inserção.Brainstem Auditory Evoked Potentials are considered exogenous potentials, that is, the responses obtained are highly dependent upon the characteristic of the stimulus used to evoke them. AIM: To investigate the influence of the click stimulus polarity in the study of Brainstem Evoked Response Audiometry (BERA at different intensities, using insertion-canal earphones. TYPE OF STUDY: Clinical. MATERIALS AND METHODS: 33 individuals, aged between 18 and 28, with no auditory alteration were submitted to BERA testing, with click stimulus on the

  17. Transient visual evoked neuromagnetic responses: Identification of multiple sources

    Energy Technology Data Exchange (ETDEWEB)

    Aine, C.; George, J.; Medvick, P.; Flynn, E.; Bodis-Wollner, I.; Supek, S.

    1989-01-01

    Neuromagnetic measurements and associated modeling procedures must be able to resolve multiple sources in order to localize and accurately characterize the generators of visual evoked neuromagnetic activity. Workers have identified at least 11 areas in the macaque, throughout occipital, parietal, and temporal cortex, which are primarily or entirely visual in function. The surface area of the human occipital lobe is estimated to be 150--250cm. Primary visual cortex covers approximately 26cm/sup 2/ while secondary visual areas comprise the remaining area. For evoked response amplitudes typical of human MEG data, one report estimates that a two-dipole field may be statistically distinguishable from that of a single dipole when the separation is greater than 1--2 cm. Given the estimated expanse of cortex devoted to visual processes, along with this estimate of resolution limits it is likely that MEG can resolve sources associated with activity in multiple visual areas. Researchers have noted evidence for the existence of multiple sources when presenting visual stimuli in a half field; however, they did not attempt to localize them. We have examined numerous human MEG field patterns resulting from different visual field placements of a small sinusoidal grating which suggest the existence of multiple sources. The analyses we have utilized for resolving multiple sources in these studies differ depending on whether there was evidence of (1) synchronous activation of two spatially discrete sources or (2) two discrete asynchronous sources. In some cases we have observed field patterns which appear to be adequately explained by a single source changing its orientation and location across time. 4 refs., 2 figs.

  18. Synaptic Basis for the Generation of Response Variation in Auditory Cortex.

    Science.gov (United States)

    Tao, Can; Zhang, Guangwei; Zhou, Chang; Wang, Lijuan; Yan, Sumei; Zhang, Li I; Zhou, Yi; Xiong, Ying

    2016-08-03

    Cortical neurons can exhibit significant variation in their responses to the same sensory stimuli, as reflected by the reliability and temporal precision of spikes. However the synaptic mechanism underlying response variation still remains unclear. Here, in vivo whole-cell patch-clamp recording of excitatory neurons revealed variation in the amplitudes as well as the temporal profiles of excitatory and inhibitory synaptic inputs evoked by the same sound stimuli in layer 4 of the rat primary auditory cortex. Synaptic inputs were reliably induced by repetitive stimulation, although with large variation in amplitude. The variation in the amplitude of excitation was much higher than that of inhibition. In addition, the temporal jitter of the synaptic onset latency was much smaller than the jitter of spike response. We further demonstrated that the amplitude variation of excitatory inputs can largely account for the spike variation, while the jitter in spike timing can be primarily attributed to the temporal variation of excitatory inputs. Furthermore, the spike reliability of excitatory but not inhibitory neurons is dependent on tone frequency. Our results thus revealed an inherent cortical synaptic contribution for the generation of variation in the spike responses of auditory cortical neurons.

  19. Distinct features of auditory steady-state responses as compared to transient event-related potentials.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Transient event-related potentials (ERPs and steady-state responses (SSRs have been popularly employed to investigate the function of the human brain, but their relationship still remains a matter of debate. Some researchers believed that SSRs could be explained by the linear summation of successive transient ERPs (superposition hypothesis, while others believed that SSRs were the result of the entrainment of a neural rhythm driven by the periodic repetition of a sensory stimulus (oscillatory entrainment hypothesis. In the present study, taking auditory modality as an example, we aimed to clarify the distinct features of SSRs, evoked by the 40-Hz and 60-Hz periodic auditory stimulation, as compared to transient ERPs, evoked by a single click. We observed that (1 SSRs were mainly generated by phase synchronization, while late latency responses (LLRs in transient ERPs were mainly generated by power enhancement; (2 scalp topographies of LLRs in transient ERPs were markedly different from those of SSRs; (3 the powers of both 40-Hz and 60-Hz SSRs were significantly correlated, while they were not significantly correlated with the N1 power in transient ERPs; (4 whereas SSRs were dominantly modulated by stimulus intensity, middle latency responses (MLRs were not significantly modulated by both stimulus intensity and subjective loudness judgment, and LLRs were significantly modulated by subjective loudness judgment even within the same stimulus intensity. All these findings indicated that high-frequency SSRs were different from both MLRs and LLRs in transient ERPs, thus supporting the possibility of oscillatory entrainment hypothesis to the generation of SSRs. Therefore, SSRs could be used to explore distinct neural responses as compared to transient ERPs, and help us reveal novel and reliable neural mechanisms of the human brain.

  20. Facilitating neuronal connectivity analysis of evoked responses by exposing local activity with principal component analysis preprocessing: simulation of evoked MEG.

    Science.gov (United States)

    Gao, Lin; Zhang, Tongsheng; Wang, Jue; Stephen, Julia

    2013-04-01

    When connectivity analysis is carried out for event related EEG and MEG, the presence of strong spatial correlations from spontaneous activity in background may mask the local neuronal evoked activity and lead to spurious connections. In this paper, we hypothesized PCA decomposition could be used to diminish the background activity and further improve the performance of connectivity analysis in event related experiments. The idea was tested using simulation, where we found that for the 306-channel Elekta Neuromag system, the first 4 PCs represent the dominant background activity, and the source connectivity pattern after preprocessing is consistent with the true connectivity pattern designed in the simulation. Improving signal to noise of the evoked responses by discarding the first few PCs demonstrates increased coherences at major physiological frequency bands when removing the first few PCs. Furthermore, the evoked information was maintained after PCA preprocessing. In conclusion, it is demonstrated that the first few PCs represent background activity, and PCA decomposition can be employed to remove it to expose the evoked activity for the channels under investigation. Therefore, PCA can be applied as a preprocessing approach to improve neuronal connectivity analysis for event related data.

  1. Measuring the dynamics of neural responses in primary auditory cortex

    CERN Document Server

    Depireux, D A; Shamma, S A; Depireux, Didier A.; Simon, Jonathan Z.; Shamma, Shihab A.

    1998-01-01

    We review recent developments in the measurement of the dynamics of the response properties of auditory cortical neurons to broadband sounds, which is closely related to the perception of timbre. The emphasis is on a method that characterizes the spectro-temporal properties of single neurons to dynamic, broadband sounds, akin to the drifting gratings used in vision. The method treats the spectral and temporal aspects of the response on an equal footing.

  2. Deriving cochlear delays in humans using otoacoustic emissions and auditory evoked potentials

    DEFF Research Database (Denmark)

    Pigasse, Gilles

    relation between frequency and travel time in the cochlea defines the cochlear delay. This delay is directly associated with the signal analysis occurring in the inner ear and is therefore of primary interest to get a better knowledge of this organ. It is possible to estimate the cochlear delay by direct...... towards the apex, resulting in locally resonant behaviour. This means high frequencies have maximal response at the base and low frequencies at the apex. The wave travelling along the basilar membrane has a longer travel time for low-frequency stimulus than for high-frequency stimulus. The intrinsic...... the cochlear delay, as if the travelling wave went back and forth in the cochlea, as predicted in current theories of OAE generation. This relation, however, does not hold for higher frequencies, calling into question the physical relation between OAE and ABR delay estimates. The comparison between ABR...

  3. Tactile stimulation and hemispheric asymmetries modulate auditory perception and neural responses in primary auditory cortex.

    Science.gov (United States)

    Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T

    2013-10-01

    Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity.

  4. Somatosensory-evoked blink response: investigation of the physiological mechanisms.

    Science.gov (United States)

    Miwa, H; Nohara, C; Hotta, M; Shimo, Y; Amemiya, K

    1998-02-01

    The somatosensory-evoked blink response (SBR) is a newly identified blink reflex elicited by electrical stimulation of peripheral nerves. The present study was performed to investigate the physiological mechanism underlying the SBR elicited by median nerve stimulation in normal subjects. The peripheral afferents responsible for the SBR included low-threshold cutaneous fibres. In the SBR-positive subjects, the late (R2) component of the blink reflex elicited by supraorbital nerve stimulation and the SBR facilitated each other when both responses were induced at the same time, but they each caused long-lasting inhibition in the other when one stimulus was given as a conditioning stimulus. The extent of inhibition was correlated with the size of the preceding SBR. In the SBR-negative subjects, simultaneous inhibition of R2 was observed when median nerve stimulation was applied as a conditioning stimulus. Brainstem excitability, as evaluated by blink-reflex recovery studies, did not differ between SBR-positive and SBR-negative subjects. Therefore, based on anatomical and physiological findings, it appears that the reflex pathways of the SBR and R2 converge within the brainstem and compete with each other, presumably by presynaptic inhibition at the premotor level, before entering the common blink-reflex pathway. The influence of median nerve stimulation upon tonic contraction of the orbicularis oculi muscle was studied to detect the latent SBR. There was not only a facilitatory period corresponding to the SBR but also an active inhibitory period (exteroceptive suppression), suggesting that the mechanism generating the SBR is not only influenced by blink-reflex volleys but also by active exteroceptive suppression. Thus, the SBR may appear as a result of integration of facilitatory and inhibitory mechanisms within the brainstem.

  5. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Bleichner, Martin G; Debener, Stefan

    2016-01-01

    Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  6. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS

    Directory of Open Access Journals (Sweden)

    Ling-Chia Chen

    2016-01-01

    Full Text Available Cochlear implant (CI users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users’ speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS. Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  7. Visual task complexity modulates the brain's response to unattended auditory novelty.

    Science.gov (United States)

    Yucel, Gunes; Petty, Christopher; McCarthy, Gregory; Belger, Aysenil

    2005-07-13

    New, unusual, and changing events are important environmental cues, and the ability to detect these types of stimuli in the environment constitutes a biologically significant survival skill. We used event-related potentials to examine whether sensory and cognitive neural responses to unattended novel events are modulated by the complexity of a primary visuomotor task. Event-related potentials were elicited by unattended task-irrelevant pitch-deviant tones and novel environmental sounds while study participants performed a continuous visuomotor tracking task at two levels of difficulty, achieved by manipulating the control dynamics of a joystick. The results revealed that increased task complexity modulated evoked sensory and cognitive event-related potential components, indicating that detection of change and novelty in the unattended auditory channel is resource-limited.

  8. The impact of severity of hypertension on auditory brainstem responses

    Directory of Open Access Journals (Sweden)

    Gurdev Lal Goyal

    2014-07-01

    Full Text Available Background: Auditory brainstem response is an objective electrophysiological method for assessing the auditory pathways from the auditory nerve to the brainstem. The aim of this study was to correlate and to assess the degree of involvement of peripheral and central regions of brainstem auditory pathways with increasing severity of hypertension, among the patients of essential hypertension. Method: This study was conducted on 50 healthy age and sex matched controls (Group I and 50 hypertensive patients (Group II. Later group was further sub-divided into - Group IIa (Grade 1 hypertension, Group IIb (Grade 2 hypertension, and Group IIc (Grade 3 hypertension, as per WHO guidelines. These responses/potentials were recorded by using electroencephalogram electrodes on a root-mean-square electromyography, EP MARC II (PC-based machine and data were statistically compared between the various groups by way of one-way ANOVA. The parameters used for analysis were the absolute latencies of Waves I through V, interpeak latencies (IPLs and amplitude ratio of Wave V/I. Result: The absolute latency of Wave I was observed to be significantly increased in Group IIa and IIb hypertensives, while Wave V absolute latency was highly significantly prolonged among Group IIb and IIc, as compared to that of normal control group. All the hypertensives, that is, Group IIa, IIb, and IIc patients were found to have highly significant prolonged III-V IPL as compared to that of normal healthy controls. Further, intergroup comparison among hypertensive patients revealed a significant prolongation of Wave V absolute latency and III-V IPL in Group IIb and IIc patients as compared to Group IIa patients. These findings suggest a sensory deficit along with synaptic delays, across the auditory pathways in all the hypertensives, the deficit being more markedly affecting the auditory processing time at pons to midbrain (IPL III-V region of auditory pathways among Grade 2 and 3

  9. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.

    Science.gov (United States)

    Lerud, Karl D; Almonte, Felix V; Kim, Ji Chul; Large, Edward W

    2014-02-01

    The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet the biophysical origin of central auditory nonlinearities, their signal processing properties, and their relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical intervals that have been observed in the human brainstem. The model makes predictions about auditory signal processing and perception that are different from traditional delay-based models, and may provide insight into the nature of auditory population responses. We anticipate that the application of dynamical systems analysis will provide the starting point for generic models of auditory population dynamics, and lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-inhibitory networks of the central auditory nervous system. This approach has the potential to link neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of auditory system development.

  10. Sedation and anesthesia of hatchling leatherback sea turtles (Dermochelys coriacea) for auditory evoked potential measurement in air and in water.

    Science.gov (United States)

    Harms, Craig A; Piniak, Wendy E D; Eckert, Scott A; Stringer, Elizabeth M

    2014-03-01

    Sedation or anesthesia of hatchling leatherback sea turtles was employed to acquire auditory evoked potential (AEP) measurements in air and in water to assess their hearing sensitivity in relation to potential consequences from anthropogenic noise. To reduce artifacts in AEP collection caused by muscle movement, hatchlings were sedated with midazolam 2 or 3 mg/kg i.v. for in-air (n = 7) or in-water (n = 11) AEP measurements; hatchlings (n = 5) were anesthetized with ketamine 6 mg/kg and dexmedetomidine 30 microg/kg i.v. reversed with atipamezole 300 microg/kg, half i.m. and half i.v. for in-air AEP measurements. Midazolam-sedated turtles were also physically restrained with a light elastic wrap. For in-water AEP measurements, sedated turtles were brought to the surface every 45-60 sec, or whenever they showed intention signs for breathing, and not submerged again until they took a breath. Postprocedure temperature-corrected venous blood pH, pCO2, pO2, and HCO3- did not differ among groups, although for the midazolam-sedated in-water group, pCO2 trended lower, and in the ketamine-dexmedetomidine anesthetized group there was one turtle considered clinically acidotic (temperature-corrected pH = 7.117). Venous blood lactate was greater for hatchlings recently emerged from the nest than for turtles sedated with midazolam in air, with the other two groups falling intermediate between, but not differing significantly from the high and low lactate groups. Disruptive movements were less frequent with anesthesia than with sedation in the in-air group. Both sedation with midazolam and anesthesia with ketamine-dexmedetomidine were successful for allowing AEP measurements in hatchling leatherback sea turtles. Sedation allowed the turtle to protect its airway voluntarily while limiting flipper movement. Midazolam or ketamine-dexmedetomidine (and reversal with atipamezole) would be useful for other procedures requiring minor or major restraint in leatherback sea turtle hatchlings

  11. The auditory startle response in post-traumatic stress disorder.

    Science.gov (United States)

    Siegelaar, S E; Olff, M; Bour, L J; Veelo, D; Zwinderman, A H; van Bruggen, G; de Vries, G J; Raabe, S; Cupido, C; Koelman, J H T M; Tijssen, M A J

    2006-09-01

    Post-traumatic stress disorder (PTSD) patients are considered to have excessive EMG responses in the orbicularis oculi (OO) muscle and excessive autonomic responses to startling stimuli. The aim of the present study was to gain more insight into the pattern of the generalized auditory startle reflex (ASR). Reflex EMG responses to auditory startling stimuli in seven muscles rather than the EMG response of the OO alone as well as the psychogalvanic reflex (PGR) were studied in PTSD patients and healthy controls. Ten subjects with chronic PTSD (>3 months) and a history of excessive startling and 11 healthy controls were included. Latency, amplitude and duration of the EMG responses and the amplitude of the PGR to 10 auditory stimuli of 110 dB SPL were investigated in seven left-sided muscles. The size of the startle reflex, defined by the number of muscles activated by the acoustic stimulus and by the amplitude of the EMG response of the OO muscle as well, did not differ significantly between patients and controls. Median latencies of activity in the sternocleidomastoid (SC) (patients 80 ms; controls 54 ms) and the deltoid (DE) muscles (patients 113 ms; controls 69 ms) were prolonged significantly in PTSD compared to controls (P < 0.05). In the OO muscle, a late response (median latency in patients 308 ms; in controls 522 ms), probably the orienting reflex, was more frequently present in patients (56%) than in controls (12%). In patients, the mean PGR was enlarged compared to controls (P < 0.05). The size of the ASR response is not enlarged in PTSD patients. EMG latencies in the PTSD patients are prolonged in SC and DE muscles. The presence of a late response in the OO muscle discriminates between groups of PTSD patients with a history of startling and healthy controls. In addition, the autonomic response, i.e. the enlarged amplitude of the PGR can discriminate between these groups.

  12. Automatic hearing loss detection system based on auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Aldonate, J; Mercuri, C; Reta, J; Biurrun, J; Bonell, C; Gentiletti, G; Escobar, S; Acevedo, R [Laboratorio de Ingenieria en Rehabilitacion e Investigaciones Neuromusculares y Sensoriales (Argentina); Facultad de Ingenieria, Universidad Nacional de Entre Rios, Ruta 11 - Km 10, Oro Verde, Entre Rios (Argentina)

    2007-11-15

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

  13. Automatic hearing loss detection system based on auditory brainstem response

    Science.gov (United States)

    Aldonate, J.; Mercuri, C.; Reta, J.; Biurrun, J.; Bonell, C.; Gentiletti, G.; Escobar, S.; Acevedo, R.

    2007-11-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

  14. Short latency vestibular potentials evoked by electrical round window stimulation in the guinea pig.

    Science.gov (United States)

    Bordure, P; Desmadryl, G; Uziel, A; Sans, A

    1989-11-01

    Short-latency potentials evoked by round window electrical stimulation were recorded in guinea pig by means of vertex-pinna skin electrodes using averaging techniques. Constant current shocks of 20 microseconds or 50 microseconds (25-300 microA) were used to evoke both auditory and vestibular brain-stem potentials. Pure auditory potentials, comparable to those evoked by acoustic clicks, were obtained by 20 microseconds electrical stimuli and disappeared during an auditory masking procedure made with a continuous white noise (110 dB SPL). Short latency potentials labeled V1, V2 and V3 were obtained by 50 microseconds electrical stimuli during an auditory masking procedure. This response disappeared after specific vestibular neurectomy, whereas the auditory response evoked by acoustic clicks or by electrical stimulation remained unchanged, suggesting that these latter potentials had a vestibular origin.

  15. Relating the Variability of Tone-Burst Otoacoustic Emission and Auditory Brainstem Response Latencies to the Underlying Cochlear Mechanics

    Science.gov (United States)

    Verhulst, Sarah; Shera, Christopher A.

    2016-01-01

    Forward and reverse cochlear latency and its relation to the frequency tuning of the auditory filters can be assessed using tone bursts (TBs). Otoacoustic emissions (TBOAEs) estimate the cochlear roundtrip time, while auditory brainstem responses (ABRs) to the same stimuli aim at measuring the auditory filter buildup time. Latency ratios are generally close to two and controversy exists about the relationship of this ratio to cochlear mechanics. We explored why the two methods provide different estimates of filter buildup time, and ratios with large inter-subject variability, using a time-domain model for OAEs and ABRs. We compared latencies for twenty models, in which all parameters but the cochlear irregularities responsible for reflection-source OAEs were identical, and found that TBOAE latencies were much more variable than ABR latencies. Multiple reflection-sources generated within the evoking stimulus bandwidth were found to shape the TBOAE envelope and complicate the interpretation of TBOAE latency and TBOAE/ABR ratios in terms of auditory filter tuning. PMID:27175040

  16. Neonatal hearing screening of high-risk infants using automated auditory brainstem response: a retrospective analysis of referral rates.

    LENUS (Irish Health Repository)

    McGurgan, I J

    2013-10-07

    The past decade has seen the widespread introduction of universal neonatal hearing screening (UNHS) programmes worldwide. Regrettably, such a programme is only now in the process of nationwide implementation in the Republic of Ireland and has been largely restricted to one screening modality for initial testing; namely transient evoked otoacoustic emissions (TEOAE). The aim of this study is to analyse the effects of employing a different screening protocol which utilises an alternative initial test, automated auditory brainstem response (AABR), on referral rates to specialist audiology services.

  17. STANDARDIZNG OF BRAINSTEM EVOKED RESPONSE AUDIOMETRY VALUES PRELIMINARY TO STARTING BERA LAB IN A HOSPITAL

    Directory of Open Access Journals (Sweden)

    Sivaprasad

    2014-07-01

    Full Text Available INTRODUCTION: The subjective assessment of hearing is primarily done by pure tone audiometry. It is commonly undertaken test which can tell us the hearing acuity of a person when carried under ideal conditions. However, not infrequently the otologists encounter a difficulty to do subjective audiometry or in those circumstances where the test results are not correlating with the disease in question. Hence they have to depend upon the objective tests to get a workable knowledge about the patients hearing threshold. Of the various objective tests available the most popular are Brain stem evoked response audiometry –non-invasive and more standardized parameter, Electro-cochleography, auditory steady state response. Otoacoustic Emission test (OAE Otoacoustic emission doesn’t measure the hearing acuity, it gives us an idea whether there is any deafness or not. But BERA is useful in detecting and quantification of deafness in the difficult-to-test patients like infants, mentally retarded people, malingers, deeply sedated and anaesthetized patients. It determines objectively the nature of deafness (i.e., whether sensory or neural in difficult-to-test patients. It helps to locate the site of lesion in retro-cochlear pathologies (in an area from spiral ganglion of the cochlear nerve to midbrain (inferior colliculus. Study of central auditory disorders is possible. Study of maturity of central nervous system in newborns, objective identification of brain death, assessing prognosis in comatose patients are other uses. Before starting a BERA lab in a hospital it is mandatory to standardize the normal values in a randomly selected group of persons with certain criteria like; normal ears with intact T.M and without any complaints of loss of hearing. Persons aged between 05 to 60 years are taken for this study. The study group included both males and females. The aim of this study is to assess the hearing pathway in normal hearing individuals and compare

  18. FPGA-based programmable visual, auditory evoked potential stimulator%基于FPGA的可编程视觉、听觉诱发电位刺激器

    Institute of Scientific and Technical Information of China (English)

    范松; 潘旭; 张鹏飞

    2013-01-01

      Evoked potential is a specific electrical response after the nervous system accept a variety of external stimulates.Due to the time locked relationship with the stimulation,it can be detected in the corresponding parts of the central nervous system and peripheral nervous system,with the characteristics of quantitative and positioning,often has a more stable result than conventional electroencephalogram (EEG),therefore it plays an important role in the diagnosis and the study of various parts of nerve electrophysiology change of nervous system.This project aim at evoking human brain engenders potential change through produce the auditory and visual stimulation signal of a specific frequency.So that health care workers can get more information from the evoked potentials,and help to better diagnosis of the disease.The stimulator can produce audio stimulation and video stimulation, audio stimulation including issue a short sound,pure tone and self recorded sound,and video stimulation including checkerboard flip.One of the advantages of the stimulator is that time length and frequency can be reset.The project mainly based on FPGA chip.Use ALTERA DE2 development platform.%  诱发电位是神经系统接受各种外界刺激后所产生的特异性电反应。它在中枢神经系统及周围神经系统的相应部位被检出,与刺激有锁时关系的电位变化,具有能定量及定位的特点,往往较常规脑电图检查有更稳定的效果,从而在诊断及研究神经系统各部位神经电生理变化方面,有重要作用。本项目通过产生特定频率的听觉和视觉刺激信号,使人脑产生诱发电位。医护人员可从诱发脑电中获取更多信息,并帮助其更好地对病情进行确诊。本刺激器可产生音频刺激和视频刺激,其中音频刺激包括发出短声、纯音、自己录制的声音等;视频刺激包括棋盘格翻转。刺激的时长、频率都可设定。本项目主要通

  19. Genetic effects on source level evoked and induced oscillatory brain responses in a visual oddball task.

    Science.gov (United States)

    Antonakakis, Marios; Zervakis, Michalis; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; De Geus, Eco J C; Micheloyannis, Sifis; Smit, Dirk J A

    2016-02-01

    Stimuli in simple oddball target detection paradigms cause evoked responses in brain potential. These responses are heritable traits, and potential endophenotypes for clinical phenotypes. These stimuli also cause responses in oscillatory activity, both evoked responses phase-locked to stimulus presentation and phase-independent induced responses. Here, we investigate whether phase-locked and phase-independent oscillatory responses are heritable traits. Oscillatory responses were examined in EEG recordings from 213 twin pairs (91 monozygotic and 122 dizygotic twins) performing a visual oddball task. After group Independent Component Analysis (group-ICA) and time-frequency decomposition, individual differences in evoked and induced oscillatory responses were compared between MZ and DZ twin pairs. Induced (phase-independent) oscillatory responses consistently showed the highest heritability (24-55%) compared to evoked (phase-locked) oscillatory responses and spectral energy, which revealed lower heritability at 1-35.6% and 4.5-32.3%, respectively. Since the phase-independent induced response encodes functional aspects of the brain response to target stimuli different from evoked responses, we conclude that the modulation of ongoing oscillatory activity may serve as an additional endophenotype for behavioral phenotypes and psychiatric genetics.

  20. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E; Olsen, Glenn H.; Therrien, Ronald E; Yannuzzi, Sally E; Ketten, Darlene R

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  1. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  2. Amelioration of Auditory Response by DA9801 in Diabetic Mouse

    Directory of Open Access Journals (Sweden)

    Yeong Ro Lee

    2015-01-01

    Full Text Available Diabetes mellitus (DM is a metabolic disease that involves disorders such as diabetic retinopathy, diabetic neuropathy, and diabetic hearing loss. Recently, neurotrophin has become a treatment target that has shown to be an attractive alternative in recovering auditory function altered by DM. The aim of this study was to evaluate the effect of DA9801, a mixture of Dioscorea nipponica and Dioscorea japonica extracts, in the auditory function damage produced in a STZ-induced diabetic model and to provide evidence of the mechanisms involved in enhancing these protective effects. We found a potential application of DA9801 on hearing impairment in the STZ-induced diabetic model, demonstrated by reducing the deterioration produced by DM in ABR threshold in response to clicks and normalizing wave I–IV latencies and Pa latencies in AMLR. We also show evidence that these effects might be elicited by inducing NGF related through Nr3c1 and Akt. Therefore, this result suggests that the neuroprotective effects of DA9801 on the auditory damage produced by DM may be affected by NGF increase resulting from Nr3c1 via Akt transformation.

  3. THE EVOKED VOCAL RESPONSE OF THE BULLFROG; A STUDY OF COMMUNICATION BY SOUND.

    Science.gov (United States)

    The research attempts to bridge the existing gap between the naturalistic observations of sound communication in anurans and the anatomical and...principles by which information is processed within the intact animal. To this end, vocal behavior has been evoked from the males of laboratory colonies of...bullfrogs (Rana catesbeiana) in response to a restricted class of natural and synthetic sounds. The evoked vocal responses, having the signal

  4. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas.

    Science.gov (United States)

    Henry, Kenneth S; Kale, Sushrut; Scheidt, Ryan E; Heinz, Michael G

    2011-10-01

    Noninvasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise-induced hearing loss. ABRs were recorded for 1-8 kHz tone burst stimuli both before and several weeks after 4 h of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity.

  5. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    to neutralize the charge induced during the cathodic phase. Single-neuron recordings in cat auditory nerve using monophasic electrical stimulation show, however, that both phases in isolation can generate an AP. The site of AP generation differs for both phases, being more central for the anodic phase and more...... perception of CI listeners, a model needs to incorporate the correct responsiveness of the AN to anodic and cathodic polarity. Previous models of electrical stimulation have been developed based on AN responses to symmetric biphasic stimulation or to monophasic cathodic stimulation. These models, however......, fail to correctly predict responses to anodic stimulation. This study presents a model that simulates AN responses to anodic and cathodic stimulation. The main goal was to account for the data obtained with monophasic electrical stimulation in cat AN. The model is based on an exponential integrate...

  6. Effects of contralateral noise on the 20-Hz auditory steady state response--magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Hajime Usubuchi

    Full Text Available The auditory steady state response (ASSR is an oscillatory brain response, which is phase locked to the rhythm of an auditory stimulus. ASSRs have been recorded in response to a wide frequency range of modulation and/or repetition, but the physiological features of the ASSRs are somewhat different depending on the modulation frequency. Recently, the 20-Hz ASSR has been emphasized in clinical examinations, especially in the area of psychiatry. However, little is known about the physiological properties of the 20-Hz ASSR, compared to those of the 40-Hz and 80-Hz ASSRs. The effects of contralateral noise on the ASSR are known to depend on the modulation frequency to evoke ASSR. However, the effects of contralateral noise on the 20-Hz ASSR are not known. Here we assessed the effects of contralateral white noise at a level of 70 dB SPL on the 20-Hz and 40-Hz ASSRs using a helmet-shaped magnetoencephalography system in 9 healthy volunteers (8 males and 1 female, mean age 31.2 years. The ASSRs were elicited by monaural 1000-Hz 5-s tone bursts amplitude-modulated at 20 and 39 Hz and presented at 80 dB SPL. Contralateral noise caused significant suppression of both the 20-Hz and 40-Hz ASSRs, although suppression was significantly smaller for the 20-Hz ASSRs than the 40-Hz ASSRs. Moreover, the greatest suppression of both 20-Hz and 40-Hz ASSRs occurred in the right hemisphere when stimuli were presented to the right ear with contralateral noise. The present study newly showed that 20-Hz ASSRs are suppressed by contralateral noise, which may be important both for characterization of the 20-Hz ASSR and for interpretation in clinical situations. Physicians must be aware that the 20-Hz ASSR is significantly suppressed by sound (e.g. masking noise or binaural stimulation applied to the contralateral ear.

  7. Effects of contralateral noise on the 20-Hz auditory steady state response--magnetoencephalography study.

    Science.gov (United States)

    Usubuchi, Hajime; Kawase, Tetsuaki; Kanno, Akitake; Yahata, Izumi; Miyazaki, Hiromitsu; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2014-01-01

    The auditory steady state response (ASSR) is an oscillatory brain response, which is phase locked to the rhythm of an auditory stimulus. ASSRs have been recorded in response to a wide frequency range of modulation and/or repetition, but the physiological features of the ASSRs are somewhat different depending on the modulation frequency. Recently, the 20-Hz ASSR has been emphasized in clinical examinations, especially in the area of psychiatry. However, little is known about the physiological properties of the 20-Hz ASSR, compared to those of the 40-Hz and 80-Hz ASSRs. The effects of contralateral noise on the ASSR are known to depend on the modulation frequency to evoke ASSR. However, the effects of contralateral noise on the 20-Hz ASSR are not known. Here we assessed the effects of contralateral white noise at a level of 70 dB SPL on the 20-Hz and 40-Hz ASSRs using a helmet-shaped magnetoencephalography system in 9 healthy volunteers (8 males and 1 female, mean age 31.2 years). The ASSRs were elicited by monaural 1000-Hz 5-s tone bursts amplitude-modulated at 20 and 39 Hz and presented at 80 dB SPL. Contralateral noise caused significant suppression of both the 20-Hz and 40-Hz ASSRs, although suppression was significantly smaller for the 20-Hz ASSRs than the 40-Hz ASSRs. Moreover, the greatest suppression of both 20-Hz and 40-Hz ASSRs occurred in the right hemisphere when stimuli were presented to the right ear with contralateral noise. The present study newly showed that 20-Hz ASSRs are suppressed by contralateral noise, which may be important both for characterization of the 20-Hz ASSR and for interpretation in clinical situations. Physicians must be aware that the 20-Hz ASSR is significantly suppressed by sound (e.g. masking noise or binaural stimulation) applied to the contralateral ear.

  8. Effects of ZNF804A on auditory P300 response in schizophrenia.

    LENUS (Irish Health Repository)

    O'Donoghue, T

    2014-01-01

    The common variant rs1344706 within the zinc-finger protein gene ZNF804A has been strongly implicated in schizophrenia (SZ) susceptibility by a series of recent genetic association studies. Although associated with a pattern of altered neural connectivity, evidence that increased risk is mediated by an effect on cognitive deficits associated with the disorder has been equivocal. This study investigated whether the same ZNF804A risk allele was associated with variation in the P300 auditory-evoked response, a cognitively relevant putative endophenotype for SZ. We compared P300 responses in carriers and noncarriers of the ZNF804A risk allele genotype groups in Irish patients and controls (n=97). P300 response was observed to vary according to genotype in this sample, such that risk allele carriers showed relatively higher P300 response compared with noncarriers. This finding accords with behavioural data reported by our group and others. It is also consistent with the idea that ZNF804A may have an impact on cortical efficiency, reflected in the higher levels of activations required to achieve comparable behavioural accuracy on the task used.

  9. Auditory Brainstem Responses in Children Treated with Cisplatin

    Directory of Open Access Journals (Sweden)

    Mohammad Kamali

    2012-03-01

    Full Text Available Background and Aim: In view of improvement in therapeutic outcome of cancer treatment in children resulting in increased survival rates and the importance of hearing in speech and language development, this research project was intended to assess the effects of cisplatin group on hearing ability in children aged 6 months to 12 years.Methods: In this cross-sectional study, hearing of 10 children on cisplatin group medication for cancer who met the inclusion criteria was examined by recording auditory brainstem responses (ABR using the three stimulants of click and 4 and 8 kHz tone bursts. All children were examined twice: before drug administration and within 72 hours after receiving the last dose. Then the results were compared with each other.Results: There was a significant difference between hearing thresholds before and after drug administration (p<0.05. Right and left ear threshold comparison revealed no significant difference.Conclusion: Ototoxic effects of cisplatin group were confirmed in this study. Insignificant difference observed in comparing right and left ear hearing thresholds could be due to small sample size. auditory brainstem responses test especially with frequency specificity proved to be a useful method in assessing cisplatin ototoxicity.

  10. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable of produ......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable......μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing...

  11. Auditory Evoked Potentials and Hand Preference in 6-Month-Old Infants: Possible Gender-Related Differences in Cerebral Organization.

    Science.gov (United States)

    Shucard, Janet L.; Shucard, David W.

    1990-01-01

    Verbal and musical stimuli were presented to infants in a study of the relations of evoked potential left-right amplitude asymmetries to gender and hand preference. There was a relation between asymmetry and hand preference, and for girls, between asymmetry and stimulus condition. Results suggest a gender difference in cerebral hemisphere…

  12. Auditory responses in the amygdala to social vocalizations

    Science.gov (United States)

    Gadziola, Marie A.

    The underlying goal of this dissertation is to understand how the amygdala, a brain region involved in establishing the emotional significance of sensory input, contributes to the processing of complex sounds. The general hypothesis is that communication calls of big brown bats (Eptesicus fuscus) transmit relevant information about social context that is reflected in the activity of amygdalar neurons. The first specific aim analyzed social vocalizations emitted under a variety of behavioral contexts, and related vocalizations to an objective measure of internal physiological state by monitoring the heart rate of vocalizing bats. These experiments revealed a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a sender. The second specific aim characterized the responsiveness of single neurons in the basolateral amygdala to a range of social syllables. Neurons typically respond to the majority of tested syllables, but effectively discriminate among vocalizations by varying the response duration. This novel coding strategy underscores the importance of persistent firing in the general functioning of the amygdala. The third specific aim examined the influence of acoustic context by characterizing both the behavioral and neurophysiological responses to natural vocal sequences. Vocal sequences differentially modify the internal affective state of a listening bat, with lower aggression vocalizations evoking the greatest change in heart rate. Amygdalar neurons employ two different coding strategies: low background neurons respond selectively to very few stimuli, whereas high background neurons respond broadly to stimuli but demonstrate variation in response magnitude and timing. Neurons appear to discriminate the valence of stimuli, with aggression sequences evoking robust population-level responses across all sound levels. Further, vocal sequences show improved discrimination among stimuli

  13. The sensory channel of presentation alters subjective ratings and autonomic responses toward disgusting stimuli – Blood pressure, heart rate and skin conductance in response to visual, auditory, haptic and olfactory presented disgusting stimuli

    OpenAIRE

    Croy, Ilona; Laqua, Kerstin; Süß, Frank; Joraschky, Peter; Ziemssen, Tjalf; Hummel, Thomas

    2014-01-01

    Disgust causes specific reaction patterns, observable in mimic responses and body reactions. Most research on disgust deals with visual stimuli. However, pictures may cause another disgust experience than sounds, odors, or tactile stimuli. Therefore, disgust experience evoked by four different sensory channels was compared. A total of 119 participants received 3 different disgusting and one control stimulus, each presented through the visual, auditory, tactile, and olfactory channel. Ratings ...

  14. The sensory channel of presentation alters subjective ratings and autonomic responses toward disgusting stimuli—Blood pressure, heart rate and skin conductance in response to visual, auditory, haptic and olfactory presented disgusting stimuli

    OpenAIRE

    Croy, Ilona; Laqua, Kerstin; Süß, Frank; Joraschky, Peter; Ziemssen, Tjalf; Hummel, Thomas

    2013-01-01

    Disgust causes specific reaction patterns, observable in mimic responses and body reactions. Most research on disgust deals with visual stimuli. However, pictures may cause another disgust experience than sounds, odors, or tactile stimuli. Therefore, disgust experience evoked by four different sensory channels was compared. A total of 119 participants received 3 different disgusting and one control stimulus, each presented through the visual, auditory, tactile, and olfactory channel. Ratings ...

  15. [A minicomputer system that extracts evoked responses from the E.E.G].

    Science.gov (United States)

    Maraval, G; Pernier, J; Peronnet, F; Echallier, J F; Gerin, P; Maugiere, F

    1980-05-01

    EVøQ is a minicomputer system that enables one to extract average evoked responses from the E.E.G. from a large number of analog channels, and can, therefore, be oriented towards a topographic study of the responses. It allows high-frequency sampling of the signal, in order to make possible a study of the brain stem evoked responses. This system consists of three programs: a configuration-editor which allows a pre-configuration of several kinds of experiments; an acquisition program, of monitoring, calibration, signal processing and automatic control of the stimulators; finally, a management and processing program of the resulting files.

  16. Experiential Response to Auditory and Visual Hallucination Suggestions in Hypnotic Subjects

    Science.gov (United States)

    Spanos, Nicholas P.; And Others

    1976-01-01

    The effects of several attitudinal, cognitive skill, and personality variables in response to auditory and visual hallucination suggestions to hypnotic subjects are assessed. Cooperative attitudes toward hypnosis and involvement in everyday imaginative activities (absorption) correlated with response to auditory and visual hallucination…

  17. Spectral and spatial tuning of onset and offset response functions in auditory cortical fields A1 and CL of rhesus macaques.

    Science.gov (United States)

    Ramamurthy, Deepa L; Recanzone, Gregg H

    2016-12-07

    The mammalian auditory cortex is necessary for spectral and spatial processing of acoustic stimuli. Most physiological studies of single neurons in the auditory cortex have focused on the onset and sustained portions of evoked responses, but there have been far fewer studies on the relationship between onset and offset responses. In the current study, we compared spectral and spatial tuning of onset and offset responses of neurons in primary auditory cortex (A1) and the caudolateral (CL) belt area of awake macaque monkeys. Several different metrics were used to determine the relationship between onset and offset response profiles in both frequency and space domains. In the frequency domain, a substantial proportion of neurons in A1 and CL displayed highly dissimilar best stimuli for onset- and offset-evoked responses, though even for these neurons, there was usually a large overlap in the range of frequencies that elicited onset and offset responses and distributions of tuning overlap metrics were mostly unimodal. In the spatial domain, the vast majority of neurons displayed very similar best locations for onset- and offset-evoked responses, along with unimodal distributions of all tuning overlap metrics considered. Finally, for both spectral and spatial tuning, a slightly larger fraction of neurons in A1 displayed non-overlapping onset and offset response profiles, relative to CL, which supports hierarchical differences in the processing of sounds in the two areas. However, these differences are small compared to differences in proportions of simple cells (low overlap) and complex cells (high overlap) in primary and secondary visual areas.

  18. The auditory brainstem response in two lizard species

    DEFF Research Database (Denmark)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong;

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal...... animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform......). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than...

  19. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation

    Directory of Open Access Journals (Sweden)

    Baumann Simon

    2007-02-01

    Full Text Available Abstract Background Recent findings of a tight coupling between visual and auditory association cortices during multisensory perception in monkeys and humans raise the question whether consistent paired presentation of simple visual and auditory stimuli prompts conditioned responses in unimodal auditory regions or multimodal association cortex once visual stimuli are presented in isolation in a post-conditioning run. To address this issue fifteen healthy participants partook in a "silent" sparse temporal event-related fMRI study. In the first (visual control habituation phase they were presented with briefly red flashing visual stimuli. In the second (auditory control habituation phase they heard brief telephone ringing. In the third (conditioning phase we coincidently presented the visual stimulus (CS paired with the auditory stimulus (UCS. In the fourth phase participants either viewed flashes paired with the auditory stimulus (maintenance, CS- or viewed the visual stimulus in isolation (extinction, CS+ according to a 5:10 partial reinforcement schedule. The participants had no other task than attending to the stimuli and indicating the end of each trial by pressing a button. Results During unpaired visual presentations (preceding and following the paired presentation we observed significant brain responses beyond primary visual cortex in the bilateral posterior auditory association cortex (planum temporale, planum parietale and in the right superior temporal sulcus whereas the primary auditory regions were not involved. By contrast, the activity in auditory core regions was markedly larger when participants were presented with auditory stimuli. Conclusion These results demonstrate involvement of multisensory and auditory association areas in perception of unimodal visual stimulation which may reflect the instantaneous forming of multisensory associations and cannot be attributed to sensation of an auditory event. More importantly, we are able

  20. Contribution of resolved and unresolved harmonic regions to brainstem speech-evoked responses in quiet and in background noise

    Directory of Open Access Journals (Sweden)

    M. Laroche

    2011-03-01

    Full Text Available Speech auditory brainstem responses (speech ABR reflect activity that is phase-locked to the harmonics of the fundamental frequency (F0 up to at least the first formant (F1. Recent evidence suggests that responses at F0 in the presence of noise are more robust than responses at F1, and are also dissociated in some learning-impaired children. Peripheral auditory processing can be broadly divided into resolved and unresolved harmonic regions. This study investigates the contribution of these two regions to the speech ABR, and their susceptibility to noise. We recorded, in quiet and in background white noise, evoked responses in twelve normal hearing adults in response to three variants of a synthetic vowel: i Allformants, which contains all first three formants, ii F1Only, which is dominated by resolved harmonics, and iii F2&F3Only, which is dominated by unresolved harmonics. There were no statistically significant differences in the response at F0 due to the three variants of the stimulus in quiet, nor did the noise affect this response with the Allformants and F1Only variants. On the other hand, the response at F0 with the F2&F3Only variant was significantly weaker in noise than with the two other variants (p<0.001. With the response at F1, there was no difference with the Allformants and F1Only variants in quiet, but was expectedly weaker with the F2&F3Only variant (p<0.01. The addition of noise significantly weakened the response at F1 with the F1Only variant (p<0.05, but this weakening only tended towards significance with the Allformants variant (p=0.07. The results of this study indicate that resolved and unresolved harmonics are processed in different but interacting pathways that converge in the upper brainstem. The results also support earlier work on the differential susceptibility of responses at F0 and F1 to added noise.

  1. TYPE-2 DIABETES MELLITUS AND BRAIN STEM EVOKED RESPONSE AUDIOMETRY: A CASE CONTROL STUDY

    Directory of Open Access Journals (Sweden)

    Praveen S

    2016-01-01

    Full Text Available BACKGROUND AND OBJECTIVE Type-2 Diabetes Mellitus (T2DM causes pathophysiological changes in multiple organ system. The peripheral, autonomic and central neuropathy is known to occur in T2DM, which can be studied electrophysiologically. AIM Present study is aimed to evaluate functional integrity of auditory pathway in T2DM by Brainstem Evoked Response Audiometry (BERA. MATERIAL AND METHOD In the present case control study, BERA was recorded from the scalp of 20 T2DM patients aged 30-65 years and were compared with age matched 20 healthy controls. The BERA was performed using EMG Octopus, Clarity Medical Pvt. Ltd. The latencies of wave I, III, V and Wave I-III, I-V and III-V interpeak latencies of both right and left ear were recorded at 70dBHL. STATISTICAL RESULT AND USE Mean±SD of latencies of wave I, III, V and interpeak latency of I-III, I-V and III-V were estimated of T2DM and healthy controls. The significant differences between the two groups were assessed using unpaired student ‘t’ test for T2DM and control groups using GraphPad QuickCalcs calculator. P value <0.05 was considered to be significant. RESULT In T2DM BERA study revealed statistically significant (p<0.05 prolonged latencies of wave I, III and V in both right (1.81±0.33ms, 3.96±0.32ms, 5.60±0.25ms and left (1.96±0.24ms, 3.79±0.22ms, 5.67±0.25ms ear as compared to controls at 70dB. Wave III-V interpeak latency of left ear (1.87±0.31, 1.85±0.41ms and wave I-III (2.51±0.42ms, 1.96±0.48ms and III-V (2.01±0.43ms, 1.76±0.45ms of right ear was prolonged in diabetic patient as compared to controls, although no significant difference was obtained (p<0.05. INTERPRETATION AND CONCLUSION Increase in absolute latencies and interpeak latencies inT2DM patients suggest involvement of central neuronal axis at the level of brain stem and midbrain.

  2. Evaluation of peripheral compression and auditory nerve fiber intensity coding using auditory steady-state responses

    DEFF Research Database (Denmark)

    Encina Llamas, Gerard; M. Harte, James; Epp, Bastian

    2015-01-01

    The compressive nonlinearity of the auditory system is assumed to be an epiphenomenon of a healthy cochlea and, particularly, of outer-hair cell function. Another ability of the healthy auditory system is to enable communication in acoustical environments with high-level background noises....... Evaluation of these properties provides information about the health state of the system. It has been shown that a loss of outer hair cells leads to a reduction in peripheral compression. It has also recently been shown in animal studies that noise over-exposure, producing temporary threshold shifts, can...

  3. Inhibition of centrally-evoked pressor responses by neurohypophyseal peptides and their fragments

    NARCIS (Netherlands)

    Versteeg, C.A.M.; Bohus, B.; Jong, Wybren de

    1982-01-01

    Intracerebroventricular administration of fragments of [arginine8]-vasopressin (AVP) such as AVP1–6 and AVP7–9 attenuated the pressor response evoked by electrical stimulation of the mesencephalic reticular formation in urethane-anaesthetized rats. Oxytocin (OXT) and the fragment OXT7–9 were also ac

  4. Steady-state visual-evoked response to upright and inverted geometrical faces: a magnetoencephalography study.

    Science.gov (United States)

    Tsuruhara, Aki; Inui, Koji; Kakigi, Ryusuke

    2014-03-01

    The face is one of the most important visual stimuli in human life, and inverted faces are known to elicit different brain responses than upright faces. This study analyzed steady-state visual-evoked magnetic fields (SSVEFs) in eleven healthy participants when they viewed upright and inverted geometrical faces presented at 6Hz. Steady-state visual-evoked responses are useful measurements and have the advantages of robustness and a high signal-to-noise ratio. Spectrum analysis revealed clear responses to both upright and inverted faces at the fundamental stimulation frequency (6 Hz) and harmonics, i.e. SSVEFs. No significant difference was observed in the SSVEF amplitude at 6 Hz between upright and inverted faces, which was different from the transient visual-evoked response, N170. On the other hand, SSVEFs were delayed with the inverted face in the right temporal area, which was similar to N170 and the results of previous steady-state visual-evoked potentials studies. These results suggest that different mechanisms underlie the larger amplitude and delayed latency observed with face inversion, though further studies are needed to fully elucidate these mechanisms. Our study revealed that SSVEFs, which have practical advantages for measurements, could provide novel findings in human face processing.

  5. Cortical evoked potentials in response to rapid balloon distension of the rectum and anal canal

    DEFF Research Database (Denmark)

    Haas, S; Brock, C; Krogh, K

    healthy women received 30 RBDs in the rectum and the anal canal at intensities corresponding to sensory and unpleasantness thresholds, and response was recorded as cortical evoked potentials (CEPs) in 64-channels. The anal canal stimulations at unpleasantness level were repeated after 4 min to test...... showed reproducibility with ICCs for all bands >0.8 and corresponding CVs potentials evoked from the anal canal are challenged by latency jitter likely related to variability in muscle tone due to the distensions. Using single-sweep analysis, anal CEPs proved...

  6. The sensory channel of presentation alters subjective ratings and autonomic responses towards disgusting stimuli -Blood pressure, heart rate and skin conductance in response to visual, auditory, haptic and olfactory presented disgusting stimuli-

    Directory of Open Access Journals (Sweden)

    Ilona eCroy

    2013-09-01

    Full Text Available Disgust causes specific reaction patterns, observable in mimic responses and body reactions. Most research on disgust deals with visual stimuli. However, pictures may cause another disgust experience than sounds, odors or tactile stimuli. Therefore disgust experience evoked by four different sensory channels was compared.A total of 119 participants received 3 different disgusting and one control stimulus, each presented through the visual, auditory, tactile and olfactory channel. Ratings of evoked disgust as well as responses of the autonomic nervous system (heart rate, skin conductance level, systolic blood pressure were recorded and the effect of stimulus labeling and of repeated presentation was analyzed. Ratings suggested that disgust could be evoked through all senses; they were highest for visual stimuli. However, autonomic reaction towards disgusting stimuli differed according to the channel of presentation. In contrast to the other, olfactory disgust stimuli provoked a strong decrease of systolic blood pressure. Additionally, labeling enhanced disgust ratings and autonomic reaction for olfactory and tactile, but not for visual and auditory stimuli. Repeated presentation indicated that participant’s disgust rating diminishes to all but olfactory disgust stimuli. Taken together we argue that the sensory channel through which a disgust reaction is evoked matters.

  7. GABAergic modulation of the 40 Hz auditory steady-state response in a rat model of schizophrenia.

    Science.gov (United States)

    Vohs, Jenifer L; Chambers, R Andrew; Krishnan, Giri P; O'Donnell, Brian F; Berg, Sarah; Morzorati, Sandra L

    2010-05-01

    Auditory steady-state auditory responses (ASSRs), in which the evoked potential entrains to stimulus frequency and phase, are reduced in magnitude in patients with schizophrenia, particularly at 40 Hz. While the neural mechanisms responsible for ASSR generation and its perturbation in schizophrenia are unknown, it has been hypothesized that the GABAA receptor subtype may have an important role. Using an established rat model of schizophrenia, the neonatal ventral hippocampal lesion (NVHL) model, 40-Hz ASSRs were elicited from NVHL and sham rats to determine if NVHL rats show deficits comparable to schizophrenia, and to examine the role of GABAA receptors in ASSR generation. ASSR parameters were found to be stable across time in both NVHL and sham rats. Manipulation of the GABAA receptor by muscimol, a GABAA agonist, yielded a strong lesion x drug interaction, with ASSR magnitude and synchronization decreased in NVHL and increased in sham rats. The lesion x muscimol interaction was blocked by a GABAA receptor antagonist when given prior to muscimol administration, confirming the observed interaction was GABAA mediated. Together, these data suggest an alteration involving GABAA receptor function, and hence inhibitory transmission, in the neuronal networks responsible for ASSR generation in NVHL rats. These findings are consistent with prior evidence for alterations in GABA neurotransmitter systems in the NVHL model and suggest the utility of this animal modelling approach for exploring neurobiological mechanisms that generate or modulate ASSRs.

  8. Potenciais evocados auditivos de longa latência: um estudo comparativo entre hemisférios cerebrais Long auditory evoked potential: comparative study between cerebral hemispheres

    Directory of Open Access Journals (Sweden)

    Ana Claudia F. Frizzo

    2001-09-01

    Full Text Available Introdução: A partir dos primeiros registros de atividades elétricas cerebrais (EEG em resposta à apresentação de estímulos auditivos em seres humanos, durante a década de 30, pôde-se observar os potenciais evocados auditivos de longa latência - PEALLs (Mendel, 1989. Desde então, muitas pesquisas têm sido realizadas enfatizando o estudo do sistema auditivo em sua totalidade (periférico e central. Considerando a diferenciação funcional entre os hemisférios cerebrais, o presente estudo procurou identificar evidências eletrofisiológicas que constatem diferenciações interhemisféricas. Forma de estudo: Prospectivo clínico randomizado. Objetivo: O objetivo principal foi verificar a ocorrência de possíveis diferenciações entre os PEALLs dos hemisférios direito (Cz/A2 e esquerdo (Cz/A1 em um grupo de normoouvintes entre 8 e 18 anos de idade, por meio da análise comparativa dos registros dos PEALLs, quanto à latência e amplitude. Resultados: Não foram observadas diferenças estatisticamente significantes entre as medidas, exceto para o componente P2, na população masculina. Porém, não se pode negar a diferenciação funcional entre os hemisférios e deve-se considerar essa variável durante a realização da pesquisa dos PEALLs. Conclusão: Contudo, futuros trabalhos ainda serão necessários, com amostras maiores ou até mesmo com diferentes posicionamentos de eletrodos, a fim de verificarmos a existência ou não de evidências eletrofisiológicas que constatam essas diferenciações, garantindo a aplicação mais segura e efetiva deste método.Introduction: Since of the first registration of cerebral electric activities (EEG in response to the presentation hearing stimulus in human, decade 30‘s, can be observed the late components or long latency auditory evoked potentials - LLAEP (Mendel, 1989. Ever since, a lot of number of researches have been performed emphasizing the study of the hearing system (the ear and

  9. Progress in abnormal auditory responses of autistic children%儿童孤独症听觉反应异常的研究进展

    Institute of Scientific and Technical Information of China (English)

    谭迎花

    2011-01-01

    Abnormal auditory responses is one of the common features in autism. The characteristics and pathogenesis of the abnormality is not quite clear. The results of electrophysiological hearing evaluation ( i. e,brainstem auditory evoked potentials, otoacoustic emissions) in autistic children are inconsistent. The abnormal aduitory responses may contribute to the poor social interaction and communication in autism.%孤独症儿童常伴有一定程度的听觉反应异常,该异常的临床表现多样化,目前其发生机制尚不明确.脑干听觉诱发电位、耳声发射等相关辅助检查的结果也不尽一致,听觉反应异常可能影响孤独症儿童的社交及语言交流等整体发育.

  10. Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks.

    Science.gov (United States)

    Crevecoeur, F; Kurtzer, I; Scott, S H

    2012-05-01

    A wealth of studies highlight the importance of rapid corrective responses during voluntary motor tasks. These studies used relatively large perturbations to evoke robust muscle activity. Thus it remains unknown whether these corrective responses (latency 20-100 ms) are evoked at perturbation levels approaching the inherent variability of voluntary control. To fill this gap, we examined responses for large to small perturbations applied while participants either performed postural or reaching tasks. To address multijoint corrective responses, we induced various amounts of single-joint elbow motion with scaled amounts of combined elbow and shoulder torques. Indeed, such perturbations are known to elicit a response at the unstretched shoulder muscle, which reflects an internal model of arm intersegmental dynamics. Significant muscle responses were observed during both postural control and reaching, even when perturbation-related joint angle, velocity, and acceleration overlapped in distribution with deviations encountered in unperturbed trials. The response onsets were consistent across the explored range of perturbation loads, with short-latency onset for the muscles spanning the elbow joints (20-40 ms), and long-latency for shoulder muscles (onset > 45 ms). In addition, the evoked activity was strongly modulated by perturbation magnitude. These results suggest that multijoint responses are not specifically engaged to counter motor errors that exceed a certain threshold. Instead, we suggest that these corrective processes operate continuously during voluntary motor control.

  11. Temporal coupling between stimulus-evoked neural activity and hemodynamic responses from individual cortical columns

    Energy Technology Data Exchange (ETDEWEB)

    Bruyns-Haylett, Michael; Zheng Ying; Berwick, Jason; Jones, Myles [The Centre for Signal Processing in Neuroimaging and Systems Neuroscience (SPINSN), Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP (United Kingdom)], E-mail: m.jones@sheffield.ac.uk

    2010-04-21

    Using previously published data from the whisker barrel cortex of anesthetized rodents (Berwick et al 2008 J. Neurophysiol. 99 787-98) we investigated whether highly spatially localized stimulus-evoked cortical hemodynamics responses displayed a linear time-invariant (LTI) relationship with neural activity. Presentation of stimuli to individual whiskers of 2 s and 16 s durations produced hemodynamics and neural activity spatially localized to individual cortical columns. Two-dimensional optical imaging spectroscopy (2D-OIS) measured hemoglobin responses, while multi-laminar electrophysiology recorded neural activity. Hemoglobin responses to 2 s stimuli were deconvolved with underlying evoked neural activity to estimate impulse response functions which were then convolved with neural activity evoked by 16 s stimuli to generate predictions of hemodynamic responses. An LTI system more adequately described the temporal neuro-hemodynamics coupling relationship for these spatially localized sensory stimuli than in previous studies that activated the entire whisker cortex. An inability to predict the magnitude of an initial 'peak' in the total and oxy- hemoglobin responses was alleviated when excluding responses influenced by overlying arterial components. However, this did not improve estimation of the hemodynamic responses return to baseline post-stimulus cessation.

  12. A Pilot Study of Phase-Evoked Acoustic Responses From the Ears of Human Subjects

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; Dewey, James; Dhar, Sumitrajit;

    2015-01-01

    Temporal properties of otoacoustic emissions (OAEs) are of interest as they help understand the dynamic behavior and spatial distribution of the generating mechanisms. In particular, the ringing behavior of responses to clicks and tone bursts have been investigated, and times of arrival and round...... within one, three and five periods of the stimulus-frequency every 64 ms (54 conditions). Using a combination of level and phase variation, emissions linked to any time-invariant nonlinearity could be extracted. Phase-evoked residual responses (PERRs) look like tone bursts with a phase......-shift in the middle. According to a 6-dB criterion on the signal-to-noise ratio, five/nine subjects had PERRs in more than 15/36 conditions, disregarding the 18 180-degree conditions which evoked only five responses in total. Across subjects and conditions, stimulus-frequency OAEs were present in 358/468 (76......%) measurements. 125 of those and six of those without SFOAEs had PERRs. The 120-degree conditions evoked more PERRs than the 90- and 180-degree conditions. One-kHz conditions evoked slightly more than 2-kHz conditions and many more than 500-Hz conditions. Furthermore, the prevalence decreases with lower stimulus...

  13. Separation of multiple evoked responses using differential amplitude and latency variability

    OpenAIRE

    Kevin H. Knuth; Truccolo, Wilson A.; Bressler, Steven L.; Ding, Mingzhou

    2002-01-01

    In neuroelectrophysiology one records electric potentials or magnetic fields generated by ensembles of synchronously active neurons in response to externally presented stimuli. These evoked responses are often produced by multiple generators in the presence of ongoing background activity. While source localization techniques or current source density estimation are usually used to identify generators, application of blind source separation techniques to obtain independent components has becom...

  14. Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study

    Directory of Open Access Journals (Sweden)

    Niels Trusbak Haumann

    2016-01-01

    Full Text Available We here compared results achieved by applying popular methods for reducing artifacts in magnetoencephalography (MEG and electroencephalography (EEG recordings of the auditory evoked Mismatch Negativity (MMN responses in healthy adult subjects. We compared the Signal Space Separation (SSS and temporal SSS (tSSS methods for reducing noise from external and nearby sources. Our results showed that tSSS reduces the interference level more reliably than plain SSS, particularly for MEG gradiometers, also for healthy subjects not wearing strongly interfering magnetic material. Therefore, tSSS is recommended over SSS. Furthermore, we found that better artifact correction is achieved by applying Independent Component Analysis (ICA in comparison to Signal Space Projection (SSP. Although SSP reduces the baseline noise level more than ICA, SSP also significantly reduces the signal—slightly more than it reduces the artifacts interfering with the signal. However, ICA also adds noise, or correction errors, to the waveform when the signal-to-noise ratio (SNR in the original data is relatively low—in particular to EEG and to MEG magnetometer data. In conclusion, ICA is recommended over SSP, but one should be careful when applying ICA to reduce artifacts on neurophysiological data with relatively low SNR.

  15. Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study

    Science.gov (United States)

    Kliuchko, Marina; Vuust, Peter

    2016-01-01

    We here compared results achieved by applying popular methods for reducing artifacts in magnetoencephalography (MEG) and electroencephalography (EEG) recordings of the auditory evoked Mismatch Negativity (MMN) responses in healthy adult subjects. We compared the Signal Space Separation (SSS) and temporal SSS (tSSS) methods for reducing noise from external and nearby sources. Our results showed that tSSS reduces the interference level more reliably than plain SSS, particularly for MEG gradiometers, also for healthy subjects not wearing strongly interfering magnetic material. Therefore, tSSS is recommended over SSS. Furthermore, we found that better artifact correction is achieved by applying Independent Component Analysis (ICA) in comparison to Signal Space Projection (SSP). Although SSP reduces the baseline noise level more than ICA, SSP also significantly reduces the signal—slightly more than it reduces the artifacts interfering with the signal. However, ICA also adds noise, or correction errors, to the waveform when the signal-to-noise ratio (SNR) in the original data is relatively low—in particular to EEG and to MEG magnetometer data. In conclusion, ICA is recommended over SSP, but one should be careful when applying ICA to reduce artifacts on neurophysiological data with relatively low SNR. PMID:27524998

  16. Event-related potentials in response to 3-D auditory stimuli.

    Science.gov (United States)

    Fuchigami, Tatsuo; Okubo, Osami; Fujita, Yukihiko; Kohira, Ryutaro; Arakawa, Chikako; Endo, Ayumi; Haruyama, Wakako; Imai, Yuki; Mugishima, Hideo

    2009-09-01

    To evaluate auditory spatial cognitive function, age correlations for event-related potentials (ERPs) in response to auditory stimuli with a Doppler effect were studied in normal children. A sound with a Doppler effect is perceived as a moving audio image. A total of 99 normal subjects (age range, 4-21 years) were tested. In the task-relevant oddball paradigm, P300 and key-press reaction time were elicited using auditory stimuli (1000 Hz fixed and enlarged tones with a Doppler effect). From the age of 4 years, the P300 latency for the enlarged tone with a Doppler effect shortened more rapidly with age than did the P300 latency for tone-pips, and the latencies for the different conditions became similar towards the late teens. The P300 of auditory stimuli with a Doppler effect may be used to evaluate auditory spatial cognitive function in children.

  17. Topography of acoustic response characteristics in the auditory cortex of the Kunming mouse

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Topography of acoustic response characteristics in the auditory cortex (AC) of the Kunming (KM) mouse has been examined by using microelectrode recording techniques.Based on best-frequency (BF) maps,both the primary auditory field (AⅠ) and the anterior auditory field (AAF) are tonotopically organized with a counter running frequency gradient.Within an isofrequency stripe,the width of the frequency-threshold curves of single neurons increases,and minimum threshold (MT) decreases towards more ventral locations.BFs in AⅠand AAF range from 4 to 38 kHz.Auditory neurons with BFs above 40 kHz are located at the rostrodorsal part of the AC.The findings suggest that the KM mouse is a good model suitable for auditory research.

  18. Temporal sequence of visuo-auditory interaction in multiple areas of the guinea pig visual cortex.

    Directory of Open Access Journals (Sweden)

    Masataka Nishimura

    Full Text Available Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1. Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction.

  19. Altered Auditory BOLD Response to Conspecific Birdsong in Zebra Finches with Stuttered Syllables

    OpenAIRE

    Voss, Henning U.; Delanthi Salgado-Commissariat; Helekar, Santosh A.

    2010-01-01

    How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD) responses to t...

  20. Postural threat differentially affects the feedforward and feedback components of the vestibular-evoked balance response.

    Science.gov (United States)

    Osler, Callum J; Tersteeg, M C A; Reynolds, Raymond F; Loram, Ian D

    2013-10-01

    Circumstances may render the consequence of falling quite severe, thus maximising the motivation to control postural sway. This commonly occurs when exposed to height and may result from the interaction of many factors, including fear, arousal, sensory information and perception. Here, we examined human vestibular-evoked balance responses during exposure to a highly threatening postural context. Nine subjects stood with eyes closed on a narrow walkway elevated 3.85 m above ground level. This evoked an altered psycho-physiological state, demonstrated by a twofold increase in skin conductance. Balance responses were then evoked by galvanic vestibular stimulation. The sway response, which comprised a whole-body lean in the direction of the edge of the walkway, was significantly and substantially attenuated after ~800 ms. This demonstrates that a strong reason to modify the balance control strategy was created and subjects were highly motivated to minimise sway. Despite this, the initial response remained unchanged. This suggests little effect on the feedforward settings of the nervous system responsible for coupling pure vestibular input to functional motor output. The much stronger, later effect can be attributed to an integration of balance-relevant sensory feedback once the body was in motion. These results demonstrate that the feedforward and feedback components of a vestibular-evoked balance response are differently affected by postural threat. Although a fear of falling has previously been linked with instability and even falling itself, our findings suggest that this relationship is not attributable to changes in the feedforward vestibular control of balance.

  1. Cortical Response of Retardates for AER Audiometry

    Science.gov (United States)

    Hogan, Donald D.

    1971-01-01

    Averaged auditory evoked responses were obtained from 15 retarded and motor-handicapped subjects and from 15 nonretarded subjects in order to investigate comparative responsiveness and response features. (Author)

  2. Evaluation of otoacoustic emissions and auditory brainstem responses for hearing screening of high risk infants

    Directory of Open Access Journals (Sweden)

    Tania Nazir

    2016-01-01

    Full Text Available Aim: The objective of the present study is the assessment of otoacoustic emissions (OAEs and auditory brainstem responses (ABRs for hearing screening of high risk infants. Study Design: Prospective, hospital-based. Materials and Methods: Distortion product OAEs (DPOAEs and brainstem evoked response audiometry (BERA recordings were obtained for 30 controls and 100 infants with one or more high risk factors, in a sound treated room and the results were interpreted. ABR peak latencies, amplitudes, and waveform morphology in high risk infants were compared with those in control group. DPOAE as screening test was evaluated in terms of various parameters with BERA/ABR taken as gold standard. Results: Absolute latencies of Wave I and Wave V and interpeak latency of I-V were significantly prolonged in high risk group as compared to control group. The most common causes to contribute significantly for hearing impairment were found to be hyperbilirubinemia, birth asphyxia, meningitis/septicemia. DPOAE when compared with ABR taken as gold standard showed that sensitivity of the test was 87.7% (74.5%-94.9% and specificity was 74.5% (60.0%-85.2%. Positive predictive value was 76.7% (63.2%-86.6% and negative predictive value of the test was 86% (71.9%-94.3%. Positive likelihood ratio was 0.29 (0.18-0.46 and negative likelihood ratio was 6.08 (2.82-13.09. Conclusion : ABR/BERA, though highly reliable, is a tedious and time consuming test. DPOAE is a simple and rapid test with relatively higher acceptability but low sensitivity and specificity; therefore, limits its role as independent screening test. DPOAE-ABR test series is an effective way to screen all the high risk infants at the earliest.

  3. Auditory brainstem responses for click and CE-chirp stimuli in individuals with and without occupational noise exposure

    Directory of Open Access Journals (Sweden)

    Zeena Venkatacheluvaiah Pushpalatha

    2016-01-01

    Full Text Available Introduction: Encoding of CE-chirp and click stimuli in auditory system was studied using auditory brainstem responses (ABRs among individuals with and without noise exposure. Materials and Methods: The study consisted of two groups. Group 1 (experimental group consisted of 20 (40 ears individuals exposed to occupational noise with hearing thresholds within 25 dB HL. They were further divided into three subgroups based on duration of noise exposure (0–5 years of exposure-T1, 5–10 years of exposure-T2, and >10 years of exposure-T3. Group 2 (control group consisted of 20 individuals (40 ears. Absolute latency and amplitude of waves I, III, and V were compared between the two groups for both click and CE-chirp stimuli. T1, T2, and T3 groups were compared for the same parameters to see the effect of noise exposure duration on CE-chirp and click ABR. Result: In Click ABR, while both the parameters for wave III were significantly poorer for the experimental group, wave V showed a significant decline in terms of amplitude only. There was no significant difference obtained for any of the parameters for wave I. In CE-Chirp ABR, the latencies for all three waves were significantly prolonged in the experimental group. However, there was a significant decrease in terms of amplitude in only wave V for the same group. Discussion: Compared to click evoked ABR, CE-Chirp ABR was found to be more sensitive in comparison of latency parameters in individuals with occupational noise exposure. Monitoring of early pathological changes at the brainstem level can be studied effectively by using CE-Chirp stimulus in comparison to click stimulus. Conclusion: This study indicates that ABR’s obtained with CE-chirp stimuli serves as an effective tool to identify the early pathological changes due to occupational noise exposure when compared to click evoked ABR.

  4. Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird.

    Science.gov (United States)

    Hahnloser, Richard H R; Wang, Claude Z-H; Nager, Aymeric; Naie, Katja

    2008-05-07

    In mammals, the thalamus plays important roles for cortical processing, such as relay of sensory information and induction of rhythmical firing during sleep. In neurons of the avian cerebrum, in analogy with cortical up and down states, complex patterns of regular-spiking and dense-bursting modes are frequently observed during sleep. However, the roles of thalamic inputs for shaping these firing modes are largely unknown. A suspected key player is the avian thalamic nucleus uvaeformis (Uva). Uva is innervated by polysensory input, receives indirect cerebral feedback via the midbrain, and projects to the cerebrum via two distinct pathways. Using pharmacological manipulation, electrical stimulation, and extracellular recordings of Uva projection neurons, we study the involvement of Uva in zebra finches for the generation of spontaneous activity and auditory responses in premotor area HVC (used as a proper name) and the downstream robust nucleus of the arcopallium (RA). In awake and sleeping birds, we find that single Uva spikes suppress and spike bursts enhance spontaneous and auditory-evoked bursts in HVC and RA neurons. Strong burst suppression is mediated mainly via tonically firing HVC-projecting Uva neurons, whereas a fast burst drive is mediated indirectly via Uva neurons projecting to the nucleus interface of the nidopallium. Our results reveal that cerebral sleep-burst epochs and arousal-related burst suppression are both shaped by sophisticated polysynaptic thalamic mechanisms.

  5. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    Directory of Open Access Journals (Sweden)

    Crystal T Engineer

    2014-08-01

    Full Text Available Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes.

  6. Auditory steady-state responses for estimating moderate hearing loss.

    Science.gov (United States)

    Swanepoel, DeWet; Erasmus, Hettie

    2007-07-01

    The auditory steady-state response (ASSR) has gained popularity as an alternative technique for objective audiometry but its use in less severe degrees of hearing loss has been questioned. The aim of this study was to investigate the usefulness of the ASSR in estimating moderate degrees of hearing loss. Seven subjects (12 ears) with moderate sensorineural hearing loss between 15 and 18 years of age were enrolled in the study. Forty-eight behavioural and ASSR thresholds were obtained across the frequencies of 0.5, 1, 2, and 4 kHz. ASSR thresholds were determined using a dichotic multiple frequency recording technique. Mean threshold differences varied between 2 and 8 dB (+/-7-10 dB SD) across frequencies. The highest difference and variability was recorded at 0.5 kHz. The frequencies 1-4 kHz also revealed significantly better correlations (0.74-0.88) compared to 0.5 kHz (0.31). Comparing correlation coefficients for behavioural thresholds less than 60 and 60 dB and higher revealed a significant difference. Eighty-six percent of ASSR thresholds corresponded within 5 dB of moderate to severe behavioural thresholds compared to only 29% for mild to moderate thresholds in this study. The results confirm that the ASSR can reliably estimate behavioural thresholds of 60 dB and higher, but due to increased variability, caution is recommended when estimating behavioural thresholds of less than 60 dB, especially at 0.5 kHz.

  7. Visual Evoked Responses and EEGS for Divers Breathing Hyperbaric Air: An Assessment of Individual Differences

    Science.gov (United States)

    1975-06-03

    PAGE THE PROBLEM To find and assess quantitatively electrophysiologieal corre- lates of nitrogen narcosis in divers. FINDINGS Marked decrements in...visual evoked responses were found in most divers under conditions conducive to nitrogen narcosis . Results of this study show the average sizes of...the decrements and their probability of occurrence in a large group of subjects. APPLICATION Since nitrogen narcosis is a major problem deterring air

  8. Protocolo para captação dos potenciais evocados auditivos de longa latência Protocol to collect late latency auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Luzia Maria Pozzobom Ventura

    2009-12-01

    Full Text Available Os potenciais evocados auditivos de longa latência (PEALLs se referem a uma série de mudanças elétricas, ocorridas no sistema nervoso central, resultante da estimulação da via sensorial auditiva. Muitos estudos abordam o uso destes potenciais, controlando o artefato gerado pelo movimento ocular com a utilização de equipamentos com grande número de canais. Porém, na prática clínica nacional, a realidade é diferente, havendo disponibilidade de equipamentos com número reduzido de canais. OBJETIVO: Comparar dois métodos de controle do artefato gerado pelo movimento ocular durante a captação dos PEALLs usando dois canais de registro. MATERIAL E MÉTODO: Estudo prospectivo pela aplicação de dois métodos de captação dos PEALLs (subtração do artefato ocular e controle do limite de rejeição em 10 adultos ouvintes normais. RESULTADOS: Não foi observada diferença estatisticamente significante entre os valores de latência obtidos com o uso dos dois métodos, apenas entre os valores de amplitude. CONCLUSÃO: Os dois métodos foram eficientes para a captação dos PEALLs e para o controle do artefato do movimento ocular. O método do controle do limite de rejeição promoveu maiores valores de amplitude.Long Latency Auditory Evoked Potentials (LLAEP represents a number of electrical changes occurring in the central nervous system, resulting from stimulation of the auditory sensorial pathways. Many studies approach the use of these potentials controlling the artifact created by eye movement with the use of equipment with a large number of channels. However, what happens is very different in Brazilian clinical practice, where the equipment used has a very limited number of channels. AIM: to compare the two methods used to control the artifacts created by eye movements during LLAEP capture using two recording channels. MATERIALS AND METHODS: this is a prospective study with the application of two LLAEP capturing methods (eye artifact

  9. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  10. Mechanism of action of magnesium on acetylcholine-evoked secretory responses in isolated rat pancreas.

    Science.gov (United States)

    Francis, L P; Lennard, R; Singh, J

    1990-09-01

    This study investigates the effects of magnesium (Mg2+) on acetylcholine (ACh)-evoked secretory responses and calcium (Ca2+) mobilization in the isolated rat pancreas. ACh induced marked dose-dependent increases in total protein output and amylase release from superfused pancreatic segments in zero, normal (1 x 1 mM) and elevated (10 mM) extracellular Mg2+. Elevated Mg2+ attenuated the ACh-evoked secretory responses compared to zero and normal Mg2+. In the absence of extracellular Ca2+, but presence of 1 mM-EGTA (ethylene glycol bis(beta-aminoethylether)-N,N,N',N''-tetraacetic acid), ACh elicited a small transient release of protein from pancreatic segments compared to a larger and more sustained secretion in the absence of both Ca2+ and Mg2+. Incubation of pancreatic segments with 45Ca2+ resulted in time-dependent uptake with maximum influx of 45Ca2+ occurring after 20 min of incubation period. ACh stimulated markedly the 45Ca2+ uptake compared to control tissues. In elevated extracellular Mg2+ the ACh-induced 45Ca2+ influx was significantly (P less than 0.001) reduced compared to zero and normal Mg2+. ACh also evoked dose-dependent increases in cytosolic free Ca2+ concentrations ([Ca2+]i) in pancreatic acinar cells loaded with the fluorescent dye Fura-2 AM. In elevated Mg2+ the ACh-induced cytosolic [Ca2+]i was significantly (P less than 0.001) reduced compared to zero and normal Mg2+. These results indicate that Mg2+ can influence ACh-evoked secretory responses possibly by controlling both Ca2+ influx and release in pancreatic acinar cells.

  11. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    Directory of Open Access Journals (Sweden)

    Meytal Wilf

    Full Text Available Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  12. [Visual evoked responses with flash pattern in normal subjects (author's transl)].

    Science.gov (United States)

    Samson-Dollfus, D; Parain, D; Mihout, B; Menard, J F; Weber, J; Neheli, F

    1981-11-01

    Visual evoked responses to flash pattern simulations have been observed in young healthy adults. Stimulations of whole visual fields (37 subjects) and half-fields (11 subjects) have been performed. These responses are reproductible from one subject to another and show very clear waves in the occipital and central regions. On central leads, whatever the stimulation (stimulation of total visual fields or half-fields), the responses are always the same: a negative peak at 70 msec. followed by a positive peak at 90 msec, then a negative peak at 116-120 msec. On occipital leads, stimulation of the whole visual field shows a diphasic response: a positive wave at 100 msec and a negative wave at 140-150 msec. However, half-field stimulation shows different responses on the ipsi- and contralateral hemispheres, with a disappearance of the positive 100 msec wave in the ipsilateral occipital region. Thus, flash pattern stimulations seem to be useful in clinical practice because they evoke different types of responses in occipital and central regions.

  13. On-line analysis of middle latency auditory evoked potentials (MLAEP) for monitoring depth of anaesthesia in laboratory rats

    DEFF Research Database (Denmark)

    Jensen, E W; Nygaard, M; Henneberg, S W

    1998-01-01

    and decreasing gradually to a level between 50 and 20 as the rat was anaesthetised. Nine rats were anaesthetised and included in the study. Four doses of Hypnorm vet. and Dormicum were given as a total, each with 5 minutes interval. Clinical signs of the level of anaesthesia were observed simultaneously...... rats. The decrease in the DAI correlated well with the loss of stimulus response. In conclusion, MLAEP could be used as an indicator of depth of anaesthesia in rats during Hypnorm vet. and Dormicum administration. However studies applying other anaesthetic drugs should be carried out, before...

  14. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors.

    Science.gov (United States)

    Papesh, Melissa A; Hurley, Laura M

    2016-02-01

    The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.

  15. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise.

    Science.gov (United States)

    White-Schwoch, Travis; Davies, Evan C; Thompson, Elaine C; Woodruff Carr, Kali; Nicol, Trent; Bradlow, Ann R; Kraus, Nina

    2015-10-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But this auditory learning rarely occurs in ideal listening conditions-children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3-5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features-even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response

  16. Tuning shifts of the auditory system by corticocortical and corticofugal projections and conditioning.

    Science.gov (United States)

    Suga, Nobuo

    2012-02-01

    The central auditory system consists of the lemniscal and nonlemniscal systems. The thalamic lemniscal and nonlemniscal auditory nuclei are different from each other in response properties and neural connectivities. The cortical auditory areas receiving the projections from these thalamic nuclei interact with each other through corticocortical projections and project down to the subcortical auditory nuclei. This corticofugal (descending) system forms multiple feedback loops with the ascending system. The corticocortical and corticofugal projections modulate auditory signal processing and play an essential role in the plasticity of the auditory system. Focal electric stimulation - comparable to repetitive tonal stimulation - of the lemniscal system evokes three major types of changes in the physiological properties, such as the tuning to specific values of acoustic parameters of cortical and subcortical auditory neurons through different combinations of facilitation and inhibition. For such changes, a neuromodulator, acetylcholine, plays an essential role. Electric stimulation of the nonlemniscal system evokes changes in the lemniscal system that is different from those evoked by the lemniscal stimulation. Auditory signals ascending from the lemniscal and nonlemniscal thalamic nuclei to the cortical auditory areas appear to be selected or adjusted by a "differential" gating mechanism. Conditioning for associative learning and pseudo-conditioning for nonassociative learning respectively elicit tone-specific and nonspecific plastic changes. The lemniscal, corticofugal and cholinergic systems are involved in eliciting the former, but not the latter. The current article reviews the recent progress in the research of corticocortical and corticofugal modulations of the auditory system and its plasticity elicited by conditioning and pseudo-conditioning.

  17. Response to own name in children: ERP study of auditory social information processing.

    Science.gov (United States)

    Key, Alexandra P; Jones, Dorita; Peters, Sarika U

    2016-09-01

    Auditory processing is an important component of cognitive development, and names are among the most frequently occurring receptive language stimuli. Although own name processing has been examined in infants and adults, surprisingly little data exist on responses to own name in children. The present ERP study examined spoken name processing in 32 children (M=7.85years) using a passive listening paradigm. Our results demonstrated that children differentiate own and close other's names from unknown names, as reflected by the enhanced parietal P300 response. The responses to own and close other names did not differ between each other. Repeated presentations of an unknown name did not result in the same familiarity as the known names. These results suggest that auditory ERPs to known/unknown names are a feasible means to evaluate complex auditory processing without the need for overt behavioral responses.

  18. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system function after developmental exposure to gasoline, E15, and E85 vapors.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Visual, auditory, somatosensory, and peripheral nerve evoked responses. This dataset is associated with the following publication: Herr , D., D. Freeborn , L. Degn ,...

  19. Processamento auditivo e potenciais evocados auditivos de tronco cerebral (BERA Auditory precessing and auditory brainstem response (ABR

    Directory of Open Access Journals (Sweden)

    Marcela Pfeiffer

    2009-01-01

    Full Text Available OBJETIVO: verificar relação existente entre os potenciais auditivos de tronco cerebral e a avaliação comportamental do processamento auditivo. MÉTODOS: foi realizada em um grupo de 60 meninas residentes de Paraíba do Sul na idade de nove a 12 anos com limiares tonais dentro dos padrões de normalidade e timpanometria tipo A com presença dos reflexos acústicos. Os testes utilizados para a avaliação comportamental do processamento auditivo foram: avaliação simplificada do processamento auditivo, teste de fala no ruído, teste de dissílabos alternados e teste dicótico não verbal. Após a avaliação do processamento auditivo, as crianças foram subdivididas em dois grupos, G1 (sem alteração no processamento auditivo e G2 (com alteração no processamento auditivo e submetidas aos potenciais auditivos de tronco cerebral. Os parâmetros utilizados na comparação dos dois grupos foram: latência absoluta das ondas I, III e V; latência interpicos das ondas I-III, I-V, III-V; diferença interaural da latência interpico I-V; e diferença interaural da latência da onda V. RESULTADOS: foram encontradas diferenças estatísticas nos parâmetros de latência interpico das ondas I-V na orelha esquerda (p=0,009, diferença interaural da latência interpico de ondas I-V (p=0,020 e diferença da latência interpico de ondas I e V da orelha direita para a esquerda entre os grupos G1 e G2 (p=0,025. CONCLUSÃO: foi possível encontrar relação dos potenciais evocados auditivos de tronco cerebral com a avaliação comportamental do processamento auditivo nos parâmetros de latência interpico entre as ondas I e V da orelha esquerda e diferença interaural da latência interpico I-V na orelha esquerda.PURPOSE: to investigate the correlation of auditory brainstem response (ABR and behavioral auditory processing evaluation. METHODS: sixty girls, from Paraíba do Sul, ranging from 9 to 12-year-old were evaluated. In order to take part in the study

  20. The influence of cochlear traveling wave and neural adaptation on auditory brainstem responses

    DEFF Research Database (Denmark)

    Junius, D.; Dau, Torsten

    2005-01-01

    The present study investigates the relationship between evoked responses to transient broadband chirps and responses to the same chirps when embedded in longer-duration stimuli. It examines to what extent the responses to the composite stimuli can be explained by a linear superposition of the res...

  1. Adaptive Fourier series modeling of time-varying evoked potentials: study of human somatosensory evoked response to etomidate anesthetic.

    Science.gov (United States)

    Thakor, N V; Vaz, C A; McPherson, R W; Hanley, D F

    1991-01-01

    Evoked potentials (EPs) have traditionally been analyzed in time domain, with amplitude and latency of various signal components used in clinical interpretation. A new approach, called adaptive Fourier series modeling (FSM), is presented here. Dynamic changes in magnitudes of Fourier coefficients are analyzed for diagnostic purposes. In order to estimate the time-varying changes in the Fourier coefficients of noisy signals, a least mean-square filtering algorithm is applied. Results of computer simulations as well as experimental data are presented. Time-varying trends are presented in a new compressed evoked spectrum format. These techniques are applied to the study of alterations in human somatosensory EPs caused by the intravenous administration of etomidate during neurosurgical procedures. Amplitude increases of the order of 200-500% occurring within a time span of about 100 sec were captured. Due to its superior convergence properties, the adaptive FSM technique estimates more rapid changes in amplitude and latency than exponentially weighted averaging or moving window averaging schemes.

  2. Cell-attached recordings of responses evoked by photorelease of GABA in the immature cortical neurons

    Directory of Open Access Journals (Sweden)

    Marat eMinlebaev

    2013-05-01

    Full Text Available We present a novel non-invasive technique to measure the polarity of GABAergic responses based on cell-attached recordings of currents activated by laser-uncaging of GABA. For these recordings, a patch pipette was filled with a solution containing RuBi-GABA, and GABA was released from this complex by a laser beam conducted to the tip of the patch pipette via an optic fiber. In cell-attached recordings from neocortical and hippocampal neurons in postnatal days P2-5 rat brain slices in vitro, we found that laser-uncaging of GABA activates integral cell-attached currents mediated by tens of GABA(A channels. The initial response was inwardly directed, indicating a depolarizing response to GABA. The direction of the initial response was dependent on the pipette potential and analysis of its slope-voltage relationships revealed a depolarizing driving force of +11 mV for the currents through GABA channels. Initial depolarizing responses to GABA uncaging were inverted to hyperpolarizing in the presence of the NKCC1 blocker bumetanide. Current-voltage relationships of the currents evoked by Rubi-GABA uncaging using voltage-ramps at the peak of responses not only revealed a bumetanide-sensitive depolarizing reversal potential of the GABA(A receptor mediated responses, but also showed a strong voltage-dependent hysteresis. Upon desensitization of the uncaged-GABA response, current-voltage relationships of the currents through single GABA(A channels revealed depolarizing responses with the driving force values similar to those obtained for the initial response. Thus, cell-attached recordings of the responses evoked by local intrapipette GABA uncaging are suitable to assess the polarity of the GABA(A-Rs mediated signals in small cell compartments.

  3. (Amusicality in Williams syndrome: Examining relationships among auditory perception, musical skill, and emotional responsiveness to music

    Directory of Open Access Journals (Sweden)

    Miriam eLense

    2013-08-01

    Full Text Available Williams syndrome (WS, a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and typically developing individuals with and without amusia.

  4. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  5. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Directory of Open Access Journals (Sweden)

    Francisco Jose Alvarez

    Full Text Available Hypoxia-ischemia (HI is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets.Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs of newborn piglets exposed to acute hypoxia/ischemia (n = 6 and a control group with no such exposure (n = 10. ABRs were recorded for both ears before the start of the experiment (baseline, after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury.Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant.The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  6. The influence of visuospatial attention on unattended auditory 40 Hz responses.

    Science.gov (United States)

    Roth, Cullen; Gupta, Cota Navin; Plis, Sergey M; Damaraju, Eswar; Khullar, Siddharth; Calhoun, Vince D; Bridwell, David A

    2013-01-01

    Information must integrate from multiple brain areas in healthy cognition and perception. The present study examined the extent to which cortical responses within one sensory modality are modulated by a complex task conducted within another sensory modality. Electroencephalographic (EEG) responses were measured to a 40 Hz auditory stimulus while individuals attended to modulations in the amplitude of the 40 Hz stimulus, and as a function of the difficulty of the popular computer game Tetris. The steady-state response to the 40 Hz stimulus was isolated by Fourier analysis of the EEG. The response at the stimulus frequency was normalized by the response within the surrounding frequencies, generating the signal-to-noise ratio (SNR). Seven out of eight individuals demonstrate a monotonic increase in the log SNR of the 40 Hz responses going from the difficult visuospatial task to the easy visuospatial task to attending to the auditory stimuli. This pattern is represented statistically by a One-Way ANOVA, indicating significant differences in log SNR across the three tasks. The sensitivity of 40 Hz auditory responses to the visuospatial load was further demonstrated by a significant correlation between log SNR and the difficulty (i.e., speed) of the Tetris task. Thus, the results demonstrate that 40 Hz auditory cortical responses are influenced by an individual's goal-directed attention to the stimulus, and by the degree of difficulty of a complex visuospatial task.

  7. Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Christoforidis, Dimitrios; Dau, Torsten

    2009-01-01

    for some of the HI listeners. The behavioral auditory-filter bandwidths accounted for the across-listener variability in the ABR latencies: Cochlear response time decreased with increasing filter bandwidth, consistent with linear-system theory. The results link cochlear response time and frequency...

  8. Reevaluation of the Amsterdam Inventory for Auditory Disability and Handicap Using Item Response Theory

    Science.gov (United States)

    Hospers, J. Mirjam Boeschen; Smits, Niels; Smits, Cas; Stam, Mariska; Terwee, Caroline B.; Kramer, Sophia E.

    2016-01-01

    Purpose: We reevaluated the psychometric properties of the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1995) using item response theory. Item response theory describes item functioning along an ability continuum. Method: Cross-sectional data from 2,352 adults with and without hearing…

  9. Evoked potentials in immobilized cats to a combination of clicks with painful electrocutaneous stimuli

    Science.gov (United States)

    Gilinskiy, M. A.; Korsakov, I. A.

    1979-01-01

    Averaged evoked potentials in the auditory, somatosensory, and motor cortical zones, as well as in the mesencephalic reticular formation were recorded in acute experiments on nonanesthetized, immobilized cats. Omission of the painful stimulus after a number of pairings resulted in the appearance of a delayed evoked potential, often resembling the late phases of the response to the painful stimulus. The characteristics of this response are discussed in comparison with conditioned changes of the sensory potential amplitudes.

  10. Synchrony of auditory brain responses predicts behavioral ability to keep still in children with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yuko Yoshimura

    2016-01-01

    Full Text Available The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperactivity disorder, ADHD in children. However, to date, the relationship between auditory P1m right-left hemispheric synchronization and the comorbidity of hyperactivity in children with autism spectrum disorder (ASD is unknown. In this study, based on a previous report of an asynchrony of P1m in children with ADHD, to clarify whether the P1m right-left hemispheric synchronization is related to the symptom of hyperactivity in children with ASD, we investigated the relationship between voice-evoked P1m right-left hemispheric synchronization and hyperactivity in children with ASD. In addition to synchronization, we investigated the right-left hemispheric lateralization. Our findings failed to demonstrate significant differences in these values between ASD children with and without the symptom of hyperactivity, which was evaluated using the Autism Diagnostic Observational Schedule, Generic (ADOS-G subscale. However, there was a significant correlation between the degrees of hemispheric synchronization and the ability to keep still during 12-minute MEG recording periods. Our results also suggested that asynchrony in the bilateral brain auditory processing system is associated with ADHD-like symptoms in children with ASD.

  11. Sympathetic skin responses from the scalp evoked by electrical stimulation in seborrheic dermatitis.

    Science.gov (United States)

    Altunrende, Burcu; Yildiz, Serpil; Kandi, Basak; Yildiz, Nebil

    2013-06-01

    Although the role of autonomic nervous system in seborrheic dermatitis (SD) is still unclear, seborrhea is sometimes accepted as a sign of autonomic dysfunction in several nervous system diseases. Therefore, we aimed to investigate the sympathetic nervous system (SNS) activity in SD by recording sympathetic skin responses (SSR) from the scalp (S-SSR). Thirty-one control subjects and 22 SD patients were studied by evoking right and left S-SSR with electrical stimulation of the right median nerve at the wrist. Mean latencies and maximum amplitudes were calculated for both sides in each group. In seven out of 31 control subjects and in 13 out of 22 patients, the S-SSR could not be elicited on either side. There were four subjects with unilateral response in the patient group. There were significantly more non-responders among the patients with SD (P < 0.000). This study suggests that in SD, the autonomic nervous system may be involved. The S-SSR is a new site for recording SSR. The responses are relatively symmetrical and can be evoked easily by electrical stimulation, and may be used to evaluate the SNS function in SD patients and also in healthy subjects.

  12. Auditory evoked potentials in premature and full-term infants Potenciais evocados auditivos em lactentes pré-termo e a termo

    Directory of Open Access Journals (Sweden)

    Maria Angélica de Almeida Porto

    2011-10-01

    Full Text Available Accurate information about type, degree, and configuration of hearing loss are necessary for successful audiological early interventions. Auditory brainstem response with tone burst stimuli (TB ABR and auditory steady-state response (ASSR exams provide this information. AIM: To analyze the clinical applicability of TB ABR and ASSR at 2 kHz in infants, comparing responses in full-term and premature neonates. MATERIAL AND METHOD: The study was cross-sectional, clinical and experimental. Subjects consisted of 17 premature infants and 19 full-term infants. TB ABR and ASSR exams at 2000 Hz were done during natural sleep. RESULTS: The electrophysiological minimum response obtained with TB ABR was 32.4 dBnHL (52.4 dBSPL; the ASSR minimum was 13.8 dBHL (26.4 dBSPL. The exams required 21.1 min and 22 min, respectively. Premature and full-term infant responses showed no statistically significant differences, except for auditory steady-state response duration. CONCLUSIONS: Both exams have clinical applicability at 2 kHz in infants, with 20 min of duration, on average. In general, there are no differences between premature and full-term individuals.O sucesso de uma intervenção audiológica precoce depende de informações precisas quanto ao tipo, grau e configuração da perda auditiva. O potencial evocado auditivo de tronco encefálico com o estímulo tone burst (PEATE TB e a resposta auditiva de estado estável (RAEE proporcionam tais informações. OBJETIVO: Investigar a aplicabilidade clínica, em lactentes, do PEATE TB e da RAEE na frequência de 2 kHz, comparando as respostas dos lactentes nascidos a termo e prétermo. MATERIAL E MÉTODO: O estudo (transversal, clínico e experimental foi realizado com uma casuística de 17 lactentes pré-termo e 19 a termo submetidos ao PEATE TB e RAEE em 2000 Hz. RESULTADOS: A resposta eletrofisiológica mínima obtida com o PEATE TB foi de 32,4 dBnNA (52,4 dBNPS e com a RAEE de 13,8 dBNA (26,4 dBNPS, com dura

  13. Auditory and Visual Electrophysiology of Deaf Children with Cochlear Implants: Implications for Cross-modal Plasticity.

    Science.gov (United States)

    Corina, David P; Blau, Shane; LaMarr, Todd; Lawyer, Laurel A; Coffey-Corina, Sharon

    2017-01-01

    Deaf children who receive a cochlear implant early in life and engage in intensive oral/aural therapy often make great strides in spoken language acquisition. However, despite clinicians' best efforts, there is a great deal of variability in language outcomes. One concern is that cortical regions which normally support auditory processing may become reorganized for visual function, leaving fewer available resources for auditory language acquisition. The conditions under which these changes occur are not well understood, but we may begin investigating this phenomenon by looking for interactions between auditory and visual evoked cortical potentials in deaf children. If children with abnormal auditory responses show increased sensitivity to visual stimuli, this may indicate the presence of maladaptive cortical plasticity. We recorded evoked potentials, using both auditory and visual paradigms, from 25 typical hearing children and 26 deaf children (ages 2-8 years) with cochlear implants. An auditory oddball paradigm was used (85% /ba/ syllables vs. 15% frequency modulated tone sweeps) to elicit an auditory P1 component. Visual evoked potentials (VEPs) were recorded during presentation of an intermittent peripheral radial checkerboard while children watched a silent cartoon, eliciting a P1-N1 response. We observed reduced auditory P1 amplitudes and a lack of latency shift associated with normative aging in our deaf sample. We also observed shorter latencies in N1 VEPs to visual stimulus offset in deaf participants. While these data demonstrate cortical changes associated with auditory deprivation, we did not find evidence for a relationship between cortical auditory evoked potentials and the VEPs. This is consistent with descriptions of intra-modal plasticity within visual systems of deaf children, but do not provide evidence for cross-modal plasticity. In addition, we note that sign language experience had no effect on deaf children's early auditory and visual ERP

  14. Auditory and Visual Electrophysiology of Deaf Children with Cochlear Implants: Implications for Cross-modal Plasticity

    Science.gov (United States)

    Corina, David P.; Blau, Shane; LaMarr, Todd; Lawyer, Laurel A.; Coffey-Corina, Sharon

    2017-01-01

    Deaf children who receive a cochlear implant early in life and engage in intensive oral/aural therapy often make great strides in spoken language acquisition. However, despite clinicians’ best efforts, there is a great deal of variability in language outcomes. One concern is that cortical regions which normally support auditory processing may become reorganized for visual function, leaving fewer available resources for auditory language acquisition. The conditions under which these changes occur are not well understood, but we may begin investigating this phenomenon by looking for interactions between auditory and visual evoked cortical potentials in deaf children. If children with abnormal auditory responses show increased sensitivity to visual stimuli, this may indicate the presence of maladaptive cortical plasticity. We recorded evoked potentials, using both auditory and visual paradigms, from 25 typical hearing children and 26 deaf children (ages 2–8 years) with cochlear implants. An auditory oddball paradigm was used (85% /ba/ syllables vs. 15% frequency modulated tone sweeps) to elicit an auditory P1 component. Visual evoked potentials (VEPs) were recorded during presentation of an intermittent peripheral radial checkerboard while children watched a silent cartoon, eliciting a P1–N1 response. We observed reduced auditory P1 amplitudes and a lack of latency shift associated with normative aging in our deaf sample. We also observed shorter latencies in N1 VEPs to visual stimulus offset in deaf participants. While these data demonstrate cortical changes associated with auditory deprivation, we did not find evidence for a relationship between cortical auditory evoked potentials and the VEPs. This is consistent with descriptions of intra-modal plasticity within visual systems of deaf children, but do not provide evidence for cross-modal plasticity. In addition, we note that sign language experience had no effect on deaf children’s early auditory and visual

  15. Electrically-Evoked Frequency-Following Response(EFFR) of Guinea Pigs%豚鼠电刺激频率跟随反应初步研究

    Institute of Scientific and Technical Information of China (English)

    丁秀勇; 何文欣; 张汝祥; 陈婧

    2016-01-01

    目的:探索豚鼠听觉系统对电刺激信号是否存在频率跟随现象。方法经圆窗龛使用纯音和白噪音电信号对豚鼠耳蜗行电刺激,记录其头皮电反应,经Matlab信号叠加和伪迹去除,计算EFFR信号相对幅度、输入输出函数,处死豚鼠和使用电阻代替豚鼠后记录EFFR变化验证EFFR来源。结果纯音电信号可诱发具有明显的周期性的EFFR信号,在797Hz和1597Hz所记录EFFR到的相对幅度(RA)均值明显高于白噪音RA均值(P<0.05);797Hz纯音电信号输出幅度随着刺激电刺激幅度增长呈非线性改变,呈现神经反应特有的阈值特性与饱和特性;豚鼠死亡前后EFFR的RA值差异具有高度显著性(P<0.001),豚鼠EFFR的RA值与使用电阻记录的RA值差异具有显著性(P<0.05)。结论听力正常豚鼠听觉系统对电刺激信号存在频率跟随现象。%Objective To explore the Electrically-Evoked Frequency-Following Response whether exist in guinea pig auditory system. Methods Periodic signals and white noise electrical stimuli were used for guinea pigs cochlear electrical stimulation, The EFFR were recorded in the guinea pigs scalp and analyzed, the EFFR also verified by recording of death guinea pigs and electrical resistance. Results EFFR evoked by periodic signals were significantly higher than those evoked by the white noise;the responses decreased significantly after death of the guineapigs; and the responses decreased significantly when the animal was replaced by an electrical resistance. Conclusions Electrically-Evoked Frequency-Following Response can be recorded in the guinea pigs with normal hearing.

  16. Early auditory processing evoked potentials (N100) show a continuum of blunting from clinical high risk to psychosis in a pediatric sample

    Science.gov (United States)

    Gonzalez-Heydrich, Joseph; Enlow, Michelle Bosquet; D’Angelo, Eugene; Seidman B, Larry J.; Gumlak, Sarah; Kim, April; Woodberry, Kristen A.; Rober, Ashley; Tembulkar, Sahil; Graber, Kelsey; O’Donnell, Kyle; Hamoda, Hesham M.; Kimball, Kara; Rotenberg, Alexander; Oberman, Lindsay M.; Pascual-Leone, Alvaro; Keshavan, Matcheri S.; Duffy, Frank H.

    2016-01-01

    Background The N100 is a negative deflection in the surface EEG approximately 100ms after an auditory signal. It has been shown to be reduced in individuals with schizophrenia and those at clinical high risk (CHR). N100 blunting may index neural network dysfunction underlying psychotic symptoms. This phenomenon has received little attention in pediatric populations. Method This cross-sectional study compared the N100 response measured via the average EEG response at the left medial frontal position FC1 to 150 sinusoidal tones in participants ages 5 to 17 years with a CHR syndrome (n = 29), a psychotic disorder (n = 22), or healthy controls (n=17). Results Linear regression analyses that considered potential covariates (age, gender, handedness, family mental health history, medication usage) revealed decreasing N100 amplitude with increasing severity of psychotic symptomatology from healthy to CHR to psychotic level. Conclusions Longitudinal assessment of the N100 in CHR children who do and do not develop psychosis will inform whether it predicts transition to psychosis and if its response to treatment predicts symptom change. PMID:26549629

  17. Enhanced auditory brainstem response and parental bonding style in children with gastrointestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Shizuka Seino

    Full Text Available BACKGROUND: The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS are unclear. We hypothesized that children with chronic gastrointestinal (GI symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP responses and receive more inadequate parental bonding. METHODOLOGY/PRINCIPAL FINDINGS: Children aged seven and their mothers (141 pairs participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI and Parental Bonding Instrument (PBI. CSI results revealed 66 (42% children without GI symptoms (controls and 75 (58% children with one or more GI symptoms (GI group. The III wave in the GI group (median 4.10 interquartile range [3.95-4.24] ms right, 4.04 [3.90-4.18] ms left had a significantly shorter peak latency than controls (4.18 [4.06-4.34] ms right, p = 0.032, 4.13 [4.02-4.24] ms left, p = 0.018. The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90-4.18] ms than controls (4.18 [3.97-4.31] ms, p = 0.034 in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = -0.192, p = 0.025. The maternal care PBI scores in the GI group (29 [26]-[33] were significantly lower than controls (31 [28.5-33], p = 0.010, while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]-[17] than controls (13 [10.5-16], p = 0.024. Multiple regression analysis in females also supported these findings. CONCLUSIONS: It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms.

  18. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    Science.gov (United States)

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  19. [Development of auditory-visual spatial integration using saccadic response time as the index].

    Science.gov (United States)

    Kato, Masaharu; Konishi, Kaoru; Kurosawa, Makiko; Konishi, Yukuo

    2006-05-01

    We measured saccadic response time (SRT) to investigate developmental changes related to spatially aligned or misaligned auditory and visual stimuli responses. We exposed 4-, 5-, and 11-month-old infants to ipsilateral or contralateral auditory-visual stimuli and monitored their eye movements using an electro-oculographic (EOG) system. The SRT analyses revealed four main results. First, saccades were triggered by visual stimuli but not always triggered by auditory stimuli. Second, SRTs became shorter as the children grew older. Third, SRTs for the ipsilateral and visual-only conditions were the same in all infants. Fourth, SRTs for the contralateral condition were longer than for the ipsilateral and visual-only conditions in 11-month-old infants but were the same for all three conditions in 4- and 5-month-old infants. These findings suggest that infants acquire the function of auditory-visual spatial integration underlying saccadic eye movement between the ages of 5 and 11 months. The dependency of SRTs on the spatial configuration of auditory and visual stimuli can be explained by cortical control of the superior colliculus. Our finding of no differences in SRTs between the ipsilateral and visual-only conditions suggests that there are multiple pathways for controlling the superior colliculus and that these pathways have different developmental time courses.

  20. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs)

    DEFF Research Database (Denmark)

    Griskova-Bulanova, Inga; Ruksenas, Osvaldas; Dapsys, Kastytis;

    2011-01-01

    To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level.......To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level....

  1. Ileal interposition attenuates the satiety responses evoked by cholecystokinin-8 and -33.

    Science.gov (United States)

    Metcalf, Shannon A; Washington, Martha C; Brown, Thelma A L; Williams, Carol S; Strader, April D; Sayegh, Ayman I

    2011-06-01

    One of the possible mechanisms by which the weight-reducing surgical procedure ileal interposition (II) works is by increasing circulating levels of lower gut peptides that reduce food intake, such as glucagon like peptide-1 and peptide YY. However, since this surgery involves both lower and upper gut segments, we tested the hypothesis that II alters the satiety responses evoked by the classic upper gut peptide cholecystokinin (CCK). To test this hypothesis, we determined meal size (MS), intermeal interval (IMI) and satiety ratio (SR) evoked by CCK-8 and -33 (0, 1, 3, 5nmol/kg, i.p.) in two groups of rats, II and sham-operated. CCK-8 and -33 reduced MS more in the sham group than in the II group; CCK-33 prolonged IMI in the sham group and increased SR in both groups. Reduction of cumulative food intake by CCK-8 in II rats was blocked by devazepide, a CCK(1) receptor antagonist. In addition, as previously reported, we found that II resulted in a slight reduction in body weight compared to sham-operated rats. Based on these observations, we conclude that ileal interposition attenuates the satiety responses of CCK. Therefore, it is unlikely that this peptide plays a significant role in reduction of body weight by this surgery.

  2. Effect of nitrogen narcosis on cortical and subcortical evoked responses in the cat.

    Science.gov (United States)

    Bartus, R T; Kinney, J S

    1975-03-01

    Four cats were chronically implanted with gross, monopolar electrodes in the lateral geniculate nucleus (LGN), pretectum-superior colliculus (P-SC), primary visual cortex (VI), and secondary visual cortex (VII). Following recovery and preliminary testing, the animals were dived in a dry hyperbaric chamber to the sea water equivalent of 103 m (i.e. 340 ft.) where visual evoked responses were recorded. No decrements in the amplitude of the visual evoked response were found at the LGN, but significant decreases did occur at the other three sites. These data suggested: 1) that the effects of nitrogen narcosis on the visual system are primarily central, and not simply peripheral in nature; 2) that these effects are not limited to the visual cortical mantle; and 3) that the narcosis apparently influences structures involving different anatomical levels of the brain which presumably mediate various types of visual processes. The findings were discussed as they relate to current ideas concerning the underlying neurological causes and behavioral effects of nitrogen narcosis.

  3. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave.

    Science.gov (United States)

    Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain

    2014-04-28

    Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions.

  4. Vocal responses to perturbations in voice auditory feedback in individuals with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Hanjun Liu

    Full Text Available BACKGROUND: One of the most common symptoms of speech deficits in individuals with Parkinson's disease (PD is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency. METHODOLOGY/PRINCIPAL FINDINGS: Twelve individuals with Parkinson's disease and 13 age- and sex-matched healthy control subjects sustained a vowel sound (/α/ and received unexpected, brief (200 ms perturbations in voice loudness (±3 or 6 dB or pitch (±100 cents auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD. CONCLUSIONS/SIGNIFICANCE: The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing.

  5. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  6. Population response propagation to extrastriate areas evoked by intracortical electrical stimulation in V1

    Directory of Open Access Journals (Sweden)

    Tamas David Fehervari

    2016-02-01

    Full Text Available The mouse visual system has multiple extrastriate areas surrounding V1 each with a distinct representation of the visual field and unique functional and connectivity profiles, which are believed to form two parallel processing streams, similar to the ventral and dorsal streams in primates. At the same time, mouse visual areas have a high degree of interconnectivity, in particular V1 sends input to all higher visual areas. The study of these direct connections can further our understanding of the cortical processing of visual signals in the early mammalian cortex. Several studies have been published about the anatomy of these connections, but an in vivo electrophysiological characterization and comparison of the transmission to multiple extrastriate areas has not yet been reported. We used intracortical electrical stimulation combined with RH1691 VSD imaging in adult C57BL/6 mice in urethane anesthesia to analyze interareal transmission from V1 to extrastriate areas in superficial cortical layers. We found 7 extrastriate response sites (5 lateral, 2 medial in a spatial pattern similar to area maps of the mouse visual cortex and, by shifting the location of V1 stimulation, demonstrated that the evoked responses in LM and AL were in accordance with the visuotopic mappings of these areas known from anatomy and in vivo studies. These two sites, considered to be gateways to their processing streams, had shorter latencies and faster transmission speeds than other extrastriate response sites. Short latency differences between response sites, and that TTX injection into LM reduced but did not eliminate other extrastriate responses indicated that the evoked cortical activity was, at least partially, transmitted directly from V1 to extrastriate areas. This study reports on analysis of interareal transmission from V1 to multiple extrastriate areas in mouse using intracortical electrical stimulation in vivo.

  7. Altered auditory BOLD response to conspecific birdsong in zebra finches with stuttered syllables.

    Directory of Open Access Journals (Sweden)

    Henning U Voss

    Full Text Available How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song. These findings are consistent with the presence of a sensory song template critical for song learning in auditory areas of the zebra finch forebrain. In addition, they suggest a relationship between an altered response related to familiarity and/or saliency of song stimuli and the production of variant songs with stuttered syllables.

  8. The Effect of Objective Room Acoustic Parameters on Auditory Steady-State Responses

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; M. Harte, James; Jeong, Cheol-Ho

    2016-01-01

    -state responses (ASSR), recorded in a sound field is a promising technology to verify the hearing aid fitting. The test involves the presentation of the auditory stimuli via a loudspeaker, unlike the usual procedure of delivering via insert earphones. Room reverberation clearly may significantly affect...

  9. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  10. Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers

    NARCIS (Netherlands)

    Recio-Spinoso, A; Temchin, AN; van Dijk, P; Fan, YH; Ruggero, MA

    2005-01-01

    Responses to broadband Gaussian white noise were recorded in auditory-nerve fibers of deeply anesthetized chinchillas and analyzed by computation of zeroth-, first-, and second-order Wiener kernels. The first- order kernels ( similar to reverse correlations or "revcors") of fibers with characteristi

  11. Acute dissociation predicts rapid habituation of skin conductance responses to aversive auditory probes

    NARCIS (Netherlands)

    Giesbrecht, T.; Merckelbach, H.L.G.J.; Burg, L. ter; Cima, M.; Simeon, D.

    2008-01-01

    The present study examined how acute dissociation, trait-like dissociative symptoms, and physiological reactivity relate to each other. Sixty-nine undergraduate students were exposed to 14 aversive auditory probes, while their skin conductance responses were measured. A combination of self-reported

  12. Evidence for Atypical Auditory Brainstem Responses in Young Children with Suspected Autism Spectrum Disorders

    Science.gov (United States)

    Roth, Daphne Ari-Even; Muchnik, Chava; Shabtai, Esther; Hildesheimer, Minka; Henkin, Yael

    2012-01-01

    Aim: The aim of this study was to characterize the auditory brainstem responses (ABRs) of young children with suspected autism spectrum disorders (ASDs) and compare them with the ABRs of children with language delay and with clinical norms. Method: The ABRs of 26 children with suspected ASDs (21 males, five females; mean age 32.5 mo) and an age-…

  13. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Science.gov (United States)

    Lehmann, Alexandre; Schönwiesner, Marc

    2014-01-01

    Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  14. Exploring the variability of single trials in somatosensory evoked responses using constrained source extraction and RMT.

    Science.gov (United States)

    Koutras, A; Kostopoulos, G K; Ioannides, A A

    2008-03-01

    This paper describes the theoretical background of a new data-driven approach to encephalographic single-trial (ST) data analysis. Temporal constrained source extraction using sparse decomposition identifies signal topographies that closely match the shape characteristics of a reference signal, one response for each ST. The correlations between these ST topographies are computed for formal Correlation Matrix Analysis (CMA) based on Random Matrix Theory (RMT). The RMT-CMA provides clusters of similar ST topologies in a completely unsupervised manner. These patterns are then classified into deterministic set and noise using well established RMT results. The efficacy of the method is applied to EEG and MEG data of somatosensory evoked responses (SERs). The results demonstrate that the method can recover brain signals with time course resembling the reference signal and follow changes in strength and/or topography in time by simply stepping the reference signal through time.

  15. Cortical evoked potentials in response to rapid balloon distension of the rectum and anal canal

    DEFF Research Database (Denmark)

    Haas, S; Brock, C; Krogh, K;

    2014-01-01

    BACKGROUND: Neurophysiological evaluation of anorectal sensory function is hampered by a paucity of methods. Rapid balloon distension (RBD) has been introduced to describe the cerebral response to rectal distension, but it has not successfully been applied to the anal canal. METHODS: Nineteen...... healthy women received 30 RBDs in the rectum and the anal canal at intensities corresponding to sensory and unpleasantness thresholds, and response was recorded as cortical evoked potentials (CEPs) in 64-channels. The anal canal stimulations at unpleasantness level were repeated after 4 min to test...... the within-day reproducibility. CEPs were averaged, and to overcome latency variation related to jitter the spectral content of single sweeps was also computed. KEY RESULTS: Repeated stimulation of the anal canal generated CEPs with similar latencies but smaller amplitudes compared to those from the rectum...

  16. Response properties of neurons in the cat's putamen during auditory discrimination.

    Science.gov (United States)

    Zhao, Zhenling; Sato, Yu; Qin, Ling

    2015-10-01

    The striatum integrates diverse convergent input and plays a critical role in the goal-directed behaviors. To date, the auditory functions of striatum are less studied. Recently, it was demonstrated that auditory cortico-striatal projections influence behavioral performance during a frequency discrimination task. To reveal the functions of striatal neurons in auditory discrimination, we recorded the single-unit spike activities in the putamen (dorsal striatum) of free-moving cats while performing a Go/No-go task to discriminate the sounds with different modulation rates (12.5 Hz vs. 50 Hz) or envelopes (damped vs. ramped). We found that the putamen neurons can be broadly divided into four groups according to their contributions to sound discrimination. First, 40% of neurons showed vigorous responses synchronized to the sound envelope, and could precisely discriminate different sounds. Second, 18% of neurons showed a high preference of ramped to damped sounds, but no preference for modulation rate. They could only discriminate the change of sound envelope. Third, 27% of neurons rapidly adapted to the sound stimuli, had no ability of sound discrimination. Fourth, 15% of neurons discriminated the sounds dependent on the reward-prediction. Comparing to passively listening condition, the activities of putamen neurons were significantly enhanced by the engagement of the auditory tasks, but not modulated by the cat's behavioral choice. The coexistence of multiple types of neurons suggests that the putamen is involved in the transformation from auditory representation to stimulus-reward association.

  17. Effects of glutamate on distortion-product otoacoustic emissions and auditory brainstem responses in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    SUN Qing; SUN Jian-he; SHAN Xi-zheng; LI Xing-qi

    2008-01-01

    Objective To investigate changes in evoked potentials and structure of the guinea pig cochleae during whole cochlear perfusion with glutamate. Methods CM, CAP, DPOAE, and ABR were recorded as indicators of cochlear functions during whole cochlear perfusion. The morphology of the cochlea was studied via transmission electron microscopy. Results There were no significant changes in DPOAE amplitude before and after glutamate perfusion. CM I/O function remained nonlinear during perfusion. ABR latencies were delayed following glutamate perfusion. The average CAP threshold was elevated 35 dB SPL following glutamate perfusion.. The OHCs appeared normal, but the IHCs and afferent dendrites showed cytoplasmic blebs after glutamate perfusion. Conclusions While being a primary amino acid neurotransmitter at the synapses between hair cells and spiral ganglion neurons, excessive glutamate is neurotoxic and can destroy IHCs and spiral ganglion neurons. The technique used in this study can also be used to build an animal model of auditory neuropathy.

  18. Stimulus-response characteristics of motor evoked potentials and silent periods in proximal and distal upper-extremity muscles.

    NARCIS (Netherlands)

    Kuijk, A.A. van; Anker, L.C.; Pasman, J.W.; Hendriks, J.C.M.; Elswijk, G.A.F. van; Geurts, A.C.H.

    2009-01-01

    OBJECTIVE: To compare stimulus-response characteristics of both motor evoked potentials (MEP) and silent periods (SP) induced by transcranial magnetic stimulation (TMS) in proximal and distal upper-extremity muscles. METHODS: Stimulus-response curves of MEPs and SPs were obtained from the biceps bra

  19. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    Science.gov (United States)

    Mildren, Robyn Lynne; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sebastien; Carpenter, Mark Gregory; Inglis, J Timothy

    2017-02-16

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine proprioceptive reflexes in the triceps surae muscles in standing healthy young adults (n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied two-minutes of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii were significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory evoked γ-band oscillations. Further examination of the method revealed a) accurate reflex estimates could be obtained with <60 s of low-level (RMS=10 m/s(2)) vibration, b) responses did not habituate over two-minutes of exposure, and importantly c) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize proprioceptive reflexes.

  20. Effect of the Level of Anesthesia on the Auditory Brainstem Response in the Emei Music Frog (Babina daunchina)

    Science.gov (United States)

    Cui, Jianguo; Zhu, Bicheng; Fang, Guangzhan; Smith, Ed; Brauth, Steven E.; Tang, Yezhong

    2017-01-01

    Anesthesia is known to affect the auditory brainstem response (ABR) in mice, rats, birds and lizards. The present study investigated how the level of anesthesia affects ABR recordings in an amphibian species, Babina daunchina. To do this, we compared ABRs evoked by tone pip stimuli recorded from 35 frogs when Tricaine methane sulphonate (MS-222) anesthetic immersion times varied from 0, 5 and 10 minutes after anesthesia induction at sound frequencies between 0.5 and 6 kHz. ABR thresholds increased significantly with immersion time across the 0.5 kHz to 2.5 kHz frequency range, which is the most sensitive frequency range for hearing and the main frequency range of male calls. There were no significant differences for anesthetic levels across the 3 kHz to 6 kHz range. ABR latency was significantly longer in the 10 min group than in the 0 and 5 min groups at frequencies of 0.5, 1.0, 1.5, 2.5 kHz, while ABR latency did not differ across the 3 kHz to 4 kHz range and at 2.0 kHz. Taken together, these results show that the level of anesthesia affects the amplitude, threshold and latency of ABRs in frogs. PMID:28056042

  1. Preoperative characteristics of auditory brainstem response in acoustic neuroma with useful hearing: importance as a preliminary investigation for intraoperative monitoring.

    Science.gov (United States)

    Aihara, Noritaka; Murakami, Shingo; Takahashi, Mariko; Yamada, Kazuo

    2014-01-01

    We classified the results of preoperative auditory brainstem response (ABR) in 121 patients with useful hearing and considered the utility of preoperative ABR as a preliminary assessment for intraoperative monitoring. Wave V was confirmed in 113 patients and was not confirmed in 8 patients. Intraoperative ABR could not detect wave V in these 8 patients. The 8 patients without wave V were classified into two groups (flat and wave I only), and the reason why wave V could not be detected may have differed between the groups. Because high-frequency hearing was impaired in flat patients, an alternative to click stimulation may be more effective. Monitoring cochlear nerve action potential (CNAP) may be useful because CNAP could be detected in 4 of 5 wave I only patients. Useful hearing was preserved after surgery in 1 patient in the flat group and 2 patients in wave I only group. Among patients with wave V, the mean interaural latency difference of wave V was 0.88 ms in Class A (n = 57) and 1.26 ms in Class B (n = 56). Because the latency of wave V is already prolonged before surgery, to estimate delay in wave V latency during surgery probably underestimates cochlear nerve damage. Recording intraoperative ABR is indispensable to avoid cochlear nerve damage and to provide information for surgical decisions. Confirming the condition of ABR before surgery helps to solve certain problems, such as choosing to monitor the interaural latency difference of wave V, CNAP, or alternative sound-evoked ABR.

  2. Effects of intraocular mescaline and LSD on visual-evoked responses in the rat.

    Science.gov (United States)

    Eells, J T; Wilkison, D M

    1989-01-01

    The effects of mescaline and LSD on the flash-evoked cortical potential (FEP) were determined in unrestrained rats with chronically-implanted electrodes. Systemic administration of mescaline or LSD significantly attenuated the primary component of the FEP at three stimulus intensities with the greatest effect observed 60-90 minutes following drug administration. The magnitude and specificity of the effects of these agents on the primary response suggest that they produce deficits in conduction through the retino-geniculato-cortical system. The serotonin receptor antagonists, cyproheptadine and methysergide, antagonized the mescaline-induced depression of the FEP in accordance with neurochemical and behavioral evidence that mescaline acts as a partial agonist on serotonin receptors. Topical or intraocular administration of atropine antagonized the actions of systemically-administered mescaline. In addition, intraocular administration of mescaline or LSD attenuated the FEP indicative of an action of these hallucinogens on visual processing in the retina which is modulated by muscarinic receptor activity.

  3. Habituation of evoked responses is greater in patients with familial hemiplegic migraine than in controls

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Bolla, M; Magis, D;

    2011-01-01

    been attributed to neuronal dysexcitability. FHM and the common forms of migraine are thought to belong to a spectrum of migraine phenotypes with similar pathophysiology, and we therefore examined whether an abnormal habituation pattern would also be found in FHM patients.......Familial hemiplegic migraine (FHM) is a rare, dominantly inherited subtype of migraine with transient hemiplegia during the aura phase. Mutations in at least three different genes can produce the FHM phenotype. The mutated FHM genes code for ion transport proteins that animal and cellular studies...... have associated with disturbed ion homeostasis, altered cellular excitability, neurotransmitter release, and decreased threshold for cortical spreading depression. The common forms of migraine are characterized interictally by a habituation deficit of cortical and subcortical evoked responses that has...

  4. Habituation of single CO2 laser-evoked responses during interictal phase of migraine.

    Science.gov (United States)

    de Tommaso, Marina; Libro, Giuseppe; Guido, Marco; Losito, Luciana; Lamberti, Paolo; Livrea, Paolo

    2005-09-01

    A reduced habituation of averaged laser-evoked potential (LEP) amplitudes was previously found in migraine patients. The aim of the present study was to assess the habituation of single LEP responses and pain sensation during the interictal phase in migraine patients. Fourteen migraine patients were compared with ten control subjects. The pain stimulus was laser pulses, generated by CO2 laser, delivered to right supraorbital zone. Patients were evaluated during attack-free conditions. The LEP habituation was studied by measuring the changes of LEP amplitudes across and within three consecutive repetitions of 21 non-averaged trials. In migraine patients the N2-P2 wave amplitudes did not show a tendency toward habituation across and, above all, within the three repetitions. Anomalous behaviour of nociceptive cortex during the interictal phase of migraine may predispose patients to headache occurrence and persistence.

  5. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.

    Directory of Open Access Journals (Sweden)

    Winfried Schlee

    Full Text Available BACKGROUND: Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions. METHODS AND FINDINGS: Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions. CONCLUSIONS: To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus.

  6. Auditory processing in fragile x syndrome.

    Science.gov (United States)

    Rotschafer, Sarah E; Razak, Khaleel A

    2014-01-01

    Fragile X syndrome (FXS) is an inherited form of intellectual disability and autism. Among other symptoms, FXS patients demonstrate abnormalities in sensory processing and communication. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity in humans with FXS. Consistent with observations in humans, the Fmr1 KO mouse model of FXS also shows evidence of altered auditory processing and communication deficiencies. A well-known and commonly used phenotype in pre-clinical studies of FXS is audiogenic seizures. In addition, increased acoustic startle response is seen in the Fmr1 KO mice. In vivo electrophysiological recordings indicate hyper-excitable responses, broader frequency tuning, and abnormal spectrotemporal processing in primary auditory cortex of Fmr1 KO mice. Thus, auditory hyper-excitability is a robust, reliable, and translatable biomarker in Fmr1 KO mice. Abnormal auditory evoked responses have been used as outcome measures to test therapeutics in FXS patients. Given that similarly abnormal responses are present in Fmr1 KO mice suggests that cellular mechanisms can be addressed. Sensory cortical deficits are relatively more tractable from a mechanistic perspective than more complex social behaviors that are typically studied in autism and FXS. The focus of this review is to bring together clinical, functional, and structural studies in humans with electrophysiological and behavioral studies in mice to make the case that auditory hypersensitivity provides a unique opportunity to integrate molecular, cellular, circuit level studies with behavioral outcomes in the search for therapeutics for FXS and other autism spectrum disorders.

  7. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  8. Basic emotions evoked by odorants: comparison between autonomic responses and self-evaluation.

    Science.gov (United States)

    Alaoui-Ismaïli, O; Robin, O; Rada, H; Dittmar, A; Vernet-Maury, E

    1997-10-01

    The present study was designed to analyze the relationship between self-report and physiological expression of basic emotions (happiness, surprise, fear, sadness, disgust and anger) in response to odorants. 44 subjects inhaled five odorants: vanillin, menthol, eugenol, methyl methacrylate, and propionic acid. Six autonomic nervous systems (ANS) parameters were simultaneously recorded in real time and without interference: Skin Potential (SP), Skin Resistance (SR), Skin Temperature (ST), Skin Blood Flow (SBF), Instantaneous Respiratory Frequency (IRF) and Instantaneous Heart Rate (IHR). At the end of the recording, subjects were instructed i) to identify the odorants roughly II) to situate them on an 11-point hedonic scale from highly pleasant (0) to highly unpleasant (10); and iii) to define what type of basic emotion was evoked by each odorant. In this study, the expected affects were aroused in the subjects. Vanillin and menthol were rated pleasant, while methyl methacrylate and propionic acid were judged unpleasant. Eugenol was median in hedonic estimation. ANS evaluation (each autonomic pattern induced by an odorant was transcripted into a basic emotion) shows that pleasantly connoted odorants evoked mainly happiness and surprise, but that unpleasant ones induced mainly disgust and anger. Eugenol was associated with positive and negative affects. Comparison between conscious (verbal) and unconscious (ANS) emotions, reveals that these two estimations 1) were not significantly different as far as the two pleasant odorants were concerned, 2) showed a tendency to be significantly different for eugenol odorant which was variably scored on the hedonic axis, and 3) exhibited a significant difference for the two unpleasant odorants, for which the corresponding "verbal emotion" was mainly "disgust", while the most frequent ANS emotion was "anger". In conclusion, these results show quite a good correlation between verbal and ANS estimated basic emotions. The main

  9. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    Directory of Open Access Journals (Sweden)

    Baird Bill

    2006-02-01

    Full Text Available Abstract Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves. Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1 Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2 These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3 The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide

  10. Common cortical responses evoked by appearance, disappearance and change of the human face

    Directory of Open Access Journals (Sweden)

    Kida Tetsuo

    2009-04-01

    Full Text Available Abstract Background To segregate luminance-related, face-related and non-specific components involved in spatio-temporal dynamics of cortical activations to a face stimulus, we recorded cortical responses to face appearance (Onset, disappearance (Offset, and change (Change using magnetoencephalography. Results Activity in and around the primary visual cortex (V1/V2 showed luminance-dependent behavior. Any of the three events evoked activity in the middle occipital gyrus (MOG at 150 ms and temporo-parietal junction (TPJ at 250 ms after the onset of each event. Onset and Change activated the fusiform gyrus (FG, while Offset did not. This FG activation showed a triphasic waveform, consistent with results of intracranial recordings in humans. Conclusion Analysis employed in this study successfully segregated four different elements involved in the spatio-temporal dynamics of cortical activations in response to a face stimulus. The results show the responses of MOG and TPJ to be associated with non-specific processes, such as the detection of abrupt changes or exogenous attention. Activity in FG corresponds to a face-specific response recorded by intracranial studies, and that in V1/V2 is related to a change in luminance.

  11. Influenza A infection attenuates relaxation responses of mouse tracheal smooth muscle evoked by acrolein.

    Science.gov (United States)

    Cheah, Esther Y; Mann, Tracy S; Burcham, Philip C; Henry, Peter J

    2015-02-15

    The airway epithelium is an important source of relaxant mediators, and damage to the epithelium caused by respiratory tract viruses may contribute to airway hyperreactivity. The aim of this study was to determine whether influenza A-induced epithelial damage would modulate relaxation responses evoked by acrolein, a toxic and prevalent component of smoke. Male BALB/c mice were inoculated intranasally with influenza A/PR-8/34 (VIRUS-infected) or allantoic fluid (SHAM-infected). On day 4 post-inoculation, isometric tension recording studies were conducted on carbachol pre-contracted tracheal segments isolated from VIRUS and SHAM mice. Relaxant responses to acrolein (30 μM) were markedly smaller in VIRUS segments compared to SHAM segments (2 ± 1% relaxation vs. 28 ± 5%, n=14, pacrolein and SP were reduced in VIRUS segments (>35% reduction, n=6, pacrolein were profoundly diminished in tracheal segments isolated from influenza A-infected mice. The mechanism through which influenza A infection attenuates this response appears to involve reduced production of PGE2 in response to SP due to epithelial cell loss, and may provide insight into the airway hyperreactivity observed with influenza A infection.

  12. Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2016-01-01

    Full Text Available It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage.

  13. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available BACKGROUND: Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice. METHODS AND MAIN RESULTS: Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation. CONCLUSIONS: These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  14. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration.

    Directory of Open Access Journals (Sweden)

    Meghan Watson

    Full Text Available Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100-200 Hz or pulse duration from 0.18-0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.

  15. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses

    Science.gov (United States)

    Minor, L. B.; Lasker, D. M.; Backous, D. D.; Hullar, T. E.; Shelhamer, M. J. (Principal Investigator)

    1999-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in five squirrel monkeys with intact vestibular function. The VOR evoked by steps of acceleration in darkness (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) began after a latency of 7.3 +/- 1.5 ms (mean +/- SD). Gain of the reflex during the acceleration was 14.2 +/- 5.2% greater than that measured once the plateau head velocity had been reached. A polynomial regression was used to analyze the trajectory of the responses to steps of acceleration. A better representation of the data was obtained from a polynomial that included a cubic term in contrast to an exclusively linear fit. For sinusoidal rotations of 0.5-15 Hz with a peak velocity of 20 degrees /s, the VOR gain measured 0.83 +/- 0.06 and did not vary across frequencies or animals. The phase of these responses was close to compensatory except at 15 Hz where a lag of 5.0 +/- 0.9 degrees was noted. The VOR gain did not vary with head velocity at 0.5 Hz but increased with velocity for rotations at frequencies of >/=4 Hz (0. 85 +/- 0.04 at 4 Hz, 20 degrees /s; 1.01 +/- 0.05 at 100 degrees /s, P < 0.0001). No responses to these rotations were noted in two animals that had undergone bilateral labyrinthectomy indicating that inertia of the eye had a negligible effect for these stimuli. We developed a mathematical model of VOR dynamics to account for these findings. The inputs to the reflex come from linear and nonlinear pathways. The linear pathway is responsible for the constant gain across frequencies at peak head velocity of 20 degrees /s and also for the phase lag at higher frequencies being less than that expected based on the reflex delay. The frequency- and velocity-dependent nonlinearity in VOR gain is accounted for by the dynamics of the nonlinear pathway. A transfer function that increases the gain of this pathway with frequency and a term related to the third power of head

  16. Calcium imaging of odor-evoked responses in the Drosophila antennal lobe.

    Science.gov (United States)

    Silbering, Ana F; Bell, Rati; Galizia, C Giovanni; Benton, Richard

    2012-03-14

    The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide

  17. Auditory Processing in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Sarah E Rotschafer

    2014-02-01

    Full Text Available Fragile X syndrome (FXS is an inherited form of intellectual disability and autism. Among other symptoms, FXS patients demonstrate abnormalities in sensory processing and communication. Clinical, behavioral and electrophysiological studies consistently show auditory hypersensitivity in humans with FXS. Consistent with observations in humans, the Fmr1 KO mouse model of FXS also shows evidence of altered auditory processing and communication deficiencies. A well-known and commonly used phenotype in pre-clinical studies of FXS is audiogenic seizures. In addition, increased acoustic startle is also seen in the Fmr1 KO mice. In vivo electrophysiological recordings indicate hyper-excitable responses, broader frequency tuning and abnormal spectrotemporal processing in primary auditory cortex of Fmr1 KO mice. Thus, auditory hyper-excitability is a robust, reliable and translatable biomarker in Fmr1 KO mice. Abnormal auditory evoked responses have been used as outcome measures to test therapeutics in FXS patients. Given that similarly abnormal responses are present in Fmr1 KO mice suggests that cellular mechanisms can be addressed. Sensory cortical deficits are relatively more tractable from a mechanistic perspective than more complex social behaviors that are typically studied in autism and FXS. The focus of this review is to bring together clinical, functional and structural studies in humans with electrophysiological and behavioral studies in mice to make the case that auditory hypersensitivity provides a unique opportunity to integrate molecular, cellular, circuit level studies with behavioral outcomes in the search for therapeutics for FXS and other autism spectrum disorders.

  18. Potencial evocado auditivo tardio relacionado a eventos (P300 na síndrome de Down Late auditory event-related evoked potential (P300 in Down's syndrome patients

    Directory of Open Access Journals (Sweden)

    Carla Patrícia Hernandez Alves Ribeiro César

    2010-04-01

    Full Text Available A síndrome de Down é causada pela trissomia do cromossomo 21 e está associada com alteração do processamento auditivo, distúrbio de aprendizagem e, provavelmente, início precoce de Doença de Alzheimer. OBJETIVO: Avaliar as latências e amplitudes do potencial evocado auditivo tardio relacionado a eventos (P300 e suas alterações em indivíduos jovens adultos com síndrome de Down. MATERIAL E MÉTODO: Estudo de caso prospectivo. Latências e amplitudes do P300 foram avaliadas em 17 indivíduos com síndrome de Down e 34 indivíduos sadios. RESULTADOS: Foram identificadas latências do P300 (N1, P2, N2 e P3 prolongadas e amplitude N2 - P3 diminuída nos indivíduos com síndrome de Down quando comparados ao grupo controle. CONCLUSÃO: Em indivíduos jovens adultos com síndrome de Down ocorre aumento das latências N1, P2, N2 e P3, e diminuição significativa da amplitude N2-P3 do potencial evocado auditivo tardio relacionado a eventos (P300, sugerindo prejuízo da integração da área de associação auditiva com as áreas corticais e subcorticais do sistema nervoso central.Down syndrome is caused by a trisomy of chromosome 21 and is associated with central auditory processing deficit, learning disability and, probably, early-onset Alzheimer's disease. AIM: to evaluate the latencies and amplitudes of evoked late auditory potential related to P300 events and their changes in young adults with Down's syndrome. MATERIALS AND METHODS: Prospective case study. P300 test latency and amplitudes were evaluated in 17 individuals with Down's syndrome and 34 healthy individuals. RESULTS The P300 latency (N1, P2, N2 and P3 was longer and the N2-P3 amplitude was lower in individuals with Down syndrome when compared to those in the control group. CONCLUSION: In young adults with Down syndrome, N1, P2, N2 and P3 latencies of late auditory evoked potential related to P300 events were prolonged, and N2 - P3 amplitudes were significantly reduced

  19. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster.

    Science.gov (United States)

    Alò, Raffaella; Avolio, Ennio; Mele, Maria; Di Vito, Anna; Canonaco, Marcello

    2015-04-15

    Interaction of the orexinergic (ORXergic) neuronal system with the excitatory (glutamate, l-Glu) or the inhibitory (GABA) neurosignaling complexes evokes major homeostatic physiological events. In this study, effects of the two ORXergic neuropeptides (ORX-A/B) on their receptor (ORX-2R) expression changes were correlated to feeding and grooming actions of the hibernating hamster (Mesocricetus auratus). Infusion of the central amygdala nucleus (CeA) with ORX-A caused hamsters to consume notable quantities of food, while ORX-B accounted for a moderate increase. Interestingly the latter neuropeptide was responsible for greater frequencies of grooming with respect to both controls and the hamsters treated with ORX-A. These distinct behavioral changes turned out to be even greater in the presence of l-Glu agonist (NMDA) while the α1 GABAA receptor agonist (zolpidem, Zol) greatly reduced ORX-A-dependent feeding bouts. Moreover, ORX-A+NMDA mainly promoted greater ORX-2R expression levels with respect to ORX-A-treated hamsters while ORX-B+Zol was instead largely responsible for a down-regulatory trend. Overall, these features point to CeA ORX-2R sites as key sensory limbic elements capable of regulating eating and grooming responses, which may provide useful insights regarding the type of molecular mechanism(s) operating during feeding bouts.

  20. Regulation by L channels of Ca(2+)-evoked secretory responses in ouabain-treated chromaffin cells.

    Science.gov (United States)

    De Pascual, Ricardo; Colmena, Inés; Ruiz-Pascual, Lucía; Baraibar, Andrés Mateo; Egea, Javier; Gandía, Luis; García, Antonio G

    2016-10-01

    It is known that the sustained depolarisation of adrenal medullary bovine chromaffin cells (BCCs) with high K(+) concentrations produces an initial sharp catecholamine release that subsequently fades off in spite depolarisation persists. Here, we have recreated a sustained depolarisation condition of BCCs by treating them with the Na(+)/K(+) ATPase blocker ouabain; in doing so, we searched experimental conditions that permitted the development of a sustained long-term catecholamine release response that could be relevant during prolonged stress. BCCs were perifused with nominal 0Ca(2+) solution, and secretion responses were elicited by intermittent application of short 2Ca(2+) pulses (Krebs-HEPES containing 2 mM Ca(2+)). These pulses elicited a biphasic secretory pattern with an initial 30-min period with secretory responses of increasing amplitude and a second 30-min period with steady-state, non-inactivating responses. The initial phase was not due to gradual depolarisation neither to gradual increases of the cytosolic calcium transients ([Ca(2+)]c) elicited by 2Ca(2+) pulses in BBCs exposed to ouabain; both parameters increased soon after ouabain addition. Νifedipine blocked these responses, and FPL64176 potentiated them, suggesting that they were triggered by Ca(2+) entry through non-inactivating L-type calcium channels. This was corroborated by nifedipine-evoked blockade of the L-type Ca(2+) channel current and the [Ca(2+)]c transients elicited by 2Ca(2+) pulses. Furthermore, the plasmalemmal Na(+)/Ca(2+) exchanger (NCX) blocker SEA0400 caused a mild inhibition followed by a large rebound increase of the steady-state secretory responses. We conclude that these two phases of secretion are mostly contributed by Ca(2+) entry through L calcium channels, with a minor contribution of Ca(2+) entry through the reverse mode of the NCX.

  1. The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, JM; Wit, HP; Albers, FWJ

    2001-01-01

    In this study, short latency vestibular evoked potentials (VsEPs) were recorded in five guinea pigs in response to alternating linear acceleration pulses with and without acoustic masking. A steel bolt was implanted in the skull and coupled to a shaker. Linear acceleration pulses (n = 400) in upward

  2. Evoked response denoising using nonlinear diffusion filtering of single-trial matrix representations.

    Science.gov (United States)

    Mustaffa, Izadora; Trenado, Carlos; Schwerdtfeger, Karsten; Strauss, Daniel J

    2008-01-01

    Recent progress in mathematical image processing shows a remarkable success when applying numerical methods to ill-posed partial differential equations (PDE). In particular, nonlinear diffusion filtering (NDF)process is an approach that belongs to such family of differential equations. It has been successfully applied in many recent methods for image processing and computer vision areas, particularly in denoising, smoothing, segmentation, and restoration. In this paper we focus on a novel NDF application, namely denoising of single-trials of auditory brainstem responses (ABRs) and the analysis of transcranial magnetic stimulation (TMS) responses.We show that by applying NDF on a matrix-form image of single-trials, we were able to denoise the single-trials, resulting in a better extraction of information over the ongoing experiment; morphology, eg. the latency of the single-trials according to different stimuli paradigms at different stimulation intensity levels. It is concluded that NDF represents a novel and useful approach for the analysis of single-trials in brain imaging.

  3. Alterações dos potenciais evocados auditivos do tronco encefálico em pacientes com esclerose múltipla Alterations in early auditory evoked potentials in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Tania Mara Assis Lima

    2009-04-01

    Full Text Available A presença de alterações nos potenciais evocados auditivos do tronco encefálico (PEATE em indivíduos com doenças desmielinizantes sugere lesão do tronco encefálico. OBJETIVOS: O objetivo do presente estudo foi avaliar a incidência de alterações auditivas e dos PEATE em indivíduos com esclerose múltipla (EM. MATERIAL E MÉTODO: Participaram do estudo 16 pacientes do sexo feminino e 9 do sexo masculino com diagnóstico definido de EM. Testes audiométricos e pesquisa dos PEATE foram realizados em todos os indivíduos. Para a classificação dos PEATE utilizou-se a classificação proposta por Jerger (1986 na análise da morfologia das ondas. FORMA DE ESTUDO: Estudo de coorte contemporânea com corte transversal. RESULTADOS: Dos 50 PEATE realizados, 70% foram classificados como tipo I (resposta normal pela classificação de Jerger. Considerando-se como alterados os PEATE dos tipos II, III, IV ou V da classificação de Jerger em pelo menos um dos lados, encontrou-se 31,25% de alterações no sexo feminino e 44,44% no masculino, totalizando 36%. CONCLUSÕES: Estes achados enfatizam a relevância do estudo dos PEATE em casos de suspeita clínica de doenças desmielinizantes e naqueles com diagnóstico definido de EM.Alterations in early auditory evoked potentials (EAEP in individuals with demyelinating disease are suggestive of lesions in the brainstem. AIM: this study aims to evaluate the prevalence of hearing disorders and altered EAEP in multiple sclerosis (MS patients. MATERIALS AND METHOD: sixteen female and nine male patients with a defined diagnosis of multiple sclerosis took part in this study. All individuals underwent hearing and EAEP tests. The wave forms were categorized according to Jerger (1986. RESULTS: fifty EAEP tests were carried out; 70% were classified as type I (normal response according to Jerger's criteria. Altered EAEP results in at least one ear were classified into types II, III, IV or V according to Jerger

  4. Audiometria de resposta evocada de acordo com sexo e idade: achados e aplicabilidade Evoked response audiometry according to gender and age: findings and usefulness

    Directory of Open Access Journals (Sweden)

    Edmir Américo Lourenço

    2008-08-01

    Full Text Available A audiometria de respostas evocadas (ABR é um registro não-invasivo de potenciais elétricos auditivos nos primeiros 12 milissegundos, da orelha média ao córtex auditivo. ABR é importante na avaliação otoneurológica. OBJETIVO: Esclarecer as utilidades do exame, faixas etárias e sexo com maior incidência e topodiagnóstico segundo as latências absolutas e os intervalos interpicos. CASUÍSTICA E MÉTODO: Neste estudo retrospectivo foram analisados 403 prontuários de ABR realizados em clínica particular na cidade de Jundiaí/SP, Brasil, suspeitos de alteração auditiva e/ou doença do SNC, com os pacientes divididos por sexo e faixa etária. RESULTADOS E CONCLUSÕES: ABR é um importante exame para determinar a integridade da via auditiva, limiares eletrofisiológicos e topodiagnóstico, embora o teste não indique a etiologia das alterações. Foi demonstrado que ocorreu maior incidência de achados retrococleares na faixa etária de 12-20 anos e sexo masculino, contudo crianças menores de um ano com fatores de risco não apresentaram um aumento na incidência de alterações condutivas, cocleares e retrococleares em relação à população geral estudada. As latências absolutas das ondas I, III e V foram maiores no sexo masculino e as alterações dos intervalos interpicos foram similares em ambos os sexos, sendo que o intervalo I-III foi o mais freqüentemente alterado.Auditory evoked brainstem responses (ABR is a non-invasive electrical potential registration which evaluates the auditory tract from the middle ear to the auditory cortex in the first 12 milliseconds (ms. The ABR is an important otoneurological evaluation. AIM: confirm the test's usefulness, major incidence and topography according to are range gender considering the absolute latencies of the waves and interpeak intervals. MATERIALS AND METHOD: we retrospectively analyzed 403 tests from a private clinic in the city of Jundiaí-São Paulo State-Brazil, from

  5. The Analysis of Brainstem Auditory Evoked Potentials in Deaf and Dumb Children%450例聋哑病残儿脑干听觉诱发电位分析

    Institute of Scientific and Technical Information of China (English)

    黄梅香; 陆洪英

    2002-01-01

    目的观察聋哑病残儿脑干听觉诱发电位(brainstem auditory evoked potentials,BAEPs)的变化,并初步探讨BAEPs在病残儿鉴定中的应用.方法采用皮肤表面电极引导,用DANTEC CATNATA诱发电位仪记录BAEPs.结果 450例聋哑病残儿900只耳中,846只耳BAEPs波形有不同程度的分化异常.结论 BAEPs是检测儿童客观听力的可靠方法,可为病残儿医学鉴定提供可靠的依据.

  6. The effectiveness of the auditory steady state response in diagnosing hearing loss in infants

    Directory of Open Access Journals (Sweden)

    Dunay Schmulian

    2002-04-01

    Full Text Available This paper aims to provide a review of the emerging Auditory Steady State Response in light of existing procedures for diagnosis of hearing loss in infants. Opsomming Hierdie artikel poog om ‘n oorsig te verskaf van die opkomende Ouditief Standhoudende Respons teenoor huidige prosedures wat gebruik word om gehoorverlies in babas en jong kinders te diagnoseer. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  7. The Effect of Temporal Context on the Sustained Pitch Response in Human Auditory Cortex

    OpenAIRE

    Gutschalk, Alexander; Patterson, Roy D.; Scherg, Michael; Uppenkamp, Stefan; Rupp, André

    2006-01-01

    Recent neuroimaging studies have shown that activity in lateral Heschl’s gyrus covaries specifically with the strength of musical pitch. Pitch strength is important for the perceptual distinctiveness of an acoustic event, but in complex auditory scenes, the distinctiveness of an event also depends on its context. In this magnetoencephalography study, we evaluate how temporal context influences the sustained pitch response (SPR) in lateral Heschl’s gyrus. In 2 sequences of continuously alterna...

  8. Abnormalities in auditory evoked potentials of 75 patients with Arnold-Chiari malformations types I and II Anormalidades nos potenciais evocados auditivos de 75 pacientes com os tipos I e II das malformações de Arnold-Chiari

    Directory of Open Access Journals (Sweden)

    Paulo Sergio A. Henriques Filho

    2006-09-01

    Full Text Available OBJECTIVE: To evaluate the frequency and degree of severity of abnormalities in the auditory pathways in patients with Chiari malformations type I and II. METHOD: This is a series-of-case descriptive study in which the possible presence of auditory pathways abnormalities in 75 patients (48 children and 27 adults with Chiari malformation types I and II were analyzed by means of auditory evoked potentials evaluation. The analysis was based on the determination of intervals among potentials peak values, absolute latency and amplitude ratio among potentials V and I. RESULTS: Among the 75 patients studied, 27 (36% disclosed Arnold-Chiari malformations type I and 48 (64% showed Arnold-Chiari malformations type II. Fifty-three (71% of these patients showed some degree of auditory evoked potential abnormalities. Tests were normal in the remaining 22 (29% patients. CONCLUSION: Auditory evoked potentials testing can be considered a valuable instrument for diagnosis and evaluation of brain stem functional abnormalities in patients with Arnold-Chiari malformations type I and II. The determination of the presence and degree of severity of these abnormalities can be contributory to the prevention of further handicaps in these patients either through physical therapy or by means of precocious corrective surgical intervention.OBJETIVO: Avaliar a freqüência e grau de comprometimento das vias auditivas em tronco cerebral por meio de potencial evocado auditivo, em pacientes afetados por malformações de Arnold-Chiari de tipos I e II. MÉTODO: Foi efetuado um estudo descritivo de tipo série de casos, sendo selecionados 75 pacientes (48 crianças e 27 adultos nos quais foi realizada avaliação dos potenciais evocados das vias auditivas, com base à determinação dos valores dos intervalos entre picos de potenciais, da latência absoluta e da razão entre as amplitudes dos potenciais V e I. RESULTADOS: Entre os 75 pacientes avaliados, 27 (36% apresentavam

  9. Baroreflexes of the rat. IV. ADN-evoked responses at the NTS.

    Science.gov (United States)

    Tang, Xiaorui; Dworkin, Barry R

    2007-12-01

    In a long-term (7-21 days) neuromuscular blocked (NMB) rat preparation, using precise single-pulse aortic depressor nerve (ADN) stimulation and stable chronic evoked response (ER) recordings from the dorsal-medial solitary nucleus (dmNTS), two different response patterns were observed: continuous and discrete. For the continuous pattern, activity began approximately 3 ms after the stimulus and persisted for 45 ms; for the discrete pattern, two complexes were separated by a gap from approximately 17 to 25 ms. The early complex was probably transmitted via A-fibers: it had a low stimulus current threshold and an average conduction velocity (CV) of 0.58-5.5 m/s; the high threshold late (HTL) complex had a CV = 0.26-0.58 m/s. The average stimulus amplitude-ER magnitude transduction curves for the A and HTL complexes were sigmoidal. For individual rats, in the linear range, mean r2 = 0.96 +/- 0.03 for both complexes. The average stimulus amplitude vs. the systolic blood pressure change (delta sBP) transduction curve was also approximately linear; however, for individual rats, the relationship was not consistently reliable: mean r2 = 0.48 +/- 0.19. Approximately 90% of recording sites had respiratory, and 50% had cardiac synchronism. The NMB preparation is useful for studying central baroreflex mechanisms that operate on time scales of days or weeks, such as adaptation and other kinds of neural plasticity.

  10. Evidence-Based Filters for Signal Detection: Application to Evoked Brain Responses

    CERN Document Server

    Mubeen, M Asim

    2011-01-01

    Template-based signal detection most often relies on computing a correlation, or a dot product, between an incoming data stream and a signal template. Such a correlation results in an ongoing estimate of the magnitude of the signal in the data stream. However, it does not directly indicate the presence or absence of the signal. The problem is really one of model-testing, and the relevant quantity is the Bayesian evidence (marginal likelihood) of the signal model. Given a signal template and an ongoing data stream, we have developed an evidence-based filter that computes the Bayesian evidence that a signal is present in the data. We demonstrate this algorithm by applying it to brain-machine interface (BMI) data obtained by recording human brain electrical activity, or electroencephalography (EEG). A very popular and effective paradigm in EEG-based BMI is based on the detection of the P300 evoked brain response which is generated in response to particular sensory stimuli. The goal is to detect the presence of a...

  11. Emotional expressions evoke a differential response in the fusiform face area

    Directory of Open Access Journals (Sweden)

    Bronson Blake Harry

    2013-10-01

    Full Text Available It is widely assumed that the fusiform face area (FFA, a brain region specialised for face perception, is not involved in processing emotional expressions. This assumption is based on the proposition that the FFA is involved in face identification and only processes features that are invariant across changes due to head movements, speaking and expressing emotions. The present study tested this proposition by examining whether the response in the human FFA varies across emotional expressions with functional magnetic resonance imaging and brain decoding analysis techniques (n = 11. A one versus all classification analysis showed that most emotional expressions that participants perceived could be reliably predicted from the neural pattern of activity in left and the right FFA, suggesting that the perception of different emotional expressions recruit partially non-overlaping neural mechanisms. In addition, emotional expressions could also be decoded from the pattern of activity in the early visual cortex (EVC, indicating that retinotopic cortex also shows a differential response to emotional expressions. These results cast doubt on the idea that the FFA is involved in expression invariant face processing, and instead indicate that emotional expressions evoke partially de-correlated signals throughout occipital and posterior temporal cortex.

  12. Auditory cortex responses to clicks and sensory modulation difficulties in children with autism spectrum disorders (ASD.

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    Full Text Available Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH. The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD.

  13. Searching for the optimal stimulus eliciting auditory brainstem responses in humans

    DEFF Research Database (Denmark)

    Fobel, Oliver; Dau, Torsten

    2004-01-01

    functions fitted to tone-burst-evoked ABR wave-V data over a wide range of stimulus levels and frequencies [Neely et al., J. Acoust. Soc. Am. 83(2), 652–656 (1988)]. In this case, a set of level-dependent chirps was generated. The chirp-evoked responses, particularly wave-V amplitude and latency, were...... compared to click responses and to responses obtained with the original chirp as defined in Dau et al. [J. Acoust. Soc. Am. 107(3), 1530–1540 (2000)], referred to here as the M-chirp since it is based on a (linear) cochlea model. The main hypothesis was that, at low and medium stimulation levels, the O......- and A-chirps might produce a larger response than the original M-chirp whose parameters were essentially derived from high-level BM data. The main results of the present study are as follows: (i) All chirps evoked a larger wave-V amplitude than the click stimulus indicating that for the chirps a broader...

  14. The relationship between auditory brainstem response, nerve conduction studies, and metabolic risk factors in type II diabetes mellitus

    OpenAIRE

    2016-01-01

    Background Few studies have reported a correlation between auditory brainstem response (ABR) findings and nerve conduction studies (NCSs). The correlation between ABR findings and the metabolic profile of these patients is not well documented in previous studies. The present study was designed to investigate the impact of the disturbed metabolic profile (hyperglyceridemia and hyperlipidemia) in diabetic patients on the peripheral nervous system as well as the auditory brainstem response. ...

  15. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not.

  16. Lipreading and covert speech production similarly modulate human auditory-cortex responses to pure tones.

    Science.gov (United States)

    Kauramäki, Jaakko; Jääskeläinen, Iiro P; Hari, Riitta; Möttönen, Riikka; Rauschecker, Josef P; Sams, Mikko

    2010-01-27

    Watching the lips of a speaker enhances speech perception. At the same time, the 100 ms response to speech sounds is suppressed in the observer's auditory cortex. Here, we used whole-scalp 306-channel magnetoencephalography (MEG) to study whether lipreading modulates human auditory processing already at the level of the most elementary sound features, i.e., pure tones. We further envisioned the temporal dynamics of the suppression to tell whether the effect is driven by top-down influences. Nineteen subjects were presented with 50 ms tones spanning six octaves (125-8000 Hz) (1) during "lipreading," i.e., when they watched video clips of silent articulations of Finnish vowels /a/, /i/, /o/, and /y/, and reacted to vowels presented twice in a row; (2) during a visual control task; (3) during a still-face passive control condition; and (4) in a separate experiment with a subset of nine subjects, during covert production of the same vowels. Auditory-cortex 100 ms responses (N100m) were equally suppressed in the lipreading and covert-speech-production tasks compared with the visual control and baseline tasks; the effects involved all frequencies and were most prominent in the left hemisphere. Responses to tones presented at different times with respect to the onset of the visual articulation showed significantly increased N100m suppression immediately after the articulatory gesture. These findings suggest that the lipreading-related suppression in the auditory cortex is caused by top-down influences, possibly by an efference copy from the speech-production system, generated during both own speech and lipreading.

  17. Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. I. Spike rate responses

    DEFF Research Database (Denmark)

    Jørgensen, M B; Christensen-Dalsgaard, J

    1997-01-01

    We studied the directionality of spike rate responses of auditory nerve fibers of the grassfrog, Rana temporaria, to pure tone stimuli. All auditory fibers showed spike rate directionality. The strongest directionality was seen at low frequencies (200-400 Hz), where the spike rate could change by...

  18. The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients.

    Science.gov (United States)

    Foxe, John J; Yeap, Sherlyn; Snyder, Adam C; Kelly, Simon P; Thakore, Jogin H; Molholm, Sophie

    2011-08-01

    The N1 component of the auditory evoked potential (AEP) is a robust and easily recorded metric of auditory sensory-perceptual processing. In patients with schizophrenia, a diminution in the amplitude of this component is a near-ubiquitous finding. A pair of recent studies has also shown this N1 deficit in first-degree relatives of schizophrenia probands, suggesting that the deficit may be linked to the underlying genetic risk of the disease rather than to the disease state itself. However, in both these studies, a significant proportion of the relatives had other psychiatric conditions. As such, although the N1 deficit represents an intriguing candidate endophenotype for schizophrenia, it remains to be shown whether it is present in a group of clinically unaffected first-degree relatives. In addition to testing first-degree relatives, we also sought to replicate the N1 deficit in a group of first-episode patients and in a group of chronic schizophrenia probands. Subject groups consisted of 35 patients with schizophrenia, 30 unaffected first-degree relatives, 13 first-episode patients, and 22 healthy controls. Subjects sat in a dimly lit room and listened to a series of simple 1,000-Hz tones, indicating with a button press whenever they heard a deviant tone (1,500 Hz; 17% probability), while the AEP was recorded from 72 scalp electrodes. Both chronic and first-episode patients showed clear N1 amplitude decrements relative to healthy control subjects. Crucially, unaffected first-degree relatives also showed a clear N1 deficit. This study provides further support for the proposal that the auditory N1 deficit in schizophrenia is linked to the underlying genetic risk of developing this disorder. In light of recent studies, these results point to the N1 deficit as an endophenotypic marker for schizophrenia. The potential future utility of this metric as one element of a multivariate endophenotype is discussed.

  19. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  20. Perceptual demand modulates activation of human auditory cortex in response to task-irrelevant sounds.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Mangalathu, Jain; Desai, Anjali; Binder, Jeffrey R; Liebenthal, Einat

    2013-09-01

    In the visual modality, perceptual demand on a goal-directed task has been shown to modulate the extent to which irrelevant information can be disregarded at a sensory-perceptual stage of processing. In the auditory modality, the effect of perceptual demand on neural representations of task-irrelevant sounds is unclear. We compared simultaneous ERPs and fMRI responses associated with task-irrelevant sounds across parametrically modulated perceptual task demands in a dichotic-listening paradigm. Participants performed a signal detection task in one ear (Attend ear) while ignoring task-irrelevant syllable sounds in the other ear (Ignore ear). Results revealed modulation of syllable processing by auditory perceptual demand in an ROI in middle left superior temporal gyrus and in negative ERP activity 130-230 msec post stimulus onset. Increasing the perceptual demand in the Attend ear was associated with a reduced neural response in both fMRI and ERP to task-irrelevant sounds. These findings are in support of a selection model whereby ongoing perceptual demands modulate task-irrelevant sound processing in auditory cortex.

  1. Responses of mink to auditory stimuli: Prerequisites for applying the ‘cognitive bias’ approach

    DEFF Research Database (Denmark)

    Svendsen, Pernille Maj; Malmkvist, Jens; Halekoh, Ulrich

    2012-01-01

    The aim of the study was to determine and validate prerequisites for applying a cognitive (judgement) bias approach to assessing welfare in farmed mink (Neovison vison). We investigated discrimination ability and associative learning ability using auditory cues. The mink (n = 15 females) were...... mink only showed habituation in experiment 2. Regardless of the frequency used (2 and 18 kHz), cues predicting the danger situation initially elicited slower responses compared to those predicting the safe situation but quickly became faster. Using auditory cues as discrimination stimuli for female...... farmed mink in a judgement bias approach would thus appear to be feasible. However several specific issues are to be considered in order to successfully adapt a cognitive bias approach to mink, and these are discussed....

  2. Effect of Infant Prematurity on Auditory Brainstem Response at Preschool Age

    Directory of Open Access Journals (Sweden)

    Sara Hasani

    2013-03-01

    Full Text Available Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age.   Materials and Methods: An auditory brainstem response (ABR test was performed with low rates of stimuli in 60 children aged 4 to 6 years. Thirty subjects had been born following a very preterm labor or late-preterm labor and 30 control subjects had been born following a full-term labor.   Results: Significant differences in the ABR test result were observed in terms of the inter-peak intervals of the I–III and III–V waves, and the absolute latency of the III wave (P

  3. The feeding responses evoked by endogenous cholecystokinin are regulated by different gastrointestinal sites.

    Science.gov (United States)

    Washington, Martha C; Williams, Kasey; Sayegh, Ayman I

    2016-02-01

    The current study tested the hypothesis that cholecystokinin (CCK) A receptor (CCKAR) in areas supplied by the celiac artery (CA), stomach and upper duodenum, and the cranial mesenteric artery (CMA), small and parts of the large intestine, is necessary for reduction of meal size, prolongation of the intermeal interval (time between first and second meal) and increased satiety ratio (intermeal interval/meal size or amount of food consumed during any given unit of time) by the non-nutrient stimulator of endogenous CCK release camostat. Consistent with our previous findings camostat reduced meal size, prolonged the intermeal interval and increased the satiety ratio. Here, we report that blocking CCKAR in the area supplied by the celiac artery attenuated reduction of meal size by camostat more so than the cranial mesenteric artery route. Blocking CCKAR in the area supplied by the cranial mesenteric artery attenuated prolongation of the intermeal interval length and increased satiety ratio by camostat more so than the celiac artery route. Blocking CCKAR in the areas supplied by the femoral artery (control) failed to alter the feeding responses evoked by camostat. These results support the hypothesis that CCKAR in the area supplied by the CA is necessary for reduction of meal size by camostat whereas CCKAR in the area supplied by the CMA is necessary for prolongation of the intermeal interval and increased satiety ratio by this substance. Our results demonstrate that meal size and intermeal interval length by camostat are regulated through different gastrointestinal sites.

  4. Somatic-evoked brain responses as indicators of adaptation to nitrogen narcosis.

    Science.gov (United States)

    Langley, T D; Hamilton, R W

    1975-02-01

    Two 2-week experimental pressure chamber exposures to nitrogen-oxygen breathing mixtures afforded an opportunity to study adaptation to nitrogen narcosis. Somatic-evoked brain responses induced by electrical stimulation of the median nerve in the wrist were processed on-line with a signal averager. The N1P2 interval was seen generally to be reduced in amplitude as a result of exposure to increased nitrogen partial pressure. Compressions with air were made from sea level and saturation to 200, 250 and 300 ft of sea water (fsw) equivalent (61, 76, and 91m). The decrement was found to be less, for equivalent exposures, in subjects who had been saturated at the pressure of 90 and 120 fsw (27 and 36 m); we interpret this as evidence of a nonspecific "adaptation." Less adaptation was seen from 30 and 60 fsw (9 and 18 m). These results are consistent with performance tests on the same exposures, and with subjective impressions. Saturation with 3 0r 4 atm of nitrogen may permit somewhat deeper diving without serious narcosis, than is possible from sea level.

  5. Differential pathlength factor informs evoked stimulus response in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Lin, Alexander J; Ponticorvo, Adrien; Durkin, Anthony J; Venugopalan, Vasan; Choi, Bernard; Tromberg, Bruce J

    2015-10-01

    Baseline optical properties are typically assumed in calculating the differential pathlength factor (DPF) of mouse brains, a value used in the modified Beer-Lambert law to characterize an evoked stimulus response. We used spatial frequency domain imaging to measure in vivo baseline optical properties in 20-month-old control ([Formula: see text]) and triple transgenic APP/PS1/tau (3xTg-AD) ([Formula: see text]) mouse brains. Average [Formula: see text] for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text], respectively, at 460 nm; and [Formula: see text] and [Formula: see text], respectively, at 530 nm. Average [Formula: see text] for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text], respectively, at 460 nm; and [Formula: see text] and [Formula: see text], respectively, at 530 nm. The calculated DPF for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text] OD mm, respectively, at 460 nm; and [Formula: see text] and [Formula: see text] OD mm, respectively, at 530 nm. In hindpaw stimulation experiments, the hemodynamic increase in brain tissue concentration of oxyhemoglobin was threefold larger and two times longer in the control mice compared to 3xTg-AD mice. Furthermore, the washout of deoxyhemoglobin from increased brain perfusion was seven times larger in controls compared to 3xTg-AD mice ([Formula: see text]).

  6. Botulinum toxin A for palmar hyperhidrosis: assessment with sympathetic skin responses evoked by train of stimuli.

    Science.gov (United States)

    Al-Hashel, J Y; Youssry, D; Rashaed, H M; Shamov, T; Rousseff, R T

    2016-07-01

    Objective assessment of the effect of botulinum toxin A (BT) treatment in primary palmar hyperhidrosis (PH) is attempted by different methods. We decided to use for this purpose sympathetic skin responses evoked by train of stimuli (TSSR). Twenty patients with severe PH (five female, median age 24, range 18-36) were examined regularly over 3 months after receiving 50 UI BT in each palm. TSSR were recorded from the palms after sensory stimulation by a train of three supramaximal electric pulses 3 millisecond apart. Results were compared to longitudinally studied TSSR of 20 healthy sex- and age-matched control subjects. All hyperhidrosis patients reported excellent improvement. TSSR amplitudes decreased at week 1 (mean 54% range 48%-67%) and over the following months in a clinically significant trend (slope R=-.82, P<.0001). TSSR in controls changed insignificantly (±13% from the baseline). The difference between patients and controls was highly significant at any time point (P<.001). This study suggests that TSSR may help in assessment of treatments in PH. It confirms objectively the efficacy of BT in PH.

  7. Ventricular evoked response in patients with hypertrophic obstructive cardiomyopathy treated with DDD pacing

    Directory of Open Access Journals (Sweden)

    João Ricardo M. Sant'Anna

    1999-08-01

    Full Text Available OBJECTIVE: To assess the changes in ventricular evoked responses (VER produced by the decrease in left ventricular outflow tract gradient (LVOTG in patients with hypertrophic obstructive cardiomyopathy (HOCM treated with dual-chamber (DDD pacing. METHODS: A pulse generator Physios CTM (Biotronik, Germany was implanted in 9 patients with severe drug-refractory HOCM. After implantation, the following conditions were assessed: 1 Baseline evaluation: different AV delay (ranging from 150ms to 50 ms were sequentially programmed during 5 to 10 minutes, and the LVOTG (as determined by Doppler echocardiography and VER recorded; 2 standard evaluation, when the best AV delay (resulting in the lowest LVOTG programmed at the initial evaluation was maintained so that its effect on VER and LVOTG could be assessed during each chronic pacing evaluation. RESULTS: LVOTG decreased after DDD pacing, with a mean value of 59 ± 24 mmHg after dual chamber pacemaker, which was significantly less than the gradient before pacing (98 + 22mmHg. An AV delay >100ms produced a significantly lower decrease in VER depolarization duration (VER DD when compared to an AV delay <=100ms. Linear regression analyses showed a significant correlation between the LVOTG values and the magnitude of VER (r=0.69; p<0.05 in the 9 studied patients. CONCLUSION: The telemetry obtained intramyocardial electrogram is a sensitive means to assess left ventricular dynamics in patients with HOCM treated with DDD pacing.

  8. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses

    NARCIS (Netherlands)

    Journee, H. -L.; Polak, H. E.; De Kleuver, M.

    2007-01-01

    Introduction. - In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded

  9. Evoked brain potentials and disability in brain-damaged patients.

    Science.gov (United States)

    Rappaport, M; Hall, K; Hopkins, K; Belleza, T; Berrol, S; Reynolds, G

    1977-08-01

    Various measures of evoked brain potential abnormality (EPA) were correlated with disability ratings (DR) for 35 brain-damaged patients. EPA data consisted of judgements of abnormality of ipsilateral, contralateral and bilateral responses to auditory and visual stimuli reflecting activity in the brain stem, subcortex and cortex. DR data were obtained from a scale developed for this study to quantize and categorize patients with a wide range of disabilities from coma to normal functioning. EPA scores based on visual and auditory cortical responses showed significantly positive correlations with degree of disability. Visual response correlation was .49, auditory .38 and combined visual and auditory .51. It was concluded that EPA measures can reflect disability independently of clinical information. They are useful in assessing brain function in general and, specifically, in assessing impairment of sensory function. The evoked potential technique was particularly useful in patients who were not able to participate fully in their own examination. There were indications that the technique may also be valuable in monitoring progress and in predicting clinical outcome in brain-damaged patients.

  10. Electrophysiological evidence for a general auditory prediction deficit in adults who stutter.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2015-11-01

    We previously found that stuttering individuals do not show the typical auditory modulation observed during speech planning in nonstuttering individuals. In this follow-up study, we further elucidate this difference by investigating whether stuttering speakers' atypical auditory modulation is observed only when sensory predictions are based on movement planning or also when predictable auditory input is not a consequence of one's own actions. We recorded 10 stuttering and 10 nonstuttering adults' auditory evoked potentials in response to random probe tones delivered while anticipating either speaking aloud or hearing one's own speech played back and in a control condition without auditory input (besides probe tones). N1 amplitude of nonstuttering speakers was reduced prior to both speaking and hearing versus the control condition. Stuttering speakers, however, showed no N1 amplitude reduction in either the speaking or hearing condition as compared with control. Thus, findings suggest that stuttering speakers have general auditory prediction difficulties.

  11. Missing and delayed auditory responses in young and older children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    J. Christopher eEdgar

    2014-06-01

    Full Text Available Background: The development of left and right superior temporal gyrus (STG 50ms (M50 and 100ms (M100 auditory responses in typically developing children (TD and in children with autism spectrum disorder (ASD was examined. It was hypothesized that (1 M50 responses would be observed equally often in younger and older children, (2 M100 responses would be observed more often in older than younger children indicating later development of secondary auditory areas, and (3 M100 but not M50 would be observed less often in ASD than TD in both age groups, reflecting slower maturation of later developing auditory areas in ASD. Methods: 35 typically developing controls, 63 ASD without language impairment (ASD-LI, and 38 ASD with language impairment (ASD+LI were recruited.The presence or absence of a STG M50 and M100 was scored. Subjects were grouped into younger (6 to 10-years-old and older groups (11 to 15-years-old. Results: Although M50 responses were observed equally often in older and younger subjects and equally often in TD and ASD, left and right M50 responses were delayed in ASD-LI and ASD+LI. Group comparisons showed that in younger subjects M100 responses were observed more often in TD than ASD+LI (90% vs 66%, p=0.04, with no differences between TD and ASD-LI (90% vs 76% p=0.14 or between ASD-LI and ASD+LI (76% vs 66%, p=0.53. In older subjects, whereas no differences were observed between TD and ASD+LI, responses were observed more often in ASD-LI than ASD+LI. Conclusions: Although present in all groups, M50 responses were delayed in ASD, suggesting delayed development of earlier developing auditory areas. Examining the TD data, findings indicated that by 11 years a right M100 should be observed in 100% of subjects and a left M100 in 80% of subjects. Thus, by 11years, lack of a left and especially right M100 offers neurobiological insight into sensory processing that may underlie language or cognitive impairment.

  12. Activation of histamine H3 receptors produces presynaptic inhibition of neurally evoked cat nictitating membrane responses in vivo.

    Science.gov (United States)

    Koss, M C; Hey, J A

    1992-08-01

    This study was undertaken in order to determine the potential role of prejunctional histamine H3 receptors in an in vivo adrenergic model system. Frequency-dependent nictitating membrane responses were elicited by sympathetic nerve stimulation in anesthetized cats. Systemic administration of the selective histamine H3 receptor agonist, (R)-alpha-methylhistamine (R alpha MeHA) produced a dose-related depression of amplitude of the evoked nictitating membrane responses with a threshold of about 10 micrograms/kg and maximal effect (50% depression at the lowest frequency; 0.5 Hz) seen at 100-300 micrograms/kg. Responses obtained with low frequency stimulation were more sensitive to depression by R alpha MeHA than were responses evoked with higher frequencies of stimulation. Larger doses of R alpha MeHA given to the same animals, failed to produce additional inhibition. R alpha MeHA depressed the amplitude of nictitating membrane responses evoked by either pre- or postganglionic nerve stimulation to an equivalent degree. This depressant action of R alpha MeHA was antagonized by pretreatment with the specific histamine H3 antagonist, thioperamide (3 mg/kg), but not by combined pretreatment with histamine H1 and H2 blockers chlorpheniramine (300 micrograms/kg) and cimetidine (5 mg/kg). Intravenous administration of adrenaline (1-30 micrograms/kg) also produced graded nictitating membrane responses that were not altered by subsequent administration of R alpha MeHA. These results suggest that histamine H3 receptors are involved in the modulation of neurally evoked noradrenaline release in the cat nictitating membrane by an inhibitory presynaptic action.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. In situ fluorescence imaging of glutamate-evoked mitochondrial Na+ responses in astrocytes.

    Science.gov (United States)

    Bernardinelli, Yann; Azarias, Guillaume; Chatton, Jean-Yves

    2006-10-01

    Astrocytes can experience large intracellular Na+ changes following the activation of the Na+-coupled glutamate transport. The present study investigated whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Mitochondrial Na+ (Na+(mit)) changes were monitored using the Na+-sensitive fluorescent probe CoroNa Red (CR) in intact primary cortical astrocytes, as opposed to the classical isolated mitochondria preparation. The mitochondrial localization and Na+ sensitivity of the dye were first verified and indicated that it can be safely used as a selective Na+(mit) indicator. We found by simultaneously monitoring cytosolic and mitochondrial Na+ using sodium-binding benzofuran isophthalate and CR, respectively, that glutamate-evoked cytosolic Na+ elevations are transmitted to mitochondria. The resting Na+(mit) concentration was estimated at 19.0 +/- 0.8 mM, reaching 30.1 +/- 1.2 mM during 200 microM glutamate application. Blockers of conductances potentially mediating Na+ entry (calcium uniporter, monovalent cation conductances, K+(ATP) channels) were not able to prevent the Na+(mit) response to glutamate. However, Ca2+ and its exchange with Na+ appear to play an important role in mediating mitochondrial Na+ entry as chelating intracellular Ca2+ with BAPTA or inhibiting Na+/Ca2+ exchanger with CGP-37157 diminished the Na+(mit) response. Moreover, intracellular Ca2+ increase achieved by photoactivation of caged Ca2+ also induced a Na+(mit) elevation. Inhibition of mitochondrial Na/H antiporter using ethylisopropyl-amiloride caused a steady increase in Na+(mit) without increasing cytosolic Na+, indicating that Na+ extrusion from mitochondria is mediated by these exchangers. Thus, mitochondria in intact astrocytes are equipped to efficiently sense cellular Na+ signals and to dynamically regulate their Na+ content.

  14. Brain responses to altered auditory feedback during musical keyboard production: an fMRI study.

    Science.gov (United States)

    Pfordresher, Peter Q; Mantell, James T; Brown, Steven; Zivadinov, Robert; Cox, Jennifer L

    2014-03-27

    Alterations of auditory feedback during piano performance can be profoundly disruptive. Furthermore, different alterations can yield different types of disruptive effects. Whereas alterations of feedback synchrony disrupt performed timing, alterations of feedback pitch contents can disrupt accuracy. The current research tested whether these behavioral dissociations correlate with differences in brain activity. Twenty pianists performed simple piano keyboard melodies while being scanned in a 3-T magnetic resonance imaging (MRI) scanner. In different conditions they experienced normal auditory feedback, altered auditory feedback (asynchronous delays or altered pitches), or control conditions that excluded movement or sound. Behavioral results replicated past findings. Neuroimaging data suggested that asynchronous delays led to increased activity in Broca's area and its right homologue, whereas disruptive alterations of pitch elevated activations in the cerebellum, area Spt, inferior parietal lobule, and the anterior cingulate cortex. Both disruptive conditions increased activations in the supplementary motor area. These results provide the first evidence of neural responses associated with perception/action mismatch during keyboard production.

  15. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  16. 纯音听阈正常的言语交流障碍患者听觉事件相关电位分析%Characteristics of Auditory Evoked Event-Related Potentials in Patients of Auditory Disability with Normal Hearing

    Institute of Scientific and Technical Information of China (English)

    梁茂金; 郑亿庆; 杨海弟; 张志刚; 陈俊明

    2011-01-01

    Objective To investigate the auditory evoked event - related potentials characteristics in patients of auditory disability with normal hearing. Methods 10 patients, complaining of difficulty in conversation, especially in noisy backgrounds, were continuously studied. 20 sex - and age-matched healthy volunteers without hearing problems were used as controls. Both the patients and volunteers have normal hearing threshold and middle ear status and distortion product otoacoustic emission(DPOAE) and auditory brainstem responses(ABR). They recieced 128 - channel ERP test with speech stimuli, in quiet and noisy backgrounds, respectively. Results Both the patients and controls had P1-N1-P2 and MMN in quiet. In noisy background, 2 patients had neither P1-N1-P2 nor MMN. In quiet. MMN latencies of the patients were 221. 8±23. 9 ms, significantly prolonged compare to the controls' 200. 4±28.1 ms(P=0. 049). In noisy background. MMN latencies of patients and controls were 267.1±27. 8 ms and 233. 4±25. 8 ma. Respectively, and the difference was statistically significant (P=0. 003). There were no statistical differences in latencies or amplititudes of P1 -N1 - P2, or in amplititudes of MMN between patients and normal controls. Conclusion Prolonged MMN latencies in patients of auditory disability with normal hearing, may indicate the possible existence of the central auditory processing disorders.%目的 初步探讨纯音听阈正常的言语交流障碍患者听觉事件相关电位的特征.方法 因听觉障碍尤其在噪声环境下言语理解困难的患者10例作为患者组,正常对照组为性别、年龄匹配的无听力及交流障碍的健康志愿者20例,所有患者及志愿者纯音听阈、鼓室导抗图、畸变耳声发射( DPOAE)及听性脑干反应(ABR)检测均无异常.两组分别在安静和噪声背景下行128导联言语刺激音的听觉事件相关电位(event- related potentials,ERP)检测,比较两组的ERP成分P1—N1—P2

  17. Effects of Electrode Position on Spatiotemporal Auditory Nerve Fiber Responses: A 3D Computational Model Study

    Directory of Open Access Journals (Sweden)

    Soojin Kang

    2015-01-01

    Full Text Available A cochlear implant (CI is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF response to either a single pulse or low- (250 pulses/s and high-rate (5,000 pulses/s pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance.

  18. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  19. Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus.

    Science.gov (United States)

    Ghaemi, Reza; Rezai, Pouya; Iyengar, Balaji G; Selvaganapathy, Ponnambalam Ravi

    2015-02-21

    Two microfluidic devices (pneumatic chip and FlexiChip) have been developed for immobilization and live-intact fluorescence functional imaging of Drosophila larva's Central Nervous System (CNS) in response to controlled acoustic stimulation. The pneumatic chip is suited for automated loading/unloading and potentially allows high throughput operation for studies with a large number of larvae while the FlexiChip provides a simple and quick manual option for animal loading and is suited for smaller studies. Both chips were capable of significantly reducing the endogenous CNS movement while still allowing the study of sound-stimulated CNS activities of Drosophila 3rd instar larvae using genetically encoded calcium indicator GCaMP5. Temporal effects of sound frequency (50-5000 Hz) and intensity (95-115 dB) on CNS activities were investigated and a peak neuronal response of 200 Hz was identified. Our lab-on-chip devices can not only aid further studies of Drosophila larva's auditory responses but can be also adopted for functional imaging of CNS activities in response to other sensory cues. Auditory stimuli and the corresponding response of the CNS can potentially be used as a tool to study the effect of chemicals on the neurophysiology of this model organism.

  20. Dissociable Memory- and Response-Related Activity in Parietal Cortex during Auditory Spatial Working Memory

    Directory of Open Access Journals (Sweden)

    Claude Alain

    2010-12-01

    Full Text Available Attending and responding to sound location generates increased activity in parietal cortex which may index auditory spatial working memory and/or goal-directed action. Here, we used an n-back task (Experiment 1 and an adaptation paradigm (Experiment 2 to distinguish memory-related activity from that associated with goal-directed action. In Experiment 1, participants indicated, in separate blocks of trials, whether the incoming stimulus was presented at the same location as in the previous trial (1-back or two trials ago (2-back. Prior to a block of trials, participants were told to use their left or right index finger. Accuracy and reaction times were worse for the 2-back than for the 1-back condition. The analysis of fMRI data revealed greater sustained task-related activity in the inferior parietal lobule (IPL and superior frontal sulcus during 2-back than 1-back after accounting for response-related activity elicited by the targets. Target detection and response execution were also associated with enhanced activity in the IPL bilaterally, though the activation was anterior to that associated with sustained task-related activity. In Experiment 2, we used an event-related design in which participants listened (no response required to trials that comprised four sounds presented either at the same location or at four different locations. We found larger IPL activation for changes in sound location than for sounds presented at the same location. The IPL activation overlapped with that observed during auditory spatial working memory task. Together, these results provide converging evidence supporting the role of parietal cortex in auditory spatial working memory which can be dissociated from response selection and execution.

  1. Different mechanisms are responsible for dishabituation of electrophysiological auditory responses to a change in acoustic identity than to a change in stimulus location.

    Science.gov (United States)

    Smulders, Tom V; Jarvis, Erich D

    2013-11-01

    Repeated exposure to an auditory stimulus leads to habituation of the electrophysiological and immediate-early-gene (IEG) expression response in the auditory system. A novel auditory stimulus reinstates this response in a form of dishabituation. This has been interpreted as the start of new memory formation for this novel stimulus. Changes in the location of an otherwise identical auditory stimulus can also dishabituate the IEG expression response. This has been interpreted as an integration of stimulus identity and stimulus location into a single auditory object, encoded in the firing patterns of the auditory system. In this study, we further tested this hypothesis. Using chronic multi-electrode arrays to record multi-unit activity from the auditory system of awake and behaving zebra finches, we found that habituation occurs to repeated exposure to the same song and dishabituation with a novel song, similar to that described in head-fixed, restrained animals. A large proportion of recording sites also showed dishabituation when the same auditory stimulus was moved to a novel location. However, when the song was randomly moved among 8 interleaved locations, habituation occurred independently of the continuous changes in location. In contrast, when 8 different auditory stimuli were interleaved all from the same location, a separate habituation occurred to each stimulus. This result suggests that neuronal memories of the acoustic identity and spatial location are different, and that allocentric location of a stimulus is not encoded as part of the memory for an auditory object, while its acoustic properties are. We speculate that, instead, the dishabituation that occurs with a change from a stable location of a sound is due to the unexpectedness of the location change, and might be due to different underlying mechanisms than the dishabituation and separate habituations to different acoustic stimuli.

  2. Investigation of the change characteristics of time parameters of somatosensory evoked magnetic fields (SEFs) and auditory evoked magnetic fields (AEFs) in patients with acute cerebral infarction by magnetoencephalgraphy%急性脑梗死患者脑磁图SEFs和AEFs时间参数变化特征

    Institute of Scientific and Technical Information of China (English)

    孙占用; 吕佩源; 冯亚青; 王建华; 孙吉林; 吴杰; 李素敏

    2005-01-01

    目的研究急性脑梗死患者脑磁图(magnetoencephalography,MEG)体感诱发磁场(somatosensory evoked magnetic fields,SEFs)和听觉诱发磁场(auditory evoked magnetic fields,AEFs)时间参数变化.方法使用306通道MEG机对15例急性脑梗死患者进行SEFs和AEFs检测;同时检测健康志愿者25例作为对照.结果 SEFs的最基本波形为M 20,患者组M 20潜伏期患侧为(23.3±1.5)ms,健侧为(21.9±1.3)ms,正常对照组为(20.6±1.1)ms,患者组明显延迟(P<0.01).AEFs M 100患者组潜伏期为(97.0±6.0)ms,正常对照组为(89.3±27.9)ms;患者组明显延迟(P<0.05).结论 MEG可灵敏、客观地检测出急性脑梗死患者体感和听觉皮层中枢功能损伤.

  3. Attending at a Low Intensity Increases Impulsivity in an Auditory Sustained Attention to Response Task.

    Science.gov (United States)

    Roebuck, Hettie; Guo, Kun; Bourke, Patrick

    2015-12-01

    Why attention lapses during prolonged tasks is debated, specifically whether errors are a consequence of under-arousal or exerted effort. To explore this, we investigated whether increased impulsivity is associated with effortful processing by modifying the demand of a task by presenting it at a quiet intensity. Here, we consider whether attending at low but detectable levels affects impulsivity in a population with intact hearing. A modification of the Sustained Attention to Response Task was used with auditory stimuli at two levels: the participants' personal "lowest detectable" level and a "normal speaking" level. At the quiet intensity, we found that more impulsive responses were made compared with listening at a normal speaking level. These errors were not due to a failure in discrimination. The findings suggest an increase in processing time for auditory stimuli at low levels that exceeds the time needed to interrupt a planned habitual motor response. This leads to a more impulsive and erroneous response style. These findings have important implications for understanding the nature of impulsivity in relation to effortful processing. They may explain why a high proportion of individuals with hearing loss are also diagnosed with Attention Deficit Hyperactivity Disorder.

  4. Testosterone alters genomic responses to song and monoaminergic innervation of auditory areas in a seasonally breeding songbird.

    Science.gov (United States)

    Matragrano, Lisa L; LeBlanc, Meredith M; Chitrapu, Anjani; Blanton, Zane E; Maney, Donna L

    2013-06-01

    Behavioral responses to social stimuli often vary according to endocrine state. Our previous work has suggested that such changes in behavior may be due in part to hormone-dependent sensory processing. In the auditory forebrain of female white-throated sparrows, expression of the immediate early gene ZENK (egr-1) is higher in response to conspecific song than to a control sound only when plasma estradiol reaches breeding-typical levels. Estradiol also increases the number of detectable noradrenergic neurons in the locus coeruleus and the density of noradrenergic and serotonergic fibers innervating auditory areas. We hypothesize, therefore, that reproductive hormones alter auditory responses by acting on monoaminergic systems. This possibility has not been examined in males. Here, we treated non-breeding male white-throated sparrows with testosterone to mimic breeding-typical levels and then exposed them to conspecific male song or frequency-matched tones. We observed selective ZENK responses in the caudomedial nidopallium only in the testosterone-treated males. Responses in another auditory area, the caudomedial mesopallium, were selective regardless of hormone treatment. Testosterone treatment reduced serotonergic fiber density in the auditory forebrain, thalamus, and midbrain, and although it increased the number of noradrenergic neurons detected in the locus coeruleus, it reduced noradrenergic fiber density in the auditory midbrain. Thus, whereas we previously reported that estradiol enhances monoaminergic innervation of the auditory pathway in females, we show here that testosterone decreases it in males. Mechanisms underlying testosterone-dependent selectivity of the ZENK response may differ from estradiol-dependent ones

  5. 电刺激听神经诱发小鼠脑干神经元活动的光信号特征%Optical mapping of brainstem neuronal activity evoked by auditory electro-stimulation in rats

    Institute of Scientific and Technical Information of China (English)

    蔡竖平; 沈静; 土井直

    2005-01-01

    刺激听神经诱发的脑干光学信号及其特征:刺激听神经诱发的光学信号以时间-空间分布的形式被记录.在同侧耳蜗核,光学信号的潜伏期为(4.63±1.01)ms,前庭核的峰潜伏期为(6.00±0.89)ms.每一个光学信号分为两个成分:快的峰电位样反应及慢的长时程反应.快电位的起始相具有突触前性质,晚期相具有突触后性质;慢的长时程反应可能与多突触传递有关.②γ-氨基丁酸和荷包牡丹碱光学反应记录结果:灌流液中加入50 μmol/Lγ-氨基丁酸可最大限度地降低听神经诱发的脑干神经元信号的幅度,快反应起始相的潜伏期没有延长,但幅度有所降低,晚期相以及慢反应的幅度被明显抑制;而灌流液中加入50μmol/Lγ-氨基丁酸、200 μmol/L荷包牡丹碱后则可部分逆转γ-氨基丁酸对此信号的作用,快的峰电位样反应和慢反应的幅度有部分恢复.结论:多部位的光学记录系统可以收集电刺激听神经的诱发反应,光学信号显示了时间-空间分布的类型.γ-氨基丁酸能够使电刺激听神经诱发的脑干神经元信号的幅度明显降低,而γ-氨基丁酸A受体拮抗剂荷包牡丹碱可以竞争性地对抗部分而非全部的γ-氨基丁酸的抑制作用,提示γ-氨基丁酸能神经元对听神经诱发冲动的抑制作用除部分通过γ-氨基丁酸A受体实现外,还涉及其他亚型的γ-氨基丁酸受体.%BACKGROUND: Optical mapping technique is a novel electrophysiological detection method in which voltage-sensitivity dye is medium and silicon photoelectrical diode transforming technology is characteristic, used for analyzing the spatial-temporal distribution of membrane potential in complex neural system.OBJECTIVE: To observe the spatial-temporal changes of brainstem auditory electro-stimulation evoked potential by using optical mapping technology, so as to probe into the influence of γ-Aminobutyric acid (GABA) and γ-GABA receptor

  6. Visual processing during recovery from vegetative state to consciousness: Comparing behavioral indices to brain responses

    NARCIS (Netherlands)

    Wijnen, V.J.; Eilander, H.J.; Gelder, B. de; Boxtel, G.J. Van

    2014-01-01

    BACKGROUND: Auditory stimulation is often used to evoke responses in unresponsive patients who have suffered severe brain injury. In order to investigate visual responses, we examined visual evoked potentials (VEPs) and behavioral responses to visual stimuli in vegetative patients during recovery to

  7. Effects of pulse phase duration and location of stimulation within the inferior colliculus on auditory cortical evoked potentials in a guinea pig model.

    Science.gov (United States)

    Neuheiser, Anke; Lenarz, Minoo; Reuter, Guenter; Calixto, Roger; Nolte, Ingo; Lenarz, Thomas; Lim, Hubert H

    2010-12-01

    The auditory midbrain implant (AMI), which consists of a single shank array designed for stimulation within the central nucleus of the inferior colliculus (ICC), has been developed for deaf patients who cannot benefit from a cochlear implant. Currently, performance levels in clinical trials for the AMI are far from those achieved by the cochlear implant and vary dramatically across patients, in part due to stimulation location effects. As an initial step towards improving the AMI, we investigated how stimulation of different regions along the isofrequency domain of the ICC as well as varying pulse phase durations and levels affected auditory cortical activity in anesthetized guinea pigs. This study was motivated by the need to determine in which region to implant the single shank array within a three-dimensional ICC structure and what stimulus parameters to use in patients. Our findings indicate that complex and unfavorable cortical activation properties are elicited by stimulation of caudal-dorsal ICC regions with the AMI array. Our results also confirm the existence of different functional regions along the isofrequency domain of the ICC (i.e., a caudal-dorsal and a rostral-ventral region), which has been traditionally unclassified. Based on our study as well as previous animal and human AMI findings, we may need to deliver more complex stimuli than currently used in the AMI patients to effectively activate the caudal ICC or ensure that the single shank AMI is only implanted into a rostral-ventral ICC region in future patients.

  8. Proprioceptive evoked potentials in man: cerebral responses to changing weight loads on the hand

    DEFF Research Database (Denmark)

    Arnfred, S; He, Chen; Eder, D

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70......, P190, and a single negative frontal Fz/N70 component. We conclude that a brisk change of a hand held load elicits a significant evoked potential (EP) unlike the electrical somato-sensory EP (SEP). The stimulus is perceived as applied force. For this reason we call it a proprioceptive EP (PEP...

  9. Impaired timing adjustments in response to time-varying auditory perturbation during connected speech production in persons who stutter.

    Science.gov (United States)

    Cai, Shanqing; Beal, Deryk S; Ghosh, Satrajit S; Guenther, Frank H; Perkell, Joseph S

    2014-02-01

    Auditory feedback (AF), the speech signal received by a speaker's own auditory system, contributes to the online control of speech movements. Recent studies based on AF perturbation provided evidence for abnormalities in the integration of auditory error with ongoing articulation and phonation in persons who stutter (PWS), but stopped short of examining connected speech. This is a crucial limitation considering the importance of sequencing and timing in stuttering. In the current study, we imposed time-varying perturbations on AF while PWS and fluent participants uttered a multisyllabic sentence. Two distinct types of perturbations were used to separately probe the control of the spatial and temporal parameters of articulation. While PWS exhibited only subtle anomalies in the AF-based spatial control, their AF-based fine-tuning of articulatory timing was substantially weaker than normal, especially in early parts of the responses, indicating slowness in the auditory-motor integration for temporal control.

  10. The Middle Latency Response (MLR) and Steady State Evoked Potential (SSEP) in Neonates.

    Science.gov (United States)

    1985-05-01

    antibiotics, intracranial hemorrhage, and congenital malformations . Unfortunately, the items in this list often occur in combination rather than in isolation...JOURNAL OF THE AMERICAN AUDITORY SOCIETY 5: 156-162, 1979. Yamada, 0., Kodera, K. and Yagi, T. Cochlear processes affecting wave V latency of the

  11. Normalization of Pain-Evoked Neural Responses Using Spontaneous EEG Improves the Performance of EEG-Based Cross-Individual Pain Prediction

    Science.gov (United States)

    Bai, Yanru; Huang, Gan; Tu, Yiheng; Tan, Ao; Hung, Yeung Sam; Zhang, Zhiguo

    2016-01-01

    An effective physiological pain assessment method that complements the gold standard of self-report is highly desired in pain clinical research and practice. Recent studies have shown that pain-evoked electroencephalography (EEG) responses could be used as a readout of perceived pain intensity. Existing EEG-based pain assessment is normally achieved by cross-individual prediction (i.e., to train a prediction model from a group of individuals and to apply the model on a new individual), so its performance is seriously hampered by the substantial inter-individual variability in pain-evoked EEG responses. In this study, to reduce the inter-individual variability in pain-evoked EEG and to improve the accuracy of cross-individual pain prediction, we examined the relationship between pain-evoked EEG, spontaneous EEG, and pain perception on a pain EEG dataset, where a large number of laser pulses (>100) with a wide energy range were delivered. Motivated by our finding that an individual's pain-evoked EEG responses is significantly correlated with his/her spontaneous EEG in terms of magnitude, we proposed a normalization method for pain-evoked EEG responses using one's spontaneous EEG to reduce the inter-individual variability. In addition, a nonlinear relationship between the level of pain perception and pain-evoked EEG responses was obtained, which inspired us to further develop a new two-stage pain prediction strategy, a binary classification of low-pain and high-pain trials followed by a continuous prediction for high-pain trials only, both of which used spontaneous-EEG-normalized magnitudes of evoked EEG responses as features. Results show that the proposed normalization strategy can effectively reduce the inter-individual variability in pain-evoked responses, and the two-stage pain prediction method can lead to a higher prediction accuracy. PMID:27148028

  12. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-01

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.

  13. Auditory steady state response in hearing assessment in infants with cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Daniela Polo C. Silva

    2013-12-01

    Full Text Available OBJECTIVE: To report an infant with congenital cytomegalovirus and progressive sensorineural hearing loss, who was assessed by three methods of hearing evaluation. CASE DESCRIPTION: In the first audiometry, at four months of age, the infant showed abnormal response in Otoacoustic Emissions and normal Auditory Brainstem Response (ABR, with electrophysiological threshold in 30dBnHL, in both ears. With six months of age, he showed bilateral absence of the ABR at 100dBnHL. The behavioral observational audiometry was impaired due to the delay in neuropsychomotor development. At eight months of age, he was submitted to Auditory Steady State Response (ASSR and the thresholds were 50, 70, absent in 110 and in 100dB, respectively for 500, 1,000, 2,000 and 4,000Hz in the right ear, and 70, 90, 90 and absent in 100dB, respectively for 500, 1,000, 2,000 and 4,000Hz in the left ear. COMMENTS: In the first evaluation, the infant had abnormal Otoacoustic Emission and normal ABR, which became altered at six months of age. The hearing loss severity could be identified only by the ASSR, which allowed the best procedure for hearing aids adaptation. The case description highlights the importance of the hearing status follow-up for children with congenital cytomegalovirus.

  14. Auditory brainstem response changes during exposure to GSM-900 radiation: an experimental study.

    Science.gov (United States)

    Kaprana, Antigoni E; Chimona, Theognosia S; Papadakis, Chariton E; Velegrakis, Stylianos G; Vardiambasis, Ioannis O; Adamidis, Georgios; Velegrakis, George A

    2011-01-01

    The objective of the present study was to investigate the possible electrophysiological time-related changes in auditory pathway during mobile phone electromagnetic field exposure. Thirty healthy rabbits were enrolled in an experimental study of exposure to GSM-900 radiation for 60 min and auditory brainstem responses (ABRs) were recorded at regular time-intervals during exposure. The study subjects were radiated via an adjustable power and frequency radio transmitter for GSM-900 mobile phone emission simulation, designed and manufactured according to the needs of the experiment. The mean absolute latency of waves III-V showed a statistically significant delay (p < 0.05) after 60, 45 and 15 min of exposure to electromagnetic radiation of 900 MHz, respectively. Interwave latency I-III was found to be prolonged after 60 min of radiation exposure in correspondence to wave III absolute latency delay. Interwave latencies I-V and III-V were found with a statistically significant delay (p < 0.05) after 30 min of radiation. No statistically significant delay was found for the same ABR parameters in recordings from the ear contralateral to the radiation source at 60 min radiation exposure compared with baseline ABR. The ABR measurements returned to baseline recordings 24 h after the exposure to electromagnetic radiation of 900 MHz. The prolongation of interval latencies I-V and III-V indicates that exposure to electromagnetic fields emitted by mobile phone can affect the normal electrophysiological activity of the auditory system, and these findings fit the pattern of general responses to a stressor.

  15. Perirhinal cortex relays auditory information to the frontal motor cortices in the rat.

    Science.gov (United States)

    Kyuhou, Shin-ichi; Matsuzaki, Ryuichi; Gemba, Hisae

    2003-12-26

    Auditory evoked potentials (AEPs) were recorded in the motor cortices (MC) with chronically implanted electrodes in the rat. Some of the AEPs in the MC, namely negative potentials on the surface and positive ones at a depth of 2 mm at latencies of about 50-150 ms, were abolished by limited bilateral lesions of the anterior perirhinal cortex (PERa) which was responsive to auditory stimulus, indicating that the AEPs in the MC were at least partially relayed in the PERa. The auditory response in the MC was prominently enhanced when water was supplied or the medial forebrain bundle was stimulated after auditory stimulus. These results indicate that the MC receives the reward associated auditory information from the PERa.

  16. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

    Science.gov (United States)

    Klein, A H; Joe, C L; Davoodi, A; Takechi, K; Carstens, M I; Carstens, E

    2014-06-20

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue.

  17. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model.

    Science.gov (United States)

    Nakao, Kazuhito; Nakazawa, Kazu

    2014-01-01

    In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The "paradoxically" high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception.

  18. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model

    Directory of Open Access Journals (Sweden)

    Kazuhito eNakao

    2014-07-01

    Full Text Available In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 sec, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1 a broadband increase in spontaneous LFP power in the absence of external inputs, and (2 a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The paradoxically high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception.

  19. Auditory pathology in cri-du-chat (5p-) syndrome: phenotypic evidence for auditory neuropathy.

    Science.gov (United States)

    Swanepoel, D

    2007-10-01

    5p-(cri-du-chat syndrome) is a well-defined clinical entity presenting with phenotypic and cytogenetic variability. Despite recognition that abnormalities in audition are common, limited reports on auditory functioning in affected individuals are available. The current study presents a case illustrating the auditory functioning in a 22-month-old patient diagnosed with 5p- syndrome, karyotype 46,XX,del(5)(p13). Auditory neuropathy was diagnosed based on abnormal auditory evoked potentials with neural components suggesting severe to profound hearing loss in the presence of cochlear microphonic responses and behavioral reactions to sound at mild to moderate hearing levels. The current case and a review of available reports indicate that auditory neuropathy or neural dys-synchrony may be another phenotype of the condition possibly related to abnormal expression of the protein beta-catenin mapped to 5p. Implications are for routine and diagnostic specific assessments of auditory functioning and for employment of non-verbal communication methods in early intervention.

  20. Neuromagnetic auditory steady state response to chords: effect of frequency ratio.

    Science.gov (United States)

    Otsuka, Asuka; Yumoto, Masato; Kuriki, Shinya; Nakagawa, Seiji

    2013-01-01

    Perceptual degree of consonance or dissonance of a chord is known to be varied as a function of frequency ratio between tones composing the chord. It has been indicated that generation of a sense of dissonance is associated with the auditory steady-state response (ASSR) phase-locked to difference frequencies which are salient in the chords with complex frequency ratios. This study further investigated how the neuromagnetic ASSR would be modulated as a function of the frequency ratio when the acoustic properties of the difference frequency, to which the ASSR was synchronized, was identical in terms of its number, energy and frequency. Neuronal frequency characteristics intrinsic to the ASSR were compensated by utilizing responses to a SAM (Sinusoidally Amplitude Modulated) chirp tone sweeping through the corresponding frequency range. The results showed that ASSR was significantly smaller for the chords with simple frequency ratios than for those with complex frequency ratios. It indicates that the basic neuronal correlates underlying the sensation of consonance/dissonance might be associated with the attenuation rate applied to encode the input information through the afferent auditory pathway. Attentional gating of the thalamo-cortical function might also be one of the factors.

  1. Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task.

    Science.gov (United States)

    Cansino, S; Williamson, S J

    1997-08-01

    Auditory evoked neuromagnetic fields of the primary and association auditory cortices were recorded while subjects learned to discriminate small differences in frequency and intensity between two consecutive tones. When discrimination was no better than chance, evoked field patterns across the scalp manifested no significant differences between correct and incorrect responses. However, when performance was correct on at least 75% of the trials, the spatial pattern of magnetic field differed significantly between correct and incorrect responses during the first 70 ms following the onset of the second tone. In this respect, the magnetic field pattern predicted when the subject would make an incorrect judgment more than 100 ms prior to indicating the judgment by a button press. One subject improved discrimination for much smaller differences between stimuli after 200 h of training. Evidence of cortical plasticity with improved discrimination is provided by an accompanying decrease of the relative magnetic field amplitude of the 100 ms response components in the primary and association auditory cortices.

  2. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    Science.gov (United States)

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  3. Síndrome da apneia obstrutiva do sono e o potencial auditivo P300 Obstructive sleep apnea and P300 evoked auditory potential

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Martins

    2011-12-01

    Full Text Available A Síndrome da Apneia Obstrutiva do Sono (SAOS diminui as capacidades da atenção, memória e concentração, fatores relacionados com a cognição. A análise dos parâmetros do P300 auditivo permitiria inferir disfunção cognitiva. OBJETIVO: Comparar os dados da polissonografia e do P300 auditivo em adultos, roncopatas primários com portadores de SAOS. CASUÍSTICA E MÉTODO: Estudo prospectivo em roncopatas primários (N=12 e em portadores de SAOS (N=54, submetidos à polissonografia definidos pelo índice de apneia e hipopneia (IAH. As variáveis da polissonografia e as do P300 foram comparadas, pelos testes "T" de Student, exato de Fisher, regressão logística e análise de correlação com nível de significância de 5%. RESULTADOS: O IAH apresentou correlação inversa com a oximetria em ambos os grupos. A prevalência do P300 foi menor no G.SAOS (teste exato de Fisher, p=0,027. A idade dos pacientes não influenciou a prevalência do P300 (análise de regressão; p=0,232. A amplitude do P300 foi menor do G.SAOS (teste "T" de Student; p=0,003 a latência do P300 foi semelhante em ambos os grupos (teste "T" de Student; p=0,89. CONCLUSÃO: A redução da amplitude do P300 nos portadores de SAOS sugere disfunção cognitiva induzida por diminuição da memória auditiva.The obstructive sleep apnea syndrome (OSAS reduces attention span, memory and concentration capacities, all associated with cognition. The analysis of the auditory P300 parameters could help infer cognitive dysfunction. OBJECTIVE: To compare the data from polysomnography and the auditory P300 in adults, primary snorers with OSAS patients. MATERIALS AND METHODS: Prospective study with primary snorers (N=12 and in OSAS patients (N=54, submitted to polysomnography, defined by the apnea-hypopnea index (AHI. The polysomnography and P300 variables were compared by the t-Student test, the Exact Fisher's Test, logistic regression and analysis of correlation with a significance

  4. Facial motor responses evoked by direct electrical stimulation of the trigeminal root. Localizing value for radiofrequency thermorhizotomy.

    Science.gov (United States)

    Sindou, M; Fobe, J L; Berthier, E; Vial, C

    1994-01-01

    In Sweet's description of RF-thermocoagulation for trigeminal neuralgia, the trigeminal nerve was stimulated at 50 c/s to evoke paraesthesias, in order to check the electrode location before the thermolesion is made. In 1979, we changed the frequency to 5 c/s, so as to produce in addition twitches in the masticatory muscles (in stead of the less detectable tetanization produced by 50 c/s stimulation). Since then, we started to observe, also, twitches in the muscles innervated by the facial nerve. These twitches were not always in the Orbicularis oculi (which corresponds to the classical blink reflex), but also in the lower facial muscles. Such clinically observable evoked motor responses (EMR)-which had not been reported before--were noticed in 44% of the 459 procedures performed from 1979 to 1988. When EMR were present, the threshold to evoke paraesthesias before thermolesion, and the duration of the thermolesion for obtaining a marked hypoaesthesia covering the entire painful territory, were significantly lower, respectively p trigemino-facial reflex. A preliminary intra-operative EMG study clearly shows that for EMR in the upper part of the face we are dealing with blink-like reflexes, whilst for EMR in the lower face, mechanisms still remain unclear and need further study to be understood.

  5. Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training.

    Science.gov (United States)

    Bell, Brittany A; Phan, Mimi L; Vicario, David S

    2015-03-01

    How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions.

  6. Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis

    DEFF Research Database (Denmark)

    Elliott, Taffeta M.; Christensen-Dalsgaard, Jakob; Kelley, Darcy B.

    2007-01-01

    those in partially terrestrial anurans. Broad tuning exists across characteristic frequencies (CFs). Threshold minima are -101 dB re 1 mm/s at 675 Hz; -87 dB at 1,600 Hz; and -61 dB at 3,000 Hz (-90, -77, and -44 dB re 1 Pa, respectively), paralleling the peak frequency of vocalizations at 1.2-1.6 k......The clawed frog Xenopus laevis produces vocalizations consisting of distinct patterns of clicks. This study provides the first description of spontaneous, pure-tone and communication-signal evoked discharge properties of auditory nerve (n.VIII) fibers and dorsal medullary nucleus (DMN) cells...... in an obligatorily aquatic anuran. Responses of 297 n.VIII and 253 DMN units are analyzed for spontaneous rates (SR), frequency tuning, rate-intensity functions, and firing rate adaptation, with a view to how these basic characteristics shape responses to recorded call stimuli. Response properties generally resemble...

  7. Hearing threshold estimation by auditory steady-state responses with narrow-band chirps and adaptive stimulus patterns: implementation in clinical routine.

    Science.gov (United States)

    Seidel, David Ulrich; Flemming, Tobias Angelo; Park, Jonas Jae-Hyun; Remmert, Stephan

    2015-01-01

    Objective hearing threshold estimation by auditory steady-state responses (ASSR) can be accelerated by the use of narrow-band chirps and adaptive stimulus patterns. This modification has been examined in only a few clinical studies. In this study, clinical data is validated and extended, and the applicability of the method in audiological diagnostics routine is examined. In 60 patients (normal hearing and hearing impaired), ASSR and pure tone audiometry (PTA) thresholds were compared. ASSR were evoked by binaural multi-frequent narrow-band chirps with adaptive stimulus patterns. The precision and required testing time for hearing threshold estimation were determined. The average differences between ASSR and PTA thresholds were 18, 12, 17 and 19 dB for normal hearing (PTA ≤ 20 dB) and 5, 9, 9 and 11 dB for hearing impaired (PTA > 20 dB) at the frequencies of 500, 1,000, 2,000 and 4,000 Hz, respectively, and the differences were significant in all frequencies with the exception of 1 kHz. Correlation coefficients between ASSR and PTA thresholds were 0.36, 0.47, 0.54 and 0.51 for normal hearing and 0.73, 0.74, 0.72 and 0.71 for hearing impaired at 500, 1,000, 2,000 and 4,000 Hz, respectively. Mean ASSR testing time was 33 ± 8 min. In conclusion, auditory steady-state responses with narrow-band-chirps and adaptive stimulus patterns is an efficient method for objective frequency-specific hearing threshold estimation. Precision of threshold estimation is most limited for slighter hearing loss at 500 Hz. The required testing time is acceptable for the application in everyday clinical routine.

  8. Activation of NTS A(1) adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex.

    Science.gov (United States)

    Ichinose, Tomoko K; Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2012-09-01

    Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes

  9. Short GSM mobile phone exposure does not alter human auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Thuróczy György

    2007-11-01

    Full Text Available Abstract Background There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Methods Auditory Brainstem Response (ABR was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18–26 years with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Results Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. Conclusion The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.

  10. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  11. Sedation of children for auditory brainstem response using ketamine-midazolam-atropine combination - a retrospective analysis.

    Science.gov (United States)

    Bocskai, Tímea; Németh, Adrienne; Bogár, Lajos; Pytel, József

    2013-12-01

    Authors investigated sedation quality in children for auditory brainstem response testing. Two-hundred and seventy-six sedation procedures were retrospectively analyzed using recorded data focusing on efficacy of sedation and complications. Intramuscular ketamine-midazolam-atropine combination was administered on sedation preceded by narcotic suppository as pre-medication. On using the combination vital parameters remained within normal range, the complication rate was minimal. Pulse rate, arterial blood pressure and pulse oxymetry readings were stable, hypoventilation developed in 4, apnoea in none of the cases, post-sedation agitation occurred in 3 and nausea and/or vomiting in 2 cases. Repeated administration of narcotic agent was necessary in a single case only. Our practice is suitable for the sedation assisting hearing examinations in children. It has no influence on the auditory brainstem testing, the conditions necessary for the test can be met entirely with minimal side-effects. Our practice provides a more lasting sedation time in children during the examination hence there is no need for the repetition of the narcotics.

  12. Top-down modulation of the auditory steady-state response in a task-switch paradigm

    Directory of Open Access Journals (Sweden)

    Nadia Müller

    2009-02-01

    Full Text Available Auditory selective attention is an important mechanism for top-down selection of the vast amount of auditory information our perceptual system is exposed to. In the present study, the impact of attention on auditory steady-state responses - previously shown to be generated in primary auditory regions - was investigated. This issue is still a matter of debate and recent findings point to a complex pattern of attentional effects on the aSSR. The present study aimed at shedding light on the involvement of ipsilateral and contralateral activations to the attended sound taking into account hemispheric differences and a possible dependency on modulation frequency. In aid of this, a dichotic listening experiment was designed using amplitude-modulated tones that were presented to the left and right ear simultaneously. Participants had to detect target tones in a cued ear while their brain activity was assessed using MEG. Thereby, a modulation of the aSSR by attention could be revealed, interestingly restricted to the left hemisphere and 20 Hz responses: Contralateral activations were enhanced while ipsilateral activations turned out to be reduced. Thus, our findings support and extend recent findings, showing that auditory attention can influence the aSSR, but only under specific circumstances and in a complex pattern regarding the different effects for ipsilateral and contralateral activations.

  13. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    Directory of Open Access Journals (Sweden)

    Takashi eTateno

    2013-11-01

    Full Text Available To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number.

  14. [Dissociation of visual evoked responses to hemi-field or full-field flash-checkerboard stimulation].

    Science.gov (United States)

    Samson-Dollfus, D; Layet, A; Hannequin, D; Menard, J F; Parain, D; Nehili, F

    1984-06-01

    Unexpected visual evoked responses (VERs) were recorded in 5 subjects with tumoral, ischemic or hemorrhagic lesions of the retrochiasmatic visual pathways. The flash pattern stimulation was always binocular and involved full-field and half-field stimuli. In these 5 cases, the total field VER was asymmetrical with anomalies on the affected occipital region. However half-field VERs P100 contralateral to the stimulus were noted both on the normal and on the affected occipital region. One can ask if this is not an electrophysiological equivalent of the clinical relative hemianopsia.

  15. Auditory Neuropathy: Findings of Behavioral, Physiological and Neurophysiological Tests

    Directory of Open Access Journals (Sweden)

    Mohammad Farhadi

    2006-12-01

    Full Text Available Background and Aim: Auditory neuropathy (AN can be diagnosed by abnormal auditory brainstem response (ABR, in the presence of normal cochlear microphonic (CM and otoacoustic emissions (OAEs.The aim of this study was to investigate the ABR and other electrodiagnostic test results of 6 patients suspicious to AN with problems in speech recognition. Materials and Methods: this cross sectional study was conducted on 6 AN patients with different ages evaluated by pure tone audiometry, speech discrimination score (SDS , immittance audiometry. ElectroCochleoGraphy , ABR, middle latency response (MLR, Late latency response (LLR, and OAEs. Results: Behavioral pure tone audiometric tests showed moderate to profound hearing loss. SDS was so poor which is not in accordance with pure tone thresholds. All patients had normal tympanogram but absent acoustic reflexes. CMs and OAEs were within normal limits. There was no contra lateral suppression of OAEs. None of cases had normal ABR or MLR although LLR was recorded in 4. Conclusion: All patients in this study are typical cases of auditory neuropathy. Despite having abnormal input, LLR remains normal that indicates differences in auditory evoked potentials related to required neural synchrony. These findings show that auditory cortex may play a role in regulating presentation of deficient signals along auditory pathways in primary steps.

  16. Effect of tolperisone on the resting brain and on evoked responses, an phMRI BOLD study.

    Science.gov (United States)

    Kocsis, Pál; Gajári, Dávid; Deli, Levente; Gőcze, Krisztina Zsedrovitsné; Pozsgay, Zsófia; Tihanyi, Károly

    2013-10-01

    Tolperisone is a voltage gated sodium channel blocker, centrally acting muscle relaxant drug, with a very advantageous side effect profile. Like other sodium channel blockers, it has weak affinity to the resting state and high affinity to the open/inactivated state of the channel. In this paper, its effect on BOLD responses in rat brain were elucidated both on the resting brain and paw stimulation evoked BOLD responses. Tolperisone did not exert any visible effect on resting brain, but strongly inhibited the paw stimulation evoked BOLD responses, showing somewhat higher efficacy in brain areas involved in pain sensation. This finding is in a good agreement with its sodium channel blocking profile. In the resting brain, most of the channels are in resting state. Electric train stimuli of the paw results in over activated neurons, where most sodium channels are in open or inactivated state. These data suggest that the very advantageous profile of tolperisone can be explained by its selective action on open or inactivated sodium channels of over-activated neurons in various brain regions rather than by a selective effect in the spinal cord as suggested previously.

  17. Auditory stimuli mimicking ambient sounds drive temporal "delta-brushes" in premature infants.

    Directory of Open Access Journals (Sweden)

    Mathilde Chipaux

    Full Text Available In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG pattern, "delta-brushes," in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW during routine EEG recording. Stimuli consisted of either low-volume technogenic "clicks" near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus ("click" and voice was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and "click" stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for "click" and voice stimuli: responses to "clicks" became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory, these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex

  18. Auditory event-related responses to diphthongs in different attention conditions

    DEFF Research Database (Denmark)

    Morris, David Jackson; Steinmetzger, Kurt; Tøndering, John

    2016-01-01

    The modulation of auditory event-related potentials (ERP) by attention generally results in larger amplitudes when stimuli are attended. We measured the P1-N1-P2 acoustic change complex elicited with synthetic overt (second formant, F2 = 1000 Hz) and subtle (F2 = 100 Hz) diphthongs, while subjects....... Multivariate analysis of ERP components from the rising F2 changes showed main effects of attention on P2 amplitude and latency, and N1-P2 amplitude. P2 amplitude decreased by 40% between the attend and ignore conditions, and by 60% between the attend and divert conditions. The effect of diphthong magnitude...... was significant for components from a broader temporal window which included P1 latency and N1 amplitude. N1 latency did not vary between attention conditions, a finding that may be related to stimulation with a continuous vowel. These data show that a discernible P1-N1-P2 response can be observed to subtle vowel...

  19. Auditory steady state response in the schizophrenia, first-degree relatives, and schizotypal personality disorder.

    Science.gov (United States)

    Rass, Olga; Forsyth, Jennifer K; Krishnan, Giri P; Hetrick, William P; Klaunig, Mallory J; Breier, Alan; O'Donnell, Brian F; Brenner, Colleen A

    2012-04-01

    The power and phase synchronization of the auditory steady state response (ASSR) at 40 Hz stimulation is usually reduced in schizophrenia (SZ). The sensitivity of the 40 Hz ASSR to schizophrenia spectrum phenotypes, such as schizotypal personality disorder (SPD), or to familial risk has been less well characterized. We compared the ASSR of patients with SZ, persons with schizotypal personality disorder, first degree relatives of patients with SZ, and healthy control participants. ASSRs were obtained to 20, 30, 40 and 50 Hz click trains, and assessed using measures of power (mean trial power or MTP) and phase consistency (phase locking factor or PLF). The MTP to 40 Hz stimulation was reduced in relatives, and there was a trend for MTP reduction in SZ. The 40 Hz ASSR was not reduced in SPD participants. PLF did not differ among groups. These data suggest the 40 Hz ASSR is sensitive to familial risk factors associated with schizophrenia.

  20. Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults

    Science.gov (United States)

    Cobb, Kensi M.; Stuart, Andrew

    2016-01-01

    Purpose The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Method Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level…

  1. Effect of High-Pass Filtering on the Neonatal Auditory Brainstem Response to Air- and Bone-Conducted Clicks.

    Science.gov (United States)

    Stuart, Andrew; Yang, Edward Y.

    1994-01-01

    Simultaneous 3- channel recorded auditory brainstem responses (ABR) were obtained from 20 neonates with various high-pass filter settings and low intensity levels. Results support the advocacy of less restrictive high-pass filtering for neonatal and infant ABR screening to air-conducted and bone-conducted clicks. (Author/JDD)

  2. Modeling hemodynamic responses in auditory cortex at 1.5 T using variable duration imaging acoustic noise.

    Science.gov (United States)

    Hu, Shuowen; Olulade, Olumide; Castillo, Javier Gonzalez; Santos, Joseph; Kim, Sungeun; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2010-02-15

    A confound for functional magnetic resonance imaging (fMRI), especially for auditory studies, is the presence of imaging acoustic noise generated mainly as a byproduct of rapid gradient switching during volume acquisition and, to a lesser extent, the radiofrequency transmit. This work utilized a novel pulse sequence to present actual imaging acoustic noise for characterization of the induced hemodynamic responses and assessment of linearity in the primary auditory cortex with respect to noise duration. Results show that responses to brief duration (46 ms) imaging acoustic noise is highly nonlinear while responses to longer duration (>1 s) imaging acoustic noise becomes approximately linear, with the right primary auditory cortex exhibiting a higher degree of nonlinearity than the left for the investigated noise durations. This study also assessed the spatial extent of activation induced by imaging acoustic noise, showing that the use of modeled responses (specific to imaging acoustic noise) as the reference waveform revealed additional activations in the auditory cortex not observed with a canonical gamma variate reference waveform, suggesting an improvement in detection sensitivity for imaging acoustic noise-induced activity. Longer duration (1.5 s) imaging acoustic noise was observed to induce activity that expanded outwards from Heschl's gyrus to cover the superior temporal gyrus as well as parts of the middle temporal gyrus and insula, potentially affecting higher level acoustic processing.

  3. Implementation of a nation-wide automated auditory brainstem response hearing screening programme in neonatal intensive care units

    NARCIS (Netherlands)

    Straaten, H.L.M. van; Hille, E.T.M.; Kok, J.H.; Verkerk, P.H.; Baerts, W.; Bunkers, C.M.; Smink, E.W.A.; Elburg, R.M. van; Kleine, M.J.K. de; Ilsen, A.; Maingay-Visser, A.P.G.F.; Vries, L.S. de; Weisglas-Kuperus, N.

    2003-01-01

    Aim: As part of a future national neonatal hearing screening programme in the Netherlands, automated auditory brainstem response (AABR) hearing screening was implemented in seven neonatal intensive care units (NICUs). The objective was to evaluate key outcomes of this programme: participation rate,

  4. Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes

    Directory of Open Access Journals (Sweden)

    Susan Abadi

    2016-09-01

    Full Text Available Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cross-sectional study, we compared click auditory brainstem responses between 261 children who were clinically diagnosed with delayed speech with unknown causes based on normal routine auditory test findings and neurological examinations and had >12 months of speech delay (case group and 261 age- and sex-matched normally developing children (control group. Our results indicated that the case group exhibited significantly higher wave amplitude responses to click stimuli (waves I, III, and V than did the control group (P=0.001. These amplitudes were significantly reduced after 1 year (P=0.001; however, they were still significantly higher than those of the control group (P=0.001. The significant differences were seen regardless of the age and the sex of the participants. There were no statistically significant differences between the 2 groups considering the latency of waves I, III, and V. In conclusion, the higher amplitudes of waves I, III, and V, which were observed in the auditory brainstem responses to click stimuli among the patients with speech delay with unknown causes, might be used as a diagnostic tool to track patients’ improvement after treatment.

  5. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant info